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Reconfigurable patch antennas have drawn a lot of research interest for future wireless 

communication systems due to their ability to adapt to changes of environmental conditions 

or system requirements. The features of reconfigurable patch antennas, such as enhanced 

bandwidths, operating frequencies, polarizations, radiation patterns, etc., enables 

accommodation of multiple wireless services. 

The major objective of this study was to design, fabricate and test two kinds of novel 

reconfigurable antennas: a dual-frequency antenna array with multiple pattern 

reconfigurabilities, and a pattern and frequency reconfigurable Yagi-Uda patch antenna. 

Comprehensive parametric studies were carried out to determine how to design these 

proposed patch antennas based on their materials dimensions and their geometry. 

Simulations have been conducted using Advanced Design Systems (ADS) software. As a 

result of this study, two kinds of novel reconfigurable patch antennas have been designed 

and validated at the expected frequency bands. 

For the new reconfigurable antenna array, the beam pattern selectivity can be obtained 

by utilizing a switchable feeding network and the structure of the truncated corners. 

Opposite corners have been slotted on each patch, and a diode on each slot is used for 

switchable patterns. By controlling the states of the four PIN diodes through the 



 

corresponding DC voltage source, the radiation pattern can be reconfigured. The simulation 

and measurement results agree well with each other. 

For the novel frequency and pattern reconfigurable Yagi-Uda patch antenna detailed in 

Chapter 4, two slots have been used on driven element to achieve frequency and pattern 

reconfigurability, and two open-end stubs have been used to adjust working frequency and 

increase bandwidth. In this design, an ideal model was used to imitate a PIN diode. The 

absence and presence of a small metal piece has been used to imitate the off-state and on-

state of the PIN-diode. Pattern reconfigurability and directivities with an overall 8.1dBi has 

been achieved on both operating frequencies. The simulation and measurement results 

agree closely with each other.  
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Chapter 1. Introduction to Reconfigurable Patch Antennas 

1.1 Introduction 

Patch antennas are widely used today. They are used for satellite communications and 

various military purposes such as GPS, mobile, missile systems, etc., due to their light 

weight, simple structure and easy implementation. The main advantages of patch antennas 

are as follows: 

(1) Low cost to fabricate. 

(2) Easy to manufacture. 

(3) Efficient radiation. 

(4) Support both linear and circular polarization. 

(5) Light weight. 

(6) Integrate easily with microwave integration circuits. 

The increasing demand for modern mobile, satellite and wireless communication systems 

have driven many researchers to work on improving performance and enhancing 

applications of patch antennas. Reconfigurable antennas have drawn much attention for 

future wireless communication systems due to their ability to modify their geometry to adapt 

to changes in environmental conditions or system requirements such as enhanced 

bandwidths, operating frequencies, polarizations, radiation patterns, etc. [1]. Microstrip 

antenna is one of the most popular choices in designing the reconfigurable antenna because 

of their advantages we introduced above. Reconfigurable antennas can be roughly classified 

into three main types: reconfigurable frequency, reconfigurable polarization and 

reconfigurable radiation pattern antennas. Usually, a reconfigurable antenna is realized by 
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using many kinds of RF switches, such as PIN diodes, Micro-electro-mechanical systems 

(MEMs) and GaAs field-effect transistors (GaAs FETs).  

A reconfigurable radiation pattern antenna reduces the effects of noisy environments by 

changing the null positions, and it saves energy by adjusting the main beam signal towards 

the intended user to improve the overall system performance. In [2], a single-feed switchable 

feed network, which replaces the traditional PIN diode or MEM, was used to obtain pattern 

diversity. In [3], a wide-band L-probe circular patch antenna was presented with dual feeds 

and an integrated matching network with switches. In order to reconfigure the radiation 

pattern electrically, the structure of this matching system is relatively complex. In [4], the 

method of switching load to reconfigure the pattern of antenna is used. A MEMs-switched 

parasitic antenna array providing radiation pattern diversity with a novel modeling method 

was proposed in [5]. A novel equilateral triangular patch antenna with two diverse patterns 

working at nearly the same resonant frequency was proposed in [6]. In [7], a pattern 

reconfigurable antenna based on a two-element dipole array model with a new structure is 

introduced by this author. In [8], they explored a very compact planar radiation pattern 

reconfigurable antenna using metasurface. In [9], they proposed a compact, low-profile, 

high impedance surface (HIS)-based, pattern reconfigurable antenna generating a broad 

and tilted beam. In [10], a new method to reconfigure the radiation pattern of a simple 

circular patch antenna with shorting pins located at the edge of the patch was presented. 

Genetic Algorithm (GA) and Finite Element software was used to simulate and optimize 

the impact of the shorting pins on this antenna. 

Compared to traditional broadband antennas, frequency reconfigurable antennas have a 

relatively smaller size and higher isolation [11]. In [12], a frequency reconfigurable patch 
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was proposed that used 19 reed switches, which replace bias and control circuits, to connect 

the patch with the ground plane. [13] was introduced a compact frequency-reconfigurable 

patch antenna capable of switching between three operating bands, with the feature of 

shorting load. In [14] frequency agility was achieved by integrating a varactor diode 

between the patch and the ground to make a frequency reconfigurable antenna. This 

method also reduced the antenna size. Presented in [15] was a frequency reconfigurable 

microstrip patch antenna using Defected Ground Structure (DGS) with aperture coupled 

feed line. In [16], a multilayer frequency reconfigurable patch antenna for high frequency 

was proposed. In [17], a novel frequency-reconfigurable antenna based on a circular 

monopole patch antenna was presented. The proposed antenna consists of a center-fed 

circular patch and four sector-shaped patches surrounding it. By controlling eight varactor 

diodes, which are introduced to bridge the gaps between the circular patch and the sector-

shaped patches, different working frequencies can be achieved.  A novel design of 

frequency-reconfigurable antenna by using an aperture-coupled feeding technique and 

stacked patch structure was introduced [18]. An octagonal-shaped frequency 

reconfigurable patch antenna was designed and studied in [19]. In this antenna design, open 

ended L-slots have been used on both sides of the patch and four PIN diodes are used for 

the operation of this antenna. In [20] is a design for a frequency reconfigurable antenna 

with conical-beam radiation. The design is based on a coplanar annular-ring microstrip 

antenna that works on the 𝑇𝑀02 mode, and several shorting strips that are symmetrically 

placed along the circumference of the radiating patch and are used to vary its resonant 

frequency. 
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Polarization reconfigurable antennas have drawn increasing attention because they have 

some desirable advantages for modern wireless communications, such as avoiding fading 

loss caused by multipath effects in wireless local area networks, providing a powerful 

modulation scheme in active read/write microwave tagging systems, realizing frequency 

reuse to expand the capability in satellite communication systems, and being a suitable 

candidate in multiple-input-multiple-output (MIMO) systems [21]. The study in [22] 

proposed a polarization reconfigurable patch antenna with polarization states that can be 

switched among linear polarization (LP), left-hand (LH) and right hand (RH) circular 

polarizations(CPs). The CP waves of this antenna are caused by two perturbation elements 

of loop slots in the ground plane. In [23], a new polarization reconfigurable-agile antenna, 

which is based on a quad-mode reconfigurable feeding network with four dynamic 

transmission modes, was proposed. This antenna can be switched between four different 

polarizations. [24] introduced a new quadri-polarization reconfigurable circular patch 

antenna which is composed of a circular radiating patch and a switchable feed network. A 

stub-loaded microstrip patch antenna with both frequency and polarization selectivity was 

proposed in [25]. 

We will focus on pattern and frequency reconfigurable antennas in this thesis. There is 

a developmental trend in wireless communication systems that requires the use of antennas 

capable of accessing services in various frequency bands, sometimes with the use of a 

single antenna. So far, most of the reported pattern reconfigurable antennas can only switch 

the beam in a limited range. And there are few antenna designs concerned with both 

radiation pattern and dual-frequency. A pattern reconfigurable antenna that has multiband 

characteristics improves the whole system performance. 
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1.2 Objectives 

    The objective of this thesis is to design, fabrication and testing of two different 

reconfigurable patch antennas.  

The first antenna proposed in this thesis is a novel dual-frequency antenna array with 

multiple pattern diversities. The desired resonant frequencies of two microstrip patch 

antenna elements are 1.92 GHz and 2.11 GHz, respectively. These frequencies can be used 

in wideband code division multiple access (WCDMA) communication systems. According 

to [2], a single-feed switchable feed network can be used as a basic beam pattern 

reconfigurable antenna system, and it also introduced dual-frequency features of the 

antenna system. We use the structure demonstrated in [26] to create more pattern selectivity 

and investigate the impact of this structure on the pattern of the antenna array. This array 

antenna has been constructed on a RO4350B substrate with 1.52-mm thickness that has a 

dielectric constant of 3.48 and size 208mm ×135mm. 

The second antenna proposed in this thesis is a pattern and frequency reconfigurable 

Yagi-Uda patch antenna. The proposed working frequencies for this antenna are 1.90 GHz 

and 2.41 GHz. which are suitable for LTE and Wi-Fi networks, respectively.  The proposed 

Yagi-Uda patch antenna consists of two reflectors, a driven element and six director 

elements. The reflector elements and director elements are tuned properly in frequency 

compared to the driven element when using ADS. Two slots were used in the driven 

element to introduce frequency and pattern reconfigurabilities to this antenna system. Two 

stubs, which were used to improve the return loss performance and adjust working 

frequency, were connected to the driven element when working in the 2.41GHz mode. Four 

metal pieces were used to imitate PIN-diodes in simulation and measurement. In order to 
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validate the effectiveness of our design, we built two antennas – one with and one without 

these metal pieces (2.41GHz mode and 1.90 GHz mode, respectively). The two antennas 

with different modes were fabricated on RO4350B substrate with 1.52-mm thickness. The 

measured and simulated results agree very well. 

The proposed antennas were simulated using Advanced Design System [ADS], and 

fabricated using a new model of a T Tech Mill machine. Aglient network Analyzer is used 

to measure the return losses of proposed antennas. 

1.3 Outline of the Thesis 

This thesis consists of five chapters. The overview of each chapter follows. 

Chapter 1: Provides the introduction, motivation and objective of this master thesis and 

includes the literature review on reconfigurable patch antennas.  

Chapter 2: Presents the fundamentals of Microstrip Patch Antennas (MSAs), including 

the fundamental geometries and characteristics of the MSA, feeding technology, and the 

methods of analysis used for the MSA design. 

Chapter 3: Presents the design, fabrication and testing of a novel dual-frequency patch 

array antenna with multiple pattern reconfigurabilities. The beam pattern selectivity can be 

obtained by utilizing a switchable feeding network and the special structure used in this 

array antenna. There are two opposite corners which have been slotted on each patch and 

a diode on the slot which is used as a switch to control multiple patterns. By controlling 

four PIN diodes through the corresponding DC voltage source, the radiation pattern can be 

changed. The simulation and measurement results agree nearly with each other.  

Chapter 4: Presents the design, fabrication and testing of a novel pattern and frequency 

reconfigurable Yagi-Uda patch antenna. This Yagi-Uda patch antenna consists of two 
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reflectors, a driven element and six director elements. The reflector elements  and director 

elements are tuned properly in frequency compared to the driven element. Two slots were 

used in the driven element to introduce frequency and pattern selectivity to this antenna 

system. Two stubs have been connected to the driven element when it’s working in 2.41 

GHz so as to improve the returnloss performance and adjust working frequency. The 

simulated and measured return loss results  agree nearly with each other.  

Chapter 5: Presents the conclusions of this thesis.  

 

Chapter 2.  Theory of Microstrip Patch Antenna 
 

2.1 Introduction  

Low profile antennas have drawn much attention because they are suitable for high-

performance aircraft, spacecraft and satellite and missile applications, where size, weight, 

cost, performance, ease of installation, and aerodynamic profile are significant constraints. 

For today’s rapidly-developing mobile or personal communication devices, there exists 

same need for compact and low profile antennas. Microstrip antennas (also referred to as 

patch antennas or microstrip patch antennas) can be used in a wide range of applications 

from commercial communication systems to satellites, and even biomedical applications 

[27]. Chapter 14 of Antenna Theory: Analysis and Design [27] contributes greatly to the 

fundamentals of patch antenna addressed in this chapter of the thesis. 

2.2 Basic Characteristics of a Microstrip Patch Antenna 

The history of patch antenna can be traced back to 1953, when G.A. Deschamps first 

proposed this kind of antenna. However, patch antennas didn't become practical until the 
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1970s. In that time, it was developed further by researchers such as Robert E. Munson and 

others by using low-loss soft substrate materials that were just becoming available during 

that time. 

Based on [27], a microstrip antenna (Patch antenna), as shown in Figure 2.1, normally 

consists of a very thin (t<<𝜆0 where 𝜆0 is the free-space wavelength) metallic patch placed 

a small fraction of a wavelength (h<<𝜆0, usually 0.003𝜆0 ≤ ℎ ≤ 0.05𝜆0) above a ground 

plane. The distance between the patch and the ground plane – the substrate or dielectric 

height h – determines the bandwidth of antenna. A relatively thicker substrate can increase 

the gain, but it may result in some undesired effects such as surface wave excitation. 

Surface waves can decrease efficiency and perturb the radiation pattern. The patch antenna 

is designed so its pattern maximum is normal to the patch (broadside radiator). This is 

accomplished by properly choosing the mode (field configuration) of excitation beneath 

the patch. In general, modes are designated as TMnmp. The ‘p’ value is mostly omitted 

because the electric field variation is considered negligible in the z-axis since only a phase 

variation exists in the z axis. So, TMnm represents the field variations in the x and y 

directions. The field variation in the y direction (impedance width direction) is negligible 

and so m is considered 0. The field has one minimum-to-maximum variation in the x 

direction (resonance length direction and a half-wave long), thus n is 1 in this case, and we 

say that this patch operates in the TM10 mode [28]. 
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Figure 2.1 Microstrip antenna 

For a rectangular patch, the length L of the element is usually  
𝜆0

3
< ℎ <

𝜆0

2
. The patch 

and the ground are separated by a dielectric sheet (usually referred to as the substrate), also 

as shown in Figure 2.1. 

There are numerous substrates that can be used for the design of microstrip antennas, 

and their dielectric constants, 𝜀𝑟 , are usually in the range of 2.2 ≤ 𝜀𝑟 ≤ 12 .The most 

desirable ones for antenna performance are thick substrates with dielectric constants at the 

lower end of the range because they provide better efficiency, larger bandwidth, and 

loosely bound fields for radiation into space, but at the cost of large element size [29]. Thin 

substrate with higher dielectric constants are suitable for microwave circuity because they 

require tightly bound fields to minimize undesired radiation and coupling, and result in 

smaller element size. However, they are less efficient and have a relatively smaller 

bandwidth because of their great losses [29]. Since microstrip antennas are often integrated 

with other microwave circuits, a compromise has to be made between good antenna 

performance and circuit design. 
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Basically, microstrip antennas are also referred to as patch antenna. Usually, the 

radiating elements and feed lines of micorstrip antennas are photoetched on the dielectric 

substrate. The radiating patch is generally made of conducting material such as copper or 

gold and can be any possible shape, such as rectangular, thin strip (dipole), circular, 

elliptical, triangular, etc. These and others are illustrated in Figure 2.2. Among the possible 

shapes, the square, rectangular, dipole, and circular are the most common because they are 

easy to analyze and fabricate. As well, they have other attractive characteristics, especially 

low cross-polarization radiation. Microstrip dipoles are attractive because they inherently 

possess a larger bandwidth and occupy less space, which makes them very suitable for 

arrays [30], [31], [32], [33]. Linear and circular polarization patch antennas can be obtained 

with either single elements or arrays of microstrip antennas. An array of microstrip 

elements, with single or multiple feeds, can also be used to introduce scanning capabilities 

and achieve greater directivities.  

 

Figure 2.2 Different shapes of patch antenna 

 



11 

 

2.2.1 Radiation Pattern of a Patch Antenna 

A patch antenna radiates energy in certain directions and we say that the antenna has 

directivity (usually expressed in dBi). So far, the directivity usually has been defined 

relative to an isotropic radiator. An isotropic radiator emits an equal amount of power in 

all directions and it has no directivity. If the antenna has a 100% radiation efficiency 

(meaning the energy delivered to the antenna can be 100% radiated from antenna), all 

directivity would be converted to gain. The typical rectangular patch excited in its 

fundamental mode has a maximum directivity in the direction perpendicular to the patch 

(z-axis). The directivity decreases when moving away from zenith direction towards lower 

elevations. Figure 2.3 shows a typical radiation pattern for half-wave square patch antenna 

[28]. 

 

Figure 2.3 Radiation pattern for half-wave square patch antenna [28] 
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2.2.2 Polarization of a Patch Antenna 

The plane in which the electric field varies is also known as the polarization plane. The 

basic patch antenna is linearly polarized since the electric field varies in only one direction. 

However, a large number of applications such as satellite communications, do not work 

well with linear polarization because, due to the moving antenna platform, the relative 

orientation of the antenna is unknown. In these applications, circular polarization is useful 

since it is not sensitive to antenna orientation. Basic antennas do not generate circular 

polarization; hence some changes have to be made to the patch antenna to enable it to 

generate circular polarization. For a circularly polarized patch antenna, the electric field 

varies in two orthogonal planes (x and y directions) with the same magnitude but a 90° 

phase difference, as shown in Figure 2.4. Necessary to generate circular polarization for a 

patch antenna is the simultaneous excitation of two modes, i.e. the TM10 mode (x direction) 

and the TM01 mode (y direction). One of the modes is excited with a 90° phase delay to 

the other mode. A circularly polarized antenna can either be right-hand circular polarized 

(RHCP) or left-hand circular polarized (LHCP). The antenna is RHCP when the phases are 

0° and -90° for the antenna in Figure 2.4, and the signal radiates towards the reader. It is 

LHCP when the phases are 0° and +90°, and the signal radiates away [28].  
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Figure 2.4 The nearly square antenna for circular polarization [28] 

2.2.3 Bandwidth of a Patch Antenna 

The impedance bandwidth depends on a large number of parameters related to the patch 

antenna element itself like quality factor, Q, and the type of feed technology used. Usually, 

the impedance bandwidth of a square, half-wave patch antenna is typically limited to 1 to 

3%, which is a major disadvantage of this type of patch antenna. [28] 

 

2.3 Feeding Method 

There are many configurations that can be used to feed microstrip antennas. The four 

most popular are the microstrip line, coaxial probe, aperture coupling and proximity 

coupling [27]. These are all displayed in Figure 2.5. 
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(a) Microstrip line feed                                                   (b) Probe feed 

 

(c) Aperture-coupled feed                                      (d) Proximity-coupled feed 

Figure 2.5 Typical feeds for microstrip antennas [27] 

The microstrip line feed is easy to fabricate, simple to match by controlling the inset 

position and rather simple to model. However, as the substrate thickness increases, surface 

waves and spurious feed radiation increase, which for practical uses, limit the bandwidth 

(typically 2-5%). 

Coaxial-line feeds, where the inner conductor of coax is attached to the radiation patch 

while the outer conductor is connected to the ground plane, are also widely used. The 

coaxial feed is easy to fabricate and match with low spurious radiation. However, it also 

has a narrow band and it is more difficult to model, especially for thick substrates (h >

0.02𝜆0). 
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Both the microstrip feed line and the probe possess inherent asymmetries which generate 

higher order modes which produce cross-polarized radiation. Non-contacting aperture 

coupling feeds, as shown in Figures 2.5 (c) and (d), have been introduced to overcome 

some of these problems mentioned above. For a basic aperture coupled patch antenna, 

shown in Figure 2.5 (c), the radiating microstrip patch element is etched on the top of the 

antenna substrate, and the microstrip feed line is etched on the bottom of the feed substrate. 

The thickness and dielectric constants of these two substrates may thus be chosen 

independently to optimize the distinct electrical functions of radiation and circuitry.  

Although the original prototype antenna used a circular coupling aperture, it was quickly 

realized that the use of a rectangular slot would improve the coupling, for a given aperture 

area, due to its increased magnetic polarizability. Most aperture coupled microstrip 

antennas now use rectangular slots, or variations thereof. Proximity coupling, shown in 

Figure 2.5 (d), has the largest bandwidth among these four feeding methods, and has low 

spurious radiation. However, fabrication is difficult. Length of feeding stub and width-to-

length ratio of patch can be used to control the match performance. 

In general, the input feed point for the antenna must be placed in such a point along the 

transmission line where the input impedance match is 50 Ω, and the antenna reactance must 

be minimized as much as possible. 

2.4 Method of Analysis 

There are many methods of analysis for microstrip antenna. Comparing to other 

methods, the transmission line method is the easiest method. It gives good physical 

insight, representing the rectangular patch as a pair of two radiating slots, separated by a 
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low-impedance (𝑍𝑐) transmission line of certain length L. However, this method is less 

accurate and it is more difficult to model coupling [27].  

2.4.1 Fringing Effects 

Because the dimensions of the patch are finite along the length and width, the fields at 

the edges of the patch undergo fringing. It is the fringing fields that are responsible for the 

radiation. This is illustrated along the length in Figure 2.6 for the two radiating slots of the 

microstrip antenna. The amount of fringing is a function of the dimensions of the patch and 

the height of the substrate. For the principal E-plane, fringing is a function of the ratio of 

the length of the patch L to the height h of the substrate (L/h) and the dielectric constant 𝜀𝑟 

of the substrate. Since for microstrip antennas L/h >> 1, fringing is reduced. However, it 

must be taken into account because it influences the resonant frequency of the antenna. 

Because of the fringing effect, in which some of the waves travel in the substrate and some 

in air, an effective dielectric constant 𝜀𝑟𝑒𝑓𝑓 is introduced to account for this effect. 

 

Figure 2.6 Microstrip antenna and its electric filed lines  



17 

 

The effective dielectric constant is defined as the dielectric constant of the uniform 

dielectric material so that the electric field lines have identical electrical characteristics, 

particularly the propagation constant, as the actual field line. 

The value of the effective dielectric constant is essentially constant at low frequencies, 

then increasing monotonically as the frequency increases, and ends up approaching the 

value of the dielectric constant of the substrate at higher frequencies. The initial values (at 

low frequencies) of the effective dielectric constant are referred to as the static values, and 

they are given by [34]: 

W/h>1 

𝜀𝑟𝑒𝑓𝑓 =
𝜀𝑟+1

2
+

𝜀𝑟−1

2
[1 + 12

ℎ

𝑊
]−

1

2                (2-1) 

Where  𝜀𝑟𝑒𝑓𝑓 = Effective dielectric constant 

             𝜀𝑟 = Dielectric constant of substrate 

             h = Height of dielectric substrate 

             W=Width of the Patch 

 

2.4.2 Effective Length and Resonant Frequency 

In the transmission line model, the antenna is represented by two radiating slots (W×h) 

separated by a low impedance transmission line (𝑍𝑐) of length L. The slots represent very 

high-impedance terminations from both sides of the transmission line (almost an open 

circuit). Thus, we expect this structure to have highly resonant characteristics depending 

mainly on its length L. Due to the fringing effect, the resonant length of the patch is not 

exactly equal to the physical length. The fringing effect makes the physical length of 
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antenna shorter than the effective electrical length of the patch. The dimensions of the patch 

along its length have been elongated on each end by a length of  ∆L, which is a function of 

the effective dielectric constant 𝜀𝑟𝑒𝑓𝑓 and the width-to-height ratio (W/h). A well-known 

and practical approximate relation for the normalized extension of the length show as 

follows: 

𝐿𝑒𝑓𝑓 = 𝐿 + 2Δ𝐿        (2-2) 

 𝐿𝑒𝑓𝑓 =
1

2𝑓𝑟√𝜇0𝜀0√𝜀𝑟𝑒𝑓𝑓
=

𝑣0

2𝑓𝑟√𝜀𝑟𝑒𝑓𝑓
        (2-3) 

ΔL = 0.412h
(𝜀𝑟𝑒𝑓𝑓+0.3)(

𝑊

ℎ
+0.264)

(𝜀𝑟𝑒𝑓𝑓−0.258)(
𝑊

ℎ
+0.8)

 [35]    (2-4) 

For dominant 𝑇𝑀010 mode 𝑓𝑟 is: 

𝑓𝑟010 =
1

2𝐿√𝜇0𝜀0√𝜀𝑟
=

𝑣0

2𝐿√𝜀𝑟
              (2-5) 

Where 𝑣0 is the speed of light in free space. The resonant frequency of a patch depends 

highly on L. Because (2-5) does not account for fringing, it must be modified to include 

edge effects and when the fringing effect is taken into account, (2-5) becomes 

𝑓𝑟010 =
1

2𝐿𝑒𝑓𝑓√𝜇0𝜀0√𝜀𝑟𝑒𝑓𝑓
=

1

2(𝐿+2ΔL)√𝜇0𝜀0√𝜀𝑟𝑒𝑓𝑓
               (2-6) 

=q
1

2𝐿√𝜇0𝜀0√𝜀𝑟
= 𝑞

𝑣0

2𝐿√𝜀𝑟
 

Where                                       q =
𝑓𝑟𝑐010

𝑓𝑟010
                                               (2-6a) 

 

The q factor is referred to as the fringe factor (length reduction factor). As the substrate 

height increases, fringing also increases and results in larger separations between the 

radiating edges and lower resonant frequencies. 
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Figure 2.7 Physical and effective lengths of rectangular microstrip patch antenna 

2.4.3 Effective Width 

For an effective radiator, a practical width that leads to good radiation efficiencies is:  

W =
1

2𝑓𝑟√𝜇0𝜀0
√

2

𝜀𝑟+1
=

𝑣0

2𝑓𝑟
√

2

𝜀𝑟+1
           (2-7) 

Where 𝑣0 is the free-space velocity of light [36]. 

 

The procedure of designing a rectangular patch using the transmission line model is as 

follows: 

(1) Input data: 𝜀𝑟, 𝑓𝑟 (𝑖𝑛 𝐻𝑧), and h 

(2) Calculate W using (2-7), 

W =
1

2𝑓𝑟√𝜇0𝜀0

√
2

𝜀𝑟 + 1
=

𝑣0

2𝑓𝑟

√
2

𝜀𝑟 + 1
 

(3) Calculate 𝜀𝑟𝑒𝑓𝑓 using (2-1), 

𝜀𝑟𝑒𝑓𝑓 =
𝜀𝑟 + 1

2
+

𝜀𝑟 − 1

2
[1 + 12

ℎ

𝑊
]−

1
2 

(4) Calculate the actual (physical) length of the patch using (2-2), (2-3) and (2-4) 
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L =
1

2𝑓𝑟√𝜇0𝜀0√𝜀𝑟𝑒𝑓𝑓
-2ΔL 

= 
𝑣0

2𝑓𝑟√𝜀𝑟𝑒𝑓𝑓
− 2ΔL 
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Chapter 3. A Proposed Novel Dual-Frequency Array Antenna 

with Multiple Pattern Reconfigurabilities 
 

3.1 Introduction 

This chapter presents the design, fabrication and testing of a novel dual-frequency array 

antenna with multiple pattern reconfigurabilities. The transmission line model is 

implemented to calculate the basic dimensions of the conventional MSA. The Advanced 

Design System [ADS] software is used in modeling and simulating the designed antennas. 

The beam pattern selectivity can be obtained by utilizing a switchable feeding network and 

the special structure used in this array antenna. Opposite corners have been slotted on each 

patch and a diode placed on the slot, which is used as a switch to control multiple patterns. 

By controlling four PIN diodes through the corresponding DC voltage source, the radiation 

pattern can be changed. The simulation and measurement results closely agree. 

3.2 Basic single patch antenna design 

In this section, a novel dual-frequency antenna array with multiple pattern diversities is 

proposed. The desired resonant frequencies of two microstrip patch antennas are 1.92 GHz 

and 2.11 GHz, respectively. The proposed antenna array consists of two different patch 

antenna elements. The first step of designing the proposed antenna array is designing its two 

patch antenna elements. 

To design two conventional rectangular patch antenna elements with operating 

frequencies of 1.92GHz and 2.11GHz respectively, we should follow the method discussed 

in chapter 2. The width of patch antenna elements can be found using (2-7): 

 

𝑊1.92 =
1

2𝑓𝑟1.92√𝜇0𝜀0
√

2

𝜀𝑟+1
=

𝑣0

2𝑓𝑟1.92
√

2

𝜀𝑟+1
       (3-1) 
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=
3×108

2×1.92×109
√

2

1+3.6
 

=51.5mm 

𝑊2.11 =
1

2𝑓𝑟2.11√𝜇0𝜀0
√

2

𝜀𝑟+1
=

𝑣0

2𝑓𝑟2.11
√

2

𝜀𝑟+1
         (3-2) 

=
3×108

2×2.11×109
√

2

1+3.6
 

=46.8mm 

To find the effective dielectric constant, 𝜀𝑟𝑒𝑓𝑓, and when W/h >1 , we can use (2-1): 

𝜀𝑟𝑒𝑓𝑓1.92 =
𝜀𝑟+1

2
+

𝜀𝑟−1

2
[1 + 12

ℎ

𝑊1.92
]−

1

2            (3-3) 

=
3.6+1

2
+

3.6−1

2
[1 + 12

1.524

51.5
]−

1

2 

=2.3+1.3[1 + 0.355]−
1

2 

=3.421 

𝜀𝑟𝑒𝑓𝑓2.11 =
𝜀𝑟+1

2
+

𝜀𝑟−1

2
[1 + 12

ℎ

𝑊2.11
]−

1

2             (3-4) 

=
3.6+1

2
+

3.6−1

2
[1 + 12

1.524

46.8
]−

1

2 

=2.3+1.3[1 + 0.399]−
1

2 

=3.399 

This value for 𝜀𝑟𝑒𝑓𝑓  is reasonable, because 1 ≤ 𝜀𝑟𝑒𝑓𝑓≤𝜀𝑟. 

The effective length can be found using (2-2), (2-3) and (2-4): 

𝐿𝑒𝑓𝑓1.92 =
𝑐

2𝑓1.92√𝜀𝑟𝑒𝑓𝑓1.92
           (3-5) 

=
3×108

2×1.92×109√3.421
 

=
3

38.4×1.85
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=
3

71.04
 

=42.2mm 

𝐿𝑒𝑓𝑓2.11 =
𝑐

2𝑓2.11√𝜀𝑟𝑒𝑓𝑓2.11
       (3-6) 

=
3×108

2×2.11×109√3.399
 

=
3

42.2×1.845
 

=
3

77.859
 

=38.5mm 

Δ𝐿1.92 = 0.412h
(𝜀𝑟𝑒𝑓𝑓1.92+0.3)(

𝑊1.92
ℎ

+0.264)

(𝜀𝑟𝑒𝑓𝑓1.92−0.258)(
𝑊1.92

ℎ
+0.8)

         (3-7) 

=0.412×1.524×10−3×
(3.421+0.3)(

51.5

1.524
+0.264)

(3.421−0.258)(
51.5

1.524
+0.8)

 

=
(3.721)(33.79+0.264)

(3.163)(33.79+0.8)
×0.628×10−3 

=
126.71

109.41
×0.628×10−3 

=0.00073m 

=0.73mm 

𝐿1.92 = 𝐿𝑒𝑓𝑓1.92 − 2Δ𝐿1.92 

=42.2-1.46 

=40.74mm 

Δ𝐿2.11 = 0.412h
(𝜀𝑟𝑒𝑓𝑓2.11+0.3)(

𝑊2.11
ℎ

+0.264)

(𝜀𝑟𝑒𝑓𝑓2.11−0.258)(
𝑊2.11

ℎ
+0.8)

             (3-8) 

=0.412×1.524×10−3×
(3.399+0.3)(

46.8

1.524
+0.264)

(3.399−0.258)(
46.8

1.524
+0.8)
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=
(3.699)(30.71+0.264)

(3.141)(30.71+0.8)
×0.628×10−3 

=
114.57

98.97
×0.628×10−3 

=0.000727m 

=0.727mm 

𝐿2.11 = 𝐿𝑒𝑓𝑓2.11 − 2Δ𝐿2.11 

=38.5-1.454 

=37.05mm 

We used the side line feeding method, with the width of the feeding line being 

determined by ADS simulation.  

 

Figure 3.1 Layout simulation for Basic Antennas 

 

Figure 3.1 shows the layout simulation for two basic antennas. Many simulation and 

optimization works based on the basic parameters were developed from the equations. 

After the optimization works, the dimensions of two antenna elements were set to 51.8 mm 

× 40.72 mm (1.92GHz) and 47.12 mm × 36.98 mm (2.11 GHz), respectively. In the future 

work, we will design our desired antenna array based on these two basic elements. 
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         (a) 

 
         (b) 

Figure 3.2 Return loss for two basic antenna elements 

Based on Figure 3.2 we can conclude that these two patch antenna worked well at the 

expected frequencies.  



26 

 

3.3 Dual-frequency pattern reconfigurable antenna array design  

In this section, the design of the dual-frequency pattern reconfigurable array antenna 

based on those two antenna elements from Section 3.2 above is discussed. According to [2], 

a single-feed switchable feed network can be used as a basic beam pattern reconfigurable 

antenna system that also introduces dual-frequency features to the antenna system. We use 

the structure discussed in [26] to create more pattern selectivity and investigate the impact 

of this structure to the pattern of the antenna array. 

3.3.1 Switchable feeding network 

The two antenna elements were connected by a single-feed switchable network. The 

basic schematic of the single-feed switchable feed network is shown in Figure 3.3. 

According to [2], the principle of operation of this switchable feed network is based on the 

assumption that the resonant frequency ratio of the two micro-strip patch antennas is very 

close to 1.4:1. It basically consists of two quarter-wavelength branch lines with 

characteristic impedances of Z1  and  Z2  and lengths of L1 and  L2 . Two different 

rectangular micro-strip patch antennas of different size were connected to output ports 2 

and 3. Under this particular condition, the single-feed switchable feed network can be 

worked as an ideal switch. 

 

  

 

 

 

Figure 3.3 Schematic of a single-feed switchable feed network. 
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3.3.2 Antenna array design 

The schematic structure of the proposed antenna array is shown in Figure 3.4, along with 

all sizes and dimensions listed in Table 3.1. Two rectangular patches are used as the basic 

radiating elements. The patches have dimensions of 51.8 mm × 40.72 mm (1.92GHz) and 

47.12 mm ×  36.98 mm (2.11 GHz), respectively. The PIN diodes, which are loaded in the 

gaps between antenna and truncated corners, can be controlled by DC voltage through the 

short lines of quarter waveguide length and via holes. The quarter-wavelength lines at each 

of the truncated corners combined with the isolation area can also be used to mitigate the 

influences of direct current on the microwave signal and to block the RF energy to DC 

sources [26]. The gaps between patch antennas and truncated corners are set to be 0.51mm. 

Infineon BAR63-03W diodes, of size 2.5mm × 1.25mm, are used as RF switches. 

 

 

 

 

 

 

 

 

Figure 3.4 Geometry of built array antenna 

TABLE 3.1 PARAMETER VALUES OF THE PROPOSED ANTENNA 

W1     51.8mm W2       47.12mm W3      0.495mm W4      0.495mm W5      1.7 mm 

W6     3.48mm W7       1.5mm W8      5.67mm W9      3.38mm L1       40.72mm 

L2      36.98mm L3        24.06mm L4       22.10mm L5       23.33mm L6       21.78mm 

L7      23.81mm S1         4.71mm S2       5.06mm L8       23.72mm R         0.5mm 
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Pin Diode 
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The diode used is equivalent to a resistor of 1.2 Ω when it is forward-biased and to a 

capacitor of 0.21pF when it is reverse-biased. The optimized geometrical parameters are 

shown in Table 1. Two rectangular patch antennas of different sizes are connected to the 

corresponding outputs of the switchable feed network. 

The following figures (3.5) – (3.8) are four different simulated designs of this array 

antenna that were developed using Advance Design System (ADS) software in order to 

determine how the truncated corners impact the performance of the antenna array. 

Configuration (a) is the basic antenna array with short lines of quarter waveguide length, 

shown in Figure 3.5; Configuration (b) is the antenna array with short lines of quarter 

waveguide length and truncated corners on the 1.92GHz antenna element, shown in Figure 

3.6; Configuration (c) shows the antenna array with short lines of quarter waveguide length 

and truncated corners on the 2.11GHz antenna element, shown in Figure 3.7 and; 

Configuration (d) shows the antenna array with short lines of quarter waveguide length and 

truncated corners on both antenna elements, shown in Figure 3.8. To easily validate the 

effectiveness of our design, we built and measured Configuration (d). However, by 

incorporating four PIN-diodes and a DC voltage into Configuration (d), we can investigate 

properties between different configurations such as (a) (Figure 3.5) and (d) (Figure 3.8.). 
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Figure 3.5 Configuration (a): Basic antenna array with short lines of quarter waveguide length 

 

Figure 3.6 Configuration (b): Antenna array with short lines of quarter waveguide length and truncated 

corners on the 1.92GHz antenna element 

 

Switchable Feed Network 

Slotted corner 
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Figure 3.7 Configuration (c): Antenna array with short lines of quarter waveguide length and truncated 

corners on the 2.11GHz antenna element 

 

 

Figure 3.8 Configuration (d): Antenna array with short wires of quarter waveguide length and truncated 

corners on both antenna elements 

 

Slotted corner 

Slotted corner 
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Figure 3.9 Simulated surface current distribution at 1.92 GHz for Configuration (d) 

 

Figure 3.10 Simulated surface current distribution at 2.11 GHz for Configuration (d) 
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Figure 3.9 and Figure 3.10 show the simulated surface current distribution around the 

designed resonant frequency, proving the effectiveness of the switchable network used in 

the antenna syatem.  

  

Figure 3.11 Axial Ratio for antenna array of configuration (d) at working    

frequency of 1.92 GHz (left) and 2.11 GHz (right) 

As can be seen from Figure 3.11, the axial ratio of this antenna array at each working 

center frequency of Configuration (d) in the main lobe direction are all greater than 10 dB. 

This means the antenna array of Configuration (d) works in linear polarization mode for 

two different working frequencies. 

 

Figure 3.12 Return loss for configuration (d) 
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Figure 3.12 shows the return loss performance is very good at two working frequencies 

after many simulation and optimization works have been done. After the Configuration (d) 

had been built, we added four PIN diodes and a DC voltage into the antenna system. These 

changes have impacts on the antenna system. In order to determine the impact on antenna 

return loss performance, we used the co-simulation function of ADS. Figure 3.13-3.22 show 

how to use the co-simulation function and the return loss performance for co-simulation 

work. 

 

Figure 3.13 Configuration (d) with additional ports 

 To begin to do co-simulation, many ports need to be added into the design, shown in 

Figure 3.13. The detail of two ports can be observed in Figure 3.14. These ports are the 

positions where PIN diodes and DC voltage will be brought into the schematic simulation. 

After all the ports were added to the system, a new simulation can be run.  

Next, an EM model needs to be created by selecting EM > Component > Create EM 

Model and Symbol in the layout window, shown in Figure 3.15. 
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Finally, the newly created EM model is introduced to a new schematic simulation, shown 

in Figure 3.16. Then many schematic items, such as PIN diodes, DC voltage, wire and S-

parameter simulation control, were added into the antenna system. Figure 3.17 shows a PIN 

diode that has been added into the antenna system to control the pattern of the proposed 

antenna. 

 

Figure 3.14 Detail of two additional added ports 
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Figure 3.15 Creating a new EM Model 

 

Figure 3.16 Introducing new EM Model to schematic design 
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Figure 3.17 A PIN diode that has been added to the schematic simulation 

 

Figure 3.18 Co-simulation for Configuration (d) with all PIN diodes at off-state 
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Figure 3.19 Return loss of co-simulation for Configuration (d) with all PIN diodes at off-

state 

 

Figure 3.20 Co-simulation for Configuration (d) with all PIN diodes at on-state 

DC voltage 
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Figure 3.21 Detail of the DC voltage  

 The forward voltage of our PIN diode is 1.2 V, thus a 1.5 V DC-voltage is sufficient to 

control the PIN diodes. 

 

Figure 3.22 Return loss of co-simulation for Configuration (d) with all PIN diodes at on-

state 
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Comparing Figures 3.19 and 3.22 with Figure 3.12, we find that the added PIN diodes 

and DC voltage impacted both values and frequency of return loss of this antenna array. 

Figure 3.23 compares the return loss parameters of four different configurations at two 

different working frequencies in the simulation. For the simulated return loss of 

Configuration (b), because it has been slotted on the 1.92 GHz element (which causes a 

small change of radiation area), the red curve has a tiny frequency shift at around 1.92 GHz 

when compared to the Configuration (a) curve, but overlapped at the 2.11 GHz compared 

to the Configuration (a) curve. For the simulated return loss of Configuration (c), because 

it has been slotted on the 2.11 GHz element(which causes a small change of radiation area), 

the black curve has a tiny frequency shift at around 2.11 GHz compared to the 

Configuration (a) curve, but overlapped at the 1.92 GHz compared to the Configuration (a) 

curve. For the simulated return loss of Configuration (d), because it has been slotted on 

both the 1.92 GHz element and the 2.11 GHz element, the green curve has a tiny frequency 

shift both at around 1.92 GHz and at the 2.11 GHz compared to the Configuration (a) curve. 

From Figure 3.23, it can also be observed that there is about a 10 MHz shift of working 

frequency between the antenna array of Configuration (a) and Configuration (d) in 

simulation. 
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Figure 3.23 Return loss for the antenna array when operating in different configurations in simulation 

Because the proposed antenna array is supposed to work between configuration (a) and (d) 

by controlling the different states of PIN diodes, we investigate the patterns of 

configurations (a) and (d). Figure 3.24 (1) and (2) show the simulated radiation patterns of 

Configuration (a) and Configuration (d), respectively. The black arrow line represents the 

maximum radiation direction. Table 3.2 shows all the related parameters at the two 

resonant frequencies of 1.92 GHz and 2.11 GHz in simulations for all four antenna 

configurations . It can be seen from Figure 3.24 that the patterns of different working 

frequencies for the same configuration are different and the patterns of different 

configurations are different. Table 3.2 shows the differece of main beam direction steering 

(azimuth angle-φ, elevation angle-θ) for all four different configurations. It demonstrates 

that the multi pattern reconfigurability goal has been achieved. 
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(1) Gain and Directivity of Configuration (a) at 1.92 GHz and 2.11GHz 

 

 

 

 

 

 

 

 

(2) Gain and Directivity of Configuration (d) at 1.92 GHz and 2.11GHz 

Figure 3.24 (1)(2) The simulated radiation pattern of Configuration (a) and 

Configuration (d) 

Generally, in all four configurations, the efficiencies of the attenna array are more than 

66.0%. In Configuration (a), the directivity and gain at 1.92GHz are 7.925dB and 6.118 

dB, respectively, and at 2.11GHz are 6.994dB and 5.386dB, respectively. In Configuration 

(d), the directivity and gain change to 7.518dB and 5.848dB at 1.92GHz and are 6.955dB 

and 5.411dB at 2.11GHz. Also as can be seen from Table 2, the maximum radiation 
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direction changed for different configurations at the same working frequency after corners 

are slotted on the patch.  

TABLE 3.2   PARAMETER VALUES OF THE RADIATION PATTERN OF PORPOSED ANTENNA 

 

 
 E_MAX Theta_max Phi_max 

Configuration (a) 1.92GHz 0.722 5 357 

Configuration (a) 2.11GHz 0.672 29 357 

Configuration (b) 1.92GHz 0.757 7 358 

Configuration (b) 2.11GHz 0.687 29 357 

Configuration (c) 1.92GHz 0.718 5 356 

Configuration (c) 2.11GHz 0.696 23 358 

Configuration (d) 1.92GHz 0.758 7 358 

Configuration (d) 2.11GHz 0.720 26 358 

 D_MAX Gain_MAX Efficiency 

Configuration (a) 1.92GHz 7.925 6.118 66% 

Configuration (a) 2.11GHz 6.994 5.386 68.8% 

Configuration (b) 1.92GHz 7.492 5.821 68.1% 

Configuration (b) 2.11GHz 7.089 5.476 69% 

Configuration (c) 1.92GHz 7.873 6.077 66.1% 

Configuration (c) 2.11GHz 6.804 5.285 70% 

Configuration (d) 1.92GHz 7.518 5.848 68.1% 

Configuration (d) 2.11GHz 6.955 5.411 70.1% 
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3.4 Fabrication and measurement of the proposed patch antenna array 

 

Figure 3.25 T Tech Mill Machine used to fabricate proposed antenna array 

Figure 3.25 shows the mill machine used to build the proposed patch antenna array. The 

system was built based on Configuration (d). Figure 3.26 shows the photo of array antenna 

we built based on Configuration (d) with four PIN diodes and a RF choke. It is constructed 

on an RO4350B substrate with 1.52-mm thickness and dielectric constant of 3.48 and sized 

208mm ×135mm.  
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Figure 3.26 Phoograph of the proposed antenna array 

 

Figure 3.27 Agilent network analyzer used to measure the proposed antenna array 

Figure 3.27 shows the measurement process of return loss of the proposed antenna array. 

To determine how the added PIN diodes with soldering residue and DC voltage impact the 

return loss of our array antenna, this proposed Configuration (d) array antenna was 
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measured with and without PIN diodes and DC voltage, shown in Figure 3.28. The blue, 

dashed line represents the measured return loss of Configuration (d) without PIN diodes 

and DC voltage. When all the diodes are at on-state, the antenna array works like 

Configuration (a), and when all the diodes work at off-state, the antenna array works like 

Configuration (d). The red curve of Figure 3.28 represents the measured return loss of 

Configuration (d) with all the PIN diodes at off-state, at that moment, the whole antenna 

system was supposed to work like configuration d. There is almost no frequency shift 

between the blue, dashed line and the red line, which matches well with theory. The black 

line of Figure 3.28 represents the measured return loss of Configuration (d) with all the 

PIN diodes at on-state, at that moment, the whole antenna system was supposed to work 

like configuration a. Because at this moment all four truncated corners have been connected 

to the antenna system, the radiation area has been increased and the resonant frequency 

shifted to a lower value, which also matches well with theory.  

 In order to investigate the differences of return loss of the proposed antenna between 

measurement and simulation, the measured and simulated return losses of proposed 

antenna array were compared, as shown in Figure 3.29. Based on Figure 3.29, it is observed 

that the antenna array performs well in both working frequencies. The measured return 

losses for PIN diodes in the on-state are -23.7dB and -18.26dB, corresponding to their 

resonant frequencies of 1.855GHz and 2.049GHz, respectively. The measured return losses 

for PIN diodes in the off-state are -24.8dB and -17.89dB, corresponding to their resonant 

frequencies of 1.865GHz and 2.060GHz, respectively. The discrepancies in frequency 

(about 50 Mhz) between simulation and measurement are largely attributed to fabrication 

errors and soldering residue. Regarding the measurements of Configuration (d) without all 
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PIN diodes soldered-on and with all PIN diodes at off-state, there is about 10 dB difference 

of return loss, but the working frequency remains nearly the same. Further research in the 

near future is called for in order to determine if this has an impact on antenna pattern. 

 

Figure 3.28 Comparison of measured return loss of Configuration (d) with and without PIN diodes 

 

Figure 3.29 Return loss for the antenna array in different working Configurations between simulation 

and measurement  
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3.4 Summary 

In this chapter, a novel dual-frequency antenna array with multiple pattern selectivities 

is proposed. A single-feed switchable network was used as a basic beam pattern 

reconfigurability structure for this dual-frequency antenna array. The slotted corners on the 

patch, together with the states of the PIN diodes give this antenna array more freedom of 

pattern changeability. The measured bandwidth of the return loss below -10 dB for on-state 

is about 25 MHz and for the off-state is also nearly 25 MHz at two different working 

frequencies. This pattern reconfigurable patch antenna array can be applied in the wideband 

code division multiple access system. 
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Chapter 4. A Proposed Pattern and Frequency Reconfigurable 

Yagi-Uda Patch Antenna 
 

4.1 Introduction 

Currently, for particular applications, directional antennas such as log periodic and Yagi-

Uda antennas are needed. These types of antennas have been widely used in applications 

such as industrial, medical, radar, wireless communications and even bioscience. The 

single microstrip Yagi-Uda antenna was first developed by J. Huang at Jet Propulsion 

Laboratory [37]. His proposed antenna consisted of four patches that were 

electromagnetically coupled to each other, and had the maximum gain of 8dBi while the 

front to back (F/B) ratio was low. The microstrip Yagi-Uda array usually consists of a 

driven microstrip antenna element, along with many parasitic microstrip elements which 

are placed on the same substrate surface in such a way to enhance the overall antenna 

characteristics [38] [39]. In [39] a design of Wide-Band Microstrip Yagi-Uda antenna with 

high gain and high F/B ratio is presented. This design is interesting and inspiring.  In [40], 

a slot-loaded Yagi patch antenna with dual-band and pattern reconfigurable characteristics 

was proposed. It consists of one driven patch and four parasitic patches with special slots, 

and by controlling 12 switches which have been placed in the slots, the reconfigurable 

characteristics of the proposed microstrip Yagi antenna can be obtained. In [41], a linearly 

polarized Yagi-Uda patch antenna that consists of rectangular parasitic elements is 

presented. In that study, the impact of shorting location or switching location on the 

performance of beam tilt angle and return loss performance was investigated. In [42], a 

linear phased array with reconfigurable dynamic Yagi-Uda patch antenna (RDYPA) 

elements is proposed. For this design, three array modes can be obtained by adjusting the 
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states of array elements. Presented in [43] is a low-profile, broadly steerable, and 

reconfigurable array antenna with parasitic patches. This design used only a single-layered 

substrate and six switches to introduce five directive beam patterns with the maximum 

beam tilt angle of 50 degrees in its steering mode, and high gain. This kind of antenna 

configuration shows many advantages over a single patch antenna, which in particular 

increases the directivity. The Yagi-Uda configuration makes the beam peak away from 

vertical direction and tilt in the end-fire direction. Unlike traditional phase arrays, there are 

no additional circuit elements such as power dividers or switchable phase delay 

transmission elements that introduce additional loss. 

In this chapter, we present a novel design of Yagi-Uda patch antenna with frequency and 

pattern selectivity. The proposed antenna is designed to operate around the 1.9 GHz band 

and 2.41 GHz band, which is used in LTE and Wi-Fi networks respectively. Our proposed 

antenna consists of two reflector elements, a driven element and six director elements. We 

used four metal pieces to replace PIN diodes in simulation and measurement works in order 

to easily validate our design. Two stubs connected to the driven element were used to 

improve the return loss performance when working at 2.41 GHz. The simulation and 

measurement results closely agree.  

 

4.2 Design of the Proposed Reconfigurable Yagi-Uda Patch Antenna 
 

4.2.1 Antenna Schematic  

Figure 4.1 shows the proposed microstrip Yagi-Uda antenna that consists of nine patches 

with its feeding structure. There are two reflectors, each with dimensions W4×L3 , six 

directors, each with dimensions W5×L4 and one driven patch with dimensions W1×L1. 
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The proposed antenna is excited by the feeding structure, which has a simple construction. 

It consists of a 50Ω feed line that is transformed to two quarter-wavelength high impedance 

lines. The distance between the different elements along the axis is denoted by G2 (note 

that these distances are the same). Two slots have been used to introduce frequency and 

pattern reconfigurability to this antenna. The dimensions of each of these two slots are 

W2×G1. Two stubs, with dimensions W3×L2 which are connected to the driven element 

by metal pieces, were used to improve the return loss performance and adjust working 

frequency for the proposed antenna when working at 2.41GHz.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 4.1 Geometry of Proposed Reconfigurable Yagi-Uda Patch Antenna 
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Four metal pieces, which were used to replace PIN diodes, all with same dimensions 

(0.9mm×1mm) are shown as small brown rectangles in Figure 4.1. The optimized values 

for our design to get the best performance are shown in Table 4.1  

TABLE 4.1 PARAMETER VALUES OF THE PROPOSED ANTENNA 

W1     29.5mm W2       22.3mm W3      2.72mm W4      18mm W5      30.5 mm 

L1      48.5mm L2        6.5mm L3        10.5mm L4       40mm H1      2.21mm 

H2     7.73mm H3      13.24mm G1         1mm G2       0.8mm  

 

4.2.2 Design of Proposed Frequency Reconfigurable Antenna 

(1) Concept of Patch Antennas with Switchable Slots 

 A basic patch antenna with a switchable slot (PASS) structure is shown in Figure 4.2. 

The patch dimensions are L × W. The antenna was fabricated on a dielectric substrate with 

dielectric permittivity 𝜀𝑟, and thickness h. A probe was located at (Xf, Yf) as the feeding 

port to excite the 𝑇𝑀10  mode. A slot with length 𝐿𝑆 , width 𝑊𝑠 , and position 𝑃𝑠 , was 

incorporated into the patch. A switch was placed in the center of the slot to control its 

configuration. The switch can be either a PIN diode, or a MEMs-based switch [44]. 

The frequency shift for the basic PASS structure can be explained by investigating the 

surface electric currents of the patch antennas. When the switch is in the OFF mode, the 

surface electric currents on the patch have to flow around the slot, as shown in Figure 4.3 

(a), resulting in a relatively greater length of the current path. Therefore, the antenna 

resonates at a lower frequency. In contrast, when the switch is in the ON mode, part of the 

electric current can go directly through the switch, and part of the electric current will still 

flow around the slot, as shown in Figure 4.3 (b). In this case, the average length of the 

current path is relatively shorter, so that the antenna has a higher resonant frequency. As 
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the result, PASS show different resonant features based on different states of the switch. It 

needs to be pointed out that when the switch is in the ON mode, a PASS structure still has 

a longer current-path length than the patch antenna without a slot. Thus, its resonant 

frequency should be lower than the patch antenna without a slot [44]. Because the higher 

working frequency of this frequency reconfigurable design is 2.41GHz, and we also know 

the resonant frequency of an antenna with slot is lower than the same antenna without slot 

anyway, we designed a basic patch antenna (Figure 4.4) with the resonant frequency 

2.495GHz (Figure 4.5). The 2.495 GHz frequency allows us to insert a slot. For the basic 

design, the radiation patch has dimensions of 30.5 mm× 30.5 mm and the return loss is -

23.523 dB at 2.495 GHz. 

 

Figure 4.2 Geometry of a patch antenna with a switchable slot [44]  
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Figure 4.3 (a) Relative electric currents on patch antennas at their resonant frequencies 

with the switch OFF [44] 

 

Figure 4.3 (b) Relative electric currents on patch antennas at their resonant frequencies 

with the switch ON [44] 
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Figure 4.4 Layout design for the patch antenna with resonant frequency at 2.495GHz 

 

Figure 4.5 Return loss of the proposed 2.495GHz patch antenna 

Then a slot was added to the basic 2.495GHz patch antenna design, as shown in Figure 

4.6. The slot we added into this antenna is with the dimension of 26mm×1mm and it’s 

2.25mm to top and bottom side of the antenna, 7.75mm to the right side, 21.75mm to the 

left side. 
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Figure 4.6 Basic antenna design with a slot 

 

Figure 4.7 Return loss of a basic patch antenna with a slot 

After the slot has been added into this single patch antenna, it can be observed from 

Figure 4.5 and 4.7 that the resonant frequency shifted from 2.495 GHz to 1.891 GHz. The 

added slot impacted a lot on the working frequency of patch antenna. 
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Figure 4.8 Basic antenna design with a metal piece in the center of slot 

Then we inserted a metal piece to imitate on-state of PIN diode, shown in Figure 4.8. It 

can be observed in Figure 4.9 that the resonant frequency shifted to 2.256 GHz from 1.891 

GHz with a return loss of -14.422 dB. This closely matched theory. 

 

Figure 4.9 Return loss of a basic patch antenna with a metal piece in the center of slot. 

Basically, when the slot length was increased, the resonant frequencies of the antenna 

decreased for both the ON and OFF modes of the switch. 
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For a PASS design, since the current distributions in the ON and OFF switch modes are 

different, the input impedances in the ON and OFF switch modes are different at the same 

feeding location. When the frequency ratio is small, the impedance difference is not 

significant. However, if the frequency ratio becomes larger, the PASS design may not get 

a good common match for both modes [44]. For this proposed Yagi-Uda patch antenna, 

the two expected working frequencies are 1.9 GHz and 2.41 GHz, so the frequency ratio is 

2.4/1.9 = 1.26. It’s difficult to find a good common match point for two modes by using 

only one slot. 

According to [44], this problem can be solved by balancing the currents to find a 

common matching position for both modes.  

(2) The Impact of Parasitic Elements on Resonant Frequency of a Patch Antenna 

The microstrip Yagi-Uda array usually consists of a driven microstrip antenna along 

with several parasitic elements which are arranged on the same substrate surface in such a 

way as to enhance the overall antenna characteristics. For our design, we planned to use 

two reflector elements, a driven element and six director elements. The parasitic elements, 

which includes all of the reflector and director elements, have impacts on the resonant 

frequency of this antenna system. Figure 4.10 shows the basic patch antenna with many 

parasitic elements.  
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Figure 4.10 Basic patch antenna with parasitic elements 

   In Figure 4.10, the two reflector elements on the left of the driven element have the 

dimensions 18 mm × 10.5 mm, and the six director elements each have the dimensions 0.5 

mm ×12 mm. The return loss of the antenna proposed in Figure 4.10 is shown in Figure 

4.11, which shows a resonant frequency shift to 2.460 GHz from 2.495 GHz. 
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Figure 4.11 Return loss of the antenna proposed in Figure 4.10 

 

Figure 4.12 Antenna proposed in Figure 4.8 with increased-size director elements 
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Figure 4.12 shows the antenna which has been proposed in Figure 4.10 with increased 

size of director elements. The six director elements in Figure 4.12 each have the dimensions 

30.5 mm ×14 mm. 

 

Figure 4.13 Return loss of antenna proposed in Figure 4.10 

As can be observed from Figure 4.13, with the increased size of director elements, the 

resonant frequency shifts to 2.505 GHz from 2.460 GHz.  
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Figure 4.14 Antenna proposed in Figure 4.8 with increased-size reflector elements 

 

Figure 4.15 Return loss of antenna proposed in Figure 4.12 

Figure 4.14 shows the proposed antenna in Figure 4.10 with an increased size of reflector 

elements. The two reflector elements in Figure 4.14 each have dimensions 23 mm ×12mm.  
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As shown in Figure 4.15, with the increased size of reflector elements, the resonant 

frequency shifts to 2.463 GHz from 2.460 GHz.  

In conclusion, the frequency reconfigurability must be achieved by considering both the 

impact of parasitic elements and the slot. The frequency shift caused by the increased size 

of reflector and director is much smaller than frequency shift caused by slot. 

 

(3) Our Method to Achieve Frequency Reconfigurable 

Recall that in PASS theory, if the frequency ratio of two different working frequencies 

becomes larger, the PASS design may not get a good match for both modes, and slot 

implementations need to be carefully considered. For our proposed Yagi-Uda patch 

antenna, the two expected working frequencies are 1.9GHz and 2.4 GHz, and the frequency 

ratio is 2.4/1.9 = 1.26. It is difficult to find a good match point for two modes by using only 

one slot. We chose to use two switchable slots in the antenna to obtain a good match for 

both modes and proved this is an effective method. The greatest challenge is finding a 

commonly matched position for both the switch’s ON and OFF modes under the effect of 

parasitic elements. Because input impedance can be vary greatly with different modes, this 

method required many simulations. 

A common good matching point is dependent on the dimensions of two slots and their 

positions. A great number of simulations have been carried out to find the proper 

parameters. 
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Figure 4.16 shows the final design for the proposed pattern and frequency reconfigurable 

Yagi-Uda patch antenna. Based on our simulations, the gap (G3) between two slots has 

been set to 10.5 mm, the distance (L5) between slot and radiation edge has been set to 18 

mm. The corresponding parameters are shown in Figure 4.16. The size of the two slots has 

been set to 22.3mm ×1mm (W2×G1). The size of the six director elements are set to be 

30.5mm × 40mm (W5×L4), and the size of two reflectors are be set to 18mm ×10.5mm 

(W4×L3). The size of driven element has been adjusted to 48.5mm ×29.5mm. 

Figure 4.16 Geometry of Proposed Reconfigurable Yagi-Uda Patch Antenna 
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Figure 4.17 Layout simulation for proposed antenna with four metal pieces 

 

Figure 4.18 Simulated return loss for proposed antenna with four metal pieces 

Metal Pieces 
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Figure 4.17 shows the 2.41GHz mode of proposed Yagi-Uda reconfigurable patch 

antenna (showing with all four metal pieces).  Figure 4.18 shows the return loss 

performance for proposed antenna with four metal pieces. It can be observed that the band 

below-10 dB is about 20MHz, and at the resonant point 2.409 GHz, the return loss is -

28.657dB.  

 

Figure 4.19 Layout simulation for proposed antenna without four metal pieces 

All Metal Pieces Removed 
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Figure 4.20 Simulated return loss for proposed antenna without four metal pieces  

Figure 4.19 shows the 1.90 GHz mode of proposed Yagi-Uda reconfigurable patch 

antenna (showing without all four metal pieces).  Figure 4.20 shows the return loss 

performance for proposed antenna with four metal pieces. It can be observed that the band 

below-10 dB is about 10 MHz, and at the resonant point 1.905 GHz, the return loss is -

46.989 dB.  

Compared to Figure 4.17, in Figure 4.19, all four metal pieces, which were used to 

replace PIN diodes, have been removed (equivalent to the off-state of all PIN diodes, 

meaning 1.90GHz mode of proposed antenna). Based on Figure 4.18 and 4.20, it can be 

observed that two resonance frequencies are at 2.409 GHz and 1.905GHz, with return loss 

are -28.657 dB and -46.989 dB, respectively. A very good commonly matching point has 

been found through multiple simulations. It also can be observed that the band below-10 
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dB is about 20MHz in Figure 4.18 and the band below-10 dB is about 10 MHz in Figure 

4.20.  

 

Figure 4.21 Surface Current Distribution for Antenna Working at 2.41GHz 

 

Figure 4.22 Surface Current Distribution for Antenna Working at 1.90GHz 
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Figure 4.21 and 4.22 show the surface current distribution for proposed antenna at two 

working frequencies. The effect of these slots and metal pieces can be observed from these 

two figures. 

4.2.3 Pattern reconfigurable of proposed Yagi-Uda antenna 

In early simulations, designs were found which worked at both required frequencies, as 

shown in Figures 4.23 and 4.26. However, the pattern and directivity for each of them were 

not good. 

 

Figure 4.23 Early design of the proposed 2.41 GHz antenna 
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Figure 4.24 Return loss of early 2.41 GHz design 

 

Figure 4.25 Pattern for the early 2.41 GHz design 
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Figure 4.26 Early design of the proposed 1.90 GHz antenna 

 

Figure 4.27 Return loss of early 1.90 GHz design 
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Figure 4.28 Pattern for the early 1.90 GHz design 

From the theory of Yagi-Uda antennas, the directors are responsible for increasing the 

directivity of antenna. Patterns in Figures 4.25 and 4.28 show that the directors did not 

work well. The size of six director elements were changed. After many simulations, we 

increased the size of each of six director elements from 30.5 mm ×14mm to 30.5 mm ×

40 mm for the final Design, as shown in Figures 4.15 and 4.18. 

Figure 4.29 (1) (2) shows the simulated radiation patterns of the final design at 2.41GHz 

and 1.90 GHz. Figure 4.30 shows the simulated intensity of the final design at 2.41GHz 

and 1.90 GHz . Radiation intensity in a given direction is defined as the power radiated 

from an antenna per unit solid angle. (The radiation intensity is a far-field parameter which 

can be obtained by simply multiplying the radiation density by the square of the distance: 

U = 𝑅2×𝑊𝑟𝑎𝑑.) Table 4.2 shows all the related parameters at the two resonant frequencies 

of 2.41 GHz and 1.90 GHz in simulations . It can be seen from Figure 4.29 (1) (2) that the 

patterns of different working frequencies are different. From Table 4.2, we can see the 
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differece of main beam direction steering (azimuth angle-φ, elevation angle-θ) for different 

working frequencies. 

TABLE 4.2 RADIATION PARAMETERS OF THE PROPOSED ANTENNA 

Frequency E_MAX(c/n) Theta_Max(Degree) Phi_Max(Degree) Directivity_Max(dBi) 

1.90GHz 0.482 10.000 354.000 8.159 

2.41GHz 0.711 65.000 1.000 9.596 

 

 

(1) Radiation pattern of 2.41GHz for proposed antenna 

 

(2) Radiation pattern of 1.90 GHz for proposed antenna 

 

Figure 4.29 Radiation patterns of 2.41GHz and 1.90GHz for proposed antenna 
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(1) Radiation Intensity for 2.41 GHz 

 

 

(2) Radiation intensity for 1.90 GHz 

 

Figure 4.30 Radiation intensity for two working frequencies 
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4.2.4 Using of stubs for 2.41GHz 

Narrow bandwidth is the serious limitation of microstrip antenna. An effective way of 

bandwidth enhancement is to load the surface patch by stubs. In [45], by attaching a pair 

of tuning stubs to the feedline to introduce an additional resonance in the high frequency 

range, bandwidth enhancement for broadband operation can be obtained. In [46], in order 

to further increase the BW, stub-loaded variations of a hexagonal patch was presented. In 

[47], a novel wideband aperture coupled microstrip antenna consists of radiating patch with 

stubs and a cross microstrip feed line is presented. The operating relative bandwidth of 

antenna of 41% is achieved with higher antenna efficiency and stable radiation patterns are 

realized also. By changing the dimension of the stub attached to the patch, the variable 

reactance may be realized. Usually, the capacitance of the open ended stub increases due 

to increase in the length. Short open-circuited stubs can also be used as load to adjust the 

operating frequency of patch antennas.  

Two open-end stubs with optimized lengths and widths are involved to be loaded at the 

driven patch of the proposed Yagi-Uda patch antenna exclusively to adjust the impedance 

and bandwidths together, as shown in Figure 4.31. They were connected to the driven 

element by using metal pieces at 2.41GHz working frequency. Those metal pieces, used to 

replace PIN diodes in simulation, were removed when the proposed antenna was working 

at 1.90GHz (Shown in Figure 4.18). The dimensions of these two stubs are set to 2.72mm 

× 6.5mm (W3×L2), based on our simulations. 
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Figure 4.31 Stub connected to driven element by using metal piece at 2.41GHz  

 

Figure 4.32 Stub disconnected to driven element at 1.90 GHz  

Metal Piece 

Metal Piece Removed 
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Figure 4.33 Return loss for proposed antenna working at 2.41GHz  

 

Figure 4.34 Without two pieces of metal used to connect stubs and driven element  
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Figure 4.35 Return loss for proposed antenna with 2 metal pieces that used to connect 

stubs and driven pieces have been removed 

   For the antenna configuration which works in 2.41 GHz, if we remove those two stubs, 

the difference of return loss performance can be observed from Figure 4.33 and Figure 4.35. 

In figure 4.33, the bandwith below -10 dB is about 20 MHz while the bandwith below -10 

dB is about 12 MHz in Figure 4.35. The stubs we used incresased the bandwith of the 

proposed antenna by about 67%. For the antenna working at 1.90 GHz, we did not use 

broadband technology. Future studies will investigate broadband technology, which can be 

used at both 2.14 GHz and 1.90 GHz. 
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4.3 Fabrications and Measurements of the Proposed Reconfigurable Yagi-

Uda patch Antenna 
 

We used a T Tech mill machine (Figures 4.36-4.38) to build our proposed reconfigurable 

Yagi-Uda patch antenna. The measurement works have been done by using Agilent 

E5062A Network Analyzer. 

 

Figure 4.36 The T Tech mill machine used to build the proposed antenna 
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Figure 4.37 The T Tech mill machine controlled by a computer 

 

Figure 4.38 Milling device of T Tech Mill Machine  
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Figure 4.39 Antenna layout structure in control software of mill machine 

 

Figure 4.40 Antenna layout structure with a new added outline 
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Figure 4.39 shows the imported cond.gbr file in the control software of the mill machine. 

A gbr file can be generated in ADS based on our design work and can be easily recognized 

by mill machine. Before you build your structure you need to add the outline for your 

design as shown in Figure 4.40. 

 

Figure 4.41 Prototype of the proposed 1.90GHz Yagi-Uda patch antenna  

The fabricated antenna without all four metal pieces, which are used to imitate the 

antenna system with all four PIN diodes are in off-state, are shown in Figure 4.41. As 

before, the antenna was made on the RO4350b PCB board, with a thickness of 1.524mm. 
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Figure 4.42 Measurement of prototype 1.90GHz Yagi-Uda patch antenna (1) 

 

Figure 4.43 Measurement of prototype 1.90GHz Yagi-Uda patch antenna (2) 

Figures 4.42 and 4.43 show the measuring process for the built 1.90 GHz mode antenna. 

The electronic device used in figure 4.42 and 4.43 is Agilent E5062A Network Analyzer. 
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Figure 4.44 Measurement result for 1.90GHzYagi-Uda patch antenna 

 

Figure 4.45 Prototype of the proposed 2.41GHz Yagi-Uda Patch Antenna 

The fabricated antenna with all four metal pieces that were used to imitate the antenna 

system with all four PIN diodes in the ON state, is shown in Figure 4.45. It was also made 

on the RO4350b PCB board with the thickness of 1.524 mm. 
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Figure 4.46 Measurement of the prototype 2.41GHz Yagi-Uda patch antenna (1) 

 

Figure 4.47 Measurement of the prototype 2.41GHzYagi-Uda patch antenna (2) 
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Figure 4.46 and 4.47 show the measuring process for the built 2.41 GHz mode antenna. 

The electronic device used, shown in Figures 4.46 and 4.47, is also the Agilent E5062A 

Network Analyzer. 

 

Figure 4.48 Measurement result for 2.41 GHz Yagi-Uda patch antenna 

   Based on Figures 4.44 and 4.48, the measured performance of return loss for two 

configurations of the proposed antenna can be observed. For antenna configuration which 

has been designed working at 2.41GHz, the resonant frequency of built antenna is 2.428 

GHz, and the measured bandwidth below -10 dB is about 20 MHz. For the antenna 

configuration that was designed working at 1.90GHz, the measured return loss is about -

23 dB at 1.908 GHz and the measured bandwidth below -10 dB is about 10 MHz. Because 

we did not apply broadband technology to this antenna configuration, the measured 

bandwidth below -10 dB is about 10 MHz.  
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4.4 Discussions 
 

The comparisons of return loss performance between simulation and measurement are 

shown in Figures 4.49 and 4.50. 

 

Figure 4.49 Simulation and Measurement results for proposed antenna without all four 

metal pieces (Design working frequency is 1.90 GHz) 

It can be observed from Figure 4.49 that the frequency shift between simulation and 

measurement for the proposed antenna without four metal pieces is very small (within 3 

MHz). The measured return loss is about -23 dB at 1.908 GHz and the measured bandwidth 

below -10 dB is about 10 MHz.  
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Figure 4.50 Simulation and Measurement results for proposed antenna with all four metal 

pieces (Design working frequency is 2.41 GHz) 

It can be observed from Figure 4.50 that the frequency shift between simulation and 

measurement for the proposed antenna with four metal pieces is about 18 MHz. The 

measured return loss is about -35 dB at 2.428 GHz and the measured bandwidth below -10 

dB is about 20 MHz.  

The reason for 18 MHz frequency shift in 2.41 GHz design has been analyzed by follows: 

(1) For the 2.41 GHz design simulation, the positions of two metal pieces which have 

been loaded in two slots must be very accurate. As can be observed from Figure 4.51, 

the distance (As H in Figure 4.51) from each of those two metal pieces to top border 

and bottom border of the slot was set to be 10.7 mm. And the positions of those two 

metal pieces have been got based on a lot of simulations. 

(2) If we move the metal piece which loaded in the right slot of the driven element up 

for 1mm (As shown in Figure 4.52), the resonant point will shift to 2.434 GHz (As 

shown in Figure 4.53). 
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Figure 4.51 The layout structure for proposed antenna 

 

Figure 4.52 The proposed antenna with the metal piece loaded in the right slot has been 

moved up 1mm  
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Figure 4.53 The resonant point shift to 2.434 GHz based on the change has been made in 

figure 4.52 

(3) If we move the metal piece which loaded in the right slot of the driven element down 

for 1mm (As shown in Figure 4.54), the resonant point will shift to 2.385 GHz (As 

shown in Figure 4.55). 

(4) The resonant point of this antenna is very sensitive to the dimension of those two 

metal pieces loaded in two slots. Based on simulation works, we made the dimension 

of all four metal pieces as 0.9mm (height) × 1mm (width). If we increase the height 

of those two pieces which loaded in two slots by 0.2 mm (As shown in Figure 4.56), 

the resonant point will shift to 2.424GHz. If we decrease the height of those two 

pieces which loaded in two slots by 0.2 mm (As shown in Figure 4.58), the resonant 

point will shift to 2.393 GHz. 
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Figure 4.54 The proposed antenna with the metal piece loaded in the right slot has been 

moved down for 1mm 

 

 

Figure 4.55 The resonant point shift to 2.385 GHz based on the change has been made in 

figure 4.54 

Move Down 

for 1mm 
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Figure 4.56 The proposed antenna with the height of metal pieces loaded in slots has been 

increased by 0.2 mm 

 

Figure 4.57 The resonant point shift to 2.424 GHz based on the change has been made in 

figure 4.56 

Height=1.1mm 

Height=1.1mm 
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Figure 4.58 The proposed antenna with the height of metal pieces loaded in slots has been 

decreased by 0.2 mm 

 

 

Figure 4.59 The resonant point shift to 2.393 GHz based on the change has been made in 

figure 4.58 

Height=0.7mm 

Height=0.7mm 
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We used a T Tech Mill machine to build the proposed antenna. During the fabrication 

process, there has to be error of metal pieces, and the resonant point is very sensitive to the 

position and dimension of those two metal pieces which are loaded in the slots. This can 

explain the 18 MHz frequency shift for 2.41 GHz design. For 1.90 GHz design, because 

there are no metal pieces loaded in the slots, the frequency shift is very small (around 3 

MHz). Despite the frequency, this antenna can still be used for Wi-Fi systems (Band 4 or 

Band 5 of the 2.4 GHz band channel). Considering our fabrication conditions, our results 

were quite successful. 

 

4.5 Summary of the Proposed Yagi-Uda Antenna 
 

In this chapter, a novel Yagi-Uda reconfigurable patch antenna was proposed. Two slots 

have been used on the driven element of this antenna system to create frequency and pattern 

reconfigurability and we use metal pieces to replace PIN diodes in the simulation and 

measurement. Pattern reconfigurability and directivities with all over 8.1 dBi in both main 

radiation directions have been found on two different working frequencies in simulation. 

The measured bandwidth of the return loss below -10dB for 2.41GHz working mode is 

about 20 MHz and for the 1.90 GHz working mode is 10 MHz. The simulation and 

measurement for return loss results closely agree. The slight frequency shifts are due to 

fabrication error. This pattern and frequency reconfigurable Yagi-Uda patch antenna array 

can be applied for both LTE and Wi-Fi systems.  
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Chapter 5. Conclusions 

     In chapter 3, a novel dual-frequency antenna array with multiple pattern selectivities is 

proposed. We used a single-feed switchable network as a basic beam pattern 

reconfigurability structure for this dual-frequency antenna array. The slotted corners on the 

patch together with the states of PIN diodes gave this antenna array more freedom of 

pattern changeability. The measured bandwidth of the return loss below -10dB for the on- 

state is about 25 MHz and for the off-state is also nearly 25 MHz at two different working 

frequencies, respectively. We have validated this structure is effective to introduce more 

pattern selectivity. This pattern reconfigurable patch antenna array can be applied in the 

wideband code division multiple access system. 

 In chapter 4, a novel Yagi-Uda patch antenna with frequency and pattern selectivity was 

proposed. Our proposed antenna consists of two reflector elements, a driven element and 

six director elements. Two open-end stubs, which were used to improve the return loss 

performance and adjust working frequency, were connected to the driven element when it 

was working at 2.41 GHz. In order to easily validate our design, we used four metal pieces 

to imitate different states of PIN diodes in simulation and measurement. We built two 

proposed Yagi-Uda patch antennas, one with and one without, metal pieces. For the built 

antenna without metal pieces, the measured return loss is about -23 dB at 1.908 GHz and 

the measured bandwidth below -10 dB is about 10 MHz. For the built antenna with four 

metal pieces, the measured return loss is about -35 dB at 2.428 GHz and the measured 

bandwidth below -10 dB is about 20 MHz. The frequency shifts are mainly attributed to 

the fabrication error. Basically, the simulation and measurement results agreed well. The 

pattern of the proposed antenna is different between two working frequencies but with the 
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directivity all above 8 dBi. The effectiveness of this kind of antenna structure has been 

validated by this study. It can be both frequency and pattern reconfigurable. This proposed 

Yagi-Uda reconfigurable patch antenna can be used in both LTE and Wi-Fi systems. 
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