
University of Nebraska - Lincoln
DigitalCommons@University of Nebraska - Lincoln
Dissertations, Theses, and Student Research Papers
in Mathematics Mathematics, Department of

3-2018

Design and Analysis of Graph-based Codes Using
Algebraic Lifts and Decoding Networks
Allison Beemer
University of Nebraska - Lincoln, allison.beemer@huskers.unl.edu

Follow this and additional works at: https://digitalcommons.unl.edu/mathstudent

Part of the Discrete Mathematics and Combinatorics Commons, and the Other Mathematics
Commons

This Article is brought to you for free and open access by the Mathematics, Department of at DigitalCommons@University of Nebraska - Lincoln. It
has been accepted for inclusion in Dissertations, Theses, and Student Research Papers in Mathematics by an authorized administrator of
DigitalCommons@University of Nebraska - Lincoln.

Beemer, Allison, "Design and Analysis of Graph-based Codes Using Algebraic Lifts and Decoding Networks" (2018). Dissertations,
Theses, and Student Research Papers in Mathematics. 87.
https://digitalcommons.unl.edu/mathstudent/87

https://digitalcommons.unl.edu?utm_source=digitalcommons.unl.edu%2Fmathstudent%2F87&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.unl.edu/mathstudent?utm_source=digitalcommons.unl.edu%2Fmathstudent%2F87&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.unl.edu/mathstudent?utm_source=digitalcommons.unl.edu%2Fmathstudent%2F87&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.unl.edu/mathematics?utm_source=digitalcommons.unl.edu%2Fmathstudent%2F87&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.unl.edu/mathstudent?utm_source=digitalcommons.unl.edu%2Fmathstudent%2F87&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/178?utm_source=digitalcommons.unl.edu%2Fmathstudent%2F87&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/185?utm_source=digitalcommons.unl.edu%2Fmathstudent%2F87&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/185?utm_source=digitalcommons.unl.edu%2Fmathstudent%2F87&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.unl.edu/mathstudent/87?utm_source=digitalcommons.unl.edu%2Fmathstudent%2F87&utm_medium=PDF&utm_campaign=PDFCoverPages

DESIGN AND ANALYSIS OF GRAPH-BASED CODES

USING ALGEBRAIC LIFTS AND DECODING NETWORKS

by

Allison Beemer

A DISSERTATION

Presented to the Faculty of

The Graduate College at the University of Nebraska

In Partial Fulfilment of Requirements

For the Degree of Doctor of Philosophy

Major: Mathematics

Under the Supervision of Professor Christine A. Kelley

Lincoln, Nebraska

March, 2018

DESIGN AND ANALYSIS OF GRAPH-BASED CODES

USING ALGEBRAIC LIFTS AND DECODING NETWORKS

Allison Beemer, Ph.D.

University of Nebraska, 2018

Adviser: Christine A. Kelley

Error-correcting codes seek to address the problem of transmitting information effi-

ciently and reliably across noisy channels. Among the most competitive codes developed

in the last 70 years are low-density parity-check (LDPC) codes, a class of codes whose

structure may be represented by sparse bipartite graphs. In addition to having the potential

to be capacity-approaching, LDPC codes offer the significant practical advantage of low-

complexity graph-based decoding algorithms. Graphical substructures called trapping sets,

absorbing sets, and stopping sets characterize failure of these algorithms at high signal-to-

noise ratios.

This dissertation focuses on code design for and analysis of iterative graph-based message-

passing decoders. The main contributions of this work include the following: the unifica-

tion of spatially-coupled LDPC (SC-LDPC) code constructions under a single algebraic

graph lift framework and the analysis of SC-LDPC code construction techniques from

the perspective of removing harmful trapping and absorbing sets; analysis of the stopping

and absorbing set parameters of hypergraph codes and finite geometry LDPC (FG-LDPC)

codes; the introduction of multidimensional decoding networks that encode the behavior of

hard-decision message-passing decoders; and the presentation of a novel Iteration Search

Algorithm, a list decoder designed to improve the performance of hard-decision decoders.

iii

ACKNOWLEDGMENTS

First and foremost, thank you to my adviser, Christine Kelley, for her unwavering support

and good humor. Her advice has been an invaluable resource, and I truly cannot thank her

enough for her dedication to my work and mathematical upbringing.

Thank you to my readers, Jamie Radcliffe and Judy Walker, and to Mark Brittenham,

Myra Cohen, and Khalid Sayood for showing interest in my work and generously con-

tributing their time to be on my supervisory committee.

The Whitman College math department has my gratitude for challenging me and en-

couraging me to continue on in mathematics. Deserving of particular thanks are: Barry

Balof, for convincing me to be a math major, Russ Gordon, for an analysis course that got

me through a qualifying exam, David Guichard, for teaching me the value of productive

struggle, and Pat Keef, for his enthusiastic approach to teaching mathematics.

Endless thanks are due to everyone who has made Nebraska feel like home. Among

these (numerous) people are the brilliant officewomen of Avery 232, who have added a

whole bunch of brightness to my life. Thank you also to family and friends who have

supported me from near and far. I appreciate you all so much.

Finally, thank you to Eric Canton, for an unrelenting belief in my abilities and ambi-

tions, for knowing how to make me laugh at the unlikeliest of times, and for brewing me a

lot of coffee.

iv

Table of Contents

1 Introduction 1

2 Preliminaries 4

2.1 Low-density parity-check codes . 6

2.1.1 Protograph LDPC codes . 9

2.2 Iterative decoders . 11

2.3 Trapping, stopping, and absorbing sets . 13

3 Spatially-coupled LDPC Codes 17

3.1 Construction & decoding of SC-LDPC codes 18

3.1.1 Array-based SC-LDPC codes . 20

3.1.2 Windowed decoding . 22

3.2 Trapping set removal algorithm . 24

3.2.1 Ranking trapping sets . 27

3.2.2 Simulation results . 29

3.2.3 Trapping sets & the windowed decoder 30

3.3 Algebraic graph lift framework for SC-LDPC code construction 31

3.3.1 Combining edge-spreading and the terminal lift 38

3.3.2 Comparison of construction methods 40

3.4 Removing absorbing sets . 41

v

4 Bounds on Stopping and Absorbing Set Sizes 47

4.1 Finite geometry LDPC codes . 47

4.1.1 Smallest absorbing sets for EG0 and PG using k-caps 52

4.1.2 Absorbing set parameters and the tree bound 53

4.2 Hypergraph codes . 59

4.2.1 Bounds on regular hypergraph codes 62

4.2.2 Algebraic lifts of hypergraphs . 66

5 Multidimensional Decoding Networks 71

5.1 Multidimensional network framework . 72

5.1.1 Trapping set characterization . 75

5.2 Representations yielding transitivity . 79

5.2.1 Applications . 84

5.3 Periodic decoders and the Iteration Search Algorithm 90

6 Conclusions 100

Bibliography 101

1

Chapter 1

Introduction

Mathematical coding theory addresses the problem of transmitting information efficiently

and reliably across noisy channels; that is, finding methods of encoding information with

the minimum redundancy required to protect against noise during transmission. In 1948,

Claude Shannon pioneered the field by proving that for every channel across which one

might wish to send information, there exist methods of encoding and decoding that are

both arbitrarily efficient and reliable [1]. In particular, every channel has a capacity, and

there exist codes and decoders for every rate below capacity such the probability of error

after decoding is as small as desired. Since this revelation, coding theorists have worked to

find code ensembles and decoders satisfying these conditions.

Among the most competitive codes developed in the last 70 years are low-density

parity-check (LDPC) codes, a class of codes whose structure may be represented by sparse

bipartite graphs, or, equivalently, sparse parity-check matrices [2,3]. LDPC codes were first

introduced by Gallager in his 1962 Ph.D. dissertation [2], and gained renewed interest in

the coding community with the advent of turbo codes in 1993 [4]. Graph-based codes may

now be found in a variety of communications applications, ranging from video streaming

to data storage.

Among their strengths, LDPC codes offer the significant practical advantage of low-

complexity graph-based decoding algorithms. This dissertation focuses on code design for

2

iterative graph-based message-passing decoders. Graphical substructures called trapping

sets characterize failure of message-passing decoding algorithms for channels with low

error probability – that is, high signal-to-noise ratios (SNR) – creating what is called the

error floor region of bit error rate (BER) curves. We examine trapping sets – as well

as the related substructures of absorbing sets and stopping sets – and methods for their

removal with reference to a variety of code families, including spatially-coupled LDPC,

finite geometry LDPC, and hypergraph codes. Finally, we introduce a multidimensional

network framework for the general analysis of iterative decoders.

Regular LDPC codes were shown to be asymptotically good in Gallager’s original

work [2]; in [5], irregular LDPC codes were optimized to be capacity-achieving. More

recently, LDPC codes have been used to construct a class of codes called spatially-coupled

LDPC (SC-LDPC) codes, which have been shown to exhibit threshold saturation, resulting

in capacity-approaching, asymptotically good codes [6–8]. We show that the eponymous

coupling step of the construction process for these codes may be exploited to remove harm-

ful trapping sets in the resulting code. Furthermore, we show that the variety of existing

construction methods for SC-LDPC codes may be unified using the language of algebraic

graph lifts, allowing for a more systematic removal of harmful absorbing sets as well as

simplified analysis of construction techniques.

The inherent structure of finite geometry LDPC (FG-LDPC) codes [9] and codes con-

structed from hypergraphs [10] allows us to determine harmful stopping and absorbing

set parameters for these classes of codes. We show that FG-LDPC codes constructed from

the line-point incidence matrices of finite Euclidean and projective planes have smallest ab-

sorbing sets whose parameters meet the lower bounds shown in [11], and that these smallest

absorbing sets are elementary. We then present new results on the number of erasures cor-

rectable in regular hypergraph codes, and give a proof of the existence of infinite sequences

of regular hypergraphs with expansion-like properties by introducing a construction for

3

hypergraph lifts.

Finally, we present a multidimensional decoding network framework that encodes the

behavior of any hard-decision message-passing decoder for a code with a given graph rep-

resentation. Notably, the trapping sets of a code may be easily seen using the decoding

network of the code and chosen decoder. Decoding networks with a particular transitivity

property allow for a simplified application of results; we show that every code with dimen-

sion at most two less than its block length has a transitive representation under the Gallager

A decoding algorithm. We also introduce the decoding diameter, aperiodic length, and pe-

riod of a decoding network as parameters containing essential information about the inter-

action of the code and decoder. Employing these ideas, we then present an Iteration Search

Algorithm, a type of list decoder designed to improve the performance of hard-decision

decoders for which decoding network parameters are known.

The dissertation is organized as follows. Chapter 2 introduces the background neces-

sary for material in later chapters. In Chapter 3, we unify the construction of SC-LDPC

codes within a general algebraic graph lift framework, and present strategies for removing

trapping and absorbing sets during the construction process. Parts of Chapter 3 appear in

joint work with Kelley [12] and with Habib, Kelley, and Kliewer [13]. Chapter 4 focuses

on bounds on the sizes of stopping and absorbing sets in FG-LDPC codes and hypergraph

codes. This work appears in joint work with Haymaker and Kelley [14] and Mayer and

Kelley [15]. A multidimensional network framework for trapping set analysis is intro-

duced and analyzed in Chapter 5, and a novel list decoder for improved performance of

hard-decision decoders is also introduced. Work in Chapter 5 also appears in [16] and [17].

Chapter 6 concludes the dissertation.

4

Chapter 2

Preliminaries

Suppose we have some information we wish to transmit, represented by vectors of length

k over the field with q elements: that is, by vectors in Fk
q where q is a prime power. Based

on the channel over which these vectors are transmitted, some amount of error will be in-

troduced. For example, a wireless signal may have noise introduced by the hardware in its

transmitter or receiver, and information encoded in a CD may experience errors when the

CD is scratched. Errors may take many forms, including erasures, bit switches, or the addi-

tion of real-valued noise from a normal distribution. These channel types may be modeled

mathematically by the q-ary erasure channel (QEC), the q-ary symmetric channel (QSC),

and the additive white Gaussian noise (AWGN) channel, respectively. This dissertation will

focus on binary codes, for which the size of the field is q = 2. Figures 2.1 and 2.2 show

representations of the binary erasure channel (BEC), in which binary bits are erased with

some probability, and the binary symmetric channel (BSC), in which binary bits are flipped

with some probability.

In order to protect from channel noise, redundancy is introduced into our information

vectors by embedding them within Fn
2, where n > k: an [n, k] binary linear block code C

is a linear subspace of Fn
2 of dimension k, and thus can be viewed as the kernel of a (non-

unique) parity-check matrix, generally denoted by H. We call n the block length of C, and

k its dimension. The rate of C is given by k/n, and is a measure of the code’s efficiency.

5

Figure 2.1: A representation of the binary era-
sure channel (BEC), over which binary bits are
erased with probability p, and transmitted reli-
ably with probability 1 − p.

Figure 2.2: A representation of the binary sym-
metric channel (BSC), over which binary bits are
flipped with probability p, and transmitted reli-
ably with probability 1 − p.

We may also consider C as the row space of a generator matrix G. The dual code of the

code C, denoted C⊥, is the subspace of Fn
2 formed by the vectors whose inner product with

all elements of C is equal to zero. Notice that the rows of a parity-check matrix of C are

elements of C⊥.

Classical coding theory addresses the problem of finding subspaces of low codimension

(i.e. high rate) that also have high minimum distance – the minimum Hamming weight of a

nonzero vector in the subspace, measured as the minimum number of nonzero coordinates.

Since a linear code is a subspace of Fn
2, the minimum Hamming weight is equal to the

minimum Hamming distance between two vectors in the space. We denote the minimum

distance of a code C by dmin(C). Intuitively, if codewords are more “spread apart” in the

space, we have a good chance of decoding a received word to the correct codeword, as

long as the channel did not take it too far from the originally transmitted word. More

formally, if we receive the word y from the channel, decoding to the closest codeword ĉ in

terms of Hamming distance will yield the correct codeword as long as there are fewer than

bdmin(C)/2c errors in the received word. This is called Nearest Neighbor decoding. In the

6

case that the channel is the QSC and all codewords are equally likely, this is equivalent to

ĉ = arg max
c∈C

P(y received | c sent),

called Maximum Likelihood (ML) decoding.

From a choice of binary parity-check matrix H, a binary linear code may be represented

graphically by viewing H as the (simplified) adjacency matrix of a bipartite graph: one

vertex set consists of variable nodes corresponding to the columns of H, and the other

vertex set consists of constraint or check nodes corresponding to the rows of H. There

is an edge between a variable node and a check node if and only if there is a 1 in the

corresponding entry of H. This graph representation was introduced by Tanner in 1981

as a means to recursively construct codes with low-complexity encoders and decoders [3],

and is now called a Tanner graph of the code. A vector in Fn
2 is a codeword if and only if

when the coordinates are input to the correct variable nodes of the graph, the sum of the

neighbors of each check node is 0 ∈ F2 [3]. For codes over Fq, the edges of the Tanner

graph are labeled with the corresponding nonzero matrix entry from Fq, and a vector in Fn
q

is a codeword if and only if when the coordinates are input to the correct variable nodes of

the graph, the weighted sum of the neighbors of each check node is 0 ∈ Fq. Notice that in

either case, this is equivalent to the vector belonging to the kernel of H. A small example

illustrating this relationship is shown in Figure 2.3.

2.1 Low-density parity-check codes

Low-density parity-check (LDPC) codes are a class of highly competitive linear codes in-

troduced by Gallager in 1962 whose parity-check matrices have a low density of 1’s; equiv-

alently, an LDPC code’s Tanner graph representation is sparse with respect to the number

of edges [2]. Gallager’s work focused on (j, k)-regular LDPC codes, in which the number

7

H =


1 1 1 0 1 0
0 1 1 1 0 1
1 0 0 0 1 1
0 0 1 1 1 0



Figure 2.3: A parity-check matrix, H, of a code C and its corresponding Tanner graph representa-
tion. Variable nodes are denoted by •, and check nodes are denoted by ^. The highlighted 1’s in H
correspond to the highlighted edges of the graph.

of nonzero entries in each column or row of the parity-check matrix is held constant at j

or k, respectively. He showed that, with high probability, randomly chosen (j, k)-regular

LDPC codes approach the Gilbert-Varshamov bound (see e.g. [18, p.86]) for large j and

k, meaning these ensembles are asymptotically good in the sense that their minimum dis-

tance grows with block length for a fixed nonzero rate. However, Gallager also showed that

(j, k)-regular codes fall short of channel capacity. Irregular LDPC code ensembles, which

have varying column and row weights, were introduced as a modification of Gallager’s

work [19]. The row and column weights of these codes follow a choice of degree distribu-

tion. Degree distributions were optimized in [5], resulting in the first known construction

of capacity-achieving codes since Shannon originally proved their existence in 1948 [1].

However, this result relies on very large block length. An important open question is how

we may design explicit finite-length, capacity-achieving, asymptotically good codes.

Tanner used his graph representation to expand the notion of an LDPC code to gener-

alized low-density parity-check (GLDPC) codes, which assign smaller “subcodes” to each

of the constraint nodes, rather than simple parity checks. It is important to note that the

term subcode, while standard in the literature, is something of a misnomer: these are not

literally subcodes of the overall code. Instead, each subcode has block length equal to the

8

degree of its constraint node, and the constraint node is considered satisfied if, for some

fixed ordering of the incident graph edges, the adjacent variable nodes form a codeword of

the subcode. Tanner showed that lower bounds for the rate and minimum distance of the

overall code improve as the same parameters improve in the chosen subcode:

Theorem 2.1.1. [3] Let R be the rate of a linear code constructed from an (m, n)-regular

bipartite graph. If a fixed linear subcode with parameters (n, k) and rate r = k/n is associ-

ated with each of the constraint nodes, then

R ≥ 1 − (1 − r)m.

Moreover, he gave a bound on the minimum distance of the overall code which depends

on the minimum distance of the subcode as well as the girth of the Tanner graph:

Theorem 2.1.2 (The Tree Bound on Minimum Distance). [3] Let d be the minimum Ham-

ming distance of the single subcode acting at all constraint nodes, D the minimum Ham-

ming distance of the resulting code, m the degree of the variable nodes, and g the girth of

the Tanner graph. Then

D ≥ d
(
[(d − 1)(m − 1)](g−2)/4

− 1
(d − 1)(m − 1) − 1

)
+

d
m

[(d − 1)(m − 1)](g−2)/4 for g/2 odd, and

D ≥ d
(
[(d − 1)(m − 1)]g/4

− 1
(d − 1)(m − 1) − 1

)
for g/2 even.

Recall that the Tanner graph of an LDPC code is not unique, but depends on our choice

of parity-check matrix. Theorem 2.1.2 suggests that choosing a representation with high

girth will give us a tighter lower bound on the minimum distance of the code, and was

9

the first result to indicate that decoding is improved with large girth. Since then, research

has shown that girth is not the only graph parameter that will affect the performance of the

decoder. In particular, how cycles are arranged in the graph has a heavy influence, and other

graph properties affect decoding as well. It is then apparent that the choice of parity-check

matrix, and thus Tanner graph, for a code will have an effect on the performance of iterative

decoding algorithms, which we will discuss further in Section 2.3.

The capacity-approaching performance of turbo codes and associated graph-based de-

coders introduced by Berrou, Glavieux, and Thitimajshima in 1993 [4] sparked renewed

interest in the long-dormant1 area of LDPC codes and graph-based codes generally, giving

rise to the work of Sipser and Spielman [21]. In 1996, Sipser and Spielman presented a

family of explicit asymptotically good codes using expander graphs, which may be charac-

terized by a large spectral gap in the adjacency matrix of a regular graph, or by an expansion

factor guaranteeing a lower bound on the size of the neighborhood of subsets of variable

nodes. Their results showed that codes from graphs with good expansion have improved

error correction capabilities [21].

2.1.1 Protograph LDPC codes

One common method of constructing LDPC codes involves designing a small protograph

block code and then algebraically lifting the corresponding Tanner graph to arrive at a code

with longer block length, while preserving some desirable Tanner graph properties [22,23].

A graph lift is a finite topological covering space of a graph; we may view a degree J lift

of a protograph as a graph consisting of clouds of J copies of each of the vertices of the

protograph, with J edges forming a matching between each pair of clouds which arise from

adjacent vertices in the protograph. To specify the placement of these edges, we may assign

permutations from S J, the symmetric group on J elements, to the edges of the protograph.
1with the exceptions of Tanner’s work and the work of Zyablov and Pinsker in 1975 [20].

10

More formally,

Definition 2.1.3. Let G be a graph with vertex set V = {v1, . . . , vn} and edge set E ⊆ V ×V.

A degree J lift of G is a graph Ĝ with vertex set V̂ = {v11 , . . . , v1J , . . . , vn1 , . . . , vnJ } of size nJ

and for each e ∈ E, if e = viv j in G, then there are J edges from {vi1 , . . . , viJ } to {v j1 , . . . , v jJ }

in Ĝ which form a vertex matching. To algebraically obtain a specific lift Ĝ, permutations

may be assigned to each of the edges in G so that if e = viv j is assigned a permutation

τ ∈ S J, the corresponding edges in Ĝ are vikv jτ(k) for 1 ≤ k ≤ J. The edge e is considered

as directed for the purpose of lifting.

Recall that cycle notation for an element in S J is an ordering of the elements of [J] =

{1, 2, . . . , J} in a list partitioned by parentheses which is read as follows: each element is

mapped to the element on its right, and an element before a closing parenthesis is mapped

to the first element within that parenthesis. Each set of parentheses denotes a cycle. The

cycle structure of a permutation π ∈ S J is a vector (c1, . . . , cJ) where, for i ∈ [J], ci denotes

the number of i-cycles in the cycle notation of π. We will also equate a permutation in S J

with its corresponding J × J permutation matrix, where entry (i, j) is equal to 1 if j 7→ i in

the permutation, and 0 otherwise.

Example 2.1.4. The permutation π = (1 2)(3 4 5) is the permutation which maps 1 to 2,

2 to 1, 3 to 4, 4 to 5, and 5 to 3. The cycle structure of π is (0, 1, 1, 0, 0) since π has one

2-cycle and one 3-cycle. The permutation π may be represented by the permutation matrix



0 1 0 0 0

1 0 0 0 0

0 0 0 0 1

0 0 1 0 0

0 0 0 1 0


.

11

We may also view the process of lifting a protograph as replacing the nonzero entries

of its adjacency matrix with J × J permutation matrices, and the zero entries with the

J× J all-zeros matrix. In practice, permutation edge assignments are often made randomly.

However, the following theorem demonstrates how graph lifting may be leveraged to im-

prove the girth of a graph, while retaining properties such as degree distribution. Let the

net permutation of a path in a protograph be the product of its (oriented) permutation edge

labels.

Theorem 2.1.5. [24] If C is a cycle of length k with net permutation π in the graph G, and

Ĝ is a degree J lift of G, then the edges corresponding to C in Ĝ will form c1 + · · · + cJ

components with exactly ci cycles of length ki each, where (c1, . . . , cJ) is the cycle structure

of π.

Permutation edge assignments to the protograph, and the corresponding graph lift prop-

erties, are studied further in [24].

2.2 Iterative decoders

Due to their sparsity, LDPC codes are amenable to low-complexity graph-based message-

passing decoding algorithms, which drastically reduce decoding complexity from that of

ML decoding for practical codes of large block length. Each such algorithm processes in-

formation locally in some way at variable nodes, and then sends a corresponding message to

adjacent constraint nodes. The constraint nodes, in turn, process their received information,

and send messages back to variable nodes. In each case, a node does not use information

received along a given edge to form the message to be sent back along that edge. These

processes occur in discrete time, and a single iteration is considered a complete round of

variable-to-check and check-to-variable messages.

12

LDPC codes were first introduced alongside what are known as the Gallager A/B de-

coding algorithms [2]. Both algorithms operate for transmission over the BSC. Variable

to check (µv→c) and check to variable (µc→v) messages for the Gallager A algorithm are

calculated as follows:

µv→c(r,m1, . . . ,md(v)−1) =


r + 1 if m1 = · · · = md(v)−1 = r + 1

r else,
(2.1)

where r is the received value at variable node v, d(v) is the degree of v, and m1, . . . ,md(v)−1

are the most recent messages received from the check nodes which are not those to which

the current message is being calculated. Notice, then, that the mi’s will be a different set of

messages depending on the check node to which the current message is being sent. In the

other direction,

µc→v(m1, . . . ,md(c)−1) =

d(c)−1∑
i=1

mi , (2.2)

where here m1, . . . ,md(c)−1 are messages received from variable nodes, and will differ de-

pending on to which variable node the current message is being sent. Note that calculations

are performed in F2. Gallager B relaxes the unanimity condition of µv→c. Throughout the

examples in this work which use Gallager A decoding, we let the final decoder output at a

variable node v be given by the received value at v, unless incoming messages µc→v for c

adjacent to v unanimously disagree with this received value.

A variety of graph-based decoding algorithms have been introduced since Gallager’s

original work, including other hard message-passing algorithms [3, 21], and implementa-

tions of belief propagation (BP) decoding. The sum-product algorithm (SPA), a method

of BP decoding [25, 26], differs from Gallager A/B in that it is not a bit-flipping algo-

rithm. Instead, it sends and processes soft messages that represent the probability of a node

13

assuming a certain value.

2.3 Trapping, stopping, and absorbing sets

Unfortunately, despite their advantage in terms of complexity, iterative message-passing

decoders can get caught in error patterns, even when there are relatively few errors in re-

ceived words – that is, even when transmission is at high signal-to-noise ratios (SNR). This

behavior is reflected in so-called error floors of bit error rate (BER) curves. Such failures

have been shown to be caused by substructures in a code’s graph representation; among

these problematic structures are stopping sets, absorbing sets, pseudocodewords, and trap-

ping sets [27–30]. The presence of trapping sets is highly dependent on the choice of graph

representation, channel, and decoder. Absorbing sets and stopping sets are combinatorially-

defined, and are special cases of the more general trapping sets; nevertheless, it has been

shown that their presence affects decoder performance over many channels and under a

variety of decoders.

Let C be a binary code of length n with associated Tanner graph G, to be decoded with

some chosen hard- or soft-decision decoder. Following the notation and definitions in [31],

suppose that the codeword x is transmitted, and y is received. Let y` be the output after `

iterations of the decoder are run on G. A node yi, with 1 ≤ i ≤ n, is said to be eventually

correct if there exists L ∈ Z≥0 such that y`i = xi for all ` ≥ L.

Definition 2.3.1. Let T (y) denote the set of variable nodes that are not eventually correct

for a received word y, and let G[T] denote the subgraph induced by T (y) and its neighbors

in the graph G. If G[T] has a variable nodes and b odd-degree check nodes, T (y) is said

to be an (a, b)-trapping set. In this case, the set of variable nodes in error in the received

word y is called an inducing set for T (y).

Examples of possible trapping set structures are given in Figure 2.4.

14

Definition 2.3.2. The critical number of a trapping set T , denoted m(T), is the minimum

number of variable nodes in an inducing set of T .

It is important to note that the critical number may arise from an inducing set not fully

contained in T .

Due to their complexity, trapping sets are typically analyzed under hard-decision de-

coders, such as Gallager A/B [2, 32], although interesting work has also been done on

trapping set analysis for soft-decision decoders on the AWGN channel [33–35]. Simula-

tion results suggest that trapping sets with respect to hard-decision decoders also affect the

error floor performance of soft-decision decoders [31, 36]. Several specific instances of

trapping sets under certain hard-decision decoders are defined next.

Figure 2.4: Examples of a (4, 4)-trapping set on the left, and a (5, 3)-trapping set on the right. Both
examples are from [36]. Variable nodes are denoted by •, even degree check nodes (in the induced
subgraph shown) are denoted by ^, and odd degree check nodes by _.

Definition 2.3.3. [27,37,38] A stopping set in the Tanner graph representing a generalized

LDPC code is a subset S of variable nodes such that each neighbor of S has at least dmin(C)

neighbors in S , where C is the subcode represented by each constraint node.

Because the minimum distance of a simple parity-check code is equal to 2, this defini-

tion reduces in the LDPC code case to a subset S of variable nodes such that each neighbor

of S is connected to S at least twice. A stopping set is a trapping set when information

is sent across an erasure channel and decoded using a peeling decoder, in which erasures

15

are iteratively peeled away. Intuitively, when the values of variable nodes in a stopping set

are erased, the decoder will be unable to determine their correct values due to a lack of

information, and the decoding process will halt.

Once a node is corrected with this decoder, it remains statically correct, so any inducing

set of a stopping set must contain that stopping set. This implies that the critical number of

a stopping set of size a is equal to a. A stopping set is said to be minimum in a Tanner graph

if there is no stopping set of smaller size in the graph. The size of a minimum stopping

set is denoted smin(H), where H is the corresponding parity-check matrix; it is desirable to

design codes for which smin(H) is large, though it should be noted that smin(H) is bounded

above by the minimum distance of the code, since the support of any codeword forms a

stopping set.

For other channels, the following structures were introduced as a way to analyze error

floor behavior.

Definition 2.3.4. [39] An (a, b)-absorbing set is a subset D of variable nodes in a code’s

Tanner graph such that |D| = a, |O(D)| = b, and each variable node in D has strictly fewer

neighbors in O(D) than in N(D) \ O(D), where N(D) is the set of check nodes adjacent to

variable nodes in D and O(D) is the subset of check nodes of odd degree in the subgraph

induced on D ∪ N(D). An (a, b)-fully absorbing set is an (a, b)-absorbing set with the

additional property that each variable node not in D has strictly fewer neighbors in O(D)

than in F \ O(D), where F is the set of all check nodes.

Absorbing sets arise as trapping sets under bit-flipping decoders: in particular, fully

absorbing sets are trapping sets under the Simple Parallel Decoding Algorithm of [21]. An

elementary absorbing set is an absorbing set such that all adjacent check nodes have degree

1 or 2 in the induced subgraph. The trapping set examples in Figure 2.4 are also elementary

absorbing sets. Though absorbing sets are not truly trapping sets for other decoders, their

16

presence has been shown to have a significant effect on error floor performance [40, 41].

17

Chapter 3

Spatially-coupled LDPC Codes

Spatially-coupled LDPC (SC-LDPC) codes form an important class of LDPC codes. First

introduced by Felström and Zigangirov in [6], SC-LDPC ensembles have been shown to be

asymptotically good, and capacity-approaching under low-complexity decoding [7]. Fur-

thermore, there exist ensembles which are good for an entire class of channels, rather than

being channel-dependent [8]. One method of constructing SC-LDPC codes is by applying

an algebraic graph lift to a spatially-coupled protograph (SC-protograph). To form the SC-

protograph, a base Tanner graph is copied and coupled. There are many ways to couple the

edges from one copy of the base graph to the other copies; this process of coupling is gener-

ally termed edge-spreading. The repetition of structure imposed in this process allows the

resulting SC-LDPC code to be a terminated LDPC convolutional code if the permutations

applied to lift the resulting SC-protograph are cyclic permutations [42, 43]. Furthermore,

this repeated structure allows for the implementation of a windowed decoder, a decoder

that operates on only a small portion of the code’s graph at a time [44, 45]. In general, ter-

minated SC-LDPC codes are desirable for practical applications due to their performance

and structure [39, 42, 46].

Despite their many advantages, SC-LDPC codes may still exhibit error floors in their

BER curves. However, the edge-spreading step of the construction process of SC-LDPC

codes may be leveraged to alleviate the influence of harmful trapping sets in the code’s

18

Tanner graph representation. A significant amount of work has been done to this end [12,

13, 39, 46–49]. In this chapter, we present several known methods of constructing SC-

LDPC codes, and show how these methods may be implemented with trapping set removal

in mind. We then establish an algebraic construction approach for SC-LDPC codes that

unifies disparate work under a single umbrella. Finally, we show how this approach can

prove highly advantageous in the quest to eliminate harmful substructures in a code’s graph

representation. Work in subsection 3.2 appears in [12], and work in subsections 3.3 and 3.4

appears in [13]1.

3.1 Construction & decoding of SC-LDPC codes

To construct an SC-protograph, L copies of a base graph, such as the one shown in Figure

3.1, are coupled. The coupling process may be thought of as first replicating the base graph

at positions 0, . . . , L−1, and then “edge-spreading” the edges to connect the variables nodes

at position i to check nodes in positions i, . . . , i+m so that the degrees of the variable nodes

in the base graph are preserved. The number of copies of the base graph, L, is referred to

as the coupling length, and the number of future copies of the base graph that an edge may

spread to, m, is called the memory or coupling width. The way in which edges are spread

from the variable nodes in Position 0 will be applied at all future positions 1, . . . , L − 1.

In the case of a terminated SC-protograph, terminating check nodes are introduced at the

end of the SC-protograph as necessary to terminate the SC-protograph. An example of an

SC-protograph obtained by coupling the base graph in Figure 3.1 is given in Figure 3.2.

Allowing edges to instead loop back around to the first few positions of check nodes results

in a tailbiting SC-protograph, in which both variable and check node degrees are preserved

in all positions.
1 c© 2016, 2017 IEEE

19

Figure 3.1: Base Tanner graph to be coupled to form an SC-protograph. Variable nodes are denoted
by •, and check nodes are denoted by ^. c© 2016, 2017 IEEE

Figure 3.2: Terminated SC-protograph resulting from randomly edge-spreading L copies of the
Tanner graph in Figure 3.1 with memory m = 1, and applying the same map at each position. c©
2016, 2017 IEEE

This edge-spreading process may also be viewed in terms of the parity-check matrix,

H, of the base graph. Edge-spreading is equivalent to splitting H into a sum of m + 1

matrices of the same dimension, so that H = H0 + H1 + · · · + Hm, and then arranging them

into L block columns as in Matrix (3.1) to form the parity-check matrix of a terminated

SC-protograph. The tailbiting code corresponding to this terminated code has parity-check

matrix as in Matrix (3.2), so that every check node has degree equal to its corresponding

vertex in the base graph.



H0

H1 H0

...
...

. . .

Hm

Hm

H0

. . .
...

Hm



(3.1)



H0 Hm · · · H1

H1
. . .

. . .
...

... Hm

Hm
. . .

. . .

Hm · · · H0



(3.2)

20

Edge-spreading may be done in a variety of ways. Two common methods are [8]: (i)

For each variable node v in Position 0, if v has j neighbors c1, . . . , c j in the base graph,

randomly choose for each ` = 1, . . . , j, a copy of c` from the Positions 0, . . . ,m, and (ii)

if every variable node in Position 0 has j neighbors in the base graph, randomly choose j

of the Positions 0, . . . ,m to spread edges to, then, for each of the j neighbors c1, . . . , c j of

a variable node v, randomly choose a check neighbor from the copies of c` (` = 1, . . . , j)

such that v has exactly one neighbor in each of the chosen j positions, and exactly one of

each check node neighbor type. Note that method (ii) is a particular instance of (i).

Finally, regardless of the edge-spreading technique, a terminal lift may then be applied

to the SC-protograph, yielding the SC-LDPC code.

3.1.1 Array-based SC-LDPC codes

Array-based LDPC codes are a class of structured LDPC codes which have been used to

construct SC-LDPC codes [39, 50]. An array-based LDPC block code with parameters

γ, p ∈ Z>0, where p is prime, is defined by the pγ × p2 parity-check matrix

H(γ, p) =



I I I · · · I

I σ σ2 · · · σp−1

I σ2 σ4 · · · σ(p−1)·2

...
...

...
...

I σγ−1 σ2(γ−1) · · · σ(p−1)(γ−1)


,

where I denotes the p × p identity matrix, and σ is the p × p permutation matrix given by

left-shifting the columns of the p × p identity matrix by one position, as shown below.

21

σ =



0 0 0 1

1 0 . . . 0

0 1 . . . 0
. . .

. . .
. . .

0 1 0


.

We may use the Tanner graph of an array-based LDPC block code as the base graph

when constructing an SC-LDPC code. One way of defining the edge-spreading in this case

is via a cutting vector, denoted by ξ = [ξ0, ξ1, . . . , ξγ−1] where 0 ≤ ξ0 < ξ1 < . . . < ξγ−1 ≤ p,

which defines how the parity-check matrix of the base graph will be split into a sum of two

matrices [6,39]. In particular, the first ξi block columns of the (i+1)st block row of H(γ, p)

are copied into the corresponding positions in a pγ× p2 matrix H0, and the remaining p−ξi

are copied into a matrix H1. The remaining entries of each matrix are set to zero. Note that

this technique automatically gives a memory of m = 1: indeed, H0 + H1 = H(γ, p).

For example, if p = γ = 3, and ξ = [0, 2, 3], then

H(3, 3) =


I I I

I σ σ2

I σ2 σ

 ,

H0 =


0 0 0

I σ 0

I σ2 σ

 , and H1 =


I I I

0 0 σ2

0 0 0

 .
The parity-check matrix of the corresponding SC-protograph with coupling length L is

given by H(γ, p, L, ξ), shown in Equation 3.3, which has L block columns. In this construc-

tion method, a terminal lift is not typically applied.

22

H(γ, p, L, ξ) =



H0

H1 H0

H1
. . .

. . . H0

H1 H0

H1



. (3.3)

The cutting vector approach has been expanded in [47] and [48] to allow for higher

memory and more freedom in the edge-spreading structure, though blocks of edges remain

spread as single units.

The high structure of these array-based SC-LDPC (AB-SC-LDPC) codes has allowed

for the analysis of multiple parameters, including minimum distance [51], and the presence

of absorbing sets [13, 39, 46–48].

3.1.2 Windowed decoding

While SC-LDPC codes may be decoded via belief propagation performed on the code’s

entire graph, we may instead take advantage of their structure in order to decode smaller

portions of the code in parallel, using a windowed decoder. This is ideal for applications

such as streaming, where information packets should be received and decoded in order,

rather than being recovered all at once. Note that decoding is performed on the terminal

lift of the SC-protograph, corresponding to the SC-LDPC code, if such a lift is performed.

However, as discussed in Chapter 2, lifting preserves much of the structure of the SC-

protograph. In particular, each node is replaced with a “cloud” of nodes in the lift, but

variable and constraint nodes may still be partitioned into positions. From the way in which

the SC-protograph is constructed, a single position of variable nodes may be adjacent to at

most m + 1 positions of constraint nodes, where m is the memory of the code. Therefore,

23

variable nodes that are far enough apart in the SC-protograph, and thus in the resulting

SC-LDPC code, will not be involved in the same check equations. Exploiting this idea,

Felström and Zigangirov proposed a pipeline decoder in [6], and windowed decoders for

LDPC convolutional codes were analyzed in numerous subsequent papers [44, 45, 52–54].

Papaleo et al. and Iyengar et al. [44, 45] showed that the structure of SC-LDPC codes

allows for the use of windowed decoders.

A windowed decoder runs on a small window of nodes, sliding from left to right along

the received bits as it decodes. The window is defined to be W consecutive positions of

constraint nodes and all of their adjacent variable nodes [52]. We will assume, as in [44] and

[52], that the window length W satisfies m + 1 ≤ W ≤ m + L, where L is the code’s coupling

length. While decoding on a given portion of the graph, the decoder runs until a target

error probability in the first position of variable nodes in the window, called the targeted

symbols, has been reached, or until a fixed number of iterations have been completed [45,

52]. Then, the window slides over by one position of constraint nodes, and repeats this

process. We call the set of edges contained in a window at a given decoding instant the

window configuration of the windowed decoder. Note that, in a terminated SC-LDPC

code, the end window configurations will differ from the typical window configuration.

If the code is terminated with coupling length L, then the process will terminate after L

windows have been decoded.

We may also view the windowed decoder in terms of the parity-check matrix of the

SC-LDPC code. The window will cover W block rows, and W + m block columns. Figure

3.3 shows a decoding window in the context of the parity-check matrix of an SC-LDPC

code.

As mentioned above, windowed decoding allows for multiple decoders to run in paral-

lel. Furthermore, windowed decoding may be implemented for decreased complexity and

decoding latency with low performance degradation [7]. The structure of SC-LDPC codes

24

make them amenable to decoding with a windowed decoder, and thus to applications for

which a windowed decoder is well-suited.

Figure 3.3: A window of the windowed decoder with W = 3, operating on the parity-check matrix
of an SC-LDPC code with m = 2, and L = 6. The first block column consists of some already-
decoded code symbols in Position 0 of variable nodes, while the blocks on the lower right are
variable nodes not contained in the window, which have not yet been processed. On its next iter-
ation, the window will slide down and right by one block, and will process an identical window
configuration.

3.2 Trapping set removal algorithm

In this section, we present an algorithm for general edge-spreading that is designed to

eliminate certain trapping set subgraphs in the resulting SC-protograph. We assume our

base Tanner graph to be the Tanner graph of a block code, with no multi-edges and a

reasonable block length. Our algorithm assumes that a priority list of trapping sets to

remove is provided at the start. Methods such as that presented in [55] may be used to

25

identify trapping sets in the base graph, which is a graph of reasonably small block length.

The priority list, which we will call P, contains trapping sets from the base graph listed

individually; that is, if two sets of variable nodes induce trapping set subgraphs that are

isomorphic (and therefore, also of the same type), each will be listed in P as separate

entries. In Section 3.2.1, we describe how the ordering of this list may be obtained using the

trapping set poset structure; the list may also be obtained using methods from the trapping

set ontology [36]. We adopt some terminology from the algorithm in [56] that is used to

remove trapping sets in protograph LDPC codes.

Let P = {T1,T2,T3, . . . ,Tk} be a list of trapping sets to avoid among variable nodes

within each position of the SC-protograph, in order of priority. Let m be an upper bound

on the desired memory of our SC-protograph, and let ETi denote the set of edges in G[Ti]

and Ei,c the set of edges in G[Ti] incident to check node c. Let ec denote the check node

incident to an edge e in the Tanner graph, and recall that dH(v) denotes the degree of vertex

v in the graph H. We present Algorithm 1, below, to remove trapping sets from the priority

via edge-spreading.

The central idea of Algorithm 1 is to break apart the most harmful trapping set sub-

graphs appearing in the base graph by spreading their edges to later positions in the SC-

protograph. By “freezing” edges which, within a trapping set subgraph on the priority list,

share a check node with a spread edge, we ensure that we do not simply reconstruct the

trapping set subgraph with check nodes in later positions. Because trapping set subgraphs

contain cycles [55], choosing to spread an edge which is contained in a cycle, when pos-

sible, will have a greater chance of eliminating more trapping set subgraphs at once, and

improving the girth of the SC-protograph. To avoid low-degree check nodes (e.g. degree 0

and 1) at either end of the SC-protograph, it may be necessary to adjust connections.

Lemma 3.2.1. The trapping sets in the set S at the termination of Algorithm 1 do not occur

26

Algorithm 1 Trapping Set Removal Algorithm
Input: L copies of the base Tanner graph G; P = {T1,T2,T3, . . . ,Tk}

1: S preadEdges← ∅
2: FrozenEdges← ∅
3: S ← ∅
4: for i = 1 to k do
5: if ETi ∩ S preadEdges = ∅ then
6: if ∃e ∈ ETi \ FrozenEdges such that dG[Ti](ec) > 1 then
7: Spread e randomly to ec in Position 1, 2, . . . , or m.
8: S preadEdges← S preadEdges ∪ e
9: FrozenEdges← FrozenEdges ∪ Ei,c

10: S ← S ∪ Ti

11: if ETi ∩ S preadEdges , ∅ then
12: Choose c ∈ G[Ti] incident to an edge in ETi ∩ S preadEdges
13: FrozenEdges← FrozenEdges ∪ Ei,c

14: if Ec \ S preadEdges , ∅ then
15: S ← S ∪ Ti

Output: S
16: Randomly spread edges in Position 0 not in FrozenEdges to a copy of its incident

check node in Position 0, 1, . . . or m.
17: Repeatedly apply this edge-spreading at Positions 1, 2, . . . , L − 1, adding terminating

check nodes as necessary.
Output: Terminated SC-protograph of coupling length L and memory at most m.

within a single position in the resulting SC-protograph. That is, if T ∈ S , then copies of the

variable nodes in T do not induce a subgraph isomorphic to G[T] in any single position

of the SC-protograph.

Proof. Suppose that, after running Algorithm 1, the trapping set T = {v1, . . . , va} ∈ S . Let

v j,i denote the copy in Position j of the SC-protograph output by Algorithm 1 of variable

node vi in the base graph. Because T ∈ S , there exists some check node c in G[T] of

degree at least 2 which had at least one incident edge spread, and at least one incident edge

frozen in Position 0. Thus, for all j ∈ {0, . . . , L − 1}, the subgraph of the SC-protograph

induced by the variable nodes {v j,1, . . . , v j,a} contains at least two copies of check node c.

Furthermore, this subgraph contains at least one copy of all other check nodes in G[T]. In

27

particular, the subgraph induced by {v j,1, . . . , v j,a} has strictly more check nodes than G[T],

so the subgraphs cannot be isomorphic. �

Remark 3.2.2. Depending on the number of trapping sets in P it is possible that not all

trapping sets in the priority list will end up in S ; however, by ranking them in order of

harmfulness (see Section 3.2.1), the most significant trapping sets will.

3.2.1 Ranking trapping sets

Recall that Algorithm 1 relies on a priority list that ranks the trapping sets to be re-

moved in the base Tanner graph, and cannot be iterated indefinitely, as eventually the set

FrozenEdges will dominate the base graph. It is therefore important to construct the pri-

ority list judiciously. A ranking of the relative harmfulness of these trapping sets should

take into account critical number and the number of small inducing sets, as well as the

topological relations between trapping sets [31, 36]. Thus, one option is to order all of the

trapping sets of the base graph G by critical number. We note that, when possible, ties may

be broken by the number of inducing sets of size equal to the critical number. That is, if

T1 and T2 both have critical number m(T), but T1 has more inducing sets of size m(T)

than T2, T1 may be deemed more harmful than T2. Constructing the priority list in this

way forces Algorithm 1 to prioritize eliminating trapping sets from most harmful to least

harmful. Such a ranking method was employed in [31] and [56].

However, a ranking based solely on critical number does not take the topological rela-

tions between trapping sets into account. A trapping set T1 is a parent of the trapping set

T2 if G[T1] is a subgraph of G[T2]. In this case, T2 is a child of T1, and in general T2 is

more harmful than T1 [36]. Under the parent/child relationship, where T1 ≤ T2 if and only

if T1 is a child of T2, the set of trapping sets in a graph G forms a partially ordered set, or

poset. Let P(G) denote this poset. Graphically, parents are subgraphs of their children, so

28

this poset has a Galois correspondence with a subposet of the poset of induced subgraphs

of G, partially ordered by inclusion.

Note that if a priority list arranged solely by critical number is used in Algorithm 1,

then edges of several children of a parent trapping set may be frozen before arriving at that

parent in the list. Doing so will freeze more edges early on, inhibiting progress through

the list. Since avoiding a parent subgraph avoids its children, more trapping sets may be

removed by simply reordering them. We now make this method precise.

Observe that eliminating a trapping set subgraph G[Ti] in G eliminates the down-set

generated by Ti,

D[Ti] = {T j | T j ≤ Ti},

in P(G). Following the notation of [57], we denote the poset of down-sets of P(G) by

J(P(G)). Note that J(P(G)) is a graded lattice, where the rank of an element of J(P(G))

is given by the size of the corresponding down-set in P(G). If we wish to eliminate a set

S of trapping sets in G deemed the most harmful, there is a unique minimal join of the

down-sets of the elements of S , given by D[S]. Eliminating the maximal elements of this

join down-set will eliminate the entire down-set, as will eliminating maximal elements of

any down-set containing this join. Thus, we can label the elements of J(P(G)) according to

how many maximal elements they contain (notice this is not necessarily order-preserving).

To determine which parents to remove in order to remove a set S of trapping sets from G,

we will look for the maximal element with minimal label in the up-set of D[S], denoted

U(D[S]), where D[S] is an element of J(P(G)).

Consider the poset of trapping sets in Figure 3.4. Ordering by critical number gives

the priority list {T8,T9,T10,T4,T5,T6,T7,T1,T2,T3}. However, if we are especially con-

cerned with eliminating trapping sets with critical number 3 or smaller, it would be more

efficient if we simply eliminated T5 followed by T6, or, even better, just T2 (notice that

29

all trapping sets of critical number at most 3 are contained in both D[T5,T6] and D[T2]).

Similarly, to eliminate trapping sets with critical number at most 4, we could prioritize

eliminating T1 and then T2 (since all trapping sets of critical number at most 4 are con-

tained in D[T1,T2]).

Figure 3.4: Example of a poset of trapping sets of a given base Tanner graph, where T (j)
i denotes

the ith trapping set, with critical number j. c© 2016 IEEE

Summarily, priority lists may be formed in many ways including by: (a) critical number,

(b) taking the maximal elements in the poset, or (c) taking the maximal elements of a down-

set containing the join of the down-sets.

3.2.2 Simulation results

Figure 3.5 shows the performance of SC-LDPC codes of block length 32000 bits and

code rate 0.45 on the binary symmetric channel with Gallager A decoding. A base pro-

tograph with 8 check nodes and 16 variable nodes was coupled using several different

edge-spreading algorithms with coupling length L = 20. Random protograph 1 and 2 were

random edge-spreading methods, whereas Algorithm I protograph 1 and 2 were based on

the proposed algorithm with priority lists ordered by eliminating parents first and then re-

maining trapping sets by critical number, and purely by critical number, respectively. The

protographs were each lifted by a lifting factor J = 100 to yield SC-LDPC codes. The

permutations for lifting the SC-protograph were chosen from the group of shifted identity

30

matrices and were chosen randomly without any optimization. Figure 3.5 shows Algo-

rithm 1 with priority list ordered by eliminating parents first significantly outperforming

the other edge-spreading methods with more than two orders of improvement in the error

floor region.

Figure 3.5: A comparison of the performance of randomly-constructed protograph SC-LDPC codes
to the performance of protograph SC-LDPC codes constructed using Algorithm 1. c© 2016 IEEE

3.2.3 Trapping sets & the windowed decoder

The relationship between trapping sets in a window of the windowed decoder and in the

SC-LDPC graph is given next.

Lemma 3.2.3. If a subset T of variable nodes within a window has all of its neighbors in

the window and is a trapping set with respect to the windowed decoder on the SC-LDPC

graph, then T is a trapping set of the same type with respect to the standard decoder.

Proof. If all the neighbors of T lie in the window, then the subgraph of the code’s Tanner

graph induced by T ∪ N(T) in the window is isomorphic to the subgraph induced by

T ∪N(T) in the entire Tanner graph. Thus, an inducing set for T in the windowed decoder

will also be an inducing set for T with respect to the standard decoder. �

31

Due to the constraints on window size, Lemma 3.2.3 implies that any trapping set with

respect to the windowed decoder contained entirely in the same position as the first position

of constraint nodes of the window is also a trapping set in the SC-LDPC graph with standard

decoding. In the other direction, if the variable nodes in a trapping set with respect to the

standard decoder have all of their neighbors in a window, then they still may form a trapping

set with respect to the windowed decoder, depending on the structure of the inducing sets.

However, there are variable nodes from previous positions and future positions of the SC-

protograph which do not have all of their constraint node neighbors in a given window,

yielding the following:

Lemma 3.2.4. If a subset T of variable nodes within a window does not have all of its

neighbors in the window and is a trapping set with respect to the standard decoder on the

SC-LDPC graph, then T may not be a trapping set of the same type with respect to the

windowed decoder.

Proof. In this case, the subgraph induced by T ∪N(T) in the entire graph has been broken

in the window, and so T may no longer yield a trapping set of the same type within the

window. �

This allows for the possibility of alleviating the harmful effects of a trapping set simply

by utilizing a windowed decoder on the SC-LDPC code.

3.3 Algebraic graph lift framework for SC-LDPC code construction

Constructing SC-LDPC codes using Algorithm 1 results in improved error floor perfor-

mance, as does executing the edge-spreading process using optimized cutting vectors or

generalized cutting vectors [39, 46–48]. However, we observe that these approaches are

disparate and somewhat ad hoc. In this section, we place SC-LDPC code construction –

32

that is, the edge-spreading process as well as the terminal lift of the resulting SC-protograph

– in terms of algebraic graph lifts. Phrasing the construction process in this way not only

unifies previous approaches, but will allow us to remove harmful substructures by leverag-

ing previous results on graph lifting.

To construct a terminated SC-protograph, we may first construct a tailbiting protograph,

and then break this graph, copying the constraint nodes at which the graph is broken. We

claim that a tailbiting SC-protograph may be viewed as a degree L lift of the base graph –

where L denotes the coupling length – by considering the L copies of a node type in the

SC-protograph to be the lift of the corresponding node in the base graph. That is, copy

i of variable node v from the base graph will appear in position i of the SC-protograph.

While a terminated SC-protograph is not, then, strictly a graph lift of the base graph, the

set of terminated SC-protographs is in one-to-one correspondence with the set of tailbiting

SC-protographs, and so each can be associated with a lift of the base graph.

Recall that once an edge-spreading assignment is made for variable nodes in a single

position, that same edge-spreading is repeated at all future positions. This translates to the

following:

Lemma 3.3.1. To construct a tailbiting SC-protograph with coupling length L and memory

m from a base graph via a graph lift, the possible permutation edge assignments to the

base graph from the permutation group S L are the permutations corresponding to τk
L, for

0 ≤ k ≤ m, where τL is the L × L identity matrix left-shifted by one position, and at least

one assignment corresponds to τm
L . We denote this set of permutations by AL,m.

Proof. Since there will be L total positions of nodes in the SC-protograph, it is clear that

permutation assignments should come from S L.

If ev→c denotes a directed variable-to-check edge in the base graph with permutation

edge assignment π ∈ S L, the ith copy of v in the lift, which we denote by vi, is adjacent to

33

the π(i)th copy of check node c in the lift, denoted cπ(i). With memory m, the gap between

vi and its adjacent check node cπ(i) must be at most m positions. Furthermore, since the

assignments at one position of the SC-protograph are repeated at every position, for any

j ∈ [L], the gap between j and π(j) must be the same as that between i and π(i) (the

position numbers of vi and cπ(i)).

Thus, any possible permutation should be such that the gap between each value in [L]

and its image under the permutation is a fixed constant less than or equal to m. Since τL

corresponds to the permutation (1 2 · · · L), powers of τL give exactly this set of permuta-

tions. At least one permutation assignment should be τm
L to ensure that the memory is, in

fact, equal to m. �

We should be careful to ensure that the resulting SC-protograph is connected; for in-

stance, assigning the identity permutation to every edge would result in L disconnected

copies of the base graph, and so should be avoided.

Example 3.3.2. Suppose L = 6 and m = 3. Then, A6,3 = {τ0
6, . . . , τ

3
6}, and all permutation

edge assignments to our base graph should be from this set.

In general,

Lemma 3.3.3. The size of AL,m ⊆ S L is equal to m + 1, and for 0 ≤ k ≤ m, the permutation

corresponding to the permutation matrix τk
L, has order L/gcd(k, L). Furthermore, the set

AL,(L−1) forms a subgroup of S L for any choice of L.

Proof. The size of the set AL,m and the subgroup structure of AL,(L−1) are straightforward to

show. The order may be obtained by considering the cycle structure of τk
L. �

Given a fixed memory, we may spread edges by simply assigning allowed permutations

to edges in the base graph uniformly at random. This is equivalent to method (i) of edge-

spreading, as described in Section 3.1. Method (ii) is more restrictive: it stipulates that for

34

a given variable node, each possible permutation assignment is used at most once on its

incident edges.

This framework may be applied to a variety of existing methods for coupling, with

additional restrictions on possible permutation assignments in each case. In Section 3.3.2,

we will discuss how it may be used to describe the cutting vector, as well as the generalized

cutting vectors of [47] and [48].

To arrive at the standard matrix structure of the terminated SC-protograph as given in

Matrix (3.1) – and hence the correct ordering of bits in a codeword –, one must rearrange

the rows and columns of the matrix resulting from this lift: each L × L block that has

replaced an entry in the base parity-check matrix corresponds to edges of a single type (i.e.

between a single type of variable node and check node) in the SC-protograph. To arrive at

the ordering of variable and check nodes in Matrix (3.2), we should place the first variable

node of type 1 with the first variable node of type 2, etc., and similarly with check nodes.

In other words, if the columns (resp., rows) of the parity-check matrix are given by

(1, 1), (1, 2), . . . , (1, L), (2, 1), . . . , (2, L), . . . , (V, 1), . . . , (V, L),

then we should reorder by second entry, then first, as

(1, 1), (2, 1), . . . , (V, 1), (1, 2), . . . , (V, 2), . . . , (1, L), . . . , (V, L).

That is, ordering is done primarily by a vertex’s index within an L × L block (ranging from

1 to L), and secondarily by the index of that L × L block (ranging from 1 to V , where V

is the number of columns of the base matrix); this is the reverse lexicographic order. See

Example 3.3.4 for an example of this reordering process.

Example 3.3.4. We give a small example of using algebraic graph lifts to construct an

35

SC-protograph. Let I2 be the 2 × 2 identity matrix, and let σ be the 2 × 2 identity matrix

left-shifted by one column. Let the parity-check matrix of our base graph be given by

H =

I2 I2

I2 σ

 =



1 0 1 0

0 1 0 1

1 0 0 1

0 1 1 0


.

To construct an SC-protograph with coupling length L = 3 and memory m = 1, we

may assign permutations τ0
3 or τ1

3 to the edges of the base graph and then algebraically lift

according to this assignment. In matrix form, this amounts to replacing the nonzero entries

of H with τ0
3 or τ1

3, and the zero entries with the 3×3 all-zeros matrix. That is, for example,



τ1
3 0 τ0

3 0

0 τ1
3 0 τ0

3

τ0
3 0 0 τ1

3

0 τ0
3 τ1

3 0


=



0 0 1 0 0 0 1 0 0 0 0 0

1 0 0 0 0 0 0 1 0 0 0 0

0 1 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0 0 1 0 0

0 0 0 1 0 0 0 0 0 0 1 0

0 0 0 0 1 0 0 0 0 0 0 1

1 0 0 0 0 0 0 0 0 0 0 1

0 1 0 0 0 0 0 0 0 1 0 0

0 0 1 0 0 0 0 0 0 0 1 0

0 0 0 1 0 0 0 0 1 0 0 0

0 0 0 0 1 0 1 0 0 0 0 0

0 0 0 0 0 1 0 1 0 0 0 0


Next, we reorder the rows and columns. Let (i, j) indicate the row or column in block

1 ≤ i ≤ 4 with index 1 ≤ j ≤ 3 within that block. The current order of rows and columns

36

is, then,

(1, 1), (1, 2), (1, 3), . . . , (4, 1), (4, 2), (4, 3)

We reorder both rows and columns as:

(1, 1), (2, 1), (3, 1), (4, 1), . . . , (1, 3), (2, 3), (3, 3), (4, 3),

so that

HS C, tailbiting =



0 0 1 0 0 0 0 0 1 0 0 0

0 0 0 1 0 0 0 0 0 1 0 0

1 0 0 0 0 0 0 0 0 0 0 1

0 1 0 0 0 0 0 0 0 0 1 0

1 0 0 0 0 0 1 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0

0 0 0 1 1 0 0 0 0 0 0 0

0 0 1 0 0 1 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 1 0

0 0 0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 0 1 1 0 0 0

0 0 0 0 0 0 1 0 0 1 0 0



=



0 I2 0 0 I2 0

I2 0 0 0 0 σ

I2 0 0 I2 0 0

0 σ I2 0 0 0

0 0 I2 0 0 I2

0 0 0 σ I2 0



.

Notice that this is equal to

37

HS C, tailbiting =


H0 0 H1

H1 H0 0

0 H1 H0


where

H = H0 + H1 =

0 I2

I2 0

 +

I2 0

0 σ


In other words, the power of the permutation τ3 that was assigned to an entry in the

base matrix determines which Hi block the entry will belong to in the SC-protograph’s

matrix, or how far over the corresponding edge is spread in the Tanner graph. This is the

parity-check matrix of a tailbiting SC-protograph. To make a terminating SC-protograph,

we move the top right block down as:

HS C, terminating =



H0 0 0

H1 H0 0

0 H1 H0

0 0 H1


.

Rearranging rows and columns does not change the structure of the associated graph

(e.g. the minimum distance of the underlying code, or the number of absorbing sets

therein), but places bits in the correct order, highlights the repeated structure, and allows

us to break the tailbiting portion of the code and yield a parity-check matrix in the form of

Matrix (3.1). In particular, this is useful for the implementation of a windowed decoder.

38

3.3.1 Combining edge-spreading and the terminal lift

Edge-spreading and the terminal lift may be combined into a single, higher-degree lift. In

other words, the entire construction process of first replacing each nonzero entry of the base

matrix with an L× L circulant matrix of the form τk
L, and then replacing each nonzero entry

of the parity-check matrix of the SC-protograph with an unrestricted J × J permutation

matrix λ to perform the terminal lift, may be accomplished in a single step by assigning

permutations from S JL to edges in the base graph. The block length of the resulting code

will be V · L · J, where V is the number of variable nodes in the base graph.

Making a single combined assignment per edge of the base graph, and thus per edge

of the same type in the SC-protograph, is useful for two reasons: (1) breaking absorbing

sets in the base graph will break absorbing sets in the terminally-lifted Tanner graph, and

(2) the structure of the code is repeated, reducing storage and implementation complexity,

particularly for windowed decoding.

Recall that the Kronecker product of two matrices M and N is denoted M ⊗ N and is

given by replacing each entry mi j of M with the matrix mi j · N.

Theorem 3.3.5. To construct a tailbiting SC-LDPC code with coupling length L, memory

m, and terminal lift of degree J from a base graph via a single graph lift, the possible per-

mutation edge assignments from the permutation group S JL are those whose corresponding

matrices of the form τk
L⊗λ where τL is the L×L identity matrix left-shifted by one position,

0 ≤ k ≤ m, and λ is any J × J permutation matrix. We denote this set of permutations by

BL,m,J.

Proof. The proof is clear from Lemma 3.3.1 and the above discussion. �

Notice that for J = 1, BL,m,J = AL,m. To give the parity-check matrix of the SC-LDPC

code the structure of Matrix (3.1), we must again rearrange rows and columns after this

39

lift is performed, and then break the tailbiting code to form a terminated SC-LDPC code.

In this case, however, rows and columns are rearranged as blocks, so that J × J blocks

corresponding to choices of λ remain intact.

Theorem 3.3.6. The set BL,(L−1),J has size (m + 1) · J!, and the element τk
L ⊗ λ has order

L · o(λ) · gcd(k, L, o(λ))
gcd(k, L) · gcd (L, o(λ))

where o(λ) indicates the order of the permutation λ. Furthermore, BL,(L−1),J forms a sub-

group of S JL for any choice of J and L.

Proof. The proof follows from Lemma 3.3.3 and properties of the Kronecker product.

�

We now discuss the case where we restrict the permutation λ to be a cyclic shift of the

J × J identity matrix.

Corollary 3.3.7. The permutation given by τk
L ⊗ τ

`
J has order

JL · gcd(k, J, L) · gcd(`, J, L)
gcd(`, J) · gcd(k, L) · gcd(J, L) · gcd(k, `, J, L)

.

Proof. This follows directly from Lemma 3.3.3 and Theorem 3.3.6. �

If we use permutations of this type to lift a base matrix, we may say more about the

structure of the parity-check matrix of the resulting SC-LDPC code.

Lemma 3.3.8. If a base parity-check matrix is lifted to form an SC-LDPC code using

permutation matrices of the form τk
L⊗τ

`
J in BL,m,J, for J ≥ 2, then the resulting parity-check

matrix is quasi-cyclic, independently of whether block rows and columns are reordered.

Proof. The resulting matrix will be comprised of blocks of the form τ`J. �

40

This structure is a consequence of the terminal degree J ≥ 2 lift. Note that when J = 1

(i.e. the SC-protograph is not lifted), the parity-check matrix is not necessarily quasi-cyclic

post-reordering, but will be if the base matrix is array-based and permutations are assigned

constantly on blocks.

3.3.2 Comparison of construction methods

Of the existing methods for SC-LDPC code construction, the framework presented in The-

orem 3.3.5 is the most general. In particular, traditional cutting vectors and the generalized

cutting vector constructions of [47] and [48] form a proper subset of this approach.

Given a fixed array-based base graph, let the set of SC-LDPC codes formed with all

possible edge-spreadings and terminal lifts as described in Theorem 3.3.5 be given by A,

the set of codes formed using a traditional cutting vector (without a terminal lift) be given

by C, the set of codes formed using a generalized cutting vector (also without a terminal

lift) be given by Cg, the set of codes for which there is no terminal lift (J = 1 in Theorem

3.3.5) be given by E, and the set of codes formed by restricting λ of Theorem 3.3.5 to be

of the form τ`J (as in Lemma 3.3.8) be given by Q. Then we have the following nested set

inclusions:

Proposition 3.3.9. With C, Cg, E, Q, and A defined as above,

C (Cg (E (Q (A.

Proof. For an SC-LDPC code constructed using a traditional cutting vector in C, the mem-

ory is equal to 1, and so Lemma 3.3.1 stipulates that the two possible permutation assign-

ments to edges of the base graph are the identity and τL. However, there is additional

structure: if the cutting vector is ξ = (ξ0, ξ1, . . .), then the first consecutive (blocks of) ξ0

variable nodes have the identity assigned to all of their edges, while the next consecutive

41

ξ1 (blocks) have the permutation τL assigned to their first edge2, and the identity assigned

to all later edges, the next ξ2 (blocks of) variable nodes have the permutation τL assigned

to their first two edges, and the identity to all later edges, etc.

In the generalized cutting vector approach of [47] and [48], which are edge-spreading

methods applied specifically to array-based codes, blocks in the base matrix have constant

assignments, but assignments to those blocks are not as restricted as in the traditional ap-

proach.

Relaxing the restriction of constant assignments per block of an array-based code and

allowing multiple permutation assignments per block is enough to show Cg (E. The final

two inclusions are clear from Theorem 3.3.5 and Lemma 3.3.8.

�

3.4 Removing absorbing sets

It has been shown that for protograph-based LDPC codes, substructures such as trapping

or stopping sets may be removed and girth may be improved with certain permutation

assignments in the lifting process [23, 56]. Consequently, we may remove absorbing sets

by choosing suitable permutation assignments when constructing an SC-LDPC code via

Theorem 3.3.5.

We consider as an example base graphs which are array-based column-weight 3 codes

of the form

H(3, p) =


I I I · · · I

I σ σ2 · · · σp−1

I σ2 σ4 · · · σ2(p−1)

 , (3.4)

2The ordering on the edges incident to a variable node is induced by the ordering of the corresponding
parity-check matrix.

42

where σ is the p × p identity matrix left-shifted by 1. Figure 3.6 shows (3,3)- and (4,2)-

absorbing sets, which have been shown to be the most harmful to error floor performance in

such codes [58]. Notice that there is a 6-cycle in each of these absorbing sets (in fact, (3, 3)-

absorbing sets are in one-to-one correspondence with 6-cycles in this case). To remove

them algebraically by lifting we can assign permutations to the edges of the cycle that

increase the cycle lengths corresponding to those edges. This may be done using Theorem

2.1.5.

Figure 3.6: A (3, 3)-absorbing set and a (4, 2)-absorbing set in a column-weight 3, array-based
code. Variable nodes are denoted by •, and check nodes are denoted by ^. c© 2017 IEEE

In the case of SC-LDPC codes, the edge permutation assignments are limited to those

detailed in Theorem 3.3.5. However, even if we restrict ourselves to m = 1 (or 2) and no

terminal lift, assigning the permutation τL (and τ2
L) to a strategic subset of the edges of a

6-cycle will break the 6-cycle in the lift, and hence will break the corresponding (3, 3)-

absorbing set. Thinking back to the poset structure of trapping sets, notice that since the

(3, 3)-absorbing set is a subgraph of the (4, 2)-absorbing set in Figure 3.6, the latter are also

removed.

Using Theorem 2.1.5, we may express the probability that a given (3, 3)-absorbing set

from our base graph is eliminated in the SC-protograph, given that our edge permutation

assignments are random.

Theorem 3.4.1. Suppose an SC-protograph is constructed via a graph-lift from an array-

based, column-weight 3 base graph. If the coupling length of the SC-protograph is L, the

memory is m < L
3 , and permutation edge labels are assigned uniformly at random to the

43

edges of the base graph, the probability that a given (3, 3)-absorbing set is broken in the

coupling process is given by

1 −
11m4 + 44m3 + 71m2 + 54m + 20

20(m + 1)5 .

Proof. In the case of an array-based, column-weight 3 base matrix, eliminating a (3, 3)-

absorbing set is equivalent to assigning permutations to its 6-cycle such that the net per-

mutation is not equal to the identity permutation. Indeed, no other product of allowed

permutations of the form τk has any fixed points, and so by Theorem 2.1.5, there will be

no 6-cycles in the lift corresponding to the absorbing set’s 6-cycle in the base graph for

(allowed) non-identity net permutations. Let the assignments to the edges of a 6-cycle

be τk1
L , . . . , τ

k6
L , where all edges are directed from variable to check node. Without loss of

generality, the net permutation on the cycle is given by τL raised to the power of

6∑
i=1

(−1)i+1ki.

This permutation is the identity if and only if
∑6

i=1(−1)i+1ki ≡ 0 (mod L). By assump-

tion, each ki is bounded between 0 and m, inclusive, and 3m < L. Then,
∣∣∣∑6

i=1(−1)i+1ki

∣∣∣ ≤
3m, and so the net permutation can only be the identity if

∑6
i=1(−1)i+1ki = 0, or, equiva-

lently, k1 +k3 +k5 = k2 +k4 +k6. The probability that this occurs is the sum over all possible

summation values of the probability that both sums have that value:

=

3m∑
a=0

Pr(k1 + k3 + k5 = a)Pr(k2 + k4 + k6 = a) (3.5)

=

3m∑
a=0

Pr(k1 + k3 + k5 = a)2 (3.6)

44

For a given value of a, Pr(k1 + k3 + k5 = a) is equal to the number of triples k1, k3, k5

whose sum is a, divided by the total number of possible triples, (m + 1)3. Notice that the

number of such triples is equal to the coefficient of xa in the generating function

 m∑
i=0

xi

3

=

(
xm+1 − 1

x − 1

)3

=

 3∑
i=0

(
3
i

)
xi(m+1)(−1)3−i


− ∞∑

j=0

(
3 + j − 1

j

)
x j

 .
That is, the coefficient of xi(m+1)+ j in the above product when i(m + 1) + j = a. Using

this observation, Equation (3.6) reduces to:

11m4 + 44m3 + 71m2 + 54m + 20
20(m + 1)5 .

�

Remark 3.4.2. Notice that the result depends only on the prescribed memory of the SC-

protograph, provided that the coupling length is large enough. The stipulation that the

coupling length be at least three times the memory is nearly a given for practical applica-

tions, in which the memory is kept small, and the coupling length large.

Corollary 3.4.3. Suppose an SC-protograph code is constructed via a graph-lift from an

array-based, column-weight 3 base graph. If the coupling length of the SC-protograph is

L, the memory is m < L
3 , and permutation edge labels are assigned uniformly at random to

the edges of the base graph, the probability that a given (3, 3)-absorbing set is broken in

the coupling process approaches 1 as m goes to infinity.

Proof. The result follows by taking the limit of the probability in Theorem 3.4.1. �

45

Of course, we may do better than random assignments by cleverly choosing permutation

edge assignments in a more structured way. Using the algebraic lift method of construct-

ing SC-LDPC codes, in [13] we used my co-author’s low-complexity algorithm to count

the number of absorbing sets in SC-LDPC codes constructed with algorithmically-chosen

permutation assignments. For array-based, column-weight 3 base graphs, our structured

graph-lift approach to eliminating (3, 3)-absorbing sets is able to outperform the edge-

spreading accomplished by the optimized cutting vector, and also outperforms the results

of [47] and [48]. In this case, permutation assignments were made by block, meaning that

nonzero entries of each copy of σt in the parity-check matrix were assigned the same lifting

permutation. Furthermore, memory was restricted to m = 1 or m = 2. Absorbing set counts

for three different code constructions, as well as for the constructions of [47] and [48], are

shown in Table 3.1 for various coupling lengths [13]. These three code constructions are

described below. Recall that H(γ, p) denotes the pγ × p2 array-based parity-check matrix,

as described in Section 3.1.1.

Code 1: Obtained by coupling H(3, 17) using the optimal cutting vector of [58] (recall that

for cutting vectors, m = 1).

Code 2: Obtained by an optimized lifting of H(3, 17) with m = 1.

Code 3: Obtained by an optimized lifting of H(3, 17) with m = 2.

L Code 1 Code 2 Code 3 [47] for m=2 [48] for m=2
10 19108 5644 442 646 n/a
20 39508 11764 952 1326 n/a
30 59908 17884 1462 2006 4335
40 80308 24004 1972 2686 n/a
50 100710 30124 2482 3366 n/a

Table 3.1: The number of (3, 3)-absorbing sets in Codes 1-3, in addition to the results presented
in [47, 48]. It should be noted that [48] only provides counts for the case L = 30. c© 2017 IEEE

46

Window Length Code 1 Code 2 Code 3
2 1700 51 n/a
3 3740 544 n/a
4 5780 1156 0
5 7820 1768 85

Table 3.2: The number of (3, 3)-absorbing sets in Codes 1-3 for varying window lengths. c© 2017
IEEE

Observe that permutation assignments aimed at breaking 6-cycles in H(3, 17) (see

Codes 2 and 3 of Table 3.1) give a marked improvement on comparable constructions for

both the m = 1 and m = 2 cases. Further generalization to multiple assignments per block

and to higher memory is expected to yield even more improvement.

As suggested in Section 3.2, a windowed decoder works even further to our advantage:

in [13], we also show that with certain parameters, we are able to eliminate all (3, 3)-

absorbing sets as seen by the windowed decoder (see Code 3 with window length 4 in

Table 3.2). In particular, we employ a slight variation on the window described in Section

3.1.2, as described in [13]. We sum the observed (3, 3)-absorbing sets within one window

over all possible positions of the windowed decoder. These results are shown in Table 3.2.

47

Chapter 4

Bounds on Stopping and Absorbing Set Sizes

For specific classes of codes, we can determine the parameters of the most harmful absorb-

ing or stopping sets using known structural properties. Knowledge of these parameters not

only helps us to understand the performance of these classes under iterative decoding, but

gives us a starting point for trapping and absorbing set removal. In this chapter, we look

at two classes of codes – codes based on finite geometries and codes constructed using

hypergraphs – and examine the structure of harmful substructures in their Tanner graphs.

4.1 Finite geometry LDPC codes

Codes constructed from finite geometries, called finite geometry LDPC (FG-LDPC) codes,

were first introduced by Kou, Lin, and Fossorier, who gave families of cyclic and quasi-

cyclic LDPC codes with parity-check matrices determined by the incidence structure of

finite Euclidean and projective geometries [9, 59]. Since then, a wide variety of FG-LDPC

codes have been introduced and analyzed; creative constructions of codes using other finite

incidence structures such as generalized quadrangles and Latin squares have also been

studied extensively [60–62]. In particular, the structure inherent in these constructions

allow for ease of determination of parameters of the resulting codes. In this section, we use

the structure of FG-LDPC codes to determine the parameters of the most harmful absorbing

48

sets present in such codes. The results of this section were developed in collaboration with

Haymaker and Kelley [14]; a result will occasionally be stated without proof when the

proof is primarily the work of these coauthors.

We begin by giving the basic properties of finite Euclidean and projective geometries.

Recall the definitions of affine and projective spaces (see e.g. [63]):

Definition 4.1.1. A linear space is a collection of points and lines such that any line has at

least two points, and a pair of points share exactly one line. A hyperplane of a linear space

is a maximal proper subspace. A projective plane is a linear space of dimension 2 in which

any two lines meet, and there exists a set of four points no three of which are collinear. A

projective space is a linear space in which any two-dimensional subspace is a projective

plane. An affine space is a projective space with one hyperplane removed.

The set of points formed by m-tuples with entries from the finite field Fq forms an

affine space, called a finite Euclidean geometry. For the case in which m = 2, lines of the

Euclidean geometry are sets of points (x, y) ∈ F2
q satisfying either y = mx + b or x = a for

some m, b, a ∈ Fq. Formally,

Definition 4.1.2. The m-dimensional finite Euclidean geometry EG0(m, q) is a linear space

satisfying the following: it has qm points and qm−1(qm−1)
q−1 lines. Each line contains q points,

and each point is on qm−1
q−1 lines. Any two points have exactly one line in common and any

two lines either have one point in common or are parallel (i.e., have no points in common).

It is common to define a code using a modified version of EG0(m, q), in which the

origin point is removed and every line containing the origin is also deleted. Defining a code

from this modified geometry results in a cyclic or quasi-cyclic code, which, as previously

mentioned, have advantages for practical implementation. By convention, the notation

EG(m, q) is used to refer to the Euclidean geometry with the origin removed [59, 64]. We

use EG0(m, q) to distinguish the case when the origin and all lines containing it are included.

49

Next, we recall the parameters of projective geometries:

Definition 4.1.3. The m-dimensional finite projective geometry PG(m, q) is a linear space

satisfying the following: it has qm+1−1
q−1 points and (qm+···+q+1)(qm−1+···+q+1)

(q+1) lines. Each line con-

tains q + 1 points, and each point is on qm−1
q−1 lines. Any two points have exactly one line in

common and each pair of lines has exactly one point in common.

An important subclass of finite geometries are the finite Euclidean and projective planes:

that is, finite Euclidean and projective geometries for which m = 2. The parameters for

EG0(2, q), EG(2, q), and PG(2, q) and are organized in Table 4.1 for ease of reference.

EG0(2, q) EG(2, q) PG(2, q)
Number of points q2 q2 − 1 q2 + q + 1
Number of lines q(q + 1) q2 − 1 q2 + q + 1
Number of points on each line q q q + 1
Number of lines that intersect at a point q + 1 q q + 1

Table 4.1: Parameters of finite Euclidean and projective planes.

A µ-flat is a µ-dimensional subspace of a finite geometry. We may define an LDPC

code with parity-check matrix equal to the incidence matrix of µ1-flats and µ2-flats, where

0 ≤ µ1 < µ2 ≤ m, of an m-dimensional finite geometry. In this section, we will consider

binary codes defined as the null space of an incidence matrix of the points and lines in a

finite geometry, as in [59]: that is, we will focus on the case in which µ1 = 0 and µ2 = 1.

Let HEG(m, q) denote a (binary) parity-check matrix which is the incidence matrix of

points and lines in EG(m, q), and let CEG(m, q) denote the corresponding code. Similarly,

HPG(m, q) and CPG(m, q) are defined for codes from finite projective geometries. Points

of the finite geometry FG correspond to columns in HFG(m, q) or variable nodes in the

corresponding Tanner graph, and lines in the geometry correspond to rows in the parity-

check matrix or check nodes in the Tanner graph.

50

It has been shown that binary EG- and PG-LDPC codes perform well under the sum-

product and other iterative decoding algorithms [59], but these codes may still experi-

ence error floors in their BER curves. Graphical substructures affecting the error floor

performance of these codes have been studied extensively: general trapping sets of FG-

LDPC codes were studied in [65, 66], stopping sets and pseudocodewords were examined

in [61, 67, 68], and absorbing sets of LDPC codes from finite planes over fields of charac-

teristic 2 were analyzed in [64].

The smallest (a, b)-absorbing sets of the Tanner graph of a code are absorbing sets with

the minimum possible a value, and the corresponding smallest b for that given a; these

absorbing sets are regarded as the most problematic for iterative graph-based decoders.

In the case of FG-LDPC codes, high code structure allows for explicit characterization of

these undesirable small absorbing sets, as well as their enumeration. Although an absorbing

set is formally a set of variable nodes in the Tanner graph corresponding to a parity-check

matrix H, we will refer in this section to absorbing sets of the matrix H for brevity.

Using an argument similar to that used in the proof of Tanner’s tree bound (Theorem

2.1.2, [3]), Dolecek obtains the following bounds on the parameters of a smallest absorbing

set in a Tanner graph whose variable nodes all have degree r. We will call such a Tanner

graph r-left regular.

Lemma 4.1.4. [11] Let t = d r+1
2 e, where r is the variable node degree. If g, the girth of

the graph, is at least 6, the smallest (a∗, b∗)-absorbing sets have parameters bounded as

follows:

a∗ ≥


1 +

∑`
i=0 t(t − 1)i for g ≡ 2 (mod 4)

1 +
∑`−1

i=0 t(t − 1)i + (t − 1)` for g ≡ 2 (mod 4),

where ` =
⌊

g
4

⌋
− 1, and

b∗ ≥ a∗ ·
⌊
r − 1

2

⌋
.

51

The Tanner graph of a PG(m, q) or an EG(m, q)-LDPC code with m ≥ 2 has girth

6 [59], and so Lemma 4.1.4 gives lower bounds of a∗ ≥ 1 + t and b∗ ≥ a∗ · b r−1
2 c for the

FG-LDPC codes we will consider, where r is the number of lines containing a given point.

For HEG0(m, q) and HPG(m, q), which have the same variable node degrees,

Corollary 4.1.5. The parameters (a∗, b∗) of the smallest absorbing sets in the Tanner

graphs of HEG0(m, q) and HPG(m, q) for m ≥ 2 are

a∗ ≥
⌈
qm−1 + qm−2 + · · · + q + 2

2

⌉
+ 1, and b∗ ≥ a∗ ·

⌊
qm−1 + qm−2 + · · · + q

2

⌋
.

Proof. This follows directly from Lemma 4.1.4 using the girth and variable node degrees

of the PG-LDPC codes and EG0-LDPC codes. �

For the case in which m = 2, these bounds reduce to:

a∗ ≥
⌈
q + 2

2

⌉
+ 1, and b∗ ≥ a∗ ·

⌊q
2

⌋
.

Liu et al. used geometric substructures called k-arcs to find the parameters of absorbing

sets of FG-LDPC codes for q = 2s [64].

Definition 4.1.6. A (k, d)-arc in a finite affine or projective plane is a set of k points such

that any d of the points are collinear, and any collection of d + 1 are not collinear. Often,

(k, 2)-arcs are simply referred to as k-arcs.

Definition 4.1.7. A k-cap in a finite affine or projective geometry is a set of k points, no

three of which are collinear.

In finite planes, k-caps coincide with k-arcs, but in higher dimensions the notions are

distinct (see [69] for the complete definition of an arc in higher dimensions). Finding

52

bounds on the size of a maximal cap in finite geometries is an ongoing area of research

[69–71].

4.1.1 Smallest absorbing sets for EG0 and PG using k-caps

In this section, we show that for FG-LDPC codes CEG0(2, q), CEG0(3, q), and CPG(3, q),

equality is met in Lemma 4.1.4. The general approach in [64] for finding the parameters

(a∗, b∗) of the smallest absorbing sets in CEG(2, 2s) and CPG(2, 2s) is to first find a k-arc,

where k is the minimal possible value for a∗ given by Lemma 4.1.4: k = 2s−1 + 2. We use

a similar approach for the case of EG0 and PG families of dimensions m = 2 and m = 3;

notice that we do not restrict our q values to be powers of 2.

Theorem 4.1.8. The parameters (a∗, b∗) of the smallest absorbing sets for HEG0(2, q) satisfy

a∗ =

⌈
q + 2

2

⌉
+ 1, and b∗ = a∗ ·

⌊q
2

⌋
.

Proof. Recall that the variable node degree of HEG0(2, q) is q + 1, and let t =

⌈
q + 2

2

⌉
. That

is, for any variable node in an absorbing set of HEG0(2, q), t is the minimum number of

its neighbors that have even degree in the subgraph induced by the absorbing set and its

neighbors. From Lemma 4.1.4, we know that a∗ is bounded below by t + 1. Thus, it is

sufficient to show that there exists a set of t + 1 variable nodes that forms an absorbing set

in HEG0(2, q).

We construct such an absorbing set A by choosing t + 1 variable nodes that lie in a

(q + 1)-cap; the existence of such a cap is shown in [70]. From the structure of EG0(2, q),

each variable node in A shares exactly one check node neighbor with each other variable

node in A. Since A forms a (t + 1)-cap, every check node has degree at most 2. Thus, every

variable node in A has exactly t neighbors of degree 2 in the subgraph induced by A and its

neighbors, and (q+1)− t < t neighbors of degree 1. We conclude that A forms an absorbing

set with parameters

53

a∗ = t + 1 =

⌈
q + 2

2

⌉
+ 1, and

b∗ = a∗ · ((q + 1) − t) = a∗ ·
(
(q + 1) −

⌈
q + 2

2

⌉)
= a∗ ·

⌊q
2

⌋
.

�

The proof of the following theorem was completed primarily by my coauthor of [14],

and thus has been omitted here. However, it follows a similar argument to the proof of

Theorem 4.1.8.

Theorem 4.1.9. The parameters (a∗, b∗) of the smallest absorbing sets for HEG0(3, q) and

HPG(3, q) satisfy a∗ =

⌈
1
2
·
(
q2 + q + 2

)⌉
+ 1, and b∗ = a∗ ·

⌊
1
2
·
(
q2 + q

)⌋
.

4.1.2 Absorbing set parameters and the tree bound

In this section, we give other classes of codes based on finite geometries that have mini-

mum absorbing set parameters matching the bounds in Lemma 4.1.4. Equality is shown

for codes from projective planes using a tree-based argument, where the Tanner graph of

the code is enumerated as a tree for as many layers as the girth permits (this may result in a

partial graph). We further show that the bound of Lemma 4.1.4 holds for HEG(2, q) when q

is odd, building on the characteristic 2 results of [64], and that the smallest absorbing sets

of HEG0(2, q) and HPG(2, q) are elementary. Finally, any code whose minimum distance sat-

isfies the tree bound of Theorem 2.1.2 [3] has minimum absorbing set parameters that meet

the bound in Lemma 4.1.4. The proof of this result was primarily done by my coauthor; its

proof appears in [14].

Recall that in [64], the authors use k-arcs to show that equality in Lemma 4.1.4 is met for

HPG(2, q) and HEG(2, q) when q = 2s. It is also true that the the bounds are met for HPG(2, q)

54

when q is odd; the proof of the following result utilizes the tree-like representation and

labeling of the Tanner graph of CPG(2, q) from [61].

Theorem 4.1.10. The parameters (a∗, b∗) of the smallest absorbing sets for HPG(2, q) sat-

isfy a∗ =

⌈
q + 2

2

⌉
+ 1, and b∗ = a∗ ·

⌊q
2

⌋
.

Proof. Notice that the variable and check node degrees of the graph corresponding to this

code are both equal to q + 1. Enumerate the graph as tree in the following way: Layer 0

consists of a single root variable node which is chosen from the set of the graph’s variable

nodes. The next layer, Layer 1, consists of the q + 1 check node neighbors of the root.

Label these check nodes xc, 0c, 1c, αc, . . ., α
q−2
c , where α is a primitive element of GF(q),

so that in particular αq−1 = 1.

Layer 2 contains q(q + 1) variable nodes. Because the girth of HPG(2, q) is equal to 6,

these variable nodes are all distinct, and thus comprise all remaining variable nodes in the

graph. For each i ∈ {x, 0, 1, α, . . . , αq−2}, denote the q variable nodes in Layer 2 descending

from check node ic in Layer 1 by

(i, 0)v, (i, 1)v, (i, α)v, . . . , (i, αq−2)v.

Layer 3 contains the remaining q2 check nodes. For each i ∈ {0, 1, α, . . . , αq−2} label the

q check nodes in the ith group of q check nodes as

(i, 0)c, (i, 1)c, (i, α)c, . . . , (i, αq−2)c.

The nodes from Layer 2 and Layer 3 are connected (using mutually orthogonal Latin

squares (MOLS)) as follows [61]:

• For j ∈ {0, 1, α, . . . , αq−2}, variable node (x, j)v in Layer 2 connects to the following

55

Figure 4.1: A tree diagram of a Tanner graph for CPG(2, 4) [61].

q check nodes in Layer 3:

(j, 0)c, (j, 1)c, (j, α)c, . . . , (j, αq−2)c.

• For i, j ∈ {0, 1, α, . . . , αq−2}, variable node (i, j)v in Layer 2 connects to the q check

nodes in Layer 3:

(0, j + i · 0)c, (1, j + i · 1)c, (α, j + i · α)c, . . . , (αq−2, j + i · αq−2)c.

We claim that, together with our root node, the following set of variable nodes forms

an absorbing set in HPG(2, q):

S = {(x, 0)v, (0, 0)v, (1, αq−2)v, (α, αq−3)v, . . . , (αt−3, αq+1−t)v}.

To prove our claim, we show that every variable node in S has at least t neighbors of

56

even degree in the subgraph induced on the root, S , and their check node neighbors. Indeed,

it is clear that the root has at least t such neighbors. Based on the connections described

above, among the check nodes involving active variable node (x, 0)v, we have the following:

(0, 0)c has active neighbors (x, 0)v and (0, 0)v, and no others in the set; (0, αq−2)c has active

neighbors (x, 0)v and (1, αq−2)v; (0, αq−3)c has active neighbors (x, 0)v and (α, αq−3)v; and so

on. Finally, (0, αq+1−t)c has active neighbors (x, 0)v and (αt−3, αq+1−t)v.

Thus, at least t − 1 of (x, 0)v’s neighbors in Layer 3 have degree 2 in the subgraph

induced on S and its neighbors. Similarly, for each element of S , we may demonstrate t−1

check node neighbors in Layer 3 that have degree 2 in the subgraph induced on S and its

neighbors (see Theorem 4.3 in [61]). Thus, each variable node in S has at least t even-

degree neighbors in the induced subgraph (including the degree 2 check node neighbor in

Layer 1 that it shares with the root), and the set S together with the root forms an absorbing

set.

Because each check node counted above was counted twice in this process, we have

found a total of |S |(t − 1)/2 = t(t − 1)/2 =
(

t
2

)
check nodes in Layer 3 that have degree 2

in the induced subgraph. Because each pair of points in PG(2, q) intersects in exactly one

line, this shows that there are no check nodes of higher degree in the induced subgraph.

Thus, this minimal absorbing also realizes the lower bound on b∗ from Lemma 4.1.4: each

variable node in the absorbing set has exactly q + 1− t check node neighbors of odd degree

(in particular, of degree 1) in the induced subgraph, giving

b∗ = a∗ · ((q + 1) − t) = a∗ ·
⌊q
2

⌋
.

�

The smallest absorbing sets of HPG(2, q) are not necessarily fully absorbing, as is seen

in the next example:

57

Example 4.1.11. The (4, 8)-absorbing set from the Tanner graph pictured in Figure 4.1 is

not a fully absorbing set. To see this, consider the variable node outside of the absorbing

set labeled α21v, which is adjacent to the three check nodes (01c, α0c, and 1αc) that are odd

in the subgraph induced by the absorbing set. Therefore this absorbing set is not a fully

absorbing set.

However, they are elementary:

Proposition 4.1.12. Every smallest absorbing set in HEG0(2, q) or HPG(2, q) is elementary.

Proof. As shown in Theorems 4.1.8 and 4.1.10, every smallest absorbing set A has t + 1

variable nodes, where t is calculated based on the variable node degree r as
⌈

r+1
2

⌉
. Each

variable node in A has exactly one check node neighbor in common with each of the other

variable nodes in A. Thus, each variable node has at most t neighbors of degree greater

than 1 in the induced subgraph. Every variable node in A has exactly t neighbors of degree

greater than 1 if and only if every pair of variable nodes in A has a distinct check node

neighbor. In other words, A has exactly t neighbors of degree greater than 1 if and only

if the points of the geometry corresponding to the variable nodes in A form a (t + 1)-cap.

Since each variable node in A must have at least t even degree neighbors in the induced

subgraph in order to form an absorbing set, we see that this is indeed the case, and A is thus

an elementary absorbing set. �

Next, we show that equality in Lemma 4.1.4 is met for HEG(2, q) when q is odd.

Theorem 4.1.13. When q is odd, the parameters (a∗, b∗) of the smallest absorbing sets for

HEG(2, q) satisfy a∗ =

⌈
q + 1

2

⌉
+ 1, and b∗ = a∗ ·

⌊
q − 1

2

⌋
.

Proof. We begin by constructing EG(2, q) from PG(2, q), as in [61]. Starting with the graph

for PG(2, q) as described in the proof of Theorem 4.1.10, delete the root node in Layer 0

and its check node neighbors, which form Layer 1. Now, each variable node in Layer 2 has

58

degree q, and the degree of each check node in Layer 3 remains q + 1. Next, delete a check

node in Layer 3 that is not adjacent to any of the variable nodes of the smallest absorbing

set constructed in the proof of Theorem 4.1.10. Such a check node exists, because the

neighbors in Layer 3 of this set do not constitute all of Layer 3.

Because the girth of the graph is 6, this process will remove exactly one variable node

in each of the clouds in Layer 2. This reduces the degrees of each of the remaining check

nodes by 1. The resulting graph is q-regular with q2 − 1 vertices of each type. This graph

corresponds to EG(2, q) [61].

Consider the
⌈

q+2
2

⌉
+ 1 variable nodes in the absorbing set constructed in the proof of

Theorem 4.1.10. Exactly one of these variable nodes was deleted in the process described

above: the root of the graph. We claim that the remaining
⌈

q+2
2

⌉
form an absorbing set.

Each has q check node neighbors, and
⌈

q+2
2

⌉
− 1 even-degree neighbors. Since q is odd,

⌈
q + 2

2

⌉
− 1 =

q + 3
2
− 1 =

q + 1
2

>
q
2
,

and so each of these variable nodes still has more even-degree than odd-degree neighbors.

Thus, they form an absorbing set of size

a∗ =

⌈
q + 2

2

⌉
=

q + 3
2

=
q + 1

2
+ 1 =

⌈
q + 1

2

⌉
+ 1, with

b∗ = a∗ ·
(
q −

q + 1
2

)
= a∗ ·

(
q − 1

2

)
= a∗ ·

⌊
q − 1

2

⌋
variable nodes of odd degree. These parameters meet the bounds of Lemma 4.1.4.

�

Theorem 4.1.14. Let C be a block length n linear code defined by an r-left regular Tanner

graph with girth g. If the minimum distance of C equals the tree bound, the parameters

59

(a∗, b∗) of the smallest absorbing sets satisfy

a∗ =


1 + t + t(t − 1) + t(t − 1)2 + · · · + t(t − 1)

g−6
4

g
2 odd

1 + t + t(t − 1) + t(t − 1)2 + · · · + t(t − 1)
g−8

4 + (t − 1)
g−4

4
g
2 even

where t =

⌈
r + 1

2

⌉
, and b∗ = a∗ ·

⌊
r − 1

2

⌋
.

Theorem 4.1.14 shows that any code with a Tanner graph whose minimum distance

equals the tree bound of Theorem 2.1.2 [3] also has a smallest absorbing set whose param-

eters meet the bounds in Lemma 4.1.4. Thus, more code families can be shown to have this

characteristic. In particular, in Table IV of [61], several examples of such codes are given,

including the codes based on finite generalized quadrangles over F2s .

4.2 Hypergraph codes

Codes from regular hypergraphs with expansion-like properties were introduced and ana-

lyzed in [10] and [72]. As was shown for expander codes that have underlying expander

graph representations, the authors show that better expansion (referred to as ε-homogeneity

in the hypergraph case) implies improved minimum distance and error correction. The past

decade has seen an increased interest in coding for distributed storage systems (DSS) due

to the increasing amounts of data that need to be stored and accessed across many servers.

A primary focus in this area is the design of codes with locality properties, where error

correction of small sets of symbols may be performed efficiently without having to access

all symbols or all information from accessed symbols, and where data may be protected by

multiple repair groups. In this section, we consider codes based on regular hypergraphs,

and present bounds on their error-correction capabilities in the context of distributed stor-

age, specifically the minimum stopping set size and cooperative locality of the codes. In

60

addition, we present a definition of hypergraph lifts, which allow for the construction of

protograph hypergraph codes.

A hypergraph H is defined by a set of vertices, V , and a set of edges, E, where E is a

set of subsets of V . A hypergraph is said to be t-uniform if every edge contains exactly t

vertices, and is t-partite if the vertex set V can be partitioned into t sets V1, . . . ,Vt such that

no edge contains more than one vertex from any part. Notice that a 2-uniform hypergraph

is simply a graph. We will use the notation H = (V1,V2, . . . ,Vt; E) to denote a t-uniform

t-partite hypergraph. In this case, each edge must contain exactly one vertex from each

part. Finally, a hypergraph is ∆-regular if every vertex belongs to ∆ edges. In this section,

all hypergraphs considered have no parallel edges: no two distinct edges are comprised of

exactly the same set of vertices.

The class of t-uniform t-partite ∆-regular hypergraphs were used in [10] and [72] to

design codes, letting the edges of the hypergraph represent the code bits (or, more generally,

symbols), and the vertices of the hypergraph represent constraints. Specifically, when there

are n vertices in each part, the block length of the corresponding hypergraph code is n∆

and the number of constraint vertices is nt. As in the GLDPC codes of [3], each constraint

node represents a linear block length ∆ “subcode,” and is satisfied when the assignment on

the edges incident to that constraint node form a codeword of the subcode.

Recall that Sipser and Spielman showed that the guaranteed error correction capabilites

of a code may be improved when the underlying graph is a good expander [21]. Loosely

speaking, a graph is a good expander if small sets of vertices have large sets of neighbors;

graphs with small second largest eigenvalue in absolute value (or, equivalently, a large

spectral gap) have this property [73]. In particular, a finite, connected, d-regular graph

with second largest eigenvalue λ is a Ramanujan graph if |λ| ≤ 2
√

d − 1.

Let G be a d-regular bipartite graph with n vertices in each part, and let λ be the second

largest eigenvalue (in absolute value) of the adjacency matrix of G. Then for subsets A1 and

61

A2 of the left and right vertices, respectively, the number of edges in the subgraph induced

by A1 ∪ A2 is at most |E(A1,A2)|
nd ≤ α1α2 + λ

d

√
α1α2, where |Ai| = αin (see, e.g. [74]). Bilu

and Hoory use an analogous version of this property to introduce a notion of hypergraph

expansion:

Definition 4.2.1. [10] Let H = (V1,V2, . . . ,Vt; E) be a t-uniform t-partite ∆-regular hy-

pergraph with n vertices in each part. Then H is ε-homogeneous if for every choice of

A1, A2, . . . , At with Ai ⊆ Vi and |Ai| = αin,

|E(A1, A2, . . . , At)|
n∆

≤

t∏
i=1

αi + ε
√
ασ(1)ασ(2),

where σ ∈ S t is a permutation on [t] such that ασ(i) ≤ ασ(i+1) for each i ∈ [t − 1], and

E(A1, . . . , At) denotes the set of edges which intersect all of the Ai’s.

Then, hypergraphs with ε-homogeneity for small ε are in some sense good expanders.

Let [N,K,D] denote a binary linear code with block length N, dimension K, and min-

imum distance D. The following bounds on the rate and minimum distance of a code Z

from an ε-homogeneous t-uniform t-partite ∆-regular hypergraph with n vertices in each

part and a [∆,∆R,∆δ] subcode C at each constraint node are given in [10]:

rate(Z) ≥ tR − (t − 1)

dmin(Z) ≥ n∆
(
δ

t
t−1 − c(ε, δ, t)

)
where c(ε, δ, t)→ 0 as ε → 0. Note that n∆ is the block length ofZ.

The locality of a code measures how many code symbols must be used to recover an erased

62

code symbol. While there are a variety of locality notions relevant to coding for distributed

storage, we will focus on (r, `)-cooperative locality and (r, τ)-availability [75, 76].

Definition 4.2.2. A code C has (r, `)-cooperative locality if for any y ∈ C, any set of ` sym-

bols in y are functions of at most r other symbols. Furthermore, C has (r, τ)-availability if

any symbol in y can be recovered by using any of τ disjoint sets of symbols each of size at

most r.

4.2.1 Bounds on regular hypergraph codes

In this section, we examine the erasure correction and cooperative locality of regular hyper-

graph codes. We first define stopping sets for regular hypergraph codes, and give a lower

bound on the minimum stopping set size.

Definition 4.2.3. Let Z be a code on a hypergraph H = (V1, . . . ,Vt; E), with edges rep-

resenting code symbols and vertices representing the constraints of a subcode C. Then a

stopping set S is a subset of the edges ofH such that every vertex contained in an element

of S is contained in at least dmin(C) elements of S .

Though the size of a minimum stopping set depends on both the hypergraph representa-

tion and the choice of subcode, we denote this size by smin(H), and assume that the subcode

is clear from context.

Theorem 4.2.4. LetH be a t-uniform t-partite ∆-regular hypergraph. If the vertices ofH

represent constraints of a subcode C with minimum distance dmin(C) and block length ∆,

then the size of the minimum stopping set, smin(H), is bounded by

smin(H) ≥ dmin(C)t/(t−1).

63

Proof. Let H be as above, and let S be a minimum stopping set. Each edge in S contains

exactly one constraint node from each of the t parts of H , so each part of H has exactly

|S | = smin(H) incident edges belonging to S . Each constraint node contained in an edge

in S must be contained in at least dmin(C) edges in S . By the pigeonhole principle, the

number of vertices in any part ofH that are contained in some edge in S is bounded above

by smin(H)/dmin(C). Indeed, were there more than smin(H)/dmin(C) vertices incident to S

in a single part, some vertex must have fewer than smin(H)/(smin(H)/dmin(C)) = dmin(C)

incident edges from S , a contradiction. Now consider the maximum size of S : this amounts

to counting the number of edges possible, given that each edge is incident to exactly one

vertex of (at most) smin(H)/dmin(C) vertices in each of the t parts of H . That is, there are

at most (smin(H)/dmin(C))t edges in S . Thus,

(
smin(H)
dmin(C)

)t

≥ smin(H)⇒ smin(H) ≥ dmin(C)t/(t−1).

�

The bound of Theorem 4.2.4 is tight. For example, when H is a complete 3-uniform

3-partite hypergraph with at least two vertices in each part and constraint code C such that

dmin(C) = 4, it is easy to show that smin(H) = 8.

Since the errors of particular relevance to DSS are erasures (such as a server going

down), we can use the stopping set bound to characterize how many errors can be corrected.

Theorem 4.2.4 guarantees that we may correct any dmin(C)t/(t−1) − 1 erasures using iterative

decoding. If C is a code with locality r1, at most (smin(H)/dmin(C)) · r1 · t other codeword

symbols are involved in the repair of the erasures in the decoding process. This yields the

following:

Corollary 4.2.5. If the subcodes C of the regular hypergraph codeZ have r1 locality, then

64

Z has (r, `)-cooperative locality where

r = r1tsmin(H)/dmin(C)

smin(H) − 1 ≥ ` ≥ dmin(C)t/(t−1) − 1.

Observe that if the subcode C has (r, τ)-availability, then the hypergraph code Z has

at least (r, τ)-availability. We now extend the result to codes on hypergraphs with known

ε-homogeneity.

Theorem 4.2.6. LetH = (V1,V2, . . . ,Vt; E) be a t-uniform t-partite ∆-regular ε-homogeneous

hypergraph where there are n vertices in each of the t parts. If the subcodes C have mini-

mum distance dmin(C),

smin(H) ≥
((

1 −
ε∆

dmin(C)

)
nt−1dmin(C)t

∆

)1/(t−1)

.

For ε < dmin(C)(nt−1−∆)
∆nt−1 , this gives an improvement on the bound in Theorem 4.2.4.

Proof. Let S be a minimum stopping set. By Theorem 4.2.4, smin(H) ≥ dmin(C)t/(t−1).

Now, let Ai ⊆ Vi be the set of vertices in Vi, for i ∈ [t], contained in an edge in S . By

ε-homogeneity,

smin(H) = |S | ≤ |E(A1, . . . , At)| ≤ n∆

 t∏
i=1

αi + ε
√
ασ(1)ασ(2)

 .
Since |Ai| ≤ smin(H)/dmin(C) for all i, αi ≤ smin(H)/ndmin(C). Thus, the above inequality

simplifies to obtain the result:

smin(H) ≤ n∆

((
smin(H)
ndmin(C)

)t

+ ε
smin(H)
ndmin(C)

)
.

Observe that we have shown in general that

65

smin(H) ≥
((

1 −
ε∆

dmin(C)

)
nt−1

∆

)1/(t−1)

dmin(C)t/(t−1).

Then, if
((

1 − ε∆
dmin(C)

)
nt−1

∆

)1/(t−1)
> 1, this gives a better lower bound for smin(H) than that

found in Theorem 4.2.4. Simplifying, we have our condition on ε. �

Corollary 4.2.7. Using iterative decoding on a code Z based on a t-uniform t-partite ∆-

regular ε-homogeneous hypergraph with vertices representing constraints of a subcode C,

up to ((
1 −

ε∆

dmin(C)

)
nt−1dmin(C)t

∆

)1/(t−1)

− 1

erasures may be corrected.

In other words, if δ is the relative minimum distance of C, and N is the total number of

edges in the hypergraph (that is, the block length of the code Z), we may correct up to a

δ(δ − ε)1/(t−1) − 1
N fraction of erasures.

Remark 4.2.8. We may correct up to a δt/(t−1) − 1
N − c(ε, δ, t) fraction of erasures, where

c(ε, δ, t) → 0 as ε → 0. It can be shown that the bound in Corollary 4.2.7 improves the

error correction capability of

(
t − 1
t/2

)−2/t (
δ

2

)(t+2)/t

− c′(ε, δ, t)

in [10] for any 0 < δ < 1 and t ≥ 2 (i.e. for all relevant cases) and large block length.

Note that c′(ε, δ, t) , c(ε, δ, t), but that both vanish as ε → 0. It is important to note that

we are focusing solely on erasures, while [10] gives a decoding algorithm and correction

capabilities for more general errors.

66

4.2.2 Algebraic lifts of hypergraphs

In this section, we present a lifting process for hypergraphs that will allow us to create

sequences of hypergraphs with larger block length but some preserved properties. In order

to be a topological covering graph, we would like our definition to satisfy the following:

Definition 4.2.9. LetH and H̃ be hypergraphs. H̃ is a degree J lift or cover ofH if there

exists φ : V(H̃)→ V(H) with the following properties:

1. the fiber of each v ∈ V(H) has exactly J elements;

2. for each u ∈ V(H̃), the restriction of φ to NH̃ (u) is a bijection onto NH (φ(u)).

In this case, φ is called a covering map.

Let S p
J denote a p-tuple of elements from S J. Then, we may construct a topological lift

of a hypergraph as follows:

Definition 4.2.10. Let H be a hypergraph, and let v1, . . . , vn be some ordering of the ver-

tices of H . Label each edge E of H with an element of S t−1
J , where t is the number of

vertices in E, and J ≥ 2 is a fixed integer. Then the degree J lift, H̃ , of H corresponding

to the above vertex ordering and edge labeling, is the hypergraph with vertex set

n⋃
i=1

{vi,1, . . . , vi,J},

and J edges, E j,1, . . . , E j,J, for each edge E j ofH . If E j contains vertices vi1 , . . . , vit , where

i1 < i2 < · · · < it, and has label (σ1, . . . , σt−1) ∈ S t−1
J , then

E j,k = {vi1,k, vi2,σ1(k) . . . , vit ,σt−1σt ···σ1(k)}.

Example 4.2.11. Consider the hypergraph with five vertices (v1, v2, v3, v4, and v5, in order)

and three edges – two of size three and one of size two – as shown in Figure 4.2. Notice that

67

E1, one of the three-vertex edges, is labeled (σ1, σ2). Let σ1, σ2 ∈ S 3 be the permutations

(1 2 3) and (1 3), respectively. The two-vertex edge, E2, is labeled (σ3). Let σ3 ∈ S 3 be

the permutation (2 3). Lastly, E3 is labeled (σ4, σ5). Let σ4 = (1 3 2) and let σ5 be the

identity permutation in S 3. In the corresponding degree 3 lift of this hypergraph, there are

15 vertices and 9 edges: vertices vi,1, vi,2 and vi,3 that cover vertex vi in the base, and three

edges in the lift that cover each edge of the base. For example, edge E1 in the base graph

is covered by

E1,1 = (v1,1, v2,σ1(1), v5,σ2σ1(1)) = (v1,1, v2,2, v5,2),

E1,2 = (v1,2, v2,σ1(2), v5,σ2σ1(2)) = (v1,2, v2,3, v5,1),

E1,3 = (v1,3, v2,σ1(3), v5,σ2σ1(3)) = (v1,3, v2,1, v5,3).

The resulting degree 3 hypergraph lift is shown in Figure 4.3.

Figure 4.2: Base hypergraph with edge labels for lifting.

In [10], the authors present a method of constructing t-uniform t-partite ∆-regular hy-

pergraphs from regular Ramanujan graphs. Roughly, this is accomplished by letting paths

of length t − 1 in a Ramanujan graph G correspond to edges in a hypergraph. More specif-

ically, if the regular Ramanujan graph G is bipartite, half of the t parts of the hypergraph

68

Figure 4.3: Hypergraph from a degree 3 lift of the base hypergraph.

are copies of the vertices in one part of G, and half are copies of the vertices in the other

part. An edge in the hypergraph contains copies of the t (not necessarily distinct) vertices

in a walk of length t − 1 in G. With this construction, the authors are able to show that the

resulting hypergraph is 2(t − 1)λ-homogeneous, where λ is the second largest eigenvalue

(in absolute value) of the normalized adjacency matrix of G.

In [77], the existence of a sequence of d-regular bipartite Ramanujan graphs is shown

for all d ≥ 3 by proving that every d-regular graph has a 2-lift in which all of the new

eigenvalues of the lifted graph are at most 2
√

d − 1, and recalling that bipartite graphs have

eigenvalues symmetric about zero.

Using hypergraph lifts and the results of [10], we can show that there is a corresponding

sequence of
(
4(t − 1)

√
d − 1

)
-homogeneous hypergraphs that can be viewed as resulting

from 2-lifts of a hypergraph:

Let G1,G2, . . . be a sequence of d-regular bipartite Ramanujan graphs. Fix an even

integer t ≥ 2, and let Hi = ϕ(Gi) be the hypergraph constructed from Gi as in [10]. We

claim that there exists a hypergraph lift of degree 2 of Hi which gives Hi+1 = ϕ(Gi+1) for

each i ≥ 1. That is, there exists an ordering of vertices and an edge labeling of Hi such

69

that the corresponding 2-lift is the hypergraph Hi+1. This will give an infinite sequence of(
4(t − 1)

√
d − 1

)
-homogeneous hypergraphs.

Without loss of generality, assign an ordering to the t parts ofHi. Each edge {v1, . . . , vt}

inHi corresponds to a path of length t − 1 in Gi. For ease of notation, let v j ∈ V(Gi) denote

the preimage of the vertex v j ∈ V(Hi). Notice that the v j’s may not be distinct in Gi. To the

edge {v1, . . . , vt} in Hi, assign the (t − 1)-tuple (σ1, . . . , σt−1), where σ1 is the permutation

assignment to the edge v1v2 in Gi for the lift to Gi+1, σ2 the permutation assignment to the

edge v2v3 in Gi, and so on. Since the lift from Gi to Gi+1 is a 2-lift, the direction in which

an edge is traveled does not matter. We claim that the corresponding lift of Hi, which we

will call H̃i for now, is in factHi+1.

Indeed, it is readily apparent that the number of vertices in H̃i and Hi+1 are equal: if

Gi has n vertices, then Hi has t
2 · n vertices, and H̃i, as a degree 2 lift, has t · n vertices.

Similarly, Gi+1 has 2n vertices, soHi+1 has t
2 · 2n = t · n vertices.

Furthermore, the edge sets of the two hypergraphs are equal. Suppose first that E is an

edge in H̃i. Then E has the form {vi1, j, vi2,σ1(j), . . . , vit ,σt−1···σ1(j)}, where j ∈ {1, 2}, σk ∈ S 2

for all 1 ≤ k ≤ t − 1, and (vi1 , . . . , vit) is a walk in Gi. By the assignment of edge labels in

Hi, (vi1, j, vi2,σ1(j), . . . , vi1,σt ···σ1(j)) is a walk in Gi+1 for j ∈ {1, 2}, and so E is also an edge in

Hi+1.

On the other hand, suppose E = {w1, . . . ,wt} is an edge in Hi+1. Then (w1, . . . ,wt) is a

walk in Gi+1, and so must have the form (vi1, j, vi2,σ1(j), . . . , vi1,σt ···σt−1(j)) for some vik’s forming

a walk in Gi and j ∈ {1, 2}, where the σ’s are permutation assignments to the edges in the

corresponding walk (vi1 , vi2 , . . . , vit) in the base graph Gi. Then, {vi1 , vi2 , . . . , vit} is an edge

inHi, and so {vi1, j, vi2,σ1(j), . . . , vit ,σt−1···σ1(j)} is an edge in H̃i, by our definition of the lift. We

conclude thatHi+1 = H̃i.

The existence of infinite families of (c, d)-biregular bipartite Ramanujan graphs for

c, d ≥ 3 was also shown in [77] using 2-lifts of graphs. We conjecture that we may construct

70

Figure 4.4: Given a 2-lift from Gi to Gi+1, ϕ induces a 2-lift from Hi to Hi+1, letting ϕ denote the
construction of [10].

biregular hypergraphs from biregular bipartite graphs in a way that will allow us to state

the ε-homogeneity of the hypergraph based on the eigenvalues of the bipartite graph. If

this can be shown, then we can construct sequences of biregular 2-lifted ε-homogeneous

graphs in an analogous way.

71

Chapter 5

Multidimensional Decoding Networks

In this chapter, we present a multidimensional network model for analyzing hard-decision

message-passing decoders. The structure of this network depends not only on the code,

but also the choice of Tanner graph representation and decoder. Thus, our model takes into

account all parameters determining the presence of harmful trapping sets. We show how

decoding networks may be used to identify trapping sets, and therefore analyze decoder

behavior of LDPC codes. This analysis is simplified for networks with a transitivity prop-

erty, and so we discuss the connection between transitive networks and redundancy in their

corresponding parity-check matrices. As applications, we relate the decoding networks of

product and half-product codes and codes arising from a (u | v) construction to those of

their underlying component codes, and examine the connection between the decoding net-

works of a protograph and its lift. Finally, we show how decoding networks can provide

insight into the optimal number of iterations to run on a given code (and representation)

with a chosen decoder. Taking advantage of this connection, we present an algorithm de-

signed to improve the performance of hard-decision message-passing decoders.

72

5.1 Multidimensional network framework

Suppose we decode a code C using a hard-decision decoder, and consider the labeled

directed graph (digraph) for a fixed ` ∈ Z>0, denoted D`, with vertex and edge sets

V = {x : x ∈ S } and E = {(xi, x j, `) : x`i = x j}, respectively, where S is the set of pos-

sible received words, (xi, x j, `) denotes an edge from xi to x j with edge label `, and x`i is

the output of the decoder after ` iterations with input xi. Note that we allow loops, which

are edges of the form (xi, xi, `). For simplicity, we refer to the label of a vertex – that is, its

corresponding word in S – interchangeably with the vertex itself. There will be a poten-

tially distinct digraph on this same vertex set for each choice of ` ∈ Z>0. We call the union

of these digraphs for all ` ∈ Z>0 the (multidimensional) decoding network corresponding

to the code C and the specific choice of decoder, as we may consider the digraph which

incorporates the information for all ` as a multidimensional network.

Definition 5.1.1. [78] A multidimensional network is an edge-labeled directed graphD =

(V, E,D), where V is a set of vertices, D a set of edge labels, called dimensions, and E is a

set of triples (u, v, d) where u, v ∈ V and d ∈ D. We say that an edge (or vertex) belongs to

a given dimension d if it is labeled d (or is incident to an edge labeled d).

In this framework, the decoding network is a multidimensional network with D = Z>0,

and each edge labeled with the number of decoder iterations, `, to which it corresponds.

Notice that, in any given dimension (i.e. number of iterations), every vertex has outdegree

equal to one.

Example 5.1.2. As a small example, consider the 0th order binary Reed-Muller code R(0, 2)

of length 22, defined by the parity-check matrix

73

H =


1 1 1 1

0 0 1 1

0 1 0 1

 ,
transmitted over the BSC and decoded with the Gallager A algorithm. Notice that R(0, 2)

is the binary repetition code of length 4. Figure 5.1 shows the first two dimensions of the

corresponding decoding network.

Figure 5.1: Dimensions 1 and 2 of the decoding network of R(0, 2), with the edges belonging to
D1 shown in solid and those ofD2 dashed.

An important type of decoding network is given by codes for which running i iterations

of the decoder on a received word, and using that output as input to a subsequent j decoding

iterations, is equivalent to running i + j iterations on the originally-received word.

Definition 5.1.3. We say that a decoding network is transitive if (v1, v2, `) ∈ E if and only if

for every choice of 1 ≤ k ≤ ` − 1, there exists vk ∈ V such that (v1, vk, k), (vk, v2, ` − k) ∈ E.

We say a decoder is transitive for a codeC and a choice of representation ofC if its resulting

decoding network is transitive.

LetD` denote the digraph corresponding to the `th dimension of the decoding network

D, and let A(D`) denote the adjacency matrix of the digraph D`. Observe that a decoding

74

network D is transitive if and only if A(D`) = (A(D1))` for all ` ≥ 1, as the product

(A(D1))` gives directed paths of length ` in dimension 1 ofD.

Example 5.1.4. Consider a simple binary parity-check code of length n, with parity-check

matrix given by the 1×n all-ones matrix. The Tanner graph representation of such a code is

a single check node with n variable node leaves. Thus, if codewords are sent over the BSC

and decoded with the Gallager A algorithm, the message the solitary check node sends to

each of its adjacent variable nodes is either (a) the node’s channel value, if a codeword

is received, or (b) the opposite of its originally-received value, otherwise. Each variable

node will always send back its channel value. For any number of iterations, codewords

will decode to codewords, and any received non-codeword y will be decoded to y + 1 (mod

2). If n is odd, every received word will decode to a codeword, and the network will be

transitive. If n is even, y + 1 will not be a codeword, and the network will not be transitive.

The cases n = 3 and n = 4 are shown in Figure 5.2; in both networks, edges belonging to

higher dimensions are suppressed, as all dimensions are identical.

Figure 5.2: The decoding networks of parity-check codes of lengths 3 (left) and 4 (right).

Example 5.1.5. Consider the binary Hamming code of length 7 = 23−1, denoted H3. This

code’s canonical 3 × 7 parity-check matrix has columns consisting of all nonzero binary

words of length 3. The corresponding Tanner graph may be seen in representation A of

Figure 5.3. However, H3 may also be defined by the parity-check matrix whose Tanner

graph is representation B in Figure 5.3. Under Gallager A decoding, representation A

does not yield a transitive decoding network. However, if representation B is decoded via

75

Figure 5.3: Two distinct Tanner graph representations of H3, along with their parity-check matri-
ces. Variable nodes are denoted by •, and check nodes are denoted by ^.

Gallager A, the resulting decoding network is transitive: every word decodes under a single

iteration to a codeword, and decodes identically for any higher number of iterations.

If a decoder is transitive for all representations of all codes C, we say that it is univer-

sally transitive. Any decoder which ignores channel values at each subsequent iteration

will be universally transitive; some examples of this are given below.

Example 5.1.6. If codewords from a code C are sent over the BEC, and words are de-

coded using a peeling decoder which iteratively corrects erasures, then the corresponding

decoding network of C is universally transitive. Indeed, corrections at each iteration are

performed regardless of previous iterations. Similarly, iterative bit-flipping decoders over

the BSC are universally transitive.

5.1.1 Trapping set characterization

Within the decoding network framework, trapping sets of a code transmitted over the BSC

may be determined by looking at the supports of the words corresponding to vertices in the

decoding network that have nonzero indegree in an infinite number of dimensions. That is,

Theorem 5.1.7. For each vertex x ∈ V = Fn
2 in a decoding network D = (V, E,D) for a

code C, let Mx be the set of vertices y ∈ V for which there is an edge (x, y, `) ∈ E for

76

infinitely many choices of `. Then the set of variable nodes corresponding to

⋃
y∈Mx

supp(y) ,

denoted T (x), is a trapping set with an inducing set given by the variable nodes corre-

sponding to supp(x). Furthermore, the set of trapping sets of the code C is

{T (x) : x ∈ Fn
2} ,

and, given a trapping set T , its set of inducing sets is given by the variable nodes corre-

sponding to sets of the form

{supp(x) : T (x) = T } ,

and its critical number is

m(T) = min{ |supp(x)| : T (x) = T } .

Proof. Assuming that the all-zero codeword was sent over the BSC, any decoding errors

will be given by 1’s. If, during the process of decoding the received word x, there is some

word y such that an edge from x to y occurs in an infinite number of network dimensions,

the support of y gives variable node positions which are not eventually correct. By defi-

nition, these variable nodes belong to a trapping set induced by the variable nodes of the

support of x. However, these may not be the only variable nodes that are not eventually

correct given the received word x. Taking the union of the supports of all such y gives us

our expression for T (x), the trapping set induced by x. Repeating this for each possible

received word, we find all trapping sets of the code. Note that each trapping set may be

induced by multiple received words. �

77

Example 5.1.8. Recalling the decoding network of R(0, 2) in Figure 5.1, consider the

received word 0011. As seen in the first two dimensions, 0011 is decoded as 0011 in 1

iteration of Gallager A, and as 0010 in 2 iterations of Gallager A. In three iterations, 0011

will decode as 1110. For any higher number of iterations, the decoder’s output will be one

of these three words. That is, the vertices 0011, 0010, and 1110 form the set M0011 defined

in Theorem 5.1.7. Since the union of the supports of these words is all four bits, the set

{v1, v2, v3, v4} forms a (4, 2)-trapping set induced by {v3, v4}.

Example 5.1.9. Let C be the binary repetition code of length 3, with the parity-check matrix

H =

1 1 0

0 1 1

 .
The associated Tanner graph is a path of length 4 with variable nodes v1, v2, and v3. Let

D be the (non-transitive) decoding network of C under Gallager A, shown in Figure 5.4.

Assuming 0 was transmitted, the received word 011, for example, decodes in one iteration

to the codeword 111, but decodes for any number of iterations greater than 1 to the (non-

code)word 110. Thus, {v1, v2} is a (2,1)-trapping set. Note that the support of 011, which

induces this trapping set, is not contained in the trapping set. Similarly, {v1, v2, v3} is a

trapping set corresponding to the codeword 111, with inducing sets {v1, v3} and {v1, v2, v3}.

Other trapping sets of the code include {v2, v3} (induced by {v1, v2}), {v1} (induced by {v3}),

and {v3} (induced by {v1}).

Figure 5.4: The decoding network of a binary repetition code of length 3.

78

In the case of transitive decoding networks, trapping sets may be identified by looking

only at dimension 1, as follows:

Corollary 5.1.10. If the decoding network, D, of a code C is transitive, then the trapping

sets are given by

(1) the sets of variable nodes corresponding to supports of vertices with loops inD1, and

(2) the sets of variable nodes corresponding to unions of the supports of vertices forming

directed cycles inD1.

Furthermore, inducing sets of trapping sets in a transitive decoding network are given by

the variable nodes corresponding to the support of any vertex which has a directed path to

either a (nonzero) vertex with a loop, or to a directed cycle, regardless of where that path

enters the cycle.

Proof. In a transitive decoding network, the edges in dimension ` correspond to directed

paths of length ` in D1. Thus, in order for a word to appear as the output of the decoder

in an infinite number of dimensions, it must be the terminating vertex of infinitely many

directed paths (of distinct lengths) from the received word. Because the decoding network

for a code is finite, and the outdegree of every vertex inD1 is equal to 1, this can only occur

if there is a loop at that vertex, or if it belongs to a directed cycle. The result follows from

Theorem 5.1.7. �

In the adjacency matrix of dimension 1 of a decoding network, nonzero diagonal entries

indicate loops. There are numerous algorithms for finding directed cycles in a digraph, such

as Depth-First Search (DFS) [79]. We further note that several works have addressed the

computational aspects of finding and/or removing trapping sets [12, 36, 80, 81].

79

5.2 Representations yielding transitivity

Due to the effect of the choice of representation on a decoding network’s structure, it is

natural to ask which representations, if any, ensure that a code’s decoding network is tran-

sitive under a fixed decoder. Recall from Example 5.1.5 that the canonical representation

of the Hamming code H3 does not yield a transitive decoding network under Gallager

A, while the decoding network arising from the representation given by the parity-check

matrix including all nonzero codewords of the dual code, H ⊥
3 , is transitive. In fact,

Theorem 5.2.1. Every [n, k] binary linear code with n − k > 2 has a parity-check ma-

trix representation whose corresponding decoding network is transitive under Gallager A

decoding.

In particular, adding exactly the nonzero codewords of the dual to the parity-check ma-

trix of such a code (a representation which we will refer to as the complete representation)

will result in a transitive decoding network under Gallager A decoding: using symmetries

of the complete representation, we may show that after a single iteration of the decoder,

the received word either decodes to a codeword and continues decoding to that codeword

for any number of iterations, or it will decode to itself under any number of iterations. We

defer the full proof of Theorem 5.2.1 until after the proofs of three necessary lemmas.

In the following three lemmas, suppose we have an [n, k] binary linear code C with

n − k > 2. Let H be the parity-check matrix of C whose rows are exactly the nonzero

codewords of C⊥. Let G be the corresponding Tanner graph representation of C.

Lemma 5.2.2. There are 2n−k − 1 constraint nodes in G, every variable node has degree

2n−k−1, and every set of i variable nodes for i ≤ n − k has 2n−k−i common neighbors.

Proof. The first statement is clear from the construction of H and the fact that dim
(
C⊥

)
=

n − k. The second statement follows from the fact that exactly half of the codewords of a

80

binary linear code have a 1 in a given coordinate.

We note that the final statement is equivalent to the following: for any choice of i ≤ n−k

columns in H, there are exactly 2n−k−i rows in H with a 1 in all i chosen columns.

Choose a subset I ⊆ [n] with |I| = i, corresponding to a set of i columns of H, or

coordinates of words in C⊥. Without loss of generality, we may assume that I corresponds

to {1, 2, . . . , i}, the first i coordinates or columns. Note that the set of all codewords in C⊥

with 0’s in the first i coordinates form a subspace of C⊥; call this subspace C⊥I . Furthermore,

we claim that the dimension of this subspace is n − k − i.

Indeed, if i = 1, this is equivalent to saying that half of the codewords of a binary linear

code have a 0 in the first coordinate, which we know to be true. Suppose the statement

holds true for i = m < n − k. That is, the set of codewords in C⊥ with a 0 in the first m

coordinates is a subcode of dimension n − k − m. Half of these codewords have a 0 in the

(m + 1)st coordinate, giving a subspace of C⊥ of dimension n − k − (m + 1). We conclude

that the statement holds for all i ≤ n − k.

Next, observe that C⊥/C⊥I has dimension n − k − (n − k − i) = i. Each of the 2i cosets

of C⊥I corresponds to a choice of a subset of I, seen by mapping a representative of the

coset to the subset of its first i coordinates which have an entry of 1 (it is straightforward

to see that any choice of representative will map to the same subset). Furthermore, no two

distinct cosets will map to the same subset of I. Since there are 2i subsets of I, this map

gives a bijection. Then, it must be the case that some coset corresponds to the entire set I.

In other words, the set of rows in H with 1’s in every column corresponding to an element

of I forms a coset of C⊥I . We conclude that there are |C⊥I | = 2n−k−i rows in H with 1’s in all

of the columns corresponding to elements of I, and we have proven our claim. �

Lemma 5.2.3. Let C be decoded via Gallager A or B decoding. During the first iteration,

there are either zero or exactly 2n−k−1 unsatisfied constraint nodes in G.

81

Proof. Let y ∈ Fn
2 be the input to the decoder. Observe that the number of unsatisfied

constraint nodes in G during the first decoding iteration is exactly the number of codewords

in C⊥ whose inner product with y is equal to 1. We claim that there are exactly 2n−k−1 such

codewords in the dual.

If 〈c, y〉 = 0 for all c ∈ C⊥, then y is a codeword in C, and no constraint nodes are

unsatisfied. Otherwise, there exists c̃ ∈ C⊥ such that 〈c̃, y〉 = 1. Consider the map

ϕ : C⊥ → C⊥

c 7→ c + c̃

This map is clearly bijective. Notice that 〈ϕ(c), y〉 = 〈c, y〉 + 1 for all c. In particular,

each word in the dual whose inner product with y is equal to 1 maps to a word whose inner

product with y is equal to 0, and vice versa. Since ϕ is bijective, this implies that exactly

half of the elements of C⊥ have an inner product with y equal to 1. That is, there are

|C⊥|/2 = 2n−k/2 = 2n−k−1

nonzero codewords in the dual whose inner product with y is equal to 1. In other words,

there are 2n−k−1 unsatisfied constraints in the first iteration of the decoder on G. �

Lemma 5.2.4. Under Gallager A decoding, no variable node v in G ever has dG(v) − 1

incoming messages disagreeing with the channel value at that variable node.

Proof. Suppose the above does not hold, and let the end of iteration i be the first time a

variable node receives dG(v) − 1 messages disagreeing with the channel value.

Let v be a variable node receiving such a set of messages. Since n−k > 2, Lemma 5.2.2

implies that the degree of each variable node in G is even, and in particular this implies that

v receives an odd number of each possible message value (0 or 1) at the end of iteration i.

82

That is, the sum of the messages coming into v at the end of iteration i must be 1. Let Gv be

the subgraph of G induced by the vertices N(v) ∪ N(N(v)). From the Gallager A check to

variable message rule, the sum of the messages into v at the end of iteration i is also equal

to ∑
v j,v

dGv(v j) · mv j

where mv j is the message from v j to all its check nodes during the ith iteration (the same

message is sent along each edge here, since iteration i is the first time a variable node

receives all-but-1 unanimous channel-contradicting messages, which is the only case in

which outgoing variable to check messages disagree with one another under Gallager A).

Thus,

∑
v j,v

dGv(v j) · mv j = 1.

However, by Lemma 5.2.2, since n− k > 2, each vertex in V \ {v} has even degree in Gv

(in particular, degree 2n−k−2), a contradiction to the above summation. We conclude that it

cannot be the case that a variable node ever receives dG(v) − 1 of one message and one of

the other. �

We now prove Theorem 5.2.1 by proving that the complete representation of such a code

will result in a transitive decoding network under Gallager A.

Proof of Theorem 5.2.1. Let C be an [n, k] binary linear code with n − k > 2. Let H be the

parity-check matrix of C whose rows are exactly the nonzero codewords of C⊥. Let G be

the corresponding Tanner graph representation of C.

Let y ∈ Fn
2 be the input to the decoder. If there are zero unsatisfied constraint nodes

during the first iteration of Gallager A, y is a codeword, and will decode as y for any number

of iterations. Otherwise, there are 2n−k−1 unsatisfied constraint nodes in G by Lemma 5.2.3.

83

In this second case, since two variable nodes cannot have exactly the same set of neigh-

bors by Lemma 5.2.2, at most one variable node in G has all of its neighbors unsatisfied at

the end of the first iteration of the decoder, and so at most one variable node flips its value

after one decoder iteration.

If a single variable node flips, then the unsatisfied constraints in the first iteration of

the decoder were exactly its neighbors. Then, all of its adjacent constraints are satisfied on

the next (and all future) iteration(s), as it will send out its flipped value along all incident

edges. In other words, all constraint nodes are satisfied on the next iteration. We conclude

that flipping that single variable node value resulted in a codeword. That is, y will decode

as this codeword after any number of iterations, and the decoding network is transitive.

If no variable node flips on the first iteration, then, because no variable node receives

more than dG(v) − 2 messages conflicting with its channel value by Lemma 5.2.4, all mes-

sages sent out from variable nodes on the second (or any higher number of) iteration(s)

will agree with their channel values. That is, y will decode as itself after any number of

iterations, and the decoding network is, again, transitive. This completes our proof.

�

While the complete representation establishes the existence of a representation yielding

a transitive network for any code with n− k > 2, this level of redundancy is not necessarily

required, and in fact may create an excess of trapping sets in the code. In Example 5.1.5,

adding row seven of representation B to the canonical representation A gives a transitive

network, as does adding any three additional rows to the canonical representation. How-

ever, any other combination of row additions does not yield a transitive network. Thus, it

is interesting to determine the minimum level of redundancy needed to yield a transitive

decoding network for a code with a fixed choice of decoder.

84

5.2.1 Applications

In the remainder of this section, we apply the decoding network model to product and

half-product codes, which have been subject to renewed interest [82–84], as well as to

a (u | v) code construction and codes constructed from protographs. By phrasing the

decoding networks of these classes of codes in terms of the decoding networks of their

component codes, we can identify trapping sets in the larger codes with fewer up-front

computations. Recall,

Definition 5.2.5. Let C1 and C2 be binary linear codes of lengths n and m, respectively.

Then the product code C1 × C2 is the set of m × n binary arrays such that each row forms a

codeword in C1, and each column forms a codeword in C2.

Consider a product code, C1 × C2, with a decoder that operates by running iterations

of a specified decoder on each component code in an alternating fashion. At each itera-

tion, channel information is dispensed with and decoding is performed based solely on the

current estimate.

Theorem 5.2.6. Let C1 and C2 be codes of lengths n and m, respectively, with decoding

networks D1 and D2 with respect to some specified decoders. Let A1 be the adjacency

matrix of the directed graph product (D1
1)m, and let A2 be the adjacency matrix of (D2

1)n.

Then, the adjacency matrix of dimension ` of the transitive decoding network, D, of the

product code C1 × C2 is given by (A1A2)`.

Proof. Consider the product code C1×C2, where C1 has length n, and C2 has length m. Let

D1 (resp. D2) be the decoding network of C1 (resp., C2) under a hard-decision message-

passing decoding algorithm. Since C1 × C2 ⊆ F
m
2 × F

n
2, the size of the vertex set of the

product code decoding network, D, will be |Fm
2 × F

n
2| = 2mn. We may view each word

85

associated with a vertex as the product of m words of length n, or, equivalently, n words of

length m.

For the first half of a single iteration, the rows of a word in Fm
2 × F

n
2 are decoded. Thus,

for a half iteration, (v1, . . . , vm) → (w1, . . . ,wm) if and only if vi → wi in D1 for each

1 ≤ i ≤ m, where vi and wi correspond to words in Fn
2. In particular, the decoding network

for the first half iteration is the directed product graph (D1
1)m; let A1 be its adjacency matrix.

On the next half of the first iteration, the columns of the word are decoded. By similar

reasoning, the graph for the second half of the decoding process is given by the directed

product graph (D2
1)n, with adjacency matrix denoted A2.

To construct the decoding network for a full iteration, we first identify the vertices of

(D1
1)m and (D2

1)n as follows:

(v1, . . . , vm) = ((v11, v12, . . . , v1n), . . . , (vm1, vm2, . . . , vmn))

in the vertex set of (D1
1)m is identified with the vertex

(v′1, . . . , v
′
n) = ((v11, v21, . . . , vm1), . . . , (v1n, v2n, . . . , vmn))

in the vertex set of (D2
1)n. Once the vertices have been identified so that the rows and

columns of A1 and A2 correspond, the adjacency matrix for D1 is equal to A1A2, which

gives directed paths of length two with the first edge in the path corresponding to the first

half of an iteration, and the second edge corresponding to the second half of an iteration.

Following from the transitivity of the decoder, the adjacency matrix for dimension ` in

the decoding network,D, of C1 × C2 is thus equal to (A1A2)`.

�

Next, we consider half-product codes, a class of codes constructed from product codes

86

that offer improved performance in both the waterfall and error floor regions [83, 84].

Definition 5.2.7. [83] Let C be a binary linear code of length n, and let

C̃H = {X − XT : X ∈ C × C}.

The half-product code with component code C, denoted CH, is obtained from C̃H by setting

the symbols below the diagonal of each element of C̃H equal to zero.

A decoder runs by iteratively decoding at each of the n constraints corresponding to

“folded” codewords, as in [83, 84]. Again, channel information is dispensed with at each

subsequent iteration. For each i ∈ [n], let Ai be the adjacency matrix of the digraph on the

vertex set of the decoding network of the half-product code,DH, which gives the behavior

of a single decoder iteration run on the ith constraint code. While decoding is performed

on the ith constraint, all (n − 1)(n − 2)/2 symbols not participating in constraint i are fixed.

Let Di be the decoding network associated with the ith constraint code. Then, Ai is the

adjacency matrix of a disjoint union of 2(n−1)(n−2)/2 copies of Di, corresponding to all the

ways non-participating symbols may be fixed. Permute the rows and columns of the Ai’s

so that they all correspond to a single ordering of the vertices inDH, and let S n denote the

symmetric group on n elements.

Theorem 5.2.8. The product (Aσ(1) · · · Aσ(n))`, where σ ∈ S n, gives the adjacency matrix of

DH
` , dimension ` of the decoding network of the half-product codeCH, where the component

constraints are decoded in the order determined by σ.

Proof. The proof is similar to that of Theorem 5.2.6.

�

Another construction yielding a transitive decoding network is as follows.

87

Theorem 5.2.9. Let C1 and C2 be binary linear codes with parity-check matrices H1 and

H2, respectively. Suppose their decoding networks are transitive with respect to a fixed

decoder and the above representations. Then, the decoding network of the code C = {(u |

v) : u ∈ C1, v ∈ C2} with parity-check matrix H = H1 ⊕ H2 is transitive with respect to the

same decoder.

Proof. Notice that the Tanner graph of the code C is the disjoint union of the Tanner graphs

of C1 and C2; iterative decoding is therefore performed independently in parallel on the

two components of C. That is, if D1 and D2 are the decoding networks of C1 and C2,

respectively, and D is the decoding network of C, then the edge ((u1 | v1), (u2 | v2), `) ∈

E(D) if and only if (u1,u2, `) ∈ E(D1) and (v1, v2, `) ∈ E(D2). It follows that if both D1

andD2 are transitive, so isD.

�

Observe that we may apply Corollary 5.1.10 to transitive decoding networks resulting

from Theorems 5.2.6 and 5.2.8, and 5.2.9. Finally, we consider protograph codes.

Theorem 5.2.10. Let C be a binary linear code with Tanner graph G and decoding net-

work D with respect to a fixed decoder. Viewing G as a protograph, let Ĉ be the code

corresponding to a degree J lift of G, denoted Ĝ, and (with an abuse of notation), let D̂ be

the decoding network of Ĉ with respect to the same decoder. Then, there exists a subgraph

of D̂ that is isomorphic to D. In particular, if D is not transitive, then D̂ is not transitive.

However, transitivity ofD does not necessarily imply transitivity of D̂.

Proof. Let C be a binary linear code of length n with Tanner graph G and decoding network

D with respect to a fixed decoder. Let Ĉ be the code corresponding to a degree J lift of G,

denoted Ĝ, and let D̂ be the decoding network of Ĉ with respect to the same decoder. Let

v̂i,1, . . . v̂i,J denote the J variable nodes in Ĝ that correspond to variable node vi in G, and let

ĉ j,1, . . . ĉ j,J denote the J check nodes in Ĝ that correspond to check node c j in G. We say

88

that a variable node in Ĝ is of type i if it belongs to {v̂i,1, . . . v̂i,J}, and similarly for check

nodes.

For each a = (a1, . . . , an) ∈ Fn
2, let â denote the word in FJ·n

2 such that each of the J

coordinates of type i in the lift is equal to ai.

We claim that a decodes to b in ` iterations of the decoder run on G if and only if â

decodes to b̂ in ` iterations of the decoder run on Ĝ. To show this, we make the following

claim, whose proof is deferred until the end of the theorem’s proof:

Lemma 5.2.11. If a is the set of inputs to the decoder on G, and â is the set of inputs to the

decoder on Ĝ, then the (ordered) set of messages received by a variable node of type i in

Ĝ after ` decoding iterations is identical to the set of messages received by vi in G after `

decoding iterations.

Because the channel value ai is equal to the channel value for every coordinate of type

i in â, Lemma 5.2.11 says that ai will decode in the same way as all coordinates of type i in

â. Thus, a decodes to b in ` iterations if and only if â decodes to b̂ in ` iterations. In terms

of the decoding network, this means that (a,b, l) is an edge inD if and only if (â, b̂, l) is an

edge in D̂.

We conclude that the map

ϕ : V(D) → V(D̂)

x 7→ x̂

gives an isomorphism between D and the network induced by the vertices in Im(ϕ) in D̂.

It follows easily that ifD is not transitive, then its isomorphic image in D̂ is not transitive,

and therefore D̂ itself is not transitive, concluding our proof.

89

We now return to prove our earlier claim.

Proof of Lemma 5.2.11: We will prove the lemma by induction on `, the number of decod-

ing iterations.

Because all variable nodes of type k in Ĝ have the same channel value as vk in G, by

the definition of â, the initial message from a variable node of type k to a check node of

type m is equal to the initial message from vk to cm in G. Because this holds for all types

k and m, the ordered set of messages received by a check node of type j in Ĝ is equal to

the ordered set of messages received by c j in G. Thus, the message from a check node of

type j to a variable node of type i in Ĝ will be calculated in the same way as the message

from c j to vi will be calculated in G. We conclude that the ordered set of messages received

by a variable node of type i in Ĝ after a single decoding iteration is identical to the set of

messages received by vi in G after a single decoding iteration. Thus, the claim holds for a

single iteration of the decoder. Suppose that it holds for ` − 1 iterations.

Since each neighbor of a check node of type j in Ĝ received the same set of messages

as its counterpart in G after `− 1 iterations by assumption, the set of messages into a check

node of type j in Ĝ during the `th iteration is identical to the set of messages into c j in G

during the `th iteration. Thus, a check node of type j sends out the same set of messages

as c j during the `th iteration: that is, it sends its neighbor of type i the same message that

is sent from c j to vi. As this holds for all j, the set of messages received by a variable node

of type i in Ĝ after ` decoding iterations is identical to the set of messages received by vi in

G after ` decoding iterations, proving the claim. �

90

5.3 Periodic decoders and the Iteration Search Algorithm

In Example 5.1.9, if the all-zero codeword was sent, more received words are decoded

correctly if only a single iteration of the decoder is run, rather than multiple iterations.

In this section, we introduce the Iteration Search Algorithm (ISA), which optimizes the

implementation of hard-decision decoding algorithms based on this observation. To this

end, we introduce parameters we call the decoding diameter, the aperiodic length, and the

decoding period.

Definition 5.3.1. Let D be the decoding network of a code C under a fixed decoder. For

y ∈ V(D), let Ly be the minimum nonnegative integer such that for all ` ≥ Ly, y`, the

output of the decoder after ` iterations, appears an infinite number of times in the sequence

{yk}∞k=Ly
. Then, the decoding diameter ofD is given by ∆(D) = maxy∈V(D) Ly.

After running a number of iterations equal to the decoding diameter of a decoding

network, all errors will be contained in trapping sets of the code. Once this occurs, if the

iterative decoder is allowed to run for more iterations, we may show that there exists an

integer p such that the iterative decoder output yp+i = yi for any received word y and i ≥ k,

where k is some value greater than or equal to ∆(D). We call the smallest k for which this

holds the aperiodic length and denote it by m; that is, for iterations 1 through m − 1, the

decoder’s behavior is aperiodic.

Definition 5.3.2. The period py for a received word y is the smallest positive integer such

that the decoder output at iteration p + i is equal to the output at iteration i for all i ≥ m.

If no such integer exists, we say that the period is∞. We denote by pmax the longest period

over all possible received words. The decoding period is the least common multiple of the

periods for all received words. We say that a decoding network is periodic if it has decoding

period less than∞.

91

Proposition 5.3.3. The decoding network of a finite block length code is periodic under

any hard-decision decoder.

Proof. The Tanner graph of a code of finite block length is finite, so the number of potential

message states is finite. Thus, for each received word, the check node to variable node

message state will eventually repeat, creating periodic outputs of the decoder. Since the

set of possible received words is finite by assumption, the decoding period is finite by

definition. �

Example 5.3.4. Returning to Example 5.1.2, the decoding diameter of R(0, 2) is equal to

4. After 4 iterations, for all 16 possible received words, the decoder’s behavior is periodic.

Thus, in this case, the aperiodic length is equal to the decoding diameter, though we note

that this may not always be the case. In this example, 4 received words have decoding

period 7, 4 have decoding period 3, and the remaining 8 have decoding period 1. Thus, the

decoding network is periodic with decoding period 21, and pmax = 7.

Example 5.3.5. Consider a Gallager-like finite geometry LDPC code, C, constructed from

the Euclidean geometry EG(2, 3) as in Chapter 4, for transmission over the BSC, and as-

sume decoding is performed via the Gallager A algorithm. We examine decoding parame-

ters for two different parity-check matrix representations of C. First, let

H =



1 1 1 0 0 0 0 0 0

0 0 0 1 1 1 0 0 0

0 0 0 0 0 0 1 1 1

1 0 0 1 0 0 1 0 0

0 1 0 0 1 0 0 1 0

0 0 1 0 0 1 0 0 1



.

92

There are 16 codewords in C; under Gallager A decoding, this representation has de-

coding diameter 2, though it does not admit a transitive decoding network. More specifi-

cally, after 2 iterations of the decoder, every word has decoded to the word it will statically

decode to in any higher number of iterations. Thus, the aperiodic length is also 2, and both

pmax and the decoding period are equal to 1.

Now, consider the representation H′ obtained by adding the element 110001110 of

the dual code to the parity-check matrix H as a seventh row. With representation H′, the

decoding diameter of the code under Gallager A remains equal to 2, but the decoding

period drastically increases. While most received words decode to the same word for any

number of iterations greater than 1, a total of 64 received words move through a periodic

cycle of outputs with period 18.

For example, in the case of the received word 010000000, the decoder cycles though

outputs shown in Table 5.1.

Iteration Output Iteration Output Iteration Output
1 000000000 7 010000000 13 110010000
2 000001100 8 010000000 14 010000001
3 000100001 9 010000000 15 000000001
4 010001100 10 011000011 16 010001100
5 110110001 11 010100000 17 000000000
6 110010000 12 110011100 18 010000000

Table 5.1: Outputs of the Gallager A algorithm run on the received word 010000000 for 1 through
18 iterations. This pattern of outputs repeats for higher numbers of iterations.

Thus, assuming the all-zero codeword was transmitted, each variable node is in error

at some point during this cycle of outputs, and so the set of all variable nodes forms a

trapping set induced by the second variable node, as stated in Theorem 5.1.7. The only

codewords among these possible outputs from the decoder are 000000000 and 011000011.

Given that 010000000 was received, 000000000 is the most likely codeword to have been

sent. This output appears after running 1 iteration or after running 17 iterations, as shown

93

in Figure 5.1. The other codeword output, 011000011, is output after 10 iterations.

In fact, this pattern holds for each of the 64 words with decoding periodicity 18. Thus,

running either 1 or 17 iterations is optimal for these received words. Since all other re-

ceived words are decoded statically for 2 iterations and higher, we conclude that it is op-

timal to run 17 iterations of the decoder. In this case, a codeword will be output for every

received word.

In Example 5.3.5, we were able to completely analyze the code’s decoder outputs with

parity-check matrix H′, and determine the optimal number of iterations to run for any

received word. However, predetermining the decoder behavior for every received word is

costly, and we may not be able to build a code’s decoding network, and thus analyze behav-

ior, from smaller component codes as was done in Section 5.2.1. However, if the aperiodic

length and the value of pmax for a code are known, we can use a hard-decision decoder

as a low-complexity tool to give a small list of possible codeword outputs. In the case of

Example 5.3.5, this would allow us to simply choose between the outputs 000000000 and

011000011 for received word 010000000 using Maximum Likelihood decoding.

We now present an algorithm which realizes this idea. Let m be the aperiodic length of

a code with a particular representation under a given hard-decision decoder.

Algorithm 2 Iteration Search Algorithm (ISA)
Input: Received word y

1: k ← 1.
2: Run m − 1 iterations of the iterative decoder.
3: for i = 0 to pmax − 1 do
4: Run iteration m + i of the iterative decoder.
5: if ym+i is a codeword then
6: x̂k ← ym+i

7: k ← k + 1
8: if k > 1 then
9: x̂ = argmaxx̂k

Pr(y received | x̂k sent)

Output: x̂ if it exists, ERROR else

94

Notice that if no codeword is output during the period of the decoder, then the Iteration

Search Algorithm throws an error.

Example 5.3.6. Continuing to build on Example 5.1.2, suppose we receive the word y =

1000, and decode using the ISA. We first run m − 1 = 3 iterations of the decoder. On

iterations m = 4 through m + pmax − 1 = 10, we check to see if the output is a codeword. If

it is, we record its value. In this case, iteration 6 outputs the codeword 0000, and iteration

10 outputs the codeword 1111. Iterations 4, 5, and 7− 9 output non-codewords. Of the two

codeword outputs, 0000 maximizes the probability that y was received given that it was

sent, and so 0000 is the output of the decoder. In fact, this is the ML codeword. However, if

Gallager A were simply run until a codeword was output, the first codeword output would

be 1111 (on iteration 3), which is not the ML codeword.

Suppose instead that we received y = 0001. In this case, iterations 7 and 8 both output

0000, and this is the only codeword output appearing the ISA’s list. Thus, the ISA outputs

the 0000, which is, again, the ML codeword.

In this example, 10 of the 16 possible received words will output the ML codeword with

the ISA. The other 6 received words would not decode to a codeword in any number of

iterations.

Remark 5.3.7. The ISA will, in general, output the ML codeword more often than the

standard implementation of Gallager A. The exception is if the iterative decoder produces

an ML codeword before the aperiodic length and, in addition, the ML codeword does not

appear in the list produced by the ISA.

To guarantee that the ISA always outputs the ML codeword if the ML codeword ap-

pears as an output in any dimension of the decoding network, we present a modification

in Algorithm 3 which also records outputs for iterations before the aperiodic length. In

ISA2, a list of codewords is not maintained; rather, only the codeword with the lowest

95

“cost” is retained at each step of the algorithm. However, we still require ISA2 to run for

all m + pmax − 1 iterations since this range includes all possible codeword outputs and it

remains possible that the ML codeword appears only in later iterations.

Algorithm 3 Iteration Search Algorithm 2 (ISA2)
Input: Received word y

1: k ← 1, cost =∞, x̂ = 0.
2: for i = 1 to m − 1 do
3: if yi is a codeword then
4: newcost = Pr(y received | yi sent)
5: if newcost < cost then
6: cost← newcost
7: x̂← yi

8: for i = 0 to pmax − 1 do
9: Run iteration m + i of the iterative decoder.

10: if ym+i is a codeword then
11: newcost = Pr(y received | ym+i sent)
12: if newcost < cost then
13: cost← newcost
14: x̂← ym+i

Output: x̂

Algorithms 2 and 3 rely on knowledge of the aperiodic length and the value of pmax;

however, even if we do not know the exact values of these parameters, we may put an upper

bound on their sum (and each of them individually):

Theorem 5.3.8. If χ is the number of possible variable-to-check message patterns for a

given hard-decision decoder, then

m + pmax ≤ 2 · χ.

Proof. Each of m and pmax is bounded above by the number of variable-to-check message

patterns, since as soon as a pattern repeats, the decoder is periodic. �

96

For the Gallager A and B algorithms, we may put bounds on the number of possible

variable-to-check message patterns as follows.

Theorem 5.3.9. For Gallager B operating on a particular choice of representation of a

code, the number of possible variable-to-check message patterns is bounded above by

((
∆V

dt · (∆V − 1)e

)
+ 2

)n

,

where n is the block length of the code, t is the portion of other check-to-variable messages

that must disagree with the channel value in order for an edge to send back a message

disagreeing with the channel value, and ∆V is the maximum variable node degree in the

Tanner graph corresponding to that representation.

Proof. In the Gallager B algorithm, there are only three possible types of variable-to-check

message patterns leaving a single variable node v. Either all outgoing messages agree with

the channel value, all disagree with the channel value, or exactly dt · (d(v) − 1)e messages

agree with the channel value, where d(v) is the degree of variable node v. This is a conse-

quence of the variable-to-check message rule of the algorithm. There is one way each that

the first two types can occur, and
(

d(v)
dt·(d(v)−1)e

)
patterns of the final type.

Then, the total number of possible variable-to-check message patterns is upper bounded

as follows:

∏
v∈V

((
d(v)

dt · (d(v) − 1)e

)
+ 2

)
≤

∏
v∈V

((
∆V

dt · (∆V − 1)e

)
+ 2

)
=

((
∆V

dt · (∆V − 1)e

)
+ 2

)n

,

where V is the set of all variable nodes. �

97

Corollary 5.3.10. For Gallager A operating on a particular choice of representation of

a code, the number of possible variable-to-check message patterns is bounded above by

(∆V + 2)n, where n is the block length of the code and ∆V is the maximum variable node

degree in the Tanner graph corresponding to that representation.

Proof. This follows from Theorem 5.3.9 by letting t = 1. �

Corollary 5.3.11. For Gallager A decoding,

m + pmax ≤ 2(∆V + 2)n,

where n is the block length of the code and ∆V is the maximum variable node degree.

Proof. This follows from Theorem 5.3.8 and Corollary 5.3.10. �

If more is known about the Tanner graph’s structure, then these bounds may be im-

proved. An ongoing line of work is providing improved bounds on the aperiodic length

and maximum period length for particular classes of codes.

A modified version of the ISA, which we call the Trapping set Search Algorithm (TSA),

can be used to identify the trapping sets of the code. To find the trapping set induced by

a received word y, we may run the TSA, given in Algorithm 4. The output trapping set is

an (a, b)-trapping set with a equal to the size of the output set, and b determined using the

parity-check matrix of the code. In order to find all trapping sets of the code, the TSA may

be run on a set of 2n−k possible received words which are not translations of one another

by codewords. The resulting trapping sets and their translations by codewords will give the

set of all trapping sets.

Example 5.3.12. The rth order binary Reed-Muller code R(r,m) may be defined as the set

of all binary vectors of length 2m that arise as the output vectors of polynomial Boolean

functions of degree at most r. Consider the Reed-Muller code R(1, 3), which has dimension

98

Algorithm 4 Trapping set Search Algorithm (TSA)
Input: Received word y

1: Run m − 1 iterations of the iterative decoder.
2: for i = 0 to pmax − 1 do
3: Run iteration m + i of the iterative decoder.
4: x̂i ← ym+i

5: S =
⋃

0≤i≤pmax−1 supp(x̂i)
Output: {vi}i∈S

4 and block length 23, for transmission over the BSC. We may define the code via the parity-

check matrix

H =



1 1 1 1 1 1 1 1

0 0 0 0 1 1 1 1

0 0 1 1 0 0 1 1

0 1 0 1 0 1 0 1


.

If decoded using Gallager A, the aperiodic length of the decoding network is m = 10,

and the decoding period and pmax are both equal to 2. If decoding is halted as soon as a

codeword has been reached, as is standard, a received word is decoded as an ML codeword

43.75% of the time. With this representation, the ISA has the same success rate.

However, suppose we use a different representation, H′, of the same code, obtained by

adding the row 01011010 to H. With this representation, the aperiodic length is m = 5,

and pmax = 20. With the ISA, 75% of received words will decode to an ML codeword,

as compared with 62.5% that will decode to an ML codeword with the standard Gallager

A implementation. In particular, translations of received words 00000111 and 00001000

by codewords will decode to a non-ML codeword under the traditional implementation of

Gallager A, but decode to an ML codeword with the ISA. The 25% of received words which

do not decode to an ML codeword output an error with the ISA, and are run for the maxi-

mum number of iterations with standard Gallager A, never reaching a codeword output in

99

either case. For example, the decoder outputs for the received word 00000110 eventually

oscillate between 00000111 and 11110111, both non-codewords. For this received word,

the TSA would output the set {v1, v2, v3, v4, v6, v7, v8}, the trapping set induced by {v6, v7}.

In the case of a transitive decoding network, the ISA behaves according to the following

proposition.

Proposition 5.3.13. If the decoding network, D, of a code is transitive, then given a re-

ceived word y, the ISA decodes y as follows: if the directed path inD1 beginning at y ends

in a vertex with a loop, then y decodes to that word. If the directed path from y ends in a

directed cycle, the decoder returns an error.

In particular, when a code has a transitive decoding network, once the chosen decoder

outputs a codeword, it will output that codeword for any higher number of iterations. Thus,

we may simplify the ISA in this case.

Corollary 5.3.14. If the decoding network, D, of a code is transitive, then the ISA may be

simplified to only check the mth iteration. If the mth iteration outputs a codeword, this is the

output of the ISA. Otherwise, an error is output.

Proof. If the mth iteration outputs a codeword, all higher numbers of iterations will output

this same codeword, and so it will be the output of the ISA. Otherwise, no higher number

of iterations will output a codeword; if so, m was not the aperiodic length. In this case, the

ISA will output an error. �

Recall that in the case of transitive decoding networks, trapping sets are in one-to-one

correspondence with directed cycles and vertices with loops in dimension 1 of the network.

Thus, the TSA will identify the loops and directed cycles of dimension 1 of the decoding

network.

100

Chapter 6

Conclusions

In this work, we examined the behavior of iterative low-complexity graph-based decoding

algorithms in several contexts. We first looked at spatially-coupled LDPC codes, showing

that their construction process may be standardized using algebraic graph lifts, and that

this framework may be leveraged to remove harmful trapping and absorbing sets in the

resulting code. We then examined the stopping and absorbing sets of hypergraph codes and

finite geometry LDPC codes, respectively, and gave a construction of algebraic hypergraph

lifts. Finally, we introduced a multidimensional decoding network framework to encode

the behavior of any hard-decision message-passing decoder for a code with a given graph

representation. We examined several parameters of decoding networks, and presented an

Iteration Search Algorithm to improve the performance of hard-decision decoders based on

these parameters.

Avenues for future work include defining explicit permutation assignments to minimize

the number of harmful absorbing sets in an SC-LDPC code, determining graph or parity-

check matrix conditions that capture decoding network parameters, and extensions of the

applications of decoding networks to larger classes of codes and decoders.

101

Bibliography

[1] C. Shannon, “A mathematical theory of communication,” Bell Sys. Tech. J., vol. 27,

pp. 379–423.

[2] R. Gallager, “Low-density parity-check codes,” IRE Trans. on Info. Theory, vol. 8,

no. 1, pp. 21–28, January 1962.

[3] R. Tanner, “A recursive approach to low complexity codes,” IEEE Trans. on Info.

Theory, vol. 27, no. 5, pp. 533–547, Sep 1981.

[4] C. Berrou, A. Glavieux, and P. Thitimajshima, “Near shannon limit error-correcting

coding and decoding: Turbo-codes,” in Proc. IEEE Int’l Conf. on Communications

(ICC), vol. 2, May 1993, pp. 1064–1070 vol.2.

[5] T. J. Richardson, M. A. Shokrollahi, and R. L. Urbanke, “Design of capacity-

approaching irregular low-density parity-check codes,” IEEE Trans. on Info. Theory,

vol. 47, no. 2, pp. 619–637, Feb 2001.

[6] A. Jimenez Felstrom and K. Zigangirov, “Time-varying periodic convolutional codes

with low-density parity-check matrix,” IEEE Trans. on Info. Theory, vol. 45, no. 6,

pp. 2181–2191, Sep 1999.

[7] D. J. Costello, L. Dolecek, T. E. Fuja, J. Kliewer, D. G. M. Mitchell, and R. Smaran-

dache, “Spatially coupled sparse codes on graphs: theory and practice,” IEEE Comm.

Magazine, vol. 52, no. 7, pp. 168–176, July 2014.

102

[8] S. Kudekar, T. Richardson, and R. L. Urbanke, “Spatially coupled ensembles univer-

sally achieve capacity under belief propagation,” IEEE Trans. on Info. Theory, vol. 59,

no. 12, pp. 7761–7813, Dec 2013.

[9] Y. Kou, S. Lin, and M. Fossorier, “Construction of low density parity check codes:

a geometric approach,” in Proc. of the 2nd Int’l Symp. on Turbo Codes and Related

Topics, 2000, pp. 137–140.

[10] Y. Bilu and S. Hoory, “On codes from hypergraphs,” European Journal of Combina-

torics, vol. 25, no. 3, pp. 339 – 354, 2004.

[11] L. Dolecek, “On absorbing sets of structured sparse graph codes,” in Information

Theory and Applications Workshop (ITA), Jan 2010, pp. 1–5.

[12] A. Beemer and C. A. Kelley, “Avoiding trapping sets in SC-LDPC codes under win-

dowed decoding,” in Proc. IEEE Int’l Symp. on Info. Theory and its Applications

(ISITA), Oct 2016, pp. 206–210.

[13] A. Beemer, S. Habib, C. A. Kelley, and J. Kliewer, “A generalized algebraic approach

to optimizing SC-LDPC codes,” in Proc. of the 55th Annual Allerton Conf. on Com-

munication, Control, and Computing, Oct 2017, pp. 672–679.

[14] A. Beemer, K. Haymaker, and C. A. Kelley, “Absorbing sets of codes from finite

geometries,” Submitted 2017.

[15] A. Beemer, C. Mayer, and C. A. Kelley, “Erasure correction and locality of hyper-

graph codes,” in International Castle Meeting on Coding Theory and Applications.

Springer, 2017, pp. 21–29.

103

[16] A. Beemer and C. A. Kelley, “Multidimensional decoding networks for trapping

set analysis,” in International Castle Meeting on Coding Theory and Applications.

Springer, 2017, pp. 11–20.

[17] ——, “Iterative decoder analysis using multidimensional decoding networks,” Sub-

mitted 2017.

[18] W. C. Huffman and V. Pless, Fundamentals of Error-Correcting Codes. Cambridge

University Press, 2003.

[19] M. G. Luby, M. A. Shokrolloahi, M. Mizenmacher, and D. A. Spielman, “Improved

low-density parity-check codes using irregular graphs and belief propagation,” in

Proc. IEEE Int’l Symp. on Info. Theory (ISIT), Aug 1998, pp. 117–.

[20] V. V. Zyablov and M. S. Pinsker, “Estimation of the error-correction complexity for

Gallager low-density codes,” Problems of Info. Transmission, vol. 11, no. 1, pp. 18–

28, 1975.

[21] M. Sipser and D. A. Spielman, “Expander codes,” IEEE Trans. on Info. Theory,

vol. 42, no. 6, pp. 1710–1722, Nov 1996.

[22] J. Thorpe, “Analysis and design of protograph based LDPC codes and ensembles,”

Ph.D. dissertation, California Institute of Technology, 2005.

[23] C. A. Kelley, “On codes designed via algebraic lifts of graphs,” Proc. of the 46th

Annual Allerton Conf. on Communication, Control, and Computing, pp. 1254–1261,

2008.

[24] J. L. Gross and T. W. Tucker, Topological Graph Theory. Dover, 1987.

[25] D. J. C. MacKay, “Good error-correcting codes based on very sparse matrices,” IEEE

Trans. on Info. Theory, vol. 45, no. 2, pp. 399–431, Mar 1999.

104

[26] F. R. Kschischang, B. J. Frey, and H. A. Loeliger, “Factor graphs and the sum-product

algorithm,” IEEE Trans. on Info. Theory, vol. 47, no. 2, pp. 498–519, Feb 2001.

[27] C. Di, D. Proietti, I. Telatar, T. Richardson, and R. Urbanke, “Finite-length analysis of

low-density parity-check codes on the binary erasure channel,” IEEE Trans. on Info.

Theory, vol. 48, no. 6, pp. 1570–1579, Jun 2002.

[28] L. Dolecek, Z. Zhang, V. Anantharam, M. Wainwright, and B. Nikolic, “Analysis of

absorbing sets for array-based ldpc codes,” in IEEE Int. Conf. on Communications,

June 2007, pp. 6261–6268.

[29] R. Koetter and P. Vontobel, “Graph-covers and iterative decoding of finite length

codes,” in Proc. 3rd Int. Symp. on Turbo Codes, 2003.

[30] T. Richardson, “Error-floors of LDPC codes,” in Proc. of the 41st Allerton Conf. on

Communication, Control and Computing, 2003, pp. 1426–1435.

[31] D. V. Nguyen, S. K. Chilappagari, M. W. Marcellin, and B. Vasic, “On the construc-

tion of structured LDPC codes free of small trapping sets,” IEEE Trans. on Info.

Theory, vol. 58, no. 4, pp. 2280–2302, Apr 2012.

[32] S. Sankaranarayanan, S. K. Chilappagari, R. Radhakrishnan, and B. Vasic, “Failures

of the Gallager B decoder: analysis and applications,” in Proc. IEEE Int’l Conf. on

Comm., 2006.

[33] J. Sun, “Studies on graph-based coding systems,” Ph.D. dissertation, The Ohio State

University, 2004.

[34] H. Park, J. S. No, B. Shin, and H. Chung, “On the combinatorial substructures of

LDPC codes causing error floors in the AWGN channel,” in Proc. Int’l Conf. on ICT

Convergence (ICTC), Oct 2012, pp. 420–425.

105

[35] B. K. Butler and P. H. Siegel, “Error floor approximation for LDPC codes in the

AWGN channel,” IEEE Trans. on Info. Theory, vol. 60, no. 12, pp. 7416–7441, Dec

2014.

[36] B. Vasic, S. K. Chilappagari, D. V. Nguyen, and S. K. Planjery, “Trapping set ontol-

ogy,” in Proc. of the 47th Allerton Conf. on Communication, Control, and Computing,

Sept 2009, pp. 1–7.

[37] C. A. Kelley and D. Sridhara, “Pseudocodewords of Tanner graphs,” IEEE Trans. on

Info. Theory, vol. 53, no. 11, pp. 4013–4038, Nov 2007.

[38] N. Miladinovic and M. P. C. Fossorier, “Generalized LDPC codes and generalized

stopping sets,” IEEE Trans. on Comm., vol. 56, no. 2, pp. 201–212, February 2008.

[39] D. Mitchell, L. Dolecek, and D. Costello, “Absorbing set characterization of array-

based spatially coupled LDPC codes,” in Proc. IEEE Int’l Symp. on Info. Theory

(ISIT), June 2014, pp. 886–890.

[40] H. Hatami, D. G. M. Mitchell, D. J. Costello, and T. Fuja, “Performance bounds for

quantized LDPC decoders based on absorbing sets,” in Proc. IEEE Int’l Symp. on

Info. Theory (ISIT), July 2016, pp. 2539–2543.

[41] ——, “Lower bounds for quantized LDPC min-sum decoders based on absorbing

sets,” in Proc. of the 55th Annual Allerton Conf. on Communication, Control, and

Computing, Oct 2017, pp. 694–699.

[42] R. M. Tanner, D. Sridhara, A. Sridharan, T. E. Fuja, and D. J. Costello, “LDPC block

and convolutional codes based on circulant matrices,” IEEE Trans. on Info. Theory,

vol. 50, no. 12, pp. 2966–2984, Dec 2004.

106

[43] A. E. Pusane, R. Smarandache, P. O. Vontobel, and D. J. Costello, “Deriving good

LDPC convolutional codes from LDPC block codes,” IEEE Trans. on Info. Theory,

vol. 57, no. 2, pp. 835–857, Feb 2011.

[44] M. Papaleo, A. R. Iyengar, P. H. Siegel, J. K. Wolf, and G. E. Corazza, “Windowed

erasure decoding of LDPC convolutional codes,” in IEEE Info. Theory Workshop

(ITW), Cairo, Jan 2010, pp. 1–5.

[45] A. R. Iyengar, P. H. Siegel, R. L. Urbanke, and J. K. Wolf, “Windowed decoding of

spatially coupled codes,” IEEE Trans. on Info. Theory, vol. 59, no. 4, pp. 2277–2292,

Apr 2013.

[46] B. Amiri, A. Reisizadeh, J. Kliewer, and L. Dolecek, “Optimized array-based

spatially-coupled LDPC codes: An absorbing set approach,” in Proc. IEEE Int’l

Symp. on Info. Theory (ISIT), June 2015, pp. 51–55.

[47] D. G. M. Mitchell and E. Rosnes, “Edge spreading design of high rate array-based

SC-LDPC codes,” in Proc. IEEE Int’l Symp. on Info. Theory (ISIT), June 2017, pp.

2940–2944.

[48] H. Esfahanizadeh, A. Hareedy, and L. Dolecek, “A novel combinatorial framework

to construct spatially-coupled codes: Minimum overlap partitioning,” in Proc. IEEE

Int’l Symp. on Info. Theory (ISIT), June 2017, pp. 1693–1697.

[49] L. Chen, S. Mo, D. J. Costello, D. G. M. Mitchell, and R. Smarandache, “A

protograph-based design of quasi-cyclic spatially coupled LDPC codes,” in Proc.

IEEE Int’l Symp. on Info. Theory (ISIT), June 2017, pp. 1683–1687.

[50] J. Fan, “Array-codes as low-density parity-check codes,” in Second Int’l Symp. on

Turbo Codes, Sept. 2000, pp. 543–546.

107

[51] E. Rosnes, “On the minimum distance of array-based spatially-coupled low-density

parity-check codes,” in Proc. IEEE Int’l Symp. on Info. Theory (ISIT), June 2015, pp.

884–888.

[52] A. Iyengar, M. Papaleo, P. Siegel, J. Wolf, A. Vanelli-Coralli, and G. Corazza, “Win-

dowed decoding of protograph-based LDPC convolutional codes over erasure chan-

nels,” IEEE Trans. on Info. Theory, vol. 58, no. 4, pp. 2303–2320, Apr 2012.

[53] M. Lentmaier, M. Prenda, and G. Fettweis, “Efficient message passing scheduling for

terminated LDPC convolutional codes,” in Proc. IEEE Int’l Symp. on Info. Theory

(ISIT), July 2011, pp. 1826–1830.

[54] A. E. Pusane, A. J. Feltstrom, A. Sridharan, M. Lentmaier, K. S. Zigangirov, and D. J.

Costello, “Implementation aspects of LDPC convolutional codes,” IEEE Trans. on

Communications, vol. 56, no. 7, pp. 1060–1069, July 2008.

[55] M. Karimi and A. H. Banihashemi, “An efficient algorithm for finding dominant trap-

ping sets of irregular LDPC codes,” in Proc. IEEE Int’l Symp. on Info. Theory (ISIT),

July 2011, pp. 1091–1095.

[56] M. Ivkovic, S. K. Chilappagari, and B. Vasic, “Eliminating trapping sets in low-

density parity-check codes by using Tanner graph covers,” IEEE Trans. on Info. The-

ory, vol. 54, no. 8, pp. 3763–3768, Aug 2008.

[57] D. B. West, “Combinatorial mathematics,” Fall 2014 edition.

[58] B. Amiri, A. Reisizadehmobarakeh, H. Esfahanizadeh, J. Kliewer, and L. Dolecek,

“Optimized design of finite-length separable circulant-based spatially-coupled codes:

An absorbing set-based analysis,” IEEE Trans. on Communications, vol. 64, no. 10,

pp. 4029–4043, Oct 2016.

108

[59] Y. Kou, S. Lin, and M. P. C. Fossorier, “Low-density parity-check codes based on fi-

nite geometries: a rediscovery and new results,” IEEE Trans. on Info. Theory, vol. 47,

no. 7, pp. 2711–2736, Nov 2001.

[60] S. J. Johnson and S. R. Weller, “Codes for iterative decoding from partial geometries,”

IEEE Trans. on Comm., vol. 52, no. 2, pp. 236–243, Feb 2004.

[61] C. A. Kelley, D. Sridhara, and J. Rosenthal, “Tree-based construction of LDPC codes

having good pseudocodeword weights,” IEEE Trans. on Info. Theory, vol. 53, no. 4,

pp. 1460–1478, April 2007.

[62] R. M. Tanner, “Explicit concentrators from generalized N-gons,” SIAM Journal on

Algebraic Discrete Methods, vol. 5, no. 3, pp. 287–293, 1984.

[63] L. M. Batten, Combinatorics of finite geometries. Cambridge University Press, 1997.

[64] H. Liu, Y. Li, L. Ma, and J. Chen, “On the smallest absorbing sets of LDPC codes

from finite planes,” IEEE Trans. on Info. Theory, vol. 58, no. 6, pp. 4014–4020, June

2012.

[65] S. Landner and O. Milenkovic, “Algorithmic and combinatorial analysis of trapping

sets in structured LDPC codes,” in Int’l Conf. on Wireless Networks, Comm. and

Mobile Computing, vol. 1, 2005, pp. 630–635.

[66] Q. Diao, Y. Y. Tai, S. Lin, and K. Abdel-Ghaffar, “Trapping set structure of LDPC

codes on finite geometries,” in Information Theory and Applications Workshop (ITA),

Feb 2013, pp. 1–8.

[67] S.-T. Xia and F.-W. Fu, “On the stopping distance of finite geometry LDPC codes,”

IEEE Comm. Letters, vol. 10, no. 5, pp. 381–383, May 2006.

109

[68] R. Smarandache and P. O. Vontobel, “Pseudo-codeword analysis of Tanner graphs

from projective and Euclidean planes,” IEEE Trans. on Info. Theory, vol. 53, no. 7,

pp. 2376–2393, July 2007.

[69] J. W. Hirschfeld and L. Storme, “The packing problem in statistics, coding theory

and finite projective spaces: update 2001,” in Finite geometries. Springer, 2001, pp.

201–246.

[70] J. Bierbrauer and Y. Edel, “Large caps in projective Galois spaces,” Current Research

Topics in Galois Geometry (Eds. M. De Beule and L. Storme), Nova Science Publish-

ers, pp. 85–102, 2011.

[71] S. Ball, Finite geometry and combinatorial applications. Cambridge University

Press, 2015, vol. 82.

[72] A. Barg and G. Zemor, “Codes on hypergraphs,” in Proc. IEEE Int’l Symp. on Info.

Theory (ISIT), July 2008, pp. 156–160.

[73] N. Alon, “Eigenvalues and expanders,” Combinatorica, vol. 6, no. 2, pp. 83–96, Jun

1986.

[74] N. Alon and J. H. Spencer, The probabilistic method. John Wiley & Sons, 2004.

[75] A. S. Rawat, A. Mazumdar, and S. Vishwanath, “Cooperative local repair in dis-

tributed storage,” EURASIP Journal on Advances in Signal Processing, vol. 2015,

no. 1, p. 107, Dec 2015.

[76] A. S. Rawat, D. S. Papailiopoulos, A. G. Dimakis, and S. Vishwanath, “Locality and

availability in distributed storage,” IEEE Trans. on Info. Theory, vol. 62, no. 8, pp.

4481–4493, Aug 2016.

110

[77] A. Marcus, D. A. Spielman, and N. Srivastava, “Interlacing families i: Bipartite ra-

manujan graphs of all degrees,” in Proc. IEEE Annual Symp. on Foundations of Com-

puter Science (FOCS). IEEE, 2013, pp. 529–537.

[78] M. Berlingerio, M. Coscia, F. Giannotti, A. Monreale, and D. Pedreschi, “Founda-

tions of multidimensional network analysis,” in Int’l Conf. on Adv. in Social Networks

Analysis and Mining, Jul 2011, pp. 485–489.

[79] T. Cormen, C. Leiserson, R. Rivest, and C. Stein, Introduction to Algorithms, 3rd ed.,

3rd ed. MIT Press, Jul. 2009.

[80] M. Karimi and A. H. Banihashemi, “Efficient algorithm for finding dominant trapping

sets of LDPC codes,” IEEE Trans. on Info. Theory, vol. 58, no. 11, pp. 6942–6958,

Nov 2012.

[81] Y. Hashemi and A. H. Banihashemi, “Characterization of elementary trapping sets in

irregular LDPC codes and the corresponding efficient exhaustive search algorithms,”

IEEE Trans. on Info. Theory, 2018.

[82] J. Justesen, “Performance of product codes and related structures with iterated decod-

ing,” IEEE Trans. on Comm., vol. 59, no. 2, pp. 407–415, February 2011.

[83] T. Mittelholzer, T. Parnell, N. Papandreou, and H. Pozidis, “Improving the error-floor

performance of binary half-product codes,” in Proc. IEEE Int’l Symp. on Info. Theory

and its Applications (ISITA), Oct 2016.

[84] H. D. Pfister, S. K. Emmadi, and K. Narayanan, “Symmetric product codes,” in Info.

Theory and App. Wkshp (ITA), Feb 2015, pp. 282–290.

	University of Nebraska - Lincoln
	DigitalCommons@University of Nebraska - Lincoln
	3-2018

	Design and Analysis of Graph-based Codes Using Algebraic Lifts and Decoding Networks
	Allison Beemer

	tmp.1524241659.pdf.qTQ5w

