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could have been due to high uncertainty in the interpolated groundwa-
ter nitrate-N concentrations since there were few wells in the area. If 
groundwater nitrate-N concentrations within the SWT6 watershed were 
actually high, then the stream received minimal groundwater discharge. 
Elevated surface water nitrate-N concentrations at SWT6 in the winter 
(Table 1) suggest there is some high nitrate-N input to the stream, which 
was likely groundwater-derived due to minimal precipitation during that 
time (Fig. 2). As a comparison, SWT1 and SWT5 likely received most 
of their discharge from groundwater throughout the sampling period 
given high and consistent monthly nitrate-N concentrations, which were 
in close agreement with underlying interpolated groundwater values. 

3.5. Nitrate reduction strategies 

Collectively, efforts to reduce groundwater nitrate concentrations are 
critical for reducing nitrate concentrations in Bazile Creek, even if there 
are significant lag times between practice implementation and improved 
stream water quality (Böhlke and Denver, 1995; Stolp et al., 2010; Gilm-
ore et al., 2016a, 2016b). Ongoing demonstration projects and agro-
nomic research on diverse cropping rotation, soil health, and nitrogen 
inhibitors within the Bazile Groundwater Management Area (Lewis and 
Clark Natural Resources District, 2020) should be used to assist into lo-
cal decision-making. In general, we note that percentages of well and 
excessively well-drained soils in the study area are consistent with high 
rates of nitrate leaching from fertilized crops. BMPs such as cover crops 
and split fertilizer application (e.g., as suggested by modeling in Mittel-
set et al. (2019)) may be considered as part of comprehensive nutrient 
and water management plans for managing nitrate concentrations in 
the Bazile Creek watershed. Groundwater nitrate-N concentrations in 
applied irrigation water can also be accounted for in nutrient budgets 
(e.g. using the University of Nebraska-Lincoln Corn Nitrogen Recommen-

Fig. 5. Map of the study area showing interpolated groundwater and average surface 
water nitrate concentrations at each of the monthly sampling sites. The watershed 
boundary from the furthest downstream sampling site is shown, with an inset show-
ing its full extent. The watershed boundaries of each tributary at the farthest down-
stream sampling location are shown as thin lines. Locations of groundwater wells used 
in the interpolation are also displayed.     
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dations Calculator, https://cropwatch.unl.edu/soils), although this ap-
proach may involve risk due to the fact that inconsistent summer pre-
cipitation will affect yearly irrigation rates. 

Given the unknown but likely substantial time lag between BMP im-
plementation and reduced groundwater nitrate concentrations, it is im-
portant to explore additional approaches that could provide shorter-
term nitrate loading reductions. For instance, engineered solutions to 
increase streambed denitrification rates could be investigated as a ni-
trate removal option. Nitrate removing bioreactors have shown prom-
ise when implemented in locations where organic carbon availability is 
limiting denitrification rates (Schipper et al., 2010; Fenton et al., 2016). 
However, a thorough investigation would be needed to determine suit-
able sites (including location and prevalence of subsurface drainage) 
within the Bazile Creek watershed for the installation of bioreactors to 
maximize nitrate removal. Another option for near or in-stream nitrate 
removal are streambed/stream modifications that improve denitrifica-
tion rates by increasing hyporheic flow (Herzog et al., 2016). 

In order to see substantial reductions to nitrate loads in the Bazile 
Creek watershed, it is likely that a combination of strategies will need 
to be adopted, and strategies used by past successful water quality im-
provement projects should be considered. For example, a project carried 
out in the Honey Creek watershed in Northeast Oklahoma was success-
ful in reducing nonpoint source nitrate loading by 35 % in eight years 
(Perez, 2017). These load reductions were obtained by installing or up-
grading septic tanks, creating protective riparian buffers, increasing pas-
ture, and improved management of animal manure. Importantly, prior 
to beginning the Honey Creek watershed project an adjacent control wa-
tershed was selected to quantify water quality improvements more ac-
curately over time. 

Ongoing water quality projects in the Bazile Creek watershed will in-
vestigate nitrate concentration and transit times of discharging ground-
water as well as the measurement of nitrate isotopes. Understanding 
groundwater transit times will give information on trends between 
groundwater age and nitrate concentration as well as spatial differences 
in transit times (e.g., Gilmore et al., 2016a, 2016b). Nitrate isotopes will 
provide information on source and potentially seasonal enrichment due 
to denitrification (Panno et al., 2008; Comer-Warner et al., 2020).  
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4. Conclusions 

Nitrate concentrations in the Bazile Creek watershed were found to vary 
significantly between many of the sampling sites, especially between 
sites on tributaries. Average nitrate-N concentrations at each of the nine 
sites ranged from 2.7 to 15.3 mg L–1 and were at a maximum in the win-
ter on the main channel. Land cover within the study area was primarily 
cropland, and there was a positive correlation between the percentage 
of land cover as cropland and average surface water nitrate concentra-
tions. Extensive riparian buffering, high soils drainage classes, and in-
terpolated groundwater nitrate-N concentrations falling primarily be-
tween 10 and 20 mg L–1 indicate that baseflow nitrate was delivered to 
the Bazile Creek watershed as groundwater discharge. 

The combined analysis of land use, soil properties, and groundwater 
nitrate-N concentrations helped explain surface water concentration dif-
ferences between sampling locations. Because nitrate entered streams 
through groundwater pathways, a range of BMPs focused on reducing 
nitrate leaching beneath agricultural fields and engineered solutions to 
maximize denitrification rates in and near streams may be important to 
consider as part of a holistic management approach. 
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Appendix A.  

Supplementary Fig. A1. Monthly surface water nitrate-N concentrations at each of the 
six Bazile Creek tributary sampling locations over the course of the study. 
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Supplementary Fig. A2. Monthly surface water nitrate-N concentrations at the three 
Bazile Creek sampling locations over the course of the study.   
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Supplementary Fig. 4. Nitrate-N concentration at SW6 vs. discharge for samples col-
lected during the study period. The given trendline has a Pearson’s R2 = 0.45 (p = 0.009)  

Supplementary Fig. A3. Coefficient of Variation vs. average nitrate-N concentration 
for each of the nine surface water sampling sites. The given trendline has a Pearson’s 
R2 = 0.85 (p < 0.001).
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