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Due to its unique properties, gallium nitride is of great interest in industry 

applications including optoelectronics (LEDs, diode laser, detector), high power 

electronics, and RF and wirelss communication devices. The inherent shortcomings of 

current conventional deposition methods and the ever-increasing demand for gallium 

nitride urge extended efforts for further enhancement of gallium nitride deposition. The 

processes of conventional methods for gallium nitride deposition, which rely on thermal 

heating, are inefficient energy coupling routes to drive gas reactions. A high deposition 

temperature (1000-1100 °C) is generally required to overcome the energy barriers to 

precursor adsorption and surface adatom migration. However, there are certain 

limitations associated with deposition methods that require high temperatures. As an 

intensive, coherent and monochromatic light, laser is an ideal candidate for exploring 

alternative energy coupling pathways. The laser techniques, in some instances, may offer 

processing advantages that are not available with conventional deposition methods. 

 To address the challenges, the research efforts in this dissertation mainly focused 

on laser incorporation in metal organic chemical vapor deposition of gallium nitride 

films, which led to: 1) rapid growth of m-plane gallium nitride nanoplates 2) low-

temperature growth of gallium nitride films 3) promotion of energy coupling efficiency; 

4) enhancement of gallium nitride deposition; 5) fast growth of gallium nitride epilayers; 



 

 

and 6) realization of high-performance ultraviolet photodetectors based on the as-grown 

gallium nitride epilayers. 

The m-plane-oriented gallium nitride nanoplates were successfully grown on 

silicon substrates at 450 °C, using CO2 laser-assisted metal organic chemical vapor 

deposition with perpendicular geometries.  

Vibrational excitations of precursor molecules were realized using a kilowatt 

wavelength-tunable CO2 laser with a spectrum range from 9.2 to 10.9 µm. The resonant 

excitation of the NH-wagging mode of ammonia molecules was demonstrated to be more 

efficient than nonresonant excitations in promoting the deposition rate and improving the 

gallium nitride quality attributed to a higher energy coupling efficiency.  

Low-temperature growth of crystalline gallium nitride films on c-plane sapphire 

substrates was achieved by laser-assisted metalorganic chemical vapor deposition and 

coupling laser energy into the chemical reactions.  

A CO2 laser-assisted metal organic chemical vapor deposition approach was also 

successfully developed for the fast growth of high-quality gallium nitride epilayer on the 

sapphire (0001) substrate. By optimizing the growth parameters, the ~ 4.3 µm thick 

gallium nitride films showed excellent thickness uniformity and smooth surface with a 

root mean square.The ultraviolet photodetectors were also realized based on the as-grown 

laser-assisted metalorganic chemical vapor deposition gallium nitride layers, which 

exhibited a high responsivity and a fast response time.   
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1.1 Background and motivation 

Using of various advanced techniques for thin film and crystal growth has 

attracted increasing attentions and achieved significant progress. Laser chemical vapor 

deposition (LCVD) is a potential new method for material synthesis and processing, in 

which laser energy can be deposited into reactant molecules.1-6 In this process, the 

deposition occurred either by direct irradiating laser beam on the substrate, or the gas-

phase chemical reactions are induced by laser irradiation in parallel configuration with 

the substrate. Depending on how the gas-phase reactions are affected by laser energy, the 

laser irradiation can lead to either pyrolytic or photolytic reaction.1-6 If the laser thermally 

heats up and dissociates the reactant precursors, the reaction is pyrolytic. In case that the 

reactant precursors are vibrationally or electronically excited towards dissociation by 

absorbing photons without heating, photolytic takes place.  The use of lasers for 

deposition and processing of semiconductor including silicon, gallium arsenide (GaAs), 

indium phosphide (InP) has been studied by several research groups.1-6 

Gallium nitride (GaN) has attracted attentions for applications in light-emitting 

diodes (LEDs), short wavelength optoelectronics, and high-power high-frequency 

electronics, due to its excellent physical properties, such as wide direct bandgap, high 

thermal stability, and high electron velocities.7-9 High quality GaN are routinely grown by 

metal-organic chemical vapor deposition (MOCVD) and molecular beam epitaxy 

(MBE).10-13 These conventional growth techniques generally require a sufficiently high 

temperature to overcome the activation barriers to precursor chemisorption and adatom 

surface diffusion, which are inefficient energy coupling routes to drive gas reactions. 
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Additionally, high substrate temperatures cause sever adverse effects, such as biaxial 

stress within GaN films, nitrogen loss, and GaN decomposition, which affect the optical 

performance of the films and degrade the efficiency of GaN-based devices.14 As an 

intensive, coherent and monochromatic light, laser is an ideal candidate for selective 

promotion of GaN growth and exploring alternative energy coupling pathways. The laser 

techniques offer processing advantages that are not available with conventional 

deposition methods.15 For instance, Zhou et al.16 reported ultraviolet (UV) laser-assisted  

MOCVD growth of GaN at room temperatures, leading to films with (0002) preferential 

orientation and a broad x-ray diffraction (XRD) peak. However, the photolysis of the 

precursors with UV laser resulted in the low density of the reactive radicals, a low GaN 

growth rate and film quality. On the other hand, carbon dioxide (CO2) laser-assisted 

MOCVD has been used successfully to prepare various kinds of thin films at high growth 

rates.15,17,18 For example, Iwanaga et al.17 reported the deposition of large-area silicon 

films using CO2 laser CVD with a high growth rate in a relatively low laser power and 

low substrate temperatures. However, to date, there is no report of a comprehensive study 

on growth, growth mechanism, structural evolution, and optical/electrical properties of 

GaN grown by CO2 laser-assisted MOCVD (LMOCVD). 

The research projects in this dissertation  address various challenges and goals 

which mainly focused on the following five tasks: 1) synthesis of semipolar m-plane 

oriented gallium nitride nanoplates; 2) the investigation of resonant and nonresonant 

vibrational excitation of ammonia (NH3) molecules in the growth of gallium nitride; 3) 

low-temperature growth of crystalline GaN films using vibrational excitation of NH3 
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molecules;  4) fast growth of high-quality GaN epilayers; and 5) performance evaluation 

of UV detectors realized based on as-grown LMOCVD GaN epilayers.  

1.2 Dissertation outline 

The dissertation focused on controlling the crystallographic orientation of the 

GaN deposition, exploring alternative efficient energy coupling paths to obtaining low-

temperature growth of GaN films and enhancing the GaN growth, optimizing 

expreimental design for fast growth of high-quality GaN epilayers, and realizing high-

performance GaN-based UV detectors. The dissertation is divided into nine chapters. 

Chapter 1 introduces the motivation and outline of this dissertation. Chapter 2 reviews the 

background of GaN, technological challenges for GaN growth, laser chemistry control, 

laser-assisted material synthesis and basic working principles of UV detectors. Chapter 3 

describes the experimental methods adopted in the study, including the sample 

preparation procedure, GaN film characterizations and GaN-based UV detectors device 

characterization. Chapter 4 demonstrates the growth of m-plane-oriented GaN nanoplates 

on Si substrates using the LMOCVD method. The high-resolution scanning and 

transmission electron microscopy images confirmed the formation of m-plane GaN 

nanoplates. The growth direction of GaN nanoplates was found to be the <10-10> 

direction. The A1(TO) mode of Raman further confirmed the m-plane orientation of the 

GaN nanoplates. Chapter 5 shows that the laser-assisted vibrational excitations of NH3 

molecules promote the GaN deposition rate and improve the GaN film quality on Si 

(100). The NH-wagging mode (v2, 1084.63, 968.32, 932.51 cm−1) of NH3 has a strong 

infrared activity and the corresponding ro-vibraitional transitions match CO2 laser 

emission lines (9.219, 10.350, and 10.719 μm). The resonant vibrational excitation at 
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9.219, 10.350, and 10.719 μm were more efficient than the nonresonant excitation in 

dissociating NH3 molecules and enhancing the GaN deposition rate and the film quality. 

The optical emission spectroscopy (OES) results showed the resonant excitation of the 

NH-wagging modes modifies the synthesis process in a way that increases the generation 

of NH, NH2, N, N+, and H intermediate species. This leads to the enhancement in 

the GaN deposition rates and the improvement in the crystalline quality. The extremely 

high GaN growth rate of ∼84 μm/h with an improved crystalline quality was achieved 

under the resonant excitation at 9.219 μm. Chapter 6 describes a novel strategy to realize 

low-temperature growth of crystalline GaN films on c-plane sapphire substrates by 

LMOCVD with laser energy coupled into the chemical reactions. Trimethylgallium and 

NH3 were used as precursors for the growth of GaN films. Through the resonant 

excitation of rotational–vibrational transition (1084.71 cm–1) of the NH-wagging mode 

(v2) in NH3 molecules using a wavelength-tunable CO2 laser tuned at 9.219 μm, highly c-

axis oriented GaN films were deposited on sapphire at low substrate temperatures from 

250 to 600 °C. The GaN films deposited by LMOCVD showed a higher degree of 

crystallinity, higher growth rate, and lower defect densities as compared to those 

synthesized by MOCVD without resonant excitation of NH3 molecules. Chapter 7 

demonstrates a developed CO2 LMOCVD approach for the fast growth of high-quality 

gallium nitride (GaN) epilayers on the sapphire (0001) substrate. By employing a two-

step growth process, high-quality smooth GaN layers with a fast growth rate of 25.8 μm/h 

were obtained. The high crystalline quality was confirmed by a combination of different 

characterization techniques. By optimizing the growth parameters, the ~ 4.3 µm thick 

GaN films grown for 10 min at 990 °C showed excellent thickness uniformity and 
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smooth surface with a root mean square surface roughness of ~ 1.9 nm, very narrow 

XRD peaks, and sharp GaN/sapphire hetero-interfaces. Chapter 8 illustrates high-

performance UV detectors have been realized based on as-grown LMOCVD GaN 

epilayers. The devices exhibit a high responsivity of 0.12 AW-1 and a fast response time 

of 125 ns at 5 V reverse bias, indicating the excellent optical properties of GaN layers. 

The results demonstrate that LMOCVD technique can produce high-quality GaN 

epilayers and other nitride related materials with fast growth rates with potential 

application for next-generation electronics and optoelectronics. Chapter 9 concludes the 

projects with important results and suggests future research directions.  
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2.1 Introduction to GaN 

2.1.1 GaN and properties 

Gallium nitride (GaN) is very promising wide band gap semiconductor material for 

applications including optoelectronics, and high-temperature high power electronics. 

GaN is one of the most important semiconductor after silicon. The III-V nitride materials 

and their ternary and quaternary alloys are direct bandgap semiconductors. The energy 

band gap of these materials contains a wide spectral region from red to deep ultraviolet 

(1.9 - 6.2 eV).1-4 Fig. 2.1 illustrates the bandgap and lattice constant of nitride 

semiconductor materials.  

 

Figure 2.1 Bandgaps of nitride semiconductors with wurtzite and zincblende structure 
versus their lattice parameter at 300 oK. The right-hand scale gives the light wavelength λ, 
corresponding to the band gap energy.5 

Various techniques have been employed for GaN synthesis. The GaN structure has two 

crystalline phases: wurtzite (WZ) structure with a hexagonal symmetry (the 
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thermodynamically equilibrium phase), and zincblende (ZB) structure with a cubic 

symmetry. The schematic image of these two structures is illustrated in Fig. 2.2.6 In both 

structures, the Ga and N atoms are tetragonally coordinated with 4 atoms of the opposite 

type.  

 

Figure 2.2 (a) Wurtzite lattice structure of GaN and (b) zincblende structure of GaN.7 

Three important planes of the hexagonal GaN structure are illustrated in Fig. 2.3: the 

{0001} c-plane (green plane) which is basal plane, the {1-100} m-plane (orange plane), 

and {11-20} a-plane (blue plane) which is perpendicular to both the m-plane and the c-

plane.8-11 Due to the high surface free energy of the c-plane, the GaN films prefer to grow 

along the ሼ0001ሽ direction. Our work focuses on the synthesis of m-plane and c-plane-

oriented films. The non-polar nitride and heterostructures (the layers grown in a- and m-

orientation) do not suffer from the effects of the inbuilt polarization fields, which 

degrades the recombination efficiency and performance of GaN photonic devices.8-11  

However, the polar nitride films and heterostructures (layers grown in c-orientation) 

suffer from the effects of the inbuilt polarization fields. The inbuilt polarization fields are 
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not oriented along the heterostructure interface and do not affect its band gap in non-polar 

nitride films.  

 

Figure 2.3 Wurtzite lattice structure of GaN with polar and non-polar planes.5  

GaN semiconductor has unique properties including high thermal, mechanical, and 

chemical stability compared to other semiconductor materials such as Si and GaAs. 

These unique properties are mostly because of strong bonding between the gallium and 

nitrogen atoms. Some reported material properties are as below:12-13 

- With wide direct band gap, it is useful for photonic devices; 

- It is chemically stable at high temperatures; 

- It has a good thermal conductivity; 

- It has high room-temperature electron mobilities and high breakdown electric 

field. 
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Below the important physical properties of the GaN semiconductor have been 

summarized in Table 2.1.12-13 

Table 2.1 Physical properties of GaN12-13 
Properties Wurtzite  

 
Zinc-blende  

Density (g/cm3) 6.15 - 

Band-gap (eV) 3.4 3.2 

Bandgap type direct direct 

Lattice Constants (A) a = 3.189 
 
c = 5.186 

4.52 

Effective Electron Mass (m0) 0.2 0.13 

Electron Affinity (eV) 4.1 4.2 

Thermal conductivity (W/cm × C) 1.3 1.3 

Electron Mobility (cm2/Vs) < 1000 < 1000 

Hall Mobility (cm2/Vs) < 200 < 350 

Melting temperature > 1700 oC - 

Index of refraction (n) 2.67 @ 3.38 eV 2.91 @ 3.2 eV 

Piezoelectric constant (C/m2) 0.375 - 

 

2.1.2 Substrates for GaN heteroepitaxial growth 

Current commercial GaN-based devices are fabricated by epitaxy on foreign substrates 

because the GaN bulk and freestanding substrate technology is still immature.13-15The 

choice of substrate for GaN growth depends on several factors such as the lattice 

mismatch between the substrate and the GaN (different lattice constants), the difference 
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in thermal expansion coefficients between the substrate and the GaN, and the substrate 

cost. The common substrates for GaN heteroepitaxial growth are as follows:13-15 

2.1.2.1 Silicon 

The Si with the price of around $25 per 100 mm wafer is a low-cost substrate. The lattice 

mismatch between silicon and GaN is approximately 17%, and the thermal expansion 

coefficient of silicon is 113%. GaN films grown on silicon suffer from tensile stresses as 

cooling the sample from high growth temperature to room temperature, potentially 

leading to film cracking. Si has a reactive surface when exposed to ammonia at 

temperatures above 500 °C during the growth and a thin silicon nitride layer can be 

formed. From the point of view of integrating GaN devices with Si technology, the Si 

(100) substrate is preferred because Si (100) is the most widely used in silicon 

mainstream technology. In contrast to the Si (111), Si (100) does not show a 6-fold 

symmetry but a 4-fold symmetry which is more suitable for the epitaxial growth of a 

cubic GaN,15,16 however, the cubic phase is metastable. The thermodynamically stable 

hexagonal GaN phase could be also grown on the (100) plane. 

2.1.2.2 Silicon carbide (SiC) 

SiC substrate with a hexagonal structure is also used for GaN heteroepitaxial growth. 

With a lattice mismatch of 3.5%, SiC is a very appropriate substrate for growth of high-

quality GaN films with low dislocation density. Additionally, this substrate is very 

resistant to chemical reaction compared to Si. Therefore, a blocking layer is not formed 

during the GaN growth.13-16 
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 The thermal expansion coefficient of SiC is almost twice that of GaN and this substrate 

is extremely expensive with the cost around $1000 per 100 mm wafer. GaN layers grown 

on SiC suffer from significant compressive stress during cooling down, which can lead to 

film cracking.  

2.1.2.3 Sapphire 

Sapphire (Al2O3) as a transparent substrate is the most common substrate for GaN 

epitaxy growth with a reasonable price (~ $150 per 100 mm wafer) and performance. The 

lactic mismatch between sapphire and GaN is ~14% and the thermal expansion 

coefficient of sapphire is 33% larger compared to GaN. As an oxide compound, this 

dielectric substrate is fully stable to harsh growth environment even at high growth 

temperatures. Sapphire is resistant to forming an amorphous nitride when exposed to 

ammonia during GaN growth. Since sapphire is an insulator substrate with a bandgap of 

10 eV, the fabrication of specific devices with a backside electrical contact on 

GaN/sapphire is imposible.13-16  

2.1.3 - GaN growth techniques 

2.1.3.1 HVPE 

Hybrid Vapor Phase Epitaxy method (HVPE) is a growth technique for synthesis of III-V 

compound.12,17-20 This technique is appropriate for high growth rate deposition 

(deposition rates ~ 10-200 µm/h and higher). Fig. 2.4 shows the schematic of a hot-

walled HVPE system. Hydrochloric acid (HCl) passes over the gallium (Ga) upstream 

and reacts with Ga at 800 - 900 °C. A volatile gas-phase metal chloride (GaCl) forms as 

follows:                                                         
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Ga + HCl → GaCl + 1/2H2                                                                                             (2.1) 

The volatile metal compound, then, is transported downstream to the substrate and reacts 

with NH3: 

GaCl + NH3 → GaN + HCl + 1/2H2                                                                                                                     (2.2) 

 

Figure 2.4 A schematic diagram of a hot-walled HVPE reactor (a hot-walled reactor utilizes 
a tube furnace that heats the entire reactor to a more uniform substrate temperature).12 

The GaN films grown with HVPE method generally have rough surface morphology with 

hexagonal shaped hillocks and pyramids. This is because the HCl can chemically attack 

and etch the films during growth where the etching rate is higher in strained regions, such 

as the boundaries of coalesced grains. 

In HVPE, the GaCl is transported to the substrate only after HCl passes over and reacts 

with the gallium; which an inherent latency occurs. Therefore, this technique is not 

appropriate for quick compositional changes during growth and synthesis of thin 

heterostructures with abrupt interfaces.17-20 
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Because of the presence of reactive HCl and GaCl in the reactor, the choice of substrates 

for GaN growth using HVPE is more constrained compared to other deposition methods. 

For example, silicon substrates easily react with HCl and GaCl, forming several by-

products including volatile silicon chloride, liquid gallium and H2.17-20 The liquid gallium 

remains on the silicon surface and affects the quality of epitaxial GaN films on substrate.  

2.1.3.2 MBE 

Molecular beam epitaxy (MBE) is another technique for the epitaxial growth of 

compound semiconductor films. MBE has a low growth rate of 0.1-1 µm/hr, and 

performs in a growth temperature of 800-1000 oC. These relatively low growth rates limit 

the applicability of MBE for growth of many GaN-based device structures.21-23 The basic 

elements of an MBE growth system are UHV chamber, substrate heater part, individually 

shuttered and liquid nitrogen shrouded molecular beam effusion cells, and substrate 

exchange load-lock system, as shown in Fig. 2.5. 21-23 
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Figure 2.5 A schematic diagram of a typical MBE system. 23 

A base pressure of less than 5 × 10-10 Torr is used in MBE process to obtain films with 

low impurity levels. The in-situ monitoring of growth conditions and growth rate is done 

by Fluorescent screen (FRHEED). Atomic layer-by-atomic layer deposition is achieved 

by using low beam fluxes, which are controlled by temperature variation of the source 

cells. By rotating substrates during the film deposition, a uniform growth is achieved. 

GaN growth proceeds according to following steps:21-23 (1) Atoms impinge on the sample 

surface, where they are adsorbed, (2) The atoms migrate along the surface towards 

atomic steps, where they are stabilized by the increased number of atomic bonds, (3) The 

atoms migrate along the step edges to a kink site, where they are incorporated into the 

lattice. Deposition involves the lateral motion of step edges or the growth of two-

dimensional islands until an atomic layer is completed. 21-23 

2.1.3.3 MOCVD 

Metal-organic chemical vapor deposition (MOCVD) is a common technique for growth 

of high quality epitaxial GaN layers with excellent surface morphology and a precise 

control over layer thickness and uniformity.13,24-27 Current commercial GaN devices 

including lasers, light emitting diodes, photocathodes, heterostructure bipolar transistors, 

photodetectors, and solar cells are usually synthesized by MOCVD. The MOCVD 

process involves a series of complex gas phase and surface reactions. The process 

contains following steps: (a) Evaporation and transport of precursors; (b) Pyrolysis of 

precursors leading to film deposition; and (c) Removal of the remaining fragments of the 

decomposition reactions from the reactor.  This process often proceeds by the formation 

of steps on the surface, with the diffusion of adsorbed atoms across the surface and 
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attachment to a step. The basic growth steps in MOCVD are shown in Fig. 2.6 and are as 

follows: 

 

Figure 2.6 Schematic of MOCVD growth mechanisms.13 

1. The transport of reactant precursors into the reactor. 

2. The chemical gas-phase reactions which produce growth species and byproducts. 

3. The transport of the growth species to the surface and absorption on the surface. 

4. The diffusion of the growth species on the surface. 

5. The incorporation of these species at kinks. 

6. The desorption or evaporation some of species from the surface. 
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7. Phase change including vapor-phase condensation and solidification which leads 

to nucleation and step growth for film formation. 

8. The exhaustion of the byproducts of reactions. 

The most common chemical reactions in MOCVD process of GaN are driven by 

pyrolysis. Pyrolysis is the thermal decomposition of reactant species such as NH3 and 

metal-organic radicals for material synthesis. Trimethylgallium (TMGa) is the most 

common gallium precursor for MOCVD growth of GaN.  The major product of TMGa 

pyrolysis with H2 or N2 as carrier gases is methane (CH4). Ammonia NH3 is used as the 

most common nitrogen precursor for GaN growth. The growth of high-quality GaN 

requires very high growth temperatures. While the TMGa is fully pyrolyzed at 550 

ºC,13,24-27 the decomposition of NH3 occurs at much higher temperatures compared to the 

metalorganic precursors. It has been reported that the decomposition of NH3 at 

atmospheric pressure starts at 600 ºC and a complete decomposition occurs above 800 

ºC.13  

The formation of GaN in MOCVD includes four key steps:13,28,29 (i) TMGa:NH3 adduct 

formation, (ii) amide formation and methane elimination, (iii) trimer formation, and (iv) 

decomposition reaction and creating N and Ga to form GaN. The general related 

equations are given by:13,28,29 

(CH3)3Ga + NH3  (CH3)3Ga:NH3                                                                         (2.3)                                   

(CH3)3Ga:NH3  (CH3)2Ga:NH2 + CH4                             (2.4) 

3[(CH3)2Ga:NH2]  [(CH3)2Ga:NH2]3       (2.5) 
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[(CH3)2Ga:NH2]3  3GaN + 6CH4                                                                          (2.6) 

The MOCVD growth of high-quality GaN is as follows: Substrate cleaning with 

annealing under H2 at high temperature. A thin (20-30 nm) low-temperature (~550 ºC) 

GaN is first grown as nucleation layer and this layer is annealed to be recrystallized. The 

islands formed during nucleation start to coalesce as the three-dimensional growth 

continues, converting to a two-dimensional surface. The step-flow growth of final GaN 

layer is typically performed at a temperature ~ 1020 ºC with a growth rate of ~2-4 

µm/h.13 

The large thermal and lattice mismatch between common substrates including Si, 

sapphire and SiC with GaN is an issue in MOCVD growth of GaN on these substrates. 

Intrinsic defects in GaN are typically donor-like defects (nitrogen vacancy, VN, and 

gallium interstitials, Gai). Therefore, undoped GaN films are n-type with a free carrier 

concentration around 1016 cm-3 and p-type doping of the films is typically difficult. 

Magnesium (Mg) is the common p-type dopant in GaN. However, Mg often incorporates 

during growth as a Mg-H complex, which is also a donor-type defect. To remove the 

hydrogen and activate the Mg as an acceptor, a subsequent annealing step under H2 is 

required.13 

2.2 Introduction to laser chemistry control 

Controlling the outcome and product of the chemical reactions is an old dream in 

chemistry. We would like to steer the reactants into a desired outcome and product. 

Traditionally, control the dynamics of chemical reactions is done with temperature 

control or finding an appropriate catalyst. 30-44 The energy is traditionally supplied into 
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the reaction as heat. With changing the temperature, the average energy of all molecules 

in the sample is changed and the energy is only controlled on an average macroscopic 

level. The energy is universally injected into all molecule modes including external and 

internal (electronic, vibrational, rotational) modes and affects the dynamics and the 

outcome of the reaction.  

Laser chemistry concentrates the challenging objective of using lasers to control the 

outcome of chemical reactions by breaking particular bond in a large molecule. High 

intensity laser can supply energy into specific reactant bonds, leaving rest cold. For 

instance, using the infrared (IR) laser, we can selectively supply energy into the internal 

state (vibrational/rotational) of the reactants because the frequencies of vibrational modes 

of molecules fall in the IR region. A vibrational mode which is in resonance with an IR 

laser frequency can be selectively excited via single- or multi-photon processes.62  

Several experimental studies have revealed the ability of vibrational excitation of 

molecules to control and promote the chemical reactions.45-53 S. Nave et al. showed the 

vibrational excitation of the methane molecule significantly enhances its reactivity when 

the molecule undergoes transitions to the ground or lower-energy vibrational states.45 

They found the υ1 vibration has the largest efficiency for promoting reaction, however, 

the υ3 vibration has smaller efficiency, but significant.45 F.F. Crim et al. showed different 

vibrational modes, such as the symmetric and antisymmetric stretches in CH3D, lead to 

very different reactivities.46,47 The symmetric stretching vibration excitation of molecules 

leads the molecules be 10 times more reactive than antisymmetric stretch excitation of 

molecules.46,47 Several other studies of laser chemistry control using vibrational 

excitations contain Cl + CHD3,48 Cl + HCN,49 NH3+ + ND3,50 and C2H2+ + CH4.51  
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2.3 Introduction to laser-assisted material synthesis 

The use of lasers for synthesis of material and thin films has been obtained increasing 

interests. It is necessary to understand the species and molecule modes of excitation and 

energy relaxation during laser interaction with gases and precursors to know how lasers 

promote material deposition. Laser chemical vapor deposition (LCVD) is a suitable 

method for thin-film synthesis and enables us to study new reaction pathways. When 

metalloorganic compounds are used as reactants, LCVD is usually called laser metal 

organic chemical vapor deposition (LMOCVD). 

The overall reaction mechanisms in laser material synthesis are generally complicated. 

The laser can induce thermal reactions on the substrate surface by heating the substrate 

and deposition occurs, which is known as pyrolytic or thermochemical deposition like 

that in conventional CVD synthesis of thin films. In pyrolytic process precursor gases are 

thermally activated.52-62 The energy is first deposited to the translational modes of 

reactant molecules, and then distributed to their internal modes. An enough internal 

energy is required for overcoming reaction barrier and gas dissociation. When high 

surface temperatures are required to induce deposition, the pyrolytic process can cause 

more structural damage in thin films due to high temperatures and thermally induced 

stresses. Additionally, pyrolytic process is inefficient in energy coupling to drive gas 

reactions and short of selectivity. 

In another arrangement, the laser is absorbed directly by the reactants and dissociates gas-

phase or surface-adsorbed molecules without heating the substrate surface. This method 

is known as photolytic or photochemical deposition. The monochromaticity of lasers 
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enables narrow-band excitations of selective reactants. Laser excitation can occur by 

stimulating molecule vibrational or electronic transitions by the absorption of infrared 

laser multiple-photons and ultraviolet photons. It can selectively control reactions in 

material synthesis processes. In some cases, the photodissociation products must be 

decomposed further by conventional heating of the substrate to achieve film depositions. 

Two different irradiation geometries can be used in LCVD as shown in Fig. 2.7. In first 

configuration (Fig. 2.7a), the beam impinges on the surface at nearly normal incidence 

and gas and substrate surface are both excited. In second configuration, the laser travels 

parallel to and just above the substrate (Fig. 2.7b). In this case, the laser energy is directly 

coupled into the gas phase and possible heating of the substrate surface is eliminated. In 

this dissertation, both parallel and perpendicular irradiation geometries were employed.  

Several semiconductor materials, including Silicon (Si), gallium arsenide (GaAs), 

cadmium telluride (CdTe), indium phosphide (InP), indium antimonide (InSb), and 

aluminum nitride (AlN), have been grown using the LCVD technique. The LCVD 

deposition of other films including metal films (W, Al, Cu, and Au), and insulators 

(Al2O3, SiO2, Si3N4) have been also reported.63-92 Table 2.2 summarizes some typical 

LCVD processes of various materials. 
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Figure 2.7 (a) Perpendicular and (b) Parallel irradiation geometries employed in a LCVD 
process. 

Table 2.2 Typical LCVD of various materials with specific lasers and precursors.63-92 

Material Precursors Substrate Laser wavelength(nm)      Ref. 
 

W WF6/H2 GaAs ArF/193 [64] 

Cu Cu(hfac)tmvs/H2

/N2 

Si Ar+/514.5 [66] 

Au (CH3)2Au(hfac) Si XeCl/308 [68] 

Al DMEAA Si Ar+/514 [69] 
Si SiH4/Ar Si KrF/248 [72] 

Ge GeH4/Ar - KrF/248 [74] 

GaAs TMG/AsH3 GaAs Ar+/514 [75] 

InN HN3/TMIn Si XeCl/308 [77] 
ZnSe DMZ/DMSe/H2 GaAs ArF/193 [78] 
SiO2 SiH4/N2O Si ArF/193 [80] 
Si3N4 SiH4/NH3 - CO2/10600 [81] 
CNT C2H2/NH3 Si CO2/10600 [89] 

Diamond CH4/H2 Silica Nd:YAG/532 [90] 
Graphene CH4/H2 Ni Nd:YAG/532 [87] 
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2.4 Challenges in laser-assisted GaN synthesis 

Gallium nitride (GaN) has attracted attentions for applications in light-emitting diodes 

(LEDs), short wavelength optoelectronics, and high-power high-frequency electronics, 

due to its excellent physical properties such as wide direct bandgap, high thermal 

stability, and high electron velocities. These conventional growth techniques generally 

require a sufficiently high temperature to overcome the activation barriers to precursor 

chemisorption and adatom surface diffusion, which are inefficient energy coupling routes 

to drive gas reactions. Additionally, high substrate temperatures cause severs adverse 

effects, such as biaxial stress within GaN films, nitrogen loss, and GaN decomposition, 

which affect the optical performance of the films and degrade the efficiency of GaN-

based devices. As an intensive, coherent and monochromatic light, laser is an ideal 

candidate for selective promotion of GaN growth and exploring alternative energy 

coupling pathways. A more efficient energy coupling path can be achieved via directly 

activating internal motions of reactant molecules. Frequencies of molecular vibrational 

modes and electronic excitations locate in infrared range and UV-Vis range, respectively. 

The laser techniques may offer processing advantages that are not available with 

conventional deposition methods. Laser is a perfect energy source due to its high-energy 

intensity, wavelength capability from UV to IR, and monochromaticity. In this 

dissertation, we introduced CO2 laser for IR-laser vibrational excitations in MOCVD 

growth of GaN films. We achieved an enhanced energy coupling efficiency and 

promoted GaN growth rate and crystalline quality.  

NH3 is the common nitrogen precursor used in MOCVD growth of GaN. It has six 

fundamental vibrational modes as shown in Fig. 2.8, which NH-wagging mode is 
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strongly infrared active.62,93 The NH3 vibrational modes at 932.51 (ν2+), 968.32 cm-1 (ν2-) 

and 1084.63 cm-1 match to the emission lines of a CO2 IR-laser at 10.719, 10.35 and 

9.219 µm, respectively. Therefore, NH3 is an ideal candidate for studying the IR-laser 

vibrational excitations in GaN synthesis. 

  

Figure 2.8 Schematic illustration of the NH3 vibration modes. 

2.5 Basic working principles of metal-semiconductor-metal (MSM) UV 

Photodetectors 

Among GaN photodetectors with different device structures, the MSM structure is an 

attractive candidate for UV photodetector applications, because this type of detector has 

low dark current, low noise and high response speed characteristics. In addition, its 

growth and fabrication processes are simplified because n- and p-type doped layers are 

not required. With lateral and planar structure, these devices have very low capacitance, 
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suitable for high-speed performance detectors. Additionally, the fabrication process for 

MSM photodetectors is compatible with field effect transistors, which results an easy 

integration in an optical detection and amplifier.94,95 

 

Figure 2.9 Schematic top view of MSM structure. 

The schematic of an MSM structure is shown in Fig. 2.9. In this thesis, the finger 

spacing, t, is equal to the finger width, w. The MSM photodetector is made by forming 

Schottky diodes on GaN layer. Two contact pads and interdigitated fingers form the 

metal structure and the active area of the device. The energy band diagram of the MSM 

device under thermal equilibrium condition is shown in Fig. 2.10. The MSM 

photodetector is a two Schottky barriers connected back to back. The electron affinity of 

GaN is 4.1 eV and the work function of Au is ∼5.1 eV which result in electron injection 

barrier of ∼0.9 eV. Under the applied bias, one of the Schottky contacts is in reverse bias, 

and the other one is in forward bias.  With the illumination to the active area of the 

device, electron-hole pairs are generated in this region. The photo-excited carriers are 
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collected by contact pads (Ni/Au) under the bias voltage. Responsivity, speed, and dark 

current are the important parameters of the MSM Photodetectors.94,95 The relative 

importance of each parameter depends on the application, and they are not independent of 

each other.  

 

Figure 2.10 Energy band diagram of the GaN MSM photodetectors (a) under thermal 
equilibrium, (b) with applied voltage bias, (c) under photoexcitation with applied voltage 
bias. Devices are illuminated from the top.95 

The growth of high-quality nitride material is the primary obstacle in developing nitride-

based UV photodetectors. The UV detectors with low dark currents require the films with 

very low defect density. In the sections 7 and 8, we introduce improvements in the GaN 

film crystalline quality and realize the high-performance photodetectors based as grown 

LMOCVD GaN epilayers. 
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3.1 Sample preparation 

We used two general types of irradiation geometries in laser-assisted metal 

organic chemical vapor deposition (LMOCVD) of gallium nitride (GaN), represented in 

Fig. 3.1. In first irradiation geometry used in chapter 6, large GaN films were formed at 

low temperatures by a laser-initiated homogeneous reaction above the surface. A 

wavelength-tunable carbon dioxide (CO2) laser (PRC, wavelength range from 9.2 to 10.9 

μm) was used as the irradiation sources. The laser beam, with a diameter of around 10-12 

mm, was irradiated in parallel to the substrate surface inside the chamber through a zinc 

selenide (ZnSe) window, as shown in Fig. 3.1a. The laser was tuned at a wavelength of 

9.219 μm to resonantly excite the wagging mode of ammonia (NH3) molecules, couple 

the laser energy into the reaction. The distance between the laser beam and substrate 

surface was maintained at about 20 mm. In this case, the laser initiates chemistry in the 

gas only and not on the substrate surface. In another irradiation geometry and 

configuration of laser-assisted metal organic chemical vapor deposition of gallium nitride 

in chapters 4, 5, 7 and 8, the continuous-wave (CW) CO2 laser beam irradiates on the 

substrate surface at nearly normal incidence (Fig. 3.1b). In chapter 4, the Si substrate was 

shined and heated with a CO2 laser beam of diameter 2.5 ± 0.5 mm. In chapter 6, CW 

CO2 laser (PRC, Inc., 9.2-10.9 µm) was used as the irradiation source at laser 

wavelengths of 10.719, 10.350, and 9.219 µm, achieving a reactant excitation of NH3 

molecules and substrate heating. In chapters 7 and 8, a continuous-wave wavelength-

tunable CO2 laser (PRC Inc., λ = 9.201 μm) was also used for substrate heating. 

However, in this new setup, a flat top laser beam shaper (Edmund Optics) was used for 

generating a wider beam with uniform power distribution (beam diameter ~ 20 mm) from 
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a Gaussian CO2 laser beam (wavelength-tunable PRC CO2 laser Inc., λ = 9.201 μm). The 

temperature of the substrates during the deposition was monitored by a noncontact 

pyrometer (OS3752, Omega Engineering, Inc.).  

 

Figure 3.1 (a) Illustration of the experimental setup for the CO2 laser-assisted MOCVD 
growth of GaN films with: (a) parallel irradiation geometry and (b) perpendicular 
irradiation geometry. 
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In all experiments, the silicon and sapphire substrates (10 × 10 mm2) were cleaned and 

dried before loading into the LMOCVD chambers. Trimethylgallium (TMGa) and NH3 

were used as the Ga and N precursors, respectively. The experimental details were 

explained in each chapter.  

The applications of GaN films are based on their remarkable properties. For these 

applications to be realized, the structural, optical and electronic qualities of films need to 

be more thoroughly characterized. Numerous techniques are useful in GaN 

characterizations. 

3. 2 Structural characterization 

3.2.1 X-ray diffraction 

X-Ray diffraction (XRD) is a non-destructive method used to characterize the 

structures of GaN film. The Bragg’s law describes the diffraction of X-rays from a crystal 

by:1-3  

nλ = 2d × sin θ                                                                                                                (3.1) 

where n is an integer, λ is the X-ray wavelength, and d is the spacing between atoms. 

With a given X-ray wavelength and the angle that X-rays are diffracted, θ, the atomic 

spacing d can be calculated, as shown in Fig. 3.2. Because the exact atomic spacing, d, is 

unique for a material, the unknown materials can be identified by comparing their XRD 

spectrum with that of a known standard. The Fig. 3.2 illustrates the schematic illustration 

of the geometrical parameters of the XRD characterization. 
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Figure 3.2. Diffraction of X-rays from a thin film surface showing the Bragg angle, θ.1 

 

Figure 3.3 The schematic illustration of the geometrical parameters of the XRD 
characterization. 

3.2.1.1 θ-2θ scan 

The lattice constant and mole fraction of the materials can be identified using the 

XRD θ-2θ scan measurement. In θ-2θ scan, the X-ray source is fixed and the sample 

rotates a certain angle, θ, with respect to the axis of X-ray beam. The detector rotates 
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twice of the angle θ as shown in Fig. 3.3, and collects the reflected X-ray beam. The 

material information such as orientation can be calculated from this type of XRD scan.  

For example, the (0002) reflection plane is indexed to the c-plane GaN. This reflection is 

perpendicular to the growth direction and is a good gauge of GaN crystal orientation and 

qaulity.1-3 Figs. 3.4a and b show a photo of Rigaku Smartlab, a multifunctional X-Ray 

diffractometer system, and XRD θ-2θ spectrum of c-oriented GaN on sapphire, 

respectively. 

 

Figure 3.4 (a) A photo of Rigaku Smartlab, a multifunctional X-Ray diffractometer system. 
(b) XRD θ-2θ spectrum of c-oriented GaN on sapphire. 

3.2.1.2 Rocking curve scan (ω-scan) 

The XRD rocking curve (XRC) measurement is commonly used for quantitative 

measurement of the film quality while the θ-2θ XRD only gives the information on the 

crystalline orientation of the thin films.  The inter-planar spacing of the grown films is 

measured using XRC.4-7 In this experiment, the detector and the X-ray source are fixed at 

certain angle, which receive the x-ray signal in θ-2θ scan. Then, the sample is rocked 

about ω axis. The strong diffraction peak is only observed when a particular crystal is 
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aligned at the angle matching to Bragg’s Law. The full width at half maximum (FWHM) 

of XRC is typically used to measure the film threading dislocation density and determine 

the film quality.4-7   

3.2.1.3 In-plane φ-scan 

The XRD φ‐scans are conducted to reveal the in�plane orientation and epitaxial 

details of films.4-7 The in�plane orientation can be measured by four�circle 

diffractometer. In φ‐scan experiment, first, a crystallographic plane inclined to the growth 

plane is identified. The θ and 2θ angles are constant to corresponding to Bragg angle for 

the identified plane. The ψ, sample tilt, is set equal to the crystallographic angle between 

the growth plane and the identified plane for the φ‐scan. The diffraction spectra are 

collected with the sample rotation along φ‐axis. In an epitaxial film, the φ	 spectra have 

sharp diffraction peaks at certain φ‐angles.4-7 

3.2.2 Raman spectroscopy 

Raman spectroscopy is a common technique for studying the quality and residual 

stress of thin films.8-10 In Raman spectroscopy, an incident beam with a single 

wavelength is irradiated on the sample and a photon with different energy from the 

incident photon is scattered. The different between the energy of scattered photon and 

incident photon is one vibrational energy unit which forms the basis of Raman scattering. 

The theoretical studies show that the hexagonal structure has eight sets of phonon 

modes at k ∼ 0 (Γ point in Brillouin zone), 2A1 + 2E1 + 2B1 + 2E2. The A1 and E1 modes 

are acoustic and other six modes, A1 + E1 + 2B1 + 2E2, are optical.8-11 The schematic of 

the atomic displacement of the optical modes is seen in Fig. 3.5. The A1 and B1 modes 

represent atomic displacements along the c‐axis and the E1 and E2 are atomic 
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displacements perpendicular to the c‐axis. The A1 and E1 modes are both Raman and 

infrared (IR) active, while the two E2 modes are only Raman active, and the two B1 

modes are neither Raman nor IR active. 

Raman configurations of allowed modes in hexagonal nitrides are shown in Table 

3.1. The symbols from left to right outside the bracket show the direction of incident and 

scattered light, respectively, and the ones from left to right inside the bracket represent 

the polarization direction of the incident and scattered light, respectively. In wurtzite 

nitride structures studied under a z(x,x)-z geometry, E2(high) mode is the strongest and is 

very sensitive to the inplane strain. The A1(LO) phonon mode has atomic displacement 

parallel to the c�axis. If we suppose the c-axis is along the z direction and x and y 

directions are perpendicular to c-axis, the A1(LO) mode can be detected from c�plane 

wurtzite nitrides under a z(x,x)-z backscattering geometry.8-10 

In this work, Raman spectroscopic studies were conducted under a z(x,x)-z 

backscattering geometry, where z and -z represent the projection direction of the 

incoming and scattered light, and x represents the polarization direction of the incoming 

and scattered light. Figs. 3.6a and b show a picture of the Raman spectroscopy system 

(inVia Raman microscopy, Renishaw) and Raman spectrum of a wurtzite GaN film 

grown by LMOCVD, respectively.8-11 

 

Table 3.1 Raman configurations of allowed modes in hexagonal nitrides11 

Configuration x(y, y)-x x(z, z)-x x(z, y)-x x(y, z)y x(y, y)z z(y, x)-z z(y, y)-z 

Mode A1(TO), 
E2 

A1(TO) E1(TO) E1(TO), 
E1(LO) 

E2 E2 A1(LO), 
E2 
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Figure 3.5. Atomic displacements of the Γ-point phonons in wurtzite GaN. Low-E2 (low-B1) 
and high-E2 (high-B1) represent the low- and high-frequency E2 (B1) modes, respectively. 
The frequency numbers inside the parentheses are in THz obtained from previous 
studies.11  
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Figure 3.6 (a) A picture of the Raman spectroscopy system (inVia Raman microscopy, 
Renishaw); (b) A Raman spectrum of a wurtzite GaN film grown by LMOCVD. 

3.3 Surface characterization 

3.3.1 Scanning Electron Microscopy (SEM)/Energy Dispersive X-ray Spectroscopy 
(EDS) 

Using the interaction between a beam of high energy electrons and the sample, a 

thin film can be imaged. The interaction between the sample and the electrons has 

different types including transmitted electrons, secondary electrons, and backscattered 

electrons. In a SEM, high-energy beam of electrons scan the sample surface. Depending 

on the desired image, various types of the electrons can be detected. SEM images are 

very useful in investigating the microstructure of a GaN film surface. Incident a beam of 

high energy electrons can also generate X-rays with a specific wavelength which is used 

for the characterization of the thin film composition. In EDS, the relative intensities of 

these X-rays are measured to study the composition of sample surface. 

3.3.2 Transmission Electron Microscopy (TEM) 

TEM, a high-resolution imaging method, is known as a very powerful method for 

studying the crystal quality of thin films and interfaces. In TEM, a beam of electrons 

transmitted through a very thin sample (10-100 nm thickness).13 Very high magnification 
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images are obtained from the patterns produced from the interaction of the electrons with 

the sample. Electrons can be diffracted, absorbed or transmitted through the sample. The 

diffracted electron patterns can help for studying the crystal structure and quality, and the 

absorbed electron patterns are useful to create contrast in both bright-field and dark-field 

TEM images.  

3.3.3 Atomic Force Microscope (AFM) 

AFM is a simple and non-destructive method to determine the film surface 

roughness and average threading dislocations in gallium nitride. In AFM technique, a 

sharp tip runs over the surface to scan and takes AFM images. The AFM tips are 

typically from silicon nitride or silicon attached to a cantilever. A laser beam is used to 

detect cantilever deflections towards or away from the surface. A position-sensitive photo 

diode (PSPD) is used to detect these changes and generate an electric signal. This signal 

is sent via a feedback loop to a piezoelectric ceramic to control the height of the tip above 

the surface and maintain the position of laser constant. The interaction force around 10-11-

10-6 N between tip and film surface can detect the topography of sample.12  

The AFM measurements in GaN can be done either in tapping or contact mode. 

Since, the GaN is a very hard material compared to the tip, the dragging motion of the 

probe tip in contact mode can break the tip. The measurements in this work were done at 

Nebraska Center for Materials and Nanoscience using Bruker Dimension ICON SPM. 

The resonance frequency was set on 220-320 kHz, and a scan rate of 2 Hz was used for 

scanning GaN film surface using a silicon tip. 
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3.4 Optical characterization 

The information about the quality, strain, impurities, and native defects of GaN 

can be obtained using optical characterization of films. The information about energy 

level of impurities can be also achieved form the temperature dependence of these 

properties. Photoluminescence spectroscopy and optical transmission/absorption 

spectroscopy are the common methods for investigating optical properties in 

semiconductors materials. Photoluminescence spectroscopy was employed in this work, 

along with optical transmission and absorption, to study the optical properties of the 

grown GaN layers. 

3.4.1 Photoluminescence Spectroscopy (PL) 

In photoluminescence process, a material absorbs photons of one wavelength and 

emits photons of another wavelength. The electrons are excited to higher energy states by 

absorbing photon energy from a photoexcitation source like laser.14-16 When the electrons 

return to their ground state through a radiative recombination, they emit photons. PL is 

the investigation of radiative recombination mechanisms in materials. Many 

semiconductor material properties including bandgap energy, electronic defects, strain, 

and optical quality can be determined using PL spectroscopy. 

 PL spectrum of a semiconductor material shows two prominent features, near-bandgap 

emission that gives the semiconductor band gap, and radiative transitions which involve 

semiconductor impurities and electronic defects.14-16 PL spectra of wide bandgap 

semiconductors typically contain several radiative transitions including near-band edge 

transitions, donor-acceptor pair transitions, defect levels to the bandedge transitions and 
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bandedge to defect levels transitions. Using the energy of such transitions, the defect 

levels in semiconductors are determined. 

In our work, the PL spectroscopy of GaN films was studied using a 

photoluminescence spectrometer (a 325 nm Melles-Griot He-Cd laser as photoexcitation 

source and a iHR320 photoluminescence spectrometer with Si and indium gallium 

arsenide (InGaAs) detectors).  

3.4.2 Optical transmission 

Another useful technique to examine the optical properties of a material is optical 

transmission. The GaN is transparent throughout the visible spectrum, allowing light of a 

lower energy than the bandgap to pass through the material. Examining the percent 

transmission as a function of wavelength give information about the bandedge as well as 

electronic defects that are not visible in PL spectra. 

Defects are often visible in a transmission spectrum as an absorption band that 

causes a drop in the transmission signal below the bandgap energy. Optical transmission 

also provides information about intra-atomic transitions. These measurements require a 

smooth surface on both top and bottom of the film, however, as a rough surface will 

scatter the transmitted light and decrease signal intensity significantly. Optical 

transmission data were collected using a Perkin-Elmer LAMBDA 1050 UV/Vis/NIR 

spectrophotometer. 

3.5 Electrical characterization 

Electrical characterization techniques are performed to measure the free carrier 

concentration, conductivity and resistivity of the thin films. This information helps to 

determine the impurity levels and quality of GaN films. For example, the important 
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impurities in GaN, such as oxygen, silicon, and carbon contribute to high carrier 

concertation and conduction.  

3.5.1 Hall effect measurement 

The Hall effect is measured with applying a magnetic field perpendicular to the 

flow of current in a semiconductor bar to deflect the path of the carriers.17,18 If we 

suppose that the magnetic field is applied in the z direction in a right-handed coordinated 

system, and current flows in the x direction, then the force applied to the carriers is given 

as: 

Fy = q(Ey - VxBz)                                                                                                             (3.2) 

where Ey is the electric field (y direction), Vx is carrier velocity (x direction), and Bz is the 

magnetic field (z direction). The carriers will face a net force Fy (–y direction) except an 

electric field with magnitude equal to VxBz is caused to compensate. The compensating 

electric field is created with the shift of the carriers along the y-axis which it causes the 

carriers to keep the x-axis as their overall direction. The compensating electric field 

generated by the Hall effect is measured with the product of current density and magnetic 

flux density. The Hall coefficient is calculated by:17,18 

ܴு ൌ
ଵ

୯௣బ
                                                                                                                         (3.3) 

where po is the carrier density. With given the values of current and magnetic field, and 

measuring the induced voltage across the sample, the free carrier concentration can be 

computed. Hall effect measurements are useful to determine information, including the 

resistivity, conductivity, and carrier mobility of GaN films. In this work, Hall effect 

measurements were performed using the Van der Pauw technique with cloverleaf 

geometry at room temperature. 
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3.6 Optical emission spectroscopy  

The optical emission spectra (OES) of laser irradiated NH3 were taken in open air 

using a spectrometer (Shamrock SR-303i-A, Andor Technology) coupled with an 

intensified charged coupled device (ICCD) (iStar DH-712, Andor Technology). Fig. 3.7a 

and b show the schematic experimental setup for the OES measurements in open air and 

OES of the NH3 under laser irradiation at wavelength of 9.219 µm in open air, 

respectively.  

The IR laser beam was focused to a diameter around 1 mm using a ZnSe convex 

lens (f = 25.4 cm). A welding torch with a nozzle diameter of 1.5 mm was used to 

introduce the NH3 gas at a flowrate of 50 sccm. The CO2 laser beam was directed 

perpendicularly to the NH3 flow. The laser incident power density was fixed at 1.4 × 104 

W/cm2 for all laser wavelengths. All spectra were taken with a vertical collecting length 

of 0.5 mm along the emission, centered at the tip of the emission, and with a horizontal 

slit width of 30 µm centered at the tip apex of the emission. A background spectrum 

captured before collecting the emission spectra was subtracted from all spectra.  

 

Figure 3.7 (a) schematic experimental setup for the OES measurements in open air. b) OES 
of the NH3 under laser irradiation at wavelength of 9.219 µm in open air. 
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3.7 Device processing and characterization  

Once LMOCVD GaN films were grown, the metal semiconductor metal (MSM) 

device was fabricated on as-grown films. The interdigitated finger of MSM device was 

50 µm long, with 10 µm finger width and 10 µm finger spacing, and a detection area of 

10 × 10 µm2. The devices were fabricated using standard photolithography with 

patterning photoresist for subsequent metallization of metal Schottky contacts on the 

GaN. With the high metal work function and the good adhesion with GaN, Ni and Au 

metals were chosen as the Schottky contacts.19,20 Schottky contacts were 100 nm Au/20 

nm Ni, deposited using magnetron sputtering. To improve the Schottky characteristics, a 

pre-cleaning step was used to remove the oxide on the GaN surface prior to metallization. 

The film cleaing process has been done using hydrofluoric (HF) acid for 1 min and warm 

ammonium hydroxide (NH4OH) for 15 min.  

The current-voltage (I-V) measurements of the GaN UV photodetectors were 

carried out using a Keithley 237 electrometer. Photoresponse measurements were 

realized by using a Xe arc lamp with power of 150 W as UV light source. External 

quantum efficiency (EQE) measurement was performed by using an incident 

monochromatic light beam directed onto the photodetector and the data was collected via 

a Newport QE measurement kit.  Transient response measurements were taken using a 

337 nm, 4 ns pulsed laser as light source, and voltage variations were collected using an 

oscilloscope (LeCroy WaveRunner).  
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4.1 Introduction 

The growth of GaN nanostructures including nanowires and nanorods is 

predominant along the 0001ۧۦ direction (c-plane) due to the high surface free energy of 

the c-plane.1-3 Several attempts were made to grow the gallium nitride (GaN) 

nanostructures oriented along the <10-10> direction (m-plane).1,2 The <10-10> oriented 

GaN nanostructures can be utilized to overcome the quantum-confined stark effect 

(QCSE) [i.e., separation of the electron and hole wave functions within the quantum 

wells (QWs)], which degrades the recombination efficiency of GaN-based photonic 

devices.4-6 However, the growth of <10-10> oriented GaN nanostructures requires 

expensive lattice-matched substrates, including lithium aluminate (γ-LiAlO2), m- and r-

plane sapphire (Al2O3), and m-plane silicon carbide (4H-SiC).4,5 In addition, the growth 

of GaN involves high-temperature methods, including metal organic chemical vapor 

deposition (MOCVD, ∼930 °C), molecular beam epitaxy (MBE, ∼800 °C), and hydride 

vapor phase epitaxy (HVPE, ∼750 °C).7-9 All of these methods require a long processing 

time of ∼2 h.1-10 The growth rates of GaN were reported to be 200, 4, and 1 μm/h in 

HVPE, MOCVD, and MBE techniques, respectively.10,11  

The potential applications of GaN demand a simple approach for the rapid and 

selective growth of GaN nanostructures. Laser-assisted MOCVD (L-MOCVD) is a 

suitable method for enabling the rapid growth of materials at a low temperature in a 

predefined area.12-16 In addition, another obvious advantage of the L-MOCVD over 

conventional MOCVD is the ability to generate patterned material deposition on 

substrates without involving complex lithography steps.14,17 Several semiconductor 
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materials, including gallium arsenide (GaAs), cadmium telluride (CdTe), indium 

phosphide (InP), indium antimonide (InSb), and aluminum nitride (AlN), were grown 

using the L-MOCVD technique.15 Similarly, GaN can be grown at low substrate 

temperatures using L-MOCVD compared to conventional growth methods. The growth 

rate can be remarkably enhanced due to the rapid processing nature of L-MOCVD. There 

are few reports available discussing the growth of GaN using L-MOCVD.16 In this study, 

the m-plane oriented GaN nanoplates have been successfully grown on lattice-

mismatched (Si) substrates using L-MOCVD. The rapid growth of GaN was realized by 

pyrolytically decomposing the source precursors at 450 °C. 

4.2 Experimental methods 

GaN nanoplates were grown on Si substrates at 450 oC using a home-built L-

MOCVD system. Fig. 4.1 shows the schematic diagram and real-time image of the L-

MOCVD system. Initially, the vacuum chamber was evacuated to a base pressure of 1 x 

10-3 Torr. The TMGa and NH3 were used as gas precursors in L-MOCVD. The flow rate 

of NH3 was maintained at 2.2 mmol/min. The TMGa was carried into the growth 

chamber using nitrogen (N2) as a carrier gas at a flow rate of 0.4 mmol/min.  The 

chamber pressure was maintained at 450 Torr during the deposition process. Once the 

chamber pressure is stabilized, a CO2 laser beam was shined on to the Si substrate. The 

power of the laser beam was fixed at 14 W. GaN nanostructures were grown at different 

deposition times from 1 to 5 min. The temperature of the growth region was monitored 

using a pyrometer (Omega, OS3752). After the growth process, the GaN nanoplates were 

characterized as follows. The morphology of the GaN films was examined using a field-

emission scanning electron microscope (FESEM, S4700) and a high-resolution 
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transmission electron microscope (HRTEM, FEI Tecnai). The composition of the 

nanoplates was analyzed using an energy dispersive X-ray spectrometer (EDX, Oxford 

X-max 20 mm2). The crystallinity and structure of the GaN nanoplates was studied using 

a micro-Raman spectroscope (Renishaw Invia, Argon ion laser, λ = 514 nm) and a 

powder X-ray diffractometer (Rigaku D/Max B diffractometer, Co Kα1 λ = 1.788 Å). 

The optical properties of the nanoplates were examined using a home-built 

photoluminescence spectrometer (Spectra Physics, wavelength-tunable Argon ion laser, 

λex = 244 nm). 

 
Figure 4.1 (a) Schematic diagram and (b) the real-time image of the L-MOCVD system. 

4.3 Results and discussion 

4.3.1 Morphological analysis 

The morphology of the GaN films was examined using a field-emission scanning 

electron microscope (FESEM) and high-resolution transmission electron microscope 

(HRTEM). The FESEM images in Fig. 4.2a-d show the micrographs of GaN nanoplates 

grown at 1, 3, 5 and 7 min, respectively. The GaN film deposited at 1 min revealed the 

formation of nanoplates as shown in Fig. 4.2a. The shape of the nanoplates was similar to 

a semi-hexagonal and hexagonal. The arrows in Fig. 4.2a show the hexagonal shape of 

nanoplates. GaN nanoplates grown at 3 min had similar shape compared to the nanoplates 

grown at 1 min as shown in Fig. 4.2b. As the growth time was further increased to 5 and 



67 

 

7 min, the nanoplates overlapped with the adjacent nanoplates and formed interlinked 

GaN nanoplates as shown in Fig. 4.2c and d. The diameters of the GaN nanoplates were 

∼200 ± 50, 250 ± 50, 900 ± 50, 1500 ± 50 nm at 1, 3, 5 and 7 min, respectively. The 

thicknesses of the GaN nanoplates were 40 ± 10 nm, 50 ± 10 nm, 90 ± 10 nm and 900 ± 

10 nm at 1, 3, 5 and 7 min, respectively. As the growth time increased the thickness of 

the nanoplates increases. The nanoplates join with the adjacent counterparts in all 

directions. The orientation of the GaN crystals on the Si substrate was similar to the GaN 

nanoplates, i.e., the c-axis of GaN was perpendicular to the substrate normal. The EDX 

results confirmed the presence of Ga and N elements in the nanoplates.18 The atomic 

concentrations of Ga and N were 52.63 and 43.42, respectively.  

 

Figure 4.2 FESEM images of m-plane GaN nanoplates grown at (a) 1, (b) 3, (c) 5 min and 
(d) 7 min. 
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Figs. 4.3a and 4.3b show the selected-area electron diffraction (SAED) and high-

magnification TEM images of a GaN nanoplate. SAED pattern of the GaN nanoplates 

revealed the array of spots indexed to the reflection of GaN with the wurtzite structure 

along the m-direction. The lattice fringes in Fig. 4.3b further confirm the single 

crystallinity of the GaN nanoplate. The interplanar spacing of 0.28 nm can be assigned to 

(10-10) plane, which corresponds to the m-plane of GaN.19  

 
Figure 4.3 TEM images of a GaN nanoplate: (a) SAED pattern of the GaN nanoplate, (b) 
lattice fringes of the GaN nanoplate. 

4.3.2. Growth Mechanism 

The growth rates of different planes of the hexagonal GaN crystals were reported 

to have the following tendency [0001] > [01-1-1] > [10-10] > [01-11].20-21 Typically, due 

to high growth rate of c-plane, the GaN nanostructures grow along <0001> direction.20 

However, in this study the GaN nanoplates were grown along <10-10> direction. The 

growth orientations other than (0001) can be achieved for the films deposited at low-

temperature and/or high deposition rate.3,22,23 The estimated growth rate of GaN was ~ 38 

µm/h. The high growth rate can be attributed to the three-dimensional (3-D) diffusion 
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path of the reactive gases in LMOCVD. In addition, in this study GaN nanoplates were 

grown at a low temperature (450 oC) compared to GaN nanostructures grown by 

MOCVD at 930 oC. 

The schematic diagram in Fig. 4.4a represents the growth of m-plane GaN 

nanoplates. Once the substrate is completely covered by the nanoplates, the upcoming 

species have to nucleate either on c-plane or m-plane of the nanoplates.24-29 The GaN 

nanoplates served as seed crystals for the subsequent growth of m-plane oriented 

interlinked nanoplates. At an increased growth time, the growth continued on the 

different facets of the GaN nanoplates. Due to the negligible lattice mismatch between 

the c-plane and m-plane of GaN, the m-plane oriented nanoplates were dominant at a 

longer growth time. At an increased growth time, the overlap of the nanoplates led to the 

formation of nanoplate networks whose m-plane was orienting parallel to the Si substrate 

as shown in Figs. 4.4a and b. The FESEM images in Fig. 4.4b clearly revealed the growth 

of m-oriented GaN nanoplates.  
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Figure 4.4 (a) Schematic diagram demonstrates the growth of m-plane GaN nanoplates on 
Si substrate. (b) FESEM images of m-direction GaN nanoplates grown on Si substrate. 

4.3.3. Structural and optical properties 

According to the group theory the Raman active modes of GaN are A1+E1+2E2, 

where two non-polar E2 modes are Raman active, A1 and E1 modes are both Raman and 

infrared active.30-33 The vibrational modes of the GaN nanoplates were examined using a 

micro-Raman spectrometer under a Z(X,X)-Z backscattering geometry. Where, Z and -Z 

represents the projection direction of the incoming and scattered light, while X represent 

the polarization direction of the incoming and scattered light. Fig. 4.5 shows the micro-

Raman spectra of the GaN nanoplates grown at 1and 5 min, respectively.   

 

Figure 4.5 Raman spectra of GaN nanoplates grown at 1 and 5 min. 

The GaN nanoplates grown at 1 min showed strong E2H mode at 569 cm-1 and 

relatively weak A1(TO), E1(TO) and A1(LO) modes at 530, 560, 738 cm-1, respectively.30-

33 The strong E2H mode is characteristic of wurtzite GaN. The c-plane GaN showed 

strong E2H at 569 cm-1 as shown in Fig. 4.5a. The strong A1(TO) mode was obtained for 

GaN nanoplates grown at 5 min as shown in Fig. 4.5b. The GaN nanoplates grown at 5 
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min did not show E2H mode. According to the Raman selection rule, the m-plane GaN 

will show strong A1(TO) mode along the Z(X,X)-Z geometry. This can be attributed to the 

absence of E2H mode and presence of strong A1(TO) mode for GaN film grown at 5 min.  

Fig. 4.6 compares the XRD patterns of GaN nanoplates grown at 1 and 5 min. The 

XRD peaks including (10-10), (0002) and (10-11) can be indexed to wurtzite GaN with 

the hexagonal structure, which are in good agreement with Joint Committee on Powder 

Diffraction Standards (JCPDS) card no. 01-070-2546. GaN nanoplates grown at 1 min 

showed a strong (0002) peak which indicates the c-axis orientation of the nanoplates as 

shown in Fig. 4.6a. 

 

Figure 4.6 XRD patterns of GaN nanoplates grown at 1and 5 min. 

The degree of orientation can be estimated by the relative texture coefficient 

which is given as:19,34 
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where TC0002 is the relative texture coefficient of (0002) peak over (10-10) peak. 

I(0002) and I(10-10) are the measured intensities of (0002) and (10-10) peaks, respectively. 
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I0
(0002) and I0

(10-10) are the intensity values of (0002) and (10-10) peaks of GaN powders 

obtained from the JCPDS card no. 01-070-2546, respectively. The textured coefficient of 

GaN powders with random crystallographic orientation is 0.5. The textured coefficient of 

GaN nanoplates grown at 1 min is 0.923, which indicates strong c-axis orientation of the 

GaN nanoplates. This is obvious from Fig. 4.2a which clearly showed the formation of 

GaN nanoplates and c-axis of most of the nanoplates are parallel to the substrate normal. 

On the other hand, GaN film grown at 5 min showed a strong (10-10) peak as shown in 

Fig. 4.6b which corresponds to the m-plane of GaN. The relative texture coefficient was 

used to estimate their degree of orientation using the following relation:19,34 
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where TC 0110 is the relative texture coefficient of (10-10) peak over (0002) peak. 

The estimated TC(10-10) of interlinked GaN nanoplates grown at 5 min was 0.563. This 

result indicates that the as grown interlinked GaN nanoplates are preferentially oriented 

along the <10-10> direction. The XRD data are in good correlation with the FESEM, 

HRTEM and Raman results. 

The optical properties of the nanoplates were examined using a 

photoluminescence (λ= 244 nm) set up. The GaN nanoplates grown at 5 min showed 

near-band-edge (NBE) emission at 3.4 eV which is closer to the NBE emission of bulk 

GaN (3.47 eV).35,36 In addition, GaN nanoplates showed a broad deep level emission 

(DLE) at 2.21 eV. The DLE emission at 2.21 eV can be attributed to nitrogen vacancies 

and gallium interstitials of the GaN nanoplates.35,37 The NBE emission peaking at 3.4 eV 

confirmed the good optical quality of the GaN nanoplates. 
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4.4 Conclusions 

The interlinked m-plane-oriented GaN nanoplates can rapidly be grown on a Si 

substrate using the L-MOCVD method. The FESEM and HRTEM images confirmed the 

formation of GaN nanoplates. The growth direction of GaN nanoplates was found to be 

the <10-10> direction. The A1 (TO) mode of Raman further confirmed the m-plane 

orientation of the GaN nanoplates. The high deposition rate, low-growth temperature, and 

repeated growth on the different facets of the nanoplates resulted in the formation of m-

plane-oriented interlinked GaN nanoplates. Therefore, the LMOCVD is a suitable 

technique for the rapid growth of m-plane-oriented GaN nanoplates on Si substrate at 

low-growth temperatures. This method can be extended to the rapid growth of other III-

nitride materials.  
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5.1 Introduction 

In this chapter, the influence of exciting ammonia (NH3) molecular vibration in 

the growth of gallium nitride (GaN) on silicon (100) substrates is investigated by using an 

infrared laser-assisted metal organic chemical vapor deposition (LMOCVD) method. 

High-quality commercial GaN films are usually grown by the metalorganic chemical 

vapor deposition (MOCVD) technique on expensive lattice-mismatched substrates such 

as sapphire and SiC substrates at a growth rate around 2 μm/h.1-14 Recently, interests in 

the epitaxial growth of thick GaN films on Si (100) substrates arose for scalable 

production of power-switching devices at an affordable cost.6,8 However, the MOCVD 

technique is accompanied with a parasitic reaction between the precursors at high 

temperatures, which restricts the growth rates and impairs the epitaxial growth of thick 

GaN films.13-16 In addition, the high growth temperatures (~ 900 - 1200 ˚C) lead to GaN 

decomposition and nitrogen reevaporation therefore result in reduced GaN growth rates 

and degraded crystalline quality.17,18 Moreover, there is a series of Ga-Si reactions at 

elevated temperatures that could directly deter the growth of GaN on Si.19 However, a 

high reaction temperature is required for effective NH3 decomposition and overcoming 

the energy barriers on precursor adsorption and surface adatom migration.13-16  

Ultraviolet laser-induced MOCVD growth of group-III nitrides was developed 

20,21 with the potential to overcome these disadvantages and was principally intended to 

provide the reactive radicals Ga and N by photolysis of their precursors at low substrate 

temperature. However, the density of the reactive N-containing fragments from NH3 was 

not very high even at high volume ratios and GaN growth rate was low. To address the 

challenges without introducing hetero catalysts, we have developed an infrared laser 
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LMOCVD method to achieve thick GaN on Si (100).22 Selective NH3 decomposition at 

room temperatures is realized by resonantly exciting the rotational-vibrational transition 

of the NH-wagging modes using a CO2 laser beam. The roles of vibrational excitation in 

NH3 decomposition and GaN formation is discussed. There are six vibrational modes and 

numerous vibrational bands in NH3 molecules. Will vibrational excitation of each mode 

contribute equally to the NH3 decomposition and GaN growth? How will each mode 

impact the NH3 decomposition and GaN growth?  

Based on the available irradiation lines, the NH3 NH-wagging modes at 932.51 

(ν2+) and 968.32 cm-1 (ν2-), and the NH rotational-vibrational transition at 1084.63 cm-1 

were resonantly excited leading to significantly improved GaN growth rates. Compared 

to laser-induced thermal heating at nonresonant wavelengths, the resonant excitations 

lead to more effective NH3 decomposition, higher concentrations of active species, higher 

GaN deposition rates, and better GaN crystalline quality.  

5.2 Experimental details 

5.2.1 Sample preparation 

The schematic experimental setup of a home-built LMOCVD system is shown in 

Fig. 5.1. GaN films were grown on p-type Si(100) substrates. From the point of view of 

integrating GaN devices with silicon technology, the Si(100) substrate is preferred 

because Si(100) is the most widely used in silicon mainstream technology. The Si 

substrates (10 × 10 mm2) were etched with 10% hydrofluoric to remove oxide layers, 

cleaned and dried before loading into the LMOCVD chamber. Trimethylgallium (TMGa) 

and NH3 were used as the Ga and N precursors, respectively. The LMOCVD chamber 

was evacuated to a base pressure of 1 × 10−3 Torr. Then, laser thermal cleaning of Si 
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substrates was carried out at 900 oC under H2 flow for 5 min to remove the native oxide 

on the substrate surface followed by one step nitridation at 750 oC.  The nitridation was 

lasted for 5 min under 54 mmol/min NH3 flow at a reactor pressure of 100 Torr. It has 

widely been reported that a silicon nitride layer is formed due to the nitridation surface 

treatment process on the silicon substrate. 23,24 Nitridation of Si surface helps to release 

strain in GaN-on-Si growth and favours the growth of wurtzite GaN.25-27 

The molar flow rate of NH3 was maintained at 54 mmol/min. The TMGa was 

carried into the growth chamber using a nitrogen carrier gas (N2) at a molar flow rate of 

88 μmol/min. The chamber pressure during the growth process was maintained at ~ 10 

Torr. A continuous-wave wavelength-tunable CO2 laser (PRC Inc., 9.2 - 10.9 μm) was 

used as the irradiation source, achieving reactant excitation and substrate heating. Based 

on the available emission lines of the CO2 laser, the NH-wagging modes (ʋ2, at 932.51, 

968.32, and 1084.71 cm-1) of NH3 molecules were selected to be resonantly excited at 

corresponding laser wavelengths of 10.719, 10.350, and 9.219 µm. Two other 

wavelengths at 9.201 and 10.591 μm were selected as nonresonant wavelength references 

realizing only conventional laser heating. GaN nucleation layers (40 - 60 nm in thickness) 

were deposited at 500 oC for 30 seconds followed by epilayer growth at 750 oC for 5 min. 

The laser incident power was tuned to keep the substrate temperature same for all GaN 

samples grown at different laser wavelengths. The substrate temperature was monitored 

using a pyrometer (Omega, OS3752).  
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Figure 5.1 The schematic of the LMOCVD system. 

5.2.2 NH3 absorption spectrum and finding resonant vibrational excitation 
wavelengths 

In order to find appropriate wavelengths achieving resonant vibrational excitation 

of NH3 molecules, it is essential to found out available emission lines matching NH3 

molecular vibrational modes within the CO2 laser wavelength range (9.2 - 10.8 µm). Due 

to the discrete emission lines of the CO2 laser, effective NH3 absorption spectrum within 

the CO2 laser wavelength range was measured in a vacuum chamber with an absorption 

path length of 40.64 cm. The chamber was evacuated to a base pressure of 1 × 10-3 Torr. 

Gaseous NH3 was subsequently introduced into the chamber and reach a pressure of 10 

Torr. The incident laser power was kept at 220 W. A power meter was used to measure 

the laser power before and after passing through the chamber. The drop in laser power 

was calculated as the absorption percentage.  

Three strong absorption peaks were observed at 9.219, 10.35, and 10.719 µm 

(resonant wavelengths), corresponding to the NH-wagging modes (ν2) at 1084.63, 
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968.32, and 932.51 cm-1, respectively.22,28 Among all six vibrational modes of NH3 

molecules, the NH-wagging mode is strongly infrared active. A NH3 molecule in the NH-

wagging mode vibrates in an umbrella inversion way.29,30 Due to the barrier that the 

nitrogen atom encounters on its travel through the proton plane, the vibrational level is 

split into two components at 932.51 (ν2+) and 968.32 cm-1 (ν2-) which correspond to the 

observed absorption peaks at 10.719 and 10.35 µm, respectively.28-32 The strongest 

absorption peak at 9.219 µm is ascribed to the NH rotational-vibrational transition at 

1084.63 cm-1 [5(J)  6(J’), K=0].  

5.2.3 Characterization 

The Surface morphologies of the GaN films were studied using a field-emission 

scanning electron microscope (FESEM, Hitachi S4700). The qualities of GaN films were 

examined using a Raman microscope (Renishaw inVia H 18415, Argon ion laser, λ = 514 

nm) and X-ray diffractometer (Rigaku D/Max B diffractometer, Co Kα λ = 1.788 Å). The 

doping type, carrier concentration and mobility of the GaN films were obtained via the 

Van der Pauw method at room temperature. The optical emission spectra (OES) of laser 

irradiated NH3 were taken in open air using a spectrometer (Shamrock SR-303i-A, Andor 

Technology) coupled with an intensified charged coupled device (ICCD) (iStar DH-712, 

Andor Technology). The IR laser beam was focused to a diameter around 1 mm using a 

ZnSe convex lens (f = 25.4 cm). A welding torch with a nozzle diameter of 1.5 mm was 

used to introduce the NH3 gas at a flowrate of 50 sccm. The CO2 laser beam was directed 

perpendicularly to the NH3 flow. The laser incident power density was fixed at 1.4 × 104 

W/cm2 for all laser wavelengths. All spectra were taken with a vertical collecting length 

of 0.5 mm along the emission, centred at the tip of the emission, and with a horizontal slit 
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width of 30 µm centered at the tip apex of the emission. A background spectrum captured 

before collecting the emission spectra was subtracted from all spectra. 

5.3 Results and discussion 

5.3.1 FESEM images of the GaN films 

The morphologies and grain sizes of the GaN films deposited at different laser 

wavelengths are shown in Figs. 5.2(a) – 5.2(e), respectively. Crystalline GaN films 

containing highly oriented grains along the c-axis with hexagonal facets are observed, 

indicating the formation of wurtzite GaN films on the Si(100) substrates. Generally, a 

mixture of cubic and hexagonal GaN tends to grow on Si(100) substrates because the 

(001) plane of Si possesses a fourfold symmetry.23-27 However, the nitridation process 

promotes the silicon nitride formation and prohibits cubic GaN nucleation. Therefore, 

hexagonal GaN dominates the GaN growth.23-27 

 It is generally accepted that grain boundaries impact negatively on the electrical 

and optical properties of GaN films.33,34 Increasing grain sizes leads to reduced grain 

boundaries and results in a reduced amount of defects and stress. Therefore, the 

crystalline quality and optical properties of GaN films are improved accordingly.33,34 Fig. 

5.2(f) compares the average grain sizes of the GaN films grown at different laser 

wavelengths. As shown in Figs. 5.2(a) and 5.2(d), GaN grains with average grain sizes of 

1.0 and 2.1 µm are obtained at nonresonant wavelengths of 9.201 and 10.591 µm, 

respectively. The average grain sizes increase to 4.0, 3.8, and 3.1 µm at resonant 

wavelengths 9.219, 10.350, and 10.719 µm, respectively, as shown in Figs. 5.2(b), 5.2(c), 

and 5.2(e).  
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The cross-sectional SEM images of the GaN films deposited at non- (9.201 µm) 

and resonant wavelengths (9.219 µm) for 5 minutes are exhibited in Figs 5.3(a) and 

5.3(b), respectively.  The resonant deposition, Fig. 5.3(b), results in a thicker GaN film (7 

µm) than the nonresonant deposition, Fig. 5.3(a), indicating a higher growth rate (around 

2.7 times higher) at the resonant deposition. Fig. 5.3(c) compares the deposition rates 

obtained at all five wavelengths. It is obvious that resonant depositions result in higher 

GaN growth rates than nonresonant depositions. The highest growth rate (84 μm/h) is 

achieved at 9.219 μm, which is ∼ 42 times higher than that of conventional MOCVD (2 

μm/h).6,12,13 Although not as significant as those obtained under the resonant wavelengths, 

promoted GaN growth rates are also observed at nonresonant wavelengths, 9.201 and 

10.591 μm, and are ascribed to the coupled energy via laser irradiation. However, the 

same amount of energy coupled at different wavelengths yields obviously divergent 

results as observed in Figs. 5.2(f) and 5.3(c).  
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Figure 5.2 (a) SEM images of GaN films deposited on Si (100) at excitation laser wavelength 
of (a) 9.201 µm, (b) 9.219 µm, (c) 10.350 µm, (d) 10.591 µm, and (e) 10.719 µm, respectively. 
(f) A chart showing average GaN grain sizes obtained at different laser wavelengths. 
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Figure 5.3 (a) SEM images of GaN films deposited on Si (100) at excitation laser wavelength 
of (a) 9.201 µm, (b) 9.219 µm, (c) 10.350 µm, (d) 10.591 µm, and (e) 10.719 µm, respectively. 
(f) A chart showing average GaN grain sizes obtained at different laser wavelengths. 

5.3.2 Raman spectra of the GaN films 

Raman spectroscopy is a powerful method evaluating the quality and residual 

stress of GaN films.35 Raman spectroscopic studies were conducted under a Z(X,X)Z̅ 

backscattering geometry, where Z and Z̅ represent the projection direction of the 

incoming and scattered light, and X represents the polarization direction of the incoming 

and scattered light. Fig. 5.4(a) shows the Raman spectra of the GaN films grown at 

different laser wavelengths. Two prominent Raman shifts at around 567 and 733 cm-1 are 

observed from all samples, corresponding to the GaN E2H and A1(LO) phonon modes, 

respectively. These modes originate from allowed vibrational states in the wurtzite GaN 

epitaxial layer.35 The exact positions of the GaN E2H phonon peak of the samples were 

summarized in Table 5.1. 
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It is well known that the E2H mode in the GaN Raman spectra reflects crystalline 

quality and stress of the crystals.35 The E2H peaks were shifted to lower wave-numbers 

(red-shift) compared with the standard frequency value of the E2H phonon mode of strain-

free GaN at 567.8 cm-1. The peak positions of the E2H were observed to have red-shifts of 

about 1.7, 1, 1.3, 1.3 and 1.2 cm-1 for the samples grown at laser wavelengths of 9.201, 

9.219, 10.35, 10.591 and 10.719 µm, respectively. The red-shift in the position of E2H 

indicated that the GaN films suffered from tensile stress. The stress levels of the GaN 

epilayer can be calculated using the following equation:36 σ = Δω /4.3 (cm-1. GPa-1), 

where σ is the biaxial stress and Δω is the E2H phonon peak shift. The estimated tensile 

stresses were calculated and summarized in Table 5.1. The Raman spectra indicated that 

the GaN films grown at laser wavelengths of 9.219 µm exhibited the lowest stress. 

Moreover, as observed in Fig. 5.4(a), the E2H peak is much stronger in the 

resonant samples (9.219, 10.35, and 10.719 µm) than in the nonresonant samples (9.201 

and 10.591 µm), indicating better crystalline quality of the resonant samples. The 

strongest E2H peak is observed when resonantly excited at 9.219 µm, denoting the highest 

GaN crystalline quality. The full-width-at-half-maximum (FWHM) values of the E2H 

peaks of the GaN samples were summarized in Table 5.1. A narrow E2H peak, i.e. a low 

FWHM value, indicates a better crystalline quality. According to Table 5.1., it is obvious 

that FWHMs of resonant samples are lower than those of nonresonant samples. The 

lowest FWHM, 9.3 cm-1, is observed in the resonant sample excited at 9.219 µm, 

indicating the highest GaN crystalline quality.  
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Figure 5.4 Raman spectra of the GaN films grown at resonant (9.219, 10.35, and 10.719 µm) 
and nonresonant (9.201 and 10.591 µm) wavelengths. 

Table 5.1 Summary of GaN films characterization grown on Si (100) substrates at 
different laser wavelengths. 

Sample Laser 
wavelength 

(µm) 

Average 
grain 

sizes (µm)

Growth 
rate 

(µm/hr) 

GaN E2H 
peak 

position 
(cm-1) 

GaN E2H 

peak 
FWHM 
(cm-1) 

σ (GPa) 

I 9.201 1 32 566.1 19 0.395 
II 9.219 4 84 566.8 9.3 0.233 
III 10.350 3.8 66 566.5 10.1 0.302 
IV 10.590 2.1 45 566.5 11.9 0.302 
V 10.719 3.1 59 566.6 11.2 0.280 

 

5.3.3 XRD characterization of the GaN films 
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Figs. 5.5(a) and 5.5(b) exhibit the XRD diffraction curves of the GaN films 

obtained at 9.219 (resonant wavelength) and 9.201 µm (nonresonant wavelength), 

respectively. The XRD peaks at around 40.2o and 87.02o are observed in both curves and 

attributed to the GaN {0001} family planes. These peaks correspond to the (0002) and 

(0004) orientations of wurtzite GaN, respectively, indicating a high c-axis orientation of 

the GaN films deposited on the Si(100) substrates.37It is observed from Fig. 5.5(a) and 

5.5(b) that the GaN XRD peaks are much stronger in the resonant sample than those in 

the nonresonant sample, which is attributed to the improved crystalline quality.  

The GaN (0002) rocking curves of the GaN films deposited at the resonant (9.219 

µm) and nonresonant (9.201 µm) wavelengths are exhibited in Figs. 5.5(c) and 5.5(d), 

respectively. FWHM values of the rocking curves of (0002) symmetric and (10-12) 

asymmetric diffraction peaks were summarized in Table 5.2. It is well known that the 

FWHM of XRD in the (0002) reflection reveals information about the out-of-plane 

misorientation of domains (tilt) while the FWHM of the GaN (10-12) peak is sensitive to 

both tilt and twist. Thus, the FWHM of the (0002) peak is usually used to evaluate the 

screw or mixed threading dislocations (TDs) density and the FWHM of XRD in the (10-

12) reflection corresponds to the lattice distortion from all components of the TDs 

including edge, screw and mixed screw-edge dislocations.37,38 Low FWHM values 

indicate low TDs density and better crystalline quality.  

As shown in Table 5.2, (0002) FWHM values of 92 and 60 arcmin and (10-12) 

FWHM values of 99 and 67 arcmin are observed for the GaN samples deposited at the 

nonresonant wavelengths of 9.201 and 10.591 µm, respectively. For the GaN film 

deposited with resonant excitation, the FWHMs of (0002) are 39, 45, and 55 arcmin and 
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the FWHMs of (10-12) are 43, 53, and 61 arcmin at resonant wavelengths of 9.219, 

10.350, and 10.719 µm, respectively. The distinctive FWHMs decrease in resonant 

samples compared to those with nonresonant samples indicates improved GaN crystalline 

quality and reduced TDs density by using resonant excitation. However, the crystalline 

quality of GaN films are inferior to that reported for conventional MOCVD,6 which is 

attributed to the high growth rates of GaN, large crystal lattice mismatch (16.9%), and 

thermal coefficient of expansion mismatch (113%) between the GaN epilayer and the Si 

substrate.6,8 

  

Figure 5.5 X-ray diffraction curves of GaN films deposited at (a) resonant wavelength of 
9.219 µm and (b) nonresonant wavelength of 9.201 µm (x-ray diffractometer: Rigaku 
D/Max B diffractometer, Co Kα λ = 1.788 Å). Rocking curves of (0002) diffraction peaks of 
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GaN films deposited at (c) resonant wavelength of 9.219 µm and (d) nonresonant 
wavelength of 9.201 µm. 

Table 5.2 Summary of GaN films characterization grown on Si (100) substrates at 
different laser wavelengths. 

Sample Laser 
wavelength (µm) 

GaN (0002) peak 
ω-FWHM 
(arcmin) 

GaN (10-12) peak 
ω-FWHM 
(arcmin) 

I 9.201 92 99 
II 9.219 39 43 
III 10.350 45 53 
IV 10.590 60 67 
V 10.719 55 61 

 

5.3.4 Hall measurement of the GaN films 

Hall measurements using the Van der Pauw method were conducted to 

characterize carrier concentrations and mobilities of the GaN films deposited at resonant 

(9.219 µm) and nonresonant (9.201 µm) wavelengths. Both GaN films were 

demonstrated to be n-type semiconductors. Corresponding carrier concentrations and 

mobilities are 8.27 × 1017 cm−3 and 299.5 cm2/Vs for the resonant sample, and 4.9 × 1018 

cm−3 and 119.1 cm2/Vs for the nonresonant sample. The relatively high carrier 

concentrations are indicative of high concentration of unintentionally doped impurities. 

However, the resonant sample possesses a lower carrier concentration but higher 

mobility, compared to nonresonant sample. 

5.4 Mechanism of the Resonant Vibrational Excitation 

According to above experimental results, two points are clearly demonstrated. 

The first is that resonant vibrational excitation can significantly promote GaN growth 

rates and improve GaN crystalline quality when comparing to conventional thermal 

heating and nonresonant laser irradiation. The second is that the same amount of energy 

coupled into different vibrational states lead to diverse results. In this study, the resonant 
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excitation of the NH rotational-vibrational transition at 1084.63 cm-1 [5(J)  6(J’), K=0] 

leads to the highest GaN growth rate, best crystalline quality, and highest carrier 

mobility. To understand the reasons behind the difference, optical emission spectroscopic 

(OES) investigations were carried out to study the evolution of NH3 molecules under 

laser irradiation at resonant and nonresonant wavelengths in open air. Fig. 5.6 shows 

optical images of the NH3 flows under laser irradiation at different wavelengths. Stronger 

emissions are observed from NH3 flows when irradiated at resonant wavelengths (i.e. 

9.219, 10.350, and 10.719 µm) than those at nonresonant wavelengths (i.e. 10.591 and 

9.201 µm). The shape and brightness of the laser-induced plasma reflect dissociation of 

NH3 molecules under the laser irradiation. According to Fig. 5.6, resonant excitations 

lead to NH3 flows of brighter colors and expanded diameters due to accelerated NH3 

dissociation, promoted chemical reactions, and increased reactive species 

concentrations.39 The brightest and strongest NH3 flow is observed under the resonant 

excitation at 9.219 µm. 

  

Figure 5.6 Optical images of NH3 flows when irradiated at different laser wavelengths in 
open air. 
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OES spectra of the laser-irradiated NH3 are shown in Fig. 5.7. Emissions from 

OH, NH, N+, Hα, N, and Hβ are observed at 309, 336, 463, 486, 496, and 656 nm, 

respectively. Strong emissions from NH2 radicals are observed at 525, 543, 569, 603, 

629, and 663 nm in all OES spectra from resonantly excited NH3 flows, indicating 

effective dissociation of NH3 molecules. Obviously increased emission intensities of OH, 

NH, NH2, N, N+, and H are observed at the resonant wavelength of 9.219 µm. However, 

only very weak emission intensities of NH and NH2 radicals are identified when 

irradiated at the nonresonant wavelength of 10.591 µm. No emission peak is observed at 

the nonresonant wavelength of 9.201 µm. 

N, NH, and NH2 are active nitrogen species for growing GaN.20,21,40 Growth of 

high-quality GaN films requires a sufficient supply of active nitrogen and gallium species 

by cracking NH3 and TMGa molecules, respectively, and transporting atomic N and Ga 

to proper lattice sites. The dissociation energies for dissociating TMGa into active 

gallium species has been reported to be much lower than that of NH3.20,21 It is found that 

with the laser photons, the TMGa molecules undergo fragmentation with relative ease in 

analogy with their thermolytic instability.20,21,41 However, effective decomposition of 

NH3 molecules requires a high temperature around 1000 oC, which also leads to increased 

parasitic reactions, GaN decomposition and N escaping.13 Therefore, decomposing NH3 

at an appropriate temperature is essential for growing high-quality GaN. 
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Figure 5.7 Optical emission spectra of the NH3 under laser irradiation at different 
wavelengths in open air. 

It is generally believed formation of GaN in MOCVD includes four key steps:13,40 

(i) TMGa:NH3 adduct formation, (ii) amide formation and methane elimination, (iii) 

trimer formation, and (iv) decomposition reaction and creating N and Ga to form GaN. 

The first gas-phase reaction is a spontaneous reaction between TMGa and NH3 to form a 

stable adduct [(CH3)3Ga:NH3]. It is reported that the formation of the adduct as parasite 

reaction significantly degrades GaN film quality and growth rate at high 

temperatures.13,21,40 The amide formation, trimer formation and decomposition reaction 

can be expressed by equations (5.2), (5.3) and (5.4), respectively:13,40 

(CH3)3Ga + NH3  (CH3)3Ga:NH3                                                                           (5.1)                                 
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(CH3)3Ga:NH3  (CH3)2Ga:NH2 + CH4                     (5.2) 

3[(CH3)2Ga:NH2]  [(CH3)2Ga:NH2]3                                 (5.3) 

[(CH3)2Ga:NH2]3  3GaN + 6CH4                                                        (5.4) 

The OES results indicate that the resonant vibrational excitation effectively 

dissociates NH3 molecules and increases the concentrations of the active nitrogen species, 

i.e. N, NH, and NH2. Based on the reported 4-step mechanism, effective decomposition 

of NH3 is suggested to reduce the formation of the TMGa:NH3 adduct21 in the first step 

and decrease the energy barriers for the rest of the steps, and therefore results in the 

increased GaN growth rate. 

It is noteworthy that performance of a GaN-based device is limited by parasitic 

defect-induced emission, such as the yellow luminescence observed in GaN.42,43 

Unintentionally doped GaN is generally a n-type semiconductor due to a high 

concentration of shallow donor SiGa and ON.43 It is reported that H radicals can form 

neutral complexes with shallow donors and acceptor dopants. These reactions help 

eliminating oxygen impurities, reducing impurity density and increasing in carrier 

mobility and resistivity of gallium nitride films.42 Considering the concentration of 

atomic hydrogen resulted from NH3 decomposition, oxygen impurities in GaN are 

expected to be reduced. It is suggested that with the increments of H radicals, Fig. 5.7, 

the GaN crystalline quality and carrier mobility increase under resonant excitations, 

compared to those at nonresonant wavelengths.  

Therefore, GaN films of better crystalline quality, lower impurity densities, and 

high deposition rates are obtained under resonant vibrational excitation. The results are in 

good accordance with the SEM, Raman, and XRD results. 
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5.5 Conclusions 

In summary, vibrational excitations of NH3 molecules were studied using a 

tunable CO2 laser in growing crystalline GaN films on Si(100) substrates. The resonant 

vibrational excitation at 9.219, 10.350, and 10.719 µm were more efficient than 

nonresonant excitation in dissociating NH3 molecules and enhancing the GaN deposition 

rate and quality. The OES results showed the resonant excitation of the NH-wagging 

modes modifies the synthesis process in a way that increases the supplies of NH, NH2, N, 

N+, and H. This leads to the enhancement in GaN deposition rates and improvement in 

crystalline quality. The extremely high GaN growth rate of ~ 84 µm/h with an improved 

crystalline quality was achieved under the resonant excitation at 9.219 µm. The red-shift 

in the position of E2H of Raman spectra indicated that the GaN films grown on Si suffered 

from tensile stress and the films grown at laser wavelengths of 9.219 µm exhibited the 

lowest stress. The FWHM value of the XRD rocking curves of GaN (0002) and GaN (10-

12) diffraction peaks decreased at resonant depositions and reached its minimum values 

at 9.219 µm, indicating reduced TDs density. XRD ω-FWHMs of 45 arcmin for the 

GaN(0002) and of 53 arcmin for the GaN(10-12) reflection were measured for samples 

grown at laser wavelength of 9.219 µm; the FWHMs of the GaN(0002) and GaN(10-12) 

planes are about 3-5 times broader than those of the best GaN epilayer samples reported 

in literature.6 Further investigation are done in chapter 7 to improve the quality of the 

GaN films deposited via the LMOCVD techniques while maintaining high growth rates.  
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6.1 Introduction 

Gallium nitride (GaN), a III-V compound semiconductor with a wide, direct band 

gap of ~3.4 eV, has been utilized in widespread applications, such as optoelectronics and 

high-power electronic devices.1-3 High-quality crystalline GaN films are in demand for 

their ability to enhance the performance and reliability of GaN-based devices.4-7 

However, growth of high-quality crystalline GaN films requires growth techniques using 

high temperatures, such as metalorganic chemical vapor deposition (MOCVD, ~950-

1100 oC), molecular beam epitaxy (MBE, ~800 oC), and hydride vapor phase epitaxy 

(HVPE, ~750 oC).6-8 A sufficiently high temperature is necessary to overcome the 

activation barriers to precursor chemisorption and adatom surface diffusion. However, 

high substrate temperatures can also cause adverse effects, such as biaxial stress within 

GaN films, nitrogen loss, and GaN decomposition, which degrade the efficiency of GaN-

based devices.9-10 The biaxial stress is caused by the difference between thermal 

expansion coefficients of the GaN epitaxial layer and substrates (e.g., sapphire and 

silicon (Si)), and results in a poor light extraction in GaN-based light-emitting diodes 

(LEDs).10 To reduce the thermal stress in GaN films, substrates with a matching lattice, 

including lithium aluminate (LiAlO2), lithium gallate (LiGaO2), and silicon carbide 

(SiC), are preferred.11-13 However, such lattice-matching substrates are too expensive to 

be commercialized. A high growth temperature will also lead to nitrogen reevaporation 

and GaN decomposition, which limits the growth rate of GaN films.14 So far, the growth 

rates of GaN films synthesized by MOCVD and MBE were reported to be 4 and 1 µm/h, 

respectively.15-16 Therefore, a low-temperature synthetic technique is highly desired in 

growing crystalline GaN films.  
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In conventional GaN synthetic methods, energy is added into the gas precursors in 

the form of thermal heating. Energy is first deposited to kinetic energy of the reactant 

molecules and eventually makes its way into the internal modes (electronic, vibrational, 

and rotational) via collisions.6-8 However, universal thermal heating is short of selectivity 

in chemical reactions. Attempts at promotion of material synthesis have been investigated 

by exploring infrared (IR)-laser-assisted vibrational excitations of precursor molecules, in 

which energy is directly coupled into specific molecules towards selective reaction 

pathways.17-18 Highly efficient energy coupling through vibrational excitation provides 

reactant molecules with sufficient energy to surmount reaction barriers and influence 

reaction pathways.19-20 In our previous studies, substantial enhancement in diamond 

growth was observed with resonant vibrational excitation of ethylene molecules in IR-

laser-assisted combustion CVD process.21-22 

In this study, low-temperature growth of highly c-oriented GaN films was 

achieved at a growth rate of up to 12 µm/h using laser-assisted metalorganic chemical 

vapor deposition (LMOCVD). Resonant excitation of the NH-wagging mode (v2) in NH3 

molecules was realized using a wavelength-tunable carbon dioxide (CO2) laser at a 

matching wavelength of 9.219 µm. GaN films were successfully deposited on sapphire at 

a substrate temperature as low as 250 oC. A GaN growth rate of up to 12 µm/h was 

achieved at 600 oC using the LMOCVD method, which is 4.6 times faster than that of 

conventional MOCVD (2.6 µm/h). The influence of laser resonant vibrational excitation 

of NH3 on the GaN film growth was investigated.        
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6.2 Experimental Section 

6.2.1 Measurement of laser power absorption by NH3 molecules 

The absorption spectra of CO2 laser power by gaseous NH3 were measured in a 

vacuum chamber with an absorption path length of 40.64 cm (Fig. 6.1). Absorption 

measurement of laser power at different laser wavelengths (9.2-10.9 µm) was performed 

at three different gas pressures of 1, 10, and 100 torr, respectively. In the experiments, the 

chamber was evacuated to a base pressure of 1 × 10-2 torr. NH3 gas was subsequently 

introduced into the chamber. The incident laser power was kept at 80 W. A power meter 

was used to measure the laser power before and after passing through the chamber. The 

drop in laser power was calculated as the absorption percentage. 

6.2.2 Growth of GaN films  

Fig. 6.1 shows the experimental setup of the LMOCVD system for the growth of 

crystalline GaN films at low temperatures. GaN films were grown on c-plane sapphire 

substrates at different temperatures (250-600 oC). The sapphire substrates, with a 

dimension of 10 × 10 mm2, were ultrasonically cleaned with organic solvents (acetone 

and methanol) and deionized water, dried, and loaded into the LMOCVD chamber, 

sequentially. Then, the chamber was evacuated to a base pressure of 1 × 10−2 torr using a 

mechanical pump. Trimethylgallium (TMGa) and ammonia (NH3) precursors were used 

as gallium (Ga) and nitrogen (N) precursors, respectively. The gas flow rate of NH3 was 

1200 standard cubic centimeters per minute (sccm), and TMGa was carried into the 

reaction chamber using nitrogen as the carrying gas at a flow rate of 16 sccm. The growth 

pressure was maintained at 100 torr during the growth process. A wavelength-tunable 

CO2 laser (PRC, wavelength range from 9.2 to 10.9 μm) was used to achieve resonant 
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vibrational excitation of the NH3 molecules. The laser was tuned at a wavelength of 9.219 

μm with a power of 80 W to resonantly excite the rotational-vibrational transition of the 

NH-wagging mode (ν2, 1084.63 cm-1) of NH3 molecules and couple the laser energy into 

the molecules. The laser beam, with a diameter of around 6-9 mm, was irradiated in 

parallel to the substrate surface inside the chamber through a zinc selenide (ZnSe) 

window, as shown in Fig. 6.1. The distance between the laser beam and substrate surface 

was maintained at about 20 mm. The substrate temperature was maintained at a constant 

temperature of 150, 250, 350, 450, and 600 oC, respectively. The deposition time was 

kept at 1 hr. To understand the effects of laser-induced energy coupling, GaN films were 

also synthesized by the conventional MOCVD technique under the same growth 

conditions (deposition temperature, deposition time, gas flow rate, and growth pressure) 

without laser irradiation. 

6.2.3 Characterization of GaN films 

The crystallinity of the GaN films was examined using a powder X-ray 

diffractometer (Rigaku D/Max B diffractometer, Co Kα1 λ= 1.788 Å). Surface 

morphologies and dimensions of the GaN films were studied using a field emission 

scanning electron microscope (FESEM, S4700). An energy dispersive X-ray 

spectrometer (EDX, Oxford X-max 20 mm2) was applied to analyze the composition of 

the GaN films. The optical properties of GaN films were studied using a 

photoluminescence spectrometer (iHR320 photoluminescence spectrometer with Si 

detector and indium gallium arsenide (InGaAs) detector). 
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Figure 6.1 Illustration of the experimental setup for the CO2 laser-assisted MOCVD growth 
of GaN films at low temperatures. 

6.3 Results and discussion 

6.3.1 The roles of resonant vibrational excitation of NH3 in GaN growth 

NH3 is a dominant nitrogen source in GaN synthesis. However, NH3 has low 

decomposition efficiency due to a high NH bond energy (93-105 kcal/mol).23 A sufficient 

amount of active N species are required for GaN growth. The growth rate of GaN 

depends on the molecular flux of active N and Ga species that transport to substrates.24 

The dissociation energies for dissociating TMGa into active gallium species has been 

reported to be much lower than that of NH3.23 It is found that with the laser photons, the 

TMGa molecules undergo fragmentation with relative ease in analogy with their 

thermolytic instability. However, it is difficult to grow GaN films at temperatures lower 

than 500 oC using a conventional MOCVD method due to the low dissociation efficiency 

of NH3.23 To increase the reactivity of NH3 is, therefore, critical in low-temperature 
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growth of GaN. Through resonant vibrational excitation of the NH-wagging mode in NH3 

molecules, the reactivity of NH3 is selectively enhanced; and the dissociation efficiency 

of NH3 at low temperature is promoted.25-26 

 

Figure 6.2 Illustration of the experimental setup for the CO2 laser-assisted MOCVD growth 
of GaN films at low temperatures. 

The absorption spectra of the CO2 laser power by NH3 gas at different gas 

pressures of 1, 10, and 100 torr are shown in Fig. 6.2. Three strong absorption peaks were 

observed at 9.219, 10.35, and 10.719 µm, respectively, at the NH3 pressure of 10 and 100 

torr. At a pressure of 100 torr, the laser energy at these three wavelengths was completely 

absorbed by NH3 gas, while only one absorption peak at 9.219 µm was observed at a 
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pressure of 1 torr. The absorptions at these wavelengths were attributed to the resonant 

vibrational excitation of the NH-wagging mode (ν2) of the NH3 molecules.25-26 NH3 has a 

pyramidal shape with three hydrogen atoms forming the base and a nitrogen atom at the 

top. The NH-wagging mode vibrates in an umbrella inversion way. There is a barrier to 

umbrella inversion that the nitrogen atom faces on its travels through the hydrogen 

plane.25 The existence of the barrier results in a splitting of a fundamental vibrational 

level of the NH-wagging mode into two components at 932.51 (ν2+) and 968.32 cm-1 (ν2-

), giving rise to the observed absorption peaks at laser wavelengths of 10.719 (932.92 cm-

1) and 10.35 µm (966.18 cm-1), respectively.25-26 The strongest absorption peak at 9.219 

µm is attributed to a rotational-vibrational transition (J=5 → J’=6, K=0) of the v2 mode at 

1084.63 cm-1. The perfect match between the CO2 laser wavelength at 9.219 µm (1084.71 

cm-1) and the rotational-vibrational transition line of the NH3 (1084.63 cm-1) makes a 

stronger absorption at 9.219 µm than that at 10.35 and 10.719 µm. The rotational-

vibrational excitation of NH3 molecules at 9.219 μm contributes to dissociating of NH3 

molecules at low temperatures. 

OES spectrum of the laser-irradiated NH3 under laser irradiation at wavelength of 

9.219 µm in open air are shown in Fig. 6.3. Emissions from OH, NH, N+, Hα, N, and Hβ 

are observed at 309, 336, 463, 486, 496, and 656 nm, respectively. Strong emissions from 

NH2 radicals are observed at 525, 543, 569, 603, 629, and 663 nm in all OES spectrum 

from resonantly excited NH3 flows, indicating effective dissociation of NH3 molecules in 

room temperature. It worthy to note the N, NH, and NH2 are active nitrogen species for 

growing GaN. Therefore, OES results indicate that the resonant vibrational excitation 

effectively dissociates NH3 molecules. 
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Figure 6.3 Optical emission spectra of the NH3 under laser irradiation at wavelength of 
9.219 µm in open air. 

 
6.3.2 Characterization of GaN films  

X-ray diffraction (XRD) 2θ spectra of the GaN films grown at different 

temperatures (i.e., 150, 250, 350, 450, and 600 oC) are shown in Fig. 6.4. Figs. 6.4(a) and 

6.4(b) compare the XRD 2θ patterns of the GaN films grown by LMOCVD and 

MOCVD, respectively. A XRD peak attributed to the (0002) plane of GaN is observed in 

the GaN samples grown by LMOCVD at temperatures from 250 to 600 oC. This peak is 

indexed to wurtzite GaN with a hexagonal structure,27 indicating the high c-plane 

orientation of the GaN films. Therefore, it can be confirmed that the synthesis of GaN 
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films was achieved at a temperature as low as ~250 oC by the LMOCVD technique with 

the laser resonant vibrational excitation of NH3. In contrast, the (0002) diffraction peak 

was only found for the sample grown by MOCVD at a temperature of 600 oC, suggesting 

that a much higher substrate temperature is required for the growth of GaN using 

conventional MOCVD (Fig. 6.4(b)). As shown in Fig. 6.4(a), the intensity of the (0002) 

peak increases as the substrate temperature increases from 250 to 600 oC. The intensity 

increase can be attributed to the improved crystalline quality of the GaN films due to the 

substrate temperature increase.28 Additionally, a 2θ signal at 86o was observed for the 

GaN film grown at 600 oC with LMOCVD (Fig. 6.4(a)). This (0004) GaN peak also 

refers to c-axis-oriented GaN films.  

 

Figure 6.4 X-ray diffraction spectra of the GaN films grown on sapphire substrates at 
different temperatures (250-600 oC) by (a) LMOCVD and (b) MOCVD. 

The XRD φ-scan determined the degree of in-plane alignment of GaN films 

grown at different temperatures (250-600 oC) by LMOCVD relative to the sapphire 

substrate, as shown in Fig. 6.5. The scanning planes used for φ-scan were (11-20) for 

sapphire and hexagonal (10–11) and cubic (200) for GaN films. The diffraction peaks 

from (10–11) plane of GaN film were observed at intervals of 60o for all samples grown 
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at temperatures from 250 to 600 oC, which confirmed the hexagonal structure of the 

epitaxial GaN films. It is also observed that there is a ~30o rotation of the GaN unit cell 

with respect to sapphire substrate due to the large lattice mismatch between GaN and 

sapphire substrate (Fig. 6.5). However, no diffraction peaks from the (200) plane of cubic 

GaN film were observed for all samples grown at different temperatures (250-600 oC) by 

LMOCVD (Fig. 6.6). 

 

Figure 6.5 XRD φ-scan of (11-20) plane of sapphire substrate and (10–11) plane of GaN 
films grown on sapphire at different temperatures (250-600 oC) by LMOCVD. 
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Figure 6.6 XRD phi-scan of (200) plane of GaN films grown by LMOCVD. 

The 2θ position and full width at half maximum (FWHM) of (0002) diffraction 

peaks obtained from XRD are shown in Table 6.1. The FWHM of the (0002) plane 

reflects lattice distortion from screw dislocations and mixed dislocations.28 As shown in 

Table 6.1, a small FWHM value of 0.18o was obtained for the GaN sample grown by 

LMOCVD at 600 oC. For the GaN film grown by MOCVD at 600 oC, the FWHM of 

(0002) was 0.20o. The distinctive reduction in the FWHM of GaN films deposited by 

LMOCVD indicates that the laser resonant vibrational excitation of NH3 leads to a 

decrease in lattice distortion and improvement in the quality of the GaN films. For the 

GaN films grown by LMOCVD, the FWHM of the (0002) plane decreased 

monotonically with the increase in the substrate temperature from 250 to 600 oC (Table 

6.1). This means that the crystalline quality of GaN films improves continuously with the 

increase in the growth temperature, which is explained by the reduction in diffusion 
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barriers and increase in diffusion rates of Ga and N species as the substrate temperature 

increases.28 

Table 6.1 The GaN (0002) diffraction peak position, FWHM of GaN (0002) peak, GaN 
growth rates, and the grain size of GaN films grown at different temperatures (250-600 
oC). 

Sample Substrate 
temperature (oC) 

2θ (o) FWHM of 
(0002) (o) 

Growth rate 
(µm/h) 

LMOCVD 250 40.55 0.27 0.15 
LMOCVD 350 40.60 0.25 0.60 
LMOCVD 450 40.42 0.21 1.60 
LMOCVD 600 40.40 0.18 12 
MOCVD 600 40.47 0.20 2.60 

 

The effectiveness of laser resonant vibrational excitation of NH3 on the 

uniformity and surface morphology of GaN films is clearly shown by the FESEM images 

shown in Fig 6.7. For the GaN film grown with LMOCVD at 250 oC (Fig. 6.7(a)), small 

domains of about ~30 ± 5 nm with hexagonal facets were obtained. The average domain 

sizes were ∼65 ± 10 and ~100 ± 10 nm for the GaN films grown by LMOCVD at 350 

and 450 oC, respectively (Figs. 6.7(b) and 6.7(c)). With a further increase in the substrate 

temperature to 600 oC, the lateral size of the islands with hexagonal facets increased. 

With a coalescence of crystallite islands, GaN structures with flat facets were obtained by 

LMOCVD at 600 oC, as shown in Fig. 6.7(d). In contrast, the surface of the GaN sample 

grown at 600 oC by MOCVD was rough with obvious hexagonal hillocks (Fig. 6.7(f)). 

Additionally, the threshold temperature to grow GaN films by MOCVD is 600 oC. Below 

this temperature, no GaN deposition is observed on substrate surfaces (Fig. 6.7(e)) that 

agree with the XRD results. 
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Figure 6.7 SEM images of GaN films grown by LMOCVD at temperatures of (a) 250, (b) 
350, (c) 450, and (d) 600 oC; and SEM images of GaN films grown by MOCVD at 
temperatures of (e) 450, and (f) 600 oC. 

The cross-sectional SEM images of the GaN films were obtained to explore the 

effect of laser resonant vibrational excitation of NH3 on the growth rate. Figs. 6.8(a) and 

6.8(b) show the cross-sectional SEM images of the GaN films grown at 600 oC by 

LMOCVD and MOCVD, respectively. A growth rate of 12 µm/h was achieved by 
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LMOCVD, which is ~4.6 times faster than that of MOCVD (this work, ~2.6 µm/h). 

Moreover, compared with the growth rate of GaN synthesized by other studies (MBE: ~1 

µm/h; and MOCVD: ~4 µm/h),15-16 laser resonant vibrational excitation contributes to a 

drastic enhancement in the GaN growth rate. Table 6.1 shows the GaN growth rates by 

LMOCVD at different temperatures from 250 to 600 oC. As the substrate temperature 

increased, the thickness of the GaN films increased.  

 

Figure 6.8 Cross-sectional SEM images of GaN films grown at 600 oC by (a) LMOCVD (b) 

MOCVD.

  

Figure 6.9 EDX spectra of GaN films grown at 600 oC by (a) LMOCVD (b) MOCVD. 
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The EDX results in Fig. 6.9 confirm the presence of Ga and N elements in the 

GaN films, as well as carbon (C), oxygen (O), and silicon (Si) as impurities. According to 

the EDX spectra obtained from GaN films grown at 600 oC by LMOCVD and MOCVD, 

obvious increases of 7.84% in N concentration and 1.7% in Ga concentration were 

observed in the sample grown with LMOCVD. The resonant vibrational excitation of the 

NH bond vibration in NH3 molecules plays an important role in the dissociation of NH3 

and the increase of N species in the reaction. The increase in N content in the deposited 

films explains why the GaN growth rate was highly improved using LMOCVD, which is 

in agreement with other studies.29 Furthermore, it is worthy to note that the impurity 

content (C, O, and Si) in the GaN film grown with LMOCVD decreased considerably 

(Fig. 6.9). In MOCVD growth, Ga reacts with impurity elements in the absence of 

sufficient active N atoms or N-related intermediates. However, laser resonant vibrational 

excitation of NH3 in LMOCVD increased the production of active N-related 

intermediates, eliminating the impurity content incorporated into the film during GaN 

growth. With the reduction in impurities, the GaN crystal islands grow larger in size, 

leading to higher crystallinity, a full coalescence, and a smooth surface morphology of 

GaN films. It is also worthy to note that EDX measurements here just express a semi-

quantitative analysis and the values do not reflect actual composition of the GaN films.30 

Large concentration of oxygen and carbon in the films is just an artifact resulting from 

the very low detection efficiency of EDX for light elements. 
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Figure 6.10 PL spectra of GaN films acquired with a 325 nm laser. 

The PL spectra of GaN films have been acquired using a laser with a wavelength 

of 325 nm. As shown in Fig. 6.10, two peaks located at ~3.4 and ~3.2 eV are observed in 

the PL spectra of the samples grown at different temperatures from 250 to 600 oC by 

LMOCVD. The strong peak at ~3.4 eV is the near band edge (NBE) transition peak, 

while the weak peak at ~3.2 eV can be attributed to radiative recombination between a 

shallow donor and the valence band.31 Another possible reason for the peak at ~3.2 eV 

can be associated with the formation of small amount of cubic GaN at low temperatures 

growth. The PL spectra further confirmed the hexagonal structure of the GaN films 

grown on sapphire substrates at different temperatures from 250 to 600 oC by LMOCVD. 

The GaN film grown at 600 oC by LMOCVD showed a near-band-edge (NBE) emission 

at about ~3.398 eV which was closer to the NBE emission of bulk GaN (3.47 eV),31 
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compared to that of MOCVD with ~3.394 eV. The NBE peaks of GaN films grown by 

LMOCVD at 250, 350, and 450 oC are ~3.388, ~3.391, and ~3.392 eV, respectively. 

It is valuable to note that there are several studies of using the polycrystalline 

GaN films with columnar structures for photonic and electronic devices.32-33 In this study, 

the quality of the polycrystalline GaN films grown at low temperatures by LMOCVD are 

comparable to those reported values,32-33 suggesting a potential of heteroepitaxial GaN 

film grown by LMOCVD for electronic and photonic applications. 

6.4 Conclusions  

The LMOCVD technique was developed for low-temperature growth of GaN 

films on sapphire substrates through laser resonant vibrational excitation of NH3 

molecules. The highly c-oriented GaN films were successfully grown at temperatures as 

low as 250 oC. Low-temperature growth of GaN films is ascribed to the enhanced 

decomposition efficiency of NH3 with resonant excitation of rotational-vibrational 

transition (1084.71 cm-1) of the NH-wagging mode at the laser wavelength of 9.219 µm. 

The FWHM of (0002) diffraction peaks obtained from XRD for GaN films grown at 600 

oC decreased from 0.20o (MOCVD) to 0.18o (LMOCVD), indicating an improvement in 

crystalline quality by LMOCVD. SEM images showed that the laser resonant vibrational 

excitation of NH3 helped to grow GaN films with smooth and uniform surface 

morphology. A high GaN growth rate of up to 12 µm/h was achieved at 600 oC by 

LMOCVD, which is ~4.6 times faster than that of conventional MOCVD with 2.6 µm/h. 

This approach suggests that the laser resonant vibrational excitation of precursors is 

promising in increasing NH3 reactivity and promoting GaN synthesis, which could be 

extended to synthesis of other nitride semiconductors.  
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7.1 Introduction 

Gallium nitride (GaN) with excellent physical properties, such as wide direct 

bandgap, high electron mobility and high thermal stability, has been extensively studied 

and attracted attentions for applications in light-emitting diodes (LEDs), high-power 

electronic devices and short wavelength optoelectronics.1-3 Current commercial GaN-

based devices are fabricated by epitaxy onto foreign substrates because the GaN bulk and 

freestanding substrate technology is still immature.4 High-quality GaN are routinely 

grown by hydride vapor phase epitaxy (HVPE), ammonothermal, molecular beam 

epitaxy (MBE), and metal-organic chemical vapor deposition (MOCVD).5-11 Although 

HVPE and ammonothermal methods with the advantage of high growth rates have 

emerged to obtain bulk GaN,5-7 they lack the precise control and heterojunction layer 

growth required for device structures. The overwhelming majority of GaN epilayers and 

GaN-based devices are grown by MOCVD and MBE.8-12 The MOCVD growth rate of 

GaN epilayers commonly exceeds 1–3 µm/h, while MBE is typically performed with a 

growth rate up to 1 µm/h.8-12 The relatively slow growth rates limit these traditional 

methods for many device structures that require thick GaN layers. Therefore, synthetic 

techniques with high growth rates are highly in demand for the scalable production of 

high-quality GaN epilayers to satisfy the steadily increasing requirement, since it can 

help reducing the cycle time in device fabrication.  

Laser-assisted MOCVD (LMOCVD) is an ideal method for various material 

growth with advantages of low growth temperature, fast growth rate, and the capability to 

deposit patterned materials.13-17 Several semiconductor materials, including silicon, 

gallium arsenide, indium phosphide, and aluminum nitride, have been successfully grown 
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using the LMOCVD.13-17 For instance, Zhou et al.18 reported ultraviolet laser LMOCVD 

growth of GaN at low temperatures, leading to films having (0002) preferential 

orientation with a broad XRD peak. However, the photolysis of the precursors with UV 

laser resulted in the low density of the reactive radicals and a low GaN growth rate. On 

the other hand, CO2 laser LMOCVD has been successfully used to prepare various kinds 

of thin films at high growth rates.16,19-25 For example, Iwanaga et al.19 reported the 

deposition of large-area amorphous silicon films using CO2 laser LMOCVD with a high 

growth rate of > 60 µm/h in a relatively low laser power and low substrate temperatures. 

In chapter 6, we have demonstrated the fast growth of GaN films with (0002) preferential 

orientation using CO2 laser LMOCVD with a growth rate up to 84 µm/h at low 

temperatures,23 where the experiments were designed to elucidate the GaN growth 

mechanism via CO2 laser LMOCVD rather than to optimize the material crystalline 

quality. The high GaN growth rate is due to the mixed photolysis/pyrolysis reactions of 

the precursors and the photo-induced effects, as has been evidenced by wavelength 

dependence of GaN growth rates.22-24 However, the low-temperature deposition resulted 

in films with broad XRD peaks and low crystalline quality.19,22 It has been reported that 

the deposition of high-quality GaN films, which is preferred for device applications, 

requires high growth temperatures.26-29 

In this chapter, we successfully demonstrated the fast growth of high-quality GaN 

epilayers on sapphire substrates with a high growth rate of 25.8 µm/h using an optimized 

CO2 laser LMOCVD method. The growth of GaN epilayers followed previously 

documented two-step growth steps,30 including a thin three dimensional (3D) GaN layer 

growth, lateral growth and coalescence of the 3D layer and, finally, quasi-two 
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dimensional (2D) growth at high temperatures. The growth rate of 25.8 µm/h is 8.6 times 

higher than that has been used in GaN epliayers by traditional MOCVD.11,12 This work 

provides a simple and cost-effective way to realize fast and high-quality GaN epilayer 

growth with high potential in GaN-based optoelectronic applications. 

 

Figure 7.1 Schematic of the experimental setup of CO2 laser LMOCVD system. 

7.2 Methods 

7.2.1 Growth of GaN layers 

The growth of GaN layers on c-plane (0001) orientation sapphire substrates was 

performed in a home-made vertical LMOCVD system. The schematic experimental setup 

of the LMOCVD system is shown in Fig. 7.1. Trimethylgallium (TMGa) and ammonia 

(NH3) were used as the Ga and N precursors, respectively. Prior to the GaN growth, a 

thin Si layer was coated on sapphire as thermal conductive layer to absorb laser energy. 

Then, 1 × 1 cm2 sapphire substrates were successively cleaned in piranha and 15% HCl 

solution, and then loaded into the LMOCVD reactor. A continuous-wave (CW) and 

wavelength-tunable CO2 laser (PRC Inc., λ = 9.201 μm) was used for substrate heating. A 
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flat-top laser beam shaper (Edmund Optics) was used to generate a beam with a uniform 

power distribution (output beam diameter ~ 20 mm) from a Gaussian CO2 laser beam 

(Fig. 1a), in order to realize a uniform substrate temperature for material growth with 

controlled crystal orientations. The chamber pressure during the growth process was kept 

at ~ 10 Torr. A two-step growth process was used for growing high-quality and smooth 

GaN layers without using AlN buffer layers.30 NH3 (26 mmol/min) and TMGa (20 

μmol/min) were introduced simultaneously into the reactor chamber after the substrate 

temperature was stable under laser irradiation. The growth process started with deposition 

of a very thin 3D GaN layer for 10 second at 700 oC (laser power ~ 95 W). The growth 

was then interrupted and the 3D GaN layer was annealed at 990 oC for 5 min (laser power 

~ 160 W) under NH3 with a flow rate of 26 mmol/min. The subsequent growth of 

unintentionally doped GaN epilayer was carried out for 10 min at substrate temperatures 

ranging from 930 to 990 °C by adjusting the laser power. The substrate temperature 

during the growth was monitored using a pyrometer (Omega, OS3752). 

7.2.2 Characterization 

The morphology of GaN layers was examined by scanning electron microscopy 

(SEM, S4700) and atomic force microscopy (AFM, Bruker Dimension ICON SPM). The 

structural properties of GaN layers were investigated using transmission electron 

microscopy (TEM, FEI Tecnai OsirisTM), high-resolution X-Ray diffraction (HR-XRD), 

and Raman spectroscopy. High-resolution TEM (HRTEM) was performed in a FEI 

Tecnai OsirisTM instrument operated at 200 kV. Cross-sectional TEM samples were 

prepared using a FEI Helios NanoLab 660 FIB/SEM. To minimize ion beam damage to 

the surface of the top layer (GaN), a 20 nm-thick Ti coating was deposited on the GaN 
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surface prior to FIB processing. Bulk milling of the sample was performed using a 30 

keV Ga+ beam and polishing step was done using a 10 keV Ga+ beam. The approximate 

thickness of the final lamellae, mounted on Cu grids, was 60-100 nm. HR-XRD 

measurements were performed using Rigaku Smart Lab Diffractometer with Cu Ka1 

radiation (l = 1.5406 Å). Raman spectra were recorded using a Raman microscopy 

(Renishaw inVia H 18415, Argon ion laser, λ = 514.5 nm). Hall effect measurements 

were carried out via the Van der Pauw method at room temperature. Optical transmission 

data were collected using a Perkin-Elmer LAMBDA 1050 UV/Vis/NIR 

spectrophotometer. 

 

Figure 7.2 (a) Cross-sectional SEM image of the ~ 4.3 µm thick GaN epilayer grown on a 
sapphire (0001) substrate at 990 oC for 10 min. (b) A comparison of growth rate between 
different techniques used for growth of high-quality GaN. 

7.3 Results and discussion 

The cross-sectional SEM image in Fig. 7.2 is a typical LMOCVD GaN sample 

grown at 990 °C for 10 min, which shows a very sharp interface between GaN and 

sapphire substrate. The thickness of GaN epilayers was measured to be ~ 4.3 µm, 

corresponding to a growth rate of ~ 25.8 μm/h which was much higher compared to the 
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conventional MBE (~ 1 μm/h) and MOCVD (~ 3 μm/h) techniques for GaN epilayer 

growth (Fig. 1c).18-12 In addition, the overall processing time for LMOCVD was less than 

20 min, but not several hours as required for the HVPE, ammonothermal, MOCVD, and 

MBE techniques.5-12  

Morphological evolution of GaN during the growth process was investigated, as 

shown in Fig. 7.3. In step 1, very thin GaN 3D islands were grown at 700 °C. With 

annealing at 990 oC for 5 min under NH3 flow, the GaN islands grew up laterally, and 

started to coalesce gradually. In step 2, with increasing of growth time at high 

temperature (HT), the GaN islands increased in sizes and grew into a continuous and 

smooth film followed by a rapid coalescence.31 Figs. 7.3a and 7.3b show the top view of 

GaN islands after 30 and 90 s HT growth, respectively. It is notable that the size and 

height distribution of the GaN islands are rather uniform after 90 s. The coalescence of 

GaN islands with a smooth surface was completed after ~ 120 s HT growth, and inverted 

hexagonal pyramid pits were formed, diminishing and disappearing eventually (not 

shown here). Fig. 7.3c shows the SEM image of the GaN epilayers after 10 min HT 

growth. It is clear that very smooth GaN surface is obtained and 2D step growth mode is 

dominant over the entire substrate. 
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Figure 7.3 Morphological characterization of GaN epilayers grown on sapphire substrates. 
SEM plan views of GaN during growth process: (a) GaN islands after 30 s HT growth, (b) 
GaN islands after 90 s HT growth, and (c) GaN epilayers after 10 min HT growth. 

The AFM images of 2×2 µm2 surface area of fully coalesced GaN epilayers in 

Fig. 7.4 shows excellent dislocation-mediated step-flow morphology with spiral hillocks, 

which is similar to that of high-quality GaN grown by MOCVD and MBE methods at 

much lower growth rates.9, 32 AFM measurement further reveals that the surface root-

mean square (RMS) roughness for GaN layers grown at 990 oC is as small as 1.892 nm, 

slightly higher than that of reported works with much lower growth rates.9, 32-33 This flat 

GaN surface is of paramount importance for the fabrication of high-performance GaN-

based optical and optoelectronic devices. The RMS roughness for GaN layers grown at 
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930 and 960 °C with identical growth conditions was calculated to be 1.103 and 1.253 

nm (Figs. 7.4a and 7.4b), respectively, revealing a smoother GaN growth at relatively 

lower temperatures in this work. 

 

Figure 7.4 AFM images of GaN epilayers grown on sapphire substrates at (a) 930 oC, (b) 
960 oC and (c) 990 oC for 10 min. 

The cross-sectional TEM image of the GaN layers grown at 990 °C, sapphire 

substrate and GaN/sapphire hetero-interface are shown in Fig. 7.5a to c, respectively. It is 

observed that the as-grown GaN layer has a single-crystalline structure with an epitaxial 

layer even at the GaN/sapphire hetero-interfaces. The lattice fringes with a spacing of ~ 

0.517 nm correspond to the GaN c-plane interplanar distance, indicating that the epitaxial 

layer is c-plane oriented. All the (0002) lattice fringes appear parallel to the substrate 
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surface. Fig. 7.5d shows the selected-area electron diffraction (SAED) pattern for GaN 

epitaxial layer, further revealing the single crystal array of spots indexed to the (0002) of 

wurtzite GaN. The regularity of the atomic arrangement and the absence of a diffuse 

streak from the SAED pattern indicate the high quality of the crystalline phase.34 

 

Figure 7.5 Structural characterization of GaN epilayers grown on sapphire substrates at 
990 oC. High-resolution cross-sectional TEM image of (a) GaN epilayer, (b) sapphire 
substrate and (c) the GaN/sapphire hetero-interface. (d) Selected-area diffraction pattern 
for the GaN epilayer. 
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Figure 7.6. Crystallographic characterization of GaN epilayers grown on sapphire with 
respect to growth temperatures ranging from 930 to 990 oC. (a) X-ray 2θ scan. (b) X-ray φ 
scan. (c) XRC curves of the GaN (0002) peak. (d) Temperature dependence of the 
dislocation density (■) and XRC (0002) FWHM (●) for the GaN epilayers grown on 
sapphire. 

XRD was performed to study the structural properties of the GaN epilayers grown 

on sapphire. Fig. 7.6a is a typical XRD 2θ scan for the GaN films on sapphire grown at 

different temperatures. Two peaks at around 34.51 and 72.64 were observed in each 

spectrum, which correspond to the wurtzite GaN (0002) and (0004) reflections, 

respectively. Therefore, the out-of-plane epitaxial relationship of GaN (0001)/sapphire 

can be determined for these samples. Furthermore, it can be seen that the intensity of 

GaN (0002) and (0004) is gradually increased and the peaks become sharper as the GaN 
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growth temperature increases from 930 to 990 °C, revealing the improved crystalline 

quality of the GaN films at higher temperatures.  

To evaluate the in-plane epitaxial relationship between the GaN films and the 

sapphire substrates, XRD ϕ scan was conducted while 2θ was kept constant at the peak 

position and the sample was rotated 360º around the surface normal. Fig. 7.6b shows the 

normalized φ scans of GaN (10-12), where six-fold rotational peaks with an interval of 

60° can been clearly identified for all samples. The variation in the peak intensity versus 

φ is obvious for each diffraction due to the noncoplanarity of the beam vector and the 

surface normal, which is very common in practice.35 A quantitative comparison of the 

peak intensity among samples grown at different temperatures was not undertaken, 

because in thin films with strong preferential orientation, the diffraction intensity of the 

planes parallel to the surface is extremely sensitive to the sample orientation.35 Both the 

XRD 2θ and φ scan results clearly confirm that single-crystalline hexagonal GaN 

epilayers have been grown on the sapphire substrates at temperatures ranging from 930 to 

990 oC. 

X-ray rocking curve (XRC) is a valid method to determine the crystalline quality 

of GaN films. The full-width at half-maximum (FWHM) of XRC for the (0002) peak is 

usually used to evaluate the screw treading dislocations density (TDD), while the FWHM 

of XRC for (10-12) peak corresponds to the lattice distortion from all components of the 

TDDs, including edge and screw dislocations.36 Fig. 7.6c compares the GaN (0002) 

XRCs for the GaN epilayers grown on the sapphire substrates at different temperatures. 

The FWHM values of the GaN (0002) and (10-12) planes were summarized in Table 7.1. 

For the sample grown at 930 ºC, the FWHMs of the GaN (0002) and (10-12) planes were 
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measured to be 396 and 471 arcsec, respectivelly. Both values monotonously decreased 

to 324 and 443 arcsec for the sample grown at 960 °C, and further decreased to 313 and 

390 arcsec for the sample grown at 990 °C, indicating that the GaN layers grown at 

higher temperature correspond to higher purity and crystalline quality. Note that the low 

FWHM values obtained at 990 °C are also comparable to those of GaN layers grown on 

sapphire using the conventional MOCVD and MBE technique.37 We have estimated the 

dislocation density existing in the GaN layers grown on sapphire at various growth 

temperatures using the following equation:36 
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where Dscrew and Dedge are the screw dislocation and edge dislocation density, 

respectively. β is the FWHM value measured from XRC (0002) and (10-12) planes in 

degrees and b is the Burgers vector length (bscrew = 0.5185 nm, bedge = 0.3189 nm) for 

GaN. Fig. 7.6d shows the temperature dependence of dislocation density in the as-grown 

GaN epilayers. The estimated total dislocation densities DTotal for the samples grown at 

930, 960 and 990 °C are 8.1×108, 6.6×108 and 5.9×108 cm-2, respectively. These findings 

further indicate that the LMOCVD GaN layers grown at higher temperatures have 

relatively lower crystalline defects. 

Raman spectroscopy has been widely used to evaluate the quality and residual 

stress of nitride films.35 Fig. 7.7a shows the room-temperature Raman spectra of GaN 

films grown at different temperatures. Two prominent phonon modes which are Raman 
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active, E2 (high) and A1 (LO) modes, are observed in each spectrum, where E2 (high) 

phonon is used to characterize the in-plane stress state of the GaN films. The stress can 

be calculated by 

ߪ ൌ ୼ன

ସ.ଷ	ሺ௖௠షభ	ீ௣௔షభሻ		
                                                                                                       (7.4)                               

where σ is the biaxial stress and Δω is the E2 (high) phonon peak shift. The E2 

(high) phonon of stress-free GaN is around 567.6 cm-1.36 The E2 (high) phonon modes 

obtained from GaN films grown at 930, 960 and 990 oC are located at 568.7, 571.5 and 

570 cm-1, respectively. The E2 (high) mode peaks for all the samples blue-shift compared 

to that of stress-free GaN, which indicates that all the GaN films are under compressive 

stress, as predicted for the GaN grown on sapphire substrates.37 It is known most of the 

film stresses arise during sample cooling-down after growth.  

Fig. 7.7b compares the measured compressive stresses in the GaN films grown at 

different temperatures. The GaN sample grown at 930 oC shows less in-plane 

compressive stress compared with the samples grown at higher temperatures of 960 and 

990 oC. Additionally, the FWHM values of the E2 (high) peak for GaN epilayers 

decreased with the increase in the growth temperature, further indicating of high 

crystalline quality of GaN epilayers obtained at higher growth temperatures. 
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Figure 7.7 Residual stress evaluation of the GaN epilayers grown on sapphire. (a) Typical 
Raman spectra of GaN epilayers grown on sapphire at different temperatures. (b) The 
temperature dependence of FWHM of GaN E2 (high) peak (■) and film stresses (●). 

Electrical and optoelectronic properties of the GaN epilayers were also 

investigated (Fig. 7.8). Room-temperature Hall effect measurements were performed to 

study the electrical property of the GaN epilayers, as shown in Fig. 7.8a and Table I. We 

found that as the growth temperature increases from 930 to 960 and 990 ºC, the mobility 

increases from 226 to 293 and 369 cm2 V-1 s-1 and the carrier concentration decreases 

from 8.4 × 1016 to 5.3 × 1016 and 3.1 × 1016 cm-3, respectively. The mobility measured in 

our study is comparable to those reported in several studies for high-quality GaN films 

deposited using MOCVD and MBE at high temperatures.41-45 The observed mobility 

increase with the increased temperature was also reported in the MOCVD GaN films. 

This can be attributed to the increased film thickness and the improved crystallinity, 

namely, the crystal defects in the GaN films affect their mobility by scattering the charge 

carriers.41-45  
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Figure 7.8 Electrical and optical properties of the LMOCVD GaN epilayers grown on 
sapphire. (a) Temperature dependence of Hall mobility (■) and resistivity (●) of the GaN 
layers. (b) Transmission and absorption spectra of the GaN layers grown at 990 oC. (c) The 
optical band gap extracted from (b). 

 

The optical transmission and absorption spectra of GaN epliayers grown at 990 

°C are shown in Fig. 7.8b. The absorption coefficient was derived from 

spectrophotometry in transmission mode (Fig. 7.8c). The band gap, Eg, of semiconductors 

with direct band gaps can be estimated using the following equation:46  

൫݄߭	ଶ~ߙ െ                                                                                                                          (3)	௚൯,ܧ

where α is the absorption coefficient, h is the Plank’s constant, υ is the frequency, 

and ܧ௚  is the semiconductor band gap.46 The value of optical band gap can be 
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approximated from a linear extrapolation of square absorption, α2, to the point of 

interception with the photon energy axis (Fig. 5c). As shown in the inset of Fig. 5c, the 

extracted band gaps, Eg, for GaN epilayers grown at 930, 960 and 990 °C are 3.36, 3.39 

and 3.38 eV, respectively. These values are slightly smaller than that of bulk GaN. 

Although high crystalline quality GaN epilayers have been realized based on CO2 

LMOCVD, there are still some issues to address for the industrialization of GaN epilayer 

growth via LMOCVD technique. For instance, when compared with MOCVD and MBE 

techniques, the size of GaN samples grown by LMOCVD are relatively small due to the 

relatively small beam size (20 mm in diameter). By adding a beam expander, laser beams 

could be extended to cover the whole wafers as well as maintain the required laser 

fluence for GaN growth, based on which LMOCVD technique is feasible for wafer-scale 

GaN growth. However, further optimization and design improvement are still required to 

achieve GaN epi-structures with a homogeneous thickness and quality over the whole 

wafers. Overall, the CO2 LMOCVD proposed in this work is a simple and low-cost 

method for fast and high-quality GaN epilayer growth, and might bring up a broad 

application in future electronics and optoelectronics. 

Table 7.1 Summary of characteristics of the LMOCVD GaN epilayers grown on 
sapphire at different temperatures 

No. Temp. 
(oC) 

RMS 
(nm) 

Bandgap 
(eV) 

E2H 
(cm-1) 

σ 
(Gpa) 

(0002) 
FWHM 
(arcsec) 

(10-12) 
FWHM 
(arcsec) 

Dislocation 
density 
(cm-2) 

Mobility 
(cm2/vs) 

Carrier 
concentration 

(cm-3) 

I 930 1.103 3.36 568.7 0.26 396 471 8.1E8 226 8.4×1016 

II 960 1.253 3.39 571.5 0.82 324 443 6.6E8 293 5.3×1016 

III 990 1.892 3.38 570 0.47 313 390 5.9E8 369 3.1×1016 
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7.4 Conclusions 

In conclusion, we have demonstrated the rapid growth of high-quality GaN 

epilayers with an extremely high growth rate of ~ 25.8 µm/h via a CO2 laser-assisted 

MOCVD method. It is found that the substrate temperature plays an important role in 

different aspects of GaN film growth, including morphology, structural evolution, 

electrical and optical properties. The surface morphology of LMOCVD GaN films 

demonstrates no degradation of the growth mode, maintaining a dislocation-mediated 

step-flow growth with RMS roughness of ~ 1.9 nm. For the GaN sample grown at 990 °C 

with high growth rates, the FWHM in rocking curve ω-scan for GaN (0002) line and (10-

12) line are, 313 and 390 arcsec, respectively, suggesting its high purity and high 

crystalline quality. Raman measurement shows the presence of biaxial compressive stress 

in the as-grown GaN layers. These results demonstrate that LMOCVD technique can 

produce high-quality GaN epilayers with fast growth rates, opening a new pathway for 

nitride related materials fabrication used for next-generation electronics and 

optoelectronics. 
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8.1 Introduction 

In this chapter, the optical quality of as-grown GaN layers by CO2 laser 

LMOCVD in chapter 7 are further evaluated by fabricating ultraviolet (UV) 

photodetector.	 The performance of GaN-based UV detectors is highly dependent on the 

crystallinity of GaN films.1-4 It has been reported that threading dislocation has an 

adverse effect on the performance of GaN photodetectors, including dark current and 

responsivity.1-4  

The GaN-based material system is appropriate for photodetection applications 

operated in the 200–365 nm wavelength range because of its tunable wide direct 

bandgap. In addition, nitride-based photodetectors also have the advantages of being 

solid-state and small in size, with good chemical and thermal stability, and having long 

lifetimes. GaN UV photodetectors have obtained increasing interest with various 

applications, such as flame monitoring, biomedicine, and UV astronomy.5-7 These 

photodetectors are suitable for harsh environments with chemically inert properties.  

GaN-based detectors with a variety of device structures, including Schottky-type 

8-10, metal-semiconductor-metal (MSM)-type1,2,11-13, and p–i–n type.14–16 With a high 

response speed and low dark current characteristics, GaN MSM photodetector has 

attracted more attentions for UV photodetection applications as compared to GaN 

photodetectors with other device structures. Additionally, with no n- and p-type doped 

layers, GaN MSM device has simple fabrication processes (inset in Fig. 8.1).17,18 

Normally, MSM structures can use either back-to-back Schottky contacts or back-to-back 

ohmic contacts during photoconductive operation and cannot operate under 0 V bias.1-3 

Schottky contact photodetector is appropriate for applications with fast response speeds 
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and low dark current, while the ohmic contact photoconductor is suitable for high 

photosensitivity applications. Our devices in this chapter are Schottky-contact MSM-type 

detectors.  

 

Figure 8.1. Schematic device structure of GaN MSM detector with Ni/Au contacts. 

8.2 Experimental details: device fabrication and characterization 

The undoped GaN epilayer used in our devices was grown on c-plane sapphire 

substrates at different temperatures 930, 960 and 990 °C by CO2 laser MOCVD. The 

details of the crystal growth process have been reported in chapter 7. The sample was 

prepared before processing by first using standard solvent clean, then dipping in boiling 

aqua regia (3HCl : 1HCl) then buffered oxide etch (BOE) to remove any native oxide. 

GaN devices were fabricated using a standard photolithography: 1) patterning of 

photoresist, 2) deposition of Ni/Au (100 nm/20 nm) Schottky contact via magnetron 

sputtering, and 3) liftoff to form Schottky contacts (50 μm long, 10 μm wide with a 

spacing of 10 μm) on the GaN. Before electrical measurement, annealing treatment of 

GaN MSM devices was performed at 500 °C for 5 min in rapid thermal processing (RTP) 

furnace. The current-voltage (I-V) measurements of the GaN UV photodetectors were 

carried out using a Keithley 237 electrometer. Photoresponse measurements were 
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realized by using a Xe arc lamp with power of 150 W as UV light source. External 

quantum efficiency (EQE) measurement was performed by using an incident 

monochromatic light beam directed onto the photodetector and the data was collected via 

a Newport QE measurement kit.  Transient response measurements were taken using a 

337 nm, 4 ns pulsed laser as light source, and voltage variations were collected using an 

oscilloscope (LeCroy WaveRunner). All measurements were conducted at room 

temperature.  

 

Figure 8.2. I-V curves of GaN MSM photodetectors fabricated on CO2 laser LMOCVD 
GaN epilayers grown at (a) 930 (b) 960 and (c) 990 oC under light intensity of 0.1 mW cm-2 
(red) and in dark (black). (d) Dark I-V characteristics of GaN detectors fabricated on GaN 
epilayers grown at different temperatures of 930 (device A), 960 (device B) and 990 oC 
(device C). 
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8.3 Results and discussion 

Fig. 8.2 compares the current-voltage (I-V) characteristics of the MSM photodetector 

fabricated on CO2 laser LMOCVD GaN epilayers grown at different substrate 

temperatures under light and in dark (light intensity ~ 0.1 mW cm-2). The device dark 

currents were 1.96 × 10-6, 1.3 × 10-6, and 2 × 10-7 A at a bias voltage of -5 V and increased 

to 7.7 × 10-6, 1.05 × 10-5, and 1.2 × 10-5 A under light irradiation for GaN samples grown 

at 930, 960 and 990 oC, respectively, indicating a highly UV-sensitive photoconduction. 

The dark currents of devices are quite low like that of best GaN UV detectors reported 

previously with the same device structures.1-4  

The dark current of MSM photodetectors was investigated, where they showing nearly 

symmetrical characteristics and for forward biases the dark current was almost the same, 

indicating that a good Schottky contact have been formed between the GaN epilayer and 

Ni/Au metal contact. However, the dark current values of the MSM photodetectors were 

different from one to another at given reverse biases. Fig. 8.2d displays the dark current 

of the three typical GaN-based MSM UV photodetector samples, A, B and C fabricated 

on LMOCVD GaN epilayers grown at different temperatures of 930, 960 and 990 oC, 

respectively. The dark current values of the three samples follows a sequence of C < B < 

A, which the lowest one is for the GaN sample grown at higher temperatures. Comparing 

the main parameters of the three samples as listed in Table 8.1, they have almost the same 

carrier concentrations but different dislocation densities, and both screw and edge 

dislocation densities of the samples are consistent with C < B < A. These results suggest 

that the lower dislocation densities are, then the lower the dark current is in the GaN 

MSM photodetectors. It has been reported that the dislocations are the paths of carrier 
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transportation and has a strong influence on the dark current of the GaN detectors.3,4 

 

Figure 8.3. EQE spectra of GaN MSM photodetectors fabricated on CO2 laser LMOCVD 
GaN epilayers grown at (a) 930 (b) 960 and (c) 990 oC under reverse bias from -5 to 0 V. (d) 
A comparison between peak EQE and responsivity of the detectors fabricated on GaN 
epilayers grown at different temperatures. 

Fig. 8.3 shows the EQE of UV detectors measured at different reverse biases. The devices 

show a high sensitivity and high responsivity in the UV range that is near the band edge 

of GaN. However, EQE is quickly reduced with either decreasing or increasing 

wavelength, which is attributed to the increased electron-hole recombination and the 

reduced photo-penetration depth.1-4 The EQEs are lower than 5 % at zero bias, and 

increase sharply with the increase in reverse bias and reach to 36, 38 and 40 % at a bias 

voltage of -5 V for photodetectors fabricated on LMOCVD GaN epilayers grown at 930, 
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960 and 990 oC, respectively. The sharp increase of EQE versus reverse bias voltage 

corresponds to the rapid increase in photocurrent. The responsivity (R) of the device can 

be measured according to the following equation:19 

ܴ ൌ ாொா

௛௖/ఒ	
,                                                                                                                        (8.1)                               

where h is the Planck’s constant, c is the speed of light, and λ is the wavelength of light. 

The responsivity peak values of 0.108, 0.115, and 0.12 AW-1 were obtained at reverse 

bias voltage of 5 V for photodetectors fabricated on LMOCVD GaN epilayers grown at 

930, 960 and 990 oC, respectively. These values are comparable to that of commercial 

GaN UV photodetectors with value in the range of 0.1 to 0.2 AW-1.20,21 It is found the 

responsivity of the photodetectors decreases with increasing dislocation densities. The 

maximum responsivity is for the device fabricated on GaN epilayers grown at 990 oC 

with lowest dislocation densities and highest crystalline quality. 

According to the results in Table 8.1, the electron mobility of the three GaN samples 

grown at different temperatures are very different. The electron mobility of the undoped 

GaN epilayer decreases with the increase of the dislocation densities. Among the three 

undoped samples, the dislocation densities of sample C is the lowest and correspondingly 

the electron mobility is the highest. This phenomenon can be interpreted that the 

dislocation acts as charge defect traps in the GaN and these charge defect traps can 

increase the recombination probability of photogenerated electron-hole pairs and thus 

reduce the responsivity of GaN-based MSM photodetectors.4 Additionally, since the 

photocurrent in these MSM photodetectors primarily comes from the drift current, the 

negatively charged scattering center may have a strong influence on the photogenerated 
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holes.4 This may be another reason why the responsivity of the GaN-based MSM 

photodetectors becomes lower as dislocation density increases. 

 
Figure 8.4 Typical transient photocurrent curve of GaN MSM photodetectors fabricated on 
CO2 laser LMOCVD GaN epilayers grown at (a) 930 (b) 960 and (c) 990 oC under reverse 
bias of -5 V measured with a 337 nm 4 ns-pulse laser as the light source. (d) A comparison 
between response time and cut-off frequency of the detectors fabricated on GaN epilayers 
grown at different temperatures. 

Table 8.1 Summary of characteristics of MSM photodetectors fabricated on the LMOCVD 
GaN epilayers grown on sapphire at different temperatures. 

Sample 
No 

GaN 
Grown 
Temp. 

(oC) 

Bandgap 
(eV) 

Dislocation 
density 
(cm-2) 

Mobility 
(cm2/vs) 

Carrier 
concentration 

(cm-3) 

Resistivity 
(mΩ-cm) 

Dark 
Current 

(A) 

Peak 
Responsivity 

(AW-1) 

Response 
Time 
(ns) 

A 930 3.36 8.1E8 220 8.4×1016 19 1.96E-6 0.108 168 

B 960 3.39 6.6E8 299 5.3×1016 11 1.30E-6 0.115 147 

C 990 3.38 5.9E8 365 3.1×1016 9 0.20E-6 0.12 125 
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Finally, the response speed of the GaN UV photodetectors was measured by transient 

photocurrent method using a 337 nm pulsed laser with the pulse width less than 4 ns as 

the light source. Fig. 8.4 shows the response curves of the GaN photodetectors under a 

reverse bias voltage of -5 V. By fitting the photocurrent decay curve with the single 

exponential decay function, the response time of the devices was derived to be 168, 147 

and 125 ns for photodetectors fabricated on LMOCVD GaN epilayers grown at 930, 960 

and 990 oC, respectively, revealing a fast response speeds. It has been reported that the 

response time of the device should be limited by the resistor-capacitor time constant but 

not the GaN crystallinity or carrier mobility. Therefore, the theoretical charge transit time 

of the UV photodetector was evaluated using the equation below:22,23  

௘ݐ ൌ
௅మ

ఓ೐	௏
                                                                                                                       (8.2) 

where μe is the carrier mobility, te is the charge transit time, L is the electrode gap spacing, 

and V is the applied bias. Based on the above equation, an increase in V leads to reduction 

of te, and thus the gain subsequently increases linearly. Using electron mobility measured 

for the GaN epilayers, L = 10 µm, and the applied voltage 5 V, the te was calculated to be 

0.183, 0.134 and 0.11 ns, which was much lower than the measured response times of  

168, 147 and 125 ns, respectively. The fastest response speed is for device fabricated on 

LMOCVD GaN epilayers grown 990 oC with highest crystalline quality and carrier 

mobility. Based on the measured response time of 125 ns, its 3-dB cut-off frequency 

(f3dB) can be calculated by  

ଷ݂ௗ஻ ൌ
଴.ଷହ

௧ೝ	
 ,22,23                                                                                                              (8.3)                               



161 

 

where tr is the response time of the device. The 3-dB cut-off frequency of the UV GaN 

detectors were calculated to be 2.1, 2.4 and 2.8 MHz. Overall, the responsivity of 0.12 

AW-1, fast response time of 125 ns and 3-dB cut-off frequency of 2.8 MHz for the GaN 

UV detector are comparable to those of previously reported,1-4 indicating the excellent 

optical properties of LMOCVD GaN layers grown with high growth rates. 

8.4 Conclusions 

In conclusion, we have reported the growth and characterization of back-to-back 

Schottky MSM UV photodetectors on LMOCVD-grown GaN films. The dark current, 

responsivity and, response speed of GaN UV detectors are comparable to those of 

commercial devices, indicating the excellent optical properties of LMOCVD GaN layers. 

We have also investigated the effect of GaN crystallinity and TDs on the property of 

GaN-based MSM photodetectors. It is found that the dark current of the GaN 

photodetectors increases with increasing TDs and the responsivity of the photodetectors 

decreases with increasing TDs. The best performance was obtained for device fabricated 

on LMOCVD GaN epilayers grown at 990 oC with highest crystalline quality and carrier 

mobility. Low dark current as low as 2 × 10-7 A and peak quantum efficiency as high as 

40% was achieved at -5 V bias. The quantum efficiency showed a bias dependence, 

which are postulated to be due to the bias dependence of the depletion region width and 

corresponding electric field inside the space gap. Initial time-domain pulse response 

measurements show a 3-dB cut-off frequency of 2.8 MHz. These results demonstrate that 

LMOCVD technique can produce high-quality GaN epilayers with fast growth rates, 

opening a new pathway for nitride related materials fabrication used for next-generation 

electronics and optoelectronics. 
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9.1 Summary 

This dissertation mainly focused on laser incorporation in metal organic chemical 

vapor deposition of gallium nitride films, which led to: 1) rapid growth of m-plane 

gallium nitride nanoplates 2) promotion of energy coupling efficiency and enhancement 

of gallium nitride deposition; 3) low-temperature growth of gallium nitride films; 4) fast 

growth of gallium nitride epilayers; and 5) realization of ultraviolet photodetectors based 

on the as-grown gallium nitride layers. Infrared-laser excitations of precursor molecules 

were used to assist the conventional MOCVD for promoting the GaN growth. In this 

dissertation, the different irradiation geometries were employed in LMOCVD growth of 

GaN. With a perpendicular laser-beam irradiation, the gas was excited and the substrate 

surface was heated up. While, with a parallel incidence related to the substrate surface, 

lasers permit pure gas-phase excitations, leaving the substrate cold. 

The interlinked m-plane-oriented GaN nanoplates were rapidly grown on Si 

substrates using the LMOCVD method in perpendicular irradiation geometries. The 

FESEM and HRTEM images confirmed the formation of m-plane GaN nanoplates. The 

growth direction of GaN nanoplates was found to be the direction <10-10>. The A1 (TO) 

mode of Raman further confirmed the m-plane orientation of the GaN nanoplates. The 

high deposition rate, low-growth temperature, and repeated growth on the different facets 

of the nanoplates resulted in the formation of m-plane-oriented interlinked GaN 

nanoplates. Therefore, the L-MOCVD is a suitable technique for the rapid growth of m-

plane-oriented GaN nanoplates on Si substrate at low-growth temperatures.  

Vibrational excitations of NH3 molecules were studied using a tunable CO2 laser 

in growing crystalline GaN films on Si (100) substrates. The resonant vibrational 
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excitation at 9.219, 10.350, and 10.719 µm were more efficient than nonresonant 

excitation in dissociating NH3 molecules and enhancing the GaN deposition rate and 

quality. The OES results showed the resonant excitation of the NH-wagging modes 

modifies the synthesis process in a way that increases the supplies of NH, NH2, N, N+, 

and H. This leads to the enhancement in GaN deposition rates and improvement in 

crystalline quality. The extremely high GaN growth rate of ~ 84 µm/h with an improved 

crystalline quality was achieved under the resonant excitation at 9.219 µm. The red-shift 

in the position of E2H of Raman spectra indicated that the GaN films grown on Si suffered 

from tensile stress and the films grown at laser wavelengths of 9.219 µm exhibited the 

lowest stress. The FWHM value of the XRD rocking curves of GaN (0002) and GaN (10-

12) diffraction peaks decreased at resonant depositions and reached its minimum values 

at 9.219 µm, indicating reduced TDs density. 

The LMOCVD technique was developed for low-temperature growth of GaN 

films on sapphire substrates through laser resonant vibrational excitation of NH3 

molecules. With a parallel incidence related to the substrate surface, lasers permit gas-

phase excitations and precursor disassociations, leaving the substrate temperature very 

low. The highly c-oriented GaN films were successfully grown at temperatures as low as 

250 oC. Low-temperature growth of GaN films is ascribed to the enhanced decomposition 

efficiency of NH3 with resonant excitation of rotational-vibrational transition (1084.71 

cm-1) of the NH-wagging mode at the laser wavelength of 9.219 µm. The FWHM of 

(0002) diffraction peaks obtained from XRD for GaN films grown at 600 oC decreased 

from 0.20o (MOCVD) to 0.18o (LMOCVD), indicating an improvement in crystalline 

quality by LMOCVD. SEM images showed that the laser resonant vibrational excitation 
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of NH3 helped to grow GaN films with smooth and uniform surface morphology. A high 

GaN growth rate of up to 12 µm/h was achieved at 600 oC by LMOCVD, which is ~4.6 

times faster than that of conventional MOCVD with 2.6 µm/h. 

We have demonstrated the fast growth of high-quality GaN epilayers with an 

extremely high growth rate of ~ 25.8 µm/h using the CO2 laser LMOCVD method in a 

perpendicular irradiation geometry. It is found that the substrate temperature plays an 

important role in different aspects of GaN film growth, including morphology, structural 

evolution, electrical and optical properties. The surface morphology of LMOCVD GaN 

films demonstrates no degradation of the growth mode, maintaining a dislocation-

mediated step-flow growth with RMS roughness of ~ 1.9 nm. For the GaN samples 

grown at 990 °C with high growth rates, the FWHM in rocking curve ω-scan for the GaN 

(0002) line and (10-12) lines are 313 and 390 arcsec, respectively, suggesting the high 

purity and high crystalline quality. Raman measurement shows the presence of biaxial 

compressive stress in the as-grown GaN layers. We have also fabricated UV 

photodetectors based on the as-grown GaN layers, which exhibit a high responsivity of 

0.12 AW-1 and a fast response time of 125 ns, indicating the excellent optical properties 

of GaN layers. These results demonstrate that LMOCVD technique can produce high-

quality GaN epilayers with fast growth rates, opening a new pathway for nitride related 

material fabrication used for next-generation electronics and optoelectronics. 
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9.2 Future directions 

9.2.1 Investigation of the unexplored photocatalytic mechanism in 2D/3D graphene-
MoS2 (MoSe2)-GaN heterostructure photocatalysts for stable water splitting and 
hydrogen (H2) generation 

H2 is a major energy carrier in future, which can provide high combustion heat. The 

industrial production of H2 is achieved by steam reforming of methane and water, in 

which the byproduct is carbon dioxide as greenhouse gas.1-4 Since, sunlight and water as 

clean and renewable are most abundant energy source and natural resource, respectively, 

the production of H2 via photocatalytic water splitting has been considered as one of the 

key sustainable energy technologies to enable storable and affordable energy for future 

generations and an ideal solution to counter the depletion and environmental problems of 

fossil fuels.1-4  

Photocatalytic water splitting and H2 production system involves three fundamental 

processes: photon absorption of photocatalytic semiconductor with bandgap higher than 

1.23 eV to generate electron-hole pairs, charge separation and migration of 

photogenerated carriers to surface, and surface reduction and oxidization of water by 

photoelectrons and holes, respectively. Considering the requirements for efficient light 

absorption and photogenerated carrier separation and transfer, photocatalytic 

semiconductors preferably should have high surface area, good crystallinity and stability, 

and a suitable band structure.5,6  

Currently, photocatalytic semiconductors are metal oxides, nitrides, or sulfides, such as 

titanium oxide (TiO2), carbon nitride (C3N4) and cadmium sulfide (CdS).7-9 Most of 

photocatalysts require the loading of a high-cost co-catalyst such as Pt, Rh, and RuO2 to 
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obtain a good activity.10 On the other hand, various photocatalysts including inorganic 

sulfide same as CdS and (oxy) nitride-based photocatalysts are less stable and more 

susceptible to oxidation than water and show poor stability.11 Wide band-gap materials 

including TiO2 is the most commonly used photocatalyst due to its exceptional stability 

to exposure to sunlight and electrolyte. However, indirect and large band gap of 3.2 eV 

severely limit absorption of most solar spectrum and generation of electron-hole pairs and 

catalysts suffer from low quantum efficiency (QE) in the visible range with low solar to 

hydrogen (STH) efficiencies. Moreover, despite progress in the past decade, 

photocatalytic semiconductors that can harvest visible light typically do not exhibit good 

activity.12,13 The STH efficiency of photocatalytic water-splitting devices is still low 

around 1% and far from 10% STH, which allows achievement of the DOE price target for 

H2 production.14,15 

Recently, the emerging two-dimensional (2D) nanosheets and layered materials hold a 

high potential to address the existing challenges in the potocatalysts. Due to their unique 

physicochemical properties, 2D material as photocatalysts and co-catalysts are expected 

to offer fascinating features such as high specific surface areas, high stability, better 

charge carrier separation, and abundant surface active sites. Moreover, graphene is an 

excellent sunlight absorber, achieving 2.3% visible light absorbance in just 3.3 Å 

thickness and TMD monolayers including MoS2 and MoSe2 can absorb up to 10% 

incident sunlight in a thickness of less than 1 nm.16,17 Graphene could function as an 

efficient and cost-effective cocatalyst to promote electron separation and transfer from 

semiconductor catalysts and catalyze the proton reduction on its surface. Molybdenum 

disulfide (MoS2) with a layered structure and band gap of 1.9 eV has been investigated as 
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a promising potocatalyst for H2 evolution under visible light irradiation. Moreover, the 

significant enhancement of the photocatalytic H2 production activity of CdS and TiO2 by 

loading MoS2 layers as cocatalyst were recently reported opening new insights into high-

performance cost-effective photocatalyst based on 2D materials. 

On the other hand, Gallium nitride (GaN) has received much interest for use in the 

photocatalyst as it offers several advantages.18,19 It is resistive to chemical corrosion 

during an electrochemical process and its direct band structure straddles with water redox 

potentials. The photocatalytic activity of p-type GaN photocatalyst has been reported and 

can reach to 1525.0 µmol h-1 H2 evolution rate, with a 1.8% STH efficiency under light 

incident in the UV wavelength range which is much higher than that of previously 

reported photocatalyst materials even in visible light range. However, with a large band 

gap of 3.4 eV, GaN only absorbs UV light which is about 4% of the solar spectrum. The 

integration of GaN and 2D semiconductors including MoS2 and (molybdenum selenide) 

MoSe2 is anticipated to extend the light absorption in visible range and significantly 

enhance charge separation, photocatalytic efficiency and long-term stability. Thus, it is 

strategically important to explore the water splitting mechanism in unexplored MoS2 

(MoSe2)/GaN heterostructures and develop 2D/3D photocatalysts suitable for stable H2 

production. 

9.2.1.1 Growth of large-scale MoS2 (MoSe2)/GaN heterostructures 

The growth of 2D materials on semiconductor substrates and formation of large-scale 

MoS2 (MoSe2)/GaN heterostructures is still limited. In this task, a scalable, cost-effective 

synthesis method will be investigated to grow MoS2 (MoSe2)/GaN 2D/3D 

heterostructures through RTP process. Our previous studies demonstrated fast growth of 
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high-quality c-plane GaN films on various substrates by LMOCVD, as discussed in 

chapter 8. In this subtask, the objective is to form 2D/3D heterostructures based on the 

epitaxially grown MoS2 (MoSe2) on GaN films. The MoS2 (MoSe2)/GaN heterostructures 

are a lattice matched system, unlike most reported epitaxial 2D/2D and 2D/3D 

heterostructures to date. The Mo film of particular thickness will be deposited on cleaned 

GaN films for the controlled MoS2 (MoSe2) synthesis in a single-step RTP process. Then, 

Mo films will be directly sulfurized (selenidized) in the RTP furnace in an Ar/S 

atmosphere. The critical parameters, including heating time, temperature, heating rate, 

and cooling rate, will be systemically studied to achieve large-scale MoS2 (MoSe2) 

synthesis with controlled layer numbers. Compared with the mechanical transferring 

method, the direct synthesis of 2D MoS2 (MoSe2) on GaN via the RTP method will be 

much more cost-effective. Moreover, by tuning the deposition thickness of Mo films 

prior to the RTP step, the final layer numbers of MoS2 (MoSe2) films will be precisely 

controlled. Due to a very small lattice mismatch of 0.8% (3%) the lattice parameter of 

GaN and layer MoS2 (MoSe2), an intimate contact will be formed between MoS2 (MoSe2) 

and GaN.  

9.2.1.2 Investigation of photocatalytic water-splitting and H2 production mechanism in 

2D/3D heterostructures 

In this task, heterostructure interfaces between the GaN films and layers MoS2 (MoSe2) 

are studied using ab-initio calculations. By comparing the lattice mismatch along 

crystallographic orientations, it is found that the mismatch is quite small between layer 

MoS2 (MoSe2) and GaN and an intimate contact with excellent charge transport in 

vertical direction is predicted. The effects of junction on the charge separation properties 
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of MoS2 (MoSe2)/GaN semiconductor heterostructures will be theoretically determined. 

Several physical mechanisms that need to be modelled in order to understand and predict 

the behaviour of such heterostructures for photocatalysis;14 the relative positions of the 

band edges of materials, which determine the band offsets; the electronic structure of 

materials (density of states), which provide information on the charge separation 

properties of photocatalysts such as electron and hole mobility and information on the 

alignment of bands and the magnitude and effects of any interface dipoles.  

To accurately determine the band offsets of semiconductor heterojunctions, the 

calculations will be directly done by modelling of periodic heterojunctions and 

construction of a supercell MoS2 (MoSe2)/GaN heterostructure. The ab-initio calculations 

will be performed based on the density functional theory (DFT) with the generalized 

gradient approximation (GGA, in the PBE version20) in the plane-wave basis code 

Quantum ESPRESSO Simulation Package.21  

Additionally, a systematic experimental investigation will be conducted to unveil the 

photocatalytic mechanism in a MoS2 (MoSe2)/GaN heterostructures. Similar to the 

proposed mechanism for photocatalytic H2 production from conventional photocatalysts, 

under the excitation of light, photo-induced electrons and holes were produced in the 

conduction band and valance band of both GaN, and MoS2 (MoSe2) semiconductors. 

GaN absorbs only UV light because of its wide band gap. Due to its direct band gap, 

photo electron-hole pairs generate easily. There are three ways to consume photo-induced 

electrons: (a) recombine with holes inside the material (b) recombine with spices on 

particle surface (surface recombination); (c) react with protons to produce H2. The 
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recombination of the photo-induced electrons and holes resulted in low photocatalytic 

water-splitting and H2 production activity.   

When MoS2 (MoSe2) layers are synthesized on the surface of GaN with RTP process, 

vertical heterojunction with an intimate contact with high charge transfer properties 

between MoS2 (MoSe2) and GaN semiconductors are formed.22 The band positions of the 

p-type GaN and MoS2 (MoSe2) are appropriate as shown in Fig. 9.3, photo-induced 

electrons produced in GaN conduction band transferred to MoS2 conduction band. 

Therefore, recombination possibility of electron-hole pairs will decrease and more 

electrons can be used to produce H2. Moreover, single layer MoS2 serves as an ideal 

candidate for an efficient photocatalyst powering the visible sunlight-driven 

photocatalytic water splitting reaction. While, the absorption edge of GaN falls in the UV 

region, with small band gap of MoS2 (MoSe2) (Eg(MoS2) ~ 1.89 eV, Eg(MoSe2) ~ 1.4 eV), the 

MoS2(MoSe2) can absorb more than 10% of solar light and MoS2 (MoSe2)/GaN 

heterostuctures can absorb most of solar light including UV and visible lights. A broader 

absorption of the solar energy spectrum will highly improve photocatalytic activity. 
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Figure 9.1.  Proposed mechanism for photocatalytic water splitting in MoS2 (MoSe2)/GaN 
2D/3D heterostructures with graphene layers as cocatalyst. 

Previous computational and experimental results confirmed the high activity of adsorbed 

H+ ions of unsaturated active S atoms on exposed edge of MoS2 (MoSe2). Therefore, the 

photogenerated electrons could directly react with H+ ions to form H2. However, active 

catalytic sites of layered MoS2 (MoSe2) crystals are located at the sulfur edge (Fig. 9.1), 

while basal planes are catalytically inert. The electrical conductivity and activity for 

photocatalytic H2 production can be improved through decreasing the MoS2 (MoSe2) 

layers and adding other conducting materials.  

The advantageous material properties of graphene, including large exposed area (2630 m2 

g-1, calculated value), high charge mobility (200,000 cm2 V-1 s-1), and high mechanical  
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and chemical strength, make graphene a promising candidate not only to replace 

traditional co-catalysts but also to improve the stability of catalyst underlayers. It is a 

widely held belief that graphene can quickly separate and transfer photo-generated 

electrons from the conduction band of photocatalysts. Under UV-visible light, the 

photogenerated electrons of GaN are excited and transferred to the MoS2 surface. Some 

of the electrons approaching the edge of MoS2 (MoSe2) are directly reacted with 

adsorbed H+ in H2O to produce H2 under the catalytic activities of unsaturated active S 

atoms, which can accept electrons and act as active sites for H2 production. Other 

electrons on the MoS2 (MoSe2) basal planes, which have no catalytic activity, can be 

transferred to the edge of MoS2 (MoSe2) through the graphene sheets and then react with 

adsorbed H+ at the edges or graphene surface to form H2 (see Fig. 9.1). Therefore, in this 

task, graphene will be chosen as co-catalyst to further enhance the catalytic efficiency 

and stability of MoS2 (MoSe2) /GaN for H2 reduction. 

9.2.1.3 Characterization of the performance of photocatalytic water splitting and H2 

production of proposed heterostructures  

Micro Raman spectroscopy in aqueous environment will be applied to microscopically 

investigate the stability of MoS2 (MoSe2)/GaN under photocatalytic conditions, 

respectively. The photodegradation process can be monitored in situ by real-time Raman 

(Renishaw InVia Reflection) utilizing the irradiation laser. The diffuse reflectance spectra 

of the GaN and MoS2 (MoSe2)/GaN samples will be recorded on a UV-visible 

spectrophotometer (UV-2500PC; Shimadzu Corp., Japan) and the absorption spectra will 

be obtained from the reflectance spectra. The range of light absorption plays a very 

important role in photocatalysis. To understand the interaction between GaN and MoS2 
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(MoSe2), X-ray photoelectron spectroscopy (XPS) measurement (XPS, Thermo 

Scientific, ESCALAB 250Xi) will be also carried out to investigate the surface 

composition and the electronic states of the catalysts (GaN, MoS2 (MoSe2), MoS2 

(MoSe2) /GaN, and Graphene/MoS2/GaN). Photoelectrochemical activity measurements 

including cyclic voltammetry and stability will be carried out using a three electrodes 

configuration on a CHI 760D (Shanghai Chenhua, China) electrochemical workstation. 

Therefore, both high-resolution AFM (Bruker Dimension ICON SPM) and cross-

sectional TEM (Hitachi H7500 transmission electron microscope) will be used to observe 

the morphological and interfacial contact of the photcatalyst structures under 

photocatalytic conditions, with an aim to verify the proposed interfacial photocatalytic 

water splitting mechanism.  

The H2 evolution of photocatalytic heterostructure devices will be separately carried out 

with samples suspended in an appropriate amount of different aqueous solutions in a 

Pyrex glass reaction cell and the reaction cell will be connected to a gas-closed system 

with a gas-circulated pump.  A 300 W xenon (Xe) lamp is used as light source to generate 

visible (λ > 420 nm) and UV lights with different long-pass filters. The evolved H2 was 

analyzed using an online gas chromatograph (GC-8A, Shimadzu Co., Japan) equipped 

with a thermal conductivity detector. The apparent quantum yield (AQY) and STH 

conversion efficiency i.e ECE (energy conversion efficiency) will be measured by 

applying a Xe lamp (300 W). The number of incident photons was measured using a 

radiant power energy meter (Ushio spectroradiometer, USR-40). The AQY and STH will 

be calculated using the following equations: 
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ሺ%ሻ	ܻܳܣ  ൌ 	 ସ	ൈ	ே௨௠௕௘௥	௢௙	௘௩௢௟௩௘ௗ	ுଶ	௠௢௟௘௖௨௟௘௦
୒୳୫ୠୣ୰	୭୤	୧୬ୡ୧ୢୣ୬୲	୮୦୭୲୭୬ୱ

 × 100,                                                      (1) 

ሺ%ሻ	ܪܶܵ  ൌ ୖሺୌଶሻ	ൈ	୼ୋ୰

୔ൈୗ
ൈ10,                                                                                            (2) 

Where R(H2), ΔGr, P and S denote the rate of H2 evolution during the water splitting 

reaction, the reaction Gibbs energy of the water splitting reaction, the energy intensity of 

the AM1.5G solar irradiation and the irradiated sample area, respectively. 
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