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Yield risk represents a major portion of the financial risk facing corn producers 

and is found in the left tail of the yield distribution. Traditional methods for generating 

yield distributions fall into two categories: parametric and non-parametric. The shape and 

behavior of the tail of parametric yield distributions are determined by distributional 

assumptions. Non-parametric distributions fail to account for the possibility of as yet 

unseen extreme events, often referred to as “Black Swans”. Extreme Value Theory (EVT) 

rectifies these issues by providing an empirical, parametric estimate of the risk of extreme 

events, regardless of the underlying distribution of corn yields.  

A new method for generating complete yield distributions using EVT and Kernel 

Density Estimation (KDE) is proposed. EVT is used to estimate the tails of the yield 

distribution and KDE is used to estimate the body of the yield distribution. The new 

method combines the EVT estimate of the tails of the yield distribution with the KDE of 

the body of the yield distribution into a complete yield distribution.  

County-level yield data is often used instead of farm-level yield data due to the 

paucity of farm-level yield data. The aggregation from farm to county-level data changes 

the shape of the yield distribution and reduces its variance. The new method for 

generating complete crop yield distributions is implemented on four datasets from three 



aggregation levels. Data from Preston Farms in Hardin County, Kentucky is compared to 

county-level yield data from Hardin County. Data from the Knorr-Holden Plot, a research 

plot in Scotts Bluff County, Nebraska is compared to county-level yield data from Scotts 

Bluff County. This paper showcases best practices for the application of EVT to small 

sample crop yield data.   

The relationship between farm, field, and county-level yield distributions is 

heterogenous. While the Hardin County yield distribution well approximates the Preston 

Farms yield distribution, the Scotts Bluff County yield distribution is a poor 

approximation of the Knorr-Holden Plot yield distribution.  

In the future, the improved method for estimating yield distributions will be 

applied to a net income model to improve producer decision making under uncertainty. 
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CHAPTER 1: INTRODUCTION 

An agricultural producer’s risk management strategy is a major factor in the long-

term survival of the operation (Kim et al., 2019). Price and yield risk are two of the most 

important risks facing the producer. Price risk can be managed through futures markets, 

forward contracts, and crop insurance. Yield risk is primarily managed via crop 

insurance.  

While the costs of hedging and crop insurance may be clear, the risk manager 

must be able to make an accurate assessment of the benefits to create an optimized risk 

management strategy. The benefits of crop insurance and hedging are in the left tail of the 

price and yield distributions. 

1.1 Motivations 

The role of minimum yields represents the foundation to risk management design 

as consequential events exist in the extreme. Little is known about the behavior of 

minimum yields as they are, by construction, rarely observed. Extreme Value Theory 

(EVT) provides a framework for understanding the behavior of minimum yields, leading 

to improved risk management design, an important step as minimum yields and risk 

management design directly affects the probability of farm survival.  

The fundamental idea behind EVT is that the minimum (or maximum) has a 

behavior that can be modeled (Coles et al., 2001). The main challenge inherent in 

estimating the tails of a distribution is a paucity of data. Yields are only observed once 

per year, at harvest, which is compounded by the rarity of extreme events in the tail. 
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There are also events, often referred to as “Black Swans”, that we have yet to experience. 

Extreme Value Theory (EVT) enables empirical estimation of the probability of events 

that have yet to occur but are nonetheless possible. For the risk manager, improving the 

understanding of rare, financially devastating events impacts risk management decision 

making and investment. 

Our work builds upon several papers that have used EVT to better underwrite 

crop insurance (Park et al., 2019) or to create price distributions (Morgan et al., 2012), 

but EVT has not previously been used in a model to improve producers' decision making 

process. EVT will be combined with Kernel Density Estimation (KDE) to create a 

complete yield distribution. One of the goals of this project is to apply the yield 

distributions to improving the net income model developed by Walters and Preston 

(2018). An improved estimate of the probability of low yield events will improve 

modeling of the probability of extreme low-income events.  

An additional application of the method for generating yield distributions with 

EVT is to investigate the relationship between yield data aggregated at different levels. 

County-level yield data is often used instead of farm-level yield data for crop insurance 

and farm policy research due to the lack of availability of farm-level data (Claasen & 

Just, 2011). County-level yield can significantly underestimate the risk of extreme low 

yield events. A common solution to this is to multiply the county-level yield distribution 

by a coefficient of variation (Cooper et al., 2009). This assumes that the county and farm-

level distributions have the same tail structure. Applying EVT to farm and county-level 

yield data uncovers the tail structure of both the farm and county-level yield distributions.  
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1.2 Outline 

Our work is presented in two major sections. The first section contains the method 

for generating crop yield distributions. The second section applies that method to four 

datasets. There are three levels of aggregation represented in the four datasets. Field 

(plot) level data comes from the Knorr-Holden Plot in Scotts Bluff County, Nebraska. 

Farm-level data is available from Preston Farms in Hardin County, Kentucky. We 

compare these two levels of aggregation to their county-level yield distributions, Scotts 

Bluff and Hardin Counties respectively.  
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CHAPTER 2: METHODS 

Understanding producers’ underlying yield distribution helps reveal the true 

amount of risk producers face. Over the past century, agricultural producers have 

experienced improvement in yields, obscuring identification of the underlying yield 

distribution. Yields have been increasing over time due to technological advancement, 

improvements in knowledge, and input intensification. To identify the underlying yield 

distribution, the effect of increasing yields must be removed. Increasing yields are 

removed by a process called detrending. The goal of detrending is to isolate deviations 

from potential yield caused by random events such as weather and disease. While the idea 

of detrending is straightforward, many methods are available to detrend data. When 

choosing from the suite of detrending methods, the researcher must balance simplicity 

with overfitting, where overfitting results in random events being captured in the trend. 

Errors made in detrending can compound in later steps of the analysis.  

2.1 Residual Ratios 

There are two components to our method for uncovering the yield distribution. In 

the first component, we detrend the data by fitting the data using one of the detrending 

methods with regression. The second component addresses heteroskedasticity using 

residual ratios.  Residual ratios are defined as: 

𝑅𝑅𝑅𝑅𝑡𝑡 =
𝑦𝑦𝑡𝑡 − 𝑦𝑦�𝑡𝑡
𝑦𝑦�𝑡𝑡
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where 𝑦𝑦𝑡𝑡 represents the observed yield in year t and 𝑦𝑦�𝑡𝑡 represents the trend yield in year t. 

Residual ratios represent a percent deviation from the trend yield. As yields increase over 

time, so does the size of the residuals. Normalizing the residuals obtained from the first 

stage of detrending removes the trend of increasing variance. The use of residual ratios 

requires assuming a multiplicative error structure. An alternative approach would be to 

use an additive error structure. In our case, we find that an additive error structure results 

in heteroskedasticity (Figure 2.1). Our data exhibits a trend in yields which causes the 

variance of the non-standardized residuals to increase with time and thus requires the use 

of residual ratios.  

 
Figure 2.1 Scotts Bluff County Residuals by Year 

After detrending (and constructing residual ratios), the distribution of percent 

deviations from trend yield should be weakly stationary (Ye et al., 2015).  A weakly 

stationary time series has constant mean, variance, and autocorrelation structure. If our 
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estimation of trend is correct, then any deviations from that trend should be due to 

random events like weather and disease. We contend that it is reasonable to assume that 

the effect of these events on yield is constant throughout time (Deng, Barnett, and 

Vedenov 2007, Ker and Coble 2003). This is certainly not true in practice. For example, 

climate change is causing shifts in the expected effects of weather on crops. There are 

methods for estimating trends in moments above the mean (Tolhurst and Ker 2015), but 

they are beyond the objectives of this paper. See Harri et al. (2011) for a discussion on the 

impacts of heteroskedasticity assumptions on estimated yield distributions. 

2.2 Linear Detrending Methods 

Two general approaches have been chosen for the detrending process. The first 

approach is straightforward and involves a choice between ordinary least squares (OLS), 

one-knot piecewise linear spline, and two-knot piecewise linear spline. The Risk 

Management Agency (RMA) relies upon OLS, one-knot splines, and 2-knot linear splines 

for detrending historical yield data.1 OLS and one-knot piecewise linear splines have 

been used by Tolhurst and Ker (2015) and Ker and Coble (2003). We include the two-

knot piecewise spline as it is also straightforward to use while also allowing for 

additional flexibility to control for additional technological and knowledge 

advancements. From here forward we refer to the straightforward approach as linear 

methods. The simple linear regression is:  

 
1 RMA uses these detrending methods in area-based policies such as Area Risk Protection Insurance 
(ARPI), Supplemental Coverage Option (SCO), and Enhanced Coverage Option (ECO).   
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𝑦𝑦�𝑡𝑡 =  𝛽𝛽0 +  𝛽𝛽1𝑡𝑡 + 𝜀𝜀𝑡𝑡 . 

Where 𝛽𝛽0 represents the intercept; 𝛽𝛽1 represents the trend and 𝜀𝜀𝑡𝑡 represents the error 

term. Equation 1 is estimated using Ordinary Least Squares (OLS). Piecewise linear 

splines divide the data range into distinct intervals and fit separate linear regressions to 

each interval. The one-knot linear spline is:  

𝑦𝑦�𝑡𝑡 =  �
𝛾𝛾0 + 𝛾𝛾1𝑡𝑡  +   𝑒𝑒𝑡𝑡                        
𝛾𝛾0 +  𝛾𝛾1𝑡𝑡 + 𝛾𝛾2(𝑡𝑡 − 𝑘𝑘1)  +   𝑒𝑒𝑡𝑡

      𝑓𝑓𝑓𝑓𝑓𝑓 𝑡𝑡 ≤ 𝑘𝑘1 
𝑓𝑓𝑓𝑓𝑓𝑓 𝑡𝑡 > 𝑘𝑘1

 

where 𝑘𝑘1 represents a predetermined year that separates the two different linear trends, 

commonly referred to as the “knot”. 𝑘𝑘1 is selected by minimizing the average of the 

residual ratios, defined in Eq. 1, squared. The equation is formulated such that it is 

continuous, but not differentiable at the knot location. The two-knot piecewise linear 

spline is:  

𝑦𝑦�𝑡𝑡 = �
𝛼𝛼0 +  𝛼𝛼1𝑡𝑡  +   𝜖𝜖𝑡𝑡                                                     
𝛼𝛼0 +  𝛼𝛼1𝑡𝑡 + 𝛼𝛼2(𝑡𝑡 − ℎ1)  +   𝜖𝜖𝑡𝑡                            
𝛼𝛼0 +  𝛼𝛼1𝑡𝑡 + 𝛼𝛼2(𝑡𝑡 − ℎ1)  +   𝛼𝛼3(𝑡𝑡 − ℎ2) + 𝜖𝜖𝑡𝑡

     
𝑓𝑓𝑓𝑓𝑓𝑓 𝑡𝑡 ≤ ℎ1          
𝑓𝑓𝑓𝑓𝑓𝑓 ℎ1 > 𝑡𝑡 ≤ ℎ2,
𝑓𝑓𝑓𝑓𝑓𝑓 𝑡𝑡 > ℎ2           

𝑤𝑤ℎ𝑒𝑒𝑓𝑓𝑒𝑒 ℎ1 < ℎ2 

where ℎ1and ℎ2 represent pre-determined knot locations using the same procedure 

defined in the one-knot linear spline.   

An Augmented Dickey-Fuller (ADF) test is performed on the residual ratios 

resulting from the three different detrending methods. The ADF test tests the null 

hypothesis that a time series sample is non-stationary against the alternative hypothesis 

that the sample is a stationary series. To avoid overfitting, the model with the least 

complexity (number of knots) that produces a stationary series is chosen.  
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2.3 Locally Estimated Scatterplot Smoothing (LOESS) 

The second detrending method is locally estimated scatterplot smoothing 

(LOESS). With LOESS, for each observation, 𝑦𝑦𝑡𝑡, the nearest neighboring points are used 

in a weighted quadratic least squares regression to estimate y�t, trend yield. The number of 

neighboring points used to estimate the trend yield for each year is predetermined and is 

based on the bandwidth parameter, b, the percent of total observations to be used in each 

weighted regression. The tri-cube weight function is used to weight the observations 

within each weighted regression. The tri-cube weight function is the standard for use in 

the weighted regressions that make up the LOESS method (Cleveland, 1979). The tri-

cube weight function assigns higher weights to observations closer to the year for which 

the yield is being estimated, reducing the weight for observations further away in time. 

The bandwidth can range from zero to one. A larger (smaller) bandwidth parameter 

results in a smoother (more jagged) final LOESS curve. The bandwidth parameter is 

chosen through 10-fold cross-validation to avoid overfitting as in (Lu, Carbone, and Gao 

2017). The final LOESS curve is created by combining the trend yield estimated by each 

weighted quadratic least squares regression. The ADF test is performed on the residual 

ratios derived from the LOESS to ensure stationarity. 

 The two detrending methods, linear methods (three types) and LOESS, were used 

to assess the effects of different methods on the shape of the yield distribution. A 

practitioner will be required to make a subjective choice between the two methods to 

create a final yield distribution as there is no clear test to identify which method to use. 

As a result, the decision on which detrending method to select must be based primarily on 
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a visual comparison of the models. However, the linear methods approach to detrending 

has several distinct advantages to the practitioner. The first advantage is simplicity. The 

linear methods result in a simple linear trend that is easy to interpret and communicate. 

The LOESS method outputs a series of fitted values that vary non-linearly. This non-

linearity provides LOESS with an advantage in the case of a high curvature as seen in 

some corn yield trends. Flexibility to non-linear yield trends is a key advantage of the 

LOESS method.  

Another key advantage of the linear methods is that they can be used to 

extrapolate trend yield into the future. LOESS cannot be used to extrapolate into the 

future. This does not eliminate the usefulness of the LOESS method. If LOESS is 

subjectively determined to be the best fit for the data, it should still be used to generate 

the final yield distribution. The distribution of residual ratios is centered at 0 and is 

generated based on data up to year t. To estimate the yield distribution for year t+1, we 

need an estimate for the trend yield in year t+1. The support for the distribution of 

residual ratios multiplied by the estimate of the trend yield in year t+1 plus the estimated 

trend yield in year t+1 results in the “true” yield distribution for year t+1. It would be 

reasonable if the best method for detrending the historical yield data allows for an 

estimate of trend yield in year t+1, but if this is not the case, the best model of historical 

yields should be combined with the best estimate of future yields to generate the final 

distribution. If the LOESS method best represents the trend in historical yields, it should 

be used to create the residual ratio distribution. The linear methods could then be used to 

predict the future trend yield (year t+1) and create the final yield distribution. Both 
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methods require pre-determining parameters whether it be knot location or bandwidth 

parameter.  

2.4 Extreme Value Theory 

 Extreme Value Theory (EVT) provides an empirically based estimate of the area 

below the lowest value observation in a yield distribution. The heart of EVT lies in the 

Fisher-Tippet-Gnedko (FTG) theorem. The FTG theorem states that the distribution of 

the maxima (or minima) of a sequence of i.i.d. random variables will come from one of 

three types of extreme value distributions, regardless of the distribution of the underlying 

random variable (Coles et al., 2001). The three distributions are Fréchet, Gumbel, and 

Weibull.  

To identify maxima (or minima), the FTG theorem, when first introduced, relied 

upon the Block Maxima (BM) approach, which fits a sequence of maxima to the 

Generalized Extreme Value (GEV) distribution. By construction, the block maxima 

identify the largest (smallest) value within a predetermined range, thereby ignoring 

information from observations with similar, but, in the case of maxima (minima), smaller 

(larger) values. To account for the ignored information, the Peaks over Threshold (PoT) 

model has since been developed. The PoT model is based on an extension to the FTG 

theorem known as the Pickands–Balkema–De Haan (PBD) theorem. The PDM theorem 

states that the distribution of the exceedances of a random variable above some threshold, 

u, is the Generalized Pareto Distribution (GPD). While in theory both the PoT and BM 

approach, in the limit, provide the same result, in practice it has been shown that the GPD 

provides a better fit due to its more efficient use of data (Madsen et al., 1997).  
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The GPD is defined over three parameters: shape (ξ), scale (σ), and location (u). 

The shape parameter, ξ, controls the rate of decay of the tail of the distribution. The three 

types of extreme value distributions also correspond to the rate of decay in the tail. The 

GPD combines all three distributions into one, based on ξ. The Fréchet distribution (ξ >0) 

has an unbounded, heavy tail (i.e., student-t). The Weibull distribution (ξ <0) has a thin, 

bounded tail (i.e., beta distribution). The Gumbel distribution (ξ =0) has a light tail and is 

equivalent to the exponential distribution when u=0. The CDF of the GPD is given by 

𝐹𝐹�(𝑓𝑓𝑓𝑓) =  

⎩
⎨

⎧
1 − �1 +

𝜉𝜉(𝑓𝑓𝑓𝑓 − 𝜇𝜇)
𝜎𝜎

�
−1𝜉𝜉

 𝑓𝑓𝑓𝑓𝑓𝑓 𝜉𝜉 ≠ 0

1 − 𝑒𝑒−
𝑟𝑟𝑟𝑟−𝜇𝜇
𝜎𝜎                         𝑓𝑓𝑓𝑓𝑓𝑓 𝜉𝜉 = 0

 

where rr is residual ratios. Once the threshold has been selected the shape and scale 

parameters are estimated with maximum likelihood estimation. This is done using the 

package “evir” in R. The above formula is for the GPD in the right tail of the distribution. 

For use in the left tail, the negative of the residual ratios is used to estimate ξ and σ.  

When using parametric distributions, observations in the middle of the 

distribution have a large effect on the shape of the tail. The choice of parametric 

distribution also affects the resulting distribution of the tail. EVT uses only the 

observations in the tail to estimate the tail of the distribution. Using EVT means that the 

data guides the shape of the tail, rather than the assumptions of the modeler. Non-

parametric distributions, like empirical distributions or Kernel Density Estimates, do not 

suffer the same problems as parametric distributions. For both empirical distributions and 

KDEs, only observations in the tail are used to estimate the tail of the distribution. These 
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non-parametric measures, however, have their own faulty assumptions as well. In the 

case of an empirical distribution, there is no probability mass above (below) the 

maximum (minimum) observation. It is always possible for future events to be more 

extreme than past events, but empirical distributions disregard such possibilities. KDEs 

have a similar issue, placing a normal distribution around observations is an improvement 

to the empirical distribution, but it is still imposing an assumption about the structure of 

the tail. EVT removes the need for making assumptions about the shape or structure of 

the tail of the distribution by estimating the structure of the tail based on the observations 

in the tail.  

EVT is applied to both the upper and lower tails of the yield distribution. More 

attention is paid to the fitting of the GPD to the lower tail of the yield distribution as the 

risk of extreme low yield events is contained in the lower (left) tail of the yield 

distribution. While we focus on the application of EVT to the risk of extreme low yield 

events, EVT also improves the estimate of the upper tail of the yield distribution. The 

KDE often over-smooths the upper tail of the yield distribution, assigning probabilities of 

unreasonably high yield events. EVT corrects this over-smoothing by providing a 

bounded upper tail. 

2.5 Threshold Selection 

Threshold selection is a classic bias-variance tradeoff (Benito et al 2023). The 

PBD theorem applies in the limit, as u approaches infinity, so selecting a threshold, u, too 

close to the mean will lead to an inadequate representation of the tail by the GPD. If the 

threshold is chosen to be far in the extremes of the distribution, there will not be enough 
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data to reliably parameterize the GPD. We consider thresholds in the first quartile of the 

data for left tail threshold selection. Within the possible threshold range, the threshold 

choice has a significant effect on the shape parameter, ξ. Due to the small sample sizes 

from historical crop yield data, the bias-variance tradeoff is magnified. The additional 

variance associated with using a traditional threshold for extreme events, like the fifth 

percentile results in inconsistent parameter estimates. A threshold at the fifth percentile 

would contain only three observations from the Scotts Bluff County datasets and only 

two observations from the Hardin County datasets. As a result, we consider thresholds up 

to the 25th percentile, the upper limit of what could be considered the tail of the yield 

distribution.  

Theoretically, the shape parameter should vary linearly with u. However, when 

working with small samples, linearity may be hard to obtain, resulting in a shape 

parameter varying wildly with the threshold. This makes threshold selection a critical step 

in fitting the GPD to historical crop yields. Tools such as the Hill estimator, mean excess 

plots, parameter stability plots, and qq plots have been developed to assist in the process 

of threshold selection. For small sample sizes, the mean excess and parameter stability 

plots were found to be the most useful. 

A mean excess plot graphs the relationship between the threshold level (u), and its 

associated average exceedance. The usefulness of the mean excess plot is based in part on 

the fact that beyond a threshold u0, for which the GPD is a good approximation, the mean 
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excess of a given threshold should vary linearly in u2. Thus, a threshold, u0, above which 

the mean excess plot is linear in u can be accurately approximated by the GPD (Coles et 

al., 2001). For very high threshold levels, there are not enough exceedances to get a 

reliable estimate of the mean exceedance. For this reason, the mean excess of the most 

extreme thresholds should be ignored when analyzing the mean excess plot. It is tempting 

to use footnote 2 as evidence that the slope of the mean excess curve can be used as an 

estimate of ξ. For reasons laid out in Ghosh & Resnick (2010), there are reasons to doubt 

the consistency of such an estimator. It is still possible to use the sign of the estimated 

slope as an indication of whether ξ will be positive (Fréchet), negative (Weibull), or close 

to 0 (Gumbel) (Das & Ghosh, 2016). The effect of threshold choice on the slope of the 

mean excess plot is the best way to understand the effect of threshold selection on the 

shape parameter, ξ. 

A parameter stability graph plots the estimated shape parameter, ξ, against the 

threshold from which the shape parameter was estimated. If the exceedances of a 

threshold, u0, can be modeled by the GPD, then exceedances of a threshold greater than 

u0  should also be well approximated by the GPD and should have the same shape 

parameter as the exceedances of u0 (Coles et al., 2001). For this reason, if beyond a 

threshold u0 the estimate of ξ is relatively stable, u0 should be used as the threshold for 

the GPD. It is important to keep in mind that when fitting the GPD to the tails of a crop 

yield distribution there is an extremely limited number of observations. Thus, the 

 
2 This result comes from the fact that 𝐸𝐸[𝑋𝑋 − 𝑢𝑢|𝑋𝑋 > 𝑢𝑢] =  

𝜎𝜎𝑢𝑢0+𝜉𝜉𝜉𝜉

1−𝜉𝜉
. See Coles pg. 79. 
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practitioner must treat these two tools as mere heuristics and use them to make the best 

choice possible even when the results are unclear.  

2.6 Kernel Density Estimation 

While EVT is used to model the tails of the yield distribution, a Kernel Density 

Estimate (KDE) is used to model the body of the yield distribution. The KDE is a non-

parametric density estimator that allows the authors to refrain from choosing a parametric 

distribution to represent crop yields. A KDE can be thought of as a smoothed empirical 

distribution. A Gaussian KDE is constructed by creating 𝑛𝑛 normal distributions with 

mean 𝑅𝑅𝑅𝑅𝑖𝑖 and variance ℎ2, summing all 𝑛𝑛 normal distributions, and dividing by 𝑛𝑛 to 

ensure that the resulting PDF integrates to one. Each residual ratio (𝑅𝑅𝑅𝑅𝑖𝑖) is used to 

predict the PDF in its neighborhood. The influence of a residual ratio on the PDF 

decreases with distance from the observation, according to the kernel being used. We use 

the Gaussian kernel, the kernel typically used when estimating crop yield distributions 

using KDEs (Goodwin and Ker 1998). The choice of kernel has a limited effect on the 

final KDE (Chen 2017). The KDE estimates the PDF of the residual ratios as: 

𝑓𝑓(𝑓𝑓𝑓𝑓) =
1
𝑛𝑛
�

1
ℎ

𝑛𝑛

𝑖𝑖=1

𝐾𝐾 �
𝑓𝑓𝑓𝑓 − 𝑅𝑅𝑅𝑅𝑖𝑖

ℎ
� 

where 𝑓𝑓(𝑓𝑓𝑓𝑓) is the estimated density at point 𝑓𝑓𝑓𝑓, 𝑛𝑛 is the number of observations, ℎ is the 

smoothing parameter, 𝑅𝑅𝑅𝑅𝑖𝑖 are the observed residual ratios, and 𝐾𝐾 is the Gaussian kernel. 

ℎ, the smoothing parameter governs the width of the kernel and thus the degree to which 

the distribution is smoothed. A larger (smaller) ℎ leads to a smoother (more jagged) 
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density estimate. The choice of smoothing parameter is a bias-variance tradeoff. A small 

ℎ can cause oversensitivity to individual data points creating jagged peaks, capturing 

more noise than signal. A large ℎ can over-smooth the distribution, leaving out detail and 

resulting in a flatter distribution. There are three types of methods for solving the bias-

variance tradeoff and selecting the smoothing parameter: cross-validation, rules of thumb, 

and plug-in approaches. The rules of thumb rely on an expectation that the data comes 

from a close to a normal distribution (Scott 2010). To avoid making such assumptions, 

the Sheather Jones plug-in is used for the smoothing parameter as it is shown to be an 

improvement over cross-validation methods (Sheather 2004). 

2.7 Combining KDE and EVT 

Once the KDE and the pareto tails have been estimated it is necessary to combine 

them into a single distribution. This can be done in two ways, depending on the preferred 

way of describing the final yield distribution. The first method is to sample from the 

KDE, then remove samples from below the lower threshold and above the upper 

threshold and replace those samples with samples from the estimated GPDs.  The 

resulting sample can be used in further net income analysis. This method is the simplest 

and best way of producing a sample from the combined yield distribution.  

We create a CDF of the complete yield distribution to provide an easy visual 

comparison of yield distributions from different data sources. The second method for 

combining the KDE and Pareto tails into a complete yield distribution is to construct a 

CDF of the complete distribution which can be used to generate a sample of the complete 
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yield distribution. This requires the construction of a CDF of the GPDs as well as the 

CDF of the KDE. The CDF of the GPD is given as  

𝐹𝐹�(𝑓𝑓𝑓𝑓) =  

⎩
⎨

⎧
1 − �1 +

𝜉𝜉(𝑓𝑓𝑓𝑓 − 𝜇𝜇)
𝜎𝜎

�
−1𝜉𝜉

 𝑓𝑓𝑓𝑓𝑓𝑓 𝜉𝜉 ≠ 0

1 − 𝑒𝑒−
𝑟𝑟𝑟𝑟−𝜇𝜇
𝜎𝜎                         𝑓𝑓𝑓𝑓𝑓𝑓 𝜉𝜉 = 0

 

This is the formula for the CDF of the GPD for the upper tail. To account for this in the 

lower tail, the GPD is fit to the negative of the residual ratios. The true CDF is given by 

𝐺𝐺�(𝑓𝑓𝑓𝑓), where 

𝐺𝐺�(𝑓𝑓𝑓𝑓) = 1 −  𝐹𝐹�(−𝑓𝑓𝑓𝑓) 

Because yields cannot be lower than 0, which is equivalent to a residual ratio of -1, 𝐺𝐺�(𝑓𝑓𝑓𝑓) 

is defined for rrϵ(-1,μ). A yield of 0 is assumed to occur with probability 𝐺𝐺�(−1). 𝐺𝐺�(𝜇𝜇) =

1. 

The CDF of a KDE is equal to the integral of the PDF of the KDE 

𝐹𝐹�(𝑓𝑓𝑓𝑓) =  � 𝑓𝑓(𝑥𝑥)
𝑟𝑟𝑟𝑟

−∞
𝑑𝑑𝑓𝑓𝑓𝑓 

where 𝑓𝑓(𝑥𝑥) is the PDF of the Gaussian KDE 

𝐹𝐹�(𝑓𝑓𝑓𝑓) = �
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𝑛𝑛
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ℎ

𝑛𝑛
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𝐾𝐾 �
𝑓𝑓𝑓𝑓 − 𝑅𝑅𝑅𝑅𝑖𝑖

ℎ �
𝑟𝑟𝑟𝑟

−∞
𝑑𝑑𝑓𝑓𝑓𝑓   

Because both integration and summation are linear operators, they can be interchanged. 
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The integral of the Gaussian kernel is equal to the CDF of the Gaussian distribution 

𝐹𝐹�(𝑓𝑓𝑓𝑓) =
1
𝑛𝑛
�Φ�

𝑓𝑓𝑓𝑓 − 𝑅𝑅𝑅𝑅𝑖𝑖
ℎ �

𝑛𝑛
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where Φ is the CDF of the Gaussian distribution. 

The PDF of a Gaussian KDE is constructed by placing a Gaussian PDF on each 

observation. At each point rr in the support, the density estimate is the average of the 

values of the Gaussian PDFs at rr. Similarly, the CDF of a Gaussian KDE is constructed 

by placing a Gaussian CDF on each observation. At each point rr in the support, the 

cumulative density estimate is the average value of the Gaussian CDFs at rr.    

To create a complete yield distribution, the CDF of the GPDs and the CDF of the 

Gaussian KDE must be combined. The combined CDF is given as 

𝐹𝐹�(𝑓𝑓𝑓𝑓) = �
𝐻𝐻(𝜇𝜇𝐿𝐿)𝐺𝐺𝐿𝐿(𝑓𝑓𝑓𝑓), 𝑓𝑓𝑓𝑓 ≤ 𝜇𝜇𝐿𝐿

𝐻𝐻(𝑓𝑓𝑓𝑓), 𝜇𝜇𝑈𝑈 > 𝑓𝑓𝑓𝑓 > 𝜇𝜇𝐿𝐿
𝐻𝐻(𝜇𝜇𝑈𝑈)𝐺𝐺𝑈𝑈(𝑓𝑓𝑓𝑓), 𝑓𝑓𝑓𝑓 ≥  𝜇𝜇𝑈𝑈

 

where H is the CDF of the KDE, 𝐺𝐺𝑈𝑈 is the CDF of the GPD for the upper tail, 𝐺𝐺𝐿𝐿 is the 

CDF of the GPD for the upper tail, 𝜇𝜇𝐿𝐿 is the threshold of the lower tail GPD, and 𝜇𝜇𝑈𝑈 is 

the threshold of the GPD for the upper tail. The combined CDF normalizes the GPDs by 

the KDE’s estimate for the probability of exceeding the threshold. This results in a 

continuous combined CDF. The normalized lower tail GPD is used below the lower 
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threshold, the CDF of the KDE is used above the lower threshold and below the upper 

threshold, and the normalized upper tail GPD is used above the upper threshold. This 

CDF is equivalent to the sampling method described at the beginning of this section.  
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CHAPTER 3: APPLICATION 

3.1 Knorr-Holden Plot Yield Data 

The Knorr-Holden Plot is located in Scottsbluff, Nebraska, and has been 

continuously planted in corn since 1912. It is administered by the University of 

Nebraska-Lincoln (UNL) Panhandle Research and Extension Center, Scottsbluff, NE. 

The Knorr-Holden Plot is the oldest irrigated corn research plot in the U.S. Since 1912, 

the UNL Panhandle Research and Extension Center has been running a randomized 

control trial to determine the sustainability of continuous corn in the Sandhills region of 

Western Nebraska. To facilitate this, starting in 1953, the plot was divided into subplots 

with distinct nutrient management practices. We chose to use the data from the subplot 

with the nutrient management practice that most closely resembles that used by producers 

in the Sandhills region: no manure, 120 lbs. per acre of nitrogen, and 40 lbs. per acre of 

phosphate. Yield data is available from 1953-2018. Data from the year 2000 is missing 

due to the plots having been harvested by a combine that did not work properly. 

3.2 Scotts Bluff County Yield Data 

County-level irrigated corn yield data from Scotts Bluff County is used to 

compare to the results from the irrigated Knorr-Holden Plot. Yield data for Scotts Bluff 

County comes from a mixture of NASS and RMA data. NASS data is collected by 

surveying a representative sample of producers within the county. Participation in these 

surveys has declined over time and there were only two years after 2012 when there were 

enough responses to publish a county-level yield estimate. The RMA data is instead 
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collected from all producers that purchase federally subsidized crop insurance. Accurate 

reporting to the RMA is mandated by law. The RMA data is only available starting in 

1990. To account for the issues with both datasets, it was decided to use NASS data until 

the year in which the percentage of acres insured in the county passed 60% for the last 

time. This occurs in 2001 for Scotts Bluff County, so 2001 is the first year in which RMA 

data is used instead of NASS. From 1990-2001 the difference between RMA and NASS 

yields is minimal and fluctuates around 0. See Figure 3.1 for a graph of the difference 

between RMA and NASS yields from 1990-2001. Yield data for the Knorr-Holden Plot is 

available from 1953-2018, excluding the year 2000. To facilitate a consistent comparison 

between the data from the two levels of aggregation, we use data from 1953-2018 and 

exclude the year 2000 from our analysis of Scotts Bluff County. 

 
Figure 3.1 Difference Between RMA and NASS Average Yields for Scotts Bluff 

County 

3.3 Preston Farms Yield Data 

Preston Farms is in Hardin County, Kentucky and yield data is available from 

1980-2023. The county level yield data for Hardin County is available only up to 2022. 

For comparability, the year 2023 will be excluded from the Preston Farms data.  
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3.4 Hardin County Yield Data 

County-level corn yield data from Hardin County will be used to compare to the 

results from the Preston Farms data. Yield data for Hardin County comes from a mixture 

of NASS and RMA data. The NASS data is used until the year in which the percentage of 

acres insured in the county passed 60% for the last time. This occurs in 2002 for Hardin 

County, so 2002 is the first year in which RMA data is used instead of NASS data. See 

Figure 3.2 for a graph of the difference between RMA and NASS yields from 1993 to 

2021. From 1998-2002 the difference between RMA and NASS yields is minimal and 

fluctuates around 0. The difference between RMA and NASS data is minimized in the 

time around the switch point, 2002. This provides support for our choice to switch to 

using RMA data in 2002. Yield data for Preston Farms is available from 1980 to 2023, 

excluding the year 2000. RMA data is available only up to 2022 for Hardin County. To 

facilitate a consistent comparison between the data from the two levels of aggregation, 

Hardin County and Preston Farms, we use data from 1980 to 2022 for our analysis of 

Hardin County. 
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Figure 3.2 Difference Between RMA and NASS Average Yields for Scotts Bluff 

County 

3.5 Knorr-Holden Plot Detrending 

The linear detrending methods include OLS, one-knot linear spline, and two-knot 

linear spline. The first step in detrending the data using linear methods is to fit the one- 

and two-knot splines to the data. This is done by finding the knot location(s) that 

minimize the average of the residual ratios squared. The optimal knot location for the 

one-knot linear spline is 1989. The optimal locations for the two-knot linear spline are 

1969 and 1995. OLS is the third of the linear methods but does not require choosing any 

pre-specified knot locations. 

Next, to choose between the three linear methods, the Augmented Dickey-Fuller 

(ADF) Test is used to test for a stationary distribution of the residual ratios derived from 

the three different linear methods. The null hypothesis of the ADF test is that the 

sequence is non-stationary. OLS resulted in an ADF test with a p-value of 0.6044857, 
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meaning that the test failed to reject the null hypothesis of non-stationarity at the 5% 

level. The one-knot linear spline resulted in an ADF test with a p-value of 0.08574216, 

meaning that the test failed to reject the null hypothesis of non-stationarity at the 5% 

level. The two-knot linear spline was the only one of the linear methods to result in a 

stationary sequence of residual ratios. The two-knot spline resulted in an ADF test with a 

p-value of 0.01, rejecting the null hypothesis of non-stationarity of the residual ratios. 

Thus, the two-knot linear spline is the best detrending model of the linear methods and 

will be compared to the LOESS method moving forward. 

The span parameter used to fit the LOESS curve is chosen through 10-fold cross-

validation. A span parameter of 1.0 was found to minimize the average squared error. The 

ADF test was performed to ensure that the LOESS detrending method resulted in 

stationary residual ratios. The ADF test resulted in a p-value of 0.03118368, meaning that 

the null hypothesis of non-stationarity was rejected at the 5% level.  

A comparison of the three linear methods and the LOESS method can be viewed 

below in Figure 3.3. The resulting KDEs from the four detrending methods can be seen in 

Figure 3.4 
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Figure 3.3 Knorr-Holden Plot Trend Yields 

The trend yields estimated by the two-knot spline and LOESS models are similar. 

The KDEs from the two-knot linear spline and LOESS detrending methods are also 

similar. 

 
Figure 3.4 Knorr-Holden Plot Kernel Density Estimates 

For the Knorr-Holden Plot yield data, the choice of detrending method has little 

effect on the XI parameters estimated by the GPD. While the parameter estimates are not 

the same between the two detrending methods, they follow the same pattern and are 
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generally close to each other. A threshold of 5 does not result in parameter estimates for 

the GPD because these data are not Pareto distributed. This is due to the small sample 

size (only five observations). Because the data is not Pareto distributed, the numerical 

optimization used to fit the GPD fails to converge. See Table 3.1 for the estimated 

parameters depending on detrending method and threshold choice. 

Table 3.1 Knorr-Holden Plot GPD Parameters by Detrending Method 
 

Lspline2 LOESS 
Threshold XI Beta XI Beta 

4 0.08571 0.177146 0.034683 0.189817 
5 NA NA -0.29691 0.299013 
6 -0.29128 0.316677 -0.31299 0.319107 
7 -0.18719 0.278189 -0.14942 0.254594 
8 -0.22557 0.301838 -0.41153 0.400775 
9 -0.29996 0.350502 -0.31493 0.354632 

10 -0.32496 0.376487 -0.18202 0.288721 
11 -0.31004 0.376618 -0.12088 0.263047 
12 -0.20652 0.319366 -0.02764 0.226352 
13 -0.10660 0.271583 0.05718 0.197796 
14 -0.03307 0.241680 -0.02289 0.223621 
15 0.10596 0.196004 0.05721 0.195916 
16 0.19397 0.172159 -0.06019 0.238069 

 

Similarly, for the Knorr-Holden Plot yield data, the choice of detrending method 

has little effect on the expected shortfall and minimum yields of the final yield 

distribution. When we reference expected shortfall, we refer to the 5% expected shortfall, 

or the mean yield conditional on being in the 5% tail of the yield distribution. The 5% 

expected shortfall provides a simple summary of the risk of extreme, low yield events. 

See Table 3.2 for the effects of the detrending method on ES and minimum yield. 

Because the final yield distributions are robust to the choice of detrending method, only 
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the two-knot linear spline detrending method will be used moving forward to compare 

with the Scottsbluff County yield distributions.  

Table 3.2 Knorr-Holden Plot Minimum Yield and Expected Shortfall by 
Detrending Method 

 
Lspline2 LOESS 

Threshold ES Min Yield ES Min Yield 
4 -0.69066 -1 -0.70959 -1 
5 NA NA -0.74823 -1 
6 -0.73679 -1 -0.75904 -1 
7 -0.71615 -1 -0.73468 -1 
8 -0.72152 -1 -0.79959 -1 
9 -0.75807 -1 -0.77594 -1 

10 -0.77694 -1 -0.74820 -1 
11 -0.78325 -1 -0.73212 -1 
12 -0.75672 -1 -0.70930 -1 
13 -0.72121 -1 -0.70462 -1 
14 -0.70571 -1 -0.70392 -1 
15 -0.70713 -1 -0.68905 -1 
16 -0.70292 -1 -0.71414 -1 

3.6 Scotts Bluff County Detrending 

For Scotts Bluff County the optimal knot location for the one-knot spline is the 

year 1986. For the two-knot spline, the optimal locations are 1975 and 1981. The least 

complex linear method that results in a stationary sequence of residual ratios is chosen for 

further analysis. In this case, the two-knot linear spline was the only linear method to 

produce a stationary sequence of residual ratios.  

The LOESS detrending method also has a predetermined parameter, the span 

parameter, that needs to be chosen through 10-fold cross-validation. For Scottsbluff 

County, a span parameter of 0.7 was found to be optimal. 
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A comparison of the three linear methods and the LOESS method can be viewed 

below in Figure 3.5. The resulting KDEs from the four detrending methods can be seen in 

Figure 3.6. 

 
Figure 3.5 Scotts Bluff County Trend Yields 

 
Figure 3.6 Scotts Bluff County Kernel Density Estimates 

While the parameter estimates generated from the two detrending methods are not 

the same, they are similar and follow the same pattern as the threshold changes. The 
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expected shortfalls and minimum yields are also very similar between the two detrending 

methods. For this reason, the two-knot linear spline detrending method will be used when 

comparing the final yield distributions generated from the Knorr-Holden Plots and Scotts 

Bluff County yield data. 

Table 3.3 Scotts Bluff County GPD Parameters by Detrending Method  
Lspline2 LOESS 

Threshold XI Beta XI Beta 
10 -0.56101 0.169383 -0.50745 0.151155 
11 -0.55507 0.176586 -0.36835 0.130284 
12 -0.32666 0.135035 -0.23307 0.110263 
13 -0.30776 0.134587 -0.12686 0.095878 
14 -0.14223 0.108311 -0.19380 0.106767 
15 -0.29635 0.137129 -0.11996 0.096161 
16 -0.32198 0.145179 -0.16377 0.103882 

Table 3.4 Scotts Bluff County Expected Shortfall and Minimum Yield by Detrending 
Method 

 
Lspline2 LOESS 

Threshold ES Min Yield ES Min Yield 
10 -0.2899547 -0.3886244 -0.28637 -0.37891 
11 -0.2929531 -0.3908529 -0.27963 -0.41841 
12 -0.2856194 -0.4731377 -0.28050 -0.49791 
13 -0.2848165 -0.4757767 -0.27596 -0.67538 
14 -0.2836967 -0.6741074 -0.27802 -0.54807 
15 -0.2871539 -0.4849473 -0.27249 -0.57740 
16 -0.2905964 -0.4756361 -0.27658 -0.56101 

3.7 Preston Farms Detrending 

For Preston Farms, the optimal knot location for the one-knot spline is 1997. The 

optimal knot locations for the two-knot linear spline are 1997 and 2003. All the linear 

methods fail to produce a stationary sequence of residual ratios. The one-knot spline is 

the closest to producing a stationary series of residuals and will be used for further 
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analysis. The ADF test of the series of residual ratios from the one-knot spline produces a 

p-value of 0.0502, only just failing to reject the null hypothesis of non-stationarity at the 

5% level. For the LOESS method, a span parameter of 1.0 is chosen. The LOESS method 

produces a stationary series of residual ratios. 

A comparison of the detrending methods can be viewed in Figure 3.7. The KDEs 

resulting from the detrending methods can be viewed in Figure 3.8. The one-knot linear 

spline and LOESS methods produce very similar KDEs. 

 
Figure 3.7 Preston Farms Trend Yields 
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Figure 3.8 Hardin Farms Kernel Density Estimates 

The shape parameters estimated from the two detrending methods are similar. The 

expected shortfalls and minimum yields are also similar. One-knot linear spline will be 

used for further analysis. 

Table 3.5 Preston Farms GPD Parameters by Detrending Method 

 Lspline1 LOESS 
Threshold XI Beta XI Beta 

7 -0.62798 0.418198 NA NA 
8 -0.08637 0.224881 -0.22346 0.263731 
9 -0.53672 0.423015 -0.59818 0.449755 

10 -0.29334 0.313432 -0.43535 0.378284 
11 -0.24453 0.298161 -0.25931 0.301752 

Table 3.6 Preston Farms Expected Shortfall and Minimum Yields by Detrending 
Method 

 Lspline1 LOESS 
Threshold ES Min Yield ES Min Yield 

7 -0.61508 -0.796 NA NA 
8 -0.58993 -1 -0.59454 -1 
9 -0.62637 -0.82901 -0.6284 -0.7978 

10 -0.61277 -1 -0.62088 -0.88299 
11 -0.61028 -1 -0.61462 -1 

 



32 
 
3.8 Hardin County Detrending 

For Hardin County, the optimal knot location for the one-knot linear spline is 

1988. For the two-knot linear spline, the optimal knot locations are 1986 and 2012. The 

two-knot linear spline is the only linear detrending method to result in a stationary 

sequence of residual ratios and will be used in further analysis. For the LOESS 

detrending method the optimal span parameter is 1.0. 

A comparison of the detrending methods can be viewed in Figure 3.9. A 

comparison of the KDEs resulting from the different detrending methods can be viewed 

in Figure 3.10. The LOESS and two-knot linear spline methods produce similar KDEs. 

 
Figure 3.9 Hardin County Trend Yields 
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Figure 3.10 Hardin County Kernel Density Estimates 

Both detrending methods produced a similar range of parameter estimates. The 

two methods resulted in shape parameters around 0.1. The expected shortfall and 

minimum yield estimates from the two detrending methods are similar. The two-knot 

linear spline method will be used for further analysis. 

Table 3.7 Hardin County GPD Parameters by Detrending Method 

 Lspline2 LOESS 
Threshold XI Beta XI Beta 

7 0.11971 0.161019 0.12028 0.160801 
8 -0.10267 0.210597 0.19325 0.142371 
9 0.12223 0.154747 0.37575 0.107032 

10 0.10741 0.155358 -0.12873 0.216979 
11 0.15400 0.142610 -0.03557 0.189656 
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Table 3.8 Hardin County Expected Shortfall and Minimum Yields by Detrending 
Method 

 Lspline2 LOESS 
Threshold ES Min Yield ES Min Yield 

7 -0.58142 -1 -0.59287 -1 
8 -0.59134 -1 -0.58687 -1 
9 -0.57359 -1 -0.57330 -1 

10 -0.58880 -1 -0.59094 -1 
11 -0.56513 -1 -0.58141 -1 

3.9 Knorr-Holden Plot Threshold Selection 

Figure 3.11 contains the mean excess plot, the parameter stability graph, and a 

plot of the data by inverse rank for the Knorr-Holden Plot. In the parameter stability 

graph, the shape parameter has a negative linear trend in threshold until a threshold of 12, 

after which the estimate of ξ stabilizes around -0.25. This stability beyond the threshold 

of 12 provides evidence for the use of a threshold of 12. The red vertical line in the mean 

excess plot represents the 25th percentile of residual ratios. We do not consider thresholds 

beyond the 25th percentile. The mean excess plot has two clear trends. From a threshold 

of 16 (the first observation to the right of the red vertical line) until observation 12 there 

is a clear linear increase in mean excess. From the threshold of 12 on there is a clear 

linear decrease with threshold. The evidence for choosing a threshold of 12 is 

strengthened by the linearity of the mean excess above this value, which is not 

maintained beyond the threshold of 16. A threshold of 12 will be used for further 

analysis. 
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Figure 3.11 Knorr-Holden Plot Threshold Selection 

3.10 Scotts Bluff County Threshold Selection 

Figure 3.12 displays the mean excess plot, parameter stability graph, and a graph 

of the residual ratios by inverse rank for Scotts Bluff County. There is stability in the 

estimated shape parameter beyond the highest possible threshold, 16. There is also a clear 

linear decrease in mean excess beyond the threshold of 16. Both these factors provide 

corroborating evidence for the use of threshold 16 for further analysis.  
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Figure 3.12 Scotts Bluff County Threshold Selection 

3.11 Preston Farms Threshold Selection 

Figure 3.13 contains the mean excess plot, parameter stability plot, and a plot of 

residual ratios by inverse rank for Preston Farms. The parameter stability plot shows 

stability past a threshold of 11 around a ξ value of -0.3. The mean excess plot also shows 

a stable linear decline in mean excess beyond a threshold of 11. In the mean excess plot, 

the vertical red line characterizes the threshold beyond which the data is no longer 

Pareto-distributed. Beyond the threshold of 11, the mean excess is no longer linear in 

threshold. There is clear evidence to select a threshold of 11 for further analysis. 
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Figure 3.13 Preston Farms Threshold Selection 

3.12 Hardin County Threshold Selection 

Figure 3.14 contains the mean excess plot, parameter stability plot, and a plot of 

residual ratios by inverse rank for Hardin County. There is stability in the parameter 

estimates beyond threshold 11 around a ξ value of 0.1. There is also a clear, positive 

linear trend in mean excess beyond the threshold of 11. The red vertical line in the mean 

excess plot represents the threshold beyond which the residual ratios are no longer Pareto 

distributed. Beyond the threshold represented by the red vertical line, there is no longer a 

clear linear relationship between threshold and mean excess. The parameter stability 

graph and mean excess plot both provide evidence for using a threshold of 11 for further 

analysis.  
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Figure 3.14 Hardin County Threshold Selection 
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CHAPTER 4: RESULTS AND CONCLUSION 

In this study, the yield distributions are defined over residual ratios, not bushels 

per acre. This is to remove the effect of different trend yields on our comparison of the 

distributions. The shape of the distribution is what is important in our analysis. To convert 

the distribution defined over residual ratios to one defined over yield (bu/a), simply 

multiply the residual ratios by the trend yield. 

4.1 Hardin County and Preston Farms 

The Hardin County and Preston Farms yield distributions are strikingly similar. 

One measure of this similarity is the average (integrated) squared difference (ASD) 

between the two CDFs. The ASD for Hardin County and Preston Farms is 0.0007 

residual ratios squared. The average distance is then .026 residual ratios or only about 2% 

of trend yield. The two distributions have almost the same variance. The Preston Farms 

yield distribution is skewed more to the left and thus has a lower expected shortfall by 

about 5% of trend yield. The Preston Farms distribution has a large mass just above trend 

yield, is skewed to the left, and has a long left tail. This corresponds to the historical 

yields from Preston Farms. The threshold selected is at the 25th percentile of the residual 

ratios but is just less than trend yield. In contrast, Scotts Bluff County has a more 

symmetric distribution relative to Preston Farms. The Scotts Bluff County yield 

distribution is still skewed to the left but has the potential to exceed trend yield by more 

than Preston Farms. Overall, Preston Farms’ yield distribution would be well 

approximated by the yield distribution of Hardin County. 
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Figure 4.1 Preston Farms and Hardin County CDFs 

 

 

Figure 4.2 Preston Farms and Hardin County PDFs 
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Table 4.1 Summary Statistics for Preston Farms Sampled Values 

Statistic Value 

Minimum -1.000000000 

1st Quartile (Q1) -0.078000000 

Median 0.046000000 

3rd Quartile (Q3) 0.122000000 

Maximum 0.418000000 

Mean -0.009110333 

Standard Deviation 0.209525714 

Skewness -1.477927766 

Kurtosis 5.365097337 

Expected Shortfall -0.610442634 
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Table 4.2 Summary Statistics for Hardin County Sampled Values  

Statistic Value 

Minimum -1.0000000 

1st Quartile (Q1) -0.1120000 

Median 0.0340000 

3rd Quartile (Q3) 0.1480000 

Maximum 0.5740000 

Mean 0.0032921 

Standard Deviation 0.2104398 

Skewness -1.1450479 

Kurtosis 5.5924728 

Expected Shortfall -0.5638167 

 

4.2 Scotts Bluff County and Knorr-Holden Plot 

The Scotts Bluff County and Knorr-Holden Plot yield distributions are 

substantially different from each other. The ASD between the Scotts Bluff County and the 

Knorr Holden Plot yield distributions is 0.0069 residual ratios squared. This amounts to 

an average difference between the two CDFs of 8.3% of trend yield. The standard 

deviation of the Knorr-Holden Plot yield distribution is over twice as large as that for the 

Scotts Bluff County yield distribution. The Scotts Bluff County distribution is 

symmetrical with a skew of close to 0. The Knorr-Holden Plot is skewed to the left and 

has a long tail. The Scotts Bluff County yield distribution would be an extremely poor 

approximation of the Knorr-Holden Plot yield distribution. Adjusting the Scotts Bluff 
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County distribution using the coefficient of variation method would be a better 

approximation, but still fails to well approximate the Knorr-Holden Plot data. Scotts 

Bluff County has a symmetric yield distribution while the Knorr-Holden plot has a left 

skewed distribution. 

 

Figure 4.3 Scotts Bluff County and Knorr-Holden Plot CDFs 

 

Figure 4.4 Scotts Bluff County and Knorr-Holden Plot PDFs 
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Table 4.3 Summary Statistics for Knorr-Holden Plot Sampled Values  

Statistic Value 

Minimum -1.0000000 

1st Quartile (Q1) -0.1440000 

Median 0.0160000 

3rd Quartile (Q3) 0.1760000 

Maximum 0.7800000 

Mean -0.0161746 

Standard Deviation 0.2872016 

Skewness -0.7874022 

Kurtosis 3.8954562 

Expected Shortfall -0.7552289 

 
Table 4.4 Summary Statistics for Scotts Bluff County Sampled Values 

Statistic Value 

Minimum -0.468000000 

1st Quartile (Q1) -0.060000000 

Median 0.010000000 

3rd Quartile (Q3) 0.068000000 

Maximum 0.650000000 

Mean 0.004124567 

Standard Deviation 0.130842383 

Skewness -0.051420392 

Kurtosis 4.004751113 

Expected Shortfall -0.292868230 
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4.3 Discussion 

An important question that arises from these results is why Preston Farms and 

Hardin County have similar yield distributions while the Knorr-Holden Plot and Scotts 

Bluff County distributions are substantially different. Farm size represents the primary 

reason. Preston Farms accounts for about 1% of the corn acres in Hardin County and the 

acreage is relatively spread out within the county. The Knorr-Holden Plot, being just a 

field, makes up a negligible portion of the irrigated corn acres in Scotts Bluff County.  

Another reason for the similarity between Hardin County and Preston Farms is 

that corn is grown without irrigation throughout Hardin County and on Preston Farms. 

Thus, drought is the biggest risk to yields for both Hardin County and Preston Farms. 

Drought is relatively non-local; if Hardin County experiences drought, so does Preston 

Farms, and vice versa. In contrast, the Knorr-Holden plot is irrigated and is being 

compared to Scotts Bluff County's irrigated corn yield. Irrigation limits the effects of 

drought on yield. While drought is generally a non-local phenomenon, hail is a localized 

risk. Hail is the primary source of yield risk for the Knorr-Holden Plot. In any year only a 

small portion of the area of Scotts Bluff County will be hailed on, so any effects on yield 

will be averaged out of the county-level yield data. The risk of hail only shows up in 

more disaggregated levels of yield data. 

Additional determinants of the relationship between farm and county level yield 

distributions include the farming practices implemented by the producer and the soil 

characteristics of the land being farmed. Preston Farms has a diversity of land quality and 

planting times. These practices were implemented prior to the implementation of revenue 
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protection crop insurance and were designed to be anti-fragile. It is important for the risk 

manager to consider non-financial methods of risk mitigation. 

There are drawbacks associated with using the field-level data from the Knorr-

Holden research plot. First, it may be argued that, as a research plot, it is not operated 

with the goal of maximizing profits, in contrast to the county-level data to which it is 

being compared. While this is true, the plot is being operated in a way that responds to 

changing conditions to at least somewhat approximate the behavior of the producers in 

the surrounding Scotts Bluff County. Also, we chose to use data from the trial that best 

approximates the fertilizer application practices of the surrounding Scotts Bluff County. 

Additionally, while the Knorr-Holden plot is very small, we believe that it reasonably 

well approximates a section or quarter section that is often insured as a unit. Spatial 

heterogeneity is an important consideration in both the producers understanding of yield 

risk as well as the rating of crop insurance.  

4.4 Conclusion 

In this paper, a new method for generating yield distributions from historical yield 

was proposed and applied to four series of historical yields. The method employs EVT to 

accurately estimate the probability of extreme, low yield events. EVT is combined with a 

KDE to form a complete yield distribution.  

Before applying EVT and KDEs, the historical yield data was detrended using 

LOESS and linear detrending methods. The two detrending methods performed similarly. 

Linear methods were used for later analysis because of the similar performance and their 
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ability to predict future yields. Linear methods are also simpler to implement and are less 

susceptible to overfitting. Once the model of trend yields was established, a series of 

residual ratios was created to overcome the issue of heteroskedasticity. Yield distributions 

were then fit to the series of residual ratios generated from each historical dataset. 

The next step in the process was to fit EVT to the tails of the residual ratios. A key 

contribution of this paper is an in-depth explanation of how to apply EVT to small 

sample historical yield data. Threshold selection is crucial to accurately estimating the 

probabilities of extreme events. For small samples, mean excess and parameter stability 

plots were the best methods for threshold selection. KDEs were then fit to the residual 

ratios to model the main body of the yield distribution. The KDEs were combined with 

the GPDs to form a complete yield distribution 

When applying our method to four different datasets, we found a heterogenous 

relationship between county and farm/field level distributions. Several explanations were 

hypothesized. The primary factor determining the relationship between the farm and 

county-level yield distribution is the size and geographic diversity of the farm within the 

county. Secondary influences include the primary climactic risks to yield and farmers' 

management practices. 

For future research, our method could be applied to more farm/county 

combinations to improve the understanding of the relationship between tail risk in the 

farm and county level yield distributions. Further, including weather events from 

surrounding farms that the evaluated farms did not experience would improve EVT 

estimation, leading to improvements in farm yield estimation. Additionally, the improved 
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yield distributions will be applied to the risk management model of Walters and Preston 

to improve their estimate of the risk of extreme income events and improve producer 

decision making under uncertainty.  
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