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There are two essential fatty acids for humans, -linolenic acid (ALA) and 

linoleic acid (LA), which should be taken from foods to maintain health. Once 

incorporated into cells, ALA and LA, which are omega-3 poly unsaturated fatty acid (n-3 

PUFA) and n-6 PUFA respectively, undergo elongation and desaturation to generate 

longer and more unsaturated fatty acids influencing inflammation and immunological 

responses. Numerous studies showed a dietary reduction of n-6/n-3 PUFA ratio improves 

cardiovascular health, inflammation, and insulin resistance. Fish oil, the main resource 

for n-3 PUFA, is shown to increase these health benefits. In our lab, we investigated the 

efficacy of ALA-enriched butter (n3Bu) as an alternative to fish oil for n-3 PUFA. n3Bu-

fed mice showed increased bioconversion of ALA to long-chain n-3 PUFA (LC n-3 

PUFA) and attenuated high fat (HF) diet-induced insulin resistance and inflammation. 

Besides, these health benefits, n-3 PUFA is shown to improve obesity and its related 

diseases by regulating lipid metabolism in both white adipose tissue (WAT) and brown 

adipose tissue (BAT). Fish oil abundant with n-3 PUFA promotes BAT formation and 

increases its thermogenic activity in cold acclimation. However, the impact of ALA-

enriched agricultural products on the BAT function is unknown. In this study, we 

investigated the effect of ALA-biofortified butter (n3Bu) on lipid metabolism and 



thermogenic functions in BAT. Intake of n3Bu significantly reduced the whitening of 

BAT and increased the thermogenesis in response to acute-cold treatment. Consumption 

of n3Bu promoted bioconversion of LC n-3 PUFA, fatty acid elongation and 

desaturation, and mitochondrial biogenesis. Taken together, our results support that 

ALA-biofortified butter is a novel source of n-3 PUFA that potentiates the BAT 

thermogenic function.
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CHAPTER 1. LITERATURE OF REVIEW 

1.1 BAT thermogenesis contributes to attenuating obesity and metabolic 

syndrome 

1.1.1 BAT thermogenesis, energy expenditure, and obesity prevention 

Brown adipose tissue (BAT) is an energy-dissipating fat tissue that controls 

body temperature and whole-body energy expenditure. BAT is physiologically 

different from white adipose tissue (WAT) that stores energy in Triglyceride (TG) 

form. BAT is thought to be a therapeutic target of obesity and its associated 

metabolic diseases due to its thermogenic activity [1-3]. Obesity occurs due to 

energy imbalance caused by excess calorie intake and decreased energy 

expenditure [4], while increasing BAT thermogenesis, which controls body 

energy expenditure, is considered to alleviate obesity [5]. BAT is a significant 

contributor to body temperature homeostasis in mammals [3, 6, 7]. In humans, 

BAT has been considered to exist only in newborns and lost rapidly after birth. 

Recently, human studies have revealed that adult humans possess a significant 

amount of BAT in the supraclavicular and paraspinal regions, and the 

thermogenic activity remarkedly increases in response to cold temperature [1-3, 

8-11]. In these studies, the BAT amount negatively correlated with age, and 

obesity-related parameters such as BMI and body fat mass [1, 2, 11]. Some 

reviews discussed the therapeutic potential of BAT-mediated energy expenditure 

in adult humans as pharmacological agents [12, 13]. A few studies showed an 

increase of BAT thermogenesis in human adults during cold exposure [9, 14-16], 

which is mediated by the sympathetic nervous system (SNS) that activates 3-
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adrenergic receptor (AR) [17]. Based on this pathway, oral administration of 3-

AR agonist, mirabegron, stimulated BAT thermogenesis in healthy human 

subjects with detectable BAT and increased energy expenditure [18]. In rodent 

studies, BAT thermogenic activity significantly increases during cold exposure 

[19, 20], and directly stimulating 3-AR using 3-AR agonist, increased BAT 

thermogenesis much more than subjects exposed to cold [21]. These implicate the 

effect of cold on BAT thermogenesis requires BAT innervation by SNS-activated 

3-AR pathway [22]. Transplanting BAT to other animals increases the 

recipient’s BAT thermogenesis with improved insulin sensitivity and ameliorated 

obesity [23-26]. However, the ablation in BAT reduced energy expenditure and 

induced obesity in transgenic mice [27]. In humans, obese subjects with early-

onset type of obesity with positive family history showed reduced cold-induced 

thermogenesis compared to lean subjects [28]. Both the core temperature 

measured at the sternum and the temperature measured at 4th intercostal space 

between the spine and scapula where the BAT is hypothesized to be located 

dropped faster and more markedly in obese subjects compared to lean subjects 

[28]. This result is consistent with the studies showing that both the presence of 

BAT and its thermogenic activity are negatively correlated to obesity [1, 2, 11] 

and the absence of BAT showed more dramatic drop of body temperature during 

the cold exposure [3]. Overall, these findings implicate BAT thermogenesis is a 

critical factor that controls body energy expenditure and contributes to preventing 

obesity. 
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1.1.2 BAT thermogenesis and UCP1-mediated pathway 

When the macronutrients undergo fuel metabolism, it produces NADH 

and FADH2. During oxidative phosphorylation, NADH and FADH2 donates 

electrons to electron transport chain (ETC), which in turn pumps protons out 

from the mitochondrial matrix to intermembrane space forming an 

electrochemical gradient. ATP synthase utilizes this proton gradient to convert 

ADP to ATP, generating energy in the form of ATP. However, when the 

protons re-enter the mitochondrial matrix via uncoupling protein 1 (UCP1) 

bypassing the ATP synthase, the energy stored in the proton gradient is 

converted to heat instead of ATP [5, 29-31]. The UCP1 expression is very 

high in brown adipose tissue (BAT), but it is very low in white adipose tissue 

(WAT) [32]. BAT thermogenesis is stimulated by both cold and diets [33-36]. 

In cold conditions, the sympathetic nervous system (SNS) activates β-

adrenergic receptors (βARs) to promote BAT thermogenic activity [34]. In the 

adult human, the development of BAT and intensified proton leak via boosted 

oxidative phosphorylation were observed with the daily exposure of cold for 4 

weeks [37]. BAT thermogenesis is also induced by a high-calorie diet via the 

βARs-mediated pathway [5, 38, 39]. High fat diet-fed mice enhanced diet-

induced thermogenesis (DIT), having protective effects against diet-induced 

obesity. However UCP1-ablated mice showed no UCP1-dependent DIT and 

developed more obesity [36]. High fat diet or cafeteria diet-fed mice had more 

UCP1 protein compared to chow-fed mice implicating DIT is UCP1-

dependent thermogenesis [36, 40]. Knocking out UCP1 ablated DIT and 
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induced obesity even in obese resistant 129S mice [40]. These suggest diet-

induced thermogenesis (DIT) is UCP1-dependent thermogenesis [36, 40]. 

UCP1-ablated mice showing obesogenic phenotypes supports increased 

energy expenditure by BAT thermogenesis is UCP1-dependent [41]. 

 

1.2 Metabolic benefits of n-3 PUFA on obesity and thermogenesis 

n-3 poly unsaturated fatty acids (PUFA) have a double bond on the third 

carbon from the methyl end of the fatty acid chain. Long-chain (LC) n-3 PUFAs, 

especially EPA (eicosapentaenoic acid) and DHA (docosahexaenoic acid) 

abundant in fish oil are well-known to stimulate BAT development, thermogenic 

activity, and thus increasing energy expenditure and ameliorating obesity [42-44]. 

According to the USDA, people in the US intake proteins heavily from meats 

such as beef, pork, and poultry (73%) and very little from seafood (5.2%) [45]. 

The fatty acid profile of chicken showed a very minimal amount of LC n-3 

PUFAs, and the content further decreased after being processed to burgers and 

chicken nuggets [46]. Meats from beef, lamb, and pork showed high saturated 

FAs contents and a high n-6/n-3 PUFA ratio with high linoleic acid (LA) content 

[47]. The n-3 PUFA proportions were varying among livestock depending on n-3 

PUFA abundance in their feedstock, for example, grass-fed livestock showed 

significantly increased n-3 PUFA contents, majorly alpha-linolenic acid (ALA), 

in their muscle and adipose tissues [48, 49]. Typical western diets heavily 

dependent on red meat, processed meat, and fries from LA-rich vegetable oil, but 

with limited consumption of both green leafy vegetables and seafood characterize 
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high n-6 PUFA and shortage of n-3 PUFA [50-53]. This imbalance in the n-6/n-3 

PUFA ratio causes chronic inflammation, which can lead to obesity-induced 

metabolic symptoms such as insulin resistance (IR) and non-alcoholic fatty liver 

disease (NAFLD) [54-56]. Arachidonic acid (ARA) upregulates 

CCAAT/enhancer-binding protein (C/EBP) b/d-involved pathway and 

peroxisome proliferator-activated receptor (PPAR) b/d-involved pathway both of 

which promote PPAR expression to produce PPAR ligand for adipogenic gene 

activation [57-60]. In contrast, LC n-3 PUFA such as EPA and DHA, have anti-

adipogenic characteristics by inhibiting ARA-mediated PPAR activation [57]. 

During the postnatal period when the proliferation of adipose tissue is high, 

lowering n-6/n-3 PUFA ratio lowered adipogenic markers, including PPAR, 

reduced size of cells in adipose tissue, and raised circulatory adiponectin level 

effective for increasing insulin sensitivity in offspring [57, 61]. In addition, these 

changed adipose morphology gave resistance against diet-induced obesity and 

insulin impairment in later life [61]. Intake of LC n-3 PUFAs is also effective at 

increasing BAT thermogenesis which contributes to higher energy expenditure 

and obesity prevention. Mice fed with EPA and DHA showed increased mRNA 

and protein expression of BAT thermogenic markers such as PPAR, PGC1, 

and UCP1 in both BAT and WAT, suggesting increased thermogenic activity in 

BAT and browning of WAT [43, 62, 63]. Dietary EPA and DHA diminished 

lipogenesis, lipid accumulation, hypertrophy in BAT but still increased BAT 

thermogenic markers in mice [43, 62]. In addition, fish oil-fed rats showed 

increased BAT thermogenic activity thorough increased mitochondrial contents 
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and hyperplasia [42, 62]. These implicates the LC n-3 PUFAs in fish oil decrease 

the size of lipid droplets in BAT but increase the BAT thermogenic activity by 

increasing the number of cells in BAT. EPA and DHA also increased 

mitochondrial markers such as Pgc1 (PPAR coactivator 1 alpha), Pgc1, Nrf1 

(Nuclear respiratory factor 1), Cox4 (Cytochrome c oxidase subunit 4), and Tfam 

(Mitochondrial transcription factor A) and raised the contents of UCP1, the 

mitochondrial inner membrane protein [43, 62, 64, 65]. Additionally, EPA 

treatment on HIB 1B cells, commonly used brown adipose cell line, increased 

both mitochondrial contents and mRNA expression of BAT thermogenic markers 

[65]. These suggest LC n-3 PUFAs in fish oil increase the UCP1-mediated BAT 

thermogenic activity by increasing BAT mitochondrial contents. Fibroblast 

growth factor 21 (FGF21) is closely associated with cold-induced BAT 

thermogenesis [66-68]. FGF21 treatment increased mRNA expression of BAT 

thermogenic markers such as PGC-1 and UCP1 in mice adipocytes [66, 69]. 

Dietary intake of EPA increased both FGF21 and its receptor, UCP1, in mice 

adipose tissue [62, 63, 65]. These implicate EPA acts as a ligand for FGF21 to 

induce UCP1-mediated thermogenic pathway. EPA and DHA also increased 

AMP-activated protein kinase (AMPK) and Carnitine palmitoyl transferase 1 

(CPT1) thermogenic markers implicating LC n-3 PUFAs induce SNS-mediated 

BAT thermogenesis [62, 64]. As discussed in chapter 1, BAT thermogenesis is 

regulated by SNS via noradrenaline binding to 3AR. Kim et al. showed fish oil 

upregulated BAT thermogenic markers, 3AR and UCP1, in wild type mice, but 

this was not observed in transient receptor potential vanilloid 1 (TRPV1) KO 
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mice [70]. TRPV1 is known to induce SNS-3AR-mediated thermogenesis and 

TRPV1 agonists such as capsaicin also increases BAT thermogenesis [71, 72]. 

Therefore, no BAT thermogenesis in TRPV1 KO mice under fish oil treatment 

suggests n-3 PUFAs act as ligands for TRPV1 to stimulate SNS-mediated BAT 

thermogenesis [70, 71]. AMP-activated protein kinase (AMPK) in the 

hypothalamus is also a major regulator of SNS-mediated BAT thermogenesis [71, 

73, 74]. Fish oil abundant of n-3 PUFAs was effective at increasing AMPK 

activity in rats [75]. Rodríguez-Rodríguez et al. showed Carnitine palmitoyl 

transferase 1C (CPT1C) abundant in ventromedial nucleus of the hypothalamus 

(VMH) have a critical role in VMH AMPK-SNS-BAT pathway, and CPT1C KO 

mice exhibited impaired BAT thermogenesis [73]. In Bargut et al., fish oil 

increased BAT thermogenic markers including 3AR, CPT1, and UCP1 [76]. 

These implicates n-3 PUFAs target CPT1 for BAT thermogenesis which is 

involved in AMPK-SNS-BAT axis. 

 

1.3 Lipid remodeling during thermogenesis: BAT thermogenesis and FA 

composition. 

1.3.1 FA desaturation, Stearoyl-CoA desaturase (SCD) 

There is emerging evidence that intake of dietary LC n-3 PUFAs such as EPA 

and DHA increase brown adipose tissue development and its thermogenic 

activities [42, 65, 71, 77, 78]. FAs should undergo a series of elongations and 

desaturations to synthesize long-chain PUFAs [79]. Stearoyl-CoA desaturase-1 
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(SCD1), also called 9-desaturase, is a desaturase enzyme involved in the first 

step of PUFA synthesis [79-81]. SCD1 converts saturated fatty acids such as 

palmitic acid (C16:0) and stearic acid (C18:0) into mono-unsaturated fatty acids 

(MUFAs) such as palmitoleic acid (C16:1) and Oleic acid (C18:1) respectively 

[79, 80]. These MUFAs can be further elongated and desaturated to produce 

PUFAs, including LC n-3 PUFAs such as EPA and DHA [79]. In Chp1, we 

discussed that the cold-induced BAT thermogenesis is a 3AR-mediated pathway. 

Either cold stimulation or 3AR activation upregulated protein expression of 

SCD1 in BAT, suggesting its enzymatic role in 3AR-mediated BAT 

thermogenesis during cold exposure [82, 83]. SCD1-/- mice showed impaired 

thermogenesis in cold exposure suggesting SCD1 is required for cold-induced 

thermogenesis [84]. In mammals, 5 and 6 desaturases encoded by Fads1 and 

Fads2 respectively are required for synthesizing LC-PUFAs from 18 carbon 

precursors [79, 85, 86]. Mammals also lack -12 and -15 desaturases, thus 

cannot synthesize n-3 and n-6 PUFAs. Therefore essential fatty acids such as 

ALA and LA must be consumed through diets [79, 87-89]. These desaturases 

which are required for PUFA synthesis have important roles in human health by 

affecting PUFA availability to tissue [90]. Desaturase polymorphism is known to 

exist among populations, and some of these alleles are more vulnerable to 

metabolic diseases and cardiovascular diseases [90-93]. In young children, lower 

mRNA-expressions of FADS2 were associated with a higher risk of atopic 

eczema due to impaired metabolism of synthesizing LC PUFAs [94]. 

Investigation of polymorphism in FADS1 and FADS2, which participate in LC 
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PUFAs synthesis such as arachidonic acid (ARA) and DHA showed that allele 

variation in FADS2 is closely related to Autism spectrum disorders (ASD) [95]. 

This is supported by the dietary DHA is required for brain and optical 

developments in children, and also effective at improving their visual and 

cognitive functions [96-99]. FADS1 gene encodes 5 desaturase, which is a rate-

limiting enzyme in the metabolism of n-3 and n-6 PUFAs, and minor alleles of 

FADS1 locus polymorphisms are associated with reduced FADS1 expression and 

intra-hepatic fat accumulation [100]. Transgenic expression of n-3 PUFA 

synthesis can increase n-3 PUFA contents in animals. Fat-1 transgenic mice carry 

the fat-1 gene from Caenorhabditis elegans (C. elegans) which encodes n-3 FA 

desaturase enzyme that converts n-6 fatty acids to n-3 fatty acids [89, 101]. The 

tissue and organs of these fat-1 mice was abundant of n-3 FAs without taking 

dietary n-3 FAs [89]. Studies for potential transgenic livestock showed fat-1 

transgenic pig and cow produced meats and milk abundant of n-3 PUFAs which 

can be alternatives of fish oil for sustainable n-3 PUFA products from land [102, 

103]. In populations where red meat and milk is habitually consumed, these n-3 

PUFA enriched meats and milk would provide health benefits from low n-6/n-3 

ratio as discussed in the previous chapter. Overexpression of 6 and 15 FA 

desaturases activity showed increased ALA accumulation and decreased LA 

accumulation in blue-green algae, Synechocystis sp. PCC6803 [104]. 
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1.3.2 FA elongation and BAT thermogenesis 

Cold-induced BAT thermogenesis requires lipid remodeling, such as 

increased FA elongation activity and n-3 PUFA synthesis [105-107]. Fatty acid 

elongases are required for synthesizing the three types of n-3 PUFA involved in 

human physiology, ALA (18:3, n-3), EPA (20:5, n-3), and DHA (22:6, n-3) [108]. 

For example, elongation of very-long-chain fatty acids 6 (ELOVL6) catalyzes the 

first and rate-limiting step of fatty acid elongation [108, 109]. ELOVL6 converts 

C16 fatty acids to C18 fatty acids, then ELOVL3 converts C18 precursors to C20, 

C22, and C24 fatty acids [105, 106, 109]. Ablation of either Elovl3 or Elovl6 

causes defects in BAT thermogenic activity due to reduced capacity to elongate 

saturated fatty acyl-CoAs into very-long-chain fatty acids [105, 106]. Xu et al. 

reported the increase of ELOVL3 activation and the accumulation of 

glycerophospholipid species (GLPs) of DHA, EPA, and ARA during the cold-

induced browning of WAT in mice indicating the increased FA elongation 

activity for cold-induced BAT thermogenesis [107]. The study also suggests the 

increased FA elongation is involved in the increased synthesis of triglyceride 

species with higher carbon numbers and double-bond content, which is beneficial 

to type 2 diabetes (T2D) [107]. 

 

1.3.3 Increased cardiolipin synthesis and BAT thermogenesis 

Cardiolipin is phospholipid exclusively found in the inner mitochondrial 

membrane and closely related to mitochondrial energy metabolism [110]. It is an 
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integral part of the electron transfer chain (ETC) complexes, which forms 

electrochemical proton gradient [111]. Mass spectrometry (MS) on lipid 

metabolism of adipose tissue during cold showed that the most increased lipid 

species were cardiolipin and phosphatidylglycerol, the precursor of cardiolipin, in 

all of the brown, beige, and white adipose tissues [112, 113]. Since cardiolipin is 

specific to the inner mitochondrial membrane, increased cardiolipin species level 

measured by MS can represent the increased mitochondrial contents in the 

adipose tissue [111, 112, 114]. Cardiolipin constitutes up to 20% of inner 

mitochondrial phospholipids and essential at stabilizing the mitochondrial 

morphology and its energy production by interacting with enzyme complex I to 

IV (electron carriers) of electron transfer chain (ETC) and ADP/ATP carrier of 

oxidative phosphorylation process [115, 116]. The absence of cardiolipin in crd1 

null yeast showed reduced mitochondrial content and disabled ETC function with 

severely decreased oxidative phosphorylation [111]. Cardiolipin not only serves 

as essential enzymes for ATP synthesis by oxidative phosphorylation process, but 

also has a significant role for heat generation by the uncoupling process mediated 

by UCP1. Lee et al. showed that one UCP1 protein is tightly bound to three 

molecules of cardiolipin conferring stability [117]. Overexpression of cardiolipin 

synthase 1 (Crls1) in BAT increased Ucp1 mRNA level, while knocking out Crls1 

decreased Ucp1 mRNA expression and significantly reduced uncoupled 

respiration in the BAT [113]. Therefore, cardiolipin has an essential role in 

stabilizing both coupling reaction of mitochondrial respiration and the uncoupling 

reaction of UCP1-mediated thermogenesis. Dietary DHA can reduce LA content 
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and accumulate DHA in the mitochondrial membrane and cardiolipin [118, 119]. 

Reviews discuss n-3 PUFAs may influence the protein-scaffold of cardiolipin in 

the mitochondrial membrane, which may be critical for mitochondrial structure 

and function [120, 121]. These suggest n-3 PUFAs can target cardiolipin, which 

has a critical role in uncoupling process of UCP1 [113]. This is further supported 

by the increase of cardiolipin species in BAT and beige cells during cold, which 

are the sites of thermogenic activity [112], and the increase of BAT 

thermogenesis by intake of n-3 PUFAs as discussed in Chapter 2. 

 

1.4 Potential role of ALA on obesity, lipid remodeling and BAT 

thermogenesis 

Alpha-linolenic acid (ALA) is one of two essential fatty acids (EFAs) 

along with linoleic acid (LA) in humans [122-124]. These essential fatty acids can 

be used for synthesizing longer chain fatty acids in the body, but the conversion 

from n-6 to n-3 fatty acids or vice versa doesn’t occur in mammals including 

humans due to lack of FAT-1 protein, an n-3 fatty acyl desaturase [124, 125]. 

ALA is a precursor of LC n-3 PUFAs, such as EPA and DHA [124-127], whose 

beneficial function to health is supported by numerous studies. Studies show the 

conversion of dietary ALA to EPA is about 6 to 21%, and to the DHA is about 0 

to 9% [125, 127-130]. Especially in the brain, ALA to DHA conversion was 0.2 

to 1% and a significant amount of ALA undergo -oxidation [124]. However, 

ALA-fed mice showed as much brain DHA content as DHA-fed mice compared 

to control mice suggesting dietary ALA can support sufficient DHA level in the 
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brain [131]. The conversion rate is low in the body because of the rate-limiting 

step of the bioconversion, the addition of a fourth double bond by Δ 6 desaturase 

[127, 128, 132] and most dietary ALA undergoes -oxidation to produce energy 

or stored as fat [133]. As shown in figure1, ALA and LA compete for the same 

enzyme; therefore excess intake of n-6 PUFAs lowers the conversion rate of ALA 

to LC n-3 PUFAs [125, 134, 135]. Western diets with too much n-6 PUFAs and 

short of n-3 PUFAs can cause an imbalance of n-6/n-3 PUFAs ratio in our body 

causing chronic inflammation from pro-inflammatory cytokines derived from 

arachidonic acid (ARA), which can lead to CVD, obesity, and other metabolic 

diseases such as IR and NAFLD [54, 134, 136]. Studies show bioconversion of 

ALA to EPA and DHA is higher in women than in men [130, 137, 138], and the 

genetic variability affects an individual’s ability to generate these LC n-3 PUFAs 

[139]. The conversion rate is also dependent on tissue types, and the intake of 

ALA is critical for maintaining LC n-3 PUFAs in vital organs such as the liver 

and brain. [124, 140]. Some studies showed ALA intake was sufficient to 

generate enough DHA for the brain in adults [131, 133]. However, maternal ALA 

deficiency significantly drops the concentration of brain DHA in new-born rats, 

which may affect neural development in the embryo [141]. These suggests dietary 

ALA is important for maintaining proper DHA levels in neural system. In liver, 

increasing even small amount of dietary ALA could boost the amount of DHA 

[142]. Therefore, dietary ALA is necessary for providing sufficient DHA in vital 

organs even with the low bioconversion rate of ALA to DHA in these tissues. In 

addition, there are numerous studies on the beneficial functions of ALA on CVD 
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and other metabolic diseases, which are considered independent of LC n-3 PUFAs 

such as EPA and DHA [143-145]. 

 

 

Figure 1. Synthesis of LC n-6 and n-3 PUFAs from essential fatty acids, LA 

and ALA, in human. LA and ALA share the common enzymes for synthesizing 

longer chain fatty acids via series of desaturation and elongation. 
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1.4.1 ALA attenuates CVD, obesity and associated metabolic diseases 

ALA is mostly found in seed oils and green leafy vegetables, while EPA 

and DHA are predominantly present in fish oil [123, 124, 126, 128, 146]. The 

beneficial effects of marine LC n-3 PUFAs such as EPA and DHA on CVD, 

obesity, and obesity-induced metabolic symptoms are very well known, while the 

efficacy of ALA on these diseases is not studied as much as these LC n-3 PUFAs 

[126, 147, 148]. According to reviews, the dietary intake of ALA increased its 

content in plasma and tissue, but the effectiveness of ALA on CVD is still 

controversial [148-153]. Some studies discussed ALA intake was not associated 

with coronary heart diseases (CHD), but it could be effective at reducing stroke 

[152-157]. Modern western diets with increased n-6 PUFAs intake and decreased 

n-3 PUFAs contribute to diet-induced obesity and inflammation via the ARA-

mediated pathway [158-160]. The obesity induced by imbalance of an n-6/n-3 

PUFAs ratio can be alleviated by increasing intake of n-3 PUFAs such as ALA, 

which can both inhibit the ARA-mediated adipogenesis and promote lipid 

oxidation [159-161]. In obese or overweight subjects, consuming ALA-enriched 

diacylglycerol (DAG) showed anti-obesity characteristics increasing energy 

expenditure with a significantly reduced visceral fat area (VFA), decreased BMI, 

and increased dietary fat oxidation [162-164]. In school-age children, the low 

serum concentration of ALA was significantly related to greater adiposity gains 

indicating ALA is possibly effective in preventing pediatric obesity [165]. 

Obesity contributes to chronic systemic inflammation, which induces metabolic 

diseases such as IR and NAFLD [166-171]. Dietary ALA showed anti-obesity, 
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and anti-inflammation characteristics hence attenuated these metabolic symptoms 

[172-174]. Maternal intake of ALA was also effective at attenuating risk factors 

for these symptoms in adult offspring mice [175]. In Japanese elderly people, 

ALA intake was much more effective at improving insulin resistance compared to 

EPA and DHA [176]. ALA intake in obese Zucker rats decreased hepatic lipid 

accumulation and showed synergetic effects if combined with exercise indicating 

the beneficial effect of ALA on fatty liver disease [177]. 

 

1.4.2 ALA and mitochondrial biogenesis 

In chapter 1, we discussed cold-induced BAT thermogenesis is the Ucp1-

mediated pathway, which is in the inner mitochondrial membrane [178]. Marine 

LC n-3 PUFAs such as EPA and DHA showed increased thermogenic activity in 

BAT by increasing mitochondrial contents, thus raising Ucp1 protein levels [43, 

179, 180]. Similar to the beneficial effects of EPA and DHA on mitochondrial 

contents, dietary ALA can promote mitochondrial biogenesis [181, 182]. 

Mitochondria is the primary site of -oxidation of fatty acids which contributes to 

energy expenditure. ALA from plant sterol ester enhanced mitochondrial 

biogenesis and mitochondrial -oxidation, increasing mitochondrial biogenesis 

markers, Pgc1, Nrf1, and Tfam, and mitochondrial -oxidation markers, Ppar 

and Cpt1a [182]. In the study of Zhou et al., dietary ALA increased mitochondrial 

contents and its lipid oxidation in WT mice but not in AMPK-ablated mice 

suggesting the promoting effect of ALA on mitochondrial biogenesis involves 
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AMPK-mediated pathway [181]. This is supported by the studies that Pgc1, a 

key regulator of mitochondrial biogenesis, is mediated by AMPK and Sirtuin 1 

(SIRT1) and it is upregulated in BAT by cold [183-187]. ALA also enhanced the 

positive effect of exercise on increasing mitochondrial contents of obese Zucker 

rats [177]. The upregulation of both AMPK and SIRT1 by exercise is known to 

participate in PGC1-mediated mitochondrial biogenesis [188]. Besides the 

AMPK-SIRT1-PGC1 axis, mitochondrial biogenesis can be stimulated by 

PGC1 binding to the complex of PPAR, PPAR and retinoid x receptor (RXR) 

[188-191]. Plant seed oils rich in ALA also increases mitochondrial biogenesis. 

Chia seed oil rich in ALA increased PGC1 in skeletal muscle, implicating the 

positive effect of ALA on increasing mitochondrial biogenesis [192]. Linseed oil 

upregulated SIRT1 and PGC1 in hepatic mitochondria and restored 

mitochondrial biogenesis alleviating insulin resistance and fatty liver disease 

[193]. This confirms the role of SIRT1-PGC1 in mitochondrial biogenesis. 

Perilla seed oil as plant-based n-3 PUFA source stabilized mitochondrial 

membrane potential which is the driving force of oxidative phosphorylation and 

protected mitochondrial dysfunction from reactive nitrogen species stress 

suggesting its role in protecting mitochondria and maintaining mitochondrial 

contents [194]. 
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1.4.3 Effects of ALA on lipid profile 

As discussed in chapter3, lipid remodeling such as increased FA 

desaturation and elongation, and increased cardiolipin contents were observed 

during the thermogenesis in BAT [105-107, 195]. Considering dietary ALA is 

effective at attenuating obesity and inflammation as discussed in chapter 4.1, it is 

assumed that dietary ALA may induce these lipid metabolism modifications. 

However, there are not extensive research efforts that show the direct effect of 

ALA on these lipid metabolism changes. SCD1, FADS1 and FADS2 are FA 

desaturases that participate in FA metabolism in human body, and they are widely 

used as the desaturation indices in human FA composition [87, 196-199]. SCD1 is 

an enzyme that converts saturated fatty acids (SFAs) such as stearic acid 

(C18:0) and palmitic acid (C16:0) into monounsaturated fatty acids (MUFAs) 

such as oleic acid (C18:1 cis-9) and palmitoleic acid (C16:1 n-7), respectively, 

both of which are the most abundant MUFAs in human adipose tissue [199-

203]. Compared to these long-chain SFAs, dietary MUFAs including oleic acid 

abundant in olive oil have an increased fatty acid -oxidation rate and energy 

expenditure, therefore less likely to induce obesity, chronic inflammation and 

insulin resistance [203-206]. 

However, some studies show increased SCD1 activity is closely 

associated to these symptoms. In rodent experiments, increased SCD1 activity 

was positively correlated to obesity, insulin resistance, and hepatic steatosis 

[196, 207, 208], and reducing SCD1 activity using SCD1 inhibitors such as 

GSK993 and sterculic oil reversed these symptoms and improved metabolic 
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phenotypes with reduced LDL-C and triglyceride (TG) levels in the liver and the 

plasma [209-211]. In addition, inhibiting SCD1 in mice using SCD1-specific 

antisense oligonucleotide inhibitors (ASOs) increased fatty acid oxidization, and 

reduced fatty acid synthesis and secretion in the liver [212]. In overfeeding 

conditions, SCD1-null mice (abJ/abJ; ob/ob, SCD1 -/-) had higher fatty acid 

oxidation, oxygen consumption, and energy expenditure which attenuated obesity, 

insulin resistance and hepatic steatosis compared to their littermate controls 

(ob/ob) [207, 213-215]. Abnormal hepatic lipid metabolism such as high VLDL-

TG level is closely related to obesity, T2D, and steatohepatitis [216-222]. SCD1 

products, palmitoleate, and oleate are essential to cholesterol synthesis in the liver 

[208, 215, 223-226]. Palmitoleate and oleate of liver cholesteryl esters and 

triglycerides are major components of very-low-density lipoprotein (VLDL) 

which transports fatty acids to muscle and adipose tissues [207, 208, 215, 227], 

and the VLDL-TG levels in liver and blood plasma were significantly reduced in 

SCD1-deficient mice which are protected from obesity and hepatic steatosis [207-

209, 215, 224]. In obese humans, SCD activity was positively correlated to the 

plasma TG levels contributing to obesity [224]. In morbidly obese patients, 

SCD1 protein levels in both visceral and subcutaneous adipose tissues were 

significantly correlated to BMI, and insulin resistance [228]. In obese children, 

SCD indices were positively correlated to BMI but inversely related to DHA 

content in plasma phospholipids, which was not affected by ALA intake [199]. 

In some studies, dietary ALA decreased SCD1 activity and improved 

these symptoms [175, 181, 199, 229, 230]. Dietary ALA as well as SCD1 siRNA 
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significantly reduced SCD1 activity via farnesoid-X-receptor (FXR) which 

suppresses sterol regulatory element-binding protein 1c (SREBP1C) which is one 

of the transcription factors for SCD1 expression [230, 231]. This reduced SCD1 

activity by ALA in cholesterol-transporting macrophage-derived foam cells 

(MDFCs) increased cholesterol efflux and decreased cholesterol accumulation in 

foam cells implicating the protective effects of ALA against atherosclerosis [230, 

231]. Dietary ALA in high fat-fed mice decreased the expression of genes 

involved in lipogenesis including SCD1 reducing adiposity which are dependent 

of AMP-activated protein kinase (AMPK) [181]. Maternal ALA intake attenuated 

adiposity, obesity-induced insulin resistance, and hepatic steatosis, and showed 

lower SCD1 activity in adult mice offspring compared to those fed maternal SFA 

[175]. According to Shomonov-Wagner et al. (2015), maternal ALA intake 

reduced the HOMA index as well as EPA and DHA, but ALA was significantly 

more effective at reducing SFA-induced liver fat accumulation compared to EPA 

and DHA [229]. Interestingly, both ALA and DHA showed significantly lower 

SCD1 activity compared to SFA, while EPA showed high SCD1 activity 

comparable to SFA in this study [229]. 

Even though increased SCD1 activity seems to be closely associated to 

obesity, insulin resistance, and hepatic steatosis, it is not determined if the 

increased SCD1 activity directly contributes to these metabolic diseases or it is 

the marker for these symptoms [196, 228]. Deleting Scd1 from both adipocytes 

and liver reduced Scd1 products but it didn’t protect mice from either genetically-

induced or diet-induced obesity and insulin resistance [232]. In leptin-deficient 
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obese mice, SCD1 deficiency severely aggravated diabetes with reduced insulin 

secretion because -cells are impaired by its greater exposure to SFA, 

triglycerides, free fatty acid, and free cholesterol whose elevated levels are 

associated with -cell impairment [214]. In human adipocytes treated with 

exogenous palmitate (C16:0), palmitate-intolerant adipocytes as well as SCD1-

knockdown adipocytes showed low SCD1 activity and high SFA: MUFA 

composition in phospholipids compared to palmitate-tolerant adipocytes, in 

addition, SCD1-kncokdown adipocytes had reduced cell membrane fluidity and 

impaired insulin sensitivity implicating the critical role of SCD1 in phospholipid 

FA composition and insulin regulation in human adipocytes [233]. Hepatic SCD1 

activity was correlated positively with insulin sensitivity and negatively with liver 

fat in obese participants, but not in lean participants, implicating the protective 

role of SCD1 in obesity-induced insulin resistance and liver fat accumulation 

[234]. These suggest SCD1 have a protective role against insulin resistance and 

hepatic steatosis in obesity, and this could be the reason for the increased SCD1 

activity in obese subjects. 

FADS1 and FADS2 encode 5 and 6 desaturases, respectively [235-

237]. Genetic variations of FADS1 and FADS2 affect bioconversion of 18C 

PUFAs such as LA and ALA into longer chain PUFA synthesis [199, 235-237]. 

This endogenous LC PUFA synthesis from 18C PUFAs as well as dietary LC 

PUFAs influence body n-6/n-3 LC PUFA ratio and their derivative productions 

which affect obesity and its associated symptoms [124, 200, 237-241]. Genetic 

variations on the FADS gene affect the LC PUFA synthesis in humans [237-239, 
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242]. GG allele at rs174537 of FADS1 on chromosome 11q12.2- q13.1 is more 

frequent in African ancestry populations compared to European and Asian 

ancestry populations [238, 239, 242]. This GG allele at rs174537 is more efficient 

at converting dihomo--linolenic acid (DGLA) to ARA compared to TT or TG 

alleles, therefore African ancestry populations are more likely to have a greater 

amount of ARA and its oxidative products with a higher risk of developing 

chronic-inflammation and its associated disorders with traditional Western diets 

abundant in LA [238, 239, 242]. Interestingly, this study points out the FADS1 

rather than FADS2 is the rate-limiting step of the LC-PUFAs synthesis from 18C 

PUFAs based on the allelic effect of FADS1 on DGLA to ARA ratio [242]. 

Women with minor allele homozygotes in FADS1 and FADS2 had low ARA, 

EPA, and DHA levels in their plasma and breastmilk compared to major allele 

carriers [243, 244]. These researches implicate the importance of FADS on LC 

PUFA synthesis in the human body. In a human study with 3-week dietary 

intervention, saturated fat-rich diet increased 6 desaturase, and SCD1 activity 

and decreased 5 desaturase activity, while rapeseed oil-diet rich in MUFA and 

PUFA showed opposite effects [245]. Mice fed with ALA-enriched diet increased 

hepatic mRNA expression of both 5 and 6 desaturases which can partly explain 

the increased EPA synthesis in both liver and adipocytes in these mice [246]. This 

makes sense because both 5 and 6 desaturases are essential enzymes for 

converting ALA to LC n-3 PUFAs. In the study investigating the effect of either 

ALA- or LA-enriched diet on rat LC PUFA metabolism, both diets increased 

hepatic 6 desaturase activity, but only ALA-enriched diet increased hepatic 5-
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desaturase activity, therefore dietary ALA activated both 5 and 6 desaturases in 

liver [247]. In addition, these two rodent studies showed ALA-enriched diets 

increased LC n-3 PUFAs but decreased LC n-6 PUFAs components in liver, 

adipocytes, and brain [246, 247]. However, neither LA- nor ALA-enriched diets 

affected 5 and 6 desaturases activities in the brain [247, 248]. In diet-induced 

obese rats, ALA-enriched diet increased EPA, and DHA and decreased ARA 

concentrations in the liver, but the ALA-enriched diet didn’t significantly increase 

the mRNA expression of Fads-1 and Fads-2 [200]. It seems the desaturase 

activities of FADS1 and FADS2 do not necessarily match the bioconversion of 

ALA to LC n-3 PUFAs and it is tissue specific. 

ELOVL2 and ELOVL5 genes encode FA elongase-2 and FA elongase-5, 

respectively, that add two carbons to two essential FAs, LA and ALA, during the 

LC PUFA synthesis in humans [249-252]. ELOVL5 is involved in elongating 18 

and 20 carbon PUFAs and ELOVL2 elongate specific for 20 and 22 carbon 

PUFAs [252]. Genetic variations in ELOVL2 and ELVOL5 affected LC n-3 

PUFA metabolism implicating the importance of ELOVLs on endogenous LC n-3 

PUFA synthesis [249, 253-255]. Asian sea bass (Lates calcarifer) fed with ALA 

diets significantly increased hepatic mRNA expression of ELOVL5/2, which 

elongates 18- and 20- carbon PUFAs to 20- and 22-carbon LC PUFAs in this fish, 

compared to the fish fed with commercial diet [256]. In a mice study, dietary 

ALA increased the bioconversion of ALA to EPA and the associated mRNA 

expressions, Fads1, Fads2, and ELOVL5 in the liver, but too much ALA intake (> 

5%) decreased these gene expressions [257]. Even though there are not many 
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studies which measured the effect of ALA on ELOVLs activity, considering that 

ELOVLs participate in the bioconversion of ALA to LC n-3 PUFAs and dietary 

ALA increased the endogenous EPA and DHA synthesis, it can be assumed ALA 

intake activates the ELOVLs [241, 252, 258-261]. 

As discussed in Chapter3, cardiolipin (CL) is a mitochondrial 

phospholipid that is essential for stabilizing electron transport chain complexes 

which generates an electrochemical proton gradient across the mitochondrial 

inner membrane for ATP synthesis via oxidative phosphorylation [262, 263]. 

Besides this, CL has a critical role for heat generation by the UCP1-mediated 

uncoupling process in BAT [112, 113, 117, 264]. During the cold exposure, CL 

and phosphatidylglycerol, a cardiolipin precursor, were the most increased lipid 

species in BAT and WAT implicating the importance of CL in cold-induced BAT 

thermogenesis [112]. Actually, CL binds to and stabilizes UCP1 protein which is 

essential for BAT thermogenesis [117]. In mice, adipocytes with transiently 

overexpressed cardiolipin synthase1 (Crls1), increased Ucp1 mRNA expression 

was observed in BAT [113]. In addition, adipose-specific Crls1 knockout 

(AdCKO) mice showed depletion of all cardiolipin species and disrupted 

mitochondrial cristae in iBAT [113]. AdCKO mice had reduced cold-tolerance 

and Ucp1 transcription was not induced by cold in iBAT and scWAT [113]. 

These imply CL synthesis is indispensable for cold-induced thermogenesis in 

BAT and beige fat. N-3 LC PUFAs such as EPA and DHA are known to increase 

CL contents in mitochondria and decrease the components of n-6 PUFAs such as 

ARA and LA in CL [118, 119, 265, 266]. ALA, the precursor of these LC n-3 
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PUFAs, are also expected to increase CL synthesis during cold-induced BAT 

thermogenesis. Isolated rat cardiomyocytes treated with ALA had significantly 

increased 18:3 containing CL species and it had protective effects against 

cardiomyocytes ischemia suggesting ALA changed CL composition and 

contributed to survival of cardiomyocytes [150]. In the study of incorporation of 

18-carbon unsaturated FAs into cardiolipin (CL), oleic acid (18:1) was the most 

efficient at being incorporated into CL, while LA and ALA were further 

desaturated and elongated to long-chain fatty acids to be incorporated into CL 

[267]. This implicates LC PUFAs including EPA and DHA are more efficient at 

CL synthesis than ALA. Even though there is not much study directly measuring 

the effect of dietary ALA on CL synthesis, the anti-obesity characteristic of ALA 

is expected to contribute to BAT thermogenesis via CL remodeling and its 

enhanced synthesis as LC n-3 PUFAs do. Therefore, the research on the effect of 

ALA on CL remodeling in BAT during cold would further reveal the role of ALA 

as an activator of CL synthesis on UCP-1 mediated BAT thermogenesis.  
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CHAPTER 2. EXPERIMENTS AND RESULTS 

2.1 Introduction 

Obesity has become a major public health challenge whose prevalence 

doubled since 1980s in the world [268, 269]. Increased obesity rate burdens the 

health care system by increasing the expense for treating obesity-related 

comorbidities and rises the indirect social costs for the loss of productivity from 

being absent in work for illness [268-270]. In 2017 to 2018, over 40% of 

Americans were obese from aged 20 to 60 and over [271]. Obesity is also 

prevalent in children and adolescents, and about one third of them are obese or 

overweight [268, 272, 273]. Childhood obesity is closely associated with 

developing insulin resistance, fatty liver, atherosclerosis, and dyslipidemia which 

were previously considered as ‘adult’ diseases, in addition, children with obesity 

are more vulnerable to severe obesity, T2D, hepatic steatosis, and coronary heart 

disease in later life [272, 274-277]. 

BAT is a unique type of adipocyte that specialized in producing heat 

energy involved in body energy expenditure. Therefore, the thermogenic activity 

of BAT is considered as a therapeutic target of obesity [278, 279]. EPA and DHA 

abundant in fish oil have shown its beneficial effects on alleviating obesity via 

promoting BAT development and its thermogenic activity [65, 70]. These marine 

n-3 PUFAs were effective at increasing mitochondrial uncoupling protein UCP1 

which is essential for the thermogenic ability of BAT [65, 70, 278, 280]. Long-

chain PUFAs serve as activators of the UCP1 uncoupling process, which carries a 

proton from inter-membrane space to matrix space generating heat [280, 281]. 
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Dietary intake of ALA, the metabolic precursor of EPA and DHA, are effective at 

reducing visceral fat adiposity, preventing obesity and its comorbidities such as 

insulin resistance, hepatic steatosis, and dyslipidemia [162, 282-284]. Therefore, 

ALA is expected to be effective at promoting BAT thermogenic activity, as it 

showed anti-obesity characteristics and improved metabolic syndromes in human 

and animal studies [162, 284, 285]. 

Despite of the beneficial effects of fish-derived n-3 PUFAs on obesity-

induced metabolic symptoms, seafood consumption in the US is far below the 

USDA recommendations [286, 287]. People in the US aged 19 and above are 

consuming seafood average 3 oz per week, which is less than 8 oz per week as 

recommended by the U.S. Dietary Guidelines for Americans [287-290], thus not 

intaking enough EPA and DHA to reduce the risk of CVD as recommended by 

American Heart Association, 1g per day [287, 289-293]. According to the USDA 

survey, beef, pork, and poultry are much more consumed as protein sources 

compared to seafood in the US [45]. Typical Western diet characterized by heavy 

meat consumption with little seafood intake causes high SFA ingestion and n-6/n-

3 PUFA imbalance inducing chronic inflammatory diseases such as obesity, 

CVD, and fatty liver diseases [52, 54, 294]. On the other hand, using plant oil rich 

in ALA as n-3 PUFA source significantly lowered the n-6/n-3 PUFA ratio in 

blood serum, improved lipid metabolism, reduced inflammation, and oxidative 

stresses [295, 296]. Flaxseed oil rich in ALA also attenuated obesity, improved 

lipid metabolisms in both plasma and liver, and reduced liver fat accumulation in 

HFD-fed rats [284]. Additionally, maternal ALA was effective at preventing 
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SFA-induced insulin resistance and hepatic lipid accumulation in mice offspring 

[229]. There are many n-3 PUFA-enriched dairy products such as EPA- and 

DHA-fortified milk, eggs, and cheese, but there are only a few ALA-enriched 

dairy products and most of them are infused with flaxseed oil [297-300]. Some 

EPA- and DHA-fortified food products are infused with fish oils, which is not 

attractive to vegetarians and have some fish flavors unacceptable to some 

consumers [301, 302]. Eggs from fish oil source had unpleasant fish odor, while 

eggs produced from flaxseed diet had similar odor compared to regular eggs 

[303]. Compared to seafoods, land-based n-3 PUFA is more sustainable way to 

produce foods [304, 305], because industrialized fishing is depleting many fish 

communities in the world disrupting marine ecosystems [305, 306]. Overfishing is 

considered to precede all of the other factors such as anthropogenic climate 

change and water pollution for disturbing marine ecosystems [306]. In addition, 

seafood consumption is the major route of human exposure to neurotoxic mercury 

in the organic form of methyl mercury highly accumulated in high trophic fishes 

[307-310]. Children have lower body weight compared to adults and are more 

vulnerable to environmental threats due to their specific developmental periods, 

making them more vulnerable to being poisoned by mercury through fish 

consumption which is commonly recommended as DHA source essential for their 

brain development during the childhood [98, 308, 311-313]. In these reasons, 

ALA-enriched dairy products could be the alternative source of marine n-3 

PUFAs. Plant seed oils such as flaxseed, canola, walnut, rapeseed and soybean 

oils are rich in ALA, they can replace vegetable oils high in pro-inflammatory n-6 
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PUFAs such as grapeseed, safflower, hempseed, sesame, and sunflower oils, and 

unhealthy palm oil rich in SFA [314-316]. Numerous studies showed ALA is as 

effective as EPA and DHA for lowering n-6/n-3 PUFA ratio and alleviating 

metabolic symptoms associated with high n-6 PUFA consumption. In broiler 

chickens, ALA from linseed oil was effective as much as fish oil at reducing n-

6/n-3 PUFA ratio in meat, enhancing growth and behavioral performances, and 

improving lipid metabolism [317]. In rat fed with western diets characterized by 

high fat and high fructose, ALA was effective at alleviating obesity and 

improving lipid metabolism in liver and blood plasma [136]. And plant oils rich in 

ALA lowered n-6/n-3 PUFA ratios in rats by increasing hepatic contents of ALA 

and its metabolically derived LC n-3 PUFAs along with reduced LA and ARA 

contents [318]. Therefore, consuming ALA-enriched dairy products, and plant 

seed oils would increase the n-3 PUFA ingestion and alleviate metabolic 

symptoms caused by n-6/n-3 PUFA imbalance. Considering little seafood 

consumption in typical American diet, unsustainable conventional agricultural 

practices in seafood production, the risk of mercury poisoning, and unattractive 

fish flavors, the land-based n-3 PUFA, ALA, would be the alternative source of 

marine n-3 PUFAs, EPA and DHA. However, there are not many dairy products 

fortified with ALA nor many researches on health benefits of these products. 

Furthermore, most ALA-enriched dairy products used infusion of flaxseed oil 

powder into the products, however this requires extra steps of mixing 

microencapsulated flaxseed oil powder to milk before pasteurization [298]. Milk 

naturally containing high ALA-contents would save cost and time for this process. 
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Therefore, further researches on ALA-enriched dairy products would be 

remarkable and compelling. ALA-enriched butter used in this study is made from 

ALA-enriched milk from bio-fortified cow fed with fermented feedstock rich in 

ALA. In this research, the ALA-enriched dairy product, ALA-enriched butter 

(n3Bu), was investigated for its effect on lipid metabolism and BAT thermogenic 

activity compared to conventional butter rich in SFA, and Margarine with high n-

6 PUFA contents. 

 

2.2 Central Hypothesis, purpose, and Specific Aims 

A. Purpose of the Study 

The purpose of this study is to investigate the impact of the biofortified 

butter with -linolenic acid (ALA), the precursor of LC n-3 PUFAs, on the 

thermogenic BAT function and whole-body energy metabolism. 

B. Central Hypothesis 

Chronic consumption with ALA-biofortified butter promotes thermogenic 

activity of BAT by modifying FA metabolism and increasing its thermogenic 

capacity. 

C. Specific Aims 

Specific Aim 1: Assess the effects of ALA-biofortified butter on remodeling FA 

metabolism in BAT such as n-6/n-3 PUFA ratio, FA desaturation, and FA 

elongation. 
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Specific Aim 2: Determine the impact of ALA-biofortified butter on 

mitochondrial biogenesis in BAT during cold-induced adaptive thermogenesis. 

 

2.3 Material and Methods 

2.3.1 Animals and diet preparation 

All animals were maintained in accordance with the protocols approved by 

the Institutional Animal Care and Use Committee (IACUC) at the University of 

Nebraska-Lincoln. C57BL/6J mice were purchased at 6 weeks of age from 

Jackson Laboratory. The mice were randomly assigned into four groups 

(n=8/group), chow group (chow) or isocaloric high fat diet groups (45% total 

calories from fat) from conventional butter (Bu, Highland Dairy Foods), n-3 

enriched butter (n3Bu, Sunseo Omega Inc), or margarine (Ma, Land O’Lakes), 

and fed for 10 weeks ad libitum. Diets were formulated based on the AIN-93M 

purified rodent formula (diet composition in Table S1). Bodyweight and food 

intake were measured weekly. 

2.3.2 Acute cold treatment and rectal temperature 

To measure thermogenic potential, mice were exposed to cold temperature 

(4°C) acutely (3 hours). Core body temperature was detected using a rectal probe 

for mice (RET-3, Kent Scientific Corp). Infrared (IR) camera (A655sc, FLIR 

Systems) was used to detect thermal release and capture images of the surface 

body temperature. FLIR Research IR program software was used to display 

surface heat release via color palette representing temperatures between 10 and 
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34°C. To determine the fatty acid profile change during cold stress, mice were 

housed either at room temperature (Rm, 22°C) or cold temperature (Cold, 4°C) 

for 48 hours. At the time of necropsy, brown adipose tissue (BAT) were collected, 

snap-frozen in liquid nitrogen, and kept at −80°C until analysis. 

2.3.3 Fatty acid profile of diet and BAT 

To determine FA profile in the BAT, total lipids were extracted as we 

previously described [319]. Briefly, approximately ~100 mg of BAT was minced, 

and the extracted total lipids were converted into fatty acid methyl ester. Gas 

chromatography was performed on Agilent Technologies using a capillary HP-88 

column (100 m x 0.25 mm x 0.2 μm film thickness). The identity of lipid species 

was determined by comparing its relative retention times with the commercial 

mixed-FA standard (NU-CHEK PREP). The area percentages for all resolved 

peaks were analyzed using the ChemStation Software (Agilent Technologies). To 

calculate the C18: C16 and SCD ratio, we used the formulation below. 

Elongation (C18:C16) ratio = [C18:0+C18:1n7+C18:1n9/C16:0+C16:1n7]   

SCD ratio = [C18:1n7+C18:1n9+C16:1n7/C16:0+C18:0] 

 

2.3.4 qPCR and quantification of mtDNA/gDNA ratio 

Total RNA was extracted from ~50 mg of BAT using TRIzolTM Reagent and 

treated with DNA-freeTM DNA removal kit (ThermoFisher Scientific). Then the 

RNA was reverse-transcribed for cDNA synthesis (iScript, BioRad). Real-time 
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PCR was carried out on a QuantStudio 6 Flex (Applied Biosystems) using SYBR 

Green (Fisher scientific). Equal amounts of cDNAs prepared from the individual 

animal were pooled (n=4 per group) and qPCR reactions were performed in 

triplicate. The relative gene expression was calculated based on the 2-ΔΔCT method 

with normalization of the raw Ct values to Hprt (hypoxanthine-guanine 

phosphoribosyltransferase) (Figure S1, S2). Primer sequences are available in 

Table S2. To determine the mitochondrial DNA to genomic DNA ratio, total 

DNA was isolated using DNAzol (Life Technologies), as we described previously 

[320]. 

 

2.3.5 Western blot analysis 

Protein was extracted from BAT using RIPA buffer containing protease 

and phosphatase inhibitors (Sigma). Proteins were fractionated using 10% SDS-

PAGE, transferred to PVDF membranes, and incubated with antibodies agonist 

uncoupling protein 1 (UCP1), PR-domain containing 16 (PRDM16), CD11c, 

F4/80, stearoyl-Coenzyme A desaturase 1 (SCD-1), elongation of long-chain fatty 

acid-like family member 6 (Elovl6), voltage-dependent anion channel 1 

(VDAC1), pyruvate dehydrogenase (PDH), respiratory oxidative phosphorylation 

protein (OxPhos), and β-actin. Chemiluminescence from ECL solution (Western 

Lightning) was detected using an ODYSSEY FC Imaging System (LI-COR). 

Details of antibody information are available in Table S3. 
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2.3.6 H&E staining 

The BAT samples were fixed in 10 % buffered formalin, embedded in 

paraffin, and cut to 5 μm sections. After deparaffinization, BAT sections were 

stained with hematoxylin and eosin (H&E) staining as previously described [319]. 

2.3.7 Statistics 

All data were analyzed using one-way ANOVA followed by Tukey’s 

multiple comparison tests or Student’s t-test, *P<0.05 and ***P<0.001. All 

analyses were performed using Graph Pad Prism (Version 6.02). 

 

2.4 Results 

2.4.1 Supplementation with ALA-biofortified butter promoted thermogenic 

potential in the BAT 

Fatty acid (FA) analysis by GC/MS revealed that butter made out of 

biofortified milk (referred bio-fortified butter) contained approximately ~4% of 

ALA (C18:3) similar to margarine, while conventional butter was nearly absent of 

ALA. Except for ALA content, FA composition was identical between 

conventional butter and n-3 PUFA fortified butter. Made out of vegetable oil 

(~80%), margarine contained less amount of saturated FA (both C16:0 and C18:0) 

and palmitoleic acid (C16:1n7), but possessed a 10-fold higher amount of linoleic 

acid (LA, C18:2) than conventional butter or ALA-biofortified butter. In all 



35 
 

samples, other PUFA levels, such as arachidonic acid (20:4, ARA), DHA, and 

EPA, were negligible (Figure 2A).  

C57BL/6 mice were fed for ten weeks with one of the isocaloric high fat diets 

prepared from conventional butter (Bu), ALA-biofortified butter (n3Bu), and 

margarine (Ma). HF feeding with Bu or Ma, but not n3Bu, significantly increased 

the BAT weight compared to chow (Figure 2B, C). H&E staining of BAT section 

revealed that feeding with Bu or Ma remarkably induced white adipocyte-like 

morphological changes in the BAT, but a significantly lesser degree with n3Bu 

feeding (Figure 2B). Reflecting the dietary LA content, Ma diet induced ~2-fold 

increase in LA levels in the BAT. Intriguingly, 10 weeks of n3Bu diet 

significantly reduced ARA content, while promoted EPA content in the BAT 

compared with Bu or Ma diet (Figure 2D). Consequently, n3Bu feeding decreased 

intracellular n-6/n-3 FA ratio in the BAT by ~4-fold compared to Bu or Ma 

(Figure 2E). These results suggest that bioconversion ALA to n-3 LC PUFA is 

facilitated in n3Bu-fed BAT compared to Ma-fed BAT. 

Next, we asked whether the dietary reduction of n-6/n-3 FA ratio in ALA-

biofortified butter alters BAT thermogenic activity. When mice were placed to 

cold temperature (4°C) acutely (3 hours), n3Bu-fed mice were able to maintain a 

higher core-body temperature than Bu or Ma-fed mice, as comparable to chow-

fed mice (Figure 3A). Heat release captured by IR camera was higher in n3Bu-fed 

mice than Bu or Ma-fed mice (Figure 3B). The qPCR analysis of brown-specific 

gene expressions revealed that Ma feeding substantially decreased the brown 

signature gene expressions of Ucp1, Prdm16, Pgc1α, Cidea, and Dio2, while 
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n3Bu showed a tendency to increase these gene expressions compared to Bu 

control (Figure S1). Consistently, protein expression levels of uncoupling protein 

1 (UCP1) were reduced in Ma-fed mice compared to Bu or n3Bu. The expression 

levels of PRDM16, a key transcription factor for brown adipogenesis, were higher 

in n3Bu-fed BAT than Bu or Ma-fed BAT. Importantly, BAT from n3Bu feeding 

showed a remarkable decrease in F4/80 and CD11c expression levels, implicating 

that the n3Bu suppresses macrophage infiltration and proinflammatory M1 

polarization compared to the Bu- or Ma-fed group (Figure 3C). 

 

2.4.2 Supplementation with ALA-biofortified butter altered FA composition in 

the BAT 

Emerging evidence suggests that thermogenic activation of BAT is 

associated with FA remodeling including augmented n-3 LC PUFA synthesis and 

FA elongation [321]. Based on this literature suggestion, we next investigated the 

impact of n3Bu on lipid metabolism in the BAT during thermogenic activation. 

The GC/MS analysis revealed that cold treatment (CT, 4°C) for 48 hours resulted 

in a rapid increase of EPA and DHA in the BAT in response to n3Bu feeding 

compared to mice kept at ambient temperature (RT, 22°C) (Figure 4A). However, 

these changes in n-3 LC PUFA were less prominent in the BAT with Bu feeding 

and almost completely absent with Ma feeding (Figure 4A). We also examined 

the differential impact of Bu, n3Bu, and Ma feeding on FA elongation and 

desaturation. Cold treatment decreased the content of C16 FA (palmitic and 

palmitoleic acid) but increased the C18 FA (stearic acid) in n3Bu-fed BAT and, to 
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a lesser degree, Bu-fed BAT. However, Ma-fed BAT failed to alter FA elongation 

in response to cold temperature (Figure 4B). Therefore, the FA elongation ratio 

(see the formula in the method section) in the BAT was most evident with n3Bu 

feeding (Figure 4C). Also, the degree of FA desaturation was higher in n3Bu-fed 

BAT than in Bu- or Ma-fed BAT upon cold treatment (Figure 4D). The reductions 

in SCD-1 and ELOVL6 expression in Ma-fed BAT were significant (Figure 4E), 

although the difference between n3Bu- and Bu-fed BAT did not reach statistical 

significance. Consistently, there was an increase in transcription levels of Scd-1, 

Elovl6, and Elvol3 in the n3Bu-fed BAT compared to Bu, but a substantial 

decrease in these genes in Ma-fed BAT (Figure S2). However, the changes in 

delta-5 and delta-6 desaturase levels were similar between the groups (Figure S2). 

Collectively, these results suggest that ALA-biofortified butter facilitates cold-

mediated n-3 LC PUFA synthesis and FA elongation/desaturation. 

 

2.4.3 Supplementation with ALA-biofortified butter facilitated mitochondrial 

biogenesis 

 Molecular events for thermogenic activation include mitochondrial 

biogenesis in the BAT [322]. Next, we investigated whether the improved 

thermogenic function by n3Bu feeding is linked with mitochondrial biogenesis. 

There was a substantial increase of mitochondrial proteins in the n3Bu-fed BAT 

compared to Bu- or Ma-fed BAT, including 1) voltage-dependent anion channel 1 

(VDAC1) located in mitochondrial outer membrane, 2) pyruvate dehydrogenase 

(PDH) located in mitochondrial matrix, and 3) oxidative phosphorylation proteins 
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(OxPhos) located in mitochondrial inner membranes (Figure 5A). Conforming to 

the increased mitochondrial mass, the mitochondrial DNA to genomic DNA ratio 

(mtDNA/gDNA) was significantly higher in n3Bu-fed BAT compared to Bu- or 

Ma-fed BAT (Figure 5B).  

Emerging evidence also suggest that sirtuin 3(SIRT3), a NAD+-dependent 

deacetylase in mitochondria, is a key modulator for brown thermogenesis [323]. 

Consistent with this study, the transcriptional levels of Sirt3 and SIRT3 protein 

expression levels were higher in n3Bu-fed BAT than Bu or Ma-fed BAT (Figure 

5C, D). Collectively, these data support that ALA-biofortified butter effectively 

promotes thermogenesis, partly through the facilitation of mitochondrial 

biogenesis in the BAT. 

 

2.5 Discussion 

Previously, we have reported that ALA-enriched butter was effective in 

attenuating HF diet-induced insulin resistance compared to the other isocaloric 

diets prepared from conventional butter or margarine [324]. The metabolic 

improvement by ALA-biofortified butter was associated with augmented 

bioconversion into n-3 LC PUFA, reduced inflammation in the metabolic tissues 

(i.e., liver and WAT), and systemic production of anti-inflammatory oxylipins 

[324]. Here we investigated the impact of ALA-biofortified butter in regulating 

the BAT thermogenesis. The present work demonstrated that ALA-biofortified 

butter 1) attenuated HF diet-mediated BAT whitening and inflammation (Figure 
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2), and 2) increased the brown fat specific gene and protein markers and 

thermogenic activity (Figure 3). In terms of mechanism, intake of ALA-

biofortified butter facilitates cold-mediated lipid remodeling by promoting n-3 LC 

PUFA conversion, by increasing ELOVL6 and SCD activities and by stimulating 

mitochondrial biogenesis (proposed working model in Figure 6). Taken together, 

our work suggests that ALA-biofortified butter could be an alternative of fish oil 

in activating brown thermogenesis. 

Accumulating evidence suggest that FA are critical modulators of non-

shivering adaptive thermogenesis [325]. At least three different modes of FA 

regulation have been reported to promote thermogenic regulation in the BAT 

including, 1) increased n-3 LC PUFA levels [326, 327], 2) increased FA 

elongation and desaturation  [321], and 3) increased cardiolipin (CL) synthesis 

[328, 329]. Here, we discussed our results based on these FA regulations for 

thermogenic activation. 

The endogenous synthesis of n-3 LC PUFA requires a series of reactions 

by elongases and desaturases. In general, LC n-6 PUFA synthesis is the favored 

pathway over n-3 PUFA formation due to overabundance of LA to ALA [330, 

331]. It is important to note that BAT possesses a unique feature of increasing the 

n-3 LC PUFA content in response to thermogenic stimuli [327]. Our previous 

results showed that fish oil supplementation elevated the n-3 LC PUFA content 

upon cold treatment [13]. Similarly, the supplementation with ALA-biofortified 

butter induced an increase of n-3 LC PUFA levels in basal as well as cold-

stimulated conditions (Figure 4A). The increased bioconversion from ALA to n-3 
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LC PUFA (i.e., DHA and EPA) is dependent on the reduced dietary n-6/n-3 

PUFA ratio. Despite the same ALA content, margarine supplementation was 

unable to increase n-3 LC PUFA content presumably due to high LA content 

(Figure 4A). The precise mechanism by which cold treatment promotes 

bioconversion of n-3 LC PUFA in the BAT is yet to be determined. One 

mechanism could be the induction of GRP120, a well-known membrane receptor 

for n-3 PUFA, in the BAT during cold exposure [332]. It is possible that n-3 

PUFA released from the WAT are redistributed into the BAT through GRP120. 

This scenario could increase the n-3 PUFA levels in the BAT independent of 

transcriptional modulation of delta-5 or delta-6 desaturase, the crucial enzymes 

for PUFA synthesis. Our system may fit in this scenario as ALA-biofortified 

butter consumption promoted cold-induced n-3 PUFA content without 

modification of mRNA levels of Fads1 and Fads2 (Figure S2). Nonetheless, our 

results strongly support that increased availability of n-3 PUFA in the BAT upon 

intake of ALA-biofortified butter stimulates thermogenic activation.  

In addition to an increase of n-3 LC PFUA content, BAT should undergo 

other compositional changes in FA in order to activate BAT, including the 

modulation of FA elongation and desaturation [327]. The enzyme ELOVL6 has 

been demonstrated to regulate thermogenic capacity; Tan et al. revealed that cold 

treatment significantly promotes the C18:C16 ratio in the BAT due to ELOVL6 

activity [321]. In parallel, thermogenic activation of BAT is associated with 

elevated desaturase index and SCD-1 activity. Conversely, genetic ablation of 

Elovl6 was unable to induce a full thermogenic recruitment of BAT. More 
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interestingly, the activation of ELOVL6 activities in the BAT is linked with 

mitochondrial function [333], suggesting that ELOVL6 activity is required for the 

remodeling of mitochondria for enhancing thermogenic potential. Consistent with 

this literature support, our results showed that indices of cold-induced FA 

elongation and desaturation were higher with ALA-biofortified butter than 

conventional butter or margarine (Figure 4C). These FA compositional changes 

by ALA-biofortified butter consumption were correlated with enhanced 

mitochondrial biogenesis (Figure 5), implicating that FA remodeling is required 

for mitochondria in the BAT. Recently, Sebaa et al. demonstrated that an increase 

of mitochondrial deactylation by SIRT3 plays a key role for UCP1 regulation for 

thermogenic activation. ALA-biofortified butter increased the SIRT3 protein and 

gene expression in the mitochondria fraction in BAT, suggesting that ALA-

biofortified butter may upregulate the deacetylation. We are currently under 

investigation regarding the mechanism by which increased n-3 PUFA levels 

promote SIRT3 activation and mitochondrial deacetylation. 

Cardiolipins (CL) are unique phospholipids that are predominantly found 

in the mitochondrial inner membrane. CL plays critical functions, including 

formation of the respiratory supercomplex [334, 335]. Lipidomic analysis 

revealed that cold adaptation induces de novo CL synthesis as well as remodeling 

of CL with the longer and less saturated acyl chains in the BAT [329]. These 

results are consistent with our observation that ALA-biofortified butter increased 

ELOVL6 and SCD-1 activities in the BAT. Unfortunately, we were unable to 

measure the CL lipid content due to a shortage of BAT samples. Also, no 
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significant differences were found in mRNA expression levels of CL synthase 

(Crls1) among the isocaloric dietary groups (Figure S1). Nonetheless, we 

speculate that the CL species would be different in ALA-biofortified butter fed 

BAT based on an enhanced FA elongation and desaturation. It is of interest to 

determine the impact of differential dietary fat intake on mitochondrial CL 

species regulation and its association with mitochondrial thermogenic capacity as 

a future research.    

Besides, there is growing evidence showing that conjugated linoleic acid 

(CLA), either trans-10, cis-12 isomer alone, or the mixture with cis-9, trans-11 

isomer, increases the thermogenic activity in the adipose tissue [336-338]. The 

thermogenic action by CLA is most evident in the WAT with a minor impact on 

the BAT [338]. It is quite distinctive from the thermogenic activity exerted by 

ALA enrichment in this work, since n3Bu supplementation promotes 

thermogenesis in the BAT, while causes a minimum impact on WAT. It would be 

of interest to investigate whether CLA supplementation also induces similar FA 

remodeling, including augmentation of desaturation, elongation and LC n-3 

PUFA synthesis. 

Bio-fortification of n-3 PUFA is widely provided to farm animals, such as 

pigs, chicken, and cows, by supplementing the feed with a plant source of n-3 

PUFA, i.e., flaxseed oil or algae [339]. However, endogenous conversion rate 

from ALA to n-3 PUFA is very low in ruminant animals. The most significant 

barrier is suppressing the bio-hydrogenation of ruminal microbes, which revert 

dietary unsaturated FA into SFA in the rumens. Without modulation of gut 
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microbes, the dietary unsaturated FA are unable to reach the small intestine for 

absorption and incorporation [340]. Numerous efforts were made to increase n-3 

PUFA content in cattle in hopes of yielding n-3 PUFA-enriched dairy products 

such as milk, cheese, and butter [341]. For example, the generation of transgenic 

cattle was attempted by introducing the Fat-1 gene, the n-3 FA desaturase derived 

from C. elegans [342]. However, this approach is unfavorable to customers based 

on an unavoidable dispute regarding the health concerns related to genetically 

modified foods. Industrial incorporation of fish oil into the dairy products by 

enzymatic inter-esterification also has limitations due to difficulties in eliminating 

fish odor. New techniques obtained from the development of system biology have 

been applied to improve or manipulate the ruminal microbial community to 

modulate the bacterial population with bio-hydrogenation capacity [343]. Several 

studies have reported that inclusion of linseed oil in cattle feed improves the FA 

profiles (decrease of n-6/n-3 ratio) and accumulates the ALA content by 

modulating the bio-hydrogenation capacity [344]. In our study, milking cows 

were fed with partially fermented cattle feed that contains two different sources of 

ALA (giant kelp, and pomace of perilla seeds) resulting in a significant reduction 

in n-6/n-3 FA ratio in the systemic levels, including meats, fats and milk (data not 

shown). We cautiously speculate that our cattle feed may trigger bypassing of bio-

hydrogenation or suppression of the bacterial population that have bio-

hydrogenation capacity. Currently, it is under investigation whether our cattle 

feed induces a population shift of ruminal bacteria and suppresses bio-

hydrogenation capacity in rumens. 
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2.6 Conclusion 

This study provides a novel insight that ALA-biofortified agricultural-

products could be an alternative source of n-3 PUFA other than fish. The ALA-

enriched butter can recapitulate the enhanced thermogenic energy expenditure 

similar to fish oil supplementation. The thermogenic activation of BAT was 

associated with improved biosynthesis of n-3 LC PUFA, FA 

elongation/desaturation, and mitochondrial biogenesis. By thoroughly evaluating 

the effectiveness of ALA bio-fortified butter on thermogenesis in comparison 

with conventional butter and margarine, our study opens a new research avenue 

for designing health-promoting (or therapeutic) dairy products via manipulation 

of animal nutrition, metabolism, and presumably ruminal microbiome. 
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CHAPTER 3. DISCUSSION, LIMITATIONS, AND FUTURE STUDIES 

3.1 Discussion 

In this report, we investigated the effect of ALA-biofortified butter (n3Bu) 

on lipid metabolism and thermogenic potential in BAT compared to SFA-rich 

conventional butter (Bu) and margarine (Ma) with high LA contents. N3Bu 

lowered n-6/n-3 PUFA ratio reducing n-6 PUFA contents such as ARA in BAT, 

while increasing n-3 PUFA contents such as ALA and EPA (Figure 2D, E). 

Compared to Bu and Ma, n3Bu significantly lowered ARA contents in BAT, 

implicating high ALA contents in n3Bu was effective at suppressing the 

bioconversion of LA into its LC n-6 PUFA, ARA. This is consistent to the studies 

that plant oils rich in ALA was effective at lowering n-6/n-3 PUFA ratio in 

diverse tissues of animals [241, 318, 345]. LA and ALA share the common 

enzymatic pathway for biosynthesizing their LC PUFAs, therefore they compete 

each other for the corresponding enzymes [240, 247]. The dietary LA/ALA ratio 

significantly influences the bioconversion of LA and ALA to their longer chain 

homologous [240, 241]. Accordingly, it can be said the ALA in n3Bu was 

effective at suppressing the bioconversion of LA to ARA, but it promoted the 

biosynthesis of EPA from ALA in BAT. In addition to modifying n-6/n-3 PUFA 

ratio in BAT, n3Bu significantly attenuated WAT-like morphology in BAT and 

reduced BAT weight compared to Bu- and Ma-fed BAT (Figure 2B, C). Fish oil 

abundant of EPA and DHA is well known for reducing weight gain in WAT and 

attenuating lipid accumulation in diverse tissues via promoting lipid oxidation and 

inhibiting lipogenesis [70, 346-350]. Fish oil is also effective at upregulating 



46 
 

thermogenic markers such as UCP1, PGC1, PRDM16, and 3-AR in both WAT 

and BAT implicating the efficacy of fish oil on browning of WAT and enhancing 

BAT thermogenic activity [70, 76, 346]. As well as fish oil, n3Bu in this study 

promoted cold-induced thermogenic activity which enhances body energy 

expenditure and upregulated BAT thermogenic markers such as UCP1 and 

PRDM16 (Figure 3A, B, C). 

Intake of excessive n-6 PUFAs and SFAs in modern Western diet 

remarkably enhances pro-inflammatory cytokines secretion in adipocytes and 

causes low-grade chronic inflammation and inflammatory diseases such as 

depressive symptoms, CVD, cancer, obesity, insulin resistance, and obesity-

induced fatty liver diseases [351-354], while increasing marine n-3 PUFAs intake 

attenuates these chronic inflammations via inhibition of nuclear factor-kappa B 

(NF-kB) and toll-like receptor 4 (TLR4), which stimulate pro-inflammatory 

cytokines such as tumor necrosis factor  (TNF-), interleukin-1 (IL-1), 

interleukin-6 (IL-6), and C-reactive protein (CRP) [352, 353, 355, 356]. Obesity 

increases the macrophage infiltration into obese WAT and these adipose tissue 

macrophages become pro-inflammatory M1 macrophages [351, 357, 358]. M1 

macrophages release pro-inflammatory cytokines such as TNF-, IL-6, and IL- 

which induces further M1 macrophage differentiation from monocytes and causes 

inflammation that inhibits insulin action in adipocytes [351, 357-360]. On the 

other hand, healthy adipocytes in lean people is predominated by M2 

macrophages that secrete anti-inflammatory cytokines [358, 361-363]. 

Adiponectin confers anti-inflammatory effects on multiple cell types and tissue by 
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reducing pro-inflammatory cytokine secretion and promoting monocyte-derived 

macrophage polarization into anti-inflammatory M2 phenotype [360, 363-365]. 

N-6 PUFA and SFA downregulated adiponectin and increased macrophage 

infiltration in adipose tissue, but n-3 PUFA restored these adiponectin gene 

expressions and prevented macrophage infiltration suggesting the protective 

action of n-3 PUFA on adipocytes from high-fat diet-induced inflammation [365]. 

In addition, n-3 PUFA intake downregulated inflammatory cytokines, increased 

anti-inflammatory cytokines, and reduced inflammatory macrophage in adipose 

tissue decreasing M1 macrophage markers such as CD11c, F4/80, MCP-1, CCL2 

and IL-6 and increasing M2 macrophage markers such as IL-10, arginase 1, and 

MGL1,  [365-369]. This suggests n-3 PUFAs shifted macrophage polarization 

from pro-inflammatory M1 to anti-inflammatory M2 phenotype. Consistent to 

these results, n3Bu-fed BAT in this study had low expression of pro-inflammatory 

M1 macrophage markers, CD11c and F4/80, compared to Bu- or Ma-fed BAT 

(Figure 3C). This suggests the n3Bu has anti-inflammatory effects as well as fish 

oil via attenuating high-fat diet-induced M1 macrophage polarization. 

Fish oil rich in EPA and DHA is well known for promoting cold-induced 

BAT thermogenesis via increasing thermogenic markers expression and body 

energy expenditure in cold conditions [43, 71, 76]. Therefore, it is assumed 

increased LC n-3 PUFA synthesis is required for BAT thermogenic activity 

during cold acclimation. Even though there are not many studies that directly 

show endogenous LC n-3 PUFA synthesis is required for BAT thermogenic 

activity, the beneficial effects of dietary LC n-3 PUFAs on BAT thermogenesis in 
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cold suggests endogenous LC n-3 PUFA synthesis also contributes to BAT 

thermogenic activity. In this study, n3Bu was effective at promoting the 

biosynthesis of EPA and DHA in BAT during cold acclimation compared to Bu- 

and Ma-fed BAT (Figure 4A). This suggests n3Bu promoted bioconversion of 

ALA into EPA and DHA in cold implicating the critical role of endogenous LC n-

3 PUFA synthesis on cold-induced BAT thermogenesis. Besides the endogenous 

LC n-3 PUFA synthesis, BAT thermogenic activity requires FA metabolism 

modifications such as increased desaturation and elongations. SCD1 is a 

desaturase enzyme that converts C16- and C18-saturated fatty acids into 

monounsaturated fatty acids such as palmitoleic acid (C16:1) and oleic acid 

(C18:1) which are major components of membrane phospholipids, triglycerides 

and cholesteryl esters and have a critical role at lipogenesis [207, 213, 370]. 

SCD1 is often considered as the therapeutic target of obesity, and its associated 

metabolic symptoms, because SCD1 is closely associated with obesity, diabetes, 

atherosclerosis, and cancer, while depleting SCD1 in mice prevented obesity via 

reducing adiposity and increasing energy expenditure [213, 371, 372]. SCD1-/- 

mice had lean phenotype with increased lipolysis, decreased lipogenesis, and 

increased fatty acid -oxidations and were resistant to obesity-related metabolic 

symptoms [84, 213, 370, 371]. Leptin is known to suppress lipogenesis of SCD1 

activity, and leptin-deficient ob/ob mice become profoundly obese [207, 371, 

373]. Consistently, the obese phenotype of leptin-deficient ob/ob mice were 

attenuated by SCD1 deficiency due to reduced adiposity and increased energy 

metabolism [207, 371, 373]. However, SCD1-deficient mice (scd1-/-) showed 
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severe cold intolerance that failed them to maintain their body temperature in cold 

(4 C) which led to death due to cold stress in several hours [84, 373]. SCD1-/- 

mice had increased basal thermogenesis in room temperature with upregulation of 

BAT thermogenic markers expression such as UCP1, 3-AR and PGC1 

compared to SCD1+/+ mice, however SCD1-/- mice developed hypothermia in cold 

temperature even with increased UCP1 expression [84]. This suggests the SCD1 

has an essential role for adaptive thermogenesis in cold condition which is vital 

for mammals to survive in cold temperature. Consistent to this, n3Bu in this study 

was effective at increasing cold-induced BAT thermogenesis (Figure 3) and 

significantly increased SCD ratio in BAT during cold acclimation, while Bu- and 

Ma-fed BAT failed to show significant increase of SCD ratio (Figure 4D). In 

addition, SCD1 protein expression in Ma-fed BAT was significantly lower than 

Bu- and n3Bu-fed BAT (Figure 4E). This implicates n3Bu was effective at 

increasing SCD activity in cold which is considered to be essential FA metabolic 

modification for cold-induced BAT thermogenic activity, while high LA contents 

in Ma inhibited the remodeling of FA metabolism for the adaptive thermogenesis 

in BAT. In addition to the SCD1 activation, FA elongations are also required for 

BAT thermogenic activity. Both Elovl3 and Elovl6 genes belong to Elovl gene 

family that encodes enzymes for very long-chain fatty acid (VLCFA) elongation 

[106, 374, 375]. ELOVL3 elongates SFAs and MUFAs up to 24 carbons [105], 

and ELOVL6 is the major enzyme that elongates C16 FAs to C18 FAs [106, 375, 

376]. Some studies showed activation of Elovl3 in BAT is closely associated with 

BAT thermogenic capacity during cold acclimation [105, 374], and Elovl3 
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expression is dramatically upregulated in BAT during the cold exposure [82, 374, 

377-379]. Elovl6 is also essential for BAT thermogenic activity via regulating 

mitochondrial contents [106]. Deletion of Elovl6 ablated the cold-induced 

increase of elongating C16 to C18; and Elovl6 KO mice failed to increase the 

expression of BAT mitochondrial ETC proteins during cold [106]. These 

implicate Elovl6-mediated FA elongation is necessary for BAT thermogenic 

activity via regulating mitochondrial functions. N3Bu in this study also activated 

these FA elongations in BAT during cold (Figure 4B, C), indicating the 

modification of FA metabolism occurred in n3Bu-fed BAT during the adaptive 

thermogenic activity in cold. Protein expression of ELOVL6 was increased in 

n3Bu-fed BAT compared to Bu- and Ma-fed BAT (Figure 4E), implicating n3Bu 

was effective at inducing FA metabolism change for BAT thermogenic activity in 

cold via regulating mitochondrial contents. This is consistent to the increased 

mitochondrial proteins in n3Bu-fed BAT (Figure 5A). Therefore, n3Bu is 

effective at remodeling FA metabolism such as FA desaturation and elongation to 

promote BAT thermogenic activity in cold. 

Mitochondria is important for UCP-1 mediated thermogenesis in BAT 

because BAT thermogenic activity is mediated by uncoupling process of UCP1 

which is located on inner mitochondrial membrane in BAT. Fish oil abundant in 

EPA and DHA is well known for activating mitochondrial biogenesis. As well as 

fish oil, n3Bu in this study also increased mitochondrial protein contents in BAT 

compared to Bu- and Ma-fed BAT (Figure 5A). And this is further supported by 

the increased mitochondrial-DNA/genomic-DNA ratio in n3Bu-fed BAT (Figure 
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5B). Sirtuin is protein deacetylases that is involved in cellular energy homeostasis 

[380, 381]. Among mammalian Sirtuin family members that control metabolic 

processes, sirtuin3 (Sirt3) resides in mitochondria and involves in mitochondrial 

biogenesis [380, 382, 383]. Sirt3 and Ucp1 are upregulated in BAT during cold 

exposure; and constitutive expression of Sirt3 increases UCP1 and PGC1- 

expressions suggesting Sirt3 has a critical role in cold-induced BAT 

thermogenesis [384]. N3Bu significantly increased mRNA and protein 

expressions of Sirt3 in BAT compared to Bu- and Ma-fed BAT (Figure 5 C and 

D). This implicates n3Bu is as effective as fish oil for modifying mitochondrial 

functions which is essential for BAT thermogenic activity in cold. 

As shown in this research, ALA-biofortified butter had beneficial effects 

on inducing BAT thermogenesis in cold. N3Bu was effective at maintaining BAT 

thermogenic capacity attenuating WAT-like morphology induced by high-fat 

diets, and increased body energy expenditure during cold exposure along with 

increased BAT thermogenic markers. In addition, n3Bu modified FA metabolism 

and regulated mitochondrial biogenesis in BAT both of which are considered 

essential for cold-induced thermogenic activity in BAT. The positive effect of 

n3Bu on BAT thermogenic activity in this research suggests ALA-biofortified 

dairy products could be a reliable source of land-based n-3 PUFA that can replace 

marine n-3 PUFAs abundant in fish oil. Consumption of 18C PUFAs such as LA 

and ALA from land-based agricultural products such as vegetable oils and dairy 

products are much greater than the utilization of EPA and DHA abundant in fish 

oil. In this aspect, comparing the biochemical characteristics between n-6 and n-3 
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18C PUFAs on BAT metabolism contributes to identifying the differential effects 

of these essential FAs on BAT thermogenic activity, the therapeutic target of 

obesity. 

 

3.2 Limitation and future studies 

In this research, n3Bu significantly increased thermogenic potential in 

BAT with increased SCD1 and ELOVL6 protein expressions compared to Ma-fed 

BAT (Figure 3, 4E). However, these enzyme expressions are closely related to 

obesity, and its associated metabolic symptoms such as insulin resistance and 

hepatic steatosis, while suppressing these enzymes are known to attenuate these 

symptoms [196, 228, 385-389]. SFA is known to increase SCD1 activity; and 

SCD1 deficiency significantly reduced lipogenic gene expression and it was 

protective against metabolic disorders induced by excessive SFAs intake [390-

393]. On the other hand, both n-3 and n-6 PUFAs suppressed SCD1 expression 

and attenuated obesity-induced metabolic symptoms [394-398]. ELOVL6 is also 

involved in obesity-induced insulin resistance and hepatic steatosis [375, 386, 

387]. ELOVL6-deficeint (ELVOL6-/-) mice were protected from obesity-induced 

insulin resistance via suppressing pro-inflammatory cytokines such as TNF-, IL-

1, and inflammasome gene expressions including NLR family pyrin domain-

containing 3 (NLRP3), even under the same hepatic steatosis and obesity 

conditions [375, 386-389]. Weiss-Hersh et al. showed fish oil significantly 

suppressed the hepatic gene expressions of both SCD1 and ELOVL6 [399]. In 
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these respects, the high SFA content in n3Bu might have increased expressions of 

SCD1 and ELOVL6, while margarine made from vegetable oil abundant of 

PUFAs might have been effective at reducing these enzyme expressions (Figure 

2A, 4E). In regard to the effects of SFA, and PUFA on the lipid metabolism and 

thermogenic potential in BAT, SFA: PUFA ratio could be fixed in this study. 

Therefore, in the future, to better identify the effects of n-6/n-3 PUFA ratio on 

lipid metabolism, ALA-enriched margarine could be compared to conventional 

margarine rich in n-6 PUFAs. 
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Figure 2. Supplementation with ALA-biofortified butter decreased 

triglyceride accumulation and n-6/n-3 PUFA ratio in the BAT. A. Fatty 

acid composition of the isocaloric HF diets made of conventional butter 

(Bu), ALA-biofortified butter (n3Bu), and margarine (Ma). B. Gross 

image (upper) and histology of BAT (lower) after 10 weeks of HF diet 

feeding (representative of n=8/group). C. BAT weight. D. Fatty acid 

profile in the BAT after supplementation. E. n-6/n-3 PUFA ratio in the 

BAT. All data represented as mean ± SEM. Treatments with different 

letters are significantly different from one another (P<0.05) by one-way 

ANOVA with Tukey’s multiple comparison tests. 
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Figure 3. Supplementation with ALA-biofortified butter promoted 

thermogenesis and suppressed inflammation in the BAT. A. Core body 

temperature after exposing animals to 4°C acutely for 3 hours (n=4 for 

chow, n=8 for HF-fed animals). B. Heat release captured by IR camera at 

the end of a 3-hour cold exposure. C. Western blot analysis of UCP1, 

PRDM16, CD11c, and F4/80. -actin used as a loading control for 

quantification. All data represented as mean ± SEM. Treatments with 

different letters are significantly different from one another (P<0.05) by 

one-way ANOVA with Tukey’s multiple comparison tests. 
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Figure 4. Supplementation with ALA-biofortified butter increased n-3 

PUFA content and degree of desaturation and elongation of fatty acids in 

the BAT in response to cold exposure. A. Composition of n-3 (ALA, EPA, 

and DHA) and n-6 (ALA and LA) PUFA in the BAT at room temperature 

(Rm) or cold exposure (Cold) for 48 hours (n=4 per group). B. Fatty acid 

methyl ester analysis of BAT at the Rm and Cold. C. C18:C16 ratio. D. 

SCD ratio. E. Western blot analysis of stearoyl-CoA desaturase 1 (SCD-

1), elongation of long chain fatty acid-like family member 6 (ELOVL6). 

Each lane represents individual animal (n=3) and -actin used as a control 

for quantification (below). In A and E, treatments with different letters are 

significantly different from one another (P<0.05) by one-way ANOVA. 

All data represented as mean ± SEM.  In B, C, and D, *, P<0.05, and ***, 

P<0.001 by Student’s t-test. 
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Figure 5. Supplementation with ALA-biofortified butter increased 

mitochondrial biogenesis in the BAT. A. Western blot analysis of 

mitochondrial proteins of VDAC1, PDH, and respiratory protein 

complexes I-V (left). -actin was used as a control for quantification 

(right). B. mtDNA to gDNA ratio in BAT by qPCR (n=6 per group). C. 

Sirt3 mRNA expression in BAT by qPCR (n=6 per group). D. Western 

blot analysis of Sirt3 in the mitochondrial fraction. Each lane represents 

individual animals in duplication. Cyt C was used as a control. All data 

represented as mean ± SEM. Treatments with different letters are 

significantly different from one another by one-way ANOVA (P<0.05). 
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Figure 6. Working model of dietary ALA enrichment on thermogenic 

activation in the BAT. The reduced n-6/n-3 ratio by dietary supplementation 

with ALA enriched foods induces fatty acid remodeling, including the 

augmentation of desaturation, elongation, and long-chain (LC) n-3 PUFA 

formation. These FA profile changes facilitate mitochondrial biogenesis, 

leading to the thermogenic activation of the BAT. 
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Figure S1. Supplementation with ALA-biofortified butter alters 

thermogenic genes expression in the BAT. mRNA expression levels of 

Ucp1, Prdm16, Pgc1α, Cidea, and Dio2 from the pooled DNA (n=8 per 

group) with triplicated assay. All data represented as mean ± SEM. 

Treatments with different letters are significantly different from one 

another by one-way ANOVA (P<0.05). 
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Figure S2. Supplementation with ALA-biofortified butter increased fatty 

acid denaturation and elongation related genes expression in the BAT. 

mRNA expression levels of Fads1, Fads2, Scd-1, Elovl6, and Elovl3 from 

the pooled DNA (n=8 per group) with triplicated assay. All data 

represented as mean ± SEM. Treatments with different letters are 

significantly different from one another by one-way ANOVA (P<0.05). 
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Figure S3. Supplementation with ALA-biofortified butter did not alter 

cardiolipin (CL) synthase (Crls1) expression in the BAT. mRNA 

expression Crls1 in the BAT (n=4 of individual animals per group). All 

data represented as mean ± SEM. Treatments with different letters are 

significantly different from one another by one-way ANOVA (P<0.05).  
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Table S1. Diet composition of HF diet 

Ingredients (g) 
 Diet  

Bu n3Bu Ma 

Casein 235 235 235 

L-cystine 5 5 5 

Corn starch 210 210 210 

Maltodextrin 100 100 100 

Sucrose 100 100 100 

Cholesterol  2 2 2 

Cellulose 50 50 50 

Mineral mix 35 35 35 

Calcium carbonate  30 30 30 

Vitamin mix  10 10 10 

Choline bitartrate 2.5 2.5 2.5 

Solid Fat  

Hiland Butter   

 

240 

 

- 

 

- 

Sunseo Omega Butter      240 - 

Land O Lake Margarine       - - 240 

% calories from Fat 

% calories from CHO 

% calories from Protein 

      45.4 

      34.4 

      20.2 

      45.4 

      34.4 

      20.2 

      45.4 

      34.4 

      20.2 

Kcal/g diet 4.67 4.67 4.67 
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Table S2. Primer sequences for qPCR. 

Primer Primer sequence  

Ucp1 
F: 5’-AGGCTTCCAGTACCATTAGGT-3’ 

R: 5’-CTGAGTGAGGCAAAGCTGATTT-3’ 
 

Prdm16 
F: 5’-CAG CAC GGT GAA GCC ATT C-3’ 

R: 5’-GCG TGC ATC CGC TTG TG-3’ 
 

Pgc1α 
F: 5’-CCCTGCCATTGTTAAGACC-3’ 

 
R: 5’-TGCTGCTGTTCCTGTTTTC-3’ 

Cidea 
F: 5’-TGCTCTTCTGTATCGCCCAGT-3’ 

R: 5’-GCCGTGTTAAGGAATCTGCTG-3’ 
 

Dio2 
F: 5’-CAGTGTGGTGCACGTCTCCAATC-3’ 

R: 5’-TGAACCAAAGTTGACCACCAG-3’ 
 

Fads1 
F: 5’-TCAGTCTTTGGCACCTCGAC-3’ 

R: 5’-TCCTTGCGGAAGCAGTTAGG-3’ 
 

Fads2 
F: 5’-TCCTGTCCCACATCATCGTCATGG-3’ 

R: 5’-GCTTGGGCCTGAGAGGTAGCGA-3’ 
 

Scd-1 
F: 5’-GGGACAGATATGGTGTGAAACTATG-3’ 

R: 5’-TTACAGACACTGCCCCTCAAC-3’ 
 

Elovl6 
F: 5’-CGTAGCGACTCCGAAGATCAGCC-3’ 

R: 5’-AGCGTACAGCGCAGAAAACAGGA-3’ 
 

Elovl3 
F: 5’-CTTCGAGACGTTTCAGGACTTAAG-3’ 

R: 5’-TCTGGCCAACAACGATGAG-3’ 
 

16S rRNA 
F: 5’-CCGCAAGGGAAAGATGAAAGAC-3’ 

R: 5’-TCGTTTGGTTTCGGGGTTTC-3’ 
 

Hexokinase 
F: 5’-GCCAGCCTCTCCTGATTTTAGTGT-3’ 

R: 5’-GGGAACACAAAAGACCTCTTCTGG-3’ 
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Table S3. List of primary antibodies 

Antibody Host Dilution Company Catalog no. 

UCP1 Rabbit 1:1000 Abcam Ab155117 

PRDM16 Mouse 1:1000 Santa Cruz Sc130243 

CD11c Rabbit 1:1000 Cell Signaling 97585 

F4/80 Rabbit 1:1000 Abcam Ab6640 

SCD1 Rabbit 1:1000 Cell Signaling 2794 

Elovl6 Rabbit 1:1000 Abcam Ab69857 

VDAC1 Rabbit 1:1000 Cell Signaling 4661 

PDH Rabbit 1:1000 Cell Signaling 3205 

OxPhos Mouse 1:250 Abcam ab110413 

SIRT3 Rabbit 1:1000 Cell Signaling 5490 

β-actin Rabbit 1:1000 Cell Signaling 4967 
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APPENDIX: 

Abbreviations 

AdCKO—Adipose-specific Crls1 knockout 

ALA—Alpha linolenic acid 

AMPK—AMP-activated protein kinase 

ASO—Antisense oligonucleotide inhibitors 

BAT—Brown adipose tissue 

BMI—Body mass index 

Bu—Conventional butter 

CCL2—Chemokine (C-C motif) ligand 2 

CL—Cardiolipin 

CPT1—Carnitine palmitoyl transferase 1 

Crls1—Cardiolipin synthase 1 

CRP—C-reactive protein 

DAG—Diacylglycerol 

DGLA— Dihomo--linolenic acid 

DHA—Docosahexaenoic acid 

ELOVL—Elongation of very long-chain fatty acids protein 

EPA—Eicosapentaenoic acid 

ETC—Electron transport chain 

FGF21—Fibroblast growth factor 21 

FXR—Farnesoid-X-receptor 

IL-1—Interleukin-1 

IL-6—Interleukin-6 

IL-10—Interleukin-10 

IR—Insulin resistance 

LA—Linoleic acid 

Ma—Margarine 

MCP-1—Monocyte chemoattractant protein-1 
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MDFC—Macrophage-derived foam cells 

MGL1— Macrophage galactose-type C lectin 1 

NAFLD—Non-alcoholic fatty liver disease 

NF-kB—Nuclear factor-kappa B 

N3Bu—ALA-biofortified butter 

OxPhos—Oxidative phosphorylation protein 

PDH—Pyruvate dehydrogenase 

PRDM16—PR-domain containing 16 

PUFA—Polyunsaturated fatty acid 

RXR—Retinoid x receptor 

SCD—Stearoyl-CoA desaturase protein 

SFA—Saturated fatty acid 

SIRT1—Sirtuin 1 

SIRT3—Sirtuin 3 

SNS—Sympathetic nervous system 

TG—Triglyceride 

TLR4—Toll-like receptor 4 

TNF-—Tumor necrosis factor  

TRPV1—Transient receptor potential vanilloid 1 

T2D—Type 2 diabetes 

UCP1—Uncoupling protein 1 

VDAC1—Voltage-dependent anion channel 1 

VFA—Visceral fat area 

VMH—Ventromedial nucleus of the hypothalamus 

WAT—White adipose tissue  
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