
University of Nebraska - Lincoln University of Nebraska - Lincoln 

DigitalCommons@University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln 

U.S. Air Force Research U.S. Department of Defense 

2008 

DNA Codes Based on Stem Similarities Between DNA Sequences DNA Codes Based on Stem Similarities Between DNA Sequences 

Arkadii D'yachkov 

Anthony Macula 

Vyacheslav Rykov 

Vladimir Ufimtsev 

Follow this and additional works at: https://digitalcommons.unl.edu/usafresearch 

This Article is brought to you for free and open access by the U.S. Department of Defense at 
DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in U.S. Air Force Research by 
an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. 

https://digitalcommons.unl.edu/
https://digitalcommons.unl.edu/usafresearch
https://digitalcommons.unl.edu/usdeptdefense
https://digitalcommons.unl.edu/usafresearch?utm_source=digitalcommons.unl.edu%2Fusafresearch%2F100&utm_medium=PDF&utm_campaign=PDFCoverPages


DNA Codes Based on Stem Similarities Between

DNA Sequences

Arkadii D’yachkov1, Anthony Macula2, Vyacheslav Rykov3,
and Vladimir Ufimtsev3

1 Moscow State University, Moscow 119992, Russia
agd-msu@yandex.ru

2 Air Force Res. Lab., IFTC, Rome Research Site, Rome NY 13441, USA
macula@geneseo.edu

3 University of Nebraska at Omaha, 6001 Dodge St., Omaha, NE 68182-0243 USA
vrykov@mail.unomaha.edu

Abstract. DNA codes consisting of DNA sequences are necessary for
DNA computing. The minimum distance parameter of such codes is a
measure of how dissimilar the codewords are, and thus is indirectly a
measure of the likelihood of undetectedable or uncorrectable errors oc-
curring during hybridization. To compute distance, an abstract metric,
for example, longest common subsequence, must be used to model the
actual bonding energies of DNA strands. In this paper we continue the
development [1,2,3] of similarity functions for q-ary n-sequences The the-
oretical lower bound on the maximal possible size of codes, built on the
space endowed with this metric, is obtained. that can be used (for q = 4)
to model a thermodynamic similarity on DNA sequences. We introduce
the concept of a stem similarity function and discuss DNA codes [2]
based on the stem similarity. We suggest an optimal construction [2] and
obtain random coding bounds on the maximum size and rate for such
codes.

1 Introduction

In order to accomplish DNA computing, it is necessary to have DNA libraries,
also known as DNA codes, of large size and small energies of hybridization be-
tween the DNA sequences. The ultimate criterion for the value of a metric for
DNA codes is the degree to which it approximates actual bonding energies, which
in turn determines the degree to which distance approximates the likelihood of
one codeword mistakenly binding to the reverse complement of another code-
word. We can use a branch of mathematics known as coding theory, that was
initiated around the same time that the structure of DNA was discovered, to
study the space of DNA sequences endowed with a measure of distance (metric).
The introduced measure of distance between DNA sequences has an immediate
application in determining the similarities between genes, expressed as DNA se-
quences, in any existing genome. Codes built on spaces of DNA sequences can
be implemented in Biomolecular Computing and could have other important
applications.
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2 Notations, Definitions

The symbol � denotes definitional equalities and the symbol [n] � {1, 2, . . . , n}
denotes the set of integers from 1 to n. Let q = 2, 4, . . . be an arbitrary even inte-
ger, A � {0, 1, . . . , q−1} be the standard q-nary alphabet. Consider two arbitrary
q-nary n-sequences x = (x1, x2, . . . , xn) ∈ An and y = (y1, y2, . . . , yn) ∈ An.
By symbol z = (z1, z2, . . . , z�) ∈ A�, � ∈ [n], we will denote a common subse-
quence [5] of length |z| � � between x and y. The empty subsequence z of length
|z| � 0 is a common subsequence between any sequences x and y.

Definition 1. Let 1 ≤ b ≤ r ≤ n be arbitrary integers. A fixed r-sequence
a = (a1, a2, . . . , ar), ai ∈ A = {0, 1, . . . , q − 1}, i ∈ [r], is called a common
block for sequences x and y (briefly, common (x,y)-block) of length r if sequences
x and y (simultaneously) contain a as a subsequence consisting of r consecutive
elements of x and y. We will say that a common (x,y)-block a yields r− (b−1)
common b-stems ai, ai+1, . . . , ai+(b−1), i ∈ [r − (b − 1)], containing b adjacent
symbols of the given common (x,y)-block.

Definition 2. Let 1 ≤ t ≤ � ≤ n be integers. A sequence z = (z1, z2, . . . , z�),
zi ∈ A, i ∈ [�], is called a common t-block subsequence of length |z| � � between
x and y if z is an ordered collection of non-overlapping (separated) common
(x,y)-blocks and the length of each common (x,y)-block in this collection is ≥ t.

Let Zt(x,y) be the set of all common t-block subsequences between x and y. For
any z ∈ Zt(x,y), we denote by k(z,x,y), 1 ≤ k(z,x,y) ≤ |z|/t , the minimal
number of common (x,y)–blocks which constitute the given subsequence z.

Note that for any integer b, 2 ≤ b ≤ t, the difference |z| − (b − 1) k(z,x,y),
z ∈ Zt(x,y), is a total number of common b-stems containing adjacent symbols
in common (x,y)-blocks constituting z ∈ Zt(x,y).

Definition 3. For any fixed integer b, 2 ≤ b ≤ n,we define

Sb(x,y) � max
b≤t≤n

max
z∈Zt(x,y)

{|z| − (b − 1) k(z,x,y)} , Sb(x,y) ≥ 0.

If Zb(x,y) = ∅, then we will say that Sb(x,y) � 0. The number

Sb(x,y) = Sb(y,x) ≤ Sb(x,x) = n − (b − 1), x ∈ An, y ∈ An,

is called an b-stem similarity between x and y. For b = 2, the concept of 2-stem
similarity and its biological motivation were suggested in [1].

Definition 4. [1,2]. If q = 2, 4, . . ., then x̄ � (q−1)−x, x ∈ A = {0, 1, . . . , q−
1}, is called a complement of a letter x. For x = (x1, x2, . . . , xn−1, xn) ∈ An,
we define its reverse complement x̃ � (x̄n, x̄n−1, . . . , x̄2, x̄1) ∈ An. If y � x̃,
then x = ỹ for any x ∈ An. If x = x̃, then x is called a self reverse complemen-
tary sequence. If x �= x̃, then a pair (x , x̃) is called a pair of mutually reverse
complementary sequences.
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Let x(1),x(2), . . . ,x(N), where x(j) � (x1(j), x2(j), . . . , xn(j)) ∈ An, j ∈ [N ],
be codewords of a q-ary code X = {x(1),x(2), . . . ,x(N)} of length n and size N ,
where N = 2, 4, . . . be an even number. Let b, 2 ≤ b ≤ n, and D, b ≤ D ≤ n − 1,
be arbitrary integers.

Definition 5. A code X is called a DNA (n, D)-code based on b-stem similarity
Sb(x,y) (briefly, (n, D)-code) if the following two conditions are fulfilled.

(i). For any number j ∈ [N ] there exists j′ ∈ [N ], j′ �= k, such that x(j′) =

x̃(j) �= x(j). In other words, X is a collection of N/2 pairs of mutually reverse
complementary sequences.

(ii). For any j, j′ ∈ [N ], where j �= j′, the similarity

Sb(x(j),x(j′)) ≤ n − D − 1, b ≤ D ≤ n − 1. (1)

Definition 6. Let Nb(n, D) be the maximum size for DNA (n, D)-codes based
on b-stem similarity. If d, 0 < d < 1, is a fixed number, then

Rb(d) � lim
n→∞

logq Nb(n, �nd�)
n

(2)

is called a rate of DNA (n, �nd�)-codes based on b-stem similarity.

3 Random Coding Bounds

Let b, 2 ≤ b ≤ n, and s, 0 ≤ s ≤ n − (b − 1), be arbitrary integers and

Pb(n, s) � {(x,y) ∈ An × An : Sb(x,y) = s},

Pb(n, s) � {x ∈ An : Sb(x, ˜̄x) = s},

be sets of pairs (x,y) ∈ An × An (sequences x ∈ An) for which the given
similarities be equal to s. Applying combinatorial arguments which are similar
to the corresponding arguments of paper [2] for the block similarity function,
one can check that the following statement is true.

Lemma 1. The size

|Pb(n, s)| ≤ q2n−s ·
min{s , (n−s)/(b−1)}∑

k=1

q−(b−1)k
(

s − 1
k − 1

) (
n − s − (b − 2)k

k

)2

.

(3)
The set Pb(n, s) is empty if s ≥ 3 is odd. If s ≥ 2 is even, then the size

|Pb(n, s)|≤qn−s/2 ·
min{s , (n−s)/(b−1)}∑

k=1

q−(b−1)k/2
(

s/2 − 1
k/2 − 1

) (
n − s − (b − 2)k

k

)
.

(4)
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Lemma 1 and the standard random coding method [2] lead to Theorems 1 and 3
which give lower bounds on the size Nb(n, D) and rate Rb(d) of DNA codes based
on b-stem similarity.

Theorem 1. If D ≥ b ≥ 2 are fixed integers and n → ∞, then

Nb(n, D) ≥ 1
4

· (Db − 1)! · q(b−1)Db

(
D−(b−2) Db

Db

)2
· qD

· qn

nDb−1 · (1+o(1)), Db �
⌊

D

b − 1

⌋
. (5)

For the case b = 2, number D2 = D ≥ 2 and bound (5) has the form

N2(n, D) ≥ (D − 1)!
4

· qn

nD−1 · (1 + o(1)), D ≥ 2. (6)

For the case D = b ≥ 3, number Db = 1 and bound (5) has the form

Nb(n, b) ≥ qn−1

16
· (1 + o(1)), b ≥ 3. (7)

An improvement of asymptotic lower bounds (6)-(7) follows from formula (8)
for Nb(n, b) presented in the theorem.

Theorem 2. [2] If n = qm, m = 1, 3, 5, . . ., then

Nb(n, b) =
qn−1 + q

2
, 2 ≤ b ≤ n − 1. (8)

Introduce the standard symbol

hq(u) � −u logq u − (1 − u) logq(1 − u), 0 < u < 1, (9)

for the binary entropy function.

Theorem 3. (i). The rate

Rb(d) ≥ Rb(d) � min
0≤u≤d

{(1 − u) − Eb(u)}, (10)

where
Eb(u) � max

0≤v≤min{ u
b−1 , 1−u}

Fb(v, u), (11)

Fb(v, u) � −(b − 1)v + (1 − u)hq

(
v

1 − u

)
+

+ 2 [u − (b − 2)v] hq

(
v

u − (b − 2)v

)
. (12)

(ii). Let db, 0 < db < 1, be the unique root of equation 1 − d = Eb(d). If
0 < d < db, then the rate Rb(d) > 0 and the following lower bound

Rb(d) ≥ Rb(d) � (1 − d) − Eb(d), 0 < d < db, (13)

holds.
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We will say that the number db, 0 < db < 1, is a critical distance fraction for the
random coding bound Rb(d).

Maximization (11)-(12). The derivative of binary entropy function (9) is

h′
q(v) = logq

1 − v

v
, 0 < v < 1.

Thus, the partial derivative of function Fb(v, u) is

∂Fb(v, u)
∂v

= −(b − 1) + logq

(1 − u) − v

v
+

+2
[
−(b − 2)hq

(
v

u − (b − 2)v

)
+

u

u − (b − 2)v
logq

u − (b − 1)v
v

]
. (14)

Taking into account that hq

(
v

u−(b−2)v

)
=

=
v

u − (b − 2)v
logq

u − (b − 2)v
v

+
u − (b − 1)v
u − (b − 2)v

logq

u − (b − 2)v
u − (b − 1)v

,

one can easily check that (14) can be rewritten in the form

∂Fb(v, u)
∂v

= −(b − 1) + 3 logq

1
v

+ logq[(1 − u) − v]+

+2(b − 1) logq[u − (b − 1)v] − 2(b − 2) logq[u − (b − 2)v].

Therefore, for any fixed u, 0 < u < 1, equation ∂Fb(v,u)
∂v = 0 is equivalent to

equation

(
1 − u

v
− 1

) [u

v
− (b − 1)

]2(b−1) [u

v
− (b − 2)

]−2(b−2)
= qb−1,

u

v
≥ b − 1.

(15)

Let v = v(u) be the unique root of (15). This means that function

Eb(u) = Fb(v(u), u) = −(b − 1)v(u) + (1 − u)hq

(
v(u)
1 − u

)
+

+ 2 [u − (b − 2)v(u)] hq

(
v(u)

u − (b − 2)v(u)

)
.

If we substitute parameter v for w � u/v > b − 1, then equation (15) has the

form
(

1 − u

u
w − 1

)
[w − (b − 1)]2(b−1) [w − (b − 2)]−2(b−2) = qb−1, w > b − 1.
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Hence, the root v = v(u) can be calculated using the following recurrent method:

w1 � b, wm+1 = (b − 1) +
√

q

{
[wm − (b − 2)]2(b−2)

1−u
u wm − 1

} 1
2(b−1)

, m = 1, 2, . . . ,

v = v(u) =
u

lim
m→∞ wm

. (16)

If q = 4, then numerical values of critical distance fractions db, b = 2, 3, . . .9,
along with the corresponding optimal parameters

v(db), 0 ≤ v(db) ≤ min
{

db

b − 1
, 1 − db

}
, b = 2, 3, . . . 9,

for maximization (11)-(12) are given below:

b 2 3 4 5 6 7 8 9
db 0.4792 0.6676 0.7931 0.8768 0.9299 0.9618 0.9798 0.9896

v(db) 0.1903 0.1166 0.0744 0.0461 0.0272 0.0153 0.0082 0.0043
.
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