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In this thesis, we investigate a number of problems related to spanning substructures

of graphs. The first few chapters consider extremal problems related to the number

of forest-like structures of a graph. We prove that one can find a threshold graph

which contains the minimum number of spanning pseudoforests, as well as rooted

spanning forests, amongst all graphs on n vertices and e edges. This has left the

open question of exactly which threshold graphs have the minimum number of these

spanning substructures. We make progress towards this question in particular cases

of spanning pseudoforests.

The final chapter takes on a different flavor—we determine the complexity of

a problem related to Hamilton cycles in hypergraphs. Dirac’s theorem states that

graphs with minimum degree at least half the size of the vertex set are guaranteed to

have a Hamilton cycle. In 1993, Karpińksi, Dahlhaus, and Hajnal proved that for any

c < 1
2
, the problem of determining whether a graph with minimum degree at least

cn has a Hamilton cycle is NP-complete. The analogous problem in hypergraphs, for

both a Dirac-type condition and complexity, are just as interesting. We prove that for

classes of hypergraphs with certain minimum vertex degree conditions, the problem

of determining whether or not they contain an `-Hamilton cycle is NP-complete.
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Chapter 1

Introduction

In this dissertation, we investigate several problems related to extremal graph and

hypergraph theory. A well-known result in this area is that of Turán, who determined

the maximum number of edges in a graph which does not contain a complete subgraph

of a given size [31]. Questions in extremal graph theory are often in the same spirit,

asking what is the maximum or minimum value of a combinatorial property of a

graph subject to a given constraint. The result of Turán maximizes the number of

edges while fixing the number of vertices and the property ‘Does not contain a Kr+1’.

Throughout, we aim to develop more information about graphs with a number of

fixed properties (e.g., size, order, minimum degree) which minimize the number of

certain spanning substructures.

All graphs considered here are finite, undirected, and simple. We use standard

graph theory notation (see [3]) and a glossary of terms can be found in Chapter 6.

Given a graph G with vertex set V (G) and edge set E(G), let n(G) := |V (G)| and

e(G) := |E(G)|. For S ⊆ V (G), define G[S] as the subgraph of G induced by the

vertex set S. We will let G\S denote the graph G[V (G)\S]. The closed neighborhood

of v ∈ V (G) will be written as N [v] = N(v) ∪ {v}. The disjoint union of two graphs



2

G and H will be written as G ∪H. For H ⊆ G and v ∈ V (H), let

NH(v) = {u ∈ V (H) : uv ∈ E(H) ⊆ E(G)}.

For H ⊆ G, we call H a spanning subgraph of G if V (H) = V (G).

1.1 Minimizing Spanning Forest-like Structures

In recent years, many problems in extremal graph theory have been considered con-

cerning maximizing or minimizing the number of substructures in a graph while fixing

the number of vertices and edges. We will denote the class of graphs with n vertices

and e edges by Gn,e. One aspect of these types of problems is to characterize the

extremal graphs, that is, the graphs which attain the bounds. In many problems of

this type, it has been shown that the maximum or minimum value of the parameter

in question is attained within the class of threshold graphs.

Definition 1.1.1. A graph G = (V,E) is called a threshold graph when there exist

non-negative reals wv, v ∈ V and t such that for U ⊆ V ,

∑
v∈U

wv ≤ t

if and only if U is an independent set.

The name threshold comes from the idea that taking U to be a pair of vertices, t acts

as a threshold for whether or not those two vertices are adjacent. There are many

equivalent definitions of threshold graphs, two of which will be used in the following

chapters.

Theorem 1.1.1 ([10, 12]). For a graph G = (V,E), the following are equivalent:
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1. G is a threshold graph;

2. For every pair of vertices x, y ∈ V ,

N(x)\{y} ⊆ N(y)\{x} or N(y)\{x} ⊆ N(x)\{y};

3. G can be constructed from a single vertex by adding vertices one at a time that

are either isolated or dominating.

Chapters 2 and 4 will utilize Part 3.2 of Theorem 1.1.1 and in Chapter 3 we will make

use of Part 3.

Example 1.1.1. Note that using Part 3.2 of Theorem 1.1.1, we can show that the

graph G shown in Figure 1.1.1 is threshold. We can check that N(v0) = N(v1) and

N(v0)\{v2} = ∅ ⊆ N(v2)\{v0} and similarly for v0 and v2.

v0 v1

v2

Figure 1.1: A threshold graph G.

Using Part 3 of Theorem 1.1.1, we can create a new threshold graph from G by

sequentially adding isolated or dominating vertices. The threshold graph in Figure

1.1.1 is derived from G by first adding v3 as an isolated vertex, and then adding v4

as a dominating vertex.
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v0v4 v1v2v3

Figure 1.2: A threshold graph constructed by adding an isolated and then a domi-
nating vertex to the threshold graph G.

In particular, threshold graphs have been shown to contain the minimizer of the

number of certain spanning substructures such as spanning trees and perfect match-

ings ([34],[24]). Motivated by these results, Chapters 2 and 4 prove that threshold

graphs also contain the minimizer of the number of spanning pseudoforests and rooted

spanning forests, respectively, of a fixed size. In Chapter 3, we dive deeper into the

specific case of size 5 pseudoforests and determine properties of threshold graphs

which contain the maximum number of size 5 pseudoforests.

1.2 Hamilton Cycles in Hypergraphs

In the final chapter, we study a problem in extremal hypergraph theory from the per-

spective of computational complexity theory. Generally speaking, in computational

complexity theory we ask how fast can an algorithm solve a given problem relative

to the length of the input. A problem is in P if it can be solved in polynomial time,

while a problem is in NP if solutions to the problem can be verified in polynomial

time. While it is clear that problems in P are contained in NP, one of the most

famous unsolved problems of mathematics is whether or not there exist problems in

NP which are not in P. We call a problem NP-complete if it is in NP and all other

problems in NP can be reduced to an instance of it in polynomial time. A polynomial

time algorithm for an NP-complete problem would then imply that NP is contained

in P, and so NP-complete problems are of particular interest in this area. A general
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outline of how one shows that a given decision problem is NP-complete is discussed

in Chapter 5.1.

Let’s assume that the problem of determining whether or not a graph has property

Q is NP-complete. Suppose there exists an extremal graph theory result which states

that for some graph parameter λ(·), k is minimum such that every graph G with

λ(G) ≥ k has property Q. If we consider the decision problem of determining whether

or not a graph has property Q, then the extremal result implies that this problem

restricted to graphs G with λ(G) ≥ k can be solved in polynomial time by always

returning ‘YES’. Since the problem with no restrictions on λ is NP-complete, it is

interesting to determine the threshold at which the problem becomes hard. Thus, for

some i < k, one may ask what is the complexity of deciding whether or not a graph

G with λ(G) ≥ i has property Q.

The problem we will investigate is a hypergraph analogue to Dirac’s theorem. A

hypergraph with vertex set V is a generalization of a graph in which the edge set,

E, is any collection of subsets of V . Recall that a Hamilton cycle in a graph G is a

spanning subgraph of G which is a cycle. Dirac’s theorem states that any n-vertex

graph with minimum degree at least n/2 is guaranteed to contain a Hamilton cycle.

The problem of determining whether or not a graph contains a Hamilton cycle is one

of Karp’s celebrated 21 NP-complete problems [20]. On the other hand, Dirac’s the-

orem implies that restricting this problem to n-vertex graphs with minimum degree

at least n/2 can be done in polynomial time by simply returning ‘YES’. In 1993,

Dahlhaus, Hajnal, and Karpiński studied the complexity of the problem of determin-

ing whether or not a graph with minimum degree below n/2 contains a Hamilton

cycle. Interestingly enough, they showed that restricting this problem to graphs any-

where below this minimum degree threshold is NP-complete. Let HAM(2, c) be the

problem of determining whether or not an n-vertex graph with minimum degree at



6

least cn contains a Hamilton cycle.

Theorem 1.2.1 ([8]). For all c < 1
2
, HAM(2, c) is NP-complete.

The problem of generalizing Dirac’s theorem to the hypergraph setting has been

of increased interest in recent years. In particular we will be considering k-uniform

hypergraphs, that is a hypergraph whose edges are all of size k. There are many

ways in which one may define a cycle in a hypergraph—we will focused the notion

of an `-cycle. A k-uniform hypergraph, also called a k-graph, C is an `-cycle if its

vertices can be cyclically ordered in such a way that each edge of C consists of k

consecutive vertices and each pair of consecutive edges overlaps in exactly ` vertices.

Thus a Hamilton `-cycle of a k-uniform hypergraph H is a subhypergraph of G that

is an `-cycle and contains all of the vertices of H. For n ≥ 1, let [n] denote the set of

integers {1, . . . , n}.

Example 1.2.1. The following three hypergraphs are all on the vertex set [6].

(i) E(H1) = {{1, 2}, {2, 3}, {3, 4}, {4, 5}, {5, 6}}

H1 is a 1-cycle in a 2-graph (i.e., a graph).

(ii) E(H2) = {{1, 2, 3}, {3, 4, 5}, {5, 6, 1}}

H2 is a 1-cycle in a 3-graph.

(iii) E(H3) = {{1, 2, 3}, {2, 3, 4}, {3, 4, 5}, {4, 5, 6}, {5, 6, 1}, {6, 1, 2}}

H3 is a 2-cycle in a 3-graph.

The notion of minimum degree also has various interpretations. For a k-uniform

hypergraph H let

δi(H) = min
S⊆V (H), |S|=i

|{e ∈ E(H) : S ⊆ e}|.
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Figure 1.3: Hypergraphs H1, H2, and H3 respectively.

The special cases of i = k−1 and i = 1 are often referred to as the minimum codegree

and the minimum vertex degree respectively. The following theorem is an approximate

hypergraph analogue to Dirac’s theorem. Various cases of the theorem were proved

by Rödl, Ruciński, and Szemerédi [32, 33], Kühn and Osthus [28], Keevash, Kühn,

Mycroft, and Osthus [22], Hàn and Schacht [15], Kühn, Mycroft, and Osthus [27].

Theorem 1.2.2 ([32, 33, 28, 22, 15, 27]). For any k ≥ 3, 1 ≤ ` ≤ k − 1, and η > 0,

there exists n0 such that if n ≥ n0 is divisible by k−` and H is a k-uniform hypergraph

on n vertices with

δk−1(G) ≥


(
1
2

+ η
)
n, if k − ` divides k,(

1
d k
k−`
e(k−`) + η

)
n, otherwise,

then H contains a Hamilton `-cycle.

The corresponding complexity problem has also been of recent interest. In [21],

Karpiński, Ruciński, and Szymańska show that the problem of determining a Hamil-

ton (k − 1)-cycle in a k-uniform hypergraph with minimum codegree
(
1
k
− ε
)
n is

NP-complete. This leaves a gap between n
k

and n
2

for the complexity result and the

Dirac threshold given in Theorem 1.2.2. Very recently, Garbe and Mycroft closed this

gap with the following result.
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Theorem 1.2.3 ([11]). For any k ≥ 3, there exists a constant C such that the

Hamilton (k − 1)-cycle decision problem remains NP-complete when restricted to n-

vertex k-uniform hypergraphs H with δk−1(H) ≥ n
2
− C.

Here, we focus on Dirac-type conditions regarding the minimum vertex degree,

as opposed to minimum codegree. There are very few cases in which the analogue

to Dirac’s theorem has been proven for vertex degree. Specifically, Han and Zhao

in [16] determine lower bounds for what the Dirac-type condition should be but it

is not proven to be tight. Let h`(k, n) denote the smallest integer h such that every

n-vertex k-uniform hypergraph H satisfying δ1(H) ≥ h contains a Hamilton `-cycle.

In 2016, Han and Zhao proved the following bounds on h.

Theorem 1.2.4 ([16]). Let 1 ≤ ` ≤ k − 1 and t = k − 1, then

h`(k, n) ≥


(

1−
(
t
b t
2
c

) d t
2
ed

t
2 e(b t

2
c+1)b

t
2 c

(t+1)t
+ o(1)

)(
n
t

)
, if ` = k − 1,

(1− bt,k−`2−t + o(1))
(
n
t

)
, otherwise,

where bt,k−` equals the largest sum of k−` binomial coefficients taken from {
(
t
0

)
, . . . ,

(
t
t

)
}.

We prove that when restricted to graphs with certain vertex degree thresholds, the

problem of determining Hamiltonicity with respect to 1-cycles and 2-cycles is NP-

complete. As in the case of Karpiński, Ruciński, and Szymańska, our results leave us

with a hardness gap for which the hardness of the problem remains unknown.
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Chapter 2

Minimizing Spanning Pseudoforests

In this chapter we answer an extremal question concerning forest-like structures called

pseudoforests. We are particularly interested in determining which graphs in Gn,e, the

set of all graphs on n vertices and e edges, have the minimum number of spanning

pseudoforests. The main result is that we can find a threshold graph which minimizes

the number of spanning pseudoforests with a fixed number of edges.

2.1 Definitions and Results

Recall that a forest is a graph such that every (connected) component is a tree. A

family of graphs that is closely related to trees is the family of unicyclic graphs. A

unicyclic graph H is almost a tree since it can be written as H = T + e for some

tree T and some edge e 6∈ E(T ). Moreover, such a graph contains exactly one cycle.

The following notion of a pseudoforest, attributed to Dantzig [9], defines a forest-like

graph that allows for components to be trees or almost trees.

Definition 2.1.1. A pseudoforest is a graph such that every component is either a

tree or unicyclic.

We are particularly interested in pseudoforest subgraphs of some host graph G.

As is often used for trees and forests, we can define a notion of what it means for a
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pseudoforest to be spanning in G.

Definition 2.1.2. The spanning pseudoforests of a graph G are the pseudoforest

subgraphs which contain all the vertices of G.

One way to partition the set of all spanning pseudoforests of G is according to

the number of edges. Let P`(G) denote the set of spanning pseudoforests of G with

exactly ` edges. In the case of a spanning forest, the number of edges determines the

number of components. In particular, a forest of order n with n−k edges has exactly

k components. When we consider the set of spanning pseudoforests of G with exactly

` edges, this is not necessarily the same as the set of spanning pseudoforests of G

with exactly n − ` components. In fact, these two sets of graphs are not necessarily

comparable with respect to containment as illustrated in Example 2.1.1.

Example 2.1.1.

The following table contains the elements of P4

( )
.

Spanning Trees

Other

The original graph itself is a 1-component spanning pseudoforest although it does not

lie in P4(G) = Pn−1(G).
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For a clearer picture of of this partition, we will determine if P`(G) is nontrivial

for a given `. The set P0(G) is exactly the set containing the empty graph on the

vertex set V (G). An interesting question one may then ask is “What is the maximum

` such that P`(G) 6= ∅?” Certainly we should only consider ` ≤ e(G) and note that

for ` ≥ 1, P`(G) 6= ∅ implies P`−1(G) 6= ∅ since the family of pseudoforests is closed

under edge deletion.

Lemma 2.1.1. Let G be a graph on n vertices, then

max{` : P`(G) 6= ∅} = n− ct(G)

where ct(·) counts the number of tree components of G.

Proof. The result is clear if G is a tree since G is itself a pseudoforest and e(G) =

n−ct(G). Now suppose G is connected and not a tree, then it contains some spanning

tree T . T is acyclic and G contains at least one cycle, hence there exists some edge

e 6∈ E(T ) that lies on a cycle in G. Then T + e is a spanning pseudoforest of G with

exactly e(T ) + 1 = n edges, therefore Pn(G) 6= ∅.

Let P be a spanning pseudoforest of G. Note that P can be derived from some

spanning forest of G by adding at most one edge per component. Fix one such

spanning forest, F , and let c(F ) denote the number of components of F . Recall that

this implies F has n− c(F ) edges, therefore

e(P ) ≤ e(F ) + c(F ) = n.

Finally suppose G is disconnected and let G1, . . . , Gk be the components of G. A

spanning pseudoforest P of G can be written as P = ∪ki=1Pi where Pi is a spanning

pseudoforest of Gi for each i. From above we have P`(Gi) is nonempty if ` ≤ n(Gi)−1
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when Gi is a tree and ` ≤ n(Gi) otherwise. Therefore P`(G) is nonempty if

` ≤
∑

Gi is a tree

(n(Gi)− 1) +
∑

Gi is not a tree

n(Gi) = n− cT (G).

We are interested in determining which graphs with a fixed number of vertices

and edges minimize |P`|. The main result of this chapter is the following.

Theorem 2.1.1. For any n and e and any ` ∈ {0, . . . , n}, there exists a threshold

graph H ∈ Gn,e such that

|P`(H)| = min
G∈Gn,e

|P`(G)|.

We will postpone the proof of this theorem to Section 2.5. Our main tool will be

a graph operation referred to as compression, or the Kelmans transformation (see,

e.g., [5]).

Definition 2.1.3. Let x and y be two vertices of a graph G. The compression of

G from x to y, denoted Gx→y, is the graph obtained from G by removing all edges

between x and N(x)\N [y] and adding all edges between y and N(x)\N [y].

The important outcome of this size-preserving operation is that it alters the neigh-

borhoods of two vertices so that one neighborhood contains the other. In light of this,

it is well-known that threshold graphs can be obtained from any graph via a series of

compressions (see Corollary 2.2.2). We also remark that compressing G from x to y

will result in the same graph, under isomorphism, as compressing from y to x. That

is, Gx→y ∼= Gy→x.

The following result of Satyanarayana, Schoppmann, and Suffel [34] shows that

compression decreases the number of spanning trees.
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Figure 2.1: Compression of G from x to y.

Theorem 2.1.2 ([34]). For x, y ∈ V (G),

|T (Gx→y)| ≤ |T (G)|.

where T (·) denotes the number of spanning trees.

We take a similar approach by showing that compression also decreases the number

of spanning pseudoforests with a fixed number of edges. The proof of Theorem 2.1.1

serves to be interesting as it utilizes Proposition 2.3.1 which is a more precise result

of Theorem 2.1.2.

2.2 Notation and Preliminary Lemmas

We will first set up notation and note some properties of compression that will be

used throughout. Fix G ∈ Gn,e and x, y ∈ V (G). Since the following subsets of

neighborhoods of x and y will be referred to often, we will denote them as

Axy = NG(x)\NG(y)

Axy = NG(y)\NG(x)

Axy = NG(x) ∩NG(y).

We define two edge replacement functions c, d. Let c : E(G) → E(Gx→y) and d :
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E(Gx→y)→ E(G) be given by

c(e) =


e∆{x, y} if e 6∈ E(Gx→y)

e otherwise

and d(e) =


e∆{x, y} if e 6∈ E(G)

e otherwise.

Note that ∆ is the standard symmetric difference operator. We remark that these two

functions do indeed depend on G, x, y, that is, c = cG,x,y and d = dG,x,y. For simplicity

of notation, we will proceed by suppressing the dependence on G, x, y. For H ⊆ G,

let c(H) be the graph with vertex set V (H) and edge set {c(e) : e ∈ E(H)} and

similarly define d(H). Note that c(G) = Gx→y and d(Gx→y) = G, henceforth we will

denote Gx→y as c(G). We will refer to c as compression and d as decompression. As

the names imply, the following lemma states that c and d are indeed inverse functions

of one another.

Lemma 2.2.1. Let H ⊆ G and H ′ ⊆ c(G). Then d(c(H)) = H and c(d(H ′)) = H ′.

Proof. By definition of c and d, V (d(c(H))) = V (c(H)) = V (H) and

E(d(c(H))) = {d(e) : e ∈ E(c(H))} = {d(c(e)) : e ∈ E(H)}.
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Thus, it suffices to show d(c(e)) = e for all e ∈ E(H). Note

d(c(e)) =


c(e)∆{x, y} if c(e) 6∈ E(G)

c(e) otherwise

=



(e∆{x, y})∆{x, y} if e 6∈ E(Gx→y) and (e∆{x, y}) 6∈ E(G)

e∆{x, y} if e ∈ E(Gx→y) and e 6∈ E(G)

e∆{x, y} if e 6∈ E(Gx→y) and (e∆{x, y}) ∈ E(G)

e if e ∈ E(Gx→y) and e ∈ E(G)

and since e ∈ E(H) ⊆ E(G), e does not fall into cases 2 nor 3. Thus,

d(c(e)) =


(e∆{x, y})∆{x, y} if e 6∈ E(Gx→y) and (e∆{x, y}) 6∈ E(G)

e if e ∈ E(Gx→y) and e ∈ E(G)

= e

which concludes the proof for H. Similarly, the result follows for H ′.

Corollary 2.2.1. Suppose H1, H2 ⊆ G and H ′1, H
′
2 ⊆ c(G). If H1 6= H2 and H ′1 6= H ′2,

then c(H1) 6= c(H2) and d(H ′1) 6= d(H ′2).

Proof. This follows directly from Lemma 2.2.1.

An important property about compression and decompression is that they both

behave nicely under induced subgraphs. For example, any edge which does not contain

x nor y is fixed by both c and d.



16

Lemma 2.2.2. For S ⊆ V (G),

1. c(G)[S] = c(G[S]).

2. d(G)[S] = d(G[S]).

3. If {x, y} ⊆ S, then c(G\S) = d(G\S) = G\S.

Proof. 1. Note that V (c(G)[S]) = S = V (c(G[S])). We also have

E(c(G)[S]) = {e ∈ E(c(G)) : e ⊆ S}

= {c(e) : e ∈ E(G) and e ⊆ S}

= {c(e) : e ∈ E(G[S])}

= E(c(G[S]))

since c only depends on G, x, y.

2. Follows similarly from the proof of 1.

3. Since {x, y} ⊆ S, we have G\S ⊆ G and G\S ⊆ c(G). Thus by definition of c and

d, for e ∈ E(G\S) we have c(e) = d(e) = e.

It is also handy to note how compression and decompression affects connectivity

of subgraphs (of both G and c(G)). For H ⊆ G, it is clear that NH({x, y}) =

Nc(H)({x, y}), but the following lemma states that vertices in a component with either

x or y remain in a component with either x or y under compression and decompression.

Given v ∈ V (H), let Hv be the connected component of H containing v.
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Lemma 2.2.3. Let S ⊆ E(G) such that for e ∈ S either x ∈ e or y ∈ e. Define a

function q on E(G) by

q(e) =


e∆{x, y} if e ∈ S

e otherwise.

Then for H ⊆ G, q(Hx ∪ Hy) = q(Hx ∪ Hy)x ∪ q(Hx ∪ Hy)y. A similar statement

holds for S ⊆ E(c(G)) and H ⊆ c(G).

Proof. Let H ⊆ G. First suppose z ∈ V (Hy) and let Pzy be the shortest path in Hy

from z to y. If q(Pzy) 6= Pzy, then there exists some e ∈ S such that e ∈ E(Pzy). If

Pzy = zw1 · · ·wky with wi 6= x for i = 1, . . . , k and wky ∈ S, then z is connected to

x via the path q(Pzy) = zw1 · · ·wkx. Otherwise, x ∈ V (Pzy) and so Pzy contains the

subgraph P ′zy = zw1 · · ·wjx with wi 6= x for i = 1, . . . , j and wjx ∈ S. Then z is in

q(Hx ∪Hy)y since it is connected to y via the path q(P ′zy) = zw1 · · ·wjy.

Now suppose z ∈ V (Hx)\V (Hy) and let Pzx be the shortest path in Hx from z to

x. If q(Pzx) 6= Pzx, then Pzx = zv1 · · · vkx with vi 6= y for i = 1, . . . , k and vkx ∈ S.

Then z is in c(Hx ∪Hy)y since it is connected to y via the path c(Pzx) = zv1 · · · vky.

Thus, c(Hx ∪ Hy) ⊆ c(Hx ∪ Hy)x ∪ c(Hx ∪ Hy)y. Applying the same proof with

S ′ = {e∆{x, y} | e ∈ S} implies that equality holds.

Perhaps most importantly, any graph can be transformed into a threshold graph

by repeated application of compression. Note that if G is threshold, then for all

x, y ∈ V (G), Gx→y ∼= G. Corollary 2.2.2 given below appears in [24], but we will

include the proof for completeness. To prove this, we will use Lemma 2.2.4 which
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states that the sum of the squares of the degrees, denoted by

d2(G) =
∑

v∈V (G)

d(v)2,

strictly increases under a non-trivial compression.

Lemma 2.2.4 ([6]). If x, y ∈ V (H) such that N(x)\{y} 6⊆ N(y) and N(y)\{x} 6⊆

N(x), then d2(H) < d2(Hx→y).

Corollary 2.2.2 ([24]). Let G be a collection of graphs such that if H ∈ G and

x, y ∈ V (H), then Hx→y ∈ G. If H ∈ G satisfies

d2(H) = max
H′∈G

d2(H
′),

then H is threshold.

Proof. Suppose otherwise, then there exists u, v ∈ V (H) such that N(u)\{v} and

N(v)\{u} are incomparable. ThenHu→v ∈ G and by Lemma 2.2.4, d2(H) < d2(Hu→v).

This contradicts the assumption that H attains the maximum value of d2 and there-

fore H is threshold.

2.3 Compression Acting on Spanning Trees

In what follows we will use the previous setup where x and y are fixed vertices of

G and we are considering the compression c : E(G) → E(Gx→y). In order to prove

Theorem 2.1.1, we will need a more precise result of Theorem 2.1.2. Given T ∈ T (G),

note that c(T ) is either a tree or unicyclic. If c(T ) is unicyclic, let CT denote its unique

cycle and note that by definition of c, CT contains y. Let T ∗(G) denote the set of
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spanning trees T whose image under compression is unicyclic and CT contains an

edge of the form yw for w ∈ Axy.

Proposition 2.3.1. |T (G)| − |T (c(G))| = |T ∗(G)|.

Proof. Let

T1(G) := {T ∈ T (G) | c(T ) ∈ T (c(G))}

T2(G) := T (G)\T1(G) = {T ∈ T (G) | c(T ) 6∈ T (c(G))}

T1(c(G)) := {T ∈ T (c(G)) | d(T ) ∈ T (G)}

T2(c(G)) := T (c(G))\T1(c(G))) = {T ∈ T (c(G)) | d(T ) 6∈ T (G)}.

By Corollary 2.2.1,

|T1(G)| = |T1(c(G))|.

For T ∈ T2(G), since c(T ) contains n− 1 edges and c(T ) 6∈ T (c(G)) then c(T ) is

not connected. Lemma 2.2.3 implies c(T ) contains exactly two components c(T )x and

c(T )y such that c(T )y contains exactly one cycle. In particular, the cycle contains

two edges yz and yw for w ∈ Axy and z ∈ Axy ∪ Axy. We will partition T2(G) in the

following way:

T ∗∗(G) := {T ∈ T2(G) | yz ∈ E(CT ) where z ∈ Axy}

T ∗(G) := T2(G)\T ∗∗(G).

It remains to prove

|T ∗∗(G)| = |T2(c(G))|.

For T ∈ T ∗∗(G), let wT ∈ Axy and zT ∈ Axy such that ywT , yzT ∈ E(CT ). Consider
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the following edge replacement function s : E(T )→ E(c(G)) given by

s(e) =


e∆{x, y} if e 6∈ E(c(G))

e∆{x, y} if e = ywT

e otherwise.

We will show s is a bijection from T ∗∗(G) to T2(c(G)).

Claim. s(T ) ∈ T2(c(G)).

Proof. By Lemma 2.2.3, every vertex is connected to either x or y in s(T ). Also,

s(T ) contains the path from x to y given by CT − ywT + xwT so that s(T ) has

exactly one component. The number of edges is preserved under s, therefore s(T )

is a spanning tree. It is clear the s(T ) ∈ T2(c(G)), since d(s(T )) contains the cycle

CT − ywT − yzT + xwT + xzT .

We first show s is injective. If for T, T ′ ∈ T ∗∗(G), T 6= T ′, we have s(T ) = s(T ′)

then either wT 6= wT ′ or zT 6= zT ′ . If zT = zT ′ , then s(T ) contains two paths from x to

zT via CT−ywT+xwT and CT ′−ywT ′+xwT ′ . Similarly, if wT = wT ′ then there are two

paths from y to wT via CT − ywT and CT ′ − ywT ′ . Finally, if wT 6= wT ′ and zT 6= zT ′

then there are two paths from x to y via CT − ywT + xwT and CT ′ − ywT ′ + xwT ′ .

Therefore |T ∗∗(G)| ≤ |T2(c(G))|.

Now we will show for every T ∗ ∈ T2(c(G)), T ∗ = s(T ) for some T ∈ T ∗∗(G). If

T ∗ ∈ T2(c(G)), then d(T ∗) is not a spanning tree of G. By Lemma 2.2.3, it must be

that d(T ∗) contains exactly two components d(T ∗)x and d(T ∗)y. Furthermore, the

unique cycle in d(T ∗) contains two edges incident to x: xz and xw for z ∈ Axy and

w ∈ Axy. Since y and x are not in the same connected component in d(T ∗), this

implies yw 6∈ E(d(T ∗)). Therefore d(T ∗)−xw+ yw contains a path from y to x via z
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and w so that d(T ∗)− xw+ yw ∈ T (G) and in particular d(T ∗)− xw+ yw ∈ T ∗∗(G)

and s(d(T ∗)− xw + yw) = T ∗. We may now conclude |T ∗∗(G)| = |T2(c(G))|.

2.4 Compression Acting on Spanning Pseudoforests

We will now prove that compression decreases the number of spanning pseudoforests

by carefully mapping elements of P`(c(G)) into P`(G) injectively.

Theorem 2.4.1. For each ` ∈ [n] and x, y ∈ V (G),

|P`(Gx→y)| ≤ |P`(G)|.

Proof. For i = 1, 2, let P(i)
` (G) and P(i)

` (c(G)) denote the pseudoforests in P`(G) and

P`(c(G)) respectively such that x and y are in exactly i components. Given P a

pseudoforest of c(G), let P ∗(x, y) denote the set of all paths from x to y in P such

that the neighbor of y along that path is in Axy. Define

E∗(P ) = {xw |xw ∈ E(S) where S ∈ P ∗(x, y)}

and the edge replacement function tP : E(c(G))→ E(G)

tP (e) =


e∆{x, y} if e ∈ E∗(P )

e∆{x, y} if e 6∈ E(G)

e otherwise.

Given from Proposition 2.3.1, let ϕ : T (c(G)) → (T (G)\T ∗(G)) be a bijective func-
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tion. Now we define Ψ : P(1)
k (c(G))→ P(1)

k (G) as

Ψ(P ) =


ϕ(P ) if P ∈ T (c(G))

d(P ) if d(P ) is connected and unicyclic

tP (P ) otherwise.

If P is unicyclic and d(P ) is disconnected, then all paths in P from x to y of the form

xw1 · · ·wky such that w1 ∈ Axy and wk ∈ Axy. Then tP (xw1 · · ·wky) = yw1 · · ·wkx

and so x and y are in the same component. By Lemma 2.2.3, this implies tP (P ) is

connected and since tP preserves the number of edge, tP (P ) is unicyclic.

We will now show Ψ is injective.

Lemma 2.4.1. If P is unicyclic and d(P ) is not connected, then all paths between x

and y in tP (P ) are of the form

xw1 · · ·wky

such that w1 ∈ Axy, wk ∈ Axy, and xwk ∈ E∗(P ). Furthermore if P1 6= P2, then

sP1(P1) 6= sP2(P2).

Proof. Note that every path from x to y in sP (P ) must use an edge e such that

e∆{x, y} ∈ E∗(P ).

If not, then that path is also in d(P ) and so d(P ) is connected. Hence it suffices to

check that no path is of the form

xw1 · · ·wky
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such that xwk ∈ E∗(P ) and w1 ∈ Axy. Since xwk ∈ E∗(P ), the exists some z ∈ Axy

such that

xwkv1 · · · vkzy

is a path in P . Then xw1 · · ·wkv1 · · · vkzy is a walk in P . This then implies there

exists a path in P from x to y of the form xw1 · · · zy, and since z ∈ Axy it must be

that w1 ∈ E∗(P ). Hence xw1 6∈ sP (P ) which yields a contradiction.

From this, we can define an inverse of sP . Given P̂ = sP (P ), let P̂ (x, y) be the

set of all paths between x and y and set

E−1(P ) = {yw | yw ∈ E(S) where S ∈ P̂ (x, y)}.

Then

s′
P̂

(P ) =


e∆{x, y} if e ∈ E−1(P )

e∆{x, y} if e 6∈ E(c(G))

e otherwise.

Since E−1(P ) = {e∆{x, y} | e ∈ E∗(P )}, we have s′
P̂

(sP (P )) = P .

Suppose P1 6= P2 and Ψ(P1) = Ψ(P2) = P̂ . By Lemma 2.4.1, we may assume

Ψ(P1) = sP1(P1) and Ψ(P1) = d(P2). P̂ is connected and therefore by Lemma 2.4.1

contains a path of the form

yw1 · · ·wkx

such that w1 ∈ Axy and wk ∈ Axy. Since P2 is connected, then by Lemma 2.4.1 there

exists a path between x and y in P2 of the form

xz1 · · · zjy
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such that z1 ∈ Axy and zj ∈ Axy. Note w1 6= z1 since yw1 ∈ E(P̂ ) implies yw1 ∈

E(P2), but yw1x cannot be a path in P2.

Case 1. Assume wk = zj. Then yw1 · · ·wk = zj · · · z1x is a walk from y to x in P̂ .

This implies that there exists a path from y to x of the form yw1 · · · z1x and since

w1, z2 ∈ Axy this contradictions Lemma 2.4.1.

Case 2. Assume wk 6= zj. Notice xwk · · ·w1y is a path in P2. Since wk ∈ Axy and

w1 ∈ Axy, this implies xwk ∈ E∗(P2) so that xwk 6∈ E(sP2(P2)) = E(P̂ ) which is a

contradiction.

Let P ∈ P(2)(c(G)) ∪ P(2)(G). Call P Type 1 if Px is unicyclic and x lies on the

unique cycle in Px. In this case, let xC1 and xC2 be the neighbors of x in the cycle

and EC(Px) = {xxC1 , xxC2 }. Call P Type 2 if Px is unicyclic and P is not Type

1. Let x̂ be the unique neighbor of x in Px such that (Px\{x})x̂ is unicyclic and let

ES(Px) = {xx̂}. If Py is unicyclic, we similarly define Type 3, yC1 , yC2 , EC(Py), Type

4, ŷ, and ES(Py). If Px and Py are trees, call P Type 5.

Let jP : E(c(G))→ E(Kn) be defined as

jP (e) =


e∆{x, y} if e 6∈ E(G)

e∆{x, y} if e ∈ EC(Px) ∪ ES(Px) ∪ EC(Py) ∪ ES(Py)

e otherwise.
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Then define Ψ : P(2)
k (c(G))→ Pk(G) by

Ψ(P ) =



jP (P ) if P is Type 1 or 2 and ŷ ∈ Axy

jP (P ) if P is Type 1 or 2 and yC1 , y
C
2 ∈ Axy

jP (P ) if yC1 ∈ Axy and yC2 ∈ Axy

d(P ) otherwise.

Claim. For P1, P2 ∈ P(2)(c(G)), if P1 6= P2, then Ψ(P1) 6= Ψ(P2).

Proof. If P is Type 1 or 2 and ŷ ∈ Axy, then jP (P ) is Type 1 and (c(jP (P )))y contains

two cycles so that jP (P ) 6= d(P ′) for P ′ ∈ P(2)
k (c(G)). If P is Type 1 or Type 2 and

yC1 , y
C
2 ∈ Axy, then jP (P ) is Type 2 and both neighbors of x on the cycle of jP (P )

are in Axy. In this case, (c(jP (P )))y also contains two cycles. If P is Type 3 and

yC1 ∈ Axy and yC2 ∈ Axy, then jP (P ) is Type 2 and x has a neighbor on the cycle of

jP (P ) which is in Axy. Also, if jP (P ) = d(P ′) then since c(jP (P )) contains a path

from x to y via the edges yyC1 and xyC2 , P ∈ P(1)(c(G)).

It suffices to show that if P ∈ P(2)
k (c(G)) such that

Ψ(P ) = s(P ) ∈ P(1)
k (G),

then Ψ(P ) 6= Ψ(P ′) for P ′ ∈ P(1)
k (c(G)).

Case 1. Ψ(P ) = T ∈ T (G). Then Px is a tree and Py is unicyclic such that yC1 ∈ Axy

and yC2 ∈ Axy. Then c(T ) contains a cycle of the form yyC1 · · · yC2 y with yC1 ∈ Axy

and yC2 ∈ Axy. This implies T ∈ T ∗(G) and thus by definition of ϕ, T 6= Ψ(P ′) for

P ′ ∈ P(1)(c(G)).
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Case 2. Px and Py are unicyclic such that yC1 ∈ Axy and yC2 ∈ Axy. If P ′ ∈ P(1)(c(G))

such that Ψ(P ′) = Ψ(P ), then c(Ψ(P ′)) = Px t Px disconnected implies Ψ(P ′) =

sP ′(P
′). But yyC1 · · · yC2 x is a path in sP ′(P

′) with yC1 ∈ Axy and so this contradicts

Lemma 2.4.1.

2.5 Proof of Theorem 2.1.1

Recall that Theorem 2.1.1, our main theorem in this chapter, is that there exists a

threshold graph in Gn,e with the minimum number of size k spanning pseudoforests

for all k.

Proof of Theorem 2.1.1. Select a graph H from Gn,e with |Pk(H)| minimal. By

Theorem 2.4.1, compression does not increase the number of spanning pseudoforests

and so any compression of H is also minimal. Among these, pick H with d2(H)

maximal. By Corollary 2.2.2, H is threshold.

2.6 Future Directions

There are still many open problems related to this question. For instance, it would

be very interesting to know which graphs attain the minimum value of |P`|. For small

` the problem is trivial since the smallest connected graph (in terms of size) that is

neither a tree nor unicyclic is K4 − e, often referred to as the diamond graph. Thus

for ` ∈ {0, 1, . . . , 4}, any subgraph of G with ` edges will be a pseudoforest.

Remark. For G ∈ Gn,e and ` ∈ {0, 1, . . . , 4},

|P`(G)| =
(
e

`

)
.
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Hence the first interesting case is ` = 5. Since the diamond graph is the only

graph with 5 edges that is neither a tree nor unicyclic, we have

|P5(G)| =
(
e

5

)
− |{H ⊆ G : H ∼= K4 − e}|

which leads us to the following question.

Question. Which threshold graph(s) in Gn,e have the maximum number of diamond

subgraphs?

In Chapter 3 we investigate the minimum version of this question, seeking out

which threshold graphs have the maximum value of |P5|. For larger values of `, the

proof of Lemma 2.1.1 can be reverse-engineered to show that |Pn(G)| counts the

number of decompositions of G into vertex-disjoint unicyclic graphs. The question

then of finding the graphs with the minimum value of |Pn|, although very interesting,

seems to be more difficult than the same question for smaller values of `.
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Chapter 3

Threshold Graphs with Few Diamond Subgraphs

Recall from Section 2.6, counting the number of size 5 pseudoforests in a graph from

Gn,e can be done by counting the number of K4 − e subgraphs (depicted in Figure

3). The question of maximizing the number of K4 subgraphs over all graphs in Gn,e

has been answered by Cutler and Radcliffe in [7]—they proved that there is indeed

a threshold graph which maximizes the number of cliques of any fixed size. Let Tn,e

denote the set of threshold graphs with n vertices and e edges. Keough and Radcliffe

later prove in [25] that amongst all graphs in Tn,e, the colex graph minimizes the

number of independent sets of a fixed size.

Definition 3.0.1. The colexicographic order, <C , is defined byA <C B if max(A∆B) ∈

B. The colex graph C(n, e) is the graph with vertex set [n] and edge set consisting of

the first e edges in colex order on E(Kn).

This result implies that the complement of the colex graph minimizes the number

of cliques of a fixed size. In particular, the complement of the colex graph has the

fewest number of K4 subgraphs among all threshold graphs with n vertices and e

edges.

As noted in Section 2.6, there is a threshold graph which minimizes the number of

size 5 pseudoforests and hence maximizes the number of K4−e (diamond) subgraphs
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Figure 3.1: The diamond subgraph.

among all graphs in Gn,e. Let D(·) denote the number of diamond subgraphs. In this

chapter we make progress in determining which graphs in Tn,e minimize D(·).

3.1 Definitions and Results

Recall that one definition of a threshold graph is a graph that can be built sequentially

from the empty graph by adding vertices one at a time, where each new vertex is either

isolated or dominating. We can then code a threshold graph on n vertices by a binary

code of length n. Letting 1 stand for a dominating vertex and 0 stand for an isolated

vertex, construct the threshold graph by reading the binary string from right to left.

The threshold graph with binary code σ will be denoted T (σ) and we will refer to σ

as the code of the graph T (σ). Given a threshold graph code αn−1 · · ·α1α0, let vertex

vi be the vertex added by the digit αi. We will call a vertex vi dominating if αi = 1

and isolated otherwise. Note that a dominating (resp. isolated) vertex is dominating

(resp. not adjacent to) vertices preceding it in the build, but not necessarily all other

vertices of the graph. In particular, the neighborhood of a vertex vk of T (αn · · ·α1∗)

is given by

N(vk) =


{vi : i > k and αi = 1} if αk = 0,

{vi : i < k} ∪ {vi : i > k and αi = 1} if αk = 1.

(3.1)
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Example 3.1.1. The following is the threshold graph with code 1001101.

1 1 100 1
v0v4 v1v2v3v5

Figure 3.2: T (1001101)

One may have noticed that the same threshold graph is produced if the first

vertex, v0 is isolated or dominating, e.g., T (1001101) is the same graph as T (1001100).

Because of this, we may instead think of a threshold graph as a binary sequence of

length n− 1 and put a ∗ at the far right end to represent the first vertex added when

building the graph. With this, the code of the graph in Figure 3.1.1 can instead be

written as 100110∗.

When considering a string of 0s or 1s, we will abbreviate such a string by a single

digit with a superscript indicating the length of the string. For example, 000 will be

replaced with 03. The main result of this chapter is the following.

Proposition 3.1.1. If G ∈ Tn,e has the minimum number of diamond subgraphs,

then one of the following holds

(i) e ≤ n− 1,

(ii) G = T (1p0q∗),

(iii) G = T (1p0q1∗),

(iv) G = T (1p0q10r110r2 · · · 10rs10t∗) and t ≥ 1,

(v) G = T (1p0q10r110r2 · · · 10rs10t1∗) and t ≥ 3, or
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(vi) G = T (1p∗)

where p, q ≥ 1, and ri ≥ 4 for all i ∈ [s].

We will postpone the proof of this proposition to Section 3.3.

Example 3.1.2. The following are examples of threshold codes of the form described

in Theorem 3.1.1.

(i) 11010000010000∗ = 1201105104∗

(ii) 100100001000000010001∗ = 11021041071031∗

(iii) 11101∗ = 13011∗

It is important to note that this does not characterize the codes of threshold graphs

with the minimum number of diamond subgraphs. Indeed, there are threshold graphs

whose codes are of the form given above that do not have the minimum number of

diamond subgraphs. It is also worth noting that given any n ≥ 0, e ≤
(
n
2

)
, one can

construct a threshold graph that is of one of the forms given in Proposition 3.1.1.

Lemma 3.1.1. Given integers n and e such that n ≥ 0 and 0 ≤ e ≤
(
n
2

)
, there exists

a graph in Tn,e of one of the forms given in Proposition 3.1.1.

Proof. Suppose e ≥ n and let s(k) = kn− 1
2
k(k + 1). If e = s(n− 1), then T (1n−1∗)

is a threshold graph of order n and size s(n− 1) = e of the form (vi) in Proposition

3.1.1. Otherwise, let 1 ≤ k ≤ n− 2 be the maximum integer such that s(k) ≤ e.

e− s(k) < s(k + 1)− s(k)

= (k + 1)n− 1

2
(k + 1)(k + 2)−

(
kn− 1

2
k(k + 1)

)
= n− k − 1.
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Therefore since n − k − (e − s(k) + 1) ≥ 1, T (1k0n−k−(e−s(k)+1)10e−s(k)) is indeed a

threshold graph of order n and size s(k) + (e − s(k)) = e. Note that this graph is

either of the form (ii), (iii), or (iv).

3.2 Local Moves Acting on Diamond Subgraphs

Kloks, Kratsch, and Müller showed in [26] that the number of diamond subgraphs

can be computed straightforwardly using the graph’s adjacency matrix A.

Lemma 3.2.1 ([26]).

D(G) =
∑

{x,y}∈E(G)

(
(A2)x,y

2

)
=

∑
{x,y}∈E(G)

(
|N(x) ∩N(y)|

2

)

Here, we will instead use the code of a threshold graph to determine the number of

diamond subgraphs it contains. Since the diamond graph has order 4, we will count

copies of this graph inside induced subgraphs of order 4. The following well-known

property of threshold graphs states that induced subgraphs of threshold graphs are

also threshold, and their codes can easily be obtained from the host graph’s code.

Lemma 3.2.2. Let G = T (αn−1 · · ·α1∗). For ik > · · · > i1

G[{vik , . . . , vi1}] = T (αik · · ·αi1).

Proof. Let S = {vik , . . . , vi1} and G′ = G[S], we will first show G′ is threshold using

Part of Theorem 1.1.1. Since G is threshold, given v, v′ ∈ V (G′) ⊆ V (G) either

NG(v) ⊆ NG[v′] or NG(v′) ⊆ NG[v]. Without loss of generality, assume NG(v) ⊆

NG[v′]. Note NG′(v) = NG(v) ∩ S and NG′(v
′) ∩ S, thus NG′(v) ⊆ NG′(v) which

proves G′ is threshold.
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We will now show that if G′ = T (α′ik · · ·α
′
i2
∗), then α′ij = αij for all j ∈ {2, . . . , k}.

We proceed by induction on k− j. For j = k, if αik = 1, then dG′(vik) = k− 1. Since

the threshold graph G′ has order k, it has a vertex of degree k − 1 only if α′ik = 1.

Otherwise αik = 0 which implies dG′(vik) = 0 and hence α′ik = 0. Now suppose

0 < j < k and α′i` = αi` for all ` < j. Using Equation 3.1 for NG(vj) we have that

the neighborhood of vij in G′ is given by

NG′(vij) = NG(vij) ∩ S

=


{vi : i > ij and αi = 1} ∩ S if αij = 0,

({vi : i < ij} ∪ {vi : i > ij and αi = 1}) ∩ S if αij = 1

=


{vi` : ` > j and αi` = 1} if αij = 0,

({vi` : ` < j} ∪ {vi` : ` > j and αi` = 1}) if αij = 1.

=


{vi` : ` > j and α′i` = 1} if αij = 0,

({vi` : ` < j} ∪ {vi` : ` > j and α′i` = 1}) if αij = 1.

Applying Equation 3.1 forNG′(vij), this implies αij = α′ij . ThereforeG′ = T (αik · · ·αi2∗).

The lemma below states that one can easily identify a diamond subgraph from

the code of a threshold graph.

Lemma 3.2.3. Let σ∗ = αn−1 · · ·α1∗ be the code of some n-vertex threshold graph
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G. Then, given i4 > i3 > i2 > i1,

D(G[{vi4 , vi3 , vi2 , vi1}]) =


1, if αi4αi3αi2αi1 = 110∗

6, if αi4αi3αi2αi1 = 111∗

0, otherwise.

where ∗ is either 0 or 1.

Proof. Suppose G[{vi4 , vi3 , vi2 , vi1}] contains a copy of the diamond graph and notice

by Lemma 3.2.2, G[{vi4 , vi3 .vi2 , vi1}] = T (αi4αi3αi2αi1). Vertices vi4 and vi3 have

degree at least 2 in T [vi4 , vi3 , vi2 , vi1 ] only if αi4 = αi3 = 1. Since every vertex in the

diamond graph has degree at least 2, we must have αi4 = αi3 = 1. If αi3 = 0, then

T (αi4αi3αi2αi1)
∼= K4 − e. Otherwise, αi3 = 1 and so T (αi4αi3αi2αi1)

∼= K4. In this

case, removing any of the 6 edges of K4 gives a copy of the diamond graph.

Example 3.2.1. The set of vertices {v5, v2, v1, v0} in the graph below form a 110∗

code and hence induce a K4 − e.

0 0 1 0 *1
v0v4 v1v2v3v5

Corollary 3.2.1. If G ∈ Tn,e contains no diamond subgraphs, then e ≤ n.

Proof. Suppose G ∈ Tn,e does not contain a copy of K4 − e. If there only exists

one i such that αi = 1 in the code of G, then e = i ≤ n − 1. Otherwise there exists

αi = αj = 1 in the code of G such that i < j and j 6= 0. We must have that j = 1, else
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αiαjα1α0 = 11 ∗ ∗ and so by Lemma 3.2.3, G contains a copy of K4 − e. Thus there

are exactly two 1s in the code of G: αi and α1. Since i ≤ n− 1, e = i+ 1 ≤ n.

In what follows we will determine how local changes in a threshold graph’s code

will affect the number of diamond subgraphs it contains. Notice that changing an

01 to a 10 in a threshold graph’s code corresponds to adding the edge between the

corresponding vertices. The lemma below calculates exactly how many diamond

subgraphs are gained by changing an 01 to a 10 in the code. Let `(·) denote the

length of a binary string and w(·) denote the number of 1s in a binary string.

Lemma 3.2.4. Let σ and ρ be (possibly empty) binary strings, then

D(T (σ10ρ)) = D(T (σ01ρ)) + w(σ)`(ρ) + 5

(
w(σ)

2

)
.

Proof. Let u and v be the vertices added by the string 01 where u is isolated and v

is dominating in T (σ01ρ). Note that T (σ10ρ) = T (σ01ρ) + uv, hence

D(T (σ10ρ)) = D(T (σ01ρ)) + |{H ⊆ T (σ10ρ) : H ∼= K4 − e, uv ∈ E(H)}|.

Let x and y be vertices such that T (σ10ρ) induced on {x, y, u, v} contains a copy of

K4− e. Since u has no neighbors in V (T (ρ)), Lemma 3.2.3 implies that one of either

x or y is not in V (T (ρ)). Lemma 3.2.3 also gives that x ∈ V (T (σ)) and y ∈ V (T (ρ))

if and only if x is dominating. There are w(σ)`(ρ) such pairs of {x, y} and each

pair gives exactly one copy of K4 − e using the edge uv. Otherwise x, y ∈ V (T (σ))

which holds if and only if x and y are both dominating. There are
(
w(σ)
2

)
pairs of

dominating vertices x, y and since {u, v, x, y} induces a K4 in T (σ10ρ), there are
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exactly 5 of copies of K4 − e containing the edge uv. Therefore

|{H ⊆ T (σ10ρ) : H ∼= K4 − e, uv ∈ E(H)}| = w(σ)`(ρ) + 5

(
w(σ)

2

)

which concludes the proof.

By changing an 01 to a 10 in the code of a threshold graph in Gn,e, the outcome is

a threshold graph in Gn,e+1. Thus if a code of a threshold graph in Gn,e has a 01 and

a 10 which don’t overlap, changing them to a 10 and an 01 respectively, the resulting

graph will remain in Gn,e. By making these two switches, the following corollary

describes when the resulting graph will have fewer diamond subgraphs.

Corollary 3.2.2. Let σ, τ, ρ be (possibly empty) binary strings, then if w(σ) = 0 or

w(τ) ≥ `(τ)−3
5

D(T (σ01τ10ρ)) ≥ D(T (σ10τ01ρ)).

If w(σ) = 0, then equality only occurs if w(τ) = `(ρ) = 0.

Proof. Letting ρ1 = τ10ρ, then T (σ01τ10ρ) = T (σ01ρ1) and from Lemma 3.2.2 we

have

D(T (σ10ρ1)) = D(T (σ01ρ1)) + w(σ)`(ρ1) + 5

(
w(σ)

2

)
.

Similarly, letting σ2 = σ10τ then D(T (σ10ρ1)) = D(T (σ210ρ)) and by Lemma 3.2.2,

we have

D(T (σ210ρ)) = D(T (σ201ρ)) + w(σ2)`(ρ) + 5

(
w(σ2)

2

)
.
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Hence since ρ1 = τ10ρ and σ2 = σ10τ we have

D(T (σ01τ10ρ))

= D(T (σ01ρ1))

= D(T (σ10ρ1))−
(
w(σ)`(ρ1) + 5

(
w(σ)

2

))
= D(T (σ10ρ1))−

(
w(σ)(`(τ) + `(ρ) + 2) + 5

(
w(σ)

2

))
= D(T (σ210ρ))−

(
w(σ)(`(τ) + `(ρ) + 2) + 5

(
w(σ)

2

))
= D(T (σ201ρ)) + w(σ2)`(ρ) + 5

(
w(σ2)

2

)
−
(
w(σ)(`(τ) + `(ρ) + 2) + 5

(
w(σ)

2

))
= D(T (σ10τ01ρ)) + w(σ2)`(ρ) + 5

(
w(σ2)

2

)
−
(
w(σ)(`(τ) + `(ρ) + 2) + 5

(
w(σ)

2

))
.

The difference

D(T (σ01τ10ρ))−D(T (σ10τ01ρ))

is given by

w(σ2)`(ρ) + 5

(
w(σ2)

2

)
−
(
w(σ)(`(τ) + `(ρ) + 2) + 5

(
w(σ)

2

))
= (w(σ) + w(τ) + 1)`(ρ) + 5

(
w(σ) + w(τ) + 1

2

)
−
(
w(σ)(`(τ) + `(ρ) + 2) + 5

(
w(σ)

2

))
= w(τ)`(ρ) + `(ρ)− w(σ)`(τ)− 2w(σ) + 5

((
w(σ) + w(τ) + 1

2

)
−
(
w(σ)

2

))
= w(τ)`(ρ) + `(ρ)− w(σ)`(τ)− 2w(σ) + 5

(
w(σ)w(τ) + w(σ) +

w(τ)2 + w(τ)

2

)
=

5

2
w(τ)

(
w(τ) +

2

5
`(ρ) + 1

)
+ `(ρ)− w(σ)(`(τ)− 5w(τ)− 3). (3.2)

Therefore

D(T (σ01τ10ρ))−D(T (σ10τ01ρ)) ≥ 0

if w(σ) = 0 or w(τ) ≥ `(τ)−3
5

.
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3.3 Proof of Proposition 3.1.1

We will now use Corollary 3.2.2 to prove the main result of this chapter which nar-

rows down the types of codes for threshold graphs which have the minimum number

of diamond subgraphs.

Proof of Proposition 3.1.1. Let G = T (αn−1 · · ·α1∗) ∈ Gn,e such that G minimizes

the number of diamond subgraphs. Further suppose e ≥ n.

We will first show αn−1. Let k be maximum such that αk = 1 and assume by

way of contradiction that k < n − 1. Since e ≥ n and αk−1 6= 1, there exists some

minimum j such that 0 < j < k and αj = 1. We may apply Corollary 3.2.2 to G with

σ1 = αn−1 · · ·αk+2 = 0n−2−k

αk+1αk = 01

τ1 = αk−1 · · ·αj+1

αjαj+1 = 10

ρ1 = αj+1 · · ·α0∗ = 0j−2∗

since w(σ1) = 0, which implies

D(G) = D(T (σ101τ110ρ1)) ≤ D(T (σ110τ101ρ1)).

Also note this is an equality only if w(τ1) = 0 and `(ρ1) = 0, in which case G =

T (0j10k1∗) which implies e ≤ n − 1. Hence T (σ110τ101ρ1) ∈ Gn,e has strictly fewer

diamond subgraphs than G which yields a contradiction. Therefore αn−1 = 1.

We will now show that strings of 1s of length at least two will only appear at the
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far left of the code. Again we suppose to the contrary that we can write

αn−1 · · ·α1∗ = σ201k0ρ2

such that k ≥ 2. Then applying Corollary 3.2.2 to G with

τ2 = 1k−2

we have w(τ2) = `(τ) ≥ `(τ)−3
5

. From our previous argument, since αn−1 = 1, then

w(σ) ≥ 1 and so Equation 3.2 implies

D(G) = D(T (σ201τ210ρ2)) < D(T (σ210τ201ρ2)).

Therefore the code of G only contains a string of more than one 1 at the leftmost

part of the code.

Finally, we will show that besides at the two far ends of the code, 1s are separated

by a long string of 0s. In particular, suppose that

αn−1 · · ·α1∗ = σ3010j10ρ3

with j ≤ 3. We may apply Corollary 3.2.2 to G with τ3 = 0j since w(τ3) = 0 ≥ `(τ3)−3
5

,

this gives

D(G) = D(T (σ301τ310ρ3)) ≤ D(T (σ310τ301ρ3)).

Again note that αn−1 = 1 so that w(σ3) ≥ 1, hence using Equation 3.2 we can deduce

that this inequality is strict unless j = 3 and ρ3 is empty. Therefore strings of 0s of
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length three or fewer only appear in one of the following cases:

(i) Following the first string of 1s on the leftmost side of the code.

(ii) Preceding α0 = ∗.

(iii) String of length exactly 3 preceding α1 = 1.

3.4 Future Directions

There are two clear open questions that result from this work. The first is to find an

exact characterization of graphs in Tn,e which have the minimum number of diamond

subgraphs. We believe that this would likely require a very different approach from

the one given here. Evidence from examples generated by a program in Sage suggest

a correlation between codes of graphs in Tn,e and Tn,e+1 which have the minimum

number of diamond subgraphs. It would be interesting to determine if such a diamond

minimizer in Tn,e+1 can be built from an existing diamond minimizer in Tn,e.

Referring back to the original question in Section 2.6, we would also like to know

which graphs in Tn,e have the largest number of diamond subgraphs. For n ≤ 13, the

maximizer is the colex graph in Gn,e. If we were to apply the common approach to

showing that the extremal graph is colex to this situation, we would need to show

(i) for all j ≥ 1, D(T (σ101j01ρ)) ≤ D(T (σ01j+20ρ)), and

(ii) for all j ≥ 2, D(T (σ10j1ρ)) ≤ D(T (σ010j−210ρ)).

Corollary 3.2.2 implies that the former of these two statements is true, while Equation

3.2 can be used to cook up an example in which the latter statement is false. This

suggests that another approach must be used, or that for larger values of n the
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extremal graphs may not be colex. The latter speculation is perhaps strengthened by

the fact that colex graphs often do not maximize the sum of the number of induced

K4s and the number of induced (K4 − e)s. Thus, it seems unnatural to think that

weighting an induced copy of K4 by 6, which is how one counts diamond subgraphs,

would affect the extremal graphs so drastically.
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Chapter 4

Minimizing Rooted Spanning Forests

Recall the result of Satyanarayana, Schoppmann, and Suffel in Theorem 2.1.2 which

states that compression decreases the number of spanning trees in a graph. Since

compression does not change the order of the graph, this implies that compression

also decreases the number of rooted spanning trees. A rooted spanning tree is a

spanning tree with exactly one vertex labeled, hence the number of rooted spanning

trees in a graph G of order n is given by nT (G). In this chapter we generalize

this result by showing that for all k, compression decreases the number of rooted

spanning forests with exactly k components. This then proves that there exists a

threshold graph in Gn,e which minimizes this set of parameters simultaneously.

This result is seen in a paper by Csikvári published in 2011, but Section 4.2 will

illustrate a flaw in the proof given there. We then proved the result with a different

approach than that of the original paper, but later communication with Csikvári

revealed that the result had been proven even prior to his paper in a series of lectures

given by Kelmans between the years 1992 and 2009 [23]. Although our proof we

give in the following was proven independently, it aligns with the proof of Kelmans

highlighting that this is a natural argument for this result.



43

4.1 Definitions and Results

Let Fk(G) be the set of spanning forests of G with exactly k components. When

considering only the special case of k = 1, we may denote the set of spanning trees

instead by T (G). Given F ∈ Fk(G) with components T1, . . . , Tk, let γ(F ) =
∏k

i=1 ni

where ni is the number of vertices in the tree Ti.

Definition 4.1.1. A rooted spanning forest is a spanning forest in which exactly one

vertex from each component is labeled.

Hence the number of rooted spanning forests of G with exactly k components is given

by ∑
F∈Fk(G)

γ(F ).

Rooted spanning forests appeared in a generalization of the Matrix Tree Theorem

by Chelnokov and Kelmans in 1974. This generalization determined the coefficients

of the characteristic polynomial of the Laplacian in terms of the number of rooted

spanning forests the graph contains.

Definition 4.1.2. The Laplacian matrix of a graph, denoted L(G), is an integer-

valued matrix whose rows and columns are indexed by the vertices and whose entries

are given by

L(G)ij =


d(vi) if i = j

−1 if vi ∼ vj

0 otherwise.
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Example 4.1.1. For the diamond graph, shown on the left, its Laplacian matrix is

given on the right.

v1 v2

v4 v3

L(K4 − e) =



3 −1 −1 −1

−1 2 −1 0

−1 −1 3 −1

−1 0 −1 2


Theorem 4.1.1 ([4]). Denote the characteristic polynomial of the Laplacian matrix

of G by Φ(G, x) =
∑n

k=0(−1)n−kck(G)xk. Then

ck(G) =
∑

F∈Fk(G)

γ(F ),

where if F has components T1, . . . , Tk with n(Ti) = ni, γ(F ) :=
∏k

i=1 ni.

We will refer to ck(G) as the kth Laplacian coefficient, although the coefficient ac-

tually is (−1)n−kck(G). The problem of which graphs have minimal Laplacian co-

efficients for all k has been solved for trees, unicyclic, bicyclic, and tricyclic graphs

([14],[29],[18],[19],[17],[13]). Often the approach is to define a graph operation which

acts monotonically on all Laplacian coefficients—this is also the approach we will take

here.

As in the proof of Theorem 2.1.1, we will first show that compression decreases

the number of k-component rooted spanning forests. In Section 4.5, we will then

prove the main result given below.

Theorem 4.1.2. For each k ∈ [n], if H ∈ Gn,e satisfies

∑
F∈Fk(H)

γ(F ) = min
G∈Gn,e

∑
F∈Fk(G)

γ(F ),



45

then H is threshold.

4.2 Proof of Csikvári

We remark that the following result appeared in [5], but we will show that although

this fact remains true, the original author’s proof was incorrect. Below we follow the

notation outlined in Section 2.2.

Lemma 4.2.1. For each k ∈ [n],

∑
F∈Fk(c(G))

γ(F ) ≤
∑

F∈Fk(G)

γ(F ).

We will postpone the proof of Lemma 4.2.1 to Section 4.4. Given x, y ∈ V (G),

we will consider compression on G from x to y. Let R be a subset of the edge set

{yw |w ∈ Axy} and let

S(G)R = {(T1, T2) |T1, T2 trees, x ∈ V (T1), y ∈ V (T2),

V (T1) ∩ V (T2) = ∅, V (T1) ∪ V (T2) = V (G), R ⊆ E(T1)}

s(G,R, x, y) =
∑

(T1,T2)∈S(G)R

|V (T1)||V (T2)|.

Suppose h = yw is an edge not in R such that w ∈ Axy. In order to use an induction

hypothesis, it was stated that Gx→y−h can be obtained from G−h via a compression

from x to y. This is incorrect, since w is still a neighbor of x but is no longer a neighbor

of y in G − h. Thus (G − h)x→y contains the edge h and c(G) − h does not. Unless

Axy ∪ Axy = ∅, we have Gx→y − h 6= (G − h)x→y. This claim allowed the author to
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Figure 4.1: s(G− h, ∅, x, y) = 4 < 6 = s(Gx→y − h, ∅, x, y)

conclude (by induction)

s(G− h,R, x, y) ≥ s(Gx→y − h,R, x, y).

This inequality also does not hold in general—Figure 4.1 serves as a counterexample.

4.3 Compression Acting on Spanning Forests

Threshold graphs also contain the minimizer of the number of k-component spanning

forests, for there are fewer spanning forests in a graph’s compression than the graph

itself. Although not found in the literature, the proof is straightforward but its general

structure will be used to prove Lemma 4.2.1 in the following section. Let F(G) be

the set of spanning forests of G.

Lemma 4.3.1. There exists some threshold graph H ∈ Gn,e such that

|F(H)| = min
H′∈Gn,e

|F(H ′)|.

Proof. We will first show |F(c(G))| ≤ |F(G)|. For i = 1, 2, let F (i)(G) and F (i)(c(G))

denote the spanning forests of G and c(G) respectively such that x and y are in exactly
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i components. Notice that

|F (1)(c(G))| =
∑

{x,y}⊆S⊂V (G)

|T (c(G)[S])| · |F(c(G)\S)|,

and so Lemma 2.2.2 and Theorem 2.1.2 give

|F (1)(c(G))| ≤
∑

{x,y}⊆S⊆V (G)

|T (G[S])| · |F(G\S)| = |F (1)(G)|.

For F ∈ F (2)(c(G)), since d preserves the number of vertices and edges, Lemma

2.2.3 implies d(F ) ∈ F (2)(G). Therefore by Corollary 2.2.1, |F (2)(c(G))| ≤ |F (2)(G)|

and hence

|F(c(G))| = |F (1)(c(G))|+ |F (2)(c(G))| ≤ |F (1)(G)|+ |F (2)(G)| = |F(G)|.

Select a graph H from Gn,e with |F(H)| minimal. Since compression does not in-

crease the number of spanning forests, any compression of H is also minimal. Among

these, pick H with d2(H) maximal and by Corollary 2.2.2, H is threshold.

4.4 Compression Acting on Rooted Spanning Forests

We will now prove that, for all k, compression decreases the number of k-component

rooted spanning forests. This shows that the result of Lemma 4.2.1 is correct, but the

proof uses techniques unrelated to that of the original (incorrect) proof. Note that

we follow the notation outlined in Section 2.2.

Proof. For i = 1, 2 let F (i)
k (G) and F (i)

k (c(G)) denote the number of spanning forests

in Fk(G) and Fk(c(G)) respectively where x and y are in exactly i components. As
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in the proof of Lemma 4.3.1, we will show for i = 1, 2

∑
F∈F(i)

k (c(G))

γ(F ) ≤
∑

F∈F(i)
k (G)

γ(F ) (4.1)

which implies the result.

First consider the case where x and y are in exactly one component, i.e., i = 1.

Notice that we can rewrite

∑
F∈F(1)(c(G))

γ(F ) =
∑

{x,y}⊆S⊆V (G)

|T (c(G)[S])| · |S| ·

 ∑
F∈Fk−1(c(G)\S)

γ(F )


and similarly for G. Lemma 2.2.2 and Theorem 2.1.2 give

∑
{x,y}⊆S⊆V (G)

|T (c(G)[S])|·|S|·

 ∑
F∈Fk−1(c(G)\S)

γ(F )

 ≤ ∑
{x,y}⊆S⊆V (G)

|T (G[S])|·|S|·

 ∑
F∈Fk−1(G\S)

γ(F )


which implies the inequality in (4.1) for i = 1.

Now suppose that x and y are in exactly two components, i.e., i = 2. Let r :

E(c(G))→ E(c(G)) be the edge replacement function given by

r(e) =


e∆{x, y} if e ∩ {x, y} 6= ∅ and e ∩ Axy 6= ∅

e otherwise.

Let F ∈ F (2)(c(G)), then r(F ) is defined so that

Nr(F )(x) ∩ Axy = NF (y) ∩ Axy and Nr(F )(y) ∩ Axy = NF (x) ∩ Axy.

Note that since r(r(F )) = F , the set of pairs {F, r(F )} partitions the set F (2)(c(G)).
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Thus for each {F, r(F )} we will show

γ(F ) + γ(r(F )) ≤ γ(d(F )) + γ(d(r(F ))).

Let

a =
∑

z∈NF (y)∩Axy

|V ((F\{x, y})z)|

b =
∑

z∈NF (y)∩Axy

|V ((F\{x, y})z)|

cx =
∑

z∈NF (x)

|V ((F\{x, y})z)|

cy =
∑

z∈NF (y)∩Axy

|V ((F\{x, y})z)|.

Then

γ(F ) + γ(r(F )) = (cx + 1)(cy + a+ b+ 1) + (cy + 1)(cx + a+ b+ 1)

= (cx + a+ 1)(cy + b+ 1) + (cy + a+ 1)(cx + b+ 1)− 2ab

≤ (cx + a+ 1)(cy + b+ 1) + (cy + a+ 1)(cx + b+ 1)

= γ(d(F )) + γ(d(r(F ))).

Therefore

∑
F∈F(2)

k (c(G))

γ(F ) ≤
∑

F∈F(2)
k (G)

γ(F )

and so ∑
F∈Fk(c(G))

γ(F ) ≤
∑

F∈Fk(G)

γ(F ).
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In particular, the inequality in Lemma 4.2.1 is strict unless one of Axy or Axy are

empty, i.e., Gx→y ∼= G.

4.5 Proof of Theorem 4.1.2

Recall that Theorem 4.1.2, our main theorem in this chapter, is that there exists a

threshold graph in Gn,e with the minimum number of k-component rooted spanning

forests for all k.

Proof of Theorem 4.1.2. Select a graph H from Gn,e with ck(G) minimal for all k. By

Lemma 4.2.1, compression strictly decreases the Laplacian coefficients of H unless H

is threshold.

4.6 Future Directions

There are still many open problems related to this question. The clear open question

is which graphs attain the minimum value of this set of parameters. We know that

it is not true for all n and e that one graph will minimize ck for all k. In some cases,

the minimum value is either achieved by the lex or colex graph.

Definition 4.6.1. The lexicographic order, <L, on finite subsets of N is defined by

A <L B if min(A∆B) ∈ A. The lex graph L(n, e) is the graph with vertex set [n] and

edge set consisting of the first e edges in lex order on E(Kn).
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For all graphs in Gn,e, cn = 1 and cn−1 = 2e. The coefficient cn−2 counts four times

the number of 2-matchings and three times the number of paths of length 2. Thus

cn−2(G) = 4

(
e

2

)
−
∑

v∈V (G)

(
d(v)

2

)
= 2e2 − e− d2(G)

2
,

and it was shown in [1] that d2 is maximized by either the lex or colex graph. For

e ≤
(
n−1
2

)
, C(n, e) contains no spanning trees and therefore is a minimizer of c1. In

[2], Bogdanowicz proved Boesch’s Conjecture which stated L(n, e) has the minimum

number of spanning trees over all connected graphs in Gn,e and thus is the minimizer

of c1. Therefore the first interesting cases to investigate would be c2 and cn−3. Fur-

thermore, a few graphs on 11 vertices have coefficient cn−3 = c8 smaller than that of

both the lex and colex graph on the same number of vertices and edges. Given k,

it seems that it is a non-trivial problem to determine the graph G ∈ Gn,e for which

ck(G) is minimum.



52

Chapter 5

Hamilton Cycles

A decision problem is one that can be posed as a yes-no question of the input. In this

final chapter we determine that certain decision problems regarding Hamiltonicity

in hypergraphs are NP-complete. In particular we restrict the problem by imposing

a lower bound on the minimum vertex degree of the hypergraphs considered. The

decision problems in question are that of determining the existence of a Hamilton

1-cycle and a Hamilton 2-cycle.

5.1 Definitions and Results

Recall that a k-graph, C is an `-cycle if its vertices can be cyclically ordered in such a

way that each edge of C consists of k consecutive vertices and each pair of consecutive

edges overlaps in exactly ` vertices. Then C is a Hamilton `-cycle of a hypergraph H

if C is a subhypergraph of H and V (C) = V (H). Suppose we are seeking a Hamilton

`-cycle in a k-graph. If we start with an edge e, we know that the next edge must

contain at least ` vertices from e. Thus, it would be nice to know that for every `

elements of the vertex set, there are many edges which contain all ` elements. In

an n-vertex k-graph, there are at most
(
n−`
k−`

)
edges which contain those ` elements.

Motivated by this observation, we generalize the decision problem in Theorem 1.2.3
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to a problem which imposes a minimum `-degree condition on the input graphs.

Definition 5.1.1. Let HAM`(k, c) be the problem of deciding the existence of a

Hamilton `-cycle in a k-uniform hypergraph H with

δ`(H) ≥ c

(
|V (H)| − `
k − `

)
.

The case ` = k − 1 is equivalent to HAM(k, c) studied in [21]. Here we consider

the special case of ` = 1 and hence we are restricting the minimum vertex degree

of the input graphs. We prove the following theorem whose proof can be found in

Section 5.2.

Theorem 5.1.1. For all k ≥ 2 and c < (k−2)!
2(k−1)k−1 , HAM1(k, c) is NP-complete.

We also investigate Hamilton 2-cycles in k-graphs, but were challenged by the

condition on δ2. Instead, we have the following result which restricts the vertex

degree as opposed to δ2.

Proposition 5.1.1. For all c < 3(k−3)!
(k−1)(k−2)k−2 , the problem of deciding the existence

of a Hamilton 2-cycle in a k-graph H with

δ1(H) ≥ c

(
|V (H)| − 1

k − 2

)

is NP-complete.

We postpone the proof of Proposition 5.1.1 to Section proofham2.

Before we move on, we first we remark that an instance in a decision problem is

an input which satisfies the hypothesis. For the problem HAM`(k, C), an instance
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would be a k-graph H with

δ`(H) ≥ c

(
|V (H)| − `
k − `

)
.

A YES-instance in a decision problem is an instance which outputs ‘YES’, and simi-

larly for a NO-instance.

There are two statements to prove in a general approach to proving that a decision

problem, call it X, is NP-complete. The first of which is to prove that the decision

problem itself can be verified in polynomial time. In our case, we need to show that

given a k-graph H and a list of vertices, checking that the list is a Hamilton `-cycle

of H can be done in polynomial time. Indeed, first check that the list of vertices is a

permutation of the vertex set of H. Then check that every n
k−` cyclic shifts by ` of k

consecutive vertices are indeed edges of H.

We must also prove that problem X is just as hard as some other NP-complete

problem, call it Y. Phrased another way, show that if there is a polynomial-time

algorithm for problem X, there is also a polynomial-time algorithm for problem Y.

We do this by taking an instance of Y and transforming it by a polynomial-time

algorithm, to an instance of X. Finally, one must prove that an instance of Y is a

YES-instance if and only if it is transformed by this algorithm to a YES-instance of

X. In the following proofs, it is often the case that the NP-complete problem we use

for Y is HAM(2, 1
2
− ε) for some ε > 0.

5.2 Loose Hamilton Cycles

Recall that Theorem 5.1.1 states that the problem of determining whether or not

a hypergraph with certain minimum vertex degree conditions contains a Hamilton

1−cycle is NP-complete.
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Proof of Theorem 5.1.1. We induct on k. Theorem 1.2.1 proves that the result is true

for k = 2.

Now suppose k ≥ 3, ε > 0 and set ε′ = ε
(
k−2
k−1

)k−1
. Let Hk−1 be an instance of

HAM1(k − 1,
∏k−3

i=1 i

2(k−2)k−2 − ε′) where V (Hk−1) =: A and E(Hk−1) =: Ek−1. Let B be

a set of size n
k−2 disjoint from A and define Hk to be the k-uniform hypergraph on

vertex set A tB and edge set

Ek := {b ∪ e : e ∈ Ek−1, b ∈ B}.

For x ∈ A we have

d1(x) ≥

( ∏k−3
i=1 i

2(k − 2)k−2
− ε′

)(
n− 1

k − 2

)
n

k − 2

and for y ∈ B we have

d1(y) ≥ n

k − 1

( ∏k−3
i=1 i

2(k − 2)k−2
− ε′

)(
n− 1

k − 2

)
.

Since d1(x) ≥ d1(y) we need only check that

d1(y) ≥

( ∏k−2
i=1 i

2(k − 1)k−1
− ε

)(k−1
k−2n− 1

k − 1

)
.
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Note that

d1(y) ≥ n

k − 1

(
(k − 3)!

2(k − 2)k−2
− ε′

)(
n− 1

k − 2

)
=

n(k−1)

(k − 1)!

(
(k − 3)!

2(k − 2)k−2
− ε′

)
=

n(k−1)(
k−1
k−2n− 1

)
(k−1)

(
(k − 3)!

2(k − 2)k−2
− ε′

)(k−1
k−2n− 1

k − 1

)
=

n(n− 1) · · · (n− k + 2)(
k−1
k−2

)k−1
(n− k−2

k−1) · · · (n− k k−2
k−1 + k−2

k−1)

(
(k − 3)!

2(k − 2)k−2
− ε′

)(k−1
k−2n− 1

k − 1

)

=

∏k−2
j=0(n− j)∏k−2

j=0

(
n− (j + 1)k−2

k−1

) ( (k − 2)!

2(k − 1)k−1
− ε
)(k−1

k−2n− 1

k − 1

)
.

Claim.
k−2∏
j=0

(n− j) ≥
k−2∏
j=0

(
n− (j + 1)

k − 2

k − 1

)
Proof of Claim. For 0 ≤ j ≤ k − 2,

(k − 1− (k − 2))j ≤ k − 2(
1− k − 2

k − 1

)
j ≤ k − 2

k − 1

n− j
(
k − 2

k − 1

)
− k − 2

k − 1
≤ n− j

n− (j + 1)

(
k − 2

k − 1

)
≤ n− j.

Therefore

d1(y) =

∏k−2
j=0(n− j)∏k−2

j=0

(
n− (j + 1)k−2

k−1

) ( (k − 2)!

2(k − 1)k−1
− ε′

)(k−1
k−2n− 1

k − 1

)
≥
(

(k − 2)!

2(k − 1)k−1
− ε′

)(k−1
k−2n− 1

k − 1

)
,
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hence Hk is an instance of HAM1(k,
∏k−2

i=1 i

2(k−1)k−1 − ε).

Now we will show Hk−1 is a YES-instance of HAM1(k − 1, (k−3)!
2(k−2)k−2 − ε′) if and

only if Hk is a YES-instance of HAM1(k,
(k−2)!

2(k−1)k−1 − ε). Suppose v1 · · · vn is a loose

Hamilton cycle in Hk−1, i.e., for i ∈
[

n
k−2

]
, {v(i−1)(k−2)+1, . . . , v(i−1)(k−2)+k−1} ∈ Ek−1.

Then consider

v1b1 · · · vk−1b2 · · · vn−k+3b n
k−2
· · · vn

and relabel the vertices u1 · · ·u k−1
k−2

n where for i ∈
[

n
k−2

]
,

u(i−1)(k−1)+1 = v(i−1)(k−2)+1 and u(i−1)(k−1)+2 = bi,

and for j ∈ {3, . . . , k − 1}

u(i−1)(k−1)+j = v(i−1)(k−2)+j−1.

Note for i ∈
[

n
k−2

]
,

{u(i−1)(k−1)+1, . . . , u(i−1)(k−1)+k} = {v(i−1)(k−2)+1, bi, . . . , v(i−1)(k−2)+k−1} ∈ Ek

since

{v(i−1)(k−2)+1, . . . , v(i−1)(k−2)+k−1} ∈ Ek−1.

Therefore u1 · · ·u k−1
k−2

n is a loose Hamilton cycle in Hk.

Now suppose u1 · · ·u k−1
k−2

n is a loose Hamilton cycle in Hk. In order to show this

implies existence of a loose Hamilton cycle in Hk−1, it suffices to show no element

from B is double covered (i.e., no element from B lies in 2 edges of the loose Hamilton

cycle). But since each edge only contains one element of B and there are exactly |B|

edges in a loose Hamilton cycle for Hk, this implies no element of B can be double
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covered. Therefore Hk−1 has a loose Hamilton cycle given by (ui : ui ∈ A).

5.3 2-Hamilton Cycles

In what follows we prove Proposition 5.1.1 which states that the problem of deter-

mining whether or not a hypergraph with certain minimum vertex degree conditions

contains a Hamilton 2−cycle is NP-complete. We will approach this by first estab-

lishing a base case of k = 4 and then proceed by induction on k.

Lemma 5.3.1. For all c < 1
4
, the problem of deciding the existence of a Hamilton

2-cycle in a 4-graph H with

δ1(H) ≥ c

(
|V (H)| − 1

2

)

is NP-complete.

Proof. Let ε > 0 and G be an arbitrary instance of HAM(2, 1
2
− ε′) with ε′ ≥ 2ε.

Call A := V (G) and E2 := E(G). Label the vertices of G as {v1, . . . , vn} and let

B = {b1, . . . , bn} be a set of size n disjoint from A. Define the 4-uniform hypergraph

H4 on the vertex set A tB and edge set

E4 := {{vi, vj, bi, bk} : {vi, vj} ∈ E2, j 6= 1, k ∈ [n]\{i}, bi, bk ∈ B}.

Note that d(v1) ≥
(
1
2
− ε′

)
n(n− 1), and for j ≥ 2 (and n large enough)

d(vj) ≥
((

1

2
− ε′

)
n− 1

)
(n− 1) +

(
1

2
− ε′

)
n(n− 2) ≥ d(v1).
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Also,

d(b1) ≥
(

1

2
− ε′

)
n(n− 1)

and for j ≥ 2

d(bj) ≥
((

1

2
− ε′

)
n− 1

)
(n− 1) + (n− 2)

((
1

2
− ε′

)
n− 1

)
≥ d(v1).

Then

d(v1) ≥
(

1

2
− ε′

)
n(n− 1)

=
2n(n− 1)

(2n− 1)(2n− 2)

(
1

2
− ε′

)(
2n− 1

2

)
=

n(n− 1)

2(n− 1
2
)(n− 1)

(
1

2
− ε′

)(
2n− 1

2

)
≥ 1

2

(
1

2
− ε′

)(
2n− 1

2

)
=

(
1

4
− ε
)(

2n− 1

2

)

and hence H4 is an instance of of LHC2(4,
1
4
).

Now we will show G is a YES-instance of HAM(2, 1
2
− ε′) if and only if H4 is a

YES-instance of LHC2(4,
1
4
− ε). Suppose u1 · · ·un is a Hamilton cycle in G, then

since {vi, vi, vj, bj} ∈ E4 for all i 6= j,,

u1b1u2b2 · · ·unbn

is a Hamilton 2-cycle in H4.

Now assume u1 · · ·u2n is a Hamilton 2-cycle in H4. We will show that given any

integer 1 ≤ ` ≤ n, we have u2`−1 ∈ A and u2` ∈ B. Note that since each edge of H4

contains exactly two elements from each of A and B, there exists some ` such that
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u2`−1 = bi and u2` = bj if and only if there exists some `′ such that u2`′−1 ∈ A and

u2`′ ∈ A. Thus it suffices to show there does not exist an ` such that u2`−1 = bi and

u2` = bj. Suppose otherwise, then

{u2`−3, u2`−2, u2`−1, u2`}, {u2`−1, u2`, u2`+1, u2`+2} ∈ E4

implies

u2`−3, u2`−2, u2`+1, u2`+2 ∈ A.

Furthermore by definition of E4, since

{u2`−3, u2`−2, u2`−1, u2`}, {u2`−1, u2`, u2`+1, u2`+2} ∈ E4

then u2(`−1)−1, u2(`−1), u2(`+1)+1, u2(`+1)+1 ∈ A and by induction we may assume for all

integers 0 ≤ k ≤ n
2
− 2,

u4k+1, u4k+2 ∈ A and u4k+3, u4k+4 ∈ B.

Now there exists some k such that v1 = u4k+1. Then v1 is contained in the edge

{u4k+1, u4k+2, u4k+3, u4k+4} and {u4k, u4k−1, u4k+1, u4k+2}. By definition of E4, every

edge which contains v1 must also contain b1. But u4k+2 is the only vertex in both

edges along with x and since u4k+2 ∈ A, this yields a contradiction. Therefore every

vertex v ∈ A is contained in exactly two edges, which implies (ui : i ∈ A) is a

Hamilton 2-cycle in G.

Proof of Proposition 5.1.1. This proof follows that of Proposition 5.1.1. We induct on

k. Lemma 5.3.1 proves that the result is true for k = 4. Assume k ≥ 5 and that the

statement holds for k − 1. Let ε > 0 and set ε′ = (k−2)k−3

(k−3)k−2 ε. Let Hk−1 be an instance
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of LHC2(k − 1, 3(k−4)!
(k−2)(k−3)k−3 − ε′) where V (Hk−1) =: A and E(Hk−1) =: Ek−1. Let B

be a set of size n
k−3 disjoint from A and define Hk to be the k-graph on vertex set

A tB and edge set

Ek := {b ∪ e : e ∈ Ek−1, b ∈ B}.

For x ∈ A we have

d1(x) ≥
(

3(k − 4)!

(k − 2)(k − 3)k−3
− ε′

)(
n− 1

k − 3

)
n

k − 3

and for y ∈ B we have

d1(y) ≥ n

k − 1

(
3(k − 4)!

(k − 2)(k − 3)k−3
− ε′

)(
n− 1

k − 3

)
.

Since d1(x) ≥ d1(y) we need only check that

d1(y) ≥
(

3(k − 3)!

(k − 1)(k − 2)k−2
− ε
)(

n− 1

k − 2

)
.

Note that

d1(y) ≥ n

k − 1

(
3(k − 4)!

(k − 2)(k − 3)k−3
− ε′

)(
n− 1

k − 3

)
=

n(k−2)

(k − 2)!

(
3(k − 4)!

(k − 1)(k − 3)k−3
− (k − 2)ε′

)
=

n(k−2)(
k−2
k−3n− 1

)
k−2

(
3(k − 4)!

(k − 1)(k − 3)k−3
− (k − 2)ε′

)(k−2
k−3n− 1

k − 2

)

=

∏k−2
j=0(n− j)∏k−2

j=0

(
n− (j + 1)k−3

k−2

) ( 3(k − 3)!

(k − 1)(k − 2)k−2
− (k − 3)k−2

(k − 2)k−3
ε′
)(k−2

k−3n− 1

k − 2

)

Claim.
k−2∏
j=0

(n− j) ≥
k−2∏
j=0

(
n− (j + 1)

k − 3

k − 2

)
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Proof of Claim. For 0 ≤ j ≤ k − 3, First note

(k − 2− (k − 3))j ≤ k − 3(
1− k − 3

k − 2

)
j ≤ k − 3

k − 2

n− j
(
k − 3

k − 2

)
− k − 3

k − 2
≤ n− j

n− (j + 1)

(
k − 3

k − 2

)
≤ n− j.

Then for k ≥ 5 and n large enough,

n(n− k + 2) ≥
(
n− k − 3

k − 2

)(
n− (k − 1)(k − 3)

k − 2

)
.

Therefore

d1(y) =

∏k−2
j=0(n− j)∏k−2

j=0

(
n− (j + 1)k−3

k−2

) ( 3(k − 3)!

(k − 1)(k − 2)k−2
− (k − 3)k−2

(k − 2)k−3
ε′
)(k−2

k−3n− 1

k − 2

)
≥
(

3(k − 3)!

(k − 1)(k − 2)k−2
− ε
)(k−3

k−2n− 1

k − 2

)
,

hence Hk is an instance of LHC2(k,
3(k−3)!

(k−1)(k−2)k−2 − ε).

Now we will show Hk−1 is a YES-instance of LHC2(k − 1, 3(k−3)!
(k−3)(k−3)k−3 − ε′) if

and only if Hk is a YES-instance of LHC2(k,
3(k−3)!

(k−1)(k−2)k−2 − ε). Suppose v1 · · · vn is

a Hamilton 2-cycle in Hk−1, i.e., for i ∈
[

n
k−3

]
, {v(i−1)(k−3)+1, . . . , v(i−1)(k−3)+k−1} ∈

Ek−1. Then consider

v1v2b1 · · · vk−1b2 · · · vn−k+4b n
k−3
· · · vn



63

and relabel the vertices u1 · · ·u k−2
k−3

n where for i ∈
[

n
k−3

]
,

u(i−1)(k−2)+1 = v(i−1)(k−3)+1

u(i−1)(k−2)+2 = v(i−1)(k−3)+2

u(i−1)(k−2)+3 = bi

and for j ∈ {4, . . . , k − 2}

u(i−1)(k−2)+j = v(i−1)(k−3)+j−1.

Note for i ∈
[

n
k−3

]
,

{u(i−1)(k−2)+1, . . . , u(i−1)(k−2)+k} = {v(i−1)(k−3)+1, v(i−1)(k−3)+2, bi, . . . , v(i−1)(k−3)+k−1} ∈ Ek

since

{v(i−1)(k−3)+1, . . . , v(i−1)(k−3)+k−1} ∈ Ek−1.

Therefore u1 · · ·u k−2
k−3

n is a Hamilton 2-cycle in Hk.

Now suppose u1 · · ·u k−2
k−3

n is a Hamilton 2-cycle in Hk. In order to show this

implies existence of a Hamilton 2-cycle in Hk−1, it suffices to show no element from

B is double covered (i.e., no element from B lies in 2 edges of the Hamilton 2-cycle).

But since each edge only contains one element of B and there are exactly |B| edges

in a Hamilton 2-cycle for Hk, this implies no element of B can be double covered.

Therefore Hk−1 has a Hamilton 2-cycle given by (ui : ui ∈ A).
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5.4 Future Directions

Certainly, there is much more to do regarding the decision problem HAM`(k, c). We

also believe that one should be able to improve the minimum vertex degree condi-

tion in Proposition 5.1.1 to c
(|V (H)|−1

k−1

)
for some constant c. There is also still the

question of generalizing the result of Theorem 1.2.3 to still restricting codegree, but

determining the existence of Hamilton `-cycles for other `.

What I am particularly interested in is a result in [21] which proves that for

graphs which do satisfy the codegree conditions of Theorem 1.2.2 with ` = k − 1,

the Hamilton (k − 1)-cycle can be found in polynomial time. This typically involves

analyzing the proof of the existence of the Hamilton cycle and using derandomization

algorithms to make a fully constructive proof. At the time, the proof of the existence

of the cycle used Szemeredi’s Regularity Lemma, which guarantees very nice structure

in the graph but at the cost of an astronomically large vertex set. What was most

interesting about the polynomial-time result in [21] was that they were able to develop

an algorithm which finds the cycle without applying the Regularity Lemma. The proof

of Theorem 1.2.2 in its full general form uses the Hypergraph Regularity Lemma,

which is a more general version of Szemeredi’s Regularity Lemma. It was proven in

[30], that there is a polynomial time algorithm for the Hypergraph Regularity Lemma

but one should note that this still requires an extremely large vertex set. Using the

Hypergraph Regularity Lemma algorithm, we can simply employ derandomization

techniques in the proof of Theorem 1.2.2 in order to show that one can find a Hamilton

`-cycle in polynomial time. But the value in the solution to this problem would really

come from a proof that avoids the use of the Hypergraph Regularity Lemma, hence

making the “finitely” many cases a computer would need to check by brute-force a

reasonable amount.
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Chapter 6

Glossary

• `-cycle: C is an `-cycle if its vertices can be cyclically ordered in such a way that

each edge of C consists of k consecutive vertices and each pair of consecutive

edges overlaps in exactly ` vertices.

• k-graph: a hypergraph is a k-graph, or a k-uniform hypergraph, if its edges

are all of size k.

• Acyclic graph: an acyclic graph is a graph containing no cycles.

• Adjacency matrix of a graph: for a graph with vertex set V , its adjacency

matrix is a |V | × |V | matrix A such that the element Aij = 1 if vertices vi and

vj are adjacent, and is 0 otherwise.

• Adjacent vertices: two vertices, u and v, of a graph are adjacent if and only

if they form an edge in that graph and we denote this by u ∼ v.

• Bicyclic graph: a bicyclic graph is a graph with exactly two cycles.

• Complete graph: the complete graph on n vertices, denoted Kn, is a graph

wherein every pair of vertices are form an edge.
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• (Connected) Component of a graph: a connected component of a graph G

is a subgraph in which every pair of vertices are connected by a path and which

is connected to no additional vertices of G

• Connected graph: a graph is connected if every pair of vertices can be con-

nected by a path in the graph.

• Cycle graph: a graph is a cycle if there exists an ordering of the vertices

v1 · · · vn such that its edges are vivi+1 for i = 1, . . . , n− 1 and v1vn.

• Degree of a vertex: the degree of a vertex v in a graph, denoted d(v), is the

number of edges which contain it.

• Forest: a forest is a disjoint union of trees.

• Hypergraph: a hypergraph is a pair of sets H = (V,E) where E is some subset

of the power set of V .

• Incident edges: two edges e1 and e2 of a graph are incident if e1 ∩ e2 6= ∅.

• Induced subgraph: a subgraph H of G is an induced subgraph if uv ∈

E(G)\E(H) implies u 6∈ V (H) or v 6∈ V (H).

• Graph: a graph is a pair of sets G = (V,E) where E ⊆ {{u, v} : u, v ∈

V, and u 6= v}.

• Hamilton cycle: a spanning subgraph which is a cycle.

• Hypergraph: a hypergraph H is a pair (V,E) such that E is any collection of

subsets of V .

• Neighborhood of a vertex: the neighborhood of a vertex in a graph, denoted

N(v), is the set of vertices which are adjacent to it.
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• Order of a graph: the order of a graph is the number of edges it has.

• Path graph: a graph is a path if there exists an ordering of the vertices v1 · · · vn

such that its edges are vivi+1 for i = 1, . . . , n− 1.

• Size of a graph: the size of a graph is the number of vertices it has.

• Spanning subgraph: a subgraph H of G is spanning if V (H) = V (G).

• Subgraph: H is a subgraph of G if V (H) ⊆ V (G) and E(H) ⊆ E(G).

• Tree: a tree is a connected acyclic graph.

• Tricyclic graph: a tricyclic graph is a graph with exactly 3 cycles.

• Unicyclic graph: a unicyclic graph is a graph with exactly 1 cycle.
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[8] E. Dahlhaus, P. Hajnal, and M. Karpiński. On the parallel complexity of hamil-

tonian cycle and matching problem on dense graphs. Journal of Algorithms,

15(3):367–384, Nov 1993.

[9] G.B. Dantzig. Linear Programming and Extensions. Princeton University Press,

1963.

[10] K. Ecker and S. Zaks. On a graph labelling problem. Gesellschraft für Mathe-

matik und Datenverarbeitung MBH, Bonn, Bericht 99, 1977.

[11] F. Garbe and R. Mycroft. The complexity of the hamilton cycle problem in hy-

pergraphs of high minimum codegree. In 33rd Symposium on Theoretical Aspects

of Computer Science (STACS 2016), volume 47 of Leibniz International Proceed-

ings in Informatics (LIPIcs), pages 1–13. Schloss Dagstuhl–Leibniz-Zentrum fuer

Informatik, 2016.

[12] M.C. Golumbic. Algorithmic Graph Theory and Perfect Graphs. Academic Press,

New York, 1980.

[13] J. Guo, S. Liu, X. Pai, and S. Liu. On the laplacian coefficients of tricyclic

graphs. Journal of Mathematical Analysis and Applications, 405(1):200 – 208,

2013.
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[28] D. Kühn and D. Osthus. Loose hamilton cycles in 3-uniform hypergraphs of high

minimum degree. Journal of Combinatorial Theory, Series B, 96(6):767 – 821,

2006.

[29] B. Mohar. On the laplacian coefficients of acyclic graphs. Linear Algebra and its

Applications, 422(2):736 – 741, 2007.
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