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Benchmarking R packages for Calculation
of Persistent Homology
by Eashwar V. Somasundaram, Shael E. Brown, Adam Litzler, Jacob G. Scott, and Raoul R. Wadhwa

Abstract Several persistent homology software libraries have been implemented in R. Specifically,
the Dionysus, GUDHI, and Ripser libraries have been wrapped by the TDA and TDAstats CRAN
packages. These software represent powerful analysis tools that are computationally expensive and, to
our knowledge, have not been formally benchmarked. Here, we analyze runtime and memory growth
for the 2 R packages and the 3 underlying libraries. We find that datasets with less than 3 dimensions
can be evaluated with persistent homology fastest by the GUDHI library in the TDA package. For
higher-dimensional datasets, the Ripser library in the TDAstats package is the fastest. Ripser and
TDAstats are also the most memory-efficient tools to calculate persistent homology.

Introduction

Topological data analysis (TDA) is a broad set of methodologies that characterizes structural features
of datasets inspired by topological principles. It has a broad range of usage, from viral evolution to
physical chemistry (Chan et al., 2013; Offroy and Duponchel, 2016). Within the umbrella of TDA,
persistent homology represents an algebraic approach to understanding the number, characteristics,
and persistence of structural features in an n-dimensional point cloud. In the basic workflow of
persistent homology, a series of simplicial complexes are generated on point clouds to characterize
topological features. There are several methods to generate these complexes on point clouds. In this
paper, we focus on persistent homology of the Vietoris-Rips and alpha complexes, which use simplicial
complexes to approximate topologic relationships in point clouds. The exact method of constructing
these complexes is described in the Mathematics section. Essentially, we measure features that are
discovered by the algorithm at a particular stage and disappear at a later stage. The difference between
these stages is persistence. Features with larger persistence more likely represent real geometric
patterns rather than noise.

There are several C++ libraries available to researchers that calculate alpha and Vietoris-Rips
complexes, such as Dionysus, GUDHI, and Ripser (Morozov, 2018; Maria et al., 2016; Bauer, 2019).
These libraries have been wrapped in R by the TDA and TDAstats packages (Fasy et al., 2019; Wadhwa
et al., 2018). Although useful, calculating persistent homology for large datasets is often limited due to
computational complexity (Otter et al., 2017). As a result, researchers often limit persistent homology
analysis to lower dimensions. However, ignoring features in higher dimensions may cause significant
information loss, underutilizing persistent homology’s capabilities. Here, we aim to benchmark two
R packages - TDA and TDAstats - and enable researchers to most efficiently calculate persistent
homology in R.

Mathematics of Persistent Homology

An n-dimensional simplex is the convex hull of n + 1 points in a Euclidean space. More intuitively, an
n-dimensional simplex is the simplest n-dimensional object (e.g., a 0-simplex is a point, a 1-simplex
is a line, a 2-simplex is a triangle, 3-simplex is a tetrahedron). These simplices can be glued together
on common sub-simplices to form a simplicial complex (e.g., two triangles sharing a common side).
In a simplicial complex, topological features will arise that can be characterized by Betti numbers.
Each Betti number, denoted by Bk, k counts the number of features in dimension k. B0 counts the
number of connected components, B1 counts refer to loops, B2 counts the number of voids, and so on
(Edelsbrunner and Harer, 2008).

There are several different methods to construct a simplicial complex on a given point cloud S, but
this paper focuses on the Vietoris-Rips and alpha complexes. The Vietoris-Rips complex is perhaps
the most common method for constructing a simplicial complex to calculate persistent homology
(Hausmann, 1996). In a point cloud of k points in 2 dimensions, a distance parameter, δ > 0, can
be used to draw a circle of diameter δ around every point in S. For point clouds in 3 dimensions,
spheres of diameter δ are drawn around each point. For dimensions k greater than 3, a k-dimensional
hypersphere is drawn around each point. The remainder of this explanation will focus on the 2-
dimensional case. If δ is sufficiently large, then some of the resulting circles may intersect. In this case,
a line is drawn to connect the points at the center of the intersecting circles. When a triple of points
is connected, we add a triangle (2-simplex). When a quadruple of points are connected, we add a
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Figure 1: Basic Visualization of the Vietoris-Rips Complex. For a given parameter, δ, δ-diameter
circles are drawn around each point. If two circles intersect, a point is drawn between their centers. As
δ continues to grow, more circles intersect, filling out the simplicial complex. Features on the simplicial
complex appear and die as δ increases. These features’ dimensions, birth, and death are recorded in an
nx3 matrix. Eventually, the full convex hull is drawn, ending the "filtration" process.

tetrahedron (3-simplex) and so forth. However, we only add simplices at most of the dimension of
the space of the point clouds (e.g., only up to 3-simplices are added in a 3-dimensional point cloud).
This group of points and lines form the skeleton of a simplicial complex. For each distance parameter,
δ, there will be a single simplicial complex associated with it. As δ increases, different topological
features may appear, persist, and eventually disappear.

Once δ reaches the maximum Euclidean distance between any pair of points in the point cloud, a
convex hull will form around all k points creating a (k − 1)-dimensional simplex. A 3-column matrix
can be created recording the dimension of each feature, the δ at which that feature appeared, and the δ
at which it disappeared. This matrix characterizes the persistent homology of that point cloud.

Alpha complexes provide another method to generate simplicial complexes on the point cloud
S. For alpha complexes, we partition the whole space in which the data resides into cells such that
each cell contains exactly one data point x, and the cell of that data point is the set of all points closer
to x than any other data points. Such a partition is also known as a Voronoi diagram. The nerve of a
Voronoi diagram is equivalent to the Delaunay Triangulation (Edelsbrunner and Mücke, 1994). Alpha
complexes are simplicial complexes that are subsets of the Delaunay Triangulation. The parameter, α,
can describe the radius of a ball (dimension matches dimension of the space) of each point in the point
cloud S much, like δ describes the diameter of a circle in the Vietoris-Rips complex. We first intersect
the α radius balls with their own Voronoi cell and then search for intersections of these subsetted balls
to form simplices. Once α is large enough, the full Delaunay Triangulation is formed. In between these
stages, the birth and death of features at certain values of α can be captured in a 3-column persistent
homology matrix much like the Vietoris-Rips complex. One key difference from the Vietoris-Rips
complex is that edges can only form between neighboring points in the alpha complex.

In both methods, the boundary matrix records all simplicial complexes for each parameter value
(δ for Vietoris-Rips complexes and α for alpha complexes). Calculating persistent homology is divided

Figure 2: Basic visualization of the Alpha complex. For a given α, α-radius balls are drawn around
each point, and the union of the balls is taken. Then, an intersection between this union of α-balls and
the Vornoi diagram is taken. A connecting segment is drawn between points in adjacent Voronoi cells
once the α-ball fills out the Voronoi diagram. As α grows, more circles fill out the Voronoi cells. Once α
is large enough, the Delaunay Triangulation is formed.
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Figure 3: Calculating persistent homology of a torus with three TDA libraries. Median runtime (min
to max, n = 10 iterations per data point) for each TDA library (denoted by color) is plotted against
point cloud size. Homological features of up to 2 dimensions were calculated. Time complexity follows
a power law for all three libraries (see GitHub repo for regression details). Although the libraries
have similar runtimes for smaller point clouds, Dionysus has a clear disadvantage when the number
of points exceeds 100. When the number of points exceeds 200, Ripser has a clear advantage over
GUDHI, which maintains its advantage over Dionysus.

into two steps: (1) forming the boundary matrix and (2) reducing the boundary matrix to be able to
read off the topological features of each dimension and their birth/death values of the parameter. The
second step can be computed in at most O(kˆ3) steps, where k is the number of rows (and columns) of
the boundary matrix. The size of the boundary matrix can describe the memory complexity on the
random access memory (RAM) for persistent homology calculations. We compare memory complexity
between alpha and Vietoris-Rips complexes in this paper.

Alpha complex calculations have a run time complexity of O(nd/2), and Vietoris-Rips complex
calculations have a run time complexity of O(2n), where n is the number of points and d is the point
cloud dimension (Otter et al., 2017). Vietoris-Rips’s run time and memory are exponential with regards
to point number (but constant with data dimension) in contrast to alpha complexes where run time
and memory are polynomial with point number (but exponential with data dimension). Therefore,
we can predict that low dimensional point clouds favor alpha complexes, but fewer points in higher
dimension favor Vietoris-Rips complexes.

Methods

We use readr v1.3.1 to read rectangular data (Wickham et al., 2018), ggplot2 v3.2.1 (Wickham, 2016),
scatterplot3d v0.3-41 (Ligges and Mächler, 2003), recexcavAAR v0.3.0 (Schmid and Serbe, 2017), deldir
v0.1 (Turner, 2020), ggtda v0.1 (Brunson et al., 2020), and magick v2.2 (Ooms, 2019) to visualize data,
bench v1.0.4 to collect benchmark data (Hester, 2019), TDA v1.6.9 (Fasy et al., 2019) and TDAstats
v0.4.1 (Wadhwa et al., 2018) to calculate persistent homology of Vietoris-Rips and alpha simplicial
complices, and pryr v0.1.4 for calculations involving R objects (Wickham, 2018). Median runtime
calculations are shown along with the minimum and maximum of 10 iterations per benchmark.
Datasets were generated by sampling functions in base R to generate points uniformly distributed
over circles (dimension = 2), spheres (dimension = 3), filled squares (dimension = 2), filled cubes
(dimension = 3, 4), and tori (dimension = 3). The number of points per point cloud varied from 25 to
500 along with intervals of 25 points, which were empirical limits chosen after considering available
computational resources. For consistency between software libraries, the minimum and maximum
simplicial complex radii were predetermined for each point cloud and provided as parameters to
the TDA and TDAstats R packages. Within the TDA package, benchmark data was collected for the
GUDHI (Maria et al., 2016) and Dionysus (Morozov, 2018) libraries; within the TDAstats package,
benchmark data was collected for the Ripser (Bauer, 2019) library. As alpha complex calculation
was only implemented in GUDHI, alpha complex benchmark data was naturally only collected for
the single library. Measuring memory usage proved challenging since all the libraries calculating
persistent homology were implemented in either C++ or Java and then wrapped in R as part of a
CRAN package. Thus, memory burden was indirectly measured by using boundary matrix size as a
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Figure 4: Calculating persistent homology of round point clouds of varying dimensions with
three TDA libraries. Median runtime (min to max, n = 10 iterations per data point) for each TDA
library (denoted by color) is plotted against point cloud size and faceted by data dimension. The left
panel compares library performance for a 2-dimensional circular point cloud, the center panel for a
3-dimensional spherical point cloud, and the right panel for a 4-dimensional hyperspherical point
cloud. Maximum feature dimensions (one less than the data dimension) were calculated in each case.

proxy. Given that Ripser optimizes computation of persistent homology by avoiding calculation of a
boundary matrix, memory use benchmarks are not provided for Ripser and, consequently, TDAstats.

Benchmark data were collected twice - once on a local machine and once on a remote computing
node, each of which featured 16 GB RAM. Both datasets were compared for consistency and are
publicly available at the repository linked below. Data from the remote computing node is visualized
in this report. The larger point clouds required more than 16 GB of RAM to calculate persistent
homology using a subset of the libraries; attempts to compute results resulted in runtime errors, and the
corresponding output is missing from the corresponding figures and tables. Fully reproducible code for
all numerical results and figures can be found at https://github.com/eashwarsoma/TDA-benchmark.
This GitHub repository also contains instructions for generating the Supplement referenced in this
report’s results. Video explanations of TDA concepts and reproducing all results in this report can be
found at https://tinyurl.com/TDABench.

Results

Computing persistent homology of a canonical torus grants quick insight into efficiency of each library
(Figure 3). Dionysus exhibits the longest median runtime, and, although Ripser and GUDHI have
similar runtimes for smaller point clouds, as the number of points increases Ripser eventually has a
significant lead. Next, we compare library performance with multiple canonical datasets to ensure
that the noted pattern generalizes.

Tori do not trivially generalize to other dimensions, but circles do. Benchmarking on a circular
point cloud permits confirmation of the pattern in Figure 3 while also revealing how the libraries
compare as the dataset dimension increases. Figure 4 exhibits the resulting data for a 2-dimensional
circle (left panel), 3-dimensional sphere (center panel), and 4-dimensional hypersphere (right panel).
When the dataset dimension equals 2, GUDHI practically matches Ripser’s performance in outpacing
Dionysus. However, in the case of the 3-dimensional sphere, the pattern visualized in Figure 3 for
the 3-dimensional torus is again present. By the 4th dimension, the gap between Ripser and GUDHI
widens. Of note, missing points for larger datasets in Figure 4 are not plotted if and only if calculating
persistent homology caused an error due to insufficient RAM. Thus, for the hypersphere, Ripser was
able to calculate persistent homology for a dataset with approximately 3 times as many points as
Dionysus and over 2 times as many as GUDHI. Interestingly, all curves plotted in Figure 4 grow
polynomially with respect to the number of points (see Supplement for regression details).

Large data and feature dimensionality often restrict persistent homology calculations to small point
clouds due to computational limits. When calculating persistent homology on a high-dimensional
point cloud, as Vietoris-Rips feature dimension increases, there is a corresponding increase in runtime
(Figure 5). Dionysus is clearly outmatched by GUDHI and Ripser as feature dimension increases, with
the difference being clearest for larger point clouds; by feature dimension 5, Ripser outpaces GUDHI
as well (Figure 5). It is unclear whether runtime for each library grows polynomially or exponentially
(see Supplement for regression details).

Even with a constant feature dimension, the underlying data dimension could play a role in
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Figure 5: Comparison of Vietoris-Rips complex persistent homology calculation as a function of
feature dimension. Median runtime (min to max, n = 10 iterations per data point) for various point
cloud sizes (denoted by color) is plotted against the calculated feature dimension and faceted by TDA
library. Persistent homology was calculated on a uniformly distributed random sample of points
contained within a 1 unit, 8-dimensional cube. Computational limitations of calculating persistent
homology for a large number of feature dimensions restricted point clouds to relatively small sizes.

the runtime of persistent homology calculation. Figure 6 compares the handling of this issue by
the Vietoris-Rips complex and the alpha complex. Since GUDHI is the only library implementing
functionality with an alpha complex, we compare its implementations of the Vietoris-Rips and alpha
complices. Due to computational limitations, an alpha complex could not be calculated for any point
clouds with data dimensions exceeding 3. Two notable aspects of Figure 6 stand out. First, the
alpha complex calculation clearly runs faster than the Vietoris-Rips complex calculation, a trend that
becomes clearer as point cloud size increases. Second, although the Vietoris-Rips complex calculation
runtime appears to be independent of the underlying data dimension, the alpha complex calculation
is dependent on it. Figure 6 shows a subtle difference between data dimensions 2 and 3 as point cloud
size increases. Although unconcerning for a data dimension up to 3, failure to run any alpha complex
calculations with a data dimension of 4 could be cause for concern.

In addition to runtime differences, the three Vietoris-Rips homology engines differ in memory use.
All three engines appeared to follow power law growth, with a linear trend on log-log plots (Figure
7). However, for nearly all combinations of point cloud dimension and shape, TDAstats used the
least memory, and Dionysus used the most, with TDAstats also growing with the smallest power law
exponent as the number of points increased for most point clouds. For most point clouds, runtime and
memory complexity for TDAstats (Ripser) grew with a power function at least one degree less than
the other engines (Figure 8).

Discussion

As persistent homology calculations continue to become a more popular tool to analyze complex
multidimensional data, it will be important to understand from a computational perspective which
method to use. In this paper, we examined two forms of persistent homology complexes: Vietoris-
Rips and alpha complexes. Both algorithms describe topological features through the generation of
simplicial complexes. The advantage in saving computational time by choosing a particular algorithm
depends on point cloud characteristics.

Figure 9 shows that at high point cloud sizes, GUDHI’s alpha complex outperforms Ripser.
Theoretically, alpha complexes gain polynomial run time complexity as the number of points increases,
whereas Vietoris-Rips complexes gain exponential run time complexity (Otter et al., 2017). Specifically,
alpha complexes are O(nd/2), and Vietoris-Rips complexes are O(2n), where n is the number of points
on a point cloud and d is the dimensions on the point cloud. For the conditions in our paper, Vietoris-
Rips and alpha complexes both performed better than their theoretical maximums. Vietoris-Rips
complex calculations consistently had a polynomial growth for both runtime and memory, while alpha
complexes had linear runtime growth.

Based on the theoretical complexity and our results, alpha complexes are superior for point clouds
with 3 or fewer dimensions. This advantage becomes especially clear at a high number of points.
This difference in performance is clear in both runtime and memory use. Interestingly, while alpha
complexes had overall less memory use, the memory use varied depending on the shape. Alpha
complexes seem to require more memory for noisier data sets such as the annulus when compared to
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Figure 6: Comparing persistent homology calculation between Vietoris-Rips and alpha complices.
Median runtime (min to max, n = 10 iterations per data point) for various data dimensions (denoted
by color) are plotted against point cloud size and faceted by type of simplicial complex. Maximum of
feature dimension was kept constant at 1. Alpha complex runtimes are linear, in contrast to polynomial
Vietoris-Rips runtimes (see Supplement for regression details).
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Figure 7: Comparing memory use of Vietoris-Rips persistent homology engines. Each column title
corresponds to point cloud dimension; each row title lists point cloud shape; each persistent homology
engine is represented by points of a distinct shape and color. For point clouds containing more than
50 points, there appears to be a linear trend on the log-log axes. Data for 2- and 4-dimensional tori
were not collected because a torus does not trivially generalize to dimensions other than 3. Missing
points for GUDHI and Dionysus in the 4-dim plots indicate that persistent homology calculation was
terminated since memory requirement exceeded available RAM (32 GB).
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available in the third dimension.

Figure 9: Runtime comparison of persistent homology calculation between Ripser’s Vietoris-Rips
and GUDHI’s alpha complex functionality. Median runtime (min to max n = 10 iterations per data
point) for various 3-dimensional point cloud structures (facet) plotted against point cloud size for each
library (color). Benchmarking was conducted on an annulus (top-left), a sphere (top-right), a torus
(bottom-left), and a cube (bottom-right). Data was not collected for data dimensions greater than 3
due to computational limitations of calculating alpha complices.
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the sphere.

However, without sufficient computational resources, alpha complexes were not usable for point
cloud dimensions greater than 3. If a point cloud has more than 3 dimensions, then it could undergo
pre-processing with dimension reduction before using alpha complexes. Note, it is possible an
algorithm will eventually be developed to enable alpha complex computation of higher-dimensional
data. However, if data dimension cannot be reduced without significant information loss, then Vietoris-
Rips complexes should be used. It should be stated that if a point cloud is compatible with both
complexes, both analyses should be performed as there may be a variation in the persistent homology
matrix. This is because alpha complexes satisfy the Nerve Theorem (Edelsbrunner and Mücke, 1994),
which implies that they are topologically equivalent to the true underlying topology of the dataset;
in contrast, Vietoris-Rips complexes only approximate the underlying topology (Hausmann, 1996).
Among the tested Vietoris-Rips engines, Ripser (wrapped by TDAstats) has the fastest calculation
time. GUDHI and Dionysus (wrapped by TDA) significantly fall behind as feature dimension and
number of points increase.

On average, Ripser computed the persistent homology of a Vietoris-Rips complex with less
memory than either GUDHI or Dionysus. Thus, when efficiency is critical, useRs would likely find
TDAstats the appropriate library. However, TDA contains an entire library of features not available in
TDAstats. Specifically, TDA allows kNN density estimation, kernel density estimation, density-based
clustering, and dendrogram visualization, among other useful functionality. When computational
resources are plenty, when point clouds are small and low-dimensional, or when the aforementioned
functionality is required, TDA will likely be more appropriate than TDAstats. Both packages are
hosted on CRAN.

While Vietoris-Rips complexes can handle high-dimensional data well, the calculation still sig-
nificantly slows down when looking for higher dimension features. This is evidenced by the big-O
polynomial growth for runtime and memory that have degree less than 4 for most 2-dimensional point
clouds, but degree between 4 and 6 for most 4-dimensional point clouds (Figure 8); even higher degree
complexities should be expected as point cloud dimension increases. Thus, finding high-dimensional
topological features in high-dimensional point clouds remains a challenge. Methods to calculate
persistent homology do exist for other simplicial complexes, such as the Delaunay complex and the
Witness complex, but, to our knowledge, they are not currently implemented in CRAN packages.
Future challenges would be creating and implementing algorithms that reduce the computational
complexity of higher-dimensional topological feature calculations for R.
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