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Credibility Calculations Using Analysis of Variance 
Computer Routines 

H. Dennis Tolley, * Michael D. Nielsen, t and Robert Bachler* 

Abstract 

In this paper we present a method of calculating Biihlmann-Straub credi
bility factors using standard statistical techniques developed for the analysis 
of variance. Emphasis is placed on using readily available statistical packages 
such as SAS and SPSS. Additionally many other computational tools such as 
EXCEL can be programmed to make such calculations. An example and some 
sample SAS programs are provided. 

Key words and phrases: Biihlmann-Straub credibility factors, empirical Bayes, 
borrowing strength, random ANOVA model 
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1 Introduction 

Casualty actuaries long have recognized the use of the methods of 
credibility theory as important in assisting them when setting premi
ums for (i) renewing business, (ii) blocks of new business, and (iii) deter
mining experience-based refunds. The value of these methods also is 
gaining recognition among health actuaries'! Implementation of these 
credibility methods, however, is varied. Although formal methods of 
calculating credibility rates are well established, their implementation 
varies mathematically from ad hoc computations to simple approxima
tions to detailed estimation of the model parameters. One of the rea
sons for this is the differences in computational complexity. Despite 
the fact that company experience is maintained in well-documented 
databases, use of computer programs on these databases to form cred
ibility estimates is far from seamless and may be too complex to warrant 
the effort. 

We present a method of calculating credibility factors under the 
Riihlmann-Straub (1970) model using readily available statistical soft
ware. 2 The Buhlmann-Straub model is one of a variety of credibility 
models and is based on a least squares argument. Though the least 
squares basis for credibility is adequate justification for the procedure, 
it has been shown that the Buhlmann-Straub method of calculating cred
ibility is identical to the empirical Bayes method when the distribu
tion of losses is a member of the linear exponential family, the loss 
is quadratic, and when the Bayesian prior used is the conjugate prior 
for this distribution (Ericson, 1970). Although software programs do 
not explicitly identify the credibility factors in the software documenta
tion and are not part of the traditional statistical reports generated by 
these packages, Buhlmann-Straub credibility factors can be calculated 
from such packages with minimal effort. This paper illustrates these 
procedures. 

A credibility premium uses data from two sources: the estimate 
of the pure premium based only on the data from a specific group of 
interest at a speCific time and an estimate of the pure premium based on 
the other data sources and/or prior information. This second estimate 
may be the overall average of observed rates taken from samples of 
other groups of poliCies or the historical average of the group of poliCies 
of interest. 

1 There is an extensive literature on credibility in general (see, e.g., Longley-Cook, 
1962; Norberg, 1979; Hossack et al., 1983; Herzog, 1996; Goulet, 1998). 

2For other papers on the Buhlmann-Straub model see, for example, Morris and Slyke, 
(1978), and Venter (1985,1990), and Klugman (1987). 
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The credibility premium classically takes the form 

C = ZR + (1 - Z)H, o ~ Z ~ 1, (1) 

where C is the credibility premium; R is the estimate of pure premium 
using the data from the group of interest; H is a global premium (Le., an 
exogenous estimate or assumed value of the average of observations); 
and Z is the credibility factor and denotes the weight assigned to R. If 
Z = 1 then the data are said to be fully credible, and no compromise 
estimate is needed. 

Although the simple form given in equation (1) is found in most 
of the literature, there are many different approaches to calculate the 
credibility factor. 3 Biihlmann (1967) arrives at a credibility premium by 
finding the linear estimator that minimizes the expected squared error. 
The resulting credibility premium follows the form of the model shown 
in equation (1), with the credibility factor, Z, given as 

Z = nxVHM 
nxVHM+EPV 

(2) 

where EPV is the expected value of the process variance and refers to 
the value of the variance of the pure premium within each group, av
eraged across all groups; and VHM is the variance of the hypothetical 
means, which is the mean square distance between the mean of the 
pure premium in each group and the mean over all groups. Biihlmann 
(1967) proposes this estimate of credibility for cases when the ni are 
equal. The extension to the case where the ni are not equal is presented 
by Biihlmann-Straub (1970). 

2 The Analysis of Variance (ANOVA) Approach 

The connection between credibility methods and analysis of vari
ance (ANOVA)4 has been alluded to in several papers. For example, both 
Venter (1990) and Morris and Van Slyke (1978) describe a model similar 

3Morris and Van Slyke (1978) determine Z using a Bayesian framework to obtain 
a form of equation (1). Biihlmann (1970) suggests an alternative method that is also 
related to the empirical Bayes approach. Herzog (1996), Philbrick (1981), and Venter 
(1990) also describe this method. 

4 Analysis of variance is a standard statistical technique in the design and analysis 
of experiments. For more on analysis of variance, see, for example, Scheffe (1959) and 
Neter, Wasserman, and Craig (1990, Part 3.) 
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to the random bne-way analysis of variance model. Dannenburg (1995) 
uses a one-way random effects model in a cross-classification credibil
ity model that determines the credibility score using estimated variance 
components. Dannenburg et al. (1996) use the general variance compo
nents models of which this is a special case. (See also Goulet, 1998.) 

Analysis of variance can be put into the context of the insurance 
model as follows: Consider an insurance company with I groups of 
policies. Suppose further that there are ni individuals from group i 
who have a claim within a single period (a month, quarter, or year, say). 
For i = 1,2, ... , I, the claim amount, Yiu, associated with individual u 
in group i, is modeled as 

(3) 

where Ji represents the mean over all groups and (Xi represents the 
amount that the mean of the ith group varies from this overall mean, 
(XiS are mutually independent random variables mean zero and variance 
uf, and the eiuS are mutually independent random variables mean zero 
and variance uJ. We also assume that (Xi and eiu are mutually indepen
dent. 

If an assumption of normality of the distribution of (Xi and eiu were 
added to equation (3), this would be the standard formulation of the 
random one-way ANOVA model. This assumption is unnecessary to 
form the Buhlmann-Straub credibility premium. 

Equation (3) implies that the unconditional expected value of Yiu is 
Ji. Conditional on (Xi, however, the expected value of Yiu is Ji + (Xi. It is 
the past experience that provides the basis for improving our estimate 
of the expected value of Yiu, for each group by providing information 
regarding (x. 

In the ANOVA model of equation (3), the credibility factor is easy 
to estimate if we use the method of moments estimate of the variance 
components as suggested by Venter (1990). The method of moments 
estimate of uf is referred to in the European literature as a. Other than 
simplicity and unbiasedness, this method of estimation has no known 
optimality properties. Other estimates of uf exist with optimality prop
erties, however (see Goulet, 1998; and DeVylder and Goovaerts, 1992). 
We will use the simple method of moments estimator. 
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The following notation is used: 

(4) 
i=1 

:Vi. = Average of all observations in group i; 
"nj 

= L.u=1 YiU; (5) 
ni 

Y.. = Average of all observations, across all groups; 
1 t nj 

= N I I YiU; (6) 
l=1 u=1 

2 1 ~ - 2 
Si = --1 L (Yiu - Yd (7) 

ni - u=1 

1 t 

MSE = N _ t i~ (ni - 1)sf, (8) 

1 t _ _ 
MS(lX) = t _ 1 I ni(Yi. - y.J 2

• (9) 
l=1 

The last two expressions are referred to as the mean square for error 
(MSE) and the mean square for groups (MS(lX», respectively. The ex
pected values of these mean squares are:s 

E[MSE] = CT6 

and 

E[MS( lX)] = CT6 + naCTf, 

where 

(10) 

In Buhlmann' notation, CT6 is the expected value of the process variance 
and CTf is the variance of the hypothetical means. Thus, Buhlmann's k 
is given as 

SFor a derivation of E[MSE] and E[MS( cd] see Scheffe (1959, Chapter 3) or Neter, 
Wasserman, and Craig (1990, Chapters 14, pages 543-546). 



228 Journal of Actuarial Practice, Vol. 7, 1999 

k = no x MSE 
MS(£x) - MSE 

From these expectations we can calculate the following method of mo
ments estimators for the variance components: 

and 

&J = MSE, 

MS(lX) - MSE 
no 

(11) 

Thus, for the simple one-way model in equation (3), the Biihlmann
Straub credibility factor, Z, given in equation (2) becomes 

(12) 

which can be rewritten as 

MS(lX) - MSE 
Zi = MS(lX) + (~~ - 1) x MSE' 

(13) 

Most analysis of variance routines calculate MSE and MS(lX). Only the 
number of observations in the ith group, ni , and the value of no need 
to be determined. 

The credibility factor is different for each group depending on the 
value of ni. As ni increases, Zi goes to unity and the group becomes 
fully credible. On the other hand, as (Jl increases, indicating a high 
degree of variability from group to group, Zi approaches unity and the 
group becomes fully credible. When (Jl is small relative to (JJ and/or ni 
is small relative to no, Zi drops below unity and the group experience 
is less credible. In this case the compromise estimate borrows more 
strength from the experience of other groups. 
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Equation (13) provides a simple calculation of the credibility factor 
using output from ANOYA routines. Many times, however, the data 
have been summarized so that for each group i only the observed pure 
premium, say 17i., the number insured, ni, and the standard deviation, 
Si, are known. In this case the formulas can be used by first observing 
that 

t 
- '" ni-Y .. =L.NYi.. 

i=l 

(14) 

Thus, MS(LX) is calculated as given in equation (9) using Y. as given in 
equation (14). Rearranging the terms in equation (9) yields a formula 
that is often easier to use. Explicitly, 

MS(LX) = t ~ 1 (± ni17l- N17.~) 
1=1 

(15) 

Second, MSE is calculated as in equation (8). 
The credibility factors Zi can be calculated using equation (13) where 

the MSE is given by equation (8) and MS (LX) is calculated using equation 
(15) with 17 .. as defined in equation (14). 

3 Calculation of Z via Computer Programs 

3.1 Individual Data Case 

To illustrate the formulas and computer programs we consider the 
hypothetical data given in Table 1. The data sets are small and would 
not be seriously considered as reliable insurance experience. With such 
small data sets, however, the details of calculations are more apparent. 
The data in Table 1 represent four hypothetical groups with claims for 
each group. We wish to determine the credibility factors for each group 
assuming that the four groups represent the entire experience of inter
est for the insurer. 

Table 2 gives the EXCEL 6 output for a one-way analysis of variance 
of the data in Table 1. To obtain this analysis we perform the following 
steps: 

6EXCEL is a registered trademark of: Microsoft Corporation, One Microsoft Way, 
Redmond WA 98052-6399, USA. 
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Table 1 
Hypothetical Individual Cost Data 

For Four Groups of Insureds for a Single Year 
Groups 

1 2 3 4 
1550 1879 1440 1014 
1325 2028 1601 1231 
1417 2150 1790 1487 
1824 2245 1852 1491 
2138 2516 1998 

2918 2081 
2171 

Step 1: Click the Data Analysis menu selection under Tools; 

Step 2: We then click One-Way; 

Step 3: As each column represents a different group, we indicate the 
Grouped by Columns option and then proceed. 

The output consists of one table (Table 2) with two panels, Panel 
A and Panel B. The first column in Panel A lists the group name. The 
second gives the value of ni for group i, where i indicates the column 
of the group data. The fourth column gives Yi. for group i as given by 
equation (5). The fourth column of Panel B lists the MS(a) in the first 
row and the MSE in the second row. 

Using the second column of Table 2, Panel A we calculate no using 
equation (10). For this equation t -1 = 4-1 = 3. The other components 
of the equation are given as: 

N = 22 

L ni = 126, and 

no = (222 - 126)/(22 * 3) = 5.4242. 



Table 2 
Output from Excel Program of the 

One-Way ANOV A Analysis of the Data in Table 1 
Panel A: AN OVA Single Factor (Summary) 
Groups Count (ni) Sum Average (YiJ Variance 
Group 1 5 8254 1650.800 109582.70 
Group 2 6 l3736 2289.333 140929.50 
Group 3 7 12933 1847.571 68661.60 
Group 4 4 5223 l305.750 52624.92 
Panel B: ANOVA 
Source of 
Variation SS df MSE F-Value P-Value F-Crit 
Between Groups 2527409 3 842469.6 8.853487 0.000805 3.159911 
Within Groups 1712823 18 95156.81 
Total 4240231 21 

Notes: SS = Sum of Squares; *MSE(()() = Between Groups MSE; F·value = Test statistic to test 
whether mean costs are the same across groups under the AN OVA assumptions; P-value = Prob
ability of a value greater than or equal to the F-value assuming the means are the same; F-Crit = 

The value which, if it is exceeded by the F -value, there is statistical evidence that the mean costs 
differ from between groups. 
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Using these values we calculate the Zi for each group using equation 
(13). Explicitly, for group 1 we have 

Z _ 842469.6 - 95156.81 
1 - 842469.6 + ( - 1) x 95156.81 

= 0.878631 

Thus, the credibility score for group 1 is about 87.9 percent. Relative 
to the complete set of data available, the data on group 1 are relatively 
credible-there is little difference between the compromise estimate of 
the group pure premium and the estimate using the observed average 
of the group. 

3.2 Grouped Data Case 

Suppose that only the summary data consisting of ni, fl., and sf for 
each group are available (columns (2), (4), and (5) of Table 2, Panel A). In 
this case we can use equations (15) and (8) to calculate the components 
of equation (13). Explicitly we make the following calculations. First 
from equation (14) we have 

Y. = (5 x 1650.8 + 6 x 2289.333 + 7 x 1847.571 + 4 x 1305.75)/22 
40146 

22 
= 1824.818182. 

Using these in. equation (15) we obtain 

MS(()() = 75786559.41 - 73259150.73 
3 

2527408.68 
3 

= 842469.56 

This is close to the value given in Table 2, Panel B (row (1), column (4)). 
The difference is due to roundoff error. 

Calculation of MSE follows similarly using equation (8). Explicitly, 
we get 

MSE = 1712822.66 
18 

= 95156.81 
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These results can be used to calculate the credibility scores as before. 
Computer code for the same calculations using SAS are given in the 

appendix; no code is provided for SPSS. 7 

4 Discussion 

We have illustrated how the Buhlmann-Straub credibility factors can 
be calculated using one-way ANOVA statistical routines common in 
many computer programs. In order to form such scores the mean 
squares reported in the ANOV A tables must be used as given in equa
tion (13). Under certain situations estimated MS(lX) can be negative. 
In this case the value of Zi = 0 is used. This reduces the bias of the 
compromise estimate as shown by Morris (1983). 
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Appendix 

The codes for making credibility calculations using SAS for the data 
in Table 1 are given below. First we use the individual data. We have 
used the cards option. In practice one would read a data file. Below we 
give the code for grouped data. In both cases the amount of work to get 
the SAS code seems long relative to the simple problem considered. For 
longer, more practical problems, however, the benefits of SAS routines 
are more apparent. 

DATA costs; 
IN FILE cards; 
INPUT cost group; 
CARDS; 

1550 1 
1325 1 
1417 1 
1824 1 
2138 1 
1879 2 
2028 2 
2150 2 
2245 2 
2516 2 
2918 2 
1440 3 
1601 3 
1790 3 
1852 3 
1998 3 
2081 3 
2171 3 
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1014 4 
1231 4 
1487 4 
1491 4 

RUN; 

Journal of Actuarial Practice, Vol. 7, 7999 

/*** Getting number of individuals per group ***/ 
PROC SQL; 

CREATE TABLE counts AS 
SELECT DISTINCT group,count(group) AS number 
FROM costs 
GROUP BY group; 

/*** Calculating n_not ***/ 
PROC SQL; 

SELECT (sum(number)-(sum(number**2)/sum(number») 
/(count(number)-l) 

INTO :n_not 
FROM counts; 

/*** Calculating MSE, MSA ***/ 
PROC ANOVA DATA=costs OUTSTAT=results NOPRINT; 

CLASS groL1P; 
MODEL cost=group; 

RUN; 

DATA _nulL; 
SET results; 
mean_sqr=ss/df; 
SELECT (_source_); 

WHEN ("ERROR") CALL SYMPUTC"MSE",mean_sqr); 
WHEN ("GROUP") CALL SYMPUTC"MSA",mean_sqr); 

END; 
RUN; 

/*** Calculating credibilities ***/ 
DATA creds; 

SET counts; 
cred=(&MSA-&MSE) / (&MSA+(&n_not/number-1) "'&MSE) ; 
KEEP group cred; 

RUN; 
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PROC PRINT NOOBS DATA=creds; 
TITLE 'Credibility Factors for Individual Data'; 

RUN; 

/****************** 
USING GROUPED DATA 

******************/ 

DATA grouped; 
INFILE cards; 
INPUT group number avg_cost var_cost; 
CARDS; 

1 58 1666 49597893 
2 115 5051 216276545 
3 81 4670 193990984 
4 108 8966 757144094 

RUN; 

/*** Calculating n_not and the overall mean ***/ 
PROC SQL; 

SELECT (sum(number)-(sum(number**2)/sum(number») 
/(count(number)-l), 
sum(avg_cost*number)/sum(number) 

INTO :n_not, :y_bar2 
FROM grouped; 

/*** Calculating MSE, MSA ***/ 
PROC SQL; 

SELECT 1/(count(group)-1)*(sum(number*avg_cost**2) 
-sum(number) >"&y_ba r2 >""(2) , 
1/(sum(number)-count(group»*sum((number-1) 
~'var _cost) 

INTO :msa, :mse 
FROM grouped; 

/*** Calculating credibilities ***/ 
DATA creds; 

SET grouped; 
c red= (&msa-&mse) / (&msa+ (&n_not/numbe r-1) ~'&mse) ; 
KEEP group cred; 

237 
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time period. Recent examples of collective risk modeling in insurance 
include Butler, Gardner, and Gardner (1998); Butler and Worall (991); 
and Cummins and Tennyson (996). 

The stochastic structure is two-pronged: both the size of the individ
ual claims and .the number of claims are considered random variables. 
Specifically, let S denote the aggregate claims random variable, Le., 

(1) 

where N is the number of claims and Xi is the size of the ith individual 
claim. The XiS are assumed to be mutually independent and identically 
distributed (LLd.) and are mutually independent of N. In the literature 
equation 0) is referred to as a compound random variable; see, for 
example, Bowers et al. (1997, Chapter 12). 

Theoretically, the distribution of S can be obtained from equation 
(1) as follows: 

00 

Pr[S ::0; s] = I PnF*n(s) 
n=O 

(2) 

where Pn = Pr[jV = n] and F*n(s) = Pr[XI + ... + Xn ::0; s], Le., F*n(s) 
is the nth convolution of the XiS, with F(x) = F*l (x) being the cumu
lative distribution function of Xl. 

The difficulty in using equation (2), however, often lies in calculating 
F*n (s). Thus, approximations are frequently used. There are several 
approximations used by actuaries, including discretizing the claim size 
distribution (Panjer 1981); using the Wilson-Hilferty approximation or 
Haldane Type A approximation (Pentikainen, 1987); and, of course, the 
normal approximation. See Panjer and Willmot (1992, Chapter 6) and 
Bowers et al. 0997, Chapters 2 and 12) for a discussion of the actuarial 
approaches. Other methods such as the Edgeworth expansion (Feller, 
1971) or the conjugate density method (Esscher, 1932) have been ap
plied. 

The methods mentioned above provide good approximations near 
the center of the distribution but can be slow or inaccurate for calcu
lating tail probabilities of the form Pr[S > s] (for large values of s). For 
a discussion of the tail behavior of aggregate distributions; see Panjer 
and Willmot (1992, Chapter 10). A fairly quick and accurate method of 
calculating tail probabilities is the so-called saddlepoint approximation. 
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Since their introduction by Daniels (1954) saddlepoint approxima
tions have been utilized to approximate tail probabilities in a variety 
of situations; see, for example, Goutis and Casella (1999), Huzurbazar 
(1999), Butler and Sutton (1998), Tsuchiya and Konishi (1997), and 
Wood, Booth, and Butler (1993). Field and Ronchetti (1990) document 
the accuracy of these procedures for small sample sizes (even of sam
ple size one). In this paper a saddlepoint approximation is developed 
for Pr[S > s] and is applied to specific examples. 

2 The Saddlepoint Approximation 

The key assumption in the saddlepoint approximation is the as
sumption of the existence of the moment-generating functions corre
sponding to Xi and N, which are denoted by Mx(8) and MN(8), respec
tively, where e is a real valued parameter. 1 The moment-generating 
function of S, Ms(e), is then given by 

Ms(8) = E[eos] 

= E[E[eosIN]] 

= MN(lOg(Mx (8)))· (3) 

Equation (3) can be used to derive the well-known results on the mo
ments of compound sums of LLd. random variables: 

Ils = E[S] = E[N]E[Xl] (4) 

a-§ = Var[S] = Var[N](E[Xll)2 + E[N]Var[Xll. (5) 

The saddlepoint approximation for the tail probability Pr[S > s] is 
adapted from Field and Ronchetti (1990) for sample size one. First let 
T denote the standardized random variable 

S - Ils 
T=--

Us 

lThe moment-generating function of a random variable Z is defined as 

Mz(8) = E[eoz ], 8> O. 
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where J.1s and Us and the mean and standard deviation of S respec
tively (which can be obtained from equations (4) and (5)). The moment
generating function for T is easily seen to be: 

(6) 

For a fixed value of s, let t = (5 - J.1s) / Us and let [3 be the solution 
to the equation 

M~([3) = t MT([3) (7) 

where the I denotes differentiation with respect to e. Note that [3 is a 
function of t. Further, let 

ef3 t 

c = MT([3) (8) 

and 

2 _ My([3) _ t2 
U - MT([3) . (9) 

The saddlepoint approximation for P(S > s) is: 

Pr(S > s) "" 1 - 4>(~21n(c)) + ~[_[31 - ~J (10) 
cv 2rr u 2In(c) 

where 4>(.) is the standard normal distribution function, and c and u 
are defined in equations (8) and (9). 

In practice, once 5 is chosen and t is computed, equation (7) is solved 
numerically using a technique such as Newton's method or the secant 
method; see, for example, Burden and Faires (1997, Chapter 2). 

3 Examples 

The saddlepoint approximations of tail probabilities are now applied 
to several specific collective risk models. These saddlepoint approxi
mations are compared to the Haldane Type A and the normal approxi
mations, and the exact probabilit'ies. The exact calculations are found 
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by simulation using 10,000 repetitions, which gives accuracy to four 
decimal places. 

If X has mean f.1x, standard deviation (J'x, and coefficient of skewness 
)'x, then the Haldane Type A approximation is as follows: 

Pr[X ~ xo] "" <I> [( (1 + rxo)h - f.1(h, r)) / (J'(h, r)] (11) 

where 

- (xo - f.1x) x 0 = -'--"---'-"'-'-
(J'x 

(J'x 
r = - (12) 

f.1x 

h = 1 - )'x (l3) 
3r 
1 1 

f.1(h, r) = 1 - 2"h(l - h)[l - 4(2 - h)(l - 3h)r2]r2 (14) 

(J'(h,r)=hr~1-~(l-h)(l-3h)r2. (15) 

The Haldane approximation is chosen because Pentikainen's (1987) re
sults show it to be, under certain circumstances, an accurate approxi
mation. Recall that the normal approximation is 

Pr[X ~ xo] "" <I> [xo]. (16) 

The relative errors shown in the tables are calculated as: 

e atlve rror = . R I . E I Approximation Exact I 
Exact 

3.1 Light and Medium Tailed Claim Size'Distributions 

Example 1: Xl is normal random variables with mean f.1x = 100 and 
standard deviation (J'x = 10 while N is Poisson with mean i\ = 10. From 
equation (3) 
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Table 1 
Approximating Tail Probabilities for 

The Compound Normal-Poisson Model 
Relative Error 

t [3 Exact Normal HALDA SADP 
0.5 0.4637 0.2964 0.0411 0.0039 0.0034 
1.0 0.8672 0.1575 0.0074 0.0077 0.0070 
1.5 1.2243 0.0750 0.1089 0.0062 0.0087 
2.0 1.5445 0.0303 0.2498 0.0125 0.0082 
2.5 1.8347 0.0112 0.4469 0.0019 0.0089 
3.0 2.1001 0.0036 0.6351 0.0091 0.0084 

In this setting the central limit theorem is known to hold for large i\.. 

Example 2: Xl is a gamma random variable with a mean of Ilx = 100 
and standard deviation CTx = 10. N is a negative binomial random 
variable with mean of ()( = 10 and and standard deviation}, = 20. Here 

Ms(e) = [1 -q~; q [3)-0 r (18) 

where q = 0.5, Ilx = [38, CTx = [3J8, ()( = rq/(I -q) and}' = rq/(l-q)2. 

Table 2 
Approximating Tail Probabilities for 

The Compound Gamma-Negative Binomial 
Relative Error 

t [3 Exact Normal HALDA SADP 
0.5 0.4284 0.2684 0.1494 0.0961 0.0417 
1.0 0.7502 0.1548 0.0252 0.0284 0.0032 
1.5 1.001 0.0796 0.1608 0.0515 0.0050 
2.0 1.203 0.0375 0.3920 0.6907 0.0027 
2.5 1.369 0.0166 0.6265 0.3012 0.0084 
3.0 1.508 0.0070 0.8086 0.4571 0.0100 
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Example 3: Xl is an inverse Gaussian random variable with mean I1x = 
100 and standard deviation (}x = 10. N is Poisson with mean i\ = 10. 
The moment-generating function for the inverse Gaussian distribution 
is 

see Johnson and Kotz (1970, Chapter 15). Hence 

Table 3 
Approximating Tail Probabilities for 

The Compound Inverse Gaussian-Poisson Model 
Relative Error 

t f3 Exact Normal HALDA SADP 
0.5 0.4537 0.2998 0.0290 0.0153 0.0147 
l.0 0.8671 0.1629 0.0258 0.0258 0.0264 
l.5 l.2242 0.0775 0.1381 0.0387 0.0413 
2.0 l.5444 0.03 16 0.2785 0.0285 0.0348 
2.5 1.8345 0.0119 0.4790 0.0588 0.0672 
3.0 2.0998 0.0038 0.6474 0.0526 0.0526 

These examples show that the saddlepoint approximation is supe
rior to the central limit theorem, but seems to be on par with the Hal
dane approximation in calculating tail probabilities. Next we consider 
a more difficult setting involving heavy tailed distributions. 

4 Heavy Tailed Claim Size Distributions 

The saddlepoint approximation requires the existence of the moment
generating function of the claim variable. For heavy tailed distributions, 
such as the Pareto (the moment-generating function does not exist) 
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and lognormal (the moment-generating function is not in convenient 
a closed form), an approximation is required. For these problem cases 
a censoring limit is imposed on the claim distribution. 

For cases where the moment-generating function does not exist, the 
distribution of the claim variable is approximated utilizing an upper 
tail censoring limit. For small E the censoring limit, L, satisfies Pr[XI > 
L] = E. Let us define the censored claim random variable as 

y. _ {Xi if Xi ::; L 
1 - L if Xi> L. 

The distribution function for the YiS is now 

( ) _ {F(X) if x < L 
Fy x-I 'f L I X 2': • 

The corresponding moment-generating function is 

My(e) = J:=o eOXdF(x) + EeOL
. (20) 

The saddle point approximation is applied using the censoring moment
generating function in equation (20). This technique is now demon
strated on two examples of heavy tailed claim distributions. In both 
cases the number of claims is assumed to be Poisson with mean 5. 

Example 4: Claims are assumed to follow a lognormal distributed with 
probability density function (pdf) of Xl is 

2 
!(X)=_l_ exp [_.!.(ln(X)-J.l)] -oo<x<oo. (21) 

)2rr~ 2 ~ 

where J.l = 0 and ~ = 1. We assume that E = 0.001, which produces a 
censoring limit of L = 59.7697. 

Example 5: Here we assume the claim size follows a Pareto distribution 
with distribution function given by 

1 
F(x) = 1- (1 +X)3' 
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Table 4 
Approximating Tail Probabilities for 

The Compound Lognormal-Poisson Model 
Relative Error 

t f3 Exact Normal HALDA SADP 
0.5 0.7251 0.1628 0.8950 0.5565 0.0498 
1.0 0.9501 0.0630 1.5190 1.3016 0.0825 
1.5 1.0512 0.0241 1.7718 2.3361 0.0622 
2.0 1.2001 0.0108 1.1111 1.0463 0.1574 
2.5 1.4211 0.0047 0.3191 5.5319 0.3404 

Again, E = 0.001, and this produces a censoring limit of L = 9.0. 
As in the previous section, normalized tail probabilities and the sad

dlepoint approximations are compared to the exact values as obtained 
by simulation. These computations are listed in Tables 4 and 5. 

Table 5 
Approximating Tail Probabilities for 

The Compound Pareto-Poisson Model 
Relative Error 

t f3 Exact Normal HALDA SADP 
0.5 0.6959 0.1664 0.8540 0.6280 0.03l3 
1.0 0.9880 0.0688 1.3067 1.2456 0.1933 
1.5 1.1623 0.0327 1.0428 1.5199 0.1804 
2.0 1.2842 0.0165 0.3818 1.5091 0.0727 
2.5 1.3772 0.0094 0.3404 1.1064 0.1596 

For the heavy tailed distributions, the saddlepoint approximation is 
superior to the central limit theorem and the Haldane approximation 
in calculating' tail probabilities. 
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