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The development and awareness of Machine Learning and “big data” has led to a growing interest 
in applying these methods to bioanalytical research. Methods such as Mass Spectrometry (MS), and Nuclear 
Magnetic Resonance (NMR) can now obtain tens of thousands to millions of data points from a single 
sample, due to fundamental instrumental advances and ever-increasing resolution. Simple pairwise 
comparisons on datasets of this magnitude can obfuscate more complex underlying trends, and does a 
disservice to the richness of information contained within. This necessitates the need for multivariate 
approaches that can more fully take advantage of the complexity of these datasets.  

Performing these multivariate analyses takes high degree of expertise, requiring knowledge of such 
disparate areas as chemistry, physics, mathematics, statistics, software development and signal processing. 
As a result, this barrier to entry prevents many investigators from fully utilizing all the tools available to 
them, instead relying on a mix of commercial and free software, chained together with in-house developed 
solutions just to perform a single analysis. While there are numerous methods in published literature for 
statistical analysis of these larger datasets, most are still confined to the realm of theory due to them not 
being implemented into publicly available software for the research community.  

This dissertation outlines the development of routines for handling LC-MS data with freely 
available tools, including the Octave programming language. This presents, in combination with our 
previously developed software MVAPACK, a unified platform for metabolomics data analysis that will 
encourage the wider adoption of multi-instrument investigations and multiblock statistical analyses.  
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Chapter 1: Metabolomics: An Ideal Approach? 

 

1.1 Introduction 

Metabolomics is one of the most rapidly growing fields in biological research. Considered 

downstream from genomics, transcriptomics and proteomics, it forms the base of the “omics” disciplines, 

its goal is to form a complete analysis of the total set of metabolites with in a living system. As the 

metabolism of an organism should directly reflect directly observed phenotypes, it has invaluable 

applications in biomarker discovery1, toxicology2 and functional determination of genes and their protein 

products3. Despite all of this success, metabolomics still suffers from a systemic lack of standardization in 

protocols. The sheer variety of instrumentation, data processing modalities and statistical modeling 

algorithms results in a wide variety of approaches in the literature, often with little attention paid to which 

combination is most effective for a given problem.  

 Nuclear Magnetic Resonance (NMR) and Mass Spectrometry (MS) are the most widely used 

instruments in metabolomics, and there is a growing awareness that the two methods offer synergistic 

effects when combined with one another4–6. As a result, it has become clear that the best results are 

obtained when both methods are used together so as to minimize the other’s particular disadvantages.  

Often times, the practical limitation to performing these integrated studies are not acquisition but analysis.  

 In NMR, a number of software packages including BATMAN7, Bayesil8, and TOCCATA9 and 

databases such as HMDB, BMRB and Chemspider are all routinely used with varying degrees of success. 

Packages such as BATMAN require an intimate knowledge of the R programming language in order to 

use properly, whereas TOCCATA and Bayesil require little to no knowledge of programming 

environments and be used through a simple web interface. There is a price to this convenience 

unfortunately, as these online methods are not easily modified or reproduced, and lack any transparency 

in this “black box” approach. The aforementioned databases are also not without their shortcomings, often 
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failing to have entries for all possible metabolites that could be encountered in a typical study. Some, such 

as the HMDB aim to correct this by accepting spectra acquired by the scientific community at large, 

which creates a more complete database but leads to a heterogeneity in sample preparation, solvents 

utilized and spectral acquisition parameters.  MS has a similar variety of tools, including XCMS, 

MZMine, and MetAlign among others. MZMine for example, is a largely visual data processing tool, 

with required ranges and parameters being user-determined based on observed spectral properties and is 

easy to use for anyone with MS background. XCMS however, is much more programmatically driven and 

offers a steeper learning curve, but offers powerful automation tools and flexibility unavailable in other 

software suites. The needs of which software to use, as in any field is a tradeoff between the time 

necessary to devote to learning the tool and what the benefits are of its unique approach. 

Both the fields of NMR and MS have independently generated their own solutions for data 

analysis, but little attention has been given to platform-independent variants. As a result, no single 

software package offers all of the required tools for metabolomics. This often forces researchers to make 

use of multiple software packages, utilizing the 1-2 critical functions it provides as part of a larger 

processing scheme. The burdensome nature of using these multiple packages presents a tremendous 

barrier to entry, in order to learn how to use each of the packages in an appropriate way. Additionally, this 

brings even larger concerns of reproducibility; how do we reproduce our results if one of the crucial 

pieces is updated and no longer compatible with the rest of the pipeline?  

The standards that the field of metabolomics demands, uniformity of process, clarity in 

communicating protocols, reproducibility and comparative benchmarking are stifled by the lack of a 

single software package to perform all of the necessary steps. For NMR, this need has been met by 

MVAPACK, which provides a complete set of functions for each of the necessary steps in NMR 

metabolomics data analysis in an intuitive and easy to use platform. As MVAPACK is an open-source 

tool, it is extremely transparent in its approach and additional functionality can be added as more 

advantageous approaches are discovered. While this consolidation of NMR data processing in the context 
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of metabolomics has already taken place, a similar solution has yet to be demonstrated for MS-based 

investigations. With the addition of functions for processing MS data within MVAPACK, a single 

software package is created that is capable of handling data regardless of which instrumentation is used, 

laying the necessary groundwork for future studies that combine both NMR and MS without the need for 

self-developed processing pipelines utilizing numerous unrelated software packages.  

 

1.2 Summary of Work 
 

This thesis will attempt to summarize the field of metabolomics, with a focus on the issues 

pertaining to data analysis. 

Chapter 2 will introduce the field of metabolomics. Typical use cases, and a general overview of 

what a metabolomics experiment entails will be presented, along with an exhaustive summary of 

algorithms that have been applied towards understanding of the data these experiments generate. A few 

technical advances, primarily from the field of NMR and biomarker discovery, and their potential effects 

on the field are discussed. 

Chapter 3 primarily highlights the burden of choice that is often encountered when processing 

metabolomics data. It uses a single step in data processing, normalization, and discusses the myriad of 

issues that can arise from this choice. A number of widely used algorithms are compared to their best-in-

class counterparts, on both simulated and real NMR datasets to illustrate how relative signal intensity, 

noise and overall variance can drastically inform which methods are most appropriate, and perhaps more 

importantly, detrimental to accurate results. 

Chapter 4 will present a demonstrable workflow for processing LC-MS data, using open-source 

software tools that will run on a typical user workstation. The major hurdles that arise from this process, 
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as well as some possible techniques to address these limitations are discussed, as well as the potential 

benefits to investigators familiar with NMR that are looking to incorporate MS and vice-versa. 

Chapter 5 concludes the thesis, with a few parting thoughts on the state of the field as well as 

presenting natural extensions to the research described herein. Potential directions of both software 

development and methodology and their ability to address some of the next logical steps in metabolomics 

are entertained.  
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Chapter 2: Chemometrics and Machine Learning in Metabolomics 
 

2.1 Introduction 

 

Metabolomics is a rapidly growing field of study that endeavors to measure the complete set of 

metabolites (generally considered to be the intermediates and products of cellular metabolism less than 1 

kDa in size) within a biological sample (that is, the metabolome) in order to achieve a global view of the 

state of the system1. Typically, metabolomics is focused only on characterizing the water-soluble 

metabolites, whereas lipidomics is a specialized discipline that investigates only lipids2. Water-soluble 

metabolites are part of a mobile, open biological system and as a result can readily interact and 

communicate with the environment, including the microbiome3. This is also true for some lipids but to a 

much lesser extent. Consequently, metabolomics has become an essential resource for systems biology 

because of its unique perspective relative to genomics and proteomics. Numerous studies have measured 

the relative upregulation or downregulation of genes or proteins to infer changes in biological function. 

However, it has been shown that even for common metabolic processes, such as glycolysis, a change in 

the cellular concentration of an enzyme does not necessarily lead to a proportional change in metabolic 

flux4. Thus, whereas genomics and proteomics identify what might happen, metabolomics identifies what 

is actually happening in the system. This realization demands a different perspective and requires the 

measurement of transcriptional, proteomic, and metabolomic data in order to obtain a complete picture of 

the system’s response to environmental or genetic stress. As another illustration, a “silent mutation” does 

not produce an observable change in phenotype despite an alteration in a gene or protein product. 

Therefore, metabolomics profiling can be used to decode the function of silent mutations, such as the 

Pfk26 and Pfk27 genes in Saccharomyces cerevisiae that both encode the glycolytic/gluconeogenesis 
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regulator phosphofructokinase 25 . Via co-response and cluster analysis, these genes were observed to 

exhibit similar metabolite profiles which differed from other genes impacting energy metabolism. For 

these reasons, methods to directly measure metabolite concentrations within cells, tissues, organs, or other 

biological samples are crucial for fully understanding a system when traditional omics studies (for 

example, genomics, proteomics, and transcriptomics) are deemed insufficient. To date, nuclear magnetic 

resonance (NMR)6and mass spectrometry (MS)7 have been the primary analytical techniques used to 

characterize a metabolome. NMR and MS are typically combined with univariate and multivariate 

statistical methods to identify major metabolite changes and to identify potential biomarkers8 . 

Nevertheless, despite the tremendous growth in the field, critical protocols and techniques are still under 

development. Herein, we present recent advances in methodologies and statistical analysis that are 

enhancing and improving the performance of metabolomics while extending the applications in which 

metabolomics can play a significant role. 

2.2 Essential Components of a Successful Metabolomics Investigation 

Conceptually, an untargeted metabolomics study is quite simple. Biological samples are obtained 

from two or more experimental groups to be compared (healthy versus diseased, wild-type versus gene 

knockout, and so on) and the metabolites are extracted. These metabolic extracts then are measured by 

using numerous instrumental techniques, of which NMR and liquid chromatography (LC)-MS are the 

most common. The resulting spectra then are subjected to statistical analysis techniques such as principal 

component analysis (PCA) and orthogonal projection onto latent structures (OPLS) to determine the most 

significant spectral features that define each group9-10. Finally, these spectral features then can be assigned 

to distinct metabolites and metabolic pathways by using spectral libraries of known metabolites11-12. In 

this manner, untargeted metabolomics is discovery-based since it reveals previously unknown information 

about how a system responds to environmental or genetic stress. Conversely, targeted metabolomics 

focuses on analyzing a specific set of metabolites on the basis of some prior knowledge about the system. 

As a result, targeted metabolomics studies tend to be more sensitive and quantitative and have a higher 
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reproducibility and a lower false-positive rate relative to untargeted metabolomics. Protocols for 

obtaining and extracting the metabolome have been well developed and exhaustively reviewed for a wide 

range of biological samples, including cell cultures, urine, blood/serum, and both animal- and plant-

derived tissues13-16. Although these protocols are readily available, the variable stability of metabolites 

means that even minor changes in procedure can have a major impact on the observed metabolome. The 

fast turnover rate of enzymes and the variable temperature and chemical stability of metabolites require 

that metabolomics samples be collected quickly and handled uniformly and that all enzymatic activity be 

rapidly quenched in order to minimize biologically irrelevant deviations between samples that may result 

from the processing protocol13, 17,. Thus, the optimization of the sample preparation protocol is essential 

to a successful metabolomics study. Conversely, the most likely source of bias is improper handling of 

the metabolomics samples. An important consideration is that the complete metabolome cannot be 

captured in a single extraction protocol. This is in stark contrast to modern genomics, which can reliably 

cover the entire genome of an organism. A metabolomics extraction protocol will usually focus on only a 

subset of metabolites (for example, water-soluble metabolites or lipids). Furthermore, an extraction 

protocol may focus on either a highly reproducible and quantitative extraction of a restricted set of 

metabolites (that is, targeted metabolomics) or the global collection of all possible metabolites (that is, 

untargeted metabolomics) with a possible reduction in precision. In general, 200 to 500 metabolites may 

be observed by targeted metabolomics, whereas upwards of 1,500 metabolites have been detected in 

untargeted metabolomics studies18. Following extraction and subsequent data collection, the final and 

perhaps most crucial step is metabolite assignment, which typically is accomplished by a comparison with 

spectral libraries of known metabolites. This is not a trivial task since the number of possible metabolites 

can be prohibitively large, and a large segment of the metabolome is either unknown or lacking a 

reference spectrum. For example, the human metabolome is estimated to contain around 150,000 

metabolites18, but the Human Metabolome Database12 contains only around 74,000 metabolites (as of 1 

June 2017). Thus, there are still many unknown metabolites and a true estimate of the size of the human 

metabolome is challenging19. Another complicating factor is that different organisms may have 
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completely unique metabolomes. For instance, plants have over 45,000 known secondary metabolites20. 

Finally, there may be ambiguities in making a metabolite assignment because of chemical shift overlap or 

identical masses (for example, isomers). As a result, the assignment of metabolites to spectral features 

may be as low as 4 to 5%21. 

2.3 A Tale of Two Methods: Mass Spectrometry or Nuclear Magnetic Resonance? 

Perhaps the most important choice that can be made in a metabolomics study is which 

instrumental platform is used. Although a wide range of instruments have been used for metabolomics, 

including capillary electrophoresis, infrared spectroscopy, and Raman spectroscopy, only NMR and MS 

are routinely used for metabolomics. NMR and MS are often applied in metabolomics investigations 

because of their inherent complementarity, which results from their distinct advantages and 

disadvantages22. NMR is highly reproducible and quantitative, has simple sample preparation protocols, 

and is able to measure analytes over a wide range of solvent conditions23. Despite these advantages, the 

main limitation of NMR is its low sensitivity, which restricts its application to measuring the most 

abundant metabolites in the sample (micromolar to millimolar range). This has been noted as a significant 

hurdle that has slowed the widespread adoption of NMR by the metabolomics community6, 22-23. 

Conversely, the high sensitivity and low detection limits of MS enable the detection of subtle metabolic 

changes that are invisible by NMR. With this increase in sensitivity, the detection of thousands of peaks is 

relatively common24, but untargeted MS metabolomics studies often are not quantitative in nature. Since 

MS detectors rely on ionization processes, MS is restricted to detecting metabolites that readily ionize. 

Correspondingly, a significant reduction in observable metabolites may occur depending on the specifics 

of the sample being considered25. For a detailed overview of the utility of various MS detectors to 

metabolomics, see the review article by Dunn et al. 26  

MS also suffers from reproducibility problems since contaminants within the sample can change 

the ionization efficiency of metabolites2 . Specifically, quantitation is challenging in untargeted MS since 

peak intensity is dependent on ionization efficiency, which varies between metabolites and also is 
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strongly dependent on experimental conditions that may result in varying ion suppression27. One issue of 

particular relevance to MS is the relatively narrow nominal mass and mass defect distribution of the 

metabolome which results in significant peak overlap28. This can be resolved by coupling MS to a 

chromatographic method, most commonly LC or gas chromatography (GC), to resolve overlapping peaks 

and to aid in the metabolite identification based on retention time and the properties of the stationary 

phase. GC was the first separation technique applied to the analysis of metabolic mixtures; for example, 

GC-MS was used to identify biomarkers for diagnosing phenylketonuria in 197029. GC-MS is particularly 

beneficial for the analysis of volatile metabolite mixtures since minimal sample preparation is required; in 

some cases, samples can be directly analyzed. Furthermore, a number of applications of GC-MS uniquely 

involve detecting volatile metabolites; two examples are the measurement of exhaled breath condensates 

for diagnosing lung cancer30 and the monitoring of volatile paper degradation products from historic 

books31. An obvious disadvantage of GC-MS is its reliance on analyte volatility, where metabolites of low 

volatility or low temperature stability may be modified or destroyed17. Limited metabolite volatility can 

be overcome through the use of derivatization schemes, but derivatization is time-consuming. More 

importantly, differences in the efficiency of the derivatization32 and differences in the stability of the 

derivatized metabolites17may dramatically perturb the apparent concentrations of the metabolites, possibly 

leading to an erroneous biological conclusion. LC was not widely used for metabolomics until the 1980s26 

and this was due to technical limitations with interfacing LC and mass spectrometers. A main advantage 

of LC over GC is that most metabolites can be detected intact and without modification from a 

deravitizing agent. Additionally, LC provides an accurate analysis of thermally unstable or reactive 

metabolites since the separation typically occurs at room temperature. However, the introduction of a 

liquid phase does introduce a higher variability in retention times33, an increase in ion suppression due to 

matrix effects34, and a lower resolution relative to GC. NMR and MS tend to observe a distinct set of 

metabolites from the same metabolomics sample. Consequently, there is a growing trend in metabolomics 

to perform tandem studies in which the same sample is analyzed by both NMR and MS35-38. In this 

manner, the coverage of the metabolome is significantly increased by taking advantage of the strengths of 



17 
 

both methods. NMR identifies trends in metabolic alteration along core metabolic pathways and provides 

a context for the interpretation of the low-abundance metabolites identified by MS. Of course, the 

combined use of NMR and MS leads to a proportional increase in data set size with the added complexity 

of the simultaneous processing, analysis, and interpretation of two dissimilar data types. 

2.4 Practical Concerns in Data Processing and Interpretation 

Metabolomics experiments generate large data sets that require specialized tools for analysis. 

Numerous software packages for data pre-processing and statistical analysis are available and have been 

reviewed elsewhere39-40. Unfortunately, no single software exists that can simultaneously perform all of 

the critical steps needed for an analysis of a combined NMR and MS data set. Although the statistical 

techniques applied to NMR and MS data sets are largely the same, each technique requires a unique set of 

pre-processing tools and algorithms prior to modelling. For example, an NMR spectrum has to be 

Fourier-transformed and phased, whereas centroiding and de-isotoping are required in MS. Owing largely 

to these data type–specific processing requirements, newly developed software is almost exclusively 

restricted to one method or the other. Conversely, there has been minimal effort in developing tools 

capable of working with both NMR and MS data sets39. There are two general approaches to integrating 

NMR and MS data sets into a single coherent study. The first involves samples simply being 

independently analyzed by each method. The separate data sets then are compared in order to identify 

consistencies in the metabolic alterations observed by each technique. The main advantage of the 

approach is simplicity since it does not require any significant protocol changes. Also, the confidence of a 

metabolite assignment may be significantly increased if it is identified by both methods. Furthermore, a 

measure of internal consistency may be achieved if metabolite concentrations can be estimated by both 

methods. However, significant information can be lost during this process since, for example, ambiguity 

in peak assignments sometimes can be resolved by information from the other method. There is also a 

lack of statistical correlation since the data sets are independently analyzed. Although the manual curation 

of independent data sets is the dominant method currently used by metabolomics investigators, it also 
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suffers from reproducibility problems due to potential biases in data interpretation (for example, 

metabolite assignment methods) among other issues. The second approach to combining NMR and MS 

data sets is to simultaneously integrate each data set into a single statistical model using a multiblock 

analysis. Multiblock analysis encompasses a variety of methods that combine multiple data sets prior to 

conventional multivariate analysis. In addition to combining multiple instrumental data sources42, 

multiblock analysis has been successfully employed to combine data sets from different omics 

disciplines41. Multiblock methods are preferable to independent analysis since the relative contributions of 

each data set still can be quantified, but importantly the larger combined data set is likely to result in 

models with greater predictive ability and resolving power than either method alone42. However, the 

software tools to perform multiblock analyses are crude and often rely on custom sets of pre-processing 

routines using multiple software packages. The lack of integrated analysis tools and software is a major 

roadblock in metabolomics, especially in light of the growing interest in combining NMR and MS data 

sets. 

2.5 Recent Advances in Metabolomics 

2.5.1 Dynamic Nuclear Polarization 

NMR metabolomics investigations, especially those concerned with achieving a high confidence 

in metabolite identification, require two-dimensional NMR methods to resolve the overlap present in one-

dimensional spectra. In general, this requires isotopic labelling with NMR-active nuclei like 13C and 15N 

because of their low natural abundance. In the last few years, dynamic nuclear polarization (DNP) has 

evolved from a structural biology tool in the area of solid-state NMR to have potential applications in 

solution-state metabolomics43. In DNP, a solid, frozen metabolomics sample at about 1.5 K is polarized in 

the presence of microwave-irradiated free-radicals, which induces a temporary hyperpolarization in 

spinactive nuclei through a transfer of polarization from electrons to nuclei. The sample then needs to be 

rapidly melted and transferred to an NMR spectrometer to take advantage of the greatly enhanced 

sensitivity (>10,000-fold)44. The dramatic increase in sensitivity avoids the need for isotopic labelling, 
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especially for in vivo samples, and may permit the detection of low-abundance metabolites. Nevertheless, 

DNP experiments are limited by T1 relaxation rates, resulting in a short measurement window of the 

dynamically polarized samples. DNP also requires substantial hardware modifications and accessories 

(for example, microwave generator) to rapidly thaw and shuttle samples back and forth from the NMR 

spectrometer. DNP has also been applied to 13C-labeled metabolites that then are used as a tracer 

compound for in vivo imaging45. This requires close proximity of the polarizer and magnetic resonance 

imaging spectrometer to allow for rapid transfer, dissolution, and injection of the 13C-labeled metabolite 

given the relatively short T1 of 30 to 40 seconds for a 13C-labeled carboxyl group. Despite these 

technical obstacles, DNP has been successfully used to monitor a single metabolite (for example, 

pyruvate) in living tissue (for example, heart) by magnetic resonance imaging46. Besides the short 

measurement time, another challenge with the application of DNP to in vivo imaging is the limited 

number of 13C-labeled metabolites that can be polarized and tolerated at the concentrations needed for 

imaging (25 to 80 mM) and that are also a useful biological probe. In addition to pyruvate, bicarbonate, 

fumarate, urea, glutamine, and dehydroascorbate have been used for in vivo imaging45. Despite 

fundamental issues of reproducibility and limitations in sample preparation, DNP protocols and 

technology are rapidly advancing and one day could become a routine tool for metabolomics47. 

2.5.2 Disease Profiling and Personalized Medicine 

Metabolomics can be used to profile an individual’s responses to a drug treatment or other 

medical therapy by monitoring metabolite changes in readily obtainable biofluids (for example, blood and 

urine). A unique advantage of metabolites as biomarkers is the likely occurrence of observing a set of 

multiple metabolites with distinctly different concentration changes that are correlated with a disease state 

or treatment response. Correspondingly, multiple metabolites, instead of a single biomarker, are expected 

to yield a higher sensitivity and selectivity. For example, plasma baseline levels of xanthine, 2-

hydroxyvaleric acid, succinic acid, stearic acid, and fructose prior to simvastatin treatment were observed 

to reliably predict a good or poor response in reducing low-density lipoprotein cholesterol48. The OPLS 
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model yielded a 70% sensitivity and 79% specificity with a corresponding area under the receiver 

operating characteristic curve of 0.84. Thus, metabolomics can be used to predict whether a patient will 

respond to a drug in addition to being used as a semi-quantitative prognosis of disease progression. For 

example, in a recent study of patients with tuberculosis (TB), urine samples that were collected over the 

course of a 6-month period became more similar to those of a non-TB control group during the course of 

first-line anti-TB therapy (for example, isoniazid, ethambutol, or pyrazinamide). Metabolomics has also 

been successfully employed to identify serum metabolic alterations associated with psoriasis49. 

Importantly, the metabolomics results were consistent with trends previously observed in genomics and 

proteomics studies. The metabolome changes were observed to reverse following successful 

corticosteroid treatment50. Interestingly, the authors identified an increased demand for glutamine, which 

had not been previously reported in psoriasis.50-51 

Glutamine demand is directly associated with diseases characterized by increased cellular 

proliferation, such as in cancers. A significant alteration in β-isosterol, which is a commonly employed 

herbal remedy, was also observed. Thus, metabolomics may also be used to identify a patient’s use of 

alternative treatments outside of his or her physician’s knowledge or recommendation. In this manner, 

metabolomics may assist in determining whether co-administration of a complementary treatment was 

beneficial or detrimental to a patient’s therapeutic outcome. 

2.6 New Trends in Data Analysis 

Much of the data analysis approach in metabolomics has been largely borrowed from the field of 

chemometrics, which pioneered the application of PCA and PLS to chemical systems52. Although these 

are powerful statistical tools, the current trend in metabolomics data analysis is evaluating the efficacy of 

new algorithms and statistical methods to improve group separation and metabolite identification. PCA, 

PLS, and OPLS are all commonly employed by metabolomics investigators, but newer approaches, 

including support vector machine (SVM53), random forest (RF)54, and self-organizing map (SOM)55 

algorithms, have all been recently applied to metabolomics data sets. 
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Despite having been formalized since 199256, SVM has been used extensively only in the analysis 

of gene microarray data, particularly due to its performance on data sets characterized by a large number 

of variables and few samples57[mukerjee]. SVM is also able to identify nonlinear relationships that violate 

the linearity assumptions of PCA and OPLS, making it easily generalizable. SVM has been recently 

applied in biomarker discovery for ovarian cancer, and a model using serum-derived LC-MS spectra was 

able to predict disease onset with higher accuracy than the currently accepted method of CA-125 serum 

monitoring58. A major caveat of SVM is its restriction to binary classification problems: it is able to 

discriminate between only two experimental groups. Simply, spectra belonging to two experimental 

groups are represented as points in n-dimensional space, where n corresponds to the number of observed 

metabolites. A hyperplane then is calculated that best separates the points from the two groups. The 

coefficients of the calculated hyperplane are used to determine which metabolites are most important for 

discriminating between the two groups. Although methods have been proposed to extend SVM to multi-

class problems, they are often done by breaking down the data set into an ensemble of binary groups that 

oversimplifies the problem and leads to uninformative models59. 

The RF algorithm is a decision tree–based method that uses random subsets of the data to 

construct multiple models, which then are combined to create an average model in a process known as 

bootstrap aggregation. In the decision tree method, samples are mapped to a target value (that is, which 

experimental class the sample belongs to) using a set of variable-based decision rules that separate the 

samples into groups corresponding to the target value. These newly formed groups can be further 

subdivided according to new variables, and each “branch” of separation is repeated until the samples can 

be fully differentiated. The major advantage of the decision tree is its imperviousness to scaling and 

variable normalization, an extremely common problem in metabolomics data60. The disadvantages 

include an extreme propensity for overfitting and having extremely poor generalizability that severely 

limits its utility. RF addresses this limitation by creating an ensemble of partial decision trees that, when 

combined into an overall model, reduces variance and overfitting61. In particular, the RF algorithm, being 
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relatively unaffected by scaling and normalization and easily handling both large data sets and missing 

values, is highly adaptable to the realities of real-world data sets. A major disadvantage of RF is that the 

method requires extensive “tuning” of default parameters by the investigator in order to obtain the best 

model. Also, the resulting decision tree can be hard to visualize for large data sets62. RFs have shown 

clinical value: they have been used to determine a set of serum protein and metabolic biomarkers in 

prostate cancer with higher predictive accuracy than the current prostate-specific antigen biomarker63-64. 

See Gromski et al. (2015) for an excellent review of the SVM and RF algorithms that also includes 

comparisons with other mainstream techniques62. SOM is an approach similar to PCA that reduces multi-

dimensional problems to a more easily interpretable low-dimensional grid to visualize natural clustering 

trends and groupings within a data set. SOM can be applied to the same tasks as PCA but without the 

biases toward high-variance metabolites. SOMs, like SVM, have the ability to detect non-linear 

relationships between detected metabolites68. SOMs have been successfully applied to develop 

biomarkers for early-stage renal cell carcinoma as well as to predict patient response to surgical 

intervention with a predictive accuracy of 94.74%65. In comparison with the other statistical methods, 

SOM has been severely limited in metabolomics because of a computationally intensive algorithm and the 

lack of a pre-packaged software, which has significantly diminished its accessibility to the wider research 

community66. Nevertheless, the usage of SOMs in metabolomics is steadily rising, and comparative 

analyses are beginning to demonstrate that SOMs are an acceptable alternative to more traditional 

clustering algorithms67. 

In addition to statistical methods applied directly to spectral profiles, identified metabolites can be 

used with pathway analysis68 to understand metabolite interactions with known pathways or to discover 

mechanisms of action in pharmaceutical natural product research73. Metabolomics data sets can generate 

an overwhelming and seemingly disjointed list of metabolites, which pathway analysis aims to place into 

a broader biological context by assigning metabolites to relevant metabolic pathways. This is done 

through a number of software tools that integrate putatively identified metabolites with pathway 
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information from various databases. For example, MetaboAnalyst 3.0 is a suite of metabolomics tools 

(http://www.metaboanalyst.ca), which includes modules for metabolite enrichment analysis (MSEA), 

metabolite pathway analysis (MetPA), and an integrated pathway analysis. The user input is typically a 

list of metabolites (with or without concentrations) or genes or both. MSEA provides a ranked list of 

potentially key metabolic pathways based on the observed number of metabolites associated with that 

pathway (that is, metabolite set enrichment)69. MetPA combines MSEA with a pathway topology analysis 

to provide an overall pathway analysis to identify the metabolic pathways primarily impacted in the 

study68. The integrated pathway analysis combines both metabolomics and genomics data with 

enrichment analysis and topology analysis to again identify the pathways (in rank order) that were 

primarily impacted in the study70. MetaboSignal (https://bioconductor.org/) is an alternative approach to 

pathway analysis which employs directed graphs with network topology approaches to compute centrality 

measures to correlate genemetabolite relationships through shortest-path distances71. Thus, unlike the 

MetaboAnalyst 3.0 tools, the output of MetaboSignal is a network map of gene-metabolite connectivities. 

Cytoscape (http://www.cytoscape.org/) is a generalized network interaction and visualization tool that 

works with a variety of data sets, including metabolomics data. Cytoscape combined with MetScape 3 

(http://metscape.ncibi.org/)72 can generate network maps similar to those of MetaboSignal from 

metabolomics or genomics data or both78. MetScape uses known pathways from Kyoto Encyclopedia of 

Genes and Genomes (KEGG)73 and Edinburgh Human Metabolic Network (EHMN)74 databases and gene 

set enrichment analysis to generate these networks in order to visualize the impacted metabolic pathways. 

In essence, there is some significant overlap in the capabilities of MetaboAnalyst 3.0, MetaboSignal, and 

Cytoscape/MetScape 3. Importantly, pathway analysis provides an interaction network that may identify 

centralized hubs where metabolic pathways coincide or where bottlenecks may occur. The limited 

connectivity or altered flow through specific metabolic nodes (that is, change in metabolic flux) may 

identify functionally essential biological processes75. These essential pathways then can be selectively 

targeted. By genetically or chemically restricting a potentially essential metabolic pathway, it is possible 

to ascertain the relevance of the pathway to a systems response to an environmental stress (that is, drug 
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resistance) and potentially reverse or negate the response76. Pathway analysis also allows for the 

integration of multi-modal omics data, such as combining gene-expression and metabolomics data to 

uncover gene and protein functions. For example, metabolite profiles were integrated with genome-wide 

screening of single-nucleotide polymorphisms (SNPs) to identify the molecular mechanism of the NAT8 

and PYROXD2 genes. Briefly, SNPs were ranked according to the strength of an association with 

observed metabolites. The regions where these SNPs occur on the chromosomes then were screened to 

determine at what position in the genome the gene/protein product responsible for the mediation is stored. 

With this approach, it was suggested that the NAT8 and PYROXD2 genes were responsible for mediation 

of serum diethylamine levels77, a novel insight for these previously under-annotated genes.  

As another illustration, transcriptomic and metabolomic data from Arabidopsis thaliana were 

integrated to characterize the biological response resulting from the over-expression of PAP1, a gene 

known to cause profound accumulation of anthocyanins and to encode a MYB transcription factor 

regulating flavonoid biosynthesis. The authors were able to correlate the biosynthesis of cyanidin and 

quercetin derivatives with a specific set of upregulated genes that enabled them to identify the function of 

two uncharacterized proteins: a flavonoid 3-O-glucosyltransferase and anthocyanin 5-O-

glucosyltransferase78. Numerous tools are now available for pathway analysis of metabolomics data73, 79-

80, which will significantly improve data interpretation and simplify our understanding of biological 

relevance. Thus, pathway analysis is becoming a routine component of a detailed metabolomics analysis. 

2.7 Concluding Thoughts: What does the future hold? 

The recent advancements in metabolomics outlined herein have been shown to enhance its utility in 

systems biology research and to have a beneficial impact on medical research and personalized medicine. 

The measurement of metabolomics profiles has been shown to be useful for monitoring treatment 

efficacies from both pharmaceutical and surgical interventions. As our understanding of the relationship 

between disease state and the chemical profile of biofluids grows, metabolomics is expected to become a 

routine approach for monitoring disease development and progression, as a tool for disease diagnosis, and 
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for understanding the underlying molecular mechanisms of drug resistance. Metabolite profiles could be 

obtained at regular intervals and screened for changes over a patient’s lifetime as a diagnostic tool and a 

means to monitor a patient’s overall health status. Some of this work has already begun; an ongoing 

Alphabet (parent company of Google) “moon-shot project” is a baseline study attempting to determine the 

inherent level of variability in human medical data that is not associated with a disease. Though still in its 

infancy, a similar approach using metabolomic profiles may be used to determine the inherent variability 

in biofluid profiles for healthy individuals. In this manner, metabolic profiles associated with disease 

onset and progression can be easily distinguished from the known variance in healthy individuals Some of 

the biggest challenges remaining in the field of metabolomics involve fundamental limits in experimental 

methodology. Metabolomics requires relatively high-cost instrumentation and complex data analysis and 

still suffers from issues of sample-to-sample variability. Although great strides in each of these areas have 

been made, there is still more work to be done before metabolomics can become a key and routine part of 

a clinical practice. Nevertheless, metabolomics continues to make important contributions to both medical 

research and general systems biology studies. In fact, the ability to directly measure metabolite 

concentration changes by using a targeted NMR or MS approach would greatly benefit investigations into 

a range of research areas that often are overlooked by other methods. In this manner, a metabolomics 

assay that targets a select and specific set of metabolites can be used to develop a highly reproducible and 

quantifiable assay that can be translated into a validated clinical assay. 
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Chapter 3: The role of Normalization in Metabolomics 

3.1 Introduction 

High-throughput facilities continue to improve the acquisition and throughput of OMICS experiments 

(e.g., genomics, transcriptomics, proteomics, and metabolomics), which has resulted in the rapid 

accumulation of large amounts of data. These massive datasets have enabled the detection and 

quantification of thousands of genes, proteins, and metabolites across various biological samples. 

Accordingly, OMICs data has significantly contributed to a variety of fields including drug discovery1, 

personalized medicine2, nutrition3 and environmental studies4. Perturbations or variance are inherent to all 

experimental datasets and come from a variety of sources such as biological variability, instrument 

instability, and inconsistency in sample handling and preparation. For example, the number of cells 

harvested, the mass of tissue collected, or the amount of urine produced may vary significantly across all 

of the biological replicates. These unavoidable variations may mask the real biological signals present in 

the samples, which, in turn, complicates the reliability and accuracies of all downstream quantitative 

analyses5. Accordingly, the preprocessing of OMICs data is a critical step and involves minimizing 

undesirable noise to make all subsequent analyses more robust, accurate, and precise6. One crucial 

preprocessing step is the normalization of data, which has been shown to effectively reduce systematic 

noise in OMICs datasets7. Normalization of OMICS datasets can be accomplished using a variety of 

methods8,9. But, the proper choice depends on data characteristics and the sources of variation that needs 

correcting. How well a specific normalization technique performs in reducing these extraneous biases is 

still an open question. Accordingly, identifying an optimal normalization technique is still a common 

issue encountered throughout the OMICs fields. For example, in genomics, differences in sequencing 

length (library size), gene length, or guanine–cytosine content may lead to data variance and a false 

interpretation of gene expression variability10Thus, an appropriate normalization method needs to 

eliminate these sources of variance to ensure an accurate measure of gene expression levels. To address 

this issue, Choe et al. examined four popular normalization methods routinely used in genomics that 
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included: constant sum, rank-invariant, LOcally Estimated Scatterplot Smoothing (LOESS), and 

quantile11.The normalization algorithms were compared using RNA-microarray data. The LOESS 

normalization algorithm assumes a non-linear relationship and uses a local regression approach to adjust 

signal intensity and noise. Incorporating LOESS normalization into the analysis of the RNA-microarray 

data yielded superior results relative to the other normalization techniques. LOESS improved the 

detection of true differentially expressed genes as evident by the largest area under the receiver operating 

characteristic (ROC) curve. Similarly, Callister et al. evaluated four normalization techniques routinely 

used in proteomics12. Central tendency, linear regression, locally weighted regression, and quantile 

normalization algorithms were compared using three sets of samples representing different levels of data 

complexity. The linear regression normalization algorithm was identified as the top performer since it 

exhibited the largest reduction in extraneous variability while also maintaining the highest reproducibility 

as measured by both pooled estimate of variance and a median coefficient of variance. Metabolomics 

characterizes both the identity and the quantity of metabolites present in a biological sample5. Since 

metabolites are a direct product of cellular processes, the metabolome is able to accurately capture the 

current state of the system. Thus, even subtle changes in metabolite concentrations may provide important 

insights into disease progression13, drug resistance14, or a response to numerous stress factors (e.g., 

environmental toxins, nutrient limitation, genetic mutation, etc.)15–17. Unfortunately, like genomics and 

proteomics, these metabolite differences are easily obscured by the natural variance that occurs between 

biological replicates or by inconsistencies in sample sizes. Furthermore, since nuclear magnetic resonance 

(NMR) spectroscopy5 is routinely used to monitor the metabolome, instrument instability and 

experimental factors such as changes in pH, temperature, ionic strength or even sample composition may 

lead to unintended signal variance6. Such non-biologically induced perturbations are likely to mask the 

true biological signals in the data and complicate the data analysis process. Again, normalization is a 

necessary requirement to minimize these undesirable variations and to increase the accuracy and 

reliability of all subsequent data analyses. A variety of procedures are currently available to normalize 

NMR metabolomics data8,16. Since each algorithm addresses systematic variations in a different manner, 
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the correct choice of a normalization scheme can be challenging. For example, some normalization 

algorithms aim to remove unwanted noise by minimizing inter-sample variation such as probabilistic 

quotient6 and cubic splines methods18, while others such as unit variance or Pareto (often referred to as 

scaling), aim to adjust the variance of spectral features so that all peaks are equally weighted when used 

to construct multivariate models such as principal components analysis (PCA). Since these algorithms 

were developed with different underlying assumptions, each method confers a unique set of advantages 

and disadvantages. For example, Craig et al. , demonstrated that while constant sum normalization 

adequately preserves signal quality, it can change the underlying correlations between peaks and generate 

artifacts19. Thus, constant sum may confound interpretations when used incorrectly. A comparative 

analysis of normalization schemes by Kohl et al. determined that quantile normalization significantly 

outperforms other approaches in both minimizing inter-sample standard deviation and accurately 

preserving fold change information5. However, it was also noted that the performance of quantile 

normalization was only truly realized for large datasets (n≥50) and offers no significant performance 

benefits on more modestly sized datasets. The diversity of normalization algorithms and the lack of a 

clear consensus has provided the motivation to conduct a thorough and quantitative evaluation of 

normalizing methods currently available to the metabolomics community through our MVAPACK 

software package20. MVAPACK is open source software (http:// bionmr.unl.edu/mvapack.php) that 

includes a complete set of functions for data loading, preprocessing, modeling, and validation of NMR 

metabolomics datasets. MVAPACK also includes the following normalization methods: probabilistic 

quotient (PQ)6 , histogram matching (HM)21, standard normal variate (SNV)22, multiplicative scatter 

correction (MSC)23, quantile (Q)5, natural cubic splines (CSpline)18, smoothing splines (SSpline)24, 

constant sum (CS) and region of interest (ROI)6. Our phase-scatter correction (PSC) algorithm is also 

available in MVAPACK, but was not included in this comparison since PSC was previously discussed in 

detail 25. The normalization methods were compared using simulated and experimental NMR datasets 

with various levels of added noise and dilution factors26. Their performances were evaluated based on an 

ability to recover the intensities of the true spectral peaks and the reproducibility of true classifying 
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features from orthogonal projections to latent structures—discriminant analysis (OPLS-DA) model27. In 

this manner, the normalization methods were evaluated based upon expected outcomes for routine 

metabolomics study: (i) the ability to eliminate irrelevant signal variance due to dilution factors and noise; 

and (ii) the ability to produce a predictive model that correctly identifies the real group-dependent 

variants. Our analysis indicates that of the normalization algorithms evaluated, PQ and CS performed the 

best in the analysis of noisy one-dimensional (1D) NMR metabolomics datasets. 

3.2 Methodology 

The performance of each normalization method was assessed using two distinct datasets: (i) 

simulated spectral data and (ii) a previously described experimental data set of 1D 1 H NMR spectra of 

various coffee samples26.All of the analyses were conducted using our MVAPACK20 software package. 

All of the figures were generated using the R software package28. 
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Figure 1. The simulated reference spectrum used for (A) group 1 and (B) for group 2. The two spectra 

contain the same number of peaks at the same chemical shifts. The only difference between the spectra is 

the relative peak intensities. 
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3.3 Simulation of a 1D 1H NMR Metabolomics Dataset 

The simulated dataset consisted of 50 spectra in which each spectrum contained 901 spectral features. The 

set of spectra were divided into two separate groups. Each group consisted of 25 spectra that were 

randomly generated from a reference spectrum. The reference spectrum for each group was independently 

simulated from the Cauchy distribution29, but with different parameters. Each reference spectrum contains 

four peaks located at chemical shifts of 3, 3.2, 3.5, and 8 ppm, respectively. The peak intensities differ 

between the four peaks and between the two reference spectra as illustrated in Fig. 1. The 25 spectra per 

group were generated from the reference spectrum by the addition of a minimal amount of Gaussian noise 

(Mean = 0, SD = 0.001). These two sets of 25 spectra, which correspond to group 1 and group 2, were 

combined to define the simulated reference dataset X0 (N=50, K=901). The simulated reference dataset 

X0 was then used to generate eight noise-added simulated sets (Xi ) (Fig. S1) with i = 1, 2, …, 8 (Table 1) 

according to Eq. (1):  

𝑿𝒊 = 𝑭𝒊 ∗ (𝑿଴ + 𝑬𝒊)      (1) 

 

where Fi is a 50×1 vector of dilution factors generated from a uniform distribution for the ith set, Ei is a 

matrix of independent Gaussian noise distributed with mean 0 and standard deviation 𝜎 i for the ith set, 

and * presents element-wise multiplication. The value of 𝜎 i ranged from 0.1 to 5 which produced a 

systematic increase in noise for the dataset. The CS, PQ, HM, SNV, MSC, ROI, Q, CSpline, and SSpline 

normalization methods were then separately applied to each noise-added set (Xi ) to obtain normalized set 

(X̃ i ). An OPLS-DA model was then generated from each normalized set (X̃ i ). Two-component OPLS-

DA models were calculated to obtain the first component loadings to compare the performance of the 

normalization approaches.  
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Table 1: Parameters used to generate the noise-added simulated spectra 

Set Dilution Factors (F)a Standard Deviation (𝜎)b Percent Added Noise 

S1 ~ 𝑈𝑛𝑖𝑓(0.9, 1.1) 0.1 5% 

S2 ~ 𝑈𝑛𝑖𝑓(0.9, 1.1) 0.2 10% 

S3 ~ 𝑈𝑛𝑖𝑓(0.8, 1.2) 0.4 20% 

S4 ~ 𝑈𝑛𝑖𝑓(0.5, 1.5) 1 50% 

S5 ~ 𝑈𝑛𝑖𝑓(0.3, 1.7) 1.4 70% 

S6 ~ 𝑈𝑛𝑖𝑓(0.1,1.9) 1.8 90% 

S7               ~ 𝑈𝑛𝑖𝑓(0.01, 2.5) 2.5 100% 

S8 ~ 𝑈𝑛𝑖𝑓(0.001, 5) 4 200% 

aA dilution factor was randomly selected from the indicated range of values. 

bThe value of standard deviation used to generate a Gaussian distribution of noise.  
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3.4 Experimental 1D 1H NMR Metabolomics Dataset 

A data matrix of 32 1D 1 H NMR spectra from a publicly available coffees dataset was used to further 

evaluate the normalization algorithms26.The coffees dataset contains two groups defined as light and 

medium decaffeinated coffee consisting of 16 1D 1 H NMR spectra per group. Each spectrum contains 

284 spectral features. We applied the same procedures as described above to generate the noise-added 

experimental dataset. Specifically, the original coffees dataset of 32 1D 1 H NMR experimental spectra 

was designated as the reference data set Y0 (N=32, K=284). The reference data set Y0 was then used to 

generate seven simulated sets (Yi ) with i = 1, 2, …, 7 (Table 2) according to Eq. 2: 

𝒀𝒊 = 𝑭𝒊 ∗ (𝒀଴ + 𝑬𝒊)      (2) 

where Fi is a 32×1 vector of dilution factors generated from a uniform distribution for the ith set, Ei 

(N=32, K=284) is a matrix of independent Gaussian noise distributed with mean 0 and standard deviation 

𝜎 i for the ith set, and * presents element-wise multiplication. The value of 𝜎 i ranged from 2.3 × 10−7 to 

10−5 which produced a systematic increase in noise while also mimicking the relative variance in the 

noise present in the coffees dataset. 
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Table 2. Parameters used to generate the noise-added coffees dataset 

Set Dilution Factors (𝑭)a Standard Deviation (𝜎)b Percent Added Noise 

C1 ~ 𝑈𝑛𝑖𝑓(0.9, 1.1) 2.3 × 10ି଻ 5% 

C2 ~ 𝑈𝑛𝑖𝑓(0.8, 1.2) 4.6 × 10ି଻ 10% 

C3 ~ 𝑈𝑛𝑖𝑓(0.5, 1.5) 9.3 × 10ି଻ 20% 

C4 ~ 𝑈𝑛𝑖𝑓(0.3, 1.7) 2.3 × 10ି଺ 50% 

C5 ~ 𝑈𝑛𝑖𝑓(0.1, 1.9) 5 × 10ି଺ 100% 

C6 ~ 𝑈𝑛𝑖𝑓(0.01,2.5) 8 × 10ି଺ 170% 

C7 ~ 𝑈𝑛𝑖𝑓(0.001, 5) 10ିହ 200% 

aA dilution factor was randomly selected from the indicated range of values. 

bThe value of standard deviation used to generate a Gaussian distribution of noise. 
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3.5 Summaries of Employed Normalization Procedures 

Constant sum: Each spectrum of the data matrix was divided by its own integral6.  

Probabilistic quotient The normalization factor was the most probable quotient between the signals of the 

corresponding spectrum and the reference spectrum6. The reference spectrum was chosen as the median 

spectrum of the spectral set. Each spectrum in the dataset was divided by this normalization factor to 

obtain the normalized spectrum. 

Histogram matching: Raw spectra were log transformed prior to normalization. Similar to PQ, the target 

reference spectrum was the median spectrum of the dataset. Histograms for each sample spectrum and 

target spectrum were obtained on prespecified intensity intervals. A dilution factor was then chosen to 

minimize the differences between each sample spectrum histogram and the target histogram21.The new 

normalized spectrum was generated by multiplying each original spectrum by the corresponding dilution 

factor. 

Standard normal variate: Each sample spectrum in the dataset was centered prior to normalization. The 

standard deviation of each spectrum was calculated as a normalization factor22. A new normalized dataset 

was then obtained by dividing each original spectrum by its corresponding normalization factor.  

Multiplicative scatter correction: The normalization factors were least squares estimates obtained by 

regressing each sample spectrum onto the reference spectrum23.The reference spectrum was the mean 

spectrum. The ordinary least squares of the regression parameters were used to correct the spectral 

intensities.  

 

Region of interest: Each sample spectrum of the dataset was normalized to a specified spectral region 

where its integral was set to one. Each sample spectrum was then normalized relative to the most intense 

peak in the spectrum. 
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Quantile: The goal of this quantile normalization method was to obtain an identical distribution of 

intensities for all of the spectral features5.First, the mean spectrum was calculated for the data set. The 

intensities of all features in each sample spectrum were then replaced by the mean intensities in 

accordance with their quantile orders. 

Natural cubic splines: The CSpline method normalized each sample spectrum to the target spectrum. The 

target spectrum was calculated using the non-linear arithmetic mean of the data set. Depending on the 

type of data, a geometric mean may also be used 5.A set of 100 quantiles was taken from both the sample 

spectrum and the target spectrum. The quantiles were then fitted to a natural cubic spline to obtain 

parameter estimates, which were used for interpolations. The process was repeated five times. For each 

iteration, a small offset was added to the quantiles before refitting with a natural cubic spline to obtain 

new interpolations. The set of interpolations were averaged to obtain the normalized spectrum. 

Smoothing splines: SSpline is similar to CSpline, but the SSpline algorithm adds more quantiles toward 

the tail end of the spectrum. The most intense spectral features are located in this region of the spectrum. 

Moreover, the quantiles are fitted with a smoothing spline that includes a penalty parameter to avoid 

overfitting. The predicted feature intensities were then used as the normalized intensities. 

 

3.6 Evaluation criteria  

Regardless of the type of approach used to address dataset bias or variance, an optimal 

normalization procedure should reduce any unwanted noise while still preserving the true biological 

signals. In other words, a necessary condition to retain the true signals is the ability to recover the original 

peak intensities after removing noise. In this regards, it should be possible to evaluate the relative 

performance of normalization methods based on how well the algorithms handle increasingly noisy 

spectra. As the reference set is exposed to increasing amounts of noise, some (or all) of the normalization 

algorithms would be expected to fail to recover the original peaks intensities. Thus, the peak recovery 
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criteria served as a means to filter-out poorly performing normalization procedures prior to proceeding 

with the second evaluation criteria. A multivariate statistical model, such as PCA or OPLS, is typically 

employed to identify spectral features that separate the different groups in the dataset. These spectral 

features are intrinsic to the dataset. Accordingly, any properly normalized dataset should reproduce these 

true set of features. The first component loadings extracted from an OPLS-DA model contains the 

weights of the spectral features that contribute the most to separating the groups. Simply, the first 

component loadings identify the most-important group-dependent features. Thus, an OPLS-DA model 

was generated to obtain the first component loadings associated with each normalization method. Only 

the top performing normalization methods were used to generate an OPLS-DA model. The top 

performing normalization methods were identified based on the peak recovery criteria. Pearson 

correlation coefficients were calculated between the loadings of each normalized dataset and the true 

loadings set. The Pearson correlation coefficients provide a means to measure the reproducibility of the 

true classifying spectral features produced by each normalization algorithm. 

 

3.6.1 Peak recovery  

After sequentially normalizing each noisy data matrix using the nine normalization methods, the 

intensity of each peak in each spectrum of the normalized set (X̃ i ) was compared T. Vu et al. 1 3 108 

Page 6 of 10 to the true original spectrum (X0) to measure the recovery of peak intensities (rpi j i ). For 

each spectrum from the normalized data matrix (X̃ i ), the recovery of the jth peak was calculated 

according to this Eq. 3: 
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where I j i and I j 0 are the intensities of the jth peak from X̃ i and X0, respectively. In this manner, rpij i 

will range from 0 to 1 regardless of the relative magnitudes of I j i and I j 0. This process was repeated for 

every peak in each spectrum. The mean recovery and standard error were calculated and reported for each 

normalized set. 

3.6.2 Pearson correlation coefficients  

The coffees noisy data matrix (Yi) was only normalized using the top performing algorithms 

identified from the peak recovery criteria. An OPLS-DA model was generated for each normalized 

coffees data matrix (Ỹi) and also the original coffees data set (Yo). The datasets were scaled with Pareto 

scaling prior to calculating the OPLS-DA models. The first component loadings from each OPLS-DA 

model were then used to calculate a Pearson correlation coefficient between the true backscale loadings 

vector ( po) from the original coffees data set (Yo) and the backscale loadings vector ( pi ) from each 

normalized coffees noisy data matric (Ỹi). The Pearson correlation coefficients were calculated according 

to Eq. 4: 
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where K denotes the number of spectral features; p̄i is the mean loading of vector pi ; pk i is the kth 

loading of vector pi ; p̄ 0 is the mean loading of vector p0; and pk 0 is the kth loading of vector p0. This 

process was repeated 100 times. The mean correlation coefficients and standard error were calculated for 

each normalized set. 

 

3.7 Results and discussion  

The two reference NMR spectra displayed in Fig. 1 were used to generate eight noise-added simulated 

metabolomics datasets consisting of 25 spectra for each of the two groups (Fig. S1). Accordingly, each 

simulated dataset contained a total of 50 spectra. The total signal variance in each dataset was defined by 



48 
 

the amount of Gaussian noise added and by the dilution factors listed in Table 1. The simulated NMR 

metabolomics datasets were then normalized using each of the nine normalization methods (i.e., CS, 

CSpline, HM, MSC, PQ, Q, ROI, SNV, and SSpline). A peak recovery was calculated for each dataset 

according to Eq. 3. The peak recovery compares each of the normalized dataset to the original reference 

NMR spectra (Fig. 1). The peak recoveries for each normalized dataset are plotted in Figs. 2 and 3. As 

expected, the efficiency of peak recovery decreases with increasing signal variance regardless of the 

normalization method. As illustrated in Fig. 2, most of the normalization methods achieve nearly 100% 

peak recovery (96 to 99%) under conditions of modest signal variance (S1 and S2). The most notable 

outlier is HM, which achieved a peak recovery of only 20–28%. This extremely poor performance 

suggests that HM should be avoided and not used for the normalization of NMR metabolomics data.  
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Figure 2. A plot of the recovery of peak intensities (eqn. 3) for the 9 normalization methods after being 

applied to the 8 (S1 to S8) simulated datasets listed in Table 1. The total signal variance due to the amount 

of added Gaussian noise and the magnitude of the dilution factor increases from S1 to S8. The horizontal 

dashed lines represent a full recovery at 100% and partial recovery at 50%. Each bar represents the mean 

peak recovery and the error bars represent ±2*standard error of the mean. 
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While significantly better than HM, SSpline also performed consistently below average with a 

peak recovery range of 93–95%. PQ was modestly below the best performers with a peak recovery range 

of 96–97%. Conversely, ROI, CS, SNV, MSC, and Q, recovered at least 98% of the peak intensities 

under conditions of modest signal variance. A further separation in algorithm performance was apparent 

as the signal variance was progressively increased. SSpline continued to perform worse than average, but 

from simulated set S5 forward the performance of SNV had also significantly declined to match SSpline. 

Similarly, from simulated set S6, CSpline had fallen below the average performance of the other 

normalization methods. In fact, as the amount of signal variance was increased to the highest level (S8), 

the peak recoveries for CSpline, HM, MSC, Q, and SSpline all fell below 50%. Conversely, CS, PQ and 

ROI maintained a peak recovery of around 70% (67–74%).  

Accordingly, the peak recovery results suggest that the CS, PQ and ROI were the most robust 

normalization methods and were able to maintain a maximal peak recovery as a function of signal variance 

(Fig. 3). Pairwise Student’s t tests of the mean peak recovery values at the highest signal variance level (S8) 

yield a maximum p-value of <2.8×10−13 between the CS, PQ, ROI algorithms and the other normalization 

methods. To further investigate the individual impact of Gaussian noise and dilution factors on peak 

recovery, the simulation was repeated for the three top performing normalization methods (i.e., CS, PQ and 

ROI). Instead of simultaneously varying both Gaussian noise and the dilution factors as listed in Table 1, 

the simulation was repeated with either Gaussian noise or the dilution factor held  

constant at S1 values. The combined average peak recovery values for CS, PQ and ROI normalized 

datasets are plotted as a function of added Gaussian noise or dilution factor in Fig. 4. This simulation 

yielded an unexpected result. The performance of the normalization method was essentially unaffected by 

the dilution factor. Near perfect peak recovery was obtained even for the highest dilution factor. Instead, 

the normalization performance was strictly dependent on the level of Gaussian noise added to the spectra.  
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Figure 3. A plot of the recovery of peak intensities (eqn. 3) for the three top performing normalization 

methods after being applied to the 8 (S1 to S8) simulated datasets listed in Table 1. The total signal variance 

due to the amount of added Gaussian noise and the magnitude of the dilution factor increases from S1 to 

S8. The horizontal dashed lines represent a full recovery at 100% and partial recovery at 50%. Each bar 

represents the mean peak recover and the error bars represent ±2*standard error of the mean. 
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However, it is important to note that normalization methods also rely on good peak alignment, 

spectral phasing, baseline correction and solvent suppression in order to perform well. Accordingly, the 

simulations reported herein were restricted to well-behaved datasets. While being able to accurately 

reconstitute peak intensity is an important attribute of a normalization algorithm, the proper identification 

of group-defining spectral features is still a vital necessity. In essence, are biologically-relevant metabolic 

differences still being correctly identified regardless of the natural signal variance? Does a PCA or OPLS 

scores plot yield statistically relevant group separations and do the loadings identify the “true” metabolic 

differences between the groups? To address this issue, the CS, PQ and ROI normalization methods were 

further evaluated based on the reproducibility of OPLS-DA models as a function of increasing signal 

variance. An experimental coffees dataset previously used to investigate PCA and OPLS model stability26 

was employed to generate OPLS-DA models using the CS, PQ and ROI normalization methods. 

Specifically, the coffee dataset consists of 32 1D 1 H NMR spectra for two groups of observations (light 

and medium decaffeinated coffees). The coffees dataset was modified with Gaussian noise and a dilution 

factor (Fig. S2) as outlined in Table 2. Consistent with our prior observations26 the two coffee groups 

become indistinguishable with an increase in signal variance. Importantly, the estimated loadings from 

the corresponding OPLS-DA model are less correlated to the true loadings (Fig. 5) with increasing signal 

variance. Notably, at minimal to moderate signal variance levels (C1 to C3), the PQ and ROI 

normalization methods perform almost identically and significantly better than CS. But, as the amount of 

signal variance increased significantly (C4 to C7), the OPLS-DA model was no longer valid with the ROI 

normalization technique; and the loadings correlation, not surprisingly, decreased dramatically. Similarly, 

the standard errors of mean loadings correlation coefficients increased significantly for ROI compared to 

the negligible values observed for CS and PQ (ranged from 0.0003 to 0.008). Interestingly, despite CS 

initially performing worse than PQ, there was no difference in the loadings correlation between PQ and 

CS at C4. Furthermore, CS outperformed PQ at the highest signal variance levels (C5 to C7). But, the 

loadings correlations still decreased linearly with increasing signal variance following CS or PQ 

normalization. The loss of a correlation to the true loadings was still substantial and would likely lead to 
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incorrect biological interpretations. A similar set of results was obtained for the simulated dataset (Fig. 

S3). In total, our analysis suggest that CS and PQ are the most robust normalization techniques and are 

able to compensate, at least partly, for large signal variance. Both CS and PQ maintained the highest level 

of peak recovery and the highest correlation between backscaled loadings. Notably, PQ was the most 

robust normalization technique at low to moderate noise levels while CS was slightly better at 

compensating for larger signal variance. A combined analysis of the peak recovery and OPLS-DA 

backscaled loadings data provides some further guidance for designing and executing an NMR 

metabolomics study. As we have noted previously26,30,31, noise is detrimental to the accurate and reliable 

analysis of metabolomics data using multivariate statistical techniques such as PCA and OPLS. The 

results reported herein further support the negative impact of noise on the analysis of NMR metabolomics 

data.  

As evident in Fig. 4, a dilution factor had no appreciable impact on the performance of a 

normalization method. Instead, all variance in the performance of the normalization methods was due to 

noise. Furthermore, most of the normalization methods performed equally-well in regards to peak 

recovery and loadings correlation for added noise levels up to about 20%. The lone exception is HM, 

which should be avoided. A significant decay in performance occurred when >20% of noise was added to 

either the simulated or experimental dataset. Accordingly, an experimental NMR dataset that exhibits 

greater than 20% noise is a serious concern and the resulting chemometrics model is highly suspect. In 

essence, our analysis sets a minimum criterion for maintaining noise (defined by a standard Gaussian 

distribution) at below 20% for a valid metabolomics dataset.  
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Figure 4. A plot of the average peak recovery calculated from the three top-performing normalization 

methods (CS, PQ, and ROI). Datasets were regenerated according to the scheme described in Table 1 but 

containing only a dilution factor (♦) or the addition of Gaussian noise (■). The dilution factor or added 

Gaussian noise was held constant at S1 values when the other parameter was varied. The peak recovery 

decreases with additive noise, but is unaffected by dilution factor.  
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Figure 5. A plot of the average Pearson correlation coefficients (eqn. 4) calculated by comparing the true 

backscaled loadings from the original coffee dataset OPLS-DA model relative to the backscaled loadings 

from the CS (♦), PQ (■), and ROI (▲) normalized coffees noisy dataset OPLS-DA model. The amount of 

signal variance introduced into the coffees dataset is described in Table 2. The error bars represent 

±2*standard error of the mean. Please note that most of the error bars are smaller than the size of the 

symbols. 
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3.8 Conclusion 

The nine normalization methods available in our MVAPACK software package were evaluated 

for their ability to compensate for increasing signal variance. The performance of the normalization 

techniques were tested on simulated and experimental 1D 1 H NMR datasets with the addition of 

Gaussian noise and dilution factors. However, it is important to keep in mind that the Gaussian noise and 

dilution factors used in model construction are only an approximation of non-biological variance. At low 

to moderate noise levels, all of the normalization methods, except HM, performed well in terms of peak 

recovery. Accordingly, HM should be avoided as a normalization technique for NMR. Notably, peak 

recovery performance was only dependent on added Gaussian noise, and independent of dilution factor. 

At high signal variance, most normalization procedures failed to recover true peak intensities except for 

CS, PQ, and ROI. Again, PQ and ROI normalization algorithms performed equally-well and significantly 

better than CS at low to moderate noise levels in reproducing the backscaled loadings from an OPLS-DA 

model. But, ROI generated statistically invalid OPLS-DA models and poor backscaled loadings 

correlations at higherlevels of noise. Interestingly, CS performed slightly better than PQ in reproducing 

the backscaled loadings at high noise levels. Thus, our results suggest that CS and PQ perform the best in 

regards to maintaining the true signal in noisy datasets. Consistent with our prior observations, groups 

become indistinguishable with increasing noise; and correlations to the true loadings are lost. In other 

words, an increasing level of additive Gaussian noise masks the true signals in the datasets. Accordingly, 

if this noise is not handled properly, it will lead to false conclusions and biologically irrelevant 

observations. In this regards, our analysis suggests that, at a minimum, noise needs to remain below 20% 

in order for an NMR metabolomics dataset to provide an accurate and biologically-relevant chemometrics 

model. 

 

 

 



57 
 

3.9 References1. Butcher, E. C., Berg, E. L. & Kunkel, E. J. Systems biology in drug discovery. 

Nature Biotechnology (2004). doi:10.1038/nbt1017 

2. Chen, R. et al. Personal omics profiling reveals dynamic molecular and medical phenotypes. Cell 

(2012). doi:10.1016/j.cell.2012.02.009 

3. Wishart, D. S. Metabolomics: applications to food science and nutrition research. Trends in Food 

Science and Technology (2008). doi:10.1016/j.tifs.2008.03.003 

4. Aardema, M. J. & MacGregor, J. T. Toxicology and genetic toxicology in the new era of 

‘toxicogenomics’: Impact of ‘-omics’ technologies. Mutat. Res. - Fundam. Mol. Mech. Mutagen. 

(2002). doi:10.1016/S0027-5107(01)00292-5 

5. Kohl, S. M. et al. State-of-the art data normalization methods improve NMR-based metabolomic 

analysis. Metabolomics 8, 146–160 (2012). 

6. Dieterle, F., Ross, A., Schlotterbeck, G. & Senn, H. Probabilistic quotient normalization as robust 

method to account for dilution of complex biological mixtures. Application in1H NMR 

metabonomics. Anal. Chem. (2006). doi:10.1021/ac051632c 

7. Chawade, A., Alexandersson, E. & Levander, F. Normalyzer: A tool for rapid evaluation of 

normalization methods for omics data sets. J. Proteome Res. (2014). doi:10.1021/pr401264n 

8. Hochrein, J. et al. Data Normalization of 1H NMR Metabolite Fingerprinting Data Sets in the 

Presence of Unbalanced Metabolite Regulation. J. Proteome Res. (2015). 

doi:10.1021/acs.jproteome.5b00192 

9. Giraudeau, P., Tea, I., Remaud, G. S. & Akoka, S. Reference and normalization methods: 

Essential tools for the intercomparison of NMR spectra. Journal of Pharmaceutical and 

Biomedical Analysis (2014). doi:10.1016/j.jpba.2013.07.020 

10. Zyprych-Walczak, J. et al. The Impact of Normalization Methods on RNA-Seq Data Analysis. 



58 
 

Biomed Res. Int. (2015). doi:10.1155/2015/621690 

11. Choe, S. E., Boutros, M., Michelson, A. M., Church, G. M. & Halfon, M. S. Preferred analysis 

methods for Affymetrix GeneChips revealed by a wholly defined control dataset. Genome Biol. 

(2005). doi:10.1186/gb-2005-6-2-r16 

12. Callister, S. J. et al. Normalization approaches for removing systematic biases associated with 

mass spectrometry and label-free proteomics. J. Proteome Res. (2006). doi:10.1021/pr050300l 

13. Cuykx, M., Claes, L., Rodrigues, R. M., Vanhaecke, T. & Covaci, A. Metabolomics profiling of 

steatosis progression in HepaRG® cells using sodium valproate. Toxicol. Lett. (2018). 

doi:10.1016/j.toxlet.2017.12.015 

14. Thulin, E., Thulin, M. & Andersson, D. I. Reversion of High-level Mecillinam Resistance to 

Susceptibility in Escherichia coli During Growth in Urine. EBioMedicine (2017). 

doi:10.1016/j.ebiom.2017.08.021 

15. Doran, M. L. et al. Metabolomic analysis of oxidative stress: Superoxide dismutase mutation and 

paraquat induced stress in Drosophila melanogaster. Free Radic. Biol. Med. (2017). 

doi:10.1016/j.freeradbiomed.2017.10.011 

16. Fukushima, A. et al. Effects of Combined Low Glutathione with Mild Oxidative and Low 

Phosphorus Stress on the Metabolism of Arabidopsis thaliana. Front. Plant Sci. (2017). 

doi:10.3389/fpls.2017.01464 

17. Jung, Y. S., Lee, J., Seo, J. & Hwang, G. S. Metabolite profiling study on the toxicological effects 

of polybrominated diphenyl ether in a rat model. Environ. Toxicol. (2017). doi:10.1002/tox.22322 

18. Workman, C. et al. A new non-linear normalization method for reducing variability in DNA 

microarray experiments. Genome Biol. (2002). doi:10.1186/gb-2002-3-9-research0048 

19. Craig, A., Cloarec, O., Holmes, E., Nicholson, J. K. & Lindon, J. C. Scaling and normalization 



59 
 

effects in NMR spectroscopic metabonomic data sets. Anal. Chem. (2006). doi:10.1021/ac0519312 

20. Worley, B. & Powers, R. MVAPACK: A complete data handling package for NMR 

metabolomics. ACS Chem. Biol. (2014). doi:10.1021/cb4008937 

21. Torgrip, R. J. O., Åberg, K. M., Alm, E., Schuppe-Koistinen, I. & Lindberg, J. A note on 

normalization of biofluid 1D 1H-NMR data. Metabolomics (2008). doi:10.1007/s11306-007-0102-

2 

22. Barnes, R. J., Dhanoa, M. S. & Lister, S. J. Standard normal variate transformation and de-

trending of near-infrared diffuse reflectance spectra. Appl. Spectrosc. (1989). 

doi:10.1366/0003702894202201 

23. Windig, W., Shaver, J. & Bro, R. Loopy MSC: A simple way to improve multiplicative scatter 

correction. Appl. Spectrosc. (2008). doi:10.1366/000370208786049097 

24. Fujioka, H., Kano, H., Egerstedt, M. & Martin, C. F. SMOOTHING SPLINE CURVES AND 

SURFACES FOR SAMPLED DATA. International Journal of Innovative Computing, Information 

and Control ICIC International c (2005). 

25. Worley, B. & Powers, R. Simultaneous phase and scatter correction for NMR datasets. Chemom. 

Intell. Lab. Syst. (2014). doi:10.1016/j.chemolab.2013.11.005 

26. Worley, B. & Powers, R. PCA as a Practical Indicator of OPLS-DA Model Reliability. Curr. 

Metabolomics (2016). doi:10.2174/2213235X04666160613122429 

27. Worley, B. & Powers, R. Multivariate Analysis in Metabolomics. Curr. Metabolomics 1, 92–107 

(2013). 

28. Team, R. D. C. & R Development Core Team, R. R: A Language and Environment for Statistical 

Computing. R Found. Stat. Comput. (2016). doi:10.1007/978-3-540-74686-7 



60 
 

29. Weisstein, E. W. Cauchy Distribution. MathWorld (2017). 

30. Halouska, S. & Powers, R. Negative impact of noise on the principal component analysis of NMR 

data. J. Magn. Reson. (2006). doi:10.1016/j.jmr.2005.08.016 

31. Halouska, S. et al. Revisiting Protocols for the NMR Analysis of Bacterial Metabolomes. J. 

Integr. OMICS 3, 120–137 (2013). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



61 
 

Chapter 4: The Challenges of Mass Spectrometry in Metabolomics 

 

4.1 Introduction 

Metabolomics is an increasingly important avenue of biological research. The ideal goal of metabolomics 

is to be able to obtain both accurate and precise measurements on as many metabolites (broadly defined 

as the small molecule components of cellular metabolism) as possible within a biological system1–3 

Theoretically, any analytical method capable of measuring these cellular components can be 

used; fourier transform infrared spectroscopy (FT-IR), nuclear magnetic resonance (NMR), capillary 

electrophoresis (CE) and mass spectrometry (MS) have all been successfully employed in metabolomics 

investigations, particularly in combination with separation techniques such as gas and liquid 

chromatography (GC/LC respectively).However, the vast majority of studies are performed using either 

NMR or MS1.  This is in large part due to their amenability to a wide range of metabolites (unlike CE, 

which performs best on charged species) and one-to-one correspondence between a known metabolite and 

an observed spectral signal (in contrast with FT-IR methods, which can often only assign a signal to a 

specific chemical moiety within a larger structure, rather than identifying individual metabolites on its 

own).  Additionally, NMR and MS have spatially resolved signals (especially so when using 2-

Dimensional NMR or LC-MS), making them much more amenable to the analysis of complex mixtures 

than more non-specific methods such as 1D-NMR or Infrared/UV which lack the resolving power to 

distinguish individual components as the mixture complexity increases4.  

Both NMR and LC-MS offer their own unique advantages. NMR is highly reproducible, with 

simple sample preparation and amenability to analytes over a wide range of solvent conditions, as well as 

definitive structural characterization. Despite these strengths, NMR still struggles with a low sensitivity 

which is a major roadblock that is slowing its wider adoption as an analytical technique for metabolomics. 

The lower sensitivity of NMR contrasts with MS, which boasts both high sensitivity and low detection 
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limits that can detect more subtle metabolite changes that are “NMR-invisible” due to limited 

concentrations. However, the nature of MS detectors (and a reliance on ionization processes) necessarily 

restricts analysis to metabolites which can be readily ionized. Additionally, it is known that minor 

contaminants are known to reduce ionization efficiency, which negatively impacts the reproducibility of 

heterogeneous metabolomics samples. Accordingly, NMR and mass spectrometry are often viewed as 

complementary techniques that broaden the coverage and improve the accuracy of metabolomics studies5. 

.  Given the inherent biases of NMR towards high abundance metabolites and MS inability to 

capture poorly ionizing compounds, each method observes a unique subset of the total metabolites present 

in a sample, with little overlap between the two sets. A growing recognition of this reality suggests that 

simply performing both methods simultaneously when it is appropriate and feasible to do is the best 

approach to cover the largest possible set of metabolites present. The complementarity of NMR and mass 

spectrometry has resulted in an expanding number of studies that are routinely using both NMR and MS 

to characterize metabolomics samples in this way such that each method can compensate somewhat for 

the weaknesses of the other. In order to understand this further, an overview of how each method is 

commonly used in metabolomics is presented to illustrate the key differences between NMR and MS and 

what considerations need to be made when choosing the most appropriate platform for a given study. 

NMR, being one of the most fundamental spectroscopic techniques, is able to simultaneously 

identify and quantify a large number of metabolites in the micromolar range. As a measurement method, 

it is incredibly straightforward and easily automated making it the ideal platform for high-throughput. An 

additional benefit is that it is non-destructive, and samples can be recovered and analyzed further with 

other methods. It has been used extensively for biomarker discovery 6,7, as well as determining genetic 

function8.The major hurdle of NMR is it’s low sensitivity, which places a practical restriction on the 

number of metabolites that can be observed. 9NMR spectra require processes such as zero-filling, fourier 

transform, phasing, referencing, alignment, normalization, scaling and binning in order to be analyzed by 

common statistical processes such as PCA and OPLS in metabolomics. As a result of all of these 
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necessary tools, a number of software packages that offer these functionalities have been developed. 

However, each of these tools was designed to address a subset of these tasks extremely well, with little 

attention given to the rest of the data processing pipeline.  

For example, NMRPipe10 mainly focuses on tools for the processing of raw, spectral acquisition 

free induction decays into interpretable spectra while packages such as WavPeak focus mainly on 

intelligent peaklist generation from previously processed spectra11.As a result of this, within the NMR 

community it has become common to utilize multiple software packages, with each step of spectral 

analysis being performed by the tool best suited to the task. This introduces many potential point of 

failure, as not all software developed independently of each other can necessarily be guaranteed to 

cooperate with one another and offer redundant capabilities.  

To address this need, MVAPACK was developed. MVAPACK12 offers a complete set of tools for 

NMR spectral analysis all the way from initial preprocessing such as fourier transform to statistical 

analysis and model validation. As a result, metabolomics analysis in NMR can be performed in a single 

platform, which supports full transparency, uses only open-source tools in an intuitive and interactive 

scripting environment. MVPACK scripts are also easily documented for future use, allowing analyses to 

be repeated at any time or extended to include additional steps.  

 MS in metabolomics has been actively developed over the previous decades, and has been an 

incredibly active area of research. Unlike NMR, its high sensitivity allows it to potentially measure 

hundreds of metabolites, including lower concentration compounds that are considered NMR-invisible at 

physiologically relevant levels13. MS can be used either as a standalone instrument (direct injection) or 

coupled to chromatrography. While direct injection can provide a rapid platform suitable for high-

throughput, it suffers from issues of reproducibility that arise from differences in ionization efficiency. 

Additionally, chromatography is often used in order to reduce the complexity of a sample, conceptually 

breaking down the problem into a series of simpler mixtures, each measured back to back as they elute 

from a column. This aids in both reducing spectral overlap due to having a large number of components, 
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as well as providing a secondary measurement based on separation time that can be used to assign 

particularly ambiguous metabolite signals.The processing needs of MS data are quite unique from that of 

NMR, requiring the additional tools to address the non-uniformity of collected data such as gap-filling, 

and the need to eliminate redundant information with deisotoping. Another major point of contrast to 

NMR is the variety of mass selectors and ionization approaches available, which complicates the ability 

to perform data analysis with a single software platform. For this reason, MS data is often analyzed using 

vendor provided software that has been designed to work with the instrument they are bundled with. A 

reliance on this proprietary software makes the task of standardization much more difficult, and is 

especially problematic due to it’s lack of transparency and inability to be upgraded to include additional 

tools that might be required by an analyst. In much the same way as NMR, MS also developed a wide 

range of open-source software tools, each of which was best designed to suit particular steps of the data 

processing pipeline. There are two main approaches to using both NMR and MS in a single, integrated 

metabolomics study. The first involves samples being independently acquired, extracted and then 

separately analyzed by either NMR or mass spectrometry. The final results are then compared to each 

other to search for general consistencies in metabolic alteration that are both present and observable by 

each method alone. This method is almost always performed as a collaboration, with two (or more) 

research groups each focusing on one instrumental method, due to the amount of domain expertise that is 

required to perform a high-quality analysis using either NMR or MS. The advantage of performing an 

analysis in this way is that it allows each branch of the study to be performed with the best in-class tools 

available, and having domain experts available to ensure that all necessary steps of experimental design, 

data collection and statistical analysis are being performed appropriately. This also allows for a 

comparison of which metabolites and associated metabolic pathways are seen in each method alone. If the 

same metabolites are identified by both methods, their relative concentration ranges can be compared and 

used to provide a higher degree of confidence that the metabolite assignment is correct than either method 

could do alone. However, this may not always be possible due to the unique subsets of metabolites that 

are often obtained by each method. The chief disadvantage of this method is the need for multiple 
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investigators to perform the data analysis, often with domain specific processing software. This makes it 

nearly impossible for a single investigator to perform such integrated studies, and introduces multiple 

points of failure as a result of the large variety of potentially applicable tools.  

A less popular, but perhaps more beneficial approach, would be to analyze the two methods 

simultaneously, using integrated tools that allow a study to be done in a uniform fashion from sample 

preparation through to statistical analysis. A number of tools have been developed for combining NMR 

and MS, most notably SUMMIT14. Unfortunately, summit does not as of yet include many of the essential 

processing tools required to deal with raw MS data, and instead relies on pre-processing and generation of 

peaklists by other programs before it performs it’s own methods of statistical integration. 

Despite the demonstrated advantages of using both NMR and MS in combination, there are far 

fewer tools for performing these integrated analyses than there are for performing either one alone. As a 

result, proper multiblock analyses require the development of in-house programs and statistical methods 

that present a significant hurdle to researchers wanting to perform these types of analyses who need not 

be demanded to possess knowledge of such disparate fields as statistics, computer programming, linear 

algebra and machine learning in addition to the experimental peculiarities of their particular domain. One 

example of such integrated studies is multiblock analysis. Briefly, multiblock analysis takes measured 

variables from multiple discrete “classes” of measurements and exploits the underlying structure of these 

variable groupings to determine both overall sample differences as well as the relative contributions of 

these variable classes. When applied to metabolomics, each variable grouping would consist of a set of 

measurements arising from a given method (e.g., an NMR group, and LC-MS group, etc.). Multiblock 

analysis has a major advantage over single methods of analysis, since it is able to make use of data from 

both instrumental techniques simultaneously. This has been shown in at least one paper by Marshall et al. 

where the integration of NMR and direct-injection mass spectrometry through multiblock modeling 

within MVAPACK was able to generate models with greater predictive ability and resolving power than 

models generated from either method alone. While this demonstrated the ability of MVAPACK to 
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perform data analyses derived from multiple sources, direct-injection MS derived spectra were treated as 

pseudo 1D-NMR spectra, and no functions specific to the realm of MS data processing were utilized. 

Herein we present a workflow using MVAPACK, in conjunction with freely available tools and the 

Octave programming language, capable of working with LC-MS data. This in combination with our 

already reported tools for processing NMR, results in a single software environment capable of robust, 

easy to perform analyses independent of instrumental platform, and addresses the need for software that 

can perform these integrated analyses that the field demands.  

4.2 Methods and Software Design 

4.2.1 Software design for MVAPACK LC-MS data processing pipeline. 

 MVAPACK (http://bionmr.unl.edu/mvapack.php) was originally developed in GNU Octave 

version 3.6.0, but the recent Octave upgrade to version 4.2.0 required a complete revision to MVAPACK 

to remove deprecated functionality used by the loadnmr(), classes(), and addclasses() functions. 

MVAPACK is comprised of a set of individual, independent functions that can be readily interchanged or 

combined to form the desired processing pipeline. In this regards, the output of one function becomes the 

input for the subsequent function in the data handling process, with entire data workflows being simply 

represented as a sequence of brief functions called in the order in which they are to be performed. 

MVAPACK currently contains the following broad classes of functions: (i) data input , (ii) instrument-

specific preprocessing, (iii) instrument-agnostic preprocessing, (iv) multivariate modeling and 

visualization, and (v) model validation.  

An LC-MS dataset requires the following processing steps that differ from the NMR processing 

and are not currently available in MVAPACK: (i) functions to import LC-MS data, (ii) visualization 

utilities for LC-MS data, (iii) and functions to pre-process LC-MS data.   Accordingly, in order to 

implement an LC-MS data processing pipeline into MVAPACK the following new functions as outlined 

in Figure 4.1 were required: mzxmlinfo.m, which loads and stores sample acquisition parameters, 
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sparse_matrix_load.m and a number of internal functions including get_line, get_mz_axis and 

get_rt_axis, which load an LC-MS sample into a memory efficient structure for storage and manipulation, 

array_converter.m, which removes unnecessary metadata and prepares for statistical analysis, threshold.m 

which allows for the generation of peaklists, plotscan.m and plotscan3d.m, which allow for visualization 

of imported data. 

For file import, a number of vendor formats are commonly available. In order to make this 

process as general as possible, an open-source data format was required. Specifically, a common file-

format used to represent mass spectral data is mzXML mzXML, first proposed by the HUPO initiative as 

a way to represent MS data, has become an accepted, vendor-independent MS storage format. Briefly, 

mzXML is based on extensible markup language (XML) which is used to represent data in a hierarchical 

fashion using tags elements and attributes. The large size of LC-MS datasets relative to NMR is a 

fundamental challenge that requires data reduction. This was addressed with a combination of sparse 

matrices  and thresholding  to restrict analysis to non-zero values above a user-defined intensity level. 

Uninformative spectral regions were then removed, and peaklists generated from binned regions of the 

thresholded data, and multivariate analysis performed on the subsequent peaklists. 
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Figure 4.1 Outline Of Functions For Processing LC-MS Data In MVAPACK. Newly developed 

functions included plotscan.m, plotscan3d.m, threshold.m, get_line.m, get_rt_axis.m, get_mz_axis.m. 

mzxmlinfo.m, base64decoder.m, sparse_matrix_load.m, and array_converter.m. 
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4.2.2 Standard LC-MS dataset. 

 A representative dataset (7MIX_STD LC-MS) from the Sashimi Project Data Repository 

(http://sashimi.sourceforge.net/repository.html) was used to evaluate the performance of the LC-MS data 

handling pipeline implemented into our MVAPACK software (http://bionmr.unl.edu/mvapack.php). The 

dataset is centroided. A single spectrum in the dataset contains 7161 retention times with 2,194,813 

unique m/z values. A two-dimensional (2D) array of retention times and m/z values would result in a 

staggering ~15 billion intensity entries. Thus, a single spectrum would require over 120 Gb of RAM if 

each intensity is stored as a double precision floating point value (a requirement for most interactive 

languages such as python to ensure values are not artificially truncated).  Handling a dataset of this size is 

computationally intractable for typical compute configurations. Accordingly, the large 7MIX_STD LC-

MS dataset presents a fundamental problem with processing LC-MS data that was resolved with our 

MVAPACK software.    

4.2.3 Preparation of experimental metabolomics samples. 

The LC-MS data handling pipeline implemented in MVAPACK was further evaluated using a 

typical LC-MS dataset comprised of cell lysates.  10 Replicates each of two unique cellular species (E. 

coli MG1655 and Wild Type S. aureus) were grown in a preferred media of Luria-Bertania (LB) and 

Tryptic Soy Broth (TSB), respectively. 250 mL of sterile media was inoculated to an initial OD600 of 0.05 

and allowed to incubate at 250 rpm at 37 oC. A portion of the cells were harvested at an OD600 of 0.8 and 

separated from the growth medium by centrifugation at 12,000 rpm for 60 seconds and then quenched in 

ice-cold methanol. Cell pellets were then stored at -80 oC until further processing. Cell pellets were 

extracted with 2 ml aliquots of HPLC-grade methanol while vortexing three times for 30 seconds and 

resting in dry ice between rounds. Samples were then centrifuged at 12,000 rpm to pellet the cell debris 

and 1 mL of supernatant was removed and dried using a Savant Speed-vac system with a labconco freeze 

dryer. Dried extracts were reconstituted in 1 mL of 0.1% formic acid and centrifuged at 10000 rpm for 5 

minutes to remove any insoluble material. 
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4.2.4 Acquisition of LC-MS spectra. 

The LC-MS analyses were performed using an ACQUITY Ultra-Performance Liquid 

Chromatography (UPLC) system (Waters, Milford, MA, USA) coupled to a Waters Xevo G2-XS Q-TOF 

mass spectrometer (Waters Co., Milford, MA, USA.) with an electrospray ionization (ESI) source. The 

column used was an ACQUITY UPLC HSS T3 C18 (1.0 × 50 mm, 1.8 μm, Waters Co., Milford, MA, 

USA). Column and autosampler temperature were set to 40 °C and 5 °C respectively, and the flow rate 

was set at 95 μL/min. The mobile phase was composed of 0.1% formic acid in water (A1) and 0.1% 

formic acid in acetonitrile (B1). Two microliters of sample were injected and separated with a linear 

gradient program from 1% to 95% B in 7.30 min. The ESI source was set to positive mode with a scan 

range of m/z 50 to 1,200. The voltage of the capillary and cone were set to 3.2 kV and 40 V, respectively. 

The gas flow for desolvation and cone was 800 and 50 L/h. The source temperature and desolvation gas 

temperature were 120 and 400°C, respectively.  

4.2.5 Processing of LC-MS spectra. 

Waters “.Raw” vendor-formatted data files were converted to an uncompressed text format and 

filtered with a continuous wavelet transform using Proteowizard’s MSConvert tool. Data was imported 

with the Data analyses were performed in Octave 4.4.0, using a series of functions developed for this 

purpose. All analyses were performed on an Intel Pentium 2.6Ghz with 8Gb of RAM, installed with 

Windows 10 and Opensuse “Tumbleweed” rolling release.  

4.3 Results and Discussion 

4.3.1 MVAPACK upgrade to be GNU Octave complaint 

 The underlying structure of MVAPACK is as a set of functions that run within the Octave 

programming language. This occasionally requires updating functions to remove any references to 

deprecated functionality whenever a language undergoes a major update. In this latest update, Octave 

changed the behavior of the inbuilt fileread() command, used to import plaintext files into Octave. 
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Previously, the fileread command returned a column vector containing each individual character of the 

text file in the order that it appeared whereas in 4.0 onwards, it returns a new structure that maintains 

spacing, tabs and other formatting information so files can be viewed in the same format they appear in a 

regular text editor. Each of the  functions that utilized this function for reading information from plaintext 

files was updated to get the required information from this new structure using a series of regular 

expressions.  

4.3.2 LC-MS data Input 

 A particular challenge of MS instruments is the number of vendor proprietary data formats. It 

would not be feasible to develop functions that work with each vendor format, especially when 

considering that these functions could cease working entirely if an update to the format is made by the 

vendor without prior notice. Using an open source format, such as mzXML, alleviates this issue by 

creating a universal starting point that all open-source approaches can use. This approach is supported by 

both vendors and the community, with mzXML export supported by all MS vendors. The highly 

structured style of mzXML makes it simple to identify the location of desired information, with each 

section being clearly delineated with start and end tags that represent what is contained between them. 

This is accomplished using the loadmzxml() command, which makes use of built-in fileread() commands 

of Octave along with regular expressions that pattern match the desired binary data arrays conforming to 

the mzXML specification. 

4.3.3Data Size and Dimensionality 

 One of the major hurdles of dealing with MS data (particularly when coupled with a 

chromatographic method), is the sheer number of data points that are obtained. In order to process this 

data in an interactive way, the size of the dataset must be compressed or reduced significantly, while 

minimizing the effects that this compression will have on the final analysis.  
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A potential approach to data reduction is to take advantage of the inherent property of an LC-MS 

data, which is data sparsity. Simply, not every pair of m/z values and retention times are necessarily 

observed in a given sample. Not every m/z value will be seen in every retention time, and vice versa.  A 

traditional tabular format of data storage would simply represent these unobserved pairs as zeros. Even 

though these values are “zero”, the data point still occupies as much disk space or memory as non-zero 

values. In essence, the  abundance of zero data points waste precious computational resources. An 

alternative route would be to denote only the values which are non-zero, implicating that anything not 

stored would be zero. An example of such a storage scheme, herein referred to as a sparse matrix, is 

presented in Scheme 1. While this is a modest memory savings of 8 bits in this example, it’s important to 

remember that A scales exponentially. The increase in memory or disk allocation occurs regardless of 

whether meaningful data is present. Notably, the component vectors only scale with the number of values 

that must be stored. This is essential for LC-MS data, since a single column (for example, an observed 

m/z value) might only be present at one point in the chromatogram and is most efficiently stored as a set 

of positional indices and their associated intensity value. As can be seen in figure 3, the number of non-

zero values (denoted as nnz), comprises less than 1% of the total data structure using a typical storage 

scheme. Thus, a sparse matrix would lead to a >99% reduction in memory or disk utilization. The exact 

memory savings is expected to vary depending on instrument resolution and acquisition parameters. 

Nevertheless, a sparse matrix potentially resolves the inherent challenge of manipulating large LC-MS 

datasets a computer language such as Octave or MVAPACK. Importantly, a sparse matrix approach may 

allow large LC-MS datasets to be  processed and manipulated transparently or to be easily ported to 

another software environment.  

 An overview of the functions used for processing LC-MS data is shown in figure 4.1. A diagram 

explaining the rationale of a sparse matrix is presented in figure 4.2.  The 7MIX_STD LC-MS dataset was 

used to demonstrate the application of sparse data matrix.  Figure 4.3 illustrates how the LC-MS data is 

accessed from a sparse matrix. Each intensity-peak ID pair from the 7MIX_STD LC-MS dataset is 
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mapped to its experimentally observed intensity. The peak ID is used instead of a definite m/z value in 

order to account for discontinuities between groups and across biological replicates. Conversely, a 

traditional “dense” matrix approach assumes that a non-zero intensity is obtained for each m/z value. This 

occurs even if the intensity is zero across the entire data set. Instead, a peak ID allows for assigning an 

m/z value, or a range of m/z values, to an index. In this regards, each LC-MS peak is correctly represented 

in the data matrix even it does not occur at the exact retention time or m/z value for all replicates in the 

data set. 
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Scheme 1.2 A dense representation of a sparse matrix 

The dense version of this matrix requires explicit storage of the zero values. When the relative proportion 
of zero values is incredibly high, this becomes extremely wasteful. Instead, it can be decomposed into 
three component vectors containing the indices and non-zero values only. 
 

I=[1 2 2 3 4] (row indices) 

 

J=[3 1 4 2 4] (column indices) 

 

K=[5 3 2 1 4] (non-zero values) 

 

Figure 4.3 Component Vector Decomposition of A 
Example memory savings: 

A= 4x4 (16 values) *8 = 128 bits 

I=5values*8bits=40 bits 

 

 

 

 

  

Scheme 1. Sparse Matrix Formulation and Rationale 
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Figure 4.4 Interactive viewing of the 7MIX_STD LC-MS dataset stored as a sparse array in octave. 
Retention times are stored as rows, m/z values stored as columns, and sparsity data is displayed along 
with the variable. Each line corresponds to a detected peak, read as  

(retention_time_index, mz_index) -> intensity value.     [4.1] 

Retention times and m/z values are stored in separate axes vectors such that are indexed using the 
indices stored in the sparse array to retrieve the associated m/z and retention times for a given peak. 
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4.4 Visualization of LC-MS Data 

Figures 4 through 7 demonstrate commonly requested visualizations of LC-MS data. These 

MVAPACK functions are useful for the visual confirmation of sample and spectral quality that should be 

performed prior to attempting multivariate modeling and statistical analysis. Figure 4 shows a top-down 

visualization (or more colloquially, a “dot plot”) of a standard sample from the 7MIX_STD LC-MS data 

set retrieved from the Sashimi Project Data Repository. The 7MIX_STD LC-MS data set consists of a 7 

protein mix, including rabbit glycogen phosphorylase, e. coli beta galactosidase, bovine serum albumin, 

myosin, chicken ovalbumin and bovine serotransferrin  The data set was chosen to illustrate the 

MVAPACK LC-MS data visualization functions due to the small number of components of high spectral 

itensity, as well as being an openly-accessible data set that is commonly used for similar benchmarking in 

other LC-MS programs. A threshold of 5x109 was applied to the LC-MS dataset so only peaks with 

intensities above this threshold value are observable. This type of visualization is particularly important 

for identifying regions of the spectrum that either contains peaks or are devoid of data. For example, the 

7MIX_STD LC-MS data set lacks high intensity peaks between scans 4000 and 5000, as seen in figure 

4.5.  

Figure 4.6 shows an expanded view of the chromatographic time points between 1 and 300. A 

single high intensity peak occurs at multiple time points, which are being mapped to different peak ID 

values. This is due to the peaks occurring at slightly different m/z values. Thus, the visual display of the 

LC-MS data set allowed for the identification of the mass deviation, which can then be easily corrected 

through an appropriate choice of binning or other suitable approaches. Furthermore, displaying the LC-

MS data in this manner allows for a reasonable estimate of the mass deviations across the entire datasets. 

The new MVAPACK LC-MS visualization functions also allow for displaying wither a single mass 

spectrum or chromatogram. A single mass spectrum from the first time point of a chromatographic run is 

shown in figure 4.7. Similarly, the separation efficiency for a given biological sample from the data set 

may be assessed by viewing the total ion chromatogram as shown in figure 4.8. Importantly, the total ion 
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chromatogram and may be statistically analyzed like the mass spectral data using the same set of tools 

implemented into MVAPACK. 

 

 

Figure 4.5 2D Visualization of 7MIX-STD LC-MS data set. Peaks below the given threshold (5x109) are 

excluded.  
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Figure 4.6. Selected region of figure 4 from the first 300 obtained chromatrographic time points. Distinct 

peaks can be identified and scan variability can be visually estimated in the “peak ID” axis, which 

consists of m/z values with any observed variance out to 0.000001 m/z. Visual estimates can be used to 

determine whether a given peak selection and binning routine is applicable to the imported dataset. 
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Figure 4.7. Visualization of a single mass spectrum from the LC-MS dataset obtained from E. coli cell 

lysates using the plostcan() function. This can be used to visually estimate an acceptable thresholding 

intensity and estimate noise levels; this spectrum for example, should have a threshold set no higher than 

5000 and no less than 100-200 in order to include sufficient peaks while removing uninformative noise 

regions. 
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Figure 4.8 Total ion chromatogram (m/z projection) from the LC-MS dataset obtained from E. coli cell 

lysates. Generated by summation of m/z intensities within a given scan/chromatrographic time point aand 

plotted with the plotscan() function. Can be used to inspect the separation efficiency of the LC portion of 

an LC-MS sample acquisition, and determine regions of potential statistical relevance.  
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4.5 A Multivariate analyses of LC-MS data 

Besides visualization utilities, these samples can also be processed to generate multivariate 

statistical models. Samples LC-MS spectra from the E. coli and S. aureus cell lysates were used as a test 

dataset to demonstrate the LC-MS data processing pipeline implemented into MVAPACK., The LC-MS 

spectra were collected in continuous mode, and processed using the proteowizard MSConvert15 tool to 

convert them into a plantext, mzXML format. The E. coli-S. aureus LC-MS data set was then imported 

into MVAPACK using the new loadmzxml() function, and stored as cell arrays of m/z and intensity pairs. 

These cell arrays  were then transformed into sparse arrays using the array_converter() function, and 

subsequently visualized with the plotscan and plotscan3d commands. An appropriate threshold was set 

based on the visually determined noise level from these plots, and peaklists generated by this thresholding 

were stored in a data matrix used for further statistical modeling. A principal component analysis (PCA) 

was generated from the total ion chromatograms for the E. coli-S. aureus LC-MS data set. The entire set 

of replicates and full resolution data was utilized for the PCA model. The total Ion Chromatogram was 

not subjected to any binning or other processing other than an SNV scaling prior to this PCA analysis. 

Using the total ion chromatograms allows for a global visualization of the dataset, with a focus on the 

separation efficiency and the identification of potentially discriminative regions in the chromatogram that 

can guide subsequent analysis of mass spectra occurring in these regions. 

 As expected, E. coli and S. aureus form separate and distinct clusters in the PCA scores plot. 

Thus, the total ion chromatograms alone are sufficient to distinguish E. coli from S. aureus. The PCA 

component weights were projected back onto the original chromatograms to generate a back-scaled 

loadings plot to identify the key chromatographic features that define the group separations (Figure 4.10). 

The back-scaled loadings show that the strongest contributing factors to group separation are located in 
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the retention time region corresponding to 7.6 to 7.8 minutes. This chromatographic region alone is 

sufficient to distinguish different between the two bacterial strains. Furthermore, the group dependent 

chromatographic region may be used as a tool for variable selection of the mass spectral data. 

 Using the previous analysis indicating the importance of the retention time range of 7.6 to 7.8 

minutes, the analysis of the mass spectral data was restricted to the m/z values occurring at a retention 

time of 7.7 minutes. A PCA model was generated from a subset of the E. coli-S. aureus LC-MS data set 

corresponding to a retention time of 7.7 minutes.  The PCA scores plot and the back-scaled loadings are 

shown in figures 4.11 and 4.12. Once again, E. coli and S. aureus form separate and distinct clusters in 

the PCA scores plot, but the relative separation is reduced compared to the previous example. This is to 

be expected since less data was available to construct the PCA model. In effect, a single mass spectrum 

was used for each replicate, which contains significantly less data points than the corresponding  

chromatogram. However, the back-scaled loadings based on the mass spectral data are more informative 

then the results with the total ion chromatogram. Specifically, the pseudo-mass spectrum allows for the 

ready identification of key metabolites that differentiate the two groups. For example, the large, negative 

weighting at m/z 227.868 indicates that this metabolite significantly contributes to the observed difference 

between the two bacterial strains. Additionally, the observed mass can be combined with the retention 

time of 7.7 minutes to assist in assigning a metabolite to the spectral feature.  
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Figure 4.9. PCA scores plot generated from the total ion chromatograms from the LC-MS datasets 

obtained from E. coli and S. aureus cell lysates. A 4 component PCA model was obtained with a 

cumulative R2 of 0.988.  
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Figure 4.10. A backscaled loadings plot based on the weights obtained from the model in figure 9. A 

strong downregulation in the region around 7.6-7.8 is clearly evident in the first two components of the 

model, suggesting the presence of underlying spectral differences in this range.  



85 
 

 

Figure 4.11. PCA scores plot generated from the mass spectral data (7.6-7.8 region) obtained from E coli 

and S. aureus cell lysates. A four component model was obtained with a cumulative R2 of 0.968.  
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Figure 4.12. A backscaled loadings plot based on the weights obtained from the model in figure 10. It can  
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4.6 Conclusion 

Sparse matrices were successfully employed to reduce the effective size of LC- MS data without 

any appreciable loss of data quality or information. Sparse matrices were key to the implementation of an 

LC-MS data processing pipeline within our MVAPACK metabolomics toolkit. Importantly, the data 

processing utilizes the entire LC-MS dataset, which is an important advancement over traditional 

approaches that rely on thresholding, or peak picking to reduce the size of the data matrix. These simple 

data reduction methods result in a dramatic reduction in size of the entire LC-MS dataset, allowing it to 

be processed in an interactive way with the hardware available on a typical user PC.  A total of 10 new 

functions have been added to MVAPACK that enable inputting, visualization, and processing, of LC-MS. 

Thus, MVAPACK can now uniquely process both NMR and mass spectral data and generate a variety of 

multivariate models. Importantly, the NMR and mass spectral data can be integrated into a single 

statistical model using multi-block (MB) models (i.e., MB-PCA, MB-PLS, and MB-OPLS). MVAPACK 

has been developed using GNU Octave, which offers a unique level of customizability that enables a 

robust and flexible combination of functions that differs dramatically from of online “black-box” 

processing utilities. MVAPACK is open-source software with a simple syntax that can be easily modified 

and extended to include additional functions as the metabolomics field continues to evolve. 
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Chapter 5. Conclusion 

5.1 Future Directions for Data Processing 

 The field of metabolomics, particularly with respect to data processing, is still in its formative 

years. While a variety of chemometric tools have been used to interrogate large metabolomics datasets, 

there are still algorithms, such as Random Forest (RF)1 and Support Vector Machines (SVM)2, that have 

seen limited utilization. This is primarily due to the paucity of software tools available to the scientific 

community. The same lack of adequate software packages plagues many areas of metabolomics, and the 

development of software is crucial to advancing the field by evaluating an algorithms utility as well as 

uniting the experimental results from multiple instrumental methods. New analytical methods such as 

dynamic nuclear polarization for NMR and ion mobility for MS, along with other instrumental 

advancements yet to be made, offer new avenues for exploring and investigating the metabolome. 

The pre-processing of NMR data, as outlined in chapter 3, has a delicate interplay with the results 

of statistical modeling. It requires experience in statistics in order to evaluate the proper choices, and how 

properties inherent to the dataset being considered can completely obfuscate the true underlying factors 

when employed with poor judgement. Making the community aware of these pitfalls, not only with the 

process of normalization but will all processing routines, will hopefully generate greater awareness of 

their importance and generate more comparative assessments and discussion of similar pitfalls in other 

user-defined approaches such as binning and peak selection in NMR and deisotoping and gap-filling in 

MS in the context of metabolomics.  

 LC-MS has cemented itself as a requisite method for performing metabolomics and other 

chemometric investigations. However, with the growing awareness of the synergistic information 

contained from both NMR and LC-MS, it is likely that other instrumental methods such as CE and FT-IR 

will see increased use as well. As the number of instruments that can be used rises, the need for a single 

data analysis platform becomes increasingly apparent in order to unify the characteristic metabolic 
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signatures that each method is uniquely capable of observing. The ability to process LC-MS data in 

MVAPACK, in combination with its demonstrated utility for NMR data, represents a fundamental 

advance in multi-platform metabolic investigations. Utilizing open-source software allows the user to 

observe the underlying statistical processes, allowing reasearchers to ensure that algorithms are being 

appropriately applied to their dataset in question.  MVAPACK eliminates the “black-box” approach to 

data analysis and opens the way for investigators to develop their own methods to analyze and interpret 

their data in whichever ways demonstrate themselves to be best-suited to the task. The methods outlined 

in this thesis as well as those yet to be developed, not only need to be further refined, but a particular 

emphasis on their distribution into simple software packages is crucial to their wider adoption by the 

scientific community. The principal burden halting researchers from performing more advanced analyses 

is simply not having these tools freely available, verified to work together and with clear instructions on 

their proper use. An excellent example is multiway analysis, which currently is only being performed 

routinely be a few research groups, and is almost exclusively restricted to commercial users of 

MATLAB3. Additional examples include other multivariate analysis approaches that have significant 

followings in other fields, but are largely unproven in the metabolomics community such as the random 

forest4 whose applicability to this field will become more apparent once they become available in 

standardized platforms such as MVAPACK. It is speculated again that this is largely the result of them 

not being included as options in most software that has been distributed in the metabolomics community 

to date, and their implementation is not straightforward. The turning point will be when such algorithms 

are freely shared between all disciplines, and becomes just as simple to apply to metabolomic data as the 

methods of OPLS and PCA which are already commonplace. Getting to this point will require ongoing 

effort from chemists, statisticians and computer scientists to ensure that processes are simple, well-

documented and evolving to meet the new challenges we encounter. 

Lastly, a trend of simply adding another dimension to our instrumentation (2/3-dimensional NMR 

or LC-LC-MS for example) has become accepted as a method of dealing with the complexity of 
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biologically derived datasets that metabolomics concerns itself with. While this is fine for univariate 

studies where resolution of a single, known metabolite can be targeted with a high degree of confidence, 

it only magnifies the issues of data size that were presented in chapter 4. Additionally, it especially 

complicates analysis due to the exponential increase in data size on complex samples; the unknown 

composition of metabolomics samples often means that biological insight cannot be used to remove 

regions of uninformative data.  Great strides in chemometrics are being made in the area of multiway 

analysis3,5–7, which concerns itself with developing variants of modeling algorithms suitable for high 

dimensional data. While their utility in application-driven metabolomics is still largely undemonstrated, 

this may present another promising avenue of research and quantify changes arising from multiple 

instrumental techniques.  
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Appendix of New MVAPACK Functions 

Function 1. loadmzxml.m 

function [mz,intensity] = loadmzxml(filename) 

%Lines of this form are comments to the reader for clarity 

file_as_string = fileread(filename); 

[ax,bx,cx,dx,ex,fx,gx] = regexp(file_as_string, 'cvParam: m/z array, m/z\s+binary:\s\[\d+\]\s[\d\.\s]+'); 

[ay,by,cy,dy,ey,fy,gy] = regexp(file_as_string, 'cvParam: intensity array, number of detector 
counts\s+binary:\s\[\d+\]\s[\d\.\s]+'); 

x=dx; 

y=dy; 

%Remove extraneous header information 

[a,b,c,d,e,f,x_stripped] =regexp(x, 'cvParam: m/z array, m/z\s+binary: \[\d+\]'); 

[a,b,c,d,e,f,y_stripped] =regexp(y, 'cvParam: intensity array, number of detector counts\s+binary: \[\d+\]'); 

x=cell 

y=cell 

%Unpack data from hierarchy. 

 for i = 1:length(x_stripped) 

  temp=x_stripped{i}; 

  x_unpacked=temp{2}; 

  x_trim=strtrim(x_unpacked); 

  x_split=strsplit(x_trim); 

  %results in a cell array of m/z values for each scan. 

  mz{i}=x_split; 

 endfor 

 %Now for the intensities. 

 for i = 1:length(y_stripped) 

                temp=y_stripped{i}; 

                y_unpacked=temp{2}; 

                y_trim=strtrim(y_unpacked); 

                y_split=strsplit(y_trim); 
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                %results in a cell array of intensity values for each scan. 

                intensity{i}=y_split; 

        endfor 

endfunction 

 

 

 

Function 2. Plotscan.m 

function [imputed] =plotscan(mz_axis, mz_array, intensities, scan_number) 

if (nargin != 4) 

 print_usage(); 

endif 

 

imputed=zeros(size(mz_axis)); 

for i = 1:length(mz_array{scan_number}) 

peak=str2num(mz_array{scan_number}{i}); 

idx=lookup(mz_axis,peak); 

imputed(idx)=str2num(intensities{scan_number}{i}); 

endfor 

 

#Progress Display 

%printf('Size of mz axis %d \n', size(mz_axis)); 

%printf('Size of imputed %d \n', size(imputed)); 

%fflush(stdout); 

plot(mz_axis, imputed); 

endfunction 
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Function 3. Plotscan3d.m 

function [] = plotscan3D(x,y,scan_number) 

#This function will use data stored in cell arrays. 

 

#m/z values (x axis) 

 mz =str2double(x{scan_number}); 

 

#intensity values (y axis) 

 intensity = str2double(y{scan_number}); 

#Plot the newly formatted results. 

 plot(mz, intensity); 

endfunction 

 

Function 4. Threshold.m 

function [features,level] = threshold(x,level) 

  % check for proper arguments. 

  if (!any(nargin == [1 : 2]) || !any(nargout == [1 : 2])) 

    % improper arguments. print the usage statement. 

    print_usage(); 

  end 

 

  % see if a threshold value was provided. 

  if (nargin < 2 || isempty(level) || !isscalar(level)) 

    %No thresholding value provided. Print usage. 

    print_usage(); 

  end 

 

  %Decompose sparse matrix into component vectors 
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  [rt,mz,int]=find(x); 

   

  %modify the intensity values in-situ 

  int(int<level)=0; 

 

  %Generate New Sparse matrix 

  features=sparse(rt,mz,int); 

end 

 

Function 5. Get_axes.m 

function [mz_axis, rt_axis]=get_axes(mz_array, filename) 

 

#Step 0: Load in the file 

file_as_string = fileread(filename); 

 

 

 

 

%Build the m/z axis 

%Pull the data out the nested cell arrays 

mz_cell=cell2mat(mz_array); 

mz_axis=cell2mat(mz_cell); 

 

#Sort the m/z values and remove duplicates 

mz_axis=unique(mz_axis); 

 

#Now let's get the rt axis. 

#refer to the loadmzxml function for a quick example of extracting RT's. 
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[~,~,~,rt_instances,~,~,~]=regexp(file_as_string, 'cvParam: scan start time, [\d]+[\.,][\s\d]+[\s\S]'); 

[~,~,~,rt_axis,~,~,~]=regexp(rt_instances, '[\d\.]+'); 

 

for i= 1:length(rt_axis) 

        rt_axis{i}{1}=str2num(rt_axis{i}{1}); 

        printf("Processing Retention Time: %d \n", i); 

        fflush(stdout); 

endfor 

#Build the axis 

rt_axis=cell2mat(rt_axis); 

rt_axis=cell2mat(rt_axis); 

 

 

 

 

endfunction 

 

Function 6. Mzxmlinfo.m 

 

function [info]= mzxmlinfo(filename) 

 

 

%Garbage Test Function 

%function [elem,data,att,StartTime] = mzxmlinfo 

 

%Add path to xerces parsing files 

javaaddpath('/path/to/xerces /xercesImpl.jar'); 

javaaddpath('/path/to/xerces/xml-apis.jar'); 
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%Emulates behavior of xmlread in matlab 

parser = javaObject('org.apache.xerces.parsers.DOMParser'); 

parser.parse(filename); 

xDoc = parser.getDocument; 

 

%Examples of Xerces Use 

%elem = xDoc.getElementsByTagName('precursorMz').item(0); 

%data = elem.getFirstChild.getTextContent; 

%att = elem.getAttribute('precursorIntensity'); 

 

%FileSize 

[file_info, err, msg] = stat(filename); 

filesize = file_info.size; 

 

 

%Number of Scans;stored in NumScans 

msRun = xDoc.getElementsByTagName('msRun').item(0); 

NumScans = msRun.getAttribute('scanCount'); 

%if NumScans not empty 

%return NumScans 

%else (IE, if empty) 

%return "Not given; check the file." 
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%Start Time of Run 

msRunStart = xDoc.getElementsByTagName('msRun').item(0); 

StartTime = msRunStart.getAttribute('startTime'); 

 

%End Time of Run 

msRunEnd = xDoc.getElementsByTagName('msRun').item(0); 

EndTime = msRunEnd.getAttribute('endTime'); 

 

%Data Pre-processing Information 

 

%Is it centroided? 

centroid = xDoc.getElementsByTagName('dataProcessing').item(0); 

centroided = centroid.getAttribute('centroided'); 

if centroided == "1" 

    centroided = "Yes"; 

else 

    centroided = "N/A"; 

endif 

%Note, if centroid is ==1, the data has been previously centroided. 

 

%Is it deisotoped? 

deisotope = xDoc.getElementsByTagName('dataProcessing').item(0); 

deisotoped = deisotope.getAttribute('deisotoped'); 

if deisotoped == "1" 

    deisotoped = "Yes"; 

else 

    deisotoped = "N/A"; 

endif 

%Note, if deisotoped is ==1, the data has been previously centroided. 
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%Is it charge deconvoluted? 

chargeDeconvo = xDoc.getElementsByTagName('dataProcessing').item(0); 

chargeDeconvoluted = chargeDeconvo.getAttribute('chargeDeconvoluted'); 

if chargeDeconvoluted == "1" 

    chargeDeconvoluted = "Yes"; 

else 

    chargeDeconvoluted = "N/A"; 

endif 

 

%Note, if chargeDeconvoluted is ==1, the data has been previously centroided. 

 

%Spot-Integrated? 

spotInt = xDoc.getElementsByTagName('dataProcessing').item(0); 

spotIntegrated = spotInt.getAttribute('spotIntegrated'); 

if spotIntegrated =="1" 

    spotIntegrated = "Yes"; 

else 

    spotIntegrated = "N/A"; 

endif 

%Note, if spotIntegrated is ==1, the data has been previously centroided. 

 

 

%Tandem?  

elem = xDoc.getElementsByTagName('dataProcessing').item(0); 
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info = struct("Filename", filename, "Filesize", filesize, "Number of Scans", NumScans, "Start Time", 
StartTime, "End Time", EndTime, "Centroided?", centroided, "Deisotoped?", deisotoped, "Charge 
Deconvoluted?", 

chargeDeconvoluted, "Spot Integrated?", spotIntegrated); 

endfunction 

 

 

 

 

Function 7. Sparse_matrix_load.m 

function [mz_list,intensity_list,info] = sparse_matrix_load(filenames,verbose) 

if (!nargin == 1:2 || !nargout == 2:3) 

 print_usage(); 

endif 

 

%Check if single or multiple files are presented 

if (ischar(filenames)) 

  filenames={filenames}; 

elseif (iscellstr(filenames)) 

  if (length(filenames) == 0) 

  %Error. Warn user. 

  error('sparse_load: zero files supplied. Check your filenames array'); 

  endif 

endif 

 

%Initialize a structure to store the data 

data_struct=struct(); 

data_struct.files=filenames; 

data_struct.sample=cell(size(data_struct.files)); 
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%Load the file and begin munging. 

 

for i=1:length(filenames) 

 

 file_as_string = fileread(filenames{i}); 

  #check for version incompatibilities  with fileread() 

  v=version; 

  if ((v="3.6.2")) 

    file_as_string = rot90(file_as_string); 

  endif 

  %Match the scans 

  [~,~,~,rt_instances,~,~,text_splits]=regexp(file_as_string, 'cvParam: scan start time, 
[\d]+[\.,][\s\d]+[\s\S]'); 

 

 

   

 

  %Get the mz values 

  [~,~,~,mz_splits,~,~,~] = regexp(text_splits, 'cvParam: m/z array, m/z\s+binary:\s\[\d+\]\s[\d\.\s]+'); 

  [~,~,~,~,~,~,mz_stripped]= regexp(mz_splits, 'cvParam: m/z array, m/z\s+binary: \[\d+\]'); 

  %Partitioning the mz values 

  mz_list={}; 

  for i= 2:length(mz_stripped) 

   temp =mz_stripped{i}; 

   if (length(temp)==2) 

    mz_unpacked=temp{2}; 

    mz_trim=strtrim(mz_unpacked); 
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    mz_split=strsplit(mz_trim, ' '); 

    mz_list{(i-1)}=mz_split;% (i-1) since first entry will always be non-pertinent metadata 

   else 

    mz_list{(i-1)}={}; 

   endif 

  endfor 

 

  %Get the intensity values 

  [~,~,~,intensity_splits,~,~,~] = regexp(text_splits, 'cvParam: intensity array, number of detector 
counts\s+binary:\s\[\d+\]\s[\d\.\s]+'); 

  [~,~,~,~,~,~,int_stripped] =regexp(intensity_splits, 'cvParam: intensity array, number of detector 
counts\s+binary: \[\d+\]'); 

  %Partitioning the intensity values 

  intensity_list={}; 

  for i= 2:length(int_stripped) 

          temp =int_stripped{i}; 

          if (length(temp)==2) 

                  int_unpacked=temp{2}; 

                  int_trim=strtrim(int_unpacked); 

                  int_split=strsplit(int_trim, ' '); 

          intensity_list{(i-1)}=int_split; %First entry is metadata 

          else 

                  intensity_list{(i-1)}={}; 

          endif 

  endfor 

 

  endfor 
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  %Generate the retention time and m/z axes. 

  %Match the scans first. 

   [~,~,~,rt_instances,~,~,text_splits]=regexp(file_as_string, 'cvParam: scan start time, 
[\d]+[\.,][\s\d,]+[\s]+second'); 

  %NOTE this regex pattern is different (and more correct) than the one used in the loadmzxml function. 

  %Still cant figure out how to extract the actual units (assuming seconds?) from the file itself. 

endfunction 

 

%Determine whether to display function progress 

#{ 

if (verbose="True") 

  scan=0 

  for i=1: 

    printf("Processing Scan #: %d \n", scan); 

    fflush(stdout); 

 sleep(1); (not required since for loop itself takes comp time) 

 scan++; 

 endfor 

endif 

#} 

 

  #{ 

  %Sample Metadata and Information Extraction   

  %Empty Scan Information 

  empty_scans=[]; 

  for i = 1:length(mz) 

    if length(mz{i})==0 

    empty_scans(end+1)=i; 

    endif 
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  endfor 

 

  info.text=sprintf("This sample contains %d empty scans", length(empty_scans)); 

  info.empty_scans=empty_scans; 

   

  #} 
endfunction 

 

Function 8. Array_converter.m 

 

function [numeric_data_array]=array_converter(string_data_array) 

 

 

string_data_array=strsplit(string_data_array); 

string_array=string_data_array(4:end-1); 

numeric_data_array=cellfun(@str2num,string_array); 

 

endfunction 
_____________________________________________________________________________________ 
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Function 9. Loader_function.m 

#Load the text strings corresponding to the m/z and int values into octave. 

#Load the datafile 

name='insertfilenamehere.txt'; 

file=fopen(name); 

 

####2. Iterates and constructs the data array 

#Note, file should already be MSConvert output and CWT filter applied.#### 

#init values 

data={}; 

i=1; 

#start loop 

while(!feof(file)) 

string=fgetl(file); 

data{i}=string; 

i++; #leave out semicolon if you want to monitor progress. 

printf("Processing Line#: %d\n",i); 

fflush(stdout); 

endwhile 

endfunction 
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