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Estimating Griliches' k-shifts  
 
 
Abstract. Griliches’ k-shift, a crucial parameter in the welfare evaluation of technological change, is 

shown to be equal to the radial rate of technological change plus a vector of commodity bias parameters 

obtained from the distance function. The analysis permits decomposition of sectoral productivity 

growth into productivity growth by commodity. The k-shifts estimated for wheat, corn, soybeans and 

beef in U.S. agriculture indicate a decrease in the marginal cost of production of corn, soybeans and 

wheat during the 1950-1993 years. 

 

Keywords : distance function, k-shift, rate of technical change, output biases, rate of commodity 
progress. 
 
JEL classification: D24, Q16, O47. 
 
 
 

I. Introduction 
 
 Productivity growth is defined as an increase in output per unit of inputs. It can be represented 

by an upward shift of the production function, or a downward shift of the marginal cost of production. 

When productivity1 change is measured in input-output space by a production function shift, it is 

usually described by technology parameters indicating the rate and input biases of that change. When 

productivity change is measured in output-price space as a shift in the marginal cost of the commodity, 

it is usually described by what has been referred to in the literature as Griliches' k-shift. This concept 

was introduced in Griliches' seminal 1958 article on social returns to hybrid corn, to describe the shift 

in the supply curve (page 423) and later has been used by many others.2 Even though changes in 

productivity can equivalently be assessed by estimating the relevant technology parameters or by 
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investigating the nature of the changes in the commodity's industry-level supply function, it has been 

customary in the literature to study one or the other without explicit recognition of their exact 

relationship. 

 In this study Grilches' k-shift, a supply curve shift, is decomposed into an overall rate of 

technical change and the commodity specific output biases of technical change. Previous studies have 

used ‛ad-hoc' estimates of the k-shift in single commodity markets to study the welfare impacts of 

R&D. Other studies have estimated total factor productivity indexes (TFP) at a sectoral or highly 

aggregated level. None has attempted to make these two measures consistent, nor has any study 

decomposed sectoral productivity growth into productivity growth by commodities within a simple and 

theoretically consistent framework.  

 Section two summarizes the literature. Section three introduces the output distance function, 

characterizes productivity change in terms of the distance function and shows its relationship with the 

k-shift. Section four presents an example where the k-shift for wheat, corn, soybeans and beef in U.S. 

agriculture is estimated. Section five is a summary and conclusions. 

 

II. Other Productivity Studies. 
 
 A review of the literature shows two types of approaches used to measure the economic 

consequences of technical change. The first one includes economy-wide and sectoral studies that use 

indexes, production, cost and profit functions to estimate the rate and bias of technical change. Studies 

that measured technical change as a shifter of the production function or as an output over input index 

start with Tinberger's 1942 effort and include the early works of Schmookler, Fabricant, Kendrick, 

Abramovitz, Solow, Griliches (1960, 1963), Jorgenson and Griliches and many others that followed.3 
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Introduction of duality theory has provided studies where productivity change is captured as a shifter of 

the cost, revenue or profit functions. Along these lines we found the studies by Christensen, Jorgenson, 

and Lau, Berndt and Khaled, and others.4 These studies are done at a high level of aggregation, 

providing estimates of the rate of technical change and the input biases at the industry, sector, or 

country level.  

 The alternative to the approach above goes beyond the production technology to look at the 

productivity impact on the firm and industry supply functions. In view of the fact that the ‘output’ of 

innovative activity does not present itself in countable units, it has proven useful to define a 

quantifiable dimension for innovations in value terms, that is, in terms of their impact on social welfare. 

In other words, these studies seek an answer to the question of how much additional consumer and 

producer surplus was generated by technical change in a particular commodity market during a period 

of time. The so called economic surplus approach has been used extensively to evaluate the benefits 

from a productivity induced supply shift starting with Griliches' (1958) study on the social returns to 

hybrid corn research. Early work includes the evaluation of agricultural research by Peterson and by 

Schmitz and Seckler, of industrial innovations by Mansfield et al., of mainframe computers by 

Bresnahan, and more recently the study by Trajtenberg of computed tomography scanners.5 While the 

last two studies presented hedonic analyses of the impact of changes in product qualities on consumers' 

welfare, all of the others analyzed the welfare impact of a process innovation as a supply shift and 

compute the benefits from the implied price reductions. These studies assume an exogenously 

determined shift of the marginal cost due to innovative activities and calculate the returns to these 

investments as changes in economic surplus. Critical assumptions in these models include the supply 

and demand elasticities and the nature of the productivity-induced supply shift. This supply shift is 
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what Griliches called k-shift. Researchers agree on the importance of such a parameter, but all studies 

have used ad-hoc approximations.  

 This paper, first, shows that Griliches k-shift can be decomposed into an overall rate of 

technical change plus corresponding output biases. Second, it shows how to use the distance function to 

derive these concepts.  Third, it illustrates by estimating k-shifts, the commodity specific rates of 

technical change for wheat, corn, soybeans and beef in U.S. agriculture. 

 

 
III. The Distance Function Approach to Productivity Measurement 
 
 A change in productivity is defined as a technology-driven divergence in the sizes of the output 

bundles obtainable from given inputs. To measure it we need a representation of the technological 

possibilities of the firm. If there are many outputs a useful representation is provided by the distance 

function. The output distance function is particularly fit to the study of productivity growth. This is 

because, by definition, it allows representation of the maximum amount by which outputs could be 

expanded given available inputs.  

The first references to the distance function are Wold who uses it to define a utility function, 

Debreu who uses it to define the 'coefficient of resource utilization', Malmquist who develops a series 

of index numbers based on it and Shephard, who extensively discusses it in the context of production 

theory. More recent publications in the production area that use and describe the properties of this 

function can be found in Fuss and McFadden, Blackorby, Lovell, and Thursby, and Färe and Primont.6 

Much of what follows benefits from one or more of the contributions listed above and from the general 

exposition in Cornes. These references do not provide a systematic treatment of the distance function in 

the context of productivity measurement. Färe et al. (1997) shows a decomposition of the Malmquist 



productivity index into a technical change and input and output biases.  Although most applications 

have used non-parametric techniques, Fuentes et al. implement the ideas in Färe et al. using 

econometric techniques. 

Formally, for given output and input vectors y and x , and output set P(x) defined as the set of 

all output bundles that can be produced from input bundle x, the output distance function7 is defined as

  

   * D ( , ) inf{ | (1/ ) ( )}.o P
θ

θ θ θ≡ ≡ ∈y yx x              (1) 

 For a firm using a (nx1) vector of inputs x with prices W to produce a (mx1) vector of outputs y 

with prices P subject to output set P(x), assuming revenue maximization, the revenue function dual to 

the output distance function DO(x, y)  solves the following problem: 

 

        (2) max ( ) 1},R( , ) | Do≡ x, y {P x P.y 
y

=

that provides the revenue-maximizing bundle y* when output prices are P and inputs are x. We 

normalize output prices (pi = Pi/R) so that the maximum revenue obtained when producing the target 

vector of outputs is unity, that is R(p, x) = 1.  

 A useful property of the output distance function is its derivative property. The derivative of 

DO(x, y) with respect to the mth output, which we write ψm(x, y), is the marginal cost for output m,  

  ( , ) / ( , )  for m=1,...,M.m
o m m m

PD y p
R

∂ ∂ ψ≡ = ≡x y x y     (3) 

 The derivative of DO(x, y) with respect to the nth input, which we write φn(x, y), is the marginal 

revenue product of input n,  
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   ( , ) / ( , )  for n=1,...,N.n
O n n n

WD x w∂ ∂ φ≡ = ≡x y x y
R

θ

    (4) 

 Using the envelope theorem, price differentiation of the normalized revenue function R(p, x) 

gives (compensated) supply functions ym(p, x).  

        
 

The Radial Rate of Technical Change. 

 In the presence of technical change, each observation through time is possibly associated with a 

different technology. The technology index At is used as a local representation of technical progress 

that shifts the production frontier across observations. Modifying (1) to include a technology index, the 

output distance function can be written 

       (5) ( , , ) min{ 0 : ( / ) ( , )}.t
o t t t t tD A P Aθ θ= > ∈x y y x

where the output set P(x, At) is defined as the set of all output bundles that can be produced from input 

bundle x and technology At. Technological change is progressive if for At+1 >At, it expands the output 

set and allows output bundles formerly infeasible with inputs x to be in the new feasible set, or P(x, At) 

⊆ P(x, At+1). It is regressive if for At+1 >At, P(x, At) ⊇ P(x, At+1), it shrinks the output set by 

eliminating feasible output bundles. Locally, the behavior of DO(x, y, At) in At is easy to categorize. If 

technical change is progressive the output distance function is non-increasing in At, if it is regressive it 

is non-decreasing in At. This is because technical change expands the production set so the minimum 

achieved on the expanded set cannot be larger than the minimum achieved on the original output set 

since the original output bundle remains feasible. The same argument establishes the relationship 

between regressive technical change and the output distance function.  



 Figure 1 illustrates the case where the output set is enlarged from P(x0, At) to P(x0, At+1) as a 

result of technical change. Let the bundle y0 be attainable with period t technology and inputs x0 but not 

on the production frontier F(x0, At) of the feasible set P(x0, At). Let h0 be the output bundle just 

attainable in this period, then h0 = y0/θ0, where θ0 is the smallest scalar by which all outputs are 

expanded to reach the frontier. After technical change, the output set is enlarged and the new frontier is  

F(x0, At+1), with the output bundle h1 just attainable with the new technology. In this case  h1 = y0/θ1, 

the scalar θ1 by which all outputs should be expanded in order to reach the new frontier, is smaller than 

the one before the expansion (θ1 <θ0). So progressive technical change represented by P(x, At) ⊆ P(x, 

At+1) as At+1 >At, implies θ1 <θ0, or ∂D / ∂At ≤ 0. 

 For observations on the frontier: 

     * *( , , ) 1t
o t t tD A =x y      (6) 

we define the rate of technological change  

   ln ( , , ) ( , , )
( , , ) .o o

t tD A D At t t t t tAt t A At t

∂ ∂
δ

∂ ∂

− −
= =

x y x y
x yt t     (7) 

Following Atkinson et al. and totally differentiating equation (6); considering that by definition the 

output distance function maintains inputs constant (dx = 0); that it is radial in output space so that 

dlny1/dAt = dlny2/dAt = ...=dlnyM/dAt and equal to the common scalar dlnym/dAt; and that in addition it 

is linear homogeneous in outputs so that ln ln 1
1

M t( D / y )o mtm
∂ ∂ =∑

=
, we are able to derive 

   
ln ( , , ) ln

( , , ) .o
tD A d yt t t mtAt t A dt t

∂
δ

∂

−
= =

x y
x yt t A

     (8) 

Equation (8) indicates that δ, the rate of technical change obtained from an output distance function, 

equals the common rate of expansion of outputs along a ray through the origin due to an increase in the 
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technology index A when inputs are not allowed to change. Once a particular parametric specification 

for the distance function is chosen, δ can be estimated. 

 Alternatively, and using the property of homogeneity of the output distance function in y, this 

radial rate of technical change can be shown8 to be a weighted average of the changes in marginal cost 

of the commodities due to technical change 

  ln ( , , ) ln( , , ) ,vo t t t mt
t t t t mt

D AA
A Amt t

S ∂ ψδ
∂

∂
= − = −

∂ ∑x yx y     (9) 

where δ is the radial rate of technological change, Sv
mt is the shadow (or virtual) share of commodity m, 

and ∂lnψmt/∂At is the change in the logarithm of the marginal cost of commodity m due to technical 

change. 

 Notice the relationship between the primal rate in (9) and a dual rate of technical change 

obtained from the normalized revenue function. Figure 2 illustrates these concepts in price space. For 

progressive technical change, represented by At+1 >At, the price frontier moves inward and the radial 

revenue function is non-decreasing in A as seen by the segment OA/OB being smaller than OA/OC or 

∂Rt / ∂At ≥ 0. For observations on the price frontier, following the same procedure as in (8), we can 

derive the dual rate of technical change as 

   
ln ( , ) ln

( ,
tR A d pt mt )AtA dA

∂
μ

∂
= − =

x , pt t x , pt t t
t t

    (10) 

where we have used the definition of the normalized revenue function and its property of linear 

homogeneity in prices. This equation indicates that the dual rate of technical change μ equals the 

common rate of change of output prices along a ray through the origin in price space, when inputs are 

not allowed to change. Once a parametric revenue function is specified, μ can be estimated. 

 From problem (2) and using the envelope theorem we see that 



   ( , , ) ( , , )( , , ) .
t t

t t o t
t t t

t t

R A DA
A A

∂ ∂λ
∂ ∂

= −tx p x yx p At t     (11) 

In addition the first order conditions of problem (2) are  pm=λ ∂Do(.)/∂ym, for all m = 1,...,M, and  Do(.) 

= 1. Multiplying the first order conditions by y(p, x, A) and using the linear homogeneity property of 

the distance function, we see that λ is the normalized revenue which is equal to 1 at the optimum.  

Then 

   
ln ( , , ) ln ( , , )t tR A D Aot t t t t t

t tA At t

∂ ∂
μ δ

∂ ∂
= = −

p x y x
=      (12) 

which establishes the equivalence between the radial primal and dual rates of technical change when 

inputs are constant. So, if inputs are held constant9, we define the radial rate of technical change as the 

rate of contraction of the output distance function or equivalently as the rate of expansion of the 

normalized revenue function. Due to their radial nature, these rates only allow measurement of 

neutral10 technical change, as shown next. 

 

Hicksian and Overall Biases of Technical Change. 

 In a multiple-output production process, technological change may privilege some outputs 

resulting in some outputs growing faster than others. Hicks introduced the definition of neutral and 

biased technological change for input pairs. He suggested that inventions could be classified in terms of 

their effects on the marginal product of one factor relative to another, or on the marginal rate of 

substitution between two factors. I use Blackorby, Lovell, and Thursby 's interpretation of Hicks 

neutrality as the invariance of the marginal rate of technical substitution at different points on the firm's 

expansion path. The radial primal rate of technical change δ captures Hicks neutral technical change.11 

When technical change is not Hicks neutral the distance function is also an useful concept. 
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Consider extending the concept of Hicksian biases from input to output space  

  

ln(MRT ) ln( / )
, , )

m,j=1,...,M, m j

B ( m
mj

mj jAt A At t

∂ ∂ ψ

∂ ∂
≡ =

≠

y x
ψ

      (13) 

which uses the fact that the MRTmj is the relative cost of producing additional units of commodity m in 

terms of units of commodity j given up. This bias concept measures the rotation of the production 

possibilities frontier at a point in output space in response to technical change. As illustrated in Figure 

1, the firm is producing at h0 on the initial expansion path. After technological change has occurred, the 

firm produces at h2, on a new expansion path. This movement can be decomposed into a Hicks neutral 

change from h0 to h1 and a substitution change from h1 to h2. Bmj measures the change in slope of the 

production frontiers through h1 on the initial expansion path. Hicks neutrality is captured by Bmj = 0, for 

all m, j, when technical change does not change the expansion path. If Bmj > 0 the opportunity cost of 

output j in terms of output m for given inputs has decreased, and the technological change is biased 

toward the production of output j relative to output m. Bmj < 0 when as a result of technical change, 

production of one more unit of output j with the same inputs requires the firm to give up more units of 

output m than before the technological change, so that it is jth output reducing relative to the mth output.  

 Hicks defined factor biases in terms of a two-input production function. This definition is not 

very useful in the multiple-output, multiple-input framework described by the output distance function 

of this paper because it provides (m2-m)/2 potential forms of relative bias. For example, technical 

change could enhance the production of corn relative to that of wheat, while diminishing the production 

of corn relative to soybeans. This definition does not give a clear interpretation as to whether technical 

change is expanding or contracting in each output.   
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 An overall measure of bias, in the manner of Antle and Capalbo, defined in product space with 

the use of the distance function is 

   v
j

lnln( , , ) ( , , )
M M

v

1 1

jm
m t t t j mj t t tB A S B A S

j m jt tA A
∂ ψ∂ ψ

∂ ∂
≡ = −∑x y x y

≠ = =
∑

j

  (14) 

where  = ψj yj / DO  is the virtual or shadow share of output j. Equivalently, using (8) and (9) and for 

given outputs,   

vS

    ln ln ln( , , )
v

m o
m t

D SB A
A A A

∂ ψ ∂
∂

∂
= − =

∂t tx y mt

t t t y
∂

    (15) 

which provides a convenient taxonomy of effects associated with technical change. Equation (14) and 

(15) indicate that if the marginal input requirement of output m is increasing relative to all others, then 

Bm > 0 and the technological change is output-m reducing overall or bias against the production of this 

output (anti-output m biased) as its virtual share increases due to increases in its opportunity cost of 

production. If Bm = 0 then technical change is Hicks neutral. Bm < 0 indicates that an additional unit of 

output m requires less inputs than other outputs after the technical change has taken place, therefore the 

technological change has been output-m augmenting and its virtual share decreases as its cost of 

production has done so.  More of the mth output can be produced now with the same inputs and 

technological change is pro-output m biased.  

 If technological change were completely unbiased (all Bmj’s are 0 and all Bm’s are 0), from (15) 

and (10) we have that the radial rate of technical change is 

     
ln

, .m m
A

∂ ψ
δ

∂ t
= − ∀       (16) 

and all marginal costs change at the same rate.  



Other results of interest derived from the symmetry of the Hessian of the distance function are 

as follows. Let ∂ 2ln D(.)/∂At∂ln ym = -∂δ/∂ln ym be the impact of changes in outputs on the radial rate 

of technical change. One can then easily show that 

   
2 ln ( , , ) ln ln ( , , )

ln

v
v vt t t m m t
m m

t m t t t

D A S D AS S
A y A A A

∂ ∂ ∂ ψ ∂
∂ ∂ ∂ ∂ ∂

⎡
= = − =⎢

⎣ ⎦
t tx y x y

mB
⎤
⎥   (17) 

Thus, the share-weighted technological bias index captures the impact of technological progress on 

output composition. It results from the linear homogeneity of the distance function in outputs and from 

the definition of Bm that 

   
2 ln

0
ln ln

m
m m

m m mm m

vD SvS B
i y A yt t

∂δ ∂ ∂

∂ ∂ ∂
− = = =∑ ∑ ∑ ∑

A∂
=     (18) 

that is, the rate of technical change is homogeneous of degree 0 in output quantities.12 Equation (18) 

indicates that if technical change is biased at least one Bm must be positive and one must be negative.  

 Biases are also obtained in dual space from the normalized revenue function R(p, x, A).  

Pairwise biases are defined in terms of changes in the ratio of two outputs 

   (
ln( / ) ln ( , , )ln ( , , )

, , )
m mt t t t tt t t

t t t
t t t

y y R AR Aj jrB Amj A A A

∂ ∂∂
= = −

∂ ∂ ∂

p xp x
p x  (19) 

m, j= 1,...,M, m≠ j, where the revenue function subscripts indicate first derivatives while overall biases 

are 

  ( )
lnln

, , ( , , )
1 1

m
t t t

yM My jr rB A S B A Sm tj mj jj m j mA At t

∂∂

∂ ∂
= = −∑ ∑

≠ = ≠ =
p x p xt t              (20) 

where Sj = yj pj / R is the actual revenue share of output j. Alternatively 

    
ln

( , ),
Sr mB Am t At p

∂

∂
=p xt t       (21) 
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Bm

which should not be confused with the definition in equation (15). If the optimal output mix is 

produced, the primal and dual output shares are equal although their behavior with respect to technical 

change need not be. Recall that the primal output share keeps all other outputs fixed, while the dual 

share keeps all other output prices fixed. = 0 indicates dual Hicks neutrality, rBm
13 while  > 0 

indicates that technical change has been pro-output m biased while the opposite is true for < 0. 

rBm

r

 Once a parametric specification of the distance function or the revenue function is chosen, 

pairwise and overall biases can be estimated. 

 
Griliches' k-shift. 
 
 We have shown above how the output distance function provides information about the rate and 

biases in technological change. The task now is to relate these concepts to Griliches’ k-shift. In his 

1958 paper “Research Costs and Social Returns: Hybrid Corn and Related Innovations,” Griliches 

defines the parameter k used in the welfare analysis there as ‘ . . . the relative shift in the supply curve, . 

. . ’ (p. 423) due to the introduction of the new varieties, and calculates it casually as the percentage 

change in yields.14  In Figure 3, this is a shift in the marginal cost curve of commodity m and can be 

represented by the percentage change in the virtual price of that commodity measured at the original 

equilibrium value of y.15 Griliches' k-shift is then 

     ln m
mk

A
∂ ψ
∂

=
t y

       (22) 

  



We know from equations (14) and (15) that the overall bias is 
 

   ln ln ln ( , , )( , , )
v
m m o

m t
t t ty

S DB A
A A A

∂ ∂ ψ ∂
∂ ∂ ∂

tA⎡ ⎤
= = −⎢ ⎥

⎣ ⎦
t t

t t
x yx y     (23) 

 
and from here we obtain that 
 

  , ,
,

ln ( , ) ln ( , )ln( , ) ( , , ) ( , , ).
v

m t o tm
m t m t t

t t ty

A D ASk A B A
A A A

∂ ψ ∂∂ δ
∂ ∂ ∂

= = + = −t t t t
t t t t t t

x y x y
x y x y x y tA  (24) 

In (24) we have decomposed Griliches’ k-shift for output m into the output bias and the radial rate of 

technological change. If we estimate these two technology parameters we are able to estimate Griliches' 

k-shift which could alternatively be interpreted as an output specific rate of technical change. 

 An equivalent set of relationships can be obtained in dual space. They describe the horizontal 

shift of the marginal cost curve, as opposed to the vertical shift. This is referred to in the literature as 

Griliches’ K-shift. Given output prices and factor endowments, this K-shift is defined in terms of the 

dual radial rate of technical change, μ, as 16 

ln ( , , ) ln ( , , )ln
( , , ) ( , , ) ( , , ).my A r ASmt t t t t tK A B Am mt t t t t t t t tA A At t tp

∂ ∂∂
μ

∂ ∂ ∂
= = + = +

p x p x
p x p x p x A  (25) 

Both the k-shift and the K-shift are estimable once an output distance function or a revenue function is 

specified. 

 

IV. An Application: Griliches' k-shift in U.S. Agriculture.  
 
 In this section we illustrate and use the theory to estimate Griliches' k-shift for wheat, corn, 

soybeans and beef in U.S. agriculture. 

  There have been numerous studies of productivity growth at the aggregate, sectoral and 

industry level for the U.S. These studies have used a number of different approaches to productivity 
 15
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measurement, including parametric and non-parametric, stochastic and deterministic. Productivity 

studies that focus on the agricultural sector include Gollop and Jorgenson, Capalbo and Vo, Ball et al., 

Pardey et al., Huffman and Evenson, Cox and Chavas, Lim and Shumway, and Gopinath and Roe, 

among others. These studies estimate productivity growth using index numbers, estimates of 

production, cost and profit functions, and other non-parametric approaches. Most of these studies 

obtain estimates of the rate of agricultural productivity growth for the sector as a whole. They are 

consistent in estimating positive rates of productivity growth in U.S. agriculture during the last half of 

the 20th century. Few are able to differentiate productivity growth in the crops and livestock subsectors.  

None of these studies have obtained estimates of productivity growth at the commodity level or have 

estimated Griliches’ k-shifts.  

  

The Data. 
 
 The five commodities chosen in this study constitute 100 percent of the value of all U.S. 

agricultural production. The data used in the analysis consists of annual observations on quantity 

(produced and used) and price indexes (paid and received) from 1950 to 1993 obtained from a number 

of sources. I estimate a structure with five outputs (corn, wheat, soybeans, beef cattle and all other 

commodities), one input (all production inputs), and time as a proxy for technological change. The 

choice to aggregate inputs into one index reflects my interest in illustrating the concepts in output 

space. Estimates of input biases in U.S. agriculture have been more common in the literature. The 

variables used in this analysis are described in Table 1. 

 

The Quadratic Specification. 
 



 A flexible representation of the technology that embodies the regularity conditions required by 

theory is desirable for implementation of this model. The translog functional form has been used in a 

number of studies (Lovell et al., Grosskopf et al., Coelli and Perelman, Morrison Paul et al. (2000)) in 

the distance function context. Here, a generalized quadratic form is used (for simplicity the t subscript 

is dropped). 

  In general, 

     

* * * '
0

*
1

*
1

*

1' ,
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where y is an M output vector, y* is a vector of M-1 outputs (one output is used for normalization), x is 

an N vector of inputs and z is a K vector of exogenous variables such as At (technical change), and α0 , 

α', and  Γ are parameters to be estimated (a scalar, a vector and a matrix, respectively). A convenient 

partition consists of α' = (αy*, αx, αz)', and 
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      (27) 

Theoretically required regularity conditions for this function include homogeneity of degree one in 

outputs and symmetry. The normalized quadratic maintains linear homogeneity of the output distance 

function. Symmetry requires the constraints: 

      ij ji i jγ γ= ∀ ≠       (28) 

for all outputs, inputs and other exogenous variables and their cross products. 
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* * * * zy y y x y z
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 First order differentiation of the normalized output distance function with respect to outputs 

yields a system of marginal cost, shadow (or virtual) prices that are linear in normalized output 

quantities, in input quantities and in other exogenous variables 

         (29) * ,yψ α γ= + Γ + Γ +y x

where ψ is an m x 1 column vector consisting of marginal valuations (∂DO/∂ym* =ψm (.)).  
 
 Using equation (4), the marginal revenue product of inputs is 
 

        (30) *( *xφ α γ= − + Γ +Γ +y x xx xzy x

where ø is a nx1 vector of marginal input revenues. Note that Γzz, which is needed to evaluate technical 

change, cannot be estimated from equations (28) and (29). The output distance function in equation 

(25) must be estimated either alone or jointly with these equations. 

 By the envelope theorem, ψ is a vector of inverse supply functions and ø is a vector of inverse 

derived demand functions. Convexity in output quantities implies a positive semi-definitive matrix of 

second order derivatives of the output distance function with respect to outputs, Γyy .
17 If in addition,   

concavity in inputs is desired the Hessian implied by the estimated parameters in inputs Γxx, must be 

negative semi-definite. These properties are maintained in estimation of this system. Monotonicity is 

satisfied if the predicted valuations are positive. This property is not maintained but evaluated after 

estimation. 

 Equation (9) indicates how the output distance function provides a measure of the rate of 

technical change. If z = A, this rate is obtained as 

   ( ).z z z zz
zz

D z
δ α= − + + +Γ Γ Γy xy x

x y
,

( , , )O

     (31) 



where δ is the radial rate of technical change and all outputs, including the numeraire, are contained in 

the vector y and the parameter matrix Γyz. Equation (30) can be evaluated for given values of outputs, 

inputs and other exogenous variables once the coefficients are estimated. The coefficients for the 

numeraire output are retrieved from the homogeneity condition. 

 Hicksian pairwise bias measures for outputs are obtained using equation (13) which gives 

     jzmz
mj

m j

B z
γγ

ψ ψ
= −
⎡ ⎤
⎢ ⎥
⎢ ⎥⎣ ⎦

      (32) 

for all outputs m,j = 1,...,M, and when z = A.  If Bmj = 0, then technical change does not bias the optimal 

mix between outputs, while Bmj > 0 implies a bias toward the production of the jth relative to the mth 

output, and Bmj < 0 implies a bias toward the production of the mth output relative to the jth output. 

Overall biases are obtained using the pairwise biases and equation (14). In terms of the parameters of 

the normalized quadratic output distance function 

     mz
m j mj

j m

B S B z
γ

δ
ψ

= = +∑
⎡ ⎤
⎢ ⎥
⎣ ⎦

     (33) 

for all m, j = 1,..., M, and z = A. Once the radial rate of technical change and the overall biases per 

commodity are obtained using equations (30) and (32), they are combined to obtain the commodity 

specific rate of productivity growth giving, according to equation (22), the respective k-shifts 

     mz
m m

m

k B z
γ

δ
ψ

= − =       (34) 

for all m = 1,...,M, and z = A.  
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Econometric Estimation. 
 
 Equations (25), (28) and (29) are modified slightly for estimation purposes. It is maintained that 

all observations are efficient, so for each year the production bundle is not only feasible but it is on the 

frontier. This amounts to assuming that DO(x, y) = 1 in every period, and as a result, equation (25) 

regresses (y1)-1, the numeraire output, on all other normalized outputs, input quantities, and other 

exogenous variables. Random disturbances are added to the normalized distance and normalized price 

equations. These disturbances represent the effect of random weather conditions and approximation 

error; they are assumed homoscedastic and uncorrelated within equations. Contemporaneous cross-

equation correlation of the disturbance terms is permitted. 

 If in addition to the above assumptions, the vector of disturbances is multi-normally distributed, 

maximum likelihood estimation can be performed. Under the stated stochastic assumptions, the 

maximum likelihood estimators are consistent, asymptotically normal, and asymptotically efficient.  

 Using the data described in the previous section, equations (25), (28) and (29) are estimated by 

the method of maximum likelihood, using the IML procedure in SAS. Cross-equation symmetry and 

identity restrictions are imposed on the parameters at estimation. Linear homogeneity in outputs is 

imposed by normalizing outputs by the index of ‛all other' outputs. Convexity in outputs must be 

imposed on this system. The output distance function will be convex in outputs if Γyy is a positive semi-

definite matrix, implying that the diagonal elements of this matrix are nonnegative. Convexity is 

imposed by estimating the system subject to nonegativity constraints on these parameters. This is done 

using the NLPQM (Dual Quasi Newton Method) optimization subroutine in the IML procedure in SAS. 

This approach allows estimation of the parameters in the system by maximizing the likelihood function 

subject to equality and inequality, linear and nonlinear constraints on the parameters. Once these 
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parameters are estimated, their standard errors are obtained from running one iteration of the SUR 

option of the MODEL procedure in SAS, with all parameter values restricted to the values estimated by 

the previous approach. 

 The system has six equations, the dependent variables being the inverse of the numeraire output 

( ‘others’), the normalized prices of corn, wheat, soybeans, beef cattle and the negative of the input 

price index. The stacked model has 264 observations and 28 estimated parameters. 

 Collinearity diagnostics developed by Belsley, Kuh and Welsch indicate an absence of strong 

multi-collinearity. Because time-series data are used, the presence of auto-correlation in the residuals is 

possible. Simple Durbin-Watson statistics for each of the equations in the system fall in the 

inconclusive range. Guilkey's likelihood ratio test statistic for a system of simultaneous equations that 

do not contain lagged endogenous variables as regressors does not lead to rejection of the hypothesis 

that the matrix of first order vector auto-regressive coefficients is zero.  Estimation proceeds under the 

assumption of serially independent errors. Table 2 presents the parameter estimates of the restricted 

model. The table contains a total of twenty eight estimated parameters, eight of which are significant at 

the 1 percent level, five at the 5 percent level, and four at the 10 percent level. The signs of the 

estimated parameters are in general consistent with the theoretical model. The own responses of the 

output supply equations are positive, while the own response of the input demand is negative. 

Monotonicity is satisfied at the mean of the data, but violated at 36 of the 264 data points. 

 Among the most significant estimated parameters are those of the time variable, indicating a 

strong autonomous component in the trend of the supply and demand equations. In all cases but one 

this trend is associated with a decrease in normalized prices of outputs, suggesting the presence of 

technical change.   
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Estimates of Technical Change, Bias and Griliches’ k shifts. 
 
 Equation (30) is used to estimate the radial rate of technical change. Table 3 shows the 

estimates of this rate by decades and compares them with estimates from well-known studies. The 

results indicate that during the 1950-93 period, U.S. agriculture grew at an average rate of 1.77 percent 

per year. This rate is lower than recent estimates of 1.85 percent to 2.24 percent by Ball, et al., Pardey 

et al., and Huffman and Evenson, who used an index number approach covering slightly different time 

periods.   

 Figure 4 shows the evolution of this rate as well as those from these other studies. The 

econometrically estimated rate of technical change in this study is consistent with the non-parametric, 

non-stochastic rates obtained from indexes. 

 Pairwise biases are obtained from equation (31). The results, shown in Table 4, indicate that 

technical change, on average, has not been Hicks neutral. In fact, it has been biased in favor of corn 

relative to soybeans and wheat, and soybeans relative to wheat, with the rest of the pairwise biases 

being insignificant. The average bias measures, Bm, calculated according to equation (32), indicate that 

on average, technological change has been biased in favor of corn, soybeans and wheat. The overall 

bias measure is insignificant for beef and ‛others'. 

 Finally, the commodity specific rate of technical change, the k-shift, is estimated using equation 

(32) as the sum of the radial rate of technical change and the overall bias per commodity. These results 

are presented in Table 5.18 On average, the marginal cost of corn, soybeans and wheat has decreased 

during the 1950-1993 period. The k-shift or downward shift of the supply due to technical change is 

estimated at 5.8 percent for corn, 3.5 percent for soybeans and 1.3 percent for wheat. The study by 

Gopinath and Roe, based on the estimation of a revenue function with aggregate U.S. data, finds a 2.9 
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percent and a 2.8 percent downward shift in the supply of crops and grains and a 2.29 percent 

downward shift in the supply of meat and dairy over the 1949-1991 period. Huffman and Evenson's 

index numbers show an average regional productivity growth range of 0.27-3.15 percent for crops and 

a 0.58-3.09 percent for livestock during the 1950-1982 period. A study by Morrison Paul et al. (2001), 

done with the objective of evaluating the impact of infrastructure on U.S. agriculture at the state level 

during 1960-1996, used a cost function with two outputs, animals and crops, and estimated supply 

shifts of 0.2 percent for each one.  

 These estimates indicate that the percentage reduction in the marginal cost of corn has been 

more than in soybeans, while the reduction in the marginal cost of soybeans has been more than in 

wheat. In other words, during these fifty years U.S. agriculture became more productive in the 

production of corn relative to soybeans and wheat, and in the production of soybeans relative to wheat. 

It is clear from the estimates that this study has not been useful at understanding the characteristics of 

technical change in the animal sector. 

 
 
Summary and Conclusions 
 
 I have developed a theoretical decomposition of Griliches’ k-shift into the rate and output bias 

components of technological change. I have shown how the output distance function and the inverse 

supplies or virtual prices obtained from it may be used to specify the k-shift, the radial rate of technical 

change and the output biases. This information is important because it allows productivity 

measurement by commodity within the context of overall technical change, and enables estimation of 

the downward shift of the marginal cost per commodity. Griliches’ k-shifts, a crucial parameter in the 

welfare evaluation of technological change usually chosen in an ad-hoc manner, can be 

econometrically estimated based on theory.   
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 I have also discussed the dual relationship between the output distance function and the 

normalized revenue function in this context, establishing the similarities and differences between the 

radial dual and primal rates of technical change and the respective output biases. It is possible to define 

a dual rate of commodity specific technical change which describes the horizontal shift of the marginal 

cost for each commodity in contrast to the vertical k-shift. This is usually referred to in the literature as 

Griliches’ K-shift. 

 I used the approach to estimate the k-shift or commodity specific rates of technical progress for 

corn, wheat, soybeans and beef in U.S. agriculture. The radial rate of technical change is estimated at 

about 1.77 percent per year, lower than that estimated by others using very different approaches and for 

slightly different time periods. The k-shift for corn is about 5.8 percent, with 3.5 percent for soybeans 

and 1.3 percent for wheat. This shows that U.S. agriculture has become more competitive in the 

production of corn, soybeans and wheat. This study is inconclusive with respect to the characteristics of 

technical change in the beef sector. 
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                Table 1. Variables Describing the Agricultural Sector 
  

Do(x,y,A) output distance function: value of one as efficiency is assumed in 
estimation. 

y vector of outputs: Tornquist-Theil index of production for corn, 
wheat, soybeans, beef livestock, and aggregate of all other products.  
Prices are corresponding implicit prices.  Original source of data: 
Agricultural Statistics, Crop Production, Agricultural Prices, 
Livestock and Poultry Situation and Outlook. 

x vector of inputs: Tornquist-Theil index of all inputs used. Implicit 
price index from the same source. Source: Ball, et al. 

A time trend used as proxy for technical change, 1950-1993. 
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Table 2. Parameter Estimates (t-ratios in parentheses), Symmetry, Homogeneity and Convexity        
    Imposed, 1950-1993, U.S. Agriculture.  
 

 First Order  Second Order Coefficients 

Prices Coefficients  
 

Quantities 

 Corn Soybeans Wheat Beef Input  Time 

Corn -3.526 
(-3.91) 

0.030 
(2.95) 

-0.017 
(-7.01)  

0.027 
(5.46)  

-0.021 
(-1.49)  

-0.078 
(-4.39)  

-0.002 
(-3.96)  

Soybeans 5.265 
(6.36) 

  0.031 
(5.36) 

-0.016  
(-4.87) 

-0.038 
(-4.38)  

-0.006 
(-0.42) 

-0.003 
(-6.09)  

Wheat -0.955 
(-0.77) 

   0.030 
(4.67) 

-0.027 
(-1.58) 

-0.048 
(-1.93)  

-0.0005 
(-0.85)  

Beef 16.453 
(6.78) 

      0.377  
(3.31) 

0.419  
(10.44) 

0.009 
(6.87)  

Inputs -23.355 
(-10.69) 

    -0.999 
(-7.88) 

0.013 
(11.80) 

Time -0.1783 
(-14.26) 

         -0.00009 
(-14.32)
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Table 3. Rate of Technical Change, U.S. Agriculture, 1950-1993. 
 
 

Years Delta Ball et al Alston and 
Pardey

Huffman and 
Evenson 

1950-59 0.31 1.93 2.33 1.75 

1960-60 0.90 2.10 1.39 2.04 

1970-79 1.94 1.76 1.38 1.67 

1980-89 3.08 3.39 2.65* 3.34** 

1990-93 3.92 1.24   

     

1950-93 
 

1.77 
 

2.21 
 

1.85# 2.24## 

* 1980-85    #1950-85 
**1980-1990 ##1950-90 



 33

Table 4.  Pairwise and Overall Output Biases, U.S. Agriculture, 1950-1993  
  (standard errors in parentheses). 
 

i\j Soybeans Wheat Beef Others Overall 

Corn -0.023 
(0.002) 

-0.046 
(0.009) 

-0.093 
(0.093) 

-0.051 
(0.032) 

-0.040 
(0.014) 

Soybeans  -0.023  
(0.006) 

-0.070 
(0.072) 

-0.028 
(0.098) 

-0.018  
(0.007) 

Wheat   -0.047 
(0.044) 

- 0.005  
(0.056) 

0.005 
(0.002) 

Beef    0.042  
(0.043) 

0.052 
(0.097)  

Others     0.010  
(0.080) 
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Table 5.  Griliches’ k-shift, Commodity Specific Technical Change, U.S. 1950-1993 
  (standard errors in parentheses) 
 

Outputs k-shift (%)18

Corn 5.82 
(0.99) 

Soybeans 3.54 
(0.63) 

Wheat 1.26 
(0.56) 

Beef -3.47 
(4.7) 

Others 0.01 
(1.9) 
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   Figure 1. The radial primal rate of technical change and output biases. 
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   Figure 2. The normalized revenue function and the radial dual rate of   
         technical change.  
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Endnotes 

 
1 Productivity change and technical change are used interchangeably in this paper. 
 
2 For a review of this literature see Alston et al. 
 
3 A summary of the early work can be found in Griliches (1996). For more recent attempts see Barro and 
Xala-i-Martin. 
 
4 A summary of the efforts along these lines can be found in Berndt, Morrison-Paul (1999) and Alston et 
al. 
 
5 See Bresnahan and Gordon for papers along this line. 
 

6 Uses of the distance function in demand theory are found in Gorman (1976), and a seminal article by 
Deaton (1978.) A good general exposition is in Cornes. 
 
7 The output distance function is non-increasing in each input level, non-decreasing in each output level, 
homogeneous of degree one and convex in outputs. For a complete description and proofs see Shephard 
(1970). 
 
8 Linear homogeneity in y implies 

   
2( , , ) ( , , ) ( , , )t t t mt t

mt mt
t t mt tm i

D y A D A A
y y

A A y A
ψ∂ ∂ ∂

= =
∂ ∂ ∂ ∂∑ ∑
t t t t tx x y x y

 

 
 
9 If inputs are allowed to change (i.e. dx ≠ 0) the equivalence between the primal and the dual rate includes 
an adjustment for returns to scale. 
 
10 Hicks neutrality is defined in the next section following Blackbory, Lovell and Thursby 
 
11 By definition of Hicks neutrality ∂MRTij/∂A=0, or ∂lnDoi/∂A=∂lnDoj/∂A=δ for all i, j. 
 

12 Follows from
ln /D D A
A D

δ ∂ ∂ ∂
= = −

∂ where numerator and denominator are linear homogeneous in outputs. 
 
13 Dual Hicks neutrality is defined as ∂ln(yi/yj)/∂A=0 so that ∂ln yi/∂A=∂ln yj/∂A=μ and the dual rate of 
technical change measures Hicks neutrality. Also from (22) Bij=0 and ∂ln Ri/∂A=∂ln Rj/∂A=μ. 
 
 
14 Griliches' 1958 article says on page 421 " I assume that the superiority of hybrid over open-pollinated 
varieties is 15 per cent..." In footnote 8 he explains that "Plant breeders conservatively estimate increases 
in yield of 15 to 20 per cent from using hybrid seed..." and in footnote 10 he says "Assuming k = 13, i.e., 
15/115..." Since then many other studies have used this concept in a similar way in welfare evaluation of 
research in particular markets. These studies are summarized in Alston et al. 
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15 An alternative way of measuring the shift of the marginal cost would be to represent the proportional 
rightward shift of this curve from the original equilibrium value of p. This is sometimes referred to in the 
literature as the K-shift (J-shift in Alston et al) and measures the proportional change in quantities given 
prices. In his original study, Griliches does not use this concept. 
 

16 Other relationships of interest are 
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17 This matrix is the supply side equivalent to the Antonelli matrix used in demand analysis. 
 
18 The sum of averages in Tables 3 and 4 do not add up to the average k-shifts in Table 5 due to rounding 
approximations.  In Table 5 calculations use more decimal places. Delta is 1.772951 and the overall biases 
are- 4.056 for corn, -1.767 for soybeans, 0.509 for wheat, 5.2515 for beef, and 1.0176 for others.  


	Estimating Griliches' k-shifts
	

	tmp.1234819054.pdf.oE2lp

