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In this dissertation we develop a fractional difference calculus for functions on a dis-

crete domain. We start by showing that the Taylor monomials, which play a role

analagous to that of the power functions in ordinary differential calculus, can be ex-

pressed in terms of a family of polynomials which I will refer to as the Pochhammer

polynomials. These important functions, the Taylor monomials, were previously de-

scribed by other scholars primarily in terms of the gamma function. With only this

description it is challenging to understand their properties. Describing the Taylor

monomials in terms of the Pochhammer polynomials has made it easier to understand

their behavior, as we demonstrate in this work. We then use the Taylor monomials

to define a fractional operator, ∇ν , which generalizes the standard backward differ-

ence operator, ∇. We show that these fractional difference operators have a very

simple composition rule and act nicely on the Taylor monomials. We then describe

the Riemann-Liouville and Caputo fractional difference operators, ∇ν
a and ∇ν

a∗, in

terms of this more general fractional operator and use the properties of the general

fractional operator to derive the composition rules for all such operators. Finally,

we apply this theory to study a nonlinear boundary value problem described using

a Caputo fractional difference and show how to obtain a sequence of approximate

solutions which converges quadratically to the unique solution to this problem.
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Chapter 1

Preliminaries

1.1 Notation and Terminology

For a given real number a we identify the following sets:

Na := {a, a+ 1, a+ 2, · · · }

Za := {· · · , a− 2, a− 1, a, a+ 1, a+ 2, · · · }

By RZa := {f : Za → R} we denote the R-vector space of functions from Za to R

under pointwise addition.

We will make use of the following linear operators that take RZa → RZa . For any

f ∈ RZa we define:

• the left shift operator, L : RZa → RZa , by (Lf)(t) := f(t+ 1) for all t ∈ Za

• the right shift operator, R : RZa → RZa , by (Rf)(t) := f(t− 1) for all t ∈ Za

• the identity operator, I : RZa → RZa , by (If)(t) := f(t) for all t ∈ Za

• the nabla difference operator ∇ : RZa → RZa by ∇ := I − R, so explicitly,

(∇f)(t) := f(t)− f(t− 1) for all t ∈ Za.
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For k ∈ N0 we define Lk, Rk, and ∇k recursively. That is, for T ∈ {L,R,∇}, T 0 := I

and for k ∈ N1 we define
(
T kf

)
by
(
T kf

)
:= T (T k−1f). Explicitly, for f ∈ RZa and

k ∈ N1 we have:

• Lk =

k︷ ︸︸ ︷
L ◦ L ◦ · · · ◦ L, hence (Lkf)(t) = f(t+ k)

• Rk =

k︷ ︸︸ ︷
R ◦R ◦ · · · ◦R, hence (Rkf)(t) = f(t− k)

• ∇k =

k︷ ︸︸ ︷
∇ ◦∇ ◦ · · · ◦ ∇, hence (∇kf)(t) =

k

Σ
i=0

(−1)i
(
k
i

)
f(t− i).

This expression for ∇kf follows formally from the Binomial Theorem since

∇k =

k︷ ︸︸ ︷
(I −R) · · · (I −R) =

k

Σ
i=0

(
k

i

)
Ik−i(−R)i =

k

Σ
i=0

(−1)i
(
k

i

)
Ri.

The regressive function, ρ : Za → Za is defined by ρ(t) := t− 1.

For f : Za → R, the support of f on Za is spt(f) := {t ∈ Za : f(t) 6= 0}.

For A ⊆ R, the characteristic function on A is 1A(t) =


1, if t ∈ A

0, if t /∈ A.

For c, d ∈ Za with c < d, we use the notation:

Nd
c := [c, d] ∩ Za

Throughout, we will often use Greek letters to represent variables that may assume

any real value and Latin letters to represent variables that assume only integer values.

In particular, we will use:

• α and γ to represent any general real numbers,

• m and n to represent nonnegative integers, and
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• µ and ν to represent nonnegative real numbers (For these, we will often let

M := dµe and N := dνe, where d·e is the ceiling function.).

We define the nabla definite integral of f : Za → R for c, d ∈ Za by

ˆ d

c

f(s)∇s =


f(c+ 1) + f(c+ 2) + · · ·+ f(d− 1) + f(d), c < d

0, c ≥ d.

Sometimes we will also use the following notation to represent this same quantity:

ˆ d

c

f(s)∇s =

ˆ
(c,d]

f(s)∇s =
∑
s∈(c,d]

f(s) =
∑

s∈Ndc+1

f(s) =
d∑

s=c+1

f(s)

Remark Note that if c ≥ d, then (c, d] = {s ∈ R : c < s ≤ d} = ∅. Thus,

ˆ
(c,d]

f(s)∇s =

ˆ
∅
f(s)∇s = 0.

This is one reason for defining the nabla definite integral to be 0 when c ≥ d.

Suppose f ∈ RZa and A ⊆ Za. We say:

• f is increasing on A, provided x, y ∈ A and x < y ⇒ f(x) ≤ f(y)

• f is strictly increasing on A, provided x, y ∈ A and x < y ⇒ f(x) < f(y).

Similiarly, we say:

• f is decreasing on A, provided x, y ∈ A and x < y ⇒ f(x) ≥ f(y)

• f is strictly decreasing on A, provided x, y ∈ A and x < y ⇒ f(x) > f(y).
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1.2 Basic Facts

Gamma Function

In this dissertation, we assume the following five facts regarding the Gamma function:

(1) the Gamma function is analytic (and therefore continuous) on R\{0,−1,−2, · · · },

(2) the Gamma function has no zeros,

(3) For n ∈ N0, lim
t→(−n)±

Γ(t) = ±∞ for even n and lim
t→(−n)±

Γ(t) = ∓∞ for odd n.

(4) Γ(x+ 1) = xΓ(x), x ∈ R \ {0,−1,−2, · · · }, and

(5) Γ(n+ 1) = n!, n ∈ N0.

Figure 1.1: Gamma Function

Note: (3) implies that for all n ∈ N0, 0 = lim
t→(−n)+

1
Γ(t)

= lim
t→(−n)−

1
Γ(t)

= lim
t→−n

1
Γ(t)

.

Thus, (1)-(3) together imply f(x) := lim
t→x

1
Γ(t)
∈ (−∞,∞) for all x ∈ R.



5

Theorem 1.1. (Fundamental Theorem of Nabla Calculus) (See [5, Theorem

3.37]). If c, d ∈ Za with c < d and f : Nd
c → R, then

ˆ d

c

(∇f)(s)∇s = f(s)

∣∣∣∣d
c

= f(d)− f(c). (1.1)

Theorem 1.2. Suppose c, d ∈ Za with c < d.

If (∇f)(t) ≥ 0 on [c+ 1, d] ∩ Za, then f is increasing on [c, d] ∩ Za.

If (∇f)(t) > 0 on [c+ 1, d] ∩ Za, then f is strictly increasing on [c, d] ∩ Za.

If (∇f)(t) ≤ 0 on [c+ 1, d] ∩ Za, then f is decreasing on [c, d] ∩ Za.

If (∇f)(t) < 0 on [c+ 1, d] ∩ Za, then f is strictly decreasing on [c, d] ∩ Za.

1.3 Pochhammer Polynomials

In Section 1.4 we will define and describe the fractional Taylor monomials, which play

an important role in the theory of fractional differences. But, before we do that it will

be useful to introduce the so-called Pochhammer polynomials and to review some of

their basic properties.

Definition 1.3. For d ∈ Z and x ∈ R, we define the Pochhammer polynomial

of degree d to be:

Pd(x) =

(
x+ d

d

)
=



1
d!

(x+ 1)(x+ 2) · · · (x+ d) , for d ∈ N1

1 , for d = 0

0 , for d ∈ Z \ N0.

So, for d ≥ 1, Pd(x) is the polynomial with d distinct zeros at x = −1,−2, · · · ,−d

normalized so that Pd(0) = 1.
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Example 1.4.

P3(2) =

(
2 + 3

3

)
=

1

3!
(x+ 1)(x+ 2)(x+ 3)

∣∣∣∣
x= 2

= 10

P3(−1)=

(
−1 + 3

3

)
=

1

3!
(x+ 1)(x+ 2)(x+ 3)

∣∣∣∣
x=−1

= 0

P3(−4)=

(
−4 + 3

3

)
=

1

3!
(x+ 1)(x+ 2)(x+ 3)

∣∣∣∣
x=−4

= −1.

Theorem 1.5. For d ∈ N0 and k ∈ N0,

Pd(−k) = (−1)d
(
k − 1

d

)
.

Proof. To see this equation holds, notice

Pd(−k) =
1

d!
(−k + 1)(−k + 2) · · · (−k + d)

= (−1)d · 1

d!
(k − 1)(k − 2) · · · (k − d)

= (−1)d · 1

d!
(k − d)(k − (d− 1)) · · · (k − 1)

= (−1)d · 1

d!
((k − d− 1) + 1)((k − d− 1) + 2) · · · ((k − d− 1) + d)

= (−1)d ·
(

(k − d− 1) + d

d

)
= (−1)d ·

(
k − 1

d

)
.

Theorem 1.6. For d ∈ N0, Pd+1(x) = Pd(x) · x+d+1
d+1

.
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Proof. Clearly the claim is true when d = 0. If d > 0, then

Pd+1(x) =
1

(d+ 1)!
(x+ 1)(x+ 2) · · · (x+ d)(x+ (d+ 1))

=
(x+ 1)(x+ 2) · · · (x+ d)

d!
· (x+ d+ 1)

d+ 1

= Pd(x) · x+ d+ 1

d+ 1
.

1.4 Taylor Monomials

We introduce two kinds of fractional Taylor monomials. Both will be useful. 1, 2

Definition 1.7. For all γ ∈ R, and all s, t ∈ Za, we define:

H̃γ(t, s) := lim
ε→0

Γ(t− s+ γ + ε)

Γ(t− s+ ε)Γ(γ + 1 + ε)
and Hγ(t, s) := H̃γ(t, s) · 1(s,∞)(t).

Remark Recall the Gamma function has no zeros, so the denominator in the expres-

sion for H̃γ(t, s) is never 0. In the next two theorems we show the limit used to define

H̃γ(t, s) always exists in R and so H̃γ(t, s) is, in fact, well-defined for all γ ∈ R, and

all s, t ∈ Za as claimed.
1In [5] (see [Definition 3.56, page 186]) Goodrich et al define the fractional Taylor monomials,

for γ 6= −1,−2,−3, · · · , by

Hγ(t, a) :=
(t− a)γ

Γ(γ + 1)
=

Γ(t− a+ γ)

Γ(t− a)Γ(γ + 1)

for values of t and γ such that the right-hand side of this equation makes sense. H̃γ(t, s) as defined
above therefore extends and clarifies the domain of the fractional Taylor monomial as defined in [5].
The ˜ is intended to remind the reader of this fact.

2 The ˜ is also intended to remind the reader that H̃γ(t, s) is an "extension" of the second kind
of Taylor monomial, Hγ(t, s), in the sense that spt(Hγ(·, s)) ( spt(H̃γ(·, s)) when γ = n ∈ N0 (as
we will show).
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Theorem 1.8. For s, t ∈ Za with t ≤ s and γ ∈ R,

H̃γ(t, s) =


0, when γ ∈ R \ N0

(−1)n
(|t−s|

n

)
, when γ = n ∈ N0.

Proof. Put d = d(t, s) := −(t− s) = |t− s| ∈ N0.

Case 1: γ ∈ R \ N0.

H̃γ(t, s) : = lim
ε→0

Γ(t− s+ γ + ε)

Γ(t− s+ ε)Γ(γ + 1 + ε)

= lim
ε→0

Γ(−d+ γ + ε)

Γ(−d+ ε)Γ(γ + 1 + ε)

= lim
ε→0

1

Γ(−d+ ε)
lim
ε→0

Γ(−d+ γ + ε)

Γ(γ + 1 + ε)
· (−d+ γ + ε) · · · (0 + γ + ε)

(−d+ γ + ε) · · · (0 + γ + ε)

= lim
ε→0

1

Γ(−d+ ε)
lim
ε→0

1

(−d+ γ + ε) · · · (0 + γ + ε)

= lim
ε→0

1

Γ(−d+ ε)
· 1

(−d+ γ) · · · (0 + γ)

=
1

(−d+ γ) · · · (0 + γ)
lim
ε→0

1

Γ(−d+ ε)
= 0

= 0.

Case 2a: γ = 0.

H̃0(t, s) : = lim
ε→0

Γ(t− s+ 0 + ε)

Γ(t− s+ ε)Γ(0 + 1 + ε)

= lim
ε→0

1

Γ(0 + 1 + ε)
=

1

0!
= 1

= (−1)0

(
|t− s|

0

)
.
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Case 2b: γ = n ∈ N1.

H̃n(t, s) : = lim
ε→0

Γ(t− s+ n+ ε)

Γ(t− s+ ε)Γ(n+ 1 + ε)

= lim
ε→0

Γ(−d+ n+ ε)

Γ(−d+ ε)Γ(n+ 1 + ε)

= lim
ε→0

1

Γ(n+ 1 + ε)
lim
ε→0

Γ(−d+ n+ ε)

Γ(−d+ ε)
· (−d+ ε) · · · (−d+ n− 1 + ε)

(−d+ ε) · · · (−d+ n− 1 + ε)

=
1

Γ(n+ 1)
lim
ε→0

(−d+ ε) · · · (−d+ n− 1 + ε)

1

=
1

n!
(−1)n lim

ε→0

(d− ε) · · · (d− n+ 1− ε)
1

=
(−1)n

n!
· (d) · · · (d− (n− 1))

= (−1)n
(
d

n

)
= (−1)n

(
|t− s|
n

)
.

The reason for introducing the Pochhammer polynomials in the last section is that

they are closely related to the Taylor monomials, as the next theorem shows.

Theorem 1.9. For s, t ∈ Za with t > s and γ ∈ R,

H̃γ(t, s) = Pt−s−1(γ) . (1.2)
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Proof. Put d = d(t, s+ 1) := t− s− 1 ∈ N0. 3

H̃γ(t, s) : = lim
ε→0

Γ(t− s+ γ + ε)

Γ(t− s+ ε)Γ(γ + 1 + ε)

= lim
ε→0

Γ(d+ 1 + γ + ε)

Γ(d+ 1 + ε)Γ(γ + 1 + ε)

= lim
ε→0

1

Γ(d+ 1 + ε)
lim
ε→0

Γ(d+ 1 + γ + ε)

Γ(γ + 1 + ε)
· (γ + 1 + ε) · · · (γ + d+ ε)

(γ + 1 + ε) · · · (γ + d+ ε)

=
1

Γ(d+ 1)
lim
ε→0

Γ(d+ 1 + γ + ε)

Γ(d+ 1 + γ + ε)
· (γ + 1 + ε) · · · (γ + d+ ε)

=
1

d!
(γ + 1) · · · (γ + d)

= Pd(γ) = Pt−s−1(γ).

Remark 1.10. Theorem 1.8 and 1.9 combine to give us the following formula and

complete picture of H̃γ(t, s) for all γ ∈ R and all t, s ∈ Za. (See Figure 1.2 below.)

H̃γ(t, s) = Pt−s−1(γ) + (−1)γ
(
|t− s|
γ

)
1N0

(γ)1(−∞,s](t) . (1.3)

Remark Recall that by Definition 1.3 Pd(x) ≡ 0 whenever d ∈ Z \ N0, so the first

term in equation (1.3) is 0 whenever t ≤ s.

Remark The labelled values in Figure 1.2 can be obtained either: (i) directly from

this formula (as in the case of those values that appear in the II quadrant) or (ii) by

combining this formula and Definition 1.3 with the results of Theorem 1.5 (as in the

case of those values that appear in the I and IV quadrants).

3In this proof d(t, s+ 1) is the integer-valued distance between t and s+ 1. It is also the degree
of the relevant Pochhammer polynomial.
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t

γ

s− 4 s− 3 s− 2 s− 1 s+ 1 s+ 2 s+ 3 s+ 4 s+ 5

2

1

−1

−2

−3

−4

−
(

1
1

)
−
(

2
1

)
−
(

3
1

)
−
(

4
1

) (
1
1

) (
2
1

) (
3
1

) (
4
1

)
(

2
2

)(
3
2

)(
4
2

) (
2
2

) (
3
2
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H̃γ(t, s) := lim
ε→0

Γ(t−s+γ+ε)
Γ(t−s+ε)Γ(γ+1+ε)

Figure 1.2: (Extended) Taylor Monomials

A very nice symmetry in Figure 1.2 is reflected in the formula for H̃γ(t, s) given

in the next corollary.

Corollary 1.11. For all γ ∈ R and all t, s ∈ Za

H̃γ(t, s) =


Pt−s−1(γ), for t > s and γ ∈ R

Pγ(t− s− 1), for t ≤ s and γ = n ∈ N0

0, for t ≤ s and γ ∈ R \ N0.

Proof. Theorems 1.8 and 1.9 give us formulas for H̃γ(t, s) when t ≤ s and t > s,

respectively. Looking back at these, the only thing new here is the formula for H̃n(t, s)

when t ≤ s and γ = n ∈ N0. To verify this formula recall the result of Theorem 1.8.
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That is, for t ≤ s and γ = n ∈ N0 recall that

H̃γ(t, s) = (−1)n
(
|t− s|
n

)
=

(−1)n

n!
(|t− s|)(|t− s| − 1) · · · (|t− s| − (n− 1))

=
1

n!
(−|t− s|)(−|t− s|+ 1) · · · (−|t− s|+ (n− 1))

=
1

n!
(t− s)(t− s+ 1) · · · (t− s+ (n− 1))

=
1

n!
(t− s− 1 + 1)(t− s− 1 + 1 + 1) · · · (t− s− 1 + 1 + (n− 1))

=
1

n!
((t− s− 1) + 1)((t− s− 1) + 2) · · · ((t− s− 1) + n)

= Pn(t− s− 1).

Note that the second term in (1.3) is often 0. In fact, it is only nonzero when

γ ∈ N0 and t ≤ s. The next two corollaries follow from this fact.

Corollary 1.12. For all s, t ∈ Za and all γ ∈ R,

Hγ(t, s) = Pt−s−1(γ) . (1.4)

Proof. Recall that, by Definition 1.3, Pd(x) ≡ 0 whenever d ∈ Z \N0. Thus, if t ≤ s,

by definition, both the left- and right-hand sides of equation (1.4) are 0. If t > s,

Theorem 1.9 gives us

Hγ(t, s)
def
= H̃γ(t, s) · 1(s,∞)(t) = H̃γ(t, s) = Pt−s−1(γ).
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Corollary 1.13. For all γ ∈ R \ N0, and all s, t ∈ Za,

H̃γ(t, s) = Hγ(t, s). (1.5)

Proof. By hypothesis γ /∈ N0 and so the second term in (1.3) is 0. Thus, by equations

(1.3) and (1.4), we have H̃γ(t, s) = Pt−s−1(γ) + 0 = Hγ(t, s) .

Thus, for almost every value of γ the two kinds of Taylor monomials introduced

are the same. It is only when γ = n ∈ N0 (and t ≤ s) that they differ.

Remark 1.14. For all s, t ∈ Za and all γ ∈ R,

(i) H̃γ(s+ 1, s) = Hγ(s+ 1, s) = 1

(ii) H̃0(t, s) ≡ 1

Proof. Both of these facts follow quickly and directly from the definitions.

To see (i), note Hγ(s+ 1, s)
def
= H̃γ(s+ 1, s) · 1 = lim

ε→0

Γ(1+γ+ε)
Γ(1+ε)Γ(γ+1+ε)

= 1
Γ(1)

= 1.

To see (ii), note H̃0(t, s) = lim
ε→0

Γ(t−s+ε)
Γ(t−s+ε)Γ(1+ε)

= 1
Γ(1)

= 1.

Theorem 1.15. (Power Rule 4) For p ∈ R and fixed s ∈ Za,

∇H̃p(t, s) =


H̃p−1(t, s), when 0 6= p ∈ R

0, when p = 0.

Proof. For p = 0, using Remark 1.14 (ii), we have ∇H̃0(t, s) = ∇1 = 0.
4We refer to this theorem as the Power Rule since it is the analogue of the Power Rule from

calculus which describes how the power functions, xp, behave under differentiation.
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For p 6= 0, starting with the definition of H̃p(t, s), we obtain

∇H̃p(t, s) = lim
ε→0

Γ(t− s+ p+ ε)

Γ(t− s+ ε)Γ(p+ ε+ 1)
− lim

ε→0

Γ(t− 1− s+ p+ ε)

Γ(t− 1− s+ ε)Γ(p+ ε+ 1)

= lim
ε→0

[t− 1− s+ p+ ε

t− 1− s+ ε
− 1
] Γ(t− 1− s+ p+ ε)

Γ(t− 1− s+ ε)Γ(p+ ε+ 1)

= lim
ε→0

p · Γ(t− 1− s+ p+ ε)

Γ(t− s+ ε)Γ(p+ 1 + ε)

= lim
ε→0

p · Γ(t− 1− s+ p+ ε)

(p+ ε)Γ(t− s+ ε)Γ(p+ ε)

= lim
ε→0

p

(p+ ε)
· lim
ε→0

Γ(t− s+ p− 1 + ε)

Γ(t− s+ ε)Γ(p+ ε)

= H̃p−1(t, s).

Theorem 1.16. (Log Rule 5) For p ∈ R and fixed s ∈ Za,

∇Hp(t, s) = Hp−1(t, s).

Proof. If t ≤ s, then by definition Hp(t, s) = Hp(t − 1, s) = 0 just as Hp−1(t, s) = 0

(since 1(s,∞)(t) = 1(s,∞)(t− 1) = 0 when t ≤ s). Thus,

∇Hp(t, s) = Hp(t, s)−Hp(t− 1, s) = 0− 0 = 0 = Hp−1(t, s).

If t ≥ s+ 2, then by definition Hp(t, s) = H̃p(t, s) and Hp(t− 1, s) = H̃p(t− 1, s) just

5We refer to this theorem as the Log Rule since one of the (very important) things it says is that
∇H0(t, s) = H−1(t, s) = H̃−1(t, s). This is the analogue of the fact from calculus that the derivative
of ln |x| is the power function x−1.
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as Hp−1(t, s) = H̃p−1(t, s) (since 1(s,∞)(t) = 1(s,∞)(t− 1) = 1 when t ≥ s+ 2). Thus,

∇Hp(t, s) = Hp(t, s)−Hp(t− 1, s)

= H̃p(t, s)− H̃p(t− 1, s)

= ∇H̃p(t, s) = H̃p−1(t, s) = Hp−1(t, s).
√

It remains to show that the theorem holds when t = s + 1. In this case, by the

definition and Remark 1.14 (i),

∇Hp(t, s) = Hp(t, s)−Hp(t− 1, s)

= Hp(s+ 1, s)−Hp(s, s)

= H̃p(s+ 1, s) · 1(s,∞)(s+ 1)− H̃p(s, s) · 1(s,∞)(s)

= 1− 0 = 1

= Hp−1(s+ 1, s) = Hp−1(t, s).
√

We conclude this section with a corollary and a theorem that is easy to prove

using it. The corollary records the fact that the Taylor monomials only depend on

the difference between the values of t and s. Hence the same amount may be added

to or subtracted from both arguments without changing the output.

Corollary 1.17. If γ ∈ R and s, t, w, x ∈ Za and t− s = x− w,

H̃γ(t, s) = H̃γ(x,w) and Hγ(t, s) = Hγ(x,w).
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Proof.

H̃γ(t, s) = lim
ε→0

Γ(t− s+ γ + ε)

Γ(t− s+ ε)Γ(γ + 1 + ε)
= lim

ε→0

Γ(x− w + γ + ε)

Γ(x− w + ε)Γ(γ + 1 + ε)
= H̃γ(x,w)

and so

Hγ(t, s) = H̃γ(t, s) · 1(s,∞)(t) = H̃γ(x,w) · 1(w,∞)(x) = Hγ(x,w).

The next theorem gives us a formula for the nabla difference of a Taylor monomial

taken with respect to the second variable. It is quick to prove using the last corollary.

Theorem 1.18. For p ∈ R and fixed t ∈ Za,

∇sHp(t, s) = −Hp−1(t, ρ(s)) and ∇sH̃p(t, s) =


H̃p−1(t, s), when 0 6= p ∈ R

0, when p = 0.

Proof.

∇sHp(t, s) = Hp(t, s)−Hp(t, s− 1) = −[Hp(t, s− 1)−Hp(t, s)]

Cor 1.17
= −[Hp(t, s− 1)−Hp(t− 1, s− 1)]

= −∇Hp(t, ρ(s))
Thm 1.16

= −Hp−1(t, ρ(s)).

The proof of the second equation follows from the same argument with Hγ(t, s) re-

placed by H̃γ(t, s).
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1.5 Convolution Product

In this section we define a binary operation on a certain vector subspace of RZa . The

operation we define could perhaps be extended to a larger subspace of RZa , but we

will only have cause in this dissertation to use it on the subspace V identified below.

Definition 1.19. For T ∈ Za we define

VT : = {f : Za → R : f(t) = 0 for all t < T}

= {f : Za → R : spt(f) ⊆ [T,∞)}

and

V : = ∪
i≥0
Va−i

= ∪
T∈a−N

VT

= {f : Za → R : f(t) = 0 for all t ≤ T for some T = Tf ∈ Za}

Notice that V is a real vector space.6

Definition 1.20. For f, g ∈ V we define f ∗ g : Za → R by

(f ∗ g)(t) : =

ˆ ∞
−∞

f(t− s+ a)g(s)∇s

A nice way to visualize this convolution product is to think of the two functions

f and g as extending horizontally to the right. f is then rotated 90
◦counterclockwise

about the value t = a and g is rotated 90
◦clockwise about the value t = a. f is then

translated down (t− a) units. The values that appear next to each other after these
6The convolution operation we define next will make it into an algebra, however we will have no

explicit need to use this fact.
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two rotations and the translation are then multiplied and the resulting products are

summed to yield (f ∗ g)(t).

Considered from this perspective, it is probably clear that ∗ : V × V → V is a

well-defined binary operation. We prove that it is well defined in Theorem 1.21 below.

The proof also yields a formula for the convolution product in terms of a finite sum.

Sometimes it is easier to work with this finite sum than with Definition 1.20.

Theorem 1.21. The convolution operation ∗ : V × V → V is well defined.

Proof. Suppose f, g ∈ V . Then there exist Tf and Th ∈ Za such that f ∈ VTf and

g ∈ VTg . Put M = M(f, g) := max{a−Tf , a−Tg, 0} ∈ N0 and T := min{Tf , Tg, a} ∈

Za. So T = a−M and f, g ∈ VT = Va−M and so for all t < (a−M), f(t) = g(t) = 0.

Thus,

Case 1: (t ≤ a− 2M − 1)

(f ∗ g)(t) :
Def
=

ˆ ∞
−∞

f(t− s+ a)g(s)∇s

=

(ˆ a−M−1

−∞
+

ˆ ∞
a−M−1

)
f(t− s+ a)g(s)∇s

=

ˆ a−M−1

−∞
f(t− s+ a)g(s)∇s︸ ︷︷ ︸

=0 (since g(s)=0 for all s<(a−M))

+

ˆ ∞
a−M−1

f(t− s+ a)g(s))∇s︸ ︷︷ ︸
=0 (since f(τ)=0 for all τ<(a−M))

Reason


 t ≤ a− 2M − 1

−s ≤ −(a−M)

⇒
t− s ≤ −M − 1

t− s+ a︸ ︷︷ ︸
τ

≤ a−M − 1 < (a−M)


= 0.
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Case 2: (t ≥ a− 2M)

(f ∗ g)(t) :
Def
=

ˆ ∞
−∞

f(t− s+ a)g(s)∇s

=

(ˆ a−M−1

−∞
+

ˆ t+M

a−M−1

+

ˆ ∞
t+M

)
f(t− s+ a)g(s)∇s

=

ˆ a−M−1

−∞
f(t− s+ a)g(s)∇s︸ ︷︷ ︸

=0 (since g(s)=0 for all s<(a−M))

+

ˆ ∞
t+M

f(t− s+ a)g(s))∇s︸ ︷︷ ︸
=0 (since f(τ)=0 for all τ<(a−M))

+

ˆ t+M

a−M−1

f(t− s+ a)g(s)∇sReason: s > t+M ⇒
−s < −t−M

t− s+ a︸ ︷︷ ︸
τ

< (a−M)


=

ˆ t+M

a−M−1

f(t− s+ a)g(s)∇s

= Σ
s∈Nt+Ma−M

f(t− s+ a)g(s).

In summary,

(f ∗ g)(t) =


´ t+M
a−M−1

f(t− s+ a)g(s)∇s, t ≥ a− 2M

0, t < a− 2M

or simply

(f ∗ g)(t) =

ˆ t+M

a−M−1

f(t− s+ a)g(s)∇s

if we recall that, by definition,
´ b
a
h(s)∇s = 0 whenever b ≤ a.

Remark 1.22. From the proof of the last theorem we have the useful formula for the
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convolution product:

(f ∗ g)(t) =

ˆ t+M

a−M−1

f(t− s+ a)g(s)∇s = Σ
s∈Nt+Ma−M

f(t− s+ a)g(s) (1.6)

whereM = M(f, g) ∈ N0 is sufficiently large that for all t < (a−M), f(t) = g(t) = 0.7

Before providing some examples it will be convenient to define a single variable

function Hγ(t) by fixing s = ρ(a) in the Taylor monomial Hγ(t, s) as given in Defini-

tion 1.7.

Definition 1.23. For γ ∈ R we define Hγ : Za → R to be:

Hγ(t) := Hγ(t, ρ(a)), for all t ∈ Za.

Remark 1.24. Other expressions for the single variable function Hγ(t) in terms of

the Pochhammer polynomials and the standard combinatorial choice function include:

Hγ(t) :
Defn
= H̃γ(t, ρ(a)) · 1(ρ(a),∞)(t) (1.7)

Thm 1.12
=


Pρ(t)−ρ(a)(γ), for t ≥ a

0, for t < a

(1.8)

(1.9)
7Notice that if f, g ∈ Va+1, then (Lf)(t) := f(t+ 1) ∈ Va. If we now consider (Lf ∗ g)(t), then

here we have M = M(Lf, g) = 0 and so

(Lf ∗ g)(t) = Σ
s∈Nt

a

(Lf)(t− s+ a)g(s) = Σ
s∈Nt

a

f(t− s+ a+ 1)g(s) =

ˆ t

a

f(t− ρ(s) + a)g(s)∇s

This last expression is the definition of the convolution product used by Goodrich et al in [5]. (See
[5, Definition 3.77].)
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t

γ

a+ 1 a+ 2 a+ 3 a+ 4 a+ 5
0

−1

−2

−3

−4

1
positive
0
negative

Pt−a(γ)

Hγ(t) :=
Hγ(t, ρ(a))

Figure 1.3: Single-Variable Taylor Monomials

= Pt−a(γ) (1.10)

=



1
(t−a)!

(γ + 1)(γ + 2) · · · (γ + (t− a)), for t > a

1, for t = a

0, for t < a

(1.11)

=

(
γ + t− a
t− a

)
. (1.12)

Example 1.25. H0(t) = 1[a,∞)(t).

Proof. By Definition 1.7 and Remark 1.14 (ii),

H0(t) = H0(t, ρ(a)) = H̃0(t, ρ(a)) · 1(ρ(a),∞)(t) = 1[a,∞)(t).
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Example 1.26. If n ∈ N1 then by Corollary 1.12,

Hn(t) = Hn(t, ρ(a)) = Pt−ρ(a)−1(n) = Pt−a(n)

=


0, for t < a

1, for t = a

1
(t−a)!

(n+ 1)(n+ 2) · · · (n+ (t− a)), for t > a.

The next example is important and will be referenced later. (See Theorem 2.2.)

Example 1.27. If n ∈ N1 then again by Corollary 1.12 and Theorem 1.5,

H−n(t) = H−n(t, ρ(a)) = Pt−ρ(a)−1(−n) = Pt−a(−n)

=


0, for t < a

1, for t = a

1
(t−a)!

(−n+ 1)(−n+ 2) · · · (−n+ (t− a)), for t > a

=


0, for t < a

1, for t = a

(−1)(t−a)

(t−a)!
(n− 1)(n− 2) · · · (n− (t− a)), for t > a

=


0, for t < a

1, for t = a

(−1)(t−a)
(
n−1
t−a

)
, for t > a.



23

Example 1.28. In particular, for γ = −1,−2,−3, and − 4, we have:

H−1(t) =


1, for t = a

0, for t > a

H−2(t) =


1, for t = a

−1, for t = a+ 1

0, otherwise

H−3(t) =



1, for t = a

−2, for t = a+ 1

1, for t = a+ 2

0, otherwise

H−4(t) =



1, for t = a

−3, for t = a+ 1

3, for t = a+ 2

−1, for t = a+ 3

0, otherwise.

The next two examples suggest a result we will prove in Chapter 2.



24

Example 1.29. Let g ∈ V . Then (H−2 ∗ g)(t) = g(t)− g(t− 1) = ∇g(t).

Example 1.30. Let g ∈ V . Then (H−3∗g)(t) = g(t)−2g(t−1)+g(t−2) = (∇2g)(t).

In Theorem 1.31 – Theorem 1.36 we show that V equipped with the operations

of + and ∗ is a commutative ring.8

Theorem 1.31. V is commutative with respect to ∗.

Proof. Suppose f, g ∈ V . Then there exist Tf and Th ∈ Za such that f ∈ VTf and

g ∈ VTg . Put M = M(f, g) := max{a−Tf , a−Tg, 0} ∈ N0 and T := min{Tf , Tg, a} ∈

Za. (So T = a−M and f, g ∈ VT = Va−M .)

Now, fix t ∈ Za. Recall the formula for f ∗ g from Remark 1.22 and consider:

(f ∗ g)(t) :
Rmk 1.22

= Σ
s∈Nt+Ma−M

f(t− s+ a)g(s)

τ :=t-s+a
= Σ

τ∈Nt+Ma−M

f(τ)g(t− τ + a)

= Σ
τ∈Nt+Ma−M

g(t− τ + a)f(τ)

= (g ∗ f)(t)

Recall that in Section 1.1 we defined the right-shift operator, R : RZa → RZa , by

(Rf)(t) := f(t − 1) for all t ∈ Za and for k ∈ N1, we defined Rk recursively so that

(Rkf)(t) = f(t− k). L and Lk were defined similiarly.

Theorem 1.32. For f, g ∈ V and k ∈ N0,

(Rkf ∗ g)(t) = Rk(f ∗ g)(t) = (f ∗ g)(t− k).
8Actually more is true, (V,+, ∗) is isomorphic to R((x)), the formal Laurent series, and as such

is, in fact, a field. (See [8], p.238). However, we shall not need this fact.
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Proof. Fix t ∈ Za and k ∈ N0, letM = M(f, g) := max{a−Tf , a−Tg, 0} and consider

(Rkf ∗ g)(t)
Def
= Σ

s∈Nt+Ma−M

(Rkf)(t− s+ a)g(s)

= Σ
s∈Nt+Ma−M

f(t− s+ a− k)g(s)

= Σ
s∈Nt+M−ka−M ∪Nt+Mt+M−k+1

f(t− k − s+ a)g(s)

= Σ
s∈Nt−k+Ma−M

f(t− k − s+ a)g(s) + Σ
s∈Nt+Mt+M−k+1

f(t− k − s+ a)g(s)︸ ︷︷ ︸
=0 (since f(τ)=0 for all τ<(a−M))Reason: s ≥ t− k +M + 1⇒

−s ≤ −t+ k −M − 1

t− s− k + a︸ ︷︷ ︸
τ

≤ a−M − 1 < (a−M)


= Σ

s∈N(t−k)+M
a−M

f((t− k)− s+ a)g(s)

= (f ∗ g)(t− k) = Rk(f ∗ g)(t).

The commutativity of V under ∗ gives us the following corollary.

Corollary 1.33. For f, g ∈ V and m,n ∈ N0,

(Rmf ∗Rng) = Rm+n(f ∗ g).

Proof. Consider

(Rmf ∗Rng)
Thm 1.32

= Rm(f ∗Rng)

Thm 1.31
= Rm(Rng ∗ f)

= Rm(Rn(g ∗ f))

Thm 1.31
= Rm+n(f ∗ g).
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Lemma 1.34. Va is associative with respect to ∗. That is, if f, g, h ∈ Va, then

f ∗ (g ∗ h) = (f ∗ g) ∗ h.

Proof. If f, g, h ∈ Va then for all t < a, f(t) = g(t) = h(t) = 0. Fix t ∈ Za and

consider

(f ∗ (g ∗ h))(t) :
Def
= Σ

u∈Nta
f(t− u+ a)(g ∗ h)(u)

Def
= Σ

u∈Nta
f(t− u+ a) Σ

s∈Nua
g(u− s+ a)h(s)

= Σ
u∈Nta

Σ
s∈Nua

f(t− u+ a)g(u− s+ a)h(s)

= Σ
s∈Nta

Σ
u∈Nts

f(t− u+ a)g(u− s+ a)h(s)

= Σ
s∈Nta

h(s) Σ
u∈Nts

f(t− u+ a)g(u− s+ a)

w(u):=u-s+a
=

∴u=w+s-a
Σ

s∈Nta
h(s) Σ

w∈Nt−s+aa

f(t− (w + s− a) + a)g(w)

= Σ
s∈Nta

h(s) Σ
w∈Nt−s+aa

f((t− s+ a)− w + a)g(w)

= Σ
s∈Nta

(f ∗ g)(t− s+ a)h(s)

= ((f ∗ g) ∗ h)(t).

The next theorem extends the result of Lemma 1.34 to all functions in V .

Theorem 1.35. V is associative with respect to ∗.

Proof. Suppose f, g, h ∈ V . There exist Tf , Tg, and Th ∈ Za such that f ∈ VTf , g ∈

VTg , and h ∈ VTh . Put M = M(f, g, h) := max{a − Tf , a − Tg, a − Th, 0} ∈ N0

and T := min{Tf , Tg, Th, a} ∈ Za. So T = a −M and f, g, h ∈ VT = Va−M which
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implies that for all t < (a −M), f(t) = g(t) = h(t) = 0 which, in turn, implies that

(RMf), (RMg), (RMh) ∈ Va. Thus, by Lemma 1.34,

RMf ∗ (RMg ∗RMh) = (RMf ∗RMg) ∗RMh.

But, by Corollary 1.33,

RMf ∗ (RMg ∗RMh) = RMf ∗ (R2M(g ∗ h))

= R3M(f ∗ (g ∗ h)).

On the other hand,

(RMf ∗RMg) ∗RMh = (R2M(f ∗ g)) ∗RMh

= R3M(f ∗ g) ∗ h).

Thus,

R3M(f ∗ (g ∗ h)) = R3M(f ∗ g) ∗ h).

Applying the injective operator L3M to both sides of this last equation yields,

f ∗ (g ∗ h) = (f ∗ g) ∗ h.

Finally, we can justify our claim that (V,+, ∗) is a commutative ring.

Theorem 1.36. (V,+, ∗) is a commutative ring.
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Proof. The fact that V is commutative and associative with respect to ∗ has already

been shown. (See Theorem 1.31 and Theorem 1.35, respectively.) It remains to show

distributivity holds.

f ∗ (g + h) = Σ
s∈Nt+Ma−M

f(t− s+ a)(g + h)(s)

= Σ
s∈Nt+Ma−M

f(t− s+ a)[g(s) + h(s)]

= Σ
s∈Nt+Ma−M

f(t− s+ a)g(s) + f(t− s+ a)h(s)

= Σ
s∈Nt+Ma−M

f(t− s+ a)g(s) + Σ
s∈Nt+Ma−M

f(t− s+ a)h(s)

= f ∗ g + f ∗ h .

We conclude this section with a theorem that tells us what the convolution product

of Hµ and Hν is for any µ, nu ∈ R, but first we need a lemma.

Lemma 1.37. For x, y ∈ R and all k ∈ N,

k

Σ
i=0

(
x+ k − i
k − i

)(
y + i

i

)
=

(
x+ y + 1 + k

k

)
.

Proof. We first prove the claim for the special case where x = m and y = n, where

m,n ∈ N. Fix k, m, and n ∈ N1 and consider
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Fm(z) :=
1

(1− z)m+1
= (1− z)−(m+1)

⇒ F ′m(z) = (m+ 1)(1− z)−m−2 ⇒ F ′m(0) = (m+ 1)

...
...

⇒ F (k)
m (z) = (m+ 1) . . . (m+ k)(1− z)−m−2 ⇒ F (k)

m (0) = (m+ 1) . . . (m+ k)

= (m+ 1)k

= (m+ k)k · k!

k!

=

(
m+ k

k

)
k!.

Similiarly,

Fn(z) =
1

(1− z)n+1
⇒ F (k)

n (0) =

(
n+ k

k

)
k!.

Notice,

(Fm · Fn)(z) = Fm(z) · Fn(z) =
1

(1− z)m+1
· 1

(1− z)n+1

=
1

(1− z)((m+n+1)+1)

= F(m+n+1)(z).

And so
dk

dzk
(Fm · Fn)(0) = F

(k)
(m+n+1)(0) =

(
(m+ n+ 1) + k

k

)
k!.
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But, by repeated application of the Product Rule, we get:

dk

dzk
(Fm · Fn)(z) = F (k)

m (z) · Fn(z) +

(
k

1

)
F (k−1)
m (z) · F ′n(z) + · · ·

+

(
k

k

)
Fm(z) · F (k)

n (z)

=
k

Σ
i=0

(
k

i

)
F (k−i)
m (z) · F (i)

n (z).

And so we also have

dk

dzk
(Fm · Fn)(0) =

k

Σ
i=0

(
k

i

)
F (k−i)
m (0) · F (i)

n (0)

=
k

Σ
i=0

(
k

i

)(
m+ (k − i)

k − i

)
(k − i)! ·

(
n+ i

i

)
i!

=
k

Σ
i=0

k!

(
m+ k − i
k − i

)(
n+ i

i

)
= k!

k

Σ
i=0

(
m+ k − i
k − i

)(
n+ i

i

)
.

Since these two expressions for dk

dzk
(Fm · Fn)(0) must be equal, we have:

k!
k

Σ
i=0

(
m+ k − i
k − i

)(
n+ i

i

)
= k!

(
(m+ n+ 1) + k

k

)

or
k

Σ
i=0

(
m+ k − i
k − i

)(
n+ i

i

)
=

(
m+ n+ 1 + k

k

)
.

Thus, the claim holds whenever (x, y) = (m,n) ∈ N× N.

Now, to see that the claim holds for all (x, y) ∈ R× R, notice the expression on the

left-hand side of the original claim is a k-degree polynomial in x and and a k-degree

polynomial in y, as is the expression on the right-hand side of the original claim. So

their difference is also a k-degree polynomial in both x and y. And, we have shown
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that this difference is 0 whenever (x, y) = (m,n) ∈ N× N.

Now, a polynomial in two variables that has zeros at all (m,n) ∈ N × N must be

identically 0. That is, it must be the 0 polynomial. Thus the difference polynomial

is the 0 polynomial.

Hence we conclude that the two polynomial expressions in the original claim must

both represent the same polynomial function in x and y. As such, they must be equal

everywhere. And so, the claim must hold for all (x, y) ∈ R× R.

Theorem 1.38. For µ, ν ∈ R, Hµ ∗Hν = Hµ+ν+1.

Proof. Fix µ, ν ∈ R.

If t < a, then

(Hµ ∗Hν)(t)
Def
=

ˆ ∞
−∞

Hµ(t− s+ a)Hν(s)∇s

=

ˆ ρ(a)

−∞
Hµ(t− s+ a)Hν(s)∇s︸ ︷︷ ︸

=0 (since Hν(s)=0 for all s<a)

+

ˆ ∞
ρ(a)

Hµ(t− s+ a)Hν(s)∇s︸ ︷︷ ︸
=0 (since Hµ(τ)=0 for all τ<a)

= 0.

If t ≥ a, fix t and put k := (t− a) ∈ N0, then consider:

(Hµ ∗Hν)(t)
Def
=

ˆ ∞
−∞

Hµ(t− s+ a)Hν(s)∇s

=

ˆ ρ(a)

−∞
Hµ(t− s+ a)Hν(s)∇s︸ ︷︷ ︸

=0 (since Hµ(τ)=0 for all τ<a)

+

ˆ t

ρ(a)

Hµ(t− s+ a)Hν(s)∇s

+

ˆ ∞
t

Hµ(t− s+ a)Hν(s)∇s︸ ︷︷ ︸
=0 (since Hµ(τ)=0 for all τ<a)

= Σ
s∈Nta

Hµ(t− s+ a)Hν(s)
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Rmk 1.24
= Σ

s∈Nta

(
µ+ (t− s+ a)− a

(t− s+ a)− a

)(
ν + s− a
s− a

)
t=a+k

= Σ
s∈Na+ka+0

(
µ+ (a+ k)− s

(a+ k)− s

)(
ν + s− a
s− a

)
i:=s-a
=

k

Σ
i=0

(
µ+ (a+ k)− (a+ i)

(a+ k)− (a+ i)

)(
ν + i

i

)
=

k

Σ
i=0

(
µ+ k − i
k − i

)(
ν + i

i

)
Lemma 1.37

=

(
µ+ ν + 1 + k

k

)
k:=t-a

=

(
(µ+ ν + 1) + t− a

t− a

)
Rmk 1.24

= Hµ+ν+1(t).
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Chapter 2

Fractional Nabla Operators (∇γ, ∇α
a , ∇ν

a∗)

In many treatments of the subject, ∇ν
a and ∇ν

a∗ are thought of as operators on func-

tions that take Na or Na−N to R. In this paper we define a more general fractional

nabla operator ∇ν that acts on functions taking Za to R, and show how ∇ν
a and ∇ν

a∗

are both manifestations of this more general operator under different circumstances.

One advantage of this perspective is the domain issues one encounters in working

with the fractional delta operators and, to a lesser extent, when working with the

fractional nabla operators whose domains only extend to the right disappear. All

functions under consideration have exactly the same domain, Za, both before and

after they are operated on by a fractional nabla operator.

A second advantage of this perspective is that many of the known properties of

these operators follow very simply and directly from three facts about: convolution,

the Taylor monomials, and the fractional nabla operator. Namely:

• convolution is commutative and associative over V (Theorem 1.36)

• Hµ ∗Hν = Hµ+ν+1 (Theorem 1.38)

• ∇γf = H−γ−1 ∗ f (Theorem 2.2)

A third advantage is that many of the known properties of fractional nabla opera-
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tors can be extended, so the results we obtain via this approach require fewer caveats

than previously established results.

Finally, after realizing that ∇ν
a and ∇ν

a∗ are both different manifestations of ∇ν ,

it becomes clear that the difference between these two operators is simply the convo-

lution of a Taylor monomial and a short sequence. (See Theorem 2.21.)

2.1 The General Fractional Operator ∇γ

Recall that in Definition 1.19 we defined the vector space V and in Definition 1.23 we

defined the single variable function Hγ(t) := Hγ(t, ρ(a)) ∈ V for all γ ∈ R. We now

use this function to define the general nabla operator ∇γ.

Definition 2.1. For all f ∈ V and each γ ∈ R we define the general fractional

nabla operator of order γ, ∇γ : V → V , by ∇γf := H−γ−1 ∗ f .

The first thing we will do is check that we have not made a poor choice of notation.

Since there is already a meaning for the operator ∇γ when γ ∈ N, the first thing we

will do is confirm that this new operator is precisely the previously defined (i.e.

iterated) nabla difference operator when γ ∈ N0 and f ∈ V .

Theorem 2.2. If N ∈ N0 and f ∈ V , then H−N−1 ∗ f = ∇Nf .

Proof. Fix t ∈ Za and consider

(H−(N+1) ∗ f)(t)
Def
=

ˆ ∞
−∞

H−(N+1)(t− s+ a)f(s)∇s

Example 1.27
=

ˆ ∞
−∞

(−1)((t−s+a)−a)

(
(N + 1)− 1

(t− s+ a)− a

)
f(s)∇s

=

ˆ ∞
−∞

(−1)(t−s)
(

N

t− s

)
f(s)∇s

= Σ
s∈Ntt−N

(−1)(t−s)
(

N

t− s

)
f(s)
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i := (t-s)
=

N

Σ
i=0

(−1)i
(
N

i

)
f(t− i)

= (∇Nf)(t).

Thus, when γ ∈ N0, the general fractional operator corresponds to the standard

(iterated) nabla difference operator when γ = n ∈ N0.

In the next theorem we show the νth order nabla fractional sum (as defined by

Goodrich et al in [5] (see Appendix A, Definition A.3) can be obtained from the

general fractional operator of the same order by first replacing every value of f at a

and below with 0.

Theorem 2.3. If γ < 0 and we put ν := −γ > 0, then ∇−νa f = ∇−ν(1(a,∞)f).

Proof. Starting with the right-hand side of the above equation we have:

(∇−ν(1(a,∞)f))(t)
Def
= (Hν−1 ∗ 1(a,∞)f)(t)

=

ˆ ∞
−∞

Hν−1(t− s+ a)(1(a,∞)f)(s)∇s

=
t

Σ
s=a+1

Hν−1(t− s+ a, ρ(a))f(s)

Cor 1.17
=

t

Σ
s=a+1

Hν−1(t, ρ(s))f(s)

=

ˆ t

a

Hν−1(t, ρ(τ))f(τ)∇τ

Def A.3
= (∇−νa f)(t).

At this point we could repeat the above argument for γ = ν > 0 to show that

(∇ν(1(a,∞)f))(t) =
´ t
a
H−ν−1(t, ρ(τ))f(τ)∇τ Thm A.6

= (∇ν
af)(t). However, with the
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results we have already established concerning convolution and the Taylor monomials

we can get the desired identity more directly via the method in the proof below.

Theorem 2.4. If γ = ν > 0 and γ = ν /∈ N, then ∇ν
af = ∇ν(1(a,∞)f).

Proof. Starting with the left-hand side of the above equation we have:

∇ν
af

Def A.4
= ∇N∇−(N−ν)

a f where N := dνe
Thm 2.3

= ∇N∇−(N−ν)(1(a,∞)f)

Def 2.1
= H−(N+1) ∗ (HN−ν−1 ∗ (1(a,∞)f))

Thm 1.35
= (H−N−1 ∗HN−ν−1) ∗ (1(a,∞)f)

Thm 1.38
= H(−N−1)+(N−ν−1)+1 ∗ (1(a,∞)f)

= H−(ν+1) ∗ (1(a,∞)f)

Def 2.1
= ∇ν(1(a,∞)f).

The previous two theorems combine to tell us that for all γ ∈ R \ N0, ∇γ
af =

∇γ(1(a,∞)f). Since we have not previously defined the operator ∇γ
a for the case when

γ = N ∈ N0, we are free to define ∇N
a f := ∇N(1(a,∞)f), so that the result holds all

γ ∈ R. So we make this definition and record the result in the following corollary.

Corollary 2.5. For all γ ∈ R and all f ∈ V ,

∇γ
af = ∇γ(1(a,∞)f) .
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Remark 2.6. Note that if f ∈ Va+1, then f = 1(a,∞)f and so for ν ≥ 0:

∇−νf = ∇−νa f and

∇νf = ∇ν
af .

That is, the general nabla operator is, in fact, a generalization of the nabla fractional

sum and the nabla fractional difference as defined by Goodrich et al in [5]. That is,

both of these sum and difference operators can be realized as a special case of this

more general fractional operator.

2.2 The Action of Nabla Operators on Taylor Monomials

In this section we will show that the operators ∇α and ∇α
a and ∇ν

a∗ act nicely on

the Taylor monomials. Recall that the operators ∇α and ∇α
a were introduced in

Section 2.1. In [5] Goodrich et al define, for ν > 0, the Caputo nabla fractional

difference operator, ∇ν
a∗ : RZa → RZa , by ∇ν

a∗ := ∇ν−N
a ∇N (where N := dνe). (See

[5, Definition 3.117].) 1

We begin with a few quick facts concerning the single variable function Hβ(t)

which was defined in Section 1.5.

Fact 2.7. If α, β ∈ R, then ∇αHβ = Hβ−α.

Proof. This fact follows from Theorem 1.38.

∇αHβ
Def 2.1

= H−α−1 ∗Hβ
Thm 1.38

= H(−α−1)+β+1 = Hβ−α .
1For the convenience of the reader we have recorded several definitions and results from [5]

in Appendix A. This definition of the Caputo nabla fractional difference appears in Appendix A,
Definition A.5.
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Fact 2.8. For all β ∈ R,

RHβ(t) = Hβ(t, a).

Proof.

RHβ(t) = Hβ(t− 1)
Def 1.23

= Hβ(t− 1, ρ(a))
Cor 1.17

= Hβ(t, a).

Theorem 2.9. For α, β ∈ R and ν > 0,

∇α
aHβ(t, a) = ∇αHβ(t, a) = Hβ−α(t, a) and

∇ν
a∗Hβ(t, a) = Hβ−ν(t, a).

Proof. This corollary follows from Theorem 1.38 and Corollary 1.33. Since

Hβ(t, a) ∈ Va+1, we have

∇α
aHβ(t, a)

Rmk 2.6
= ∇αHβ(t, a)

Fact 2.8
= (∇α(RHβ))(t)

= (H−α−1 ∗RHβ)(t)

Cor 1.33
= R(H−α−1 ∗Hβ)(t)

Thm 1.38
= R(H−α−1+β+1)(t)

= RHβ−α(t)

Fact 2.8
= Hβ−α(t, a).

√

The second equation follows from the first. To see this put N := dνe and note that,
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by the first equation we have

∇ν
a∗Hβ(t, a)

Def A.5
= ∇ν−N

a ∇NHβ(t, a)

= ∇ν−N
a Hβ−N(t, a) = Hβ−N−(ν−N)(t, a)

= Hβ−ν(t, a).
√

Corollary 2.10. For α ∈ R, β ∈ R \ N0 and ν > 0,

∇α
aH̃β(t, a) = ∇αH̃β(t, a) = Hβ−α(t, a) and

∇ν
a∗H̃β(t, a) = Hβ−ν(t, a).

Proof. This follows immediately from Corollary 2.9, since for β ∈ R\N0, by Corollary

1.13, H̃β(t, a) = Hβ(t, a).

It remains to consider how the various operators act on the extended Taylor

monomials, H̃k(t, a), when k ∈ N0.

Corollary 2.11. For α ∈ R and k ∈ N0,

∇α
aH̃k(t, a) = Hk−α(t, a).

Proof. This follows from Corollary 2.5 and Corollary 2.9, since

∇α
aH̃k(t, a)

Cor 2.5
= ∇α(1(a,∞)H̃k(t, a))

Def 1.7
= ∇αHk(t, a)

Cor 2.9
= Hk−α(t, a).
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When considering how the general operator ∇α acts on H̃k(t, a) we must exercise

a bit of caution since when k ∈ N0, H̃k(t, a) /∈ V . So, in general, it does not make

sense to apply ∇α to H̃k(t, a). However, if α = n ∈ N0, it still makes sense to apply

the iterated operator ∇n to H̃k(t, a). In this situation, by repeated application of the

Power Rule (Theorem 1.15), we get:

∇nH̃k(t, a) =


H̃k−n(t, a), (k − n) ≥ 0

0, (k − n) < 0.

Thus, we have the following corollary.

Corollary 2.12. For n, k ∈ N0 and ν > 0,

∇nH̃k(t, a) =


H̃k−n(t, a), (k − n) ≥ 0

0, (k − n) < 0

and

∇ν
a∗H̃k(t, a) =


Hk−ν(t, a), (k − ν) ≥ 0

0, (k − ν) < 0.

Proof. The first equation results from repeated application of the Power Rule (Theo-

rem 1.15). The second equation follows from the first. To see this put N := dνe and
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consider

∇ν
a∗H̃k(t, a) = ∇ν−N

a ∇NH̃k(t, a) =


∇ν−N
a H̃k−N(t, a), (k −N) ≥ 0

∇ν−N
a 0, (k −N) < 0

=


Hk−N−(ν−N)(t, a), (k −N) ≥ 0

0, (k −N) < 0

=


Hk−ν)(t, a), (k − ν) ≥ 0

0, (k − ν) < 0.

Note the last two steps follow from Corollary 2.12/Corollary 2.11 and the fact that

(k − ν) ≥ 0 ⇐⇒ k ≥ ν ⇐⇒ k ≥ dνe ⇐⇒ (k −N) ≥ 0.

We summarize the main results of this section in the following remark.

Remark 2.13. If k, n ∈ N0, α, β, γ ∈ R, ν > 0, and N := dνe, the following describe

how the various operators act on the Taylor monomials (for all t ∈ Za). 2 3

∇γ
· Hβ(t, a) = Hβ−γ(t, a) where ∇γ

· ∈ {∇α,∇α
a ,∇ν

a∗}

2Recall that if k ∈ N0 and α ∈ R \ N0, then H̃k(t, a) /∈ V and so ∇αH̃k(t, a) is not well-defined.
3For the convenience of the reader we have recorded the main results from this section, section

2.3, and section 3.2 in Appendix B.
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∇α
aH̃k(t, a) = Hk−α(t, a)

∇nH̃k(t, a) =


H̃k−n(t, a), (k − n) ≥ 0

0, (k − n) < 0

∇ν
a∗H̃k(t, a) =


Hk−ν(t, a), (k − ν) ≥ 0

0, (k − ν) < 0.

2.3 Composition Rules

We begin this section with a theorem that identifies one of the very nice properties

of the general fractional operator ∇γ. The proof follows quickly and easily from the

three very important properties mentioned at the beginning of this chapter.

Theorem 2.14. If α, β ∈ R, then ∇α∇βf = ∇α+βf = ∇β∇αf .

Proof. For fixed α, β ∈ R,

∇α∇βf
Definition

= H−α−1 ∗ (H−β−1 ∗ f)

Thm 1.35
= (H−α−1 ∗H−β−1) ∗ f

Thm 1.38
= H(−α−1)+(−β−1)+1 ∗ f

= H−(α+β)−1 ∗ f
Definition

= ∇α+βf

Relabelling α and β in the above argument yields the other equality in the claim.

Thus, general fractional operators commute.

Next we state and prove a lemma that will help streamline the next few proofs.
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Lemma 2.15. For γ ∈ R, f ∈ V , T ∈ Za, and N ∈ N1:

(i) 1(T,∞)∇γ(1(T,∞)f) = ∇γ(1(T,∞)f)

(ii) 1(−∞,T+N ]∇N(1(−∞,T ]f) = ∇N(1(−∞,T ]f)

(iii) 1(T,∞)∇N(1(−∞,T ]f) = 1(T,∞)∇N(1(T−N,T ]f) = 1(T,T+N ]∇N(1(T−N,T ]f)

Proof. Proof of (i). Clearly, when t > T , the claim holds. To see that (i) also holds

when t ≤ T , note

(
∇γ(1(T,∞)f)

)
(t)

Def
=
(
H−γ−1 ∗ 1(T,∞)f

)
(t)

Def
=

ˆ
Za
H−γ−1(t− s+ a)1(T,∞)(s)f(s)∇s

=

ˆ
(T,∞)

H−γ−1(t− s+ a)︸ ︷︷ ︸
0

f(s)∇s = 0.

The reason the integrand is 0 here is that


t ≤ T and

s ≥ T + 1

⇒


t ≤ T and

−s ≤ −T − 1

⇒ t− s+ a ≤ a− 1 ⇒ Hγ−1(t− s+ a) = 0.
√

Proof of (ii). In this proof we will require a fact that has not yet been proven.

Fact *: For k ∈ N1, H−k(t) = 0 for all t ≥ a+ k.

Reason: Fix k ∈ N1 and suppose t ≥ a+ k > a⇒ t− a ≥ k. Then,

H−k(t) = H−k(t, ρ(a)) = Pt−a(−k)

=
1

(t− a)!
(−k + 1)(−k + 2) · · · (−k + k)︸ ︷︷ ︸

0

· · · (−k + (t− a)) = 0.
√

Returning to the claim, clearly, when t ≤ T + N , the claim holds. To see that (ii)
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also holds when t > T +N , fix t ≥ T +N + 1, and consider

(
∇N(1(−∞,T ]f)

)
(t) =

(
H−N−1 ∗ 1(−∞,T ]f

)
(t)

Def
=

ˆ
Za
H−N−1(t− s+ a)1(−∞,T ](s)f(s)∇s

=

ˆ
(−∞,T ]

H−(N+1)(t− s+ a)︸ ︷︷ ︸
0

f(s)∇s = 0.

The reason the integrand is 0 here is that


t ≥ T +N + 1 and

s ≤ T

⇒


t ≥ T +N + 1 and

−s ≥ −T
⇒ t− s+ a ≥ N + 1 + a,

and so, by the fact just given, we have H−(N+1)(t− s+ a) = 0.
√

Proof of (iii). Clearly, when t < T , the first equality in the claim holds. Suppose

t ≥ T + 1, then

(
1(T,∞)∇N(1(−∞,T ]f)

)
(t) =

(
∇N(1(−∞,T ]f)

)
(t) =

(
H−N−1 ∗ 1(−∞,T ]f

)
(t)

Def
=

ˆ
Za
H−N−1(t− s+ a)1(−∞,T ](s)f(s)∇s

=

ˆ
(−∞,T ]

H−(N+1)(t− s+ a)f(s)∇s

=

ˆ
(−∞,T−N ]

H−(N+1)(t− s+ a)︸ ︷︷ ︸
0

f(s)∇s (∗)

+

ˆ
(T−N,T ]

H−(N+1)(t− s+ a)f(s)∇s
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The reason the integrand in (∗) is 0 is that


t ≥ T + 1 and

s ≤ T −N
⇒


t ≥ T + 1 and

−s ≥ −T +N

⇒ t− s+ a ≥ N + 1 + a,

and so, by Fact * again, we have H−(N+1)(t− s+ a) = 0.

Thus,

(
1(T,∞)∇N(1(−∞,T ]f)

)
(t) =

ˆ
(T−N,T ]

H−(N+1)(t− s+ a)f(s)∇s

=

ˆ
Za
H−N−1(t− s+ a)1(T−N,T ](s)f(s)∇s

=
(
H−N−1 ∗ 1(−∞,T ]f

)
(t)

= ∇N(1(T−N,T ]f)(t).
√

So the first equality in (iii) holds. The second equality in (iii) follows from

1(T,T+N ]∇N(1(T−N,T ]f) = 1(T,∞) 1(−∞,T+N ]∇N(1(−∞,T ]︸ ︷︷ ︸1(T−N,∞)f)

(ii)
= 1(T,∞)∇N(1(−∞,T ]1(T−N,∞)f)

= 1(T,∞)∇N(1(T−N,T ]f).
√

This completes the proof.

Corollary 2.16. If α, β ∈ R, then ∇α
a∇β

af = ∇α+β
a f = ∇β

a∇α
af .
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Proof. Consider

∇α
a∇β

af
2.5
= ∇α(1(a,∞)∇β(1(a,∞)f))

Lem 2.15(i)
= ∇α(∇β(1(a,∞)f))

Thm 2.14
= ∇α+β(1(a,∞)f)

2.5
= ∇α+β

a f

Relabelling α and β in the above argument yields the other equality in the claim.

Corollary 2.17. The following composition rules hold for all α, γ ∈ R, ν ∈ [0,∞),

N := dνe, and k ∈ Z:

(i) (a) ∇γ∇α
a = ∇γ+α

a

(b) ∇γ
a∇α

a = ∇γ+α
a

(c) ∇ν
a∗∇α

a = ∇ν+α
a

(ii) ∇ν
a∗∇k = ∇ν+k

a∗ (whenever ν+k ≥ 0)

Proof. To see (i)(a) note:

∇γ∇α
af

2.5
= ∇γ∇α(1(a,∞)f)

Thm 2.14
= ∇γ+α(1(a,∞)f)

2.5
= ∇γ+α

a f
√

The proof of (i)(b) was given above in Corollary 2.16.
√



47

To see (i)(c) note:

∇ν
a∗∇α

af
Defn
= ∇−(N−ν)

a ∇N∇α
af

(i)(a)
= ∇−(N−ν)

a ∇N+α
a f

(i)(b)
= ∇ν+α

a

√

To see (ii) note that, by assumption, we have 0 ≤ (ν+k) ≤ dν + ke = dνe+k = N+k.

So,

∇ν
a∗∇kf

Defn
= ∇−(N−ν)

a ∇N∇kf

Thm 2.14
= ∇−(N−ν)

a ∇N+kf

= ∇−(N+k−ν−k)
a ∇N+kf

= ∇−(N+k−(ν+k))
a ∇N+kf

= ∇−(dν+ke−(ν+k))
a ∇N+kf

Defn
= ∇ν+k

a∗ f
√

Part (ii) of the last corollary gives a nice formula for what happens when we first

apply an iterated nabla diference and then apply a Caputo fractional difference. Next

we look at what happens when we apply an iterated nabla difference and then apply

a Reiman-Liousville fractional nabla operator.

Theorem 2.18. For f ∈ RZa and for all α ∈ R and n ∈ N1:

∇α
a∇nf = ∇α+n

a

[
f−

n−1

Σ
k=0

[(∇kf)(a)]Hk(·, a)

]
. (2.1)
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Proof. The proof is by induction on n.

Base Case: (n = 1)

In this case we have:

(∇α
a∇1f)(t) = ∇α

a

(
∇
(
[1(a,∞) + 1(−∞,a]

]
f)
)

= ∇α
a∇1

1(a,∞)f +∇α
a∇1

1(−∞,a]f

Cor 2.5
= ∇α(1(a,∞)∇1

1(a,∞)f) +∇α(1(a,∞)∇1
1(−∞,a]f)

Lem 2.15
= ∇α(∇1

1(a,∞)f) +∇α(1(a,a+1]∇1
1(a−1,a]f)

Thm 2.14
= (∇α+1

1(a,∞)f) +∇α
(
1{a+1}[0− f(a)]

)
Cor 2.5

= (∇α+1
a f) +∇α ([−f(a)]H−1(·, a))

= (∇α+1
a f) +∇α ([−f(a)]∇H0(·, a))

= (∇α+1
a f) +∇α (∇[−f(a)]H0(·, a))

= (∇α+1
a f) +∇α+1

(
[−f(a)]1(a,∞)H0(·, a)

)
= ∇γ+1

a [f − [f(a)]H0(·, a)]
√

With the base case established, we proceed by induction.

Induction Step:

Assume the claim holds for some n0 ∈ N and consider:

(∇α
a∇n0+1f)(t) = (∇α

a∇n0∇1f)(t) = (∇α
a∇n0(∇f))(t)

= (∇α+n0
a (∇f))(t)−∇α

n0−1

Σ
k=0

[(∇k(∇f))(a)]∇n0−k
a H0(t, a)

= (∇α+n0+1
a f)(t)−∇α+n0 [f(a)]∇1

aH0(t, a)

−∇α
n0−1

Σ
k=0

[(∇k(∇f))(a)]∇n0−k
a H0(t, a)
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= (∇α+n0+1
a f)(t)−∇α[f(a)]∇n0+1

a H0(t, a)

−∇α
n0

Σ
k′=1

[(∇k′f)(a)]∇n0−k′+1
a H0(t, a)

= (∇α+(n0+1)
a f)(t)−∇α

(n0+1)−1

Σ
k′=0

[(∇k′f)(a)]∇(n0+1)−k′
a H0(t, a)

√

Thus, the claim holds for all n ∈ N.

Theorem 2.19. Suppose f : Za → R. Then, for all α, γ ∈ R, µ, ν ∈ [0,∞),

M := dµe, N := dνe, and m,n ∈ N0 we have the following 4:

(i) (a) ∇γ∇α
a = ∇γ+α

a

(b) ∇γ
a∇α

a = ∇γ+α
a

(c) ∇µ
a∗∇α

a = ∇µ+α
a

(ii) (a) ∇γ∇n = ∇γ+n

(b) ∇γ
a∇nf = ∇γ+n

a

[
f−

n−1

Σ
k=0

[(∇kf)(a)]Hk(·, a)

]
(c) ∇µ

a∗∇n = ∇µ+n
a∗

(iii) (a) ∇γ∇ν
a∗f = ∇γ+ν

a

[
f−

N−1

Σ
k=0

[(∇kf)(a)]Hk(·, a)

]
(b) ∇γ

a∇ν
a∗f = ∇γ∇ν

a∗f

(c) ∇µ
a∗∇ν

a∗f = ∇µ∇ν
a∗f

Proof. Equations (i)(a)-(c) are just a restatement of the facts proven in Corollary

2.17 (i)(a)-(c), (ii)(a) is a special case of Theorem 2.14, and (ii)(b) is the result of

theorem 2.18, and (ii)(c) is a restatement of the fact given in Corollary 2.17 (ii).
4Setting γ = 0 in (iii)(a) gives us a formula for the Caputo fractional difference in terms of the

Riemann-Liousville fractional difference.
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To see (iii)(a) note:

∇γ∇ν
a∗f = ∇γ∇ν−N

a ∇Nf

(ii)(b)
= ∇γ∇ν

a

[
f−

N−1

Σ
k=0

[(∇kf)(a)]Hk(·, a)

]
(i)(a)
= ∇γ+ν

a

[
f−

N−1

Σ
k=0

[(∇kf)(a)]Hk(·, a)

]
.
√

Note that if we set γ = 0 in (iii)(a) we get:

∇ν
a∗f = ∇ν

a

[
f−

N−1

Σ
k=0

[(∇kf)(a)]Hk(·, a)

]
(2.2)

We can obtain (iii)(b) by applying ∇α
a to both sides of equation (2.2) and then

using (i)(b) and (iii)(a). That is,

∇γ
a∇ν

a∗f = ∇γ
a∇ν

a

[
f−

N−1

Σ
k=0

[(∇kf)(a)]Hk(·, a)

]
(i)(b)
= ∇γ+ν

a

[
f−

N−1

Σ
k=0

[(∇kf)(a)]Hk(·, a)

]
(iii)(a)

= ∇γ∇ν
a∗f.

Similiarly, we can obtain (iii)(c) by applying ∇α
a∗ to both sides of equation 2.2 and

then using (i)(c) and (iii)(a). That is,

∇γ
a∗∇ν

a∗f = ∇γ
a∗∇ν

a

[
f−

N−1

Σ
k=0

[(∇kf)(a)]Hk(·, a)

]
(i)(c)
= ∇γ+ν

a

[
f−

N−1

Σ
k=0

[(∇kf)(a)]Hk(·, a)

]
(iii)(a)

= ∇γ∇ν
a∗f.
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2.4 The Difference between the Riemann-Liouville and the

Caputo Fractional Difference Operators

In this section we take a closer look at how the Caputo fractional difference and the

Riemann-Liouville fractional difference differ. The next definition makes it easier to

state the main theorem of this section (Theorem 2.21).

Definition 2.20. For all f ∈ V and all N ∈ N1, we define N̂ : V → V by

N̂(f) : = 1(a,a+N ](∇N(f1(a−N,a]))

=


0, for t ≤ a

(∇Nf1(a−N,a])(t), for t ∈ Na+N
a+1

0, for t ≥ a+N + 1

and refer to N̂(f) as the N sequence derived from f . Note that N̂f has, at most,

N nonzero values.

Example 2.1 For N = 3 we have the 3 sequence derived from f ,

3̂(f) : = 1(a,a+3](∇3(f1(a−3,a]))

=



0, for t ≤ a

(∇3f1(a−3,a])(a+ 1), for t = a+ 1

(∇3f1(a−3,a])(a+ 2), for t = a+ 2

(∇3f1(a−3,a])(a+ 3), for t = a+ 3

0, for t ≥ a+ 4
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=



0, for t ≤ a

−3f(a) + 3f(a− 1)− f(a− 2), for t = a+ 1

3f(a)− f(a− 1), for t = a+ 2

−f(a), for t = a+ 3

0, for t ≥ a+ 4.

Theorem 2.21. For all ν > 0 and f ∈ V ,

∇v
a∗f = ∇v

af +Hε−1 ∗ N̂f

where N := dνeand ε := N − ν and N̂ is as defined above.

Proof. Consider

∇ν
a∗f

Definition
= ∇−(N−ν)

a ∇Nf

= ∇−ε1(a,∞)∇N(1(−∞,a]f + 1(a,∞)f)

= ∇−ε1(a,∞)∇N(1(−∞,a]f) +∇−ε1(a,∞)∇N(1(a,∞)f)

= ∇−ε1(a,∞)∇N(1(−∞,a]f) +∇−ε∇N(1(a,∞)f)

= ∇−ε1(a,∞)∇N(1(−∞,a]f) +∇ν(1(a,∞)f)

= ∇−ε1(a,a+N ]∇N(1(−∞,a]f) +∇ν
af

= ∇−ε1(a,a+N ]∇N(1(a−N,a]f) +∇ν
af

Definitions
= Hε−1 ∗ N̂f +∇ν

af.
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Corollary 2.22. For all ν > 0 and f ∈ V ,

(∇ν
a∗f −∇ν

af)(t)→ 0, as t→∞ .

Proof. This corollary follows from the fact that N̂f(t) = 0 for all but at most N

values of t and the fact that Hε−1(t)→ 0 as t→∞. (We have deferred the proof of

this second fact until chapter 3 (Thm 3.5).) To see that the claim holds put

M := max
t∈[a+1,a+N ]

|(N̂f)(t)|. Then, from Theorem 2.21, we have:

|(∇v
a∗f −∇v

af)(t)| = |(Hε−1 ∗ N̂f)(t)| ≤
(for t≥a+N)

N ·M · |Hε−1(t−N)| →
(as t→∞)

0.

The following corollaries are immediate consequences of Theorem 2.21.

Corollary 2.23. If N̂f ≡ 0 (or equivalently, if f(t) = 0 for all t ∈ (a−N, a]), then

∇ν
a∗f = ∇ν

af .

Corollary 2.24. If f ≡ c for some c ∈ R, then

∇ν
af = −Hε−1 ∗ N̂f .

Corollary 2.25. If ε = 0 (or equivalently, if ν = N), then

∇ν
a∗f = ∇ν

af + N̂f .
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Chapter 3

More about Taylor Monomials and Pochhammer Polynomials

3.1 Additional Properties of Pochhammer Polynomials

In this brief section we provide an example that deomonstrates how it is sometimes

advantageous to work with the Pochhammer polynomials instead of working directly

with the Taylor monomials. Compare the statement and proof of the following theo-

rem with that given in Theorem 3.96 from [5].

Theorem 3.1. For all m ∈ N0, d ∈ Z, and τ ∈ R, ∇mPd(τ) = Pd−m(τ).

Proof. Step 1: The claim holds when m = 1 for all d ∈ Z and all τ ∈ R.

First, note that if d ∈ N1, then ∇Pd(τ) = Pd−1(τ), for all τ ∈ R since

∇Pd(τ) = Pd(τ)− Pd(τ − 1)

=
(τ + 1)(τ + 2) . . . (τ + d)

d!
− (τ − 1 + 1)(τ − 1 + 2) . . . (τ − 1 + d)

d!

=
(τ + 1)(τ + 2) . . . (τ + d− 1)

(d− 1)! · d

[
(τ + d)− (τ)

1

]
=

(τ + 1)(τ + 2) . . . (τ + d− 1)

(d− 1)!
· d
d

= Pd−1(τ).
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Second, note that if d = 0, the claim holds, since in this case we have P0 ≡ 1

which implies ∇P0(τ) ≡ 0 ≡ P−1(τ).

Third, note that if d = −k ∈ −N1, the claim also holds, since in this case we have

P−k ≡ 0 which implies ∇P−k(τ) ≡ 0 ≡ P−k−1(τ).

Conclusion: The formula ∇Pd(τ) = Pd−1(τ) holds for all d ∈ Z and τ ∈ R.

Step 2: Fix d0 ∈ Z and proceed by induction on m. For m = 0, the claim is true

(since ∇0 is the identity operator). Also, we have shown in Step 1 that the claim

holds for d0 when m = 1. Now, suppose M ∈ N0 for which the claim holds when

d = d0. That is,

∇MPd0(τ) = Pd0−M(τ), for all τ ∈ R .

Taking the nabla difference of both sides of this equation yields

∇∇MPd0(τ) = ∇Pd0−M(τ)

∇M+1Pd0(τ)
(by the above)

=
since (d0−M)∈Z

P(d0−M)−1(τ)

= Pd0−(M+1)(τ)

Thus, by induction, the claim holds for all m ∈ N0 (when d = d0). But since d0 was

arbitrary in Z, we have that the claim holds for all d ∈ Z, m ∈ N, and τ ∈ R.

By setting τ = ν−N and d = t−a−1, the following calculation shows Theorem 3.1

implies and is a bit more general than Theorem 3.96 in [5] as there are no restrictions

on ν or N .
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Corollary 3.2. For ν,N ∈ R, m ∈ N, and t ∈ Za

Hν−N(t, a+m) =
m

Σ
k=0

(−1)k
(
m

k

)
Hν−N−k(t, a) .

Proof. Put d = d(t, a+ 1) = t− a− 1 ∈ Z. From Theorem 3.1and Corollary 1.12,

Pd−m(ν −N) = ∇mPd(ν −N)

Pd−m(ν −N) =
m

Σ
k=0

(−1)k
(
m

k

)
Pd(ν −N − k)

Hν−N(d−m+ 1 + a, a) =
m

Σ
k=0

(−1)k
(
m

k

)
Hν−N−k(d+ 1 + a, a)

Hν−N(t− a− 1︸ ︷︷ ︸
d

−m+ 1 + a, a) =
m

Σ
k=0

(−1)k
(
m

k

)
Hν−N−k(t− a− 1︸ ︷︷ ︸

d

+ 1 + a, a)

Hν−N(t, a+m) =
m

Σ
k=0

(−1)k
(
m

k

)
Hν−N−k(t, a).

Remark Recall Hγ(t, s) = H̃γ(t, s) if γ /∈ N0 or if t > s. (See Corollary 1.13 and/or

Definition 1.7.) Thus, if ν −N /∈ N0 (which implies ν −N − k /∈ N0 for all k ∈ Nm
0 )

or if d ≥ m (which is equivalent to having t ≥ m+ a+ 1), we also have

H̃ν−N(t, a+m) =
m

Σ
k=0

(−1)k
(
m

k

)
H̃ν−N−k(t, a),

The following fact is often used to simplify sums of the given form.

Corollary 3.3. For n ∈ N0 and s, t ∈ Za with t > s,

n∑
k=0

Hk(t, s) = Hn(t+ 1, s).

Proof. The proof follows from Corollary 1.12, the Fundamental Theorem of Nabla
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Calculus, and Theorem 3.1.

n∑
k=0

Hk(t, s) =
n∑
k=0

Pt−s−1(k) =

ˆ
(−1,n]

Pt−s−1(k)∇k

=

ˆ
(−1,n]

(∇Pt−s)(k)∇k

= Pt−s(n)− Pt−s(−1)︸ ︷︷ ︸
=0 when t6=s

= Hn(t+ 1, s).

This result extends to sums of extended Taylor monomials of this form.

Corollary 3.4. For n ∈ N0 and s, t ∈ Za,

n∑
k=0

H̃k(t, s) = H̃n(t+ 1, s).

Proof. If t > s, H̃k(t, s) = Hk(t, s) for all k and the result follows from Corollary 3.3.

If t = s,
n∑
k=0

H̃k(t, s) = H̃0(s, s)︸ ︷︷ ︸
=1

+
n∑
k=1

H̃k(s, s)︸ ︷︷ ︸
=0

= H̃n(s+ 1, s).

If t < s, then t < t+ 1 ≤ s and so by Corollary 1.11 we have H̃k(t, s) = Pk(t− s− 1)

and H̃n(t + 1, s) = Pn(t + 1 − s − 1) = Pn(t − s). Thus, by the Log Rule and the



58

Fundamental Theorem of Nabla Calculus,

n∑
k=0

H̃k(t, s) =
n∑
k=0

Pk(t− s− 1)
Cor 1.12

=
n∑
k=0

Ht−s−1(a+ k + 1, a)

=

ˆ
(a,a+n+1]

Ht−s−1(τ, a)∇τ

= Ht−s(τ, a)
∣∣∣a+n+1

a
= Ht−s(a+ n+ 1, a)−Ht−s(a, a)︸ ︷︷ ︸

=0

= Pn(t− s)

= H̃n(t+ 1, s).

3.2 Additional Properties of Taylor Monomials

Theorem 3.5. For fixed ν > 0, H−ν(t, a)→ 0 as t→∞.

Proof. By a theorem (see Rudin [6], Theorem 15.5, page 322), whenever 0 ≤ un < 1,

∞
Σ
n=1

un <∞ if and only if
∞
Π
n=1

(1− un) > 0.

So, by the contrapositive of this theorem, we have that

∞
Σ
n=1

un =∞ if and only if
∞
Π
n=1

(1− un) = 0.

Let N := dνe and put 0 ≤ un := ν
N+n

< 1 for all n ∈ N1. Thus,

∞
Σ
n=1

un =
∞
Σ
n=1

ν

N + n
=

∞
Σ

i=N+1

ν

i
= ν

(
∞
Σ

i=N+1

1

i

)
=∞
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which therefore implies

0 =
∞
Π
n=1

(1− un) =
∞
Π
n=1

(
N + n

N + n
− ν

N + n

)
=
∞
Π
n=1

N + n− ν
N + n

=
∞
Π

j=N+1

j − ν
j

.

Hence,
∞
Π
j=1

j − ν
j

=

(
N

Π
j=1

j − ν
j

)(
∞
Π

j=N+1

j − ν
j

)
︸ ︷︷ ︸

0

= 0.

And so,

0 =
∞
Π
j=1

j − ν
j

= lim
k→∞

k

Π
j=1

j − ν
j

= lim
k→∞

(
1− ν

1

)(
2− ν

2

)
· · ·
(
k − ν
k

)
Def 1.3

= lim
k→∞

Pk(−ν)

Cor 1.12
= lim

k→∞
H−ν(a+ 1 + k, a)

t:=(a+1+k)
= lim

t→∞
H−ν(t, a).

That is, lim
t→∞

H−ν(t, a) = 0.

Theorem 3.6. For fixed ν > 0, Hν(t, a)→∞ as t→∞.

Proof. By a well known result (see Apostol [7], Theorem 8.52, page 208), whenever

an > 0,
∞
Π
n=1

(1 + an) <∞ if and only if
∞
Σ
n=1

an <∞.

Put t := a+ k where k ∈ N1 and notice

Hν(t, a) = Hν(a+ k, a) = Pk−1(ν) =

(
ν + 1

1

)(
ν + 2

2

)
· · ·
(
ν + k − 1

k − 1

)
=
(

1 +
ν

1

)(
1 +

ν

2

)
· · ·
(

1 +
ν

k − 1

)
.
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So,

lim
t→∞

Hν(t, a) = lim
k→∞

Hν(a+ k, a)

= lim
k→∞

(
1 +

ν

1

)(
1 +

ν

2

)
· · ·
(

1 +
ν

k − 1

)
= lim

k→∞

k−1

Π
n=1

(
1 +

ν

n

)
=
∞
Π
n=1

(
1 +

ν

n

)
.

Thus,

lim
t→∞

Hν(t, a) =
∞
Π
n=1

(
1 +

ν

n

)
<∞ if and only if

∞
Σ
n=1

(ν
n

)
<∞.

But,
∞∑
n=1

(
ν
n

)
= ν

(
∞∑
n=1

1
n

)
=∞, and so lim

t→∞
Hν(t, a) =

∞
Π
n=1

(
1 + ν

n

)
=∞, as well.

Corollary 3.7. For ν > 0, Hν(·, a) is strictly increasing and without bound on Na.

Proof. Note that for d ∈ N0, Pd(x) = 1
d!

(x+1)(x+2) · · · (x+d) > 0 whenever x > −1.

Thus, by the Log Rule (Theorem 1.16) and Corollary 1.12,

∇Hν(t, a) = Hν−1(t, a) = Pt−a−1(ν − 1) > 0 whenever ν > 0 and t ∈ Na+1.

So, by Theorem 1.2, Hν(·, a) is strictly increasing on [a,∞)∩Za = Na. The previous

theorem shows that this increase is without bound.



61

Theorem 3.8. (P-Integrals)

ˆ ∞
a

H−p(t, a)∇t =


0 , whenever p > 1

1 , when p = 1

∞ , whenever p < 1.

Proof. The proof follows from Theorems 3.5 and 3.6 and the Fundamental Theorem

of Nabla Calculus.

ˆ ∞
a

H−p(t, a)∇t = lim
b→∞

ˆ b

a

H−p(t, a)∇t

= lim
b→∞

ˆ b

a

∇H−p+1(t, a)∇t

= lim
b→∞

H−p+1(b, a)−H−p+1(a, a)︸ ︷︷ ︸
=0



=


0 , whenever − p+ 1 < 0

1 , when − p+ 1 = 0

∞ , whenever − p+ 1 > 0.

Theorem 3.9. For 0 < ν /∈ N1 and t ∈ Za,

(∇|H−ν(·, a)|) (t)


= 0 when t ≤ a

> 0 when a < t ≤ a+ bν
2
c+ 1

< 0 when a+ bν
2
c+ 1 < t.

(3.1)
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For ν = n ∈ N1 and t ∈ Za,

(∇|H−ν(·, a)|) (t)



= 0 when t ≤ a

> 0 when a < t < a+ n
2

+ 1

= 0 when t = a+ n
2

+ 1

< 0 when a+ n
2

+ 1 < t ≤ a+ n+ 1

= 0 when a+ n+ 1 < t.

(3.2)

Proof. Recall that

(∇|H−ν(·, a)|)(t) = |H−ν(t, a)| − |H−ν(t− 1, a)|

= |Pt−a−1(−ν)| − |Pt−1−a−1(−ν)|.

Clearly the claim is true when t ≤ a, since by Theorem 1.8, |H−ν(t, a)| = 0 whenver

t ≤ a. Also, if t = a+ 1, the claim holds since in this case we have

a < a+ 1 = t < a+
ν

2
+ 1 and

(∇|H−ν(·, a)|)(a+ 1) = |H−ν(a+ 1, a)| − |H−ν(a, a)| = 1− 0 = 1 > 0.
√

Next, we consider the case t = a+2. In order to show the claim holds in this situation
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we must show:

(∇|H−ν(·, a)|)(a+ 2)


< 0 when ν < 2

= 0 when ν = 2

> 0 when ν > 2.

Doing the computation we get:

(∇|H−ν(·, a)|)(a+ 2) = |H−ν(a+ 2, a)| − |H−ν(a+ 1, a)|

= |P1(−ν)| − |P0(−ν)|

= |−ν + 1| − 1 = |1− ν| − 1
< 0 when 0 < ν < 2

= 0 when ν = 2

< 0 when 2 < ν, as desired.

Finally, for t ≥ a+ 3,

(∇|H−ν(·, a)|)(t) = |H−ν(t, a)| − |H−ν(t− 1, a)|

= |Pt−a−1(−ν)| − |Pt−1−a−1(−ν)|

=
|x+ 1| · |x+ 2| · · · |x+ (t− a− 2)| · |x+ (t− a− 1)|

(t− a− 1)!

∣∣∣∣
x=−ν

− |x+ 1| · |x+ 2| · · · |x+ (t− a− 2)|
(t− a− 2)!

· (t− a− 1)

(t− a− 1)

∣∣∣∣
x=−ν

=

[
| − ν + 1| · · · | − ν + (t− a− 2)|

(t− a− 1)!

]
︸ ︷︷ ︸

I

·
[∣∣− ν + (t− a− 1)

∣∣− (t− a− 1)

]
︸ ︷︷ ︸

II

.

Note that the first factor, I, is always greater than or equal to 0, while the second
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factor , II, is


> 0 when t− a− 1 < ν

2

= 0 when t− a− 1 = ν
2

< 0 when t− a− 1 > ν
2
.

Reason: To see this quickly consider, for ν > 0, the graphs of the real-valued functions

f(x) = |x− ν| (the absolute value function shifted ν units to the right) and g(x) = x.

It is clear that f(x)− g(x)


> 0 when x < ν

2

= 0 when x = ν
2

< 0 when x > ν
2
.

So, setting x = (t− a− 1) gives us

that II is positive, 0, or negative when (t − a − 1) is less than, equal to, or greater

than ν
2
, respectively. Thus, the second term, II, is


> 0 when t < a+ ν

2
+ 1

= 0 when t = a+ ν
2

+ 1

< 0 when t > a+ ν
2

+ 1.

And so, in this case (i.e. for a+ 3 ≤ t) we have

(∇|H−ν(·, a)|)(t)


≥ 0 when t < a+ ν

2
+ 1

= 0 when t = a+ ν
2

+ 1

≤ 0 when a+ ν
2

+ 1 < t.

Summarizing, so far we have shown that for 0 < ν and t ∈ Za,

(∇|H−ν(·, a)|) (t)



= 0 when t ≤ a

≥ 0 when a < t < a+ ν
2

+ 1

= 0 when t = a+ ν
2

+ 1

≤ 0 when a+ ν
2

+ 1 < t.

(3.3)
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Note that for 0 < ν /∈ N1, since t ∈ Za, t 6= a + ν
2

+ 1. Furthermore, the inequalities

in equation (3.3) are strict in this case since ν /∈ N1 implies I is strictly positive and

also that II is nonzero (as t ∈ Za implies (t− a− 1) ∈ Z and so t− a− 1 6= ν
2
). The

statement in (3.1) follows.

If ν = n ∈ N1, I is 0 for all t ≥ n + a + 2 and strictly positive when t ≤ n + a + 1.

Also, II is only 0 when t = n
2

+ a + 1 < n + a + 1. Thus, the statement in (3.2)

follows.

Definition 3.10. For ν > 0, we put N := dνe and define

tν := sup{t ∈ Za : t ≤ a+N and (∇|H−ν(·, a)|) (t) ≥ 0}.

Corollary 3.11. For all ν > 0,

tν = a+ bν
2
c+ 1.

|H−ν(·, a)| is increasing on (−∞, tν ] and decreasing on [tν ,∞). Therefore, 1

‖H−ν(·, a)‖∞ = |H−ν(tν , a)| =
∣∣∣Pbν/2c(−ν)

∣∣∣ =


1, if 0 < ν < 2∣∣∣ (ν−1)···(ν−bv/2c)

bv/2c!

∣∣∣, if 2 ≤ ν.

Furthermore, if:

• ν ∈ (0,∞) \ N1, then |H−ν(·, a)| is strictly increasing on [a, tν ] and strictly

decreasing on [tν ,∞),

• ν = n ∈ N1 \ (2N1), then |H−n(·, a)| is strictly increasing on [a, tν ] and strictly

decreasing on [tν , a+ n+ 1],
1Interesting fact: The function f(ν) := ‖H−ν(·, a)‖∞ is continuous and increasing on [0,∞).
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• ν = n ∈ 2N1, then |H−n(·, a)| is strictly increasing on [a, tν − 1] and strictly

decreasing on [tν , a+ n+ 1].

Thus, for any 0 < ν, |H−ν(·, a)| is always strictly increasing on [a, tν − 1] and always

strictly decreasing on [tν , a+N + 1].

Proof. Recall that if (∇f)(t) ≥ 0 on [c + 1, d], then f is increasing on [c, d] and

that similar statements hold to give us intervals on which f is strictly increasing,

decreasing, and strictly decreasing. (See Theorem 1.2.) Thus, the formula for tν and

the statements concerning the monotonicity/strict monotonicity of |H−ν(·, a)| are an

immediate consequence of the previous theorem. The formula for ‖H−ν(·, a)‖∞ follows

from

|H−ν(tν , a)| =
∣∣∣H−ν(a+ bν

2
c+ 1, a)

∣∣∣ =
∣∣∣Pbν/2c(−ν)

∣∣∣.

A second important time associated with the function |H−ν(·, a)| is the latest time

for which |H−ν(t, a)| ≥ 1.

Definition 3.12. For ν > 0, we define

Tν := sup{t ∈ Za : |H−ν(t, a)| ≥ 1}.

Note that by Corollary 3.11, |H−ν(·, a)| is increasing on (−∞, tν ] and a+ 1 ≤ tν , thus

we have 1 = |H−ν(a + 1, a)| ≤ |H−ν(tν , a)|. Also, by Corollary 3.11 and Theorem

3.5, |H−ν(·, a)| decreases to 0 on [tν ,∞). Thus we are guaranteed such a time, Tν ,

exists and that Tν ≥ tν . The next few theorems lead to Corollary 3.16, which gives a

formula for Tν in terms of ν.
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Theorem 3.13. For ν = n ∈ N1 and t ∈ Za,

|H−ν(t, a)| = |H−n(t, a)|



= 0 when t ≤ a

= 1 when t = a+ 1

> 1 when a+ 1 < t < a+ n

= 1 when t = a+ n

= 0 when a+ n < t.

Proof. Fix n ∈ N1. The fact that H−n(t, a) = 0 when t ≤ a and H−n(a + 1, a) = 1

has already been shown. (See Theorem 1.8 and Remark 1.14.) Note that by Theorem

1.5 when t = a+ n we have

∣∣H−n(a+ n, a)
∣∣ =

∣∣Pn−1(−n)
∣∣ =

∣∣∣∣∣(−1)n−1

(
n− 1

n− 1

)∣∣∣∣∣ =
∣∣(−1)n−1

∣∣ = 1.

By Corollary 3.11, |H−n(·, a)| is increasing on (−∞, tn] and decreasing on [tn,∞),

where tn = a+bn
2
c+1 ∈ [a+1, a+n] (since a+1 ≤ a+ bn

2
c+ 1︸ ︷︷ ︸

tn

≤ a+n). Therefore,

|H−n(t, a)| ≥ 1 on [a+ 1, a+ n]. Finally, when t = a+ n+ 1 we have

H−n(a+ n+ 1, a) = Pn(−n) =
1

n!
(x+ 1) · · · (x+ n)

∣∣∣∣
x=−n

= 0.

So the fact that |H−n(·, a)| is decreasing on [tn,∞) implies |H−n(·, a)| is decreasing

on [a+ n+ 1,∞) which, in turn, implies |H−n(t, a)| = 0 for all t ≥ a+ n+ 1.
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Theorem 3.14. For ν ∈ (0, 2) \ N1 and t ∈ Za,

|H−ν(t, a)|


= 0 when t ≤ a

= 1 when t = a+ 1

< 1 when a+ 1 < t.

Proof. The fact that H−ν(t, a) = 0 when t ≤ a and H−ν(a + 1, a) = 1 has already

been shown. (See Theorem 1.8 and Remark 1.14.) By hypothesis, 0 < ν < 2 and so

tν = a + 1. Also, ν /∈ N1 so, by the first bullet of Corollary 3.11 above, |H−ν(·, a)| is

strictly decreasing on [tν ,∞). Thus, when t > tν = a+ 1, |H−ν(t, a)| < |H−ν(tν , a)| =

1.

Theorem 3.15. For ν ∈ (2,∞) \ N1 and t ∈ Za,

|H−ν(t, a)|



= 0 when t ≤ a

= 1 when t = a+ 1

> 1 when a+ 1 < t ≤ a+ bνc

< 1 when a+ bνc < t.

Proof. That H−ν(t, a) = 0 when t ≤ a and H−ν(a + 1, a) = 1 have already been

shown. (See Theorem 1.8 and Remark 1.14.) So we just need to verify the theorem

for t > a+ 1. Toward that end, put N = dνe ≥ 3. Note that in this case, since

a+ 1 < a+ bn
2
c+ 1︸ ︷︷ ︸

tn

< a+ bνc+ 1 = a+ dνe = a+N

we have a + 1 < tν ≤ a + N − 1 = a + bνc. By the first bullet of Corollary
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3.11, |H−ν(·, a)| is strictly increasing on [a+ 1, tν ] and strictly decreasing on [tν ,∞).

Therefore, to complete the proof it suffices to show that

|H−ν(a+N − 1, a)
∣∣∣ > 1 (3.4)

and

|H−ν(a+N, a)
∣∣∣ < 1. (3.5)

To see (3.4) put ε := ν − (N − 1) ∈ (0, 1) and note

∣∣H−ν(a+N − 1, a)
∣∣ =

∣∣PN−2(−ν)
∣∣ =

∣∣∣∣∣
(
−ν + 1

1

)(
−ν + 2

2

)
· · ·
(
−ν +N − 2

N − 2

) ∣∣∣∣∣
=

∣∣∣∣−ν + 1

N − 2

∣∣∣∣ ∣∣∣∣−ν + 2

N − 3

∣∣∣∣ · · · ∣∣∣∣−ν + (N − 2)

1

∣∣∣∣
=

∣∣∣∣ ν − 1

N − 2

∣∣∣∣ ∣∣∣∣ ν − 2

N − 3

∣∣∣∣ · · · ∣∣∣∣ ν − (N − 2)

1

∣∣∣∣
=

∣∣∣∣N − 2 + ε

N − 2

∣∣∣∣︸ ︷︷ ︸
>1

∣∣∣∣N − 3 + ε

N − 3

∣∣∣∣︸ ︷︷ ︸
>1

· · ·
∣∣∣∣1 + ε

1

∣∣∣∣︸ ︷︷ ︸
>1

> 1.

To see (3.5) note

∣∣H−ν(a+N, a)
∣∣ =

∣∣PN−1(−ν)
∣∣ =

∣∣∣∣∣
(
−ν + 1

1

)(
−ν + 2

2

)
· · ·
(
−ν +N − 1

N − 1

) ∣∣∣∣∣
=

∣∣∣∣−ν + 1

N − 1

∣∣∣∣ ∣∣∣∣−ν + 2

N − 2

∣∣∣∣ · · · ∣∣∣∣−ν + (N − 1)

1

∣∣∣∣
=

∣∣∣∣ ν − 1

N − 1

∣∣∣∣︸ ︷︷ ︸
<1

∣∣∣∣ ν − 2

N − 2

∣∣∣∣︸ ︷︷ ︸
<1

· · ·
∣∣∣∣ ν − (N − 1)

1

∣∣∣∣︸ ︷︷ ︸
<1

< 1.

Theorems 3.13, 3.14, and 3.15 give us the following formula for Tν .
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Corollary 3.16. For ν > 0 and Tν as defined above,

Tν = a+ max{bνc, 1} =


a+ 1, 0 < ν < 1

a+ bνc, 1 ≤ v.

Proof. The statements of Theorems 3.13, 3.14, and 3.15 together give us the largest

value of t for which |H−ν(t, a)| ≥ 1 for any ν > 0. This value is summarized by the

given formula.

Theorem 3.17. For ν ∈ (0, 1) and t ∈ Za,

sgnH−ν(t, a) =


0, t ≤ a

1, a+ 1 ≤ t ≤ Tν = a+ 1

1, Tν + 1 ≤ t.

(3.6)

For ν ∈ (1,∞) \ N1 and t ∈ Za,

sgnH−ν(t, a) =


0, t ≤ a

(−1)t−(a+1), a+ 1 ≤ t ≤ Tν

(−1)(Tν+1)−(a+1) Tν + 1 ≤ t.

(3.7)

For ν = n ∈ N1 and t ∈ Za,

sgnH−ν(t, a) =


0, t ≤ a

(−1)t−(a+1), a+ 1 ≤ t ≤ Tν

0 Tν + 1 ≤ t.

(3.8)
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Thus sgnH−ν(·, a) alternates on [a+ 1, Tν ] and is constant on [Tν + 1,∞). That is,

sgnH−ν(t, a) = c for all t ∈ NTν+1, where c =


1, when ν ∈ (0, 1)

(−1)Tν−a, when ν ∈ (1,∞) \ N1

0, when ν ∈ N1.

Proof. When t ≤ a, H−ν(t, a) = 0 and when t = a+ 1, H−ν(t, a) = H−ν(a+ 1, a) = 1.

So the content of this theorem is that equations (3.6), (3.7), and (3.8) hold for t > a+1.

Recall that for t > a+ 1,

H−ν(t, a) =Pt−a−1(−ν) =

(
−ν + 1

1

)(
−ν + 2

2

)
· · ·
(
−ν + (t− a− 1)

(t− a− 1)

)
and so

sgnH−ν(t, a) = sgn
(
−ν + 1

1

)
sgn

(
−ν + 2

2

)
· · · sgn

(
−ν + (t− a− 1)

(t− a− 1)

)
= sgn (−ν + 1) sgn (−ν + 2) · · · sgn (−ν + (t− a− 1))

=
t−a−1∏
i=1

sgn(−ν + i). (3.9)

Case 1: First, we consider the case where ν ≥ 2. (So (bνc − 1) ≥ 1.) (The situation

when 0 < ν < 2 will be considered in three special cases at the end.)

From equation (3.9) when t− a− 1 ≥ bνc+ 1 (that is, for t ≥ a+ bνc+ 2 = Tν + 2),

sgnH−ν(t, a) =

bνc−1∏
i=1

sgn(−ν + i)︸ ︷︷ ︸
= −1

sgn(−ν + bνc)︸ ︷︷ ︸
= −1 or 0

 t−a−1∏
i=bνc+1

sgn(−ν + i)︸ ︷︷ ︸
= +1

 (3.10)

The first factor of equation (3.10) contributes (−1)bνc−1 = (−1)Tν−a−1 = (−1)Tν−(a+1).

The second factor is 0 or -1, depending on whether ν ∈ N1 or not. The third factor

is 1. Thus, for t ≥ Tν + 2, we have sgnH−ν(t, a) =


(−1)Tν−(a+1)+1 when ν /∈ N1

0 when ν ∈ N1.
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If t = Tν + 1 we just lose the third factor from equation (3.10) which does not change

the output. Hence, for t ≥ Tν + 1, we have

sgnH−ν(t, a) =


(−1)(Tν+1)−(a+1) when ν /∈ N1

0 when ν ∈ N1.

These are the third conditions in equations (3.7) and (3.8), respectively.

The middle conditions of equations (3.7) and (3.8) follow from the fact that when

t − a − 1 ≤ bνc − 1. (That is, for a + 1 < t ≤ a + bνc = Tν), the second and third

factors of equation (3.10) never appear. And so, in this case equation (3.9) is simply:

sgnH−ν(t, a) =

t−a−1∏
i=1

sgn(−ν + i)︸ ︷︷ ︸
= −1

 (3.11)

Thus, for t ≥ Tν + 2, we have sgnH−ν(t, a) = (−1)t−a−1 = (−1)t−(a+1), as desired.

Case 2a: If ν ∈ (0, 1), then sgn(−ν + i) = 1 for all i ≥ 1. So, equation (3.9) gives

sgnH−ν(t, a) = 1 for all t ≥ a+ 2. Thus, equation (3.6) holds.

Case 2b: If ν = 1, equation (3.9) gives sgnH−ν(t, a) = 0 for all t ≥ a + 2. Thus,

equation (3.8) holds when ν = n = 1.

Case 2c: If ν ∈ (1, 2), then sgn(−ν + 1) = −1 and sgn(−ν + i) = 1 for all i ≥ 2. So,

equation (3.9) gives

sgnH−ν(t, a) = sgn(−ν + 1) = −1, when t = a+ 2

and

sgnH−ν(t, a) = sgn(−ν + 1)︸ ︷︷ ︸
= −1

·
t−a−1∏
i=2

sgn(−ν + i)︸ ︷︷ ︸
= +1

= −1, when t ≥ a+ 3.

Thus, equation (3.7) holds when ν ∈ (1, 2). This completes the proof.
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The next few results show that iterated and fractional differences can be taken

term-by-term.

Theorem 3.18. Suppose that for a sequence of functions {fn : Za → R},
∞∑
n=0

fn(t)

converges for each t ∈ Za and f(t) =
∞∑
n=0

fn(t). Then, for each k ∈ N0,

(
∇kf

)
(t) =

∞∑
n=0

(
∇kfn

)
(t).

Proof. The proof follows from the fact that convergent sums can be multiplied by a

constant and added term-by-term, hence linear combinations of convergent sums can

be taken term-by-term (which justifies (*) in the calculation below). Fix k ∈ N1 and

t ∈ Za and consider,

(
∇kf

)
(t) =

k∑
i=0

(−1)i
(
k

i

)
f(t− i)

=
k∑
i=0

(−1)i
(
k

i

) ∞∑
n=0

fn(t− i)

= (−1)0

(
k

0

) ∞∑
n=0

fn(t− 0) + (−1)1

(
k

1

) ∞∑
n=0

fn(t− 1)+

· · ·+ (−1)k
(
k

k

) ∞∑
n=0

fn(t− k)

( * )
=

∞∑
n=0

 (−1)0
(
k
0

)
fn(t− 0) + (−1)1

(
k
1

)
fn(t− 1)+

· · ·+ (−1)k
(
k
k

)
fn(t− k)


=
∞∑
n=0

[
k∑
i=0

(−1)i
(
k

i

)
fn(t− i)

]

=
∞∑
n=0

(
∇kfn

)
(t).
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The next theorem shows that, provided we have a sequence of functions all of

which are in VT for some T ∈ Za, then a general fractional difference can be taken

term-by-term as well.

Theorem 3.19. Suppose that a sequence of functions {fn} ⊆ VT for some T ∈ Za

and that for each t ∈ Za,
∞∑
n=0

fn(t) converges. Then, if f(t) =
∞∑
n=0

fn(t), f ∈ VT and

(∇γf) (t) =
∞∑
n=0

(∇γfn) (t).

Proof. This proof also follows from the fact that convergent sums can be multiplied

by a constant and added term-by-term, hence linear combinations of convergent sums

can be taken term-by-term (which justifies (*) in the calculation below). Put M =

max{a− T, 0} so for all t < (a−M), f(t) = fn(t) = 0. Fix t ∈ Za and consider,

(∇γf) (t) = (H−γ−1 ∗ f) (t)

Rem 1.22
=

t+M∑
s=a−M

H−γ−1(t− s+ a)f(s)

=
t+M∑

s=a−M

H−γ−1(t− s+ a)
∞∑
n=0

fn(s)

(∗)
=
∞∑
n=0

[
t+M∑

s=a−M

H−γ−1(t− s+ a)fn(s)

]
Rem 1.22

=
∞∑
n=0

(H−γ−1 ∗ fn) (t)

=
∞∑
n=0

(∇γfn)(t).

Corollary 3.20. Suppose that, {fn} ⊆ RZa,
∞∑
n=0

fn(t) converges for each t ∈ Za and
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f(t) =
∞∑
n=0

fn(t). Then, for all α ∈ R and ν ∈ [0,∞),

(∇α
af) (t) =

∞∑
n=0

(∇α
afn) (t) and (∇ν

a∗f) (t) =
∞∑
n=0

(∇ν
a∗fn) (t).

Proof. To see the first equation holds,

(∇α
af) (t) = ∇α

(
1(a,∞)f

)
(t) = ∇α

(
1(a,∞)

∞∑
n=0

fn

)
(t)

= ∇α

 ∞∑
n=0

1(a,∞)fn︸ ︷︷ ︸
∈ Va+1

 (t)
Thm 3.19

=
∞∑
n=0

(
∇α

1(a,∞)fn
)

(t)

=
∞∑
n=0

(∇α
afn) (t).

The second equation follows from the first and Theorem 3.18, since if we putN := dνe,

(∇ν
a∗f) (t) =

(
∇ν−N
a ∇Nf

)
(t) =

(
∇ν−N
a ∇N

∞∑
n=0

fn

)
(t)

Thm 3.18
=

(
∇ν−N
a

∞∑
n=0

∇Nfn

)
(t)

1st eqn
=

(
∞∑
n=0

∇ν−N
a ∇Nfn

)
(t)

=
∞∑
n=0

(∇ν
a∗fn) (t).

Corollary 3.21. If γ ∈ R and α ∈ R and (an) is a sequence of real numbers such

that f(t) =
∞∑
n=0

anHγ+n(t, a) ∈ R for all t ∈ Nb
a+1, then (∇α

af)(t) =
∞∑
n=0

anHγ+n−α(t, a).

Proof. Set fn(t) = anHγ+n(t, a), apply Corollary 3.20, and recall that ∇α
aHγ+n(t, a) =

Hγ+n−α(t, a).
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Chapter 4

Boundary Value Problems (BVPs) Involving ∇ν
a∗

Theorem 4.1. When 1 < ν and N := dνe and a < b ∈ Za, the Green’s function for

the boundary value problem:

(∗)


−(∇ν

a∗x)(t) = 0, for t ∈ Nb
a+1

x(a− i) = 0, for 1 ≤ i ≤ N − 1

x(b) = 0

is given by

G(t, s) =

[
HN−1(t, ρ(a))

HN−1(b, ρ(a))

]
Hν−1(b, ρ(s))−Hν−1(t, ρ(s)) (4.1)

for all (t, s) ∈ Nb
a−N+1 × Nb

a+1.

Proof. First, note that the bounary conditions at a imply

x(a) = (∇x)(a) = · · · = (∇N−1)(a).
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Then, note that by setting γ = 0 in (iii)(a) of Theorem 2.19 we have

(∇ν
a∗x)(t) = ∇ν

a

[
x(t)−

N−1

Σ
k=0

[(∇kx)(a)]Hk(t, a)

]
= ∇ν

a

[
x(t)−

N−1

Σ
k=0

[(∇kx)(a)]H̃k(t, a)

]

since H̃k(t, a) = Hk(t, a) for all t ∈ Na+1. And so if x is a solution to the boundary

value problem

(∗∗)


−(∇ν

a∗x)(t) = f(t), for t ∈ Nb
a+1

x(a− i) = 0, for 1 ≤ i ≤ N − 1

x(b) = 0

then

−(∇ν
a∗x)(t) = −∇ν

a

[
x(t)−

N−1

Σ
k=0

[(∇kx)(a)]H̃k(t, a)
]

= f(t), for t ∈ Nb
a+1

which implies

∇ν
a

[
x(t)−

N−1

Σ
k=0

[(∇kx)(a)]H̃k(t, a)
]

= −f(t), for t ∈ Nb
a+1.

Applying ∇−νa to this last equation and isolating x(t) yields

x(t) =
N−1

Σ
k=0

[(∇kx)(a)]H̃k(t, a)− (∇−νa f)(t). (4.2)

The boundary conditions at a tell us that all of the coefficients in the sum are equal

to x(a) and so we get

x(t) = [x(a)]
N−1

Σ
k=0

H̃k(t, a)− (∇−νa f)(t).
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By Corollary 3.4, the sum simplifies to H̃N−1(t+ 1, a) which gives us

x(t) = [x(a)]H̃N−1(t+ 1, a)− (∇−νa f)(t). (4.3)

Applying the boundary condition at b yields

0 = x(b) = [x(a)]H̃N−1(b+ 1, a)︸ ︷︷ ︸
=HN−1(b,ρ(a))≥1

− (∇−νa f)(b).

Thus, x(a) = (∇−νa f)(b)
HN−1(b,ρ(a))

. Substituting back into equation (4.3) yields

x(t) =

[
(∇−νa f)(b)

HN−1(b, ρ(a))

]
H̃N−1(t+ 1, a)− (∇−νa f)(t) for t ∈ Nb

a−N+1.

Note that by Theorem 1.8, H̃N−1(t + 1, a) = 0 when t ∈ Na−1
a−N+1. As such, for

t ∈ Na−N+1 we have H̃N−1(t + 1, a) = HN−1(t + 1, a), so we may drop the ˜ in the

last equation if desired to obtain

x(t) =

[
(∇−νa f)(b)

HN−1(b, ρ(a))

]
HN−1(t+ 1, a)− (∇−νa f)(t) for t ∈ Nb

a−N+1.

Rearranging slightly (and applying Theorem 1.17) we get that the solution to BVP

(**) is

x(t) =

[
HN−1(t, ρ(a))

HN−1(b, ρ(a))

]
(∇−νa f)(b)− (∇−νa f)(t) for t ∈ Nb

a−N+1. (4.4)

Using the definition of the operator ∇−νa and recalling that Hγ(t, ρ(s)) = 0 when s > t
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we can rewrite this solution in terms of an integral involving f(t) as follows:

x(t) =

[
HN−1(t, ρ(a))

HN−1(b, ρ(a))

]
(∇−νa f)(b)− (∇−νa f)(t)

=

[
HN−1(t, ρ(a))

HN−1(b, ρ(a))

]ˆ b

a

Hν−1(b, ρ(s))f(s)∇s−
ˆ t

a

Hν−1(t, ρ(s))f(s)∇s

=

[
HN−1(t, ρ(a))

HN−1(b, ρ(a))

]ˆ b

a

Hν−1(b, ρ(s))f(s)∇s−
ˆ b

a

Hν−1(t, ρ(s))f(s)∇s

=

ˆ b

a

[[
HN−1(t, ρ(a))

HN−1(b, ρ(a))

]
Hν−1(b, ρ(s))−Hν−1(t, ρ(s))

]
f(s)∇s

=

ˆ b

a

G(t, s)f(s)∇s

where G(t, s) is as in the statement of the theorem, equation (4.1).

Theorem 4.2. For 1 < ν and N := dνe and a < b ∈ Za, the Green’s function for the

boundary value problem (*) is the difference of two nonnegative functions. As such,

for (t, s) ∈ D := Nb
a−N+1 × Nb

a+1,

‖G‖∞ := max
(t,s)∈D

|G(t, s)| < Hν−1(b, a) =: M.

Proof. Recall from Theorem 4.1, the Green’s function for (*) is

G(t, s) =

[
HN−1(t, ρ(a))

HN−1(b, ρ(a))

]
Hν−1(b, ρ(s))−Hν−1(t, ρ(s)), for all (t, s) ∈ D.

So, G(t, s) = G1(t, s)−G2(t, s) where

G1(t, s) :=

[
HN−1(t, ρ(a))

HN−1(b, ρ(a))

]
Hν−1(b, ρ(s)) and

G2(t, s) := Hν−1(t, ρ(s)).

First, we will show that G1 and G2 are both nonnegative. To see this recall that,
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by definition, Hγ(t, s) = 0 whenever t ≤ s and note that for d ∈ N0, Pd(x) =

1
d!

(x+ 1)(x+ 2) · · · (x+ d) > 0 whenever x > −1. So by Corollary 1.12,

Hν−1(t, ρ(s)) = Pt−s(ν − 1) ≥ 0 whenever ν > 0. (4.5)

Furthermore, 1 < ν ⇒ 1 < N ⇒ 0 < N − 1. Thus, HN−1(·, ρ(a)) is (strictly)

increasing on Na (by Corollary 3.7) and so

0 ≤ HN−1(t, ρ(a))
Cor 3.7
≤ HN−1(b, ρ(a)) for all t ∈ Nb

a−N+1 (4.6)

and (since ρ(a) < a < b)

1 = HN−1(a, ρ(a)) ≤ HN−1(b, ρ(a)). (4.7)

Hence, by equations (4.6) and (4.7) we have
[
HN−1(t,ρ(a))

HN−1(b,ρ(a))

]
∈ [0, 1]. Combining this

with equation (4.5) gives us that all of the Taylor monomials that occur in the formula

for the Green’s function (4.1) are nonnegative and the denominator in the quotient

is nonzero for all t and s. As such G1(t, s) and G2(t, s) are well-defined, nonnegative

functions for all t and s and so the Green’s function is the difference of (these) two

nonnegative functions, as claimed.

Next, recall that since 1 < ν ≤ N , we have 0 < ν − 1 ≤ N − 1 which implies that

Hν−1(·, a) and HN−1(·, a) are strictly increasing on [a,∞) (by Corollary 3.7). Also,

note that when t = b,

G(b, s) = 1 ·Hν−1(b, ρ(s))−Hν−1(b, ρ(s)) = 0.
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Thus, for all (t, s) ∈ D,

G(t, s) = G(t, s) · 1D−(t, s)

=
[
G1(t, s)−G2(t, s)

]
· 1D−(t, s)

= G1(t, s) · 1D−(t, s)−G2(t, s) · 1D−(t, s)

where D− := Nb−1
a−N+1 × Nb

a+1 ⊂ D. That is, we may also consider G to be the

difference of the two nonnegative functions G1 · 1D− and G2 · 1D− . If we can show

that each of these nonnegative functions is strictly bounded above by M on D we

will be done, since then G, as the difference of these two nonnegative functions, must

satisfy ‖G‖∞ < M .

To see ‖G1 · 1D−‖∞ < M note that

‖G1 · 1D−‖∞ = max
(t,s)∈D

G1(t, s) · 1D−(t, s)

= max
(t,s)∈D

[
HN−1(t, ρ(a))

HN−1(b, ρ(a))

]
· 1D−(t, s)︸ ︷︷ ︸

∈ [0,1)

·Hν−1(b, ρ(s))

< max
(t,s)∈D

Hν−1(b, ρ(s))
Cor 1.17

= max
(t,s)∈D

Hν−1(b− s+ 1 + a, a)

= Hν−1(b− (a+ 1) + a+ 1, a)

= Hν−1(b, a) = M.

To see ‖G2 · 1D−‖∞ < M note that

‖G2 · 1D−(t, s)‖∞ = max
(t,s)∈D

G2(t, s) · 1D−(t, s)

= max
(t,s)∈D

Hν−1(t, ρ(s)) · 1D−(t, s)
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= max
(t,s)∈D

Hν−1(t− s+ 1 + a, a) · 1D−(t, s)

= Hν−1((b− 1)− (a+ 1) + a+ 1, a)

= Hν−1(b− 1, a) < Hν−1(b, a) = M.

This completes the proof.

Green’s functions for boundary value problems involving ordinary differential

equations often have a single sign. We conclude this section with an example that

shows this is not necessarily the case for boundary value problems involving fractional

difference equations.

Corollary 4.3. The Green’s function for the boundary value problem (*) does not

necessarily have a single sign. (That is, it may assume both positive and negative

values.)

Example Suppose ν = 3
2
⇒ N = 2 and b = a+9, and G(t, s) is the Green’s function

for the boundary value problem (*).

If (t, s) = (a+ 2, a+ 1), then G(t, s) = −32667
65536

< 0.

If (t, s) ∈ {b} × Nb
a+1, then G(t, s) = G(b, s) = 0.

If (t, s) = (a, b), then G(t, s) = G(a, b) = G1(a, b) = 1
Hν−1(b,ρ(a))

> 0.



83

Chapter 5

Upper and Lower Solutions to BVPs

It is well-known that fractional difference equations can be used to model many prob-

lems, such as population models, tumor growth models, and so on. In many situations,

fractional difference equations have proved to be better than their counterparts with

integer differences. Therefore, research in the theory of fractional difference equations

has become very important. Previous studies have mainly focused on the theory of

integer-order difference equations, classical results have been established, and we can

refer to the monographs [1, 2] etc. Recently, there has been a great deal of interest in

fractional difference equations. The basic theory of the linear and nonlinear fractional

difference equations can be found in [3, 4, 5, 9, 10, 11]. However, we note that the

qualitative theory of nonlinear fractional difference equations is not complete and the

convergence of approximate solutions plays an important role in the development of

the qualitative theory.

In this section we explore a generalized quasi-linearization method that can be

used to construct approximate solutions for nonlinear problems. There are many

applications of this method. In [13] - [22] the authors have used this method to

obtain a convergent sequence of approximate solutions to various kinds of differential

equations. Further, in [23, 24], the authors have accelerated the convergence of these

sequences by the Gauss-Seidel method. However, there are few applicable results
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of the above methods to nonlinear fractional difference equations. In [10, 25], the

authors only discuss the existence and convergence of solutions for nonlinear fractional

difference equations with initial conditions.

In this section, we study the convergence of solutions for a nonlinear Caputo

nabla fractional difference equation with boundary conditions. We obtain quadratic

convergence by a generalized quasi-linearization method when the forcing function

is the sum of a convex and a concave function. Furthermore, we show that the

convergence of the sequences obtained is potentially improved by the Gauss-Seidel

method. Finally, a numerical example is given to illustrate our 1 resutls.

5.1 Some Definitions and Basic Theorems

In this chapter we use Da−N+1 := {x : Na−N+1 → R} to denote the vector space

of functions from Na−N+1 to R. We define the operator La : Da−N+1 → Da+1 by

(Lax)(t) := ∇[(∇ν
a∗x)(t+ 1)], t ∈ Na+1, for x ∈ Da−N+1.

Lemma 5.1 Assume ν > 0 and N is the positive integer such that N − 1 < ν ≤ N .

Then a general solution of the fractional difference equation (Lax)(t) = 0, t ∈ Na+1

is given by

x(t) = c0H̃0(t, a) + c1H̃1(t, a) + c2H̃2(t, a) + · · ·+ cN−1H̃N−1(t, a) + cHν(t, a)

for t ∈ Na−N+1.

Proof. Put xk(t) := H̃k(t, a) for k ∈ NN−1
0 . Then, by Corollary 2.12 we have

1This chapter is the result of joint work done with Xiang Liu, a visiting graduate student studying
under Professor Baoguo Jia from the School of Mathematics, Sun Yat-Sen University, Guangzhou,
China, while she was visiting University of Nebraska-Lincoln in the Spring of 2018. These results
were recently submitted for publication to the Electronic Journal of Differential Equations in April
2018.
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(∇ν
a∗xk)(t) = ∇ν

a∗H̃k(t, a) ≡ 0. So (Laxk)(t) = ∇[(∇ν
a∗xk)(t + 1)] = ∇0 = 0 for

k ∈ NN−1
0 .

Also, if we put x̄(t) := Hν(t, a). Then, by Theorem 2.9 we have (∇ν
a∗x̄)(t) =

∇ν
a∗Hν(t, a) = H0(t, a). And so, (Lax̄)(t) = ∇[(∇ν

a∗x̄)(t + 1)] = ∇[H0(t + 1, a)] =

∇[1(a,∞)(t+ 1)] = ∇[1[a,∞)(t)] = 0 for t ∈ Na+1.

Thus, H̃0(t, a), H̃1(t, a), · · · , H̃N−1(t, a), andHν(t, a) are all solutions to (Lax)(t) =

0 for all t ∈ Na+1.

Next, we show these solutions are linearly independent. We want to show that if

c0H̃0(t, a) + c1H̃1(t, a) + c2H̃2(t, a) + · · ·+ cN−1H̃N−1(t, a) + cHν(t, a) = 0 (5.1)

for all t ∈ Na−N+1, then it must be the case that c0 = c1 = · · · = cN−1 = c = 0.

Taking t = a, a− 1, · · · , a− (N − 1), and a+ 1 in (5.1), we obtain


H̃0(a, a) · · · H̃N−1(a, a) Hν(a, a)

H̃0(a− 1, a) · · · H̃N−1(a− 1, a) Hν(a− 1, a)

...
. . .

...
...

H̃0(a− (N − 1), a) · · · H̃N−1(a− (N − 1), a) Hν(a− (N − 1), a)

H̃0(a+ 1, a) · · · H̃N−1(a+ 1, a) Hν(a+ 1, a)




c0

c1
...

cN−1

c

 =


0

0

...

0

0

 .

That is, 

1 0 · · · 0 0

∗ −1 · · · 0 0

...
... . . . ...

...

∗ ∗ · · · (−1)N−1 0

∗ ∗ · · · ∗ 1





c0

c1

...

cN−1

c


=



0

0

...

0

0


.

So, we arrive at c0 = c1 = · · · = cN−1 = c = 0. Therefore, we conclude that these
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solutions are linearly independent. The proof is complete.

Lemma 5.2 (See [5, Theorem 3.175]). Assume 0 < ν ≤ 1, a, b ∈ R, and b−a ∈ N2.

Then the Green’s function for the BVP

 (Lax)(t) = 0, t ∈ Nb−1
a+1,

x(a) = 0, x(b) = 0
(5.2)

is given by

G(t, s) =

 u(t, s), (t, s) ∈ Ns
a × Nb

t ,

v(t, s), (t, s) ∈ Nb
s × Nt

a,

where

u(t, s) = − (b− s)ν(t− a)ν

Γ(ν + 1)(b− a)ν
,

and

v(t, s) = u(t, s) +
(t− s)ν

Γ(ν + 1)
= u(t, s) + x(t, s).

Lemma 5.3 (See [5, Theorem 3.177]). Assume 0 < ν ≤ 1, a, b ∈ R, and b−a ∈ N2.

Then the Green’s function for the BVP

 (Lax)(t) = 0, t ∈ Nb−1
a+1,

x(a) = 0, x(b) = 0

satisfies the inequalities

(i) G(t, s) ≤ 0,

(ii) G(t, s) ≥ −
(
b−a

4

)(
Γ(b−a+1)

Γ(ν+1)Γ(b−a+ν)

)
,

(iii)
´ b
a
|G(t, s)|∇s ≤ (b−a)2

4Γ(ν+2)
, for t ∈ Nb

a, and

(iv)
´ b
a
|∇tG(t, s)|∇s ≤ b−a

ν+1
, for t ∈ Nb

a+1.

The next corollary is an immediate consequence of [5, Theorem 3.173]. It relates
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to the nonhomogeneous BVP with homogeneous boundary conditions:

 (Lay)(t) = h(t), t ∈ Nb−1
a+1,

y(a) = 0, y(b) = 0.
(5.3)

Corollary 5.4 (See [5, Theorem 3.173]). Assume 0 < ν ≤ 1, a, b ∈ R, and b− a ∈

N2. The unique solution of the BVP (5.3) is given by

y(t) =

ˆ b

a

G(t, s)h(s)∇s =
b∑

s=a+1

G(t, s)h(s), t ∈ Nb
a,

where G(t, s) is the Green’s function of the BVP (5.2).

Proof. This is a special case of [5, Theorem 3.173], where α = γ = 1 and β = δ = 0

in equation (3.115) of that theorem. Note that, by [5, Theorem 3.170], α = γ = 1

and β = δ = 0 ensure the hypotheses of [5, Theorem 3.173] are satisfied.

Lemma 5.5 Assume 0 < ν ≤ 1. Then the solution of the BVP

 (Laz)(t) = 0, t ∈ Nb−1
a+1,

z(a) = A, z(b) = B
(5.4)

is given by

z(t) = A+ (B − A)
Hν(t, a)

Hν(b, a)
, t ∈ Nb

a.

Proof. Let z be a solution of the fractional difference equation (Laz)(t) = 0. It follows

from Lemma 5.1 that

z(t) = c0H̃0(t, a) + cHν(t, a) = c0 + cHν(t, a).
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Using the first boundary condition z(a) = A, we obtain

A = c0 + cHν(a, a) = c0,

which implies c0 = A. Using the second boundary condition z(b) = B, we get

B = A+ cHν(b, a).

Solving for c, we get

c =
(B − A)

Hν(b, a)
.

Thus, we have

z(t) = c0 + cHν(t, a)

= A+ (B − A)
Hν(t, a)

Hν(b, a)
.

The proof is complete.

Lemma 5.6 Assume 0 < ν ≤ 1, and h : Nb−1
a+1 → R. Then the solution of the

nonhomogeneous BVP

 (Lax)(t) = h(t), t ∈ Nb−1
a+1,

x(a) = A, x(b) = B
(5.5)

is given by

x(t) = z(t) +
b∑

s=a+1

G(t, s)h(s), t ∈ Nb
a,

where G(t, s) is the Green’s function of the BVP (5.2) and z(t) is the unique solution

of the BVP (5.4).
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Proof. Let

y(t) =
b∑

s=a+1

G(t, s)h(s), t ∈ Nb
a.

By Corollary 5.4, y(t) is the solution of the BVP (5.3) on Nb
a. Let z(t) be as in the

statement of this theorem. Then, we have

x(a) = z(a) + y(a) = A+ 0 = A,

and

x(b) = z(b) + y(b) = B + 0 = B.

Finally,

(Lax)(t) = (Laz)(t) + (Lay)(t) = 0 + h(t) = h(t)

for t ∈ Nb−1
a+1. The proof is complete.

Lemma 5.7 Assume 0 < ν ≤ 1, x : Nb
a → R, and put M := max{x(t) : t ∈ Nb

a}.

If x(t0) = M for some t0 ∈ Nb−1
a+1, then (Lax)(t0) ≤ 0.

Proof. To see why this is true, note that for ν = 1 we have

(Lax)(t0) = (∇2x)(t)|t=t0+1

= x(t0 + 1)︸ ︷︷ ︸
≤M

− 2x(t0)︸ ︷︷ ︸
=2M

+ x(t0 − 1)︸ ︷︷ ︸
≤M

≤M − 2M +M = 0

In general, when 0 < ν ≤ 1, we will use the fact that for any t,

(Lax)(t) = x(t+ 1)−H−ν−1(t+ 1, a)x(a) +
t∑

s=a+1

H−ν−2(t+ 1, ρ(s))x(s) . (5.6)
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To see this note:

(Lax)(t) = ∇[(∇ν
a∗x)(t+ 1)] = (∇∇ν

a∗x)(t+ 1)

[Reason: ∇[(∇ν
a∗x)(t+ 1)] = (∇L∇ν

a∗x)(t) = (L∇∇ν
a∗x)(t). ]

Def
= (∇∇ν−1

a ∇x)(t+ 1)

Thm 2.19(i)(a)
= (∇ν

a∇x)(t+ 1)

Thm 2.19(ii)(b)
= ∇ν+1

a

[
x(τ) + [x(a)]H0(τ, a)

]∣∣∣∣
τ=t+1

= (∇ν+1
a x)(t+ 1) + [x(a)]H−ν−1(t+ 1, a)

Thm A.6
=

ˆ
(a,t+1]

H−ν−2(t+ 1, ρ(s))x(s)∇s+ x(a)H−ν−1(t+ 1, a)

=

ˆ
(a,t]

H−ν−2(t+ 1, ρ(s))x(s)∇s+ x(t+ 1) + x(a)H−ν−1(t+ 1, a)

= x(t+ 1) +
t∑

s=a+1

H−ν−2(t+ 1, ρ(s))x(s)−H−ν−1(t+ 1, a)x(a).
√

Note that for 0 < ν ≤ 1, −H−ν−1(t0 + 1, a) is positive whenever t0 ∈ Na+1 and

H−ν−2(t0 + 1, ρ(s)) is positive whenever s ∈ Nt0−1
a . Thus, we obtain

(Lax)(t0) = x(t0 + 1)−H−ν−1(t0 + 1, a)x(a) +

t0∑
s=a+1

H−ν−2(t0 + 1, ρ(s))x(s)

= x(t0 + 1)︸ ︷︷ ︸
≤M

−H−ν−1(t0 + 1, a)x(a)︸︷︷︸
≤M

+

t0−1∑
s=a+1

H−ν−2(t0 + 1, ρ(s))x(s)︸︷︷︸
≤M

+H−ν−2(t0 + 1, ρ(t0))x(t0)︸︷︷︸
=M

≤M

[
1−H−ν−1(t0 + 1, a) +

t0−1∑
s=a+1

H−ν−2(t0 + 1, ρ(s)) +H−ν−2(t0 + 1, ρ(t0))

]

= M

[
1−H−ν−1(t0 + 1, a) +

t0∑
s=a+1

H−ν−2(t0 + 1, ρ(s))

]
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= M

[
1−H−ν−1(t0 + 1, a) +

ˆ
(a,t0]

H−ν−2(t0 + 1, ρ(s))∇s
]

Thm 1.18
= M

[
1−H−ν−1(t0 + 1, a) + [(−H−ν−1(t0 + 1, t0) +H−ν−1(t0 + 1, a)]

]
= 0.

The proof is complete.

5.2 Existence and Comparison Results

Consider the following BVP for a nonlinear Caputo nabla fractional difference equa-

tion  (Lax)(t) = f(t, x(t)), t ∈ Nb−1
a+1,

x(a) = A, x(b) = B,
(5.7)

where f : Nb−1
a+1×R→ R is continuous with respect to x, x : Nb

a → R, and 0 < ν ≤ 1.

In this paper, we define the norm of x on Nb
a by ‖x‖ = max

s∈Nba
|x(s)|. Throughout

this paper, we use the notation f (k)(t, x) := ∂kf(t,x)
∂kx

(k = 0, 1, 2 . . .). For convenience,

when α0(t) and β0(t) are two functions such that α0(t) ≤ β0(t) on Nb
a, we use the

following sets:

Ω = Ω(α0, β0) := {(t, x) ∈ Za × R : α0(t) ≤ x ≤ β0(t), for all t ∈ Nb−1
a+1} , and

S = S(α0, β0) := {x : Nb
a → R|α0(t) ≤ x(t) ≤ β0(t), for all t ∈ Nb

a}.

We will simply refer to the sets Ω and S when it is clear from context what α0 and

β0 are.
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Definition 5.8 The function α0(t) is said to be a lower solution of BVP (3.1), if

 (Laα0)(t) ≥ f(t, α0(t)), t ∈ Nb−1
a+1,

α0(a) ≤ A, α0(b) ≤ B.
(5.8)

If all three inequalities in (5.8) are reversed, we have an upper solution. Now

we present an existence result relative to BVP (5.7), which we will use in our main

results. Since the proof is a standard application of Schauder’s fixed point theorem

we will omit the proof of this lemma.

Lemma 5.9 Assume that

(H3.1) the function f : Nb−1
a+1 × R → R is continuous with respect to x, and for

M ≥ 0, define C = C(M) := max{|f(t, x)| : t ∈ Nb−1
a+1, |x| ≤ 2M}.

Then the nonlinear BVP (5.7) has a solution provided there is some M ≥ ‖z‖ =

max{|A|, |B|}, where z is the unique solution of BVP (5.4), such that C(M) > 0 and

(b− a)2 ≤ 4MΓ(ν + 2)

C(M)
.

In particular, if f 6≡ 0 and bounded, then BVP (5.7) has a solution.

Lemma 5.10 Assume that

(H3.2) the function f : Nb−1
a+1 × R→ R is nondecreasing with respect to x for each

fixed t ∈ Nb−1
a+1.

(H3.3) the functions α0, β0 : Nb
a → R are lower and upper solutions respectively of

BVP (5.7).

Then α0(t) ≤ β0(t) on Nb
a.
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Proof. Let us first prove the lemma for strict inequality. That is, suppose

 (Laα0)(t) > f(t, α0(t)), t ∈ Nb−1
a+1,

α0(a) ≤ A, α0(b) ≤ B.

and  (Laβ0)(t) ≤ f(t, β0(t)), t ∈ Nb−1
a+1,

β0(a) ≥ A, β0(b) ≥ B.

The boundary conditions immediately give us α0(a) ≤ A ≤ β0(a) and α0(b) ≤ B ≤

β0(b). Next, we will show that α0(t) < β0(t) for t ∈ Nb−1
a+1. If it is not true, then there

exists t0 ∈ Nb−1
a+1 such that x(t) := α0(t) − β0(t) has a nonnegative maximum at t0.

That is, for some t0 ∈ Nb−1
a+1,

x(t0) = α0(t0)− β0(t0) = max{α0(t)− β0(t), t ∈ Nb−1
a+1} ≥ 0,

But then, x(t0) = max
t∈Nba

x(t), since x(a) = α0(a)−β0(a) ≤ 0 and x(b) = α0(b)−β0(b) ≤

0. Therefore, by Lemma 5.7, we obtain

(Lax)(t0) = (Laα0)(t0)− (Laβ0)(t0) ≤ 0.

So, we have

f(t0, α0(t0)) < (Laα0)(t0) ≤ (Laβ0)(t0) ≤ f(t0, β0(t0)),

On the other hand, our assumption that x(t0) = α0(t0)−β0(t0) ≥ 0⇒ β0(t0) ≤ α0(t0).

By (H3.2), f(t, x) is nondecreasing with respect to x for each t, so this, in turn, implies

f(t0, β0(t0)) ≤ f(t0, α0(t0))
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which is a contradiction. Hence, we conclude that α0(t) < β0(t) on Nb−1
a+1.

√

Now, we define α̃0(t) = α0(t) + ε(Hν+1(t, a) − Hν+1(b, a)), where ε > 0. Then

α̃0(t) < α0(t) for t ∈ Nb−1
a+1. Using the condition (H3.2), we get

(Laα̃0)(t) = (Laα0)(t) + (Laε(Hν+1(·, a)−Hν+1(b, a)))(t)

= (Laα0)(t) + ε

≥ f(t, α0(t)) + ε

≥ f(t, α̃0(t)) + ε

> f(t, α̃0(t)).

Thus α̃0(t) is a lower solution for which strict inequality holds. It therefore follows

from the previous argument that α̃0(t) < β0(t) for all t ∈ Nb−1
a+1. Note this holds for

all ε > 0. Letting ε → 0, we get α0(t) ≤ β0(t) for all t ∈ Nb−1
a+1. Thus, we have

α0(t) ≤ β0(t) on Nb
a. The proof is complete.

Corollary 5.11 Assume that (H3.2) holds. If BVP (5.7) has a solution, then it is

unique.

Proof. Suppose x(t) and x̄(t) are two solutions of BVP (5.7). Since any solution is

both a lower and an upper solution, by Lemma 5.10, we have

x(t) ≤ x̄(t) ≤ x(t)⇒ x(t) = x̄(t) on Nb
a.

That is, the solution of BVP (5.7), if one exists, is unique. By hypothesis a solution

exists, so x ≡ x̄. The proof is complete.

Next, we consider BVP (5.7) in the special case where f(t, x) = C(t)x and
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A = B = 0. That is, we consider the BVP

(Lax)(t) = C(t)x(t) for t ∈ Nb−1
a+1, x(a) = 0, x(b) = 0. (5.9)

Corollary 5.12 Assume that

(H3.4) the function C(t) ≥ 0 for t ∈ Nb−1
a+1.

If x(t) is a lower solution to BVP (5.9), then x(t) ≤ 0 on Nb
a. If y(t) is an upper

solution, then y(t) ≥ 0 on Nb
a.

Proof. By hypothesis, x(t) is a lower solution and, by inspection, z(t) ≡ 0 is a (upper)

solution to BVP (5.9). So Lemma 5.10 guarantees x(t) ≤ 0. Similiarly, y(t) is an

upper solution and z(t) ≡ 0 is a (lower) solution to BVP (5.9). So Lemma 5.10

guarantees y(t) ≥ 0. The proof is complete.

Since x(t) is a lower solution to BVP (5.9), it satisfies the inequalities

(Lax)(t) ≥ C(t)x(t) for t ∈ Nb−1
a+1, x(a) ≤ 0, x(b) ≤ 0. (5.10)

Lemma 5.13 Assume that

(H3.5) the functions α0, β0 : Nb
a → R are lower and upper solutions respectively of

BVP (5.7) such that α0(t) ≤ β0(t) on Nb
a

(H3.6) the function f : Ω → R is continuous in its second variable and f 6≡ 0 on

Ω.

Then there exists a solution x(t) of BVP (5.7) satisfying α0(t) ≤ x(t) ≤ β0(t) on Nb
a.

Proof. Let P : Nb−1
a+1 × R → R be defined by P (t, x) = max

{
α0(t),min{x, β0(t)}

}
.

Then f(t, P (t, x)) defines an extension of f to Nb−1
a+1 × R, which is continuous in its
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second variable, f 6≡ 0 and bounded. Therefore, by Lemma 5.9, the BVP

(Lax)(t) = f̄(t, x) := f(t, P (t, x)) for t ∈ Nb−1
a+1, x(a) = A, x(b) = B. (5.11)

has a solution x(t) on Nb
a.

To complete the proof, we just need to show that α0(t) ≤ x(t) ≤ β0(t) on Nb
a.

Doing so will mean that f̄(t, x(t)) = f(t, x(t)), which will imply x(t) is not only a

solution to BVP (5.11) but also actually a solution to BVP (5.7). Toward this end,

we first show that α0(t) ≤ x(t) on Nb
a. The boundary conditions immediately give

us that α0(a) ≤ x(a) and α0(b) ≤ x(b). To see that α0(t) ≤ x(t) on Nb−1
a+1, as in

the proof of Lemma 5.10, for ε > 0 define α̃ε(t) := α0(t) + ε[Hν+1(t, a)−Hν+1(b, a)].

Then α̃ε(t) ≤ α0(t) for t ∈ Nb
a and, in particular, α̃ε(a) < α0(a) ≤ x(a), and α̃ε(b) =

α0(b) ≤ x(b). If we can show α̃ε(t) < x(t) on Nb−1
a+1, then letting ε → 0, we get

lim
ε→0

α̃ε(t) = α0(t) ≤ x(t) for t ∈ Nb−1
a+1 and we will be done. So, toward contradiction,

assume that for some fixed ε > 0 this is not true. That is, assume that for some

fixed ε > 0 there exists t1 ∈ Nb−1
a+1 such that d(t) := α̃ε(t) − x(t) has a nonnegative

maximum at t1, i.e. for this t1 ∈ Nb−1
a+1,

d(t1) = α̃ε(t1)− x(t1) = max{α̃ε(t)− x(t), t ∈ Nb−1
a+1} ≥ 0.

But then, d(t1) = max
t∈Nba

d(t), since d(a) = α̃ε(a)−x(a) ≤ 0 and d(b) = α̃ε(b)−x(b) ≤ 0.

And so, by Lemma 5.7, we must have

(Lad)(t1) ≤ 0. (5.12)

On the other hand, our assumption that α̃ε(t1)−x(t1) ≥ 0⇒ x(t1) ≤ α̃ε(t1) ≤ α0(t1)
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and so we have P (t1, x(t1)) = α0(t1). Thus,

(Laα0)(t1) ≥ f(t1, α0(t1)) = f(t1, P (t1, x(t1))) = (Lax)(t1)

which implies

(Laα0)(t1)− (Lax)(t1) ≥ 0

which, in turn, implies,

(Lad)(t1) = (Laα̃ε)(t1)− (Lax)(t1)

= (Laα0)(t1) + ε(La[Hν+1(·, a)−Hν+1(b, a)](t1))− (Lax)(t1)

= (Laα0)(t1) + ε(1− 0)− (Lax)(t1)

= (Laα0)(t1)− (Lax)(t1) + ε

> 0.

which is in contradiction to (5.12). Thus, our assumption must be incorrect and it

must be the case that for all ε > 0, α̃ε(t) < x(t) on Nb−1
a+1. And so, as argued above,

letting ε → 0 we obtain our result that α0(t) ≤ x(t) on Nb
a. Similarly, we can show

that x(t) ≤ β0(t) on Nb
a. It follows that x(t) is a solution of BVP (5.7) which lies

between α0 and β0. The proof is complete.

Remark 5.14 The proof of the preceding theorem shows that if a function x is a

solution to BVP (5.11), then x ∈ S and x is a solution to BVP (5.7). The converse

is also true, since if x is a solution to BVP (5.7) and x ∈ S we have

(Lax)(t) = f(t, x(t)) = f(t, P (t, x(t))) = f̄(t, x(t)) for all t ∈ Nb−1
a+1.
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We will make use of this equivalence at the beginning of the proof to Theorem 4.1.

Lemma 5.15 Assume that (H3.2), (H3.5) and (H3.6) hold. Then BVP (5.7) has a

unique solution, x(t). Furthermore, α0(t) ≤ x(t) ≤ β0(t) on Nb
a.

Proof. By Lemma 5.13, there exists a solution to BVP (5.7) which lies in S. By

Corollary 5.11 this solution is unique. The proof is complete.

5.3 Main Results

In this section, we consider BVP (5.7) in the special case where f(t, x) is increasing

with respect to x and f(t, x) = f1(t, x) + f2(t, x), where f1(t, x) is concave up with

respect to x and f2(t, x) is concave down with respect to x. We then obtain sequences

of successive approximations by applying the generalized quasi-linearization method

to our nonlinear Caputo nabla fractional difference equation and show that the se-

quences so obtained converge quadratically to the solution. Furthermore, we use the

Gauss-Seidel method to improve the rate of convergence.

Theorem 5.16 Assume that the condition (H3.5) holds, and

(A4.1) f 6≡ 0 and f = f1 + f2 where the functions f1, f2 : Ω→ R are such that:

(i) f (i)
1 (t, x), f (i)

2 (t, x) (i = 0, 1, 2) exist and are continuous in the second variable,

(ii) f (1)
1 (t, x) + f

(1)
2 (t, y) ≥ 0 for all (t, x), (t, y) ∈ Ω, and

(iii) f (2)
1 (t, x) ≥ 0 and f (2)

2 (t, x) ≤ 0 on Ω.

Then there exist two sequences {αn(t)} and {βn(t)}, which converge monotonically

to the one function x in S(α0, β0) which is a solution to BVP (5.7). Furthermore,

the convergence is quadratic.2

2As in R. P. Agarwal et al (see [22, 3. Main Results, Theorem 1]), we define the quadratic
convergence of two sequences {αn} and {βn} which both converge to a common x, by the condition
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Proof. The proof proceeds as outlined below.

Step 1: Show there exists exactly one function x ∈ S(α0, β0) that is a solution to

BVP (5.7).

Step 2: Show how to obtain the sequences {αn} and {βn} and that for all n ≥ 0, the

functions αn and βn are lower and upper solutions respectively to BVP (5.7).

Step 3: Show the sequences {αn} and {βn} are monotonic and converge pointwise to

x.

Step 4: Show the convergence is quadratic.

Step 1: Let P (t, x) and f̄(t, x) be as in the proof of Lemma 5.13. Since, by

condition (A4.1)(ii), we have that f (1)(t, x) = f
(1)
1 (t, x) + f

(1)
2 (t, x) ≥ 0, the function

f : Ω → R is nondecreasing with respect to x for each t which, in turn, implies

f̄ : Nb−1
a+1×R→ R is nondecreasing with respect to x for each t. Therefore, by Lemma

5.15, BVP (5.11) has a unique solution, x. By Remark 5.14, this function x sits in

S and is also a solution to BVP (5.7). Furthermore, by the converse mentioned in

Remark 5.14, if x, x̄ ∈ S are two (possibly different) solutions to BVP (5.7), then they

must both also be solutions to BVP (5.11). However, as the solution to BVP (5.11)

is unique, this means x ≡ x̄. Thus, there exists exactly one function x ∈ S(α0, β0)

that is a solution to BVP (5.7).

Step 2: Next, we develop two sequences of successive approximations {αn(t)} and

{βn(t)} that both converge pointwise to the function x that we identified in Step 1.

that there exist constants C1, C2, C3, and C4 such that for all n ≥ 0,

‖x− αn+1‖ ≤ C1‖x− αn‖2 + C2‖βn − x‖2

and
‖βn+1 − x‖ ≤ C3‖βn − x‖2 + C4‖x− αn‖2.
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First, from the condition (A4.1) (iii), we obtain, for all (t, x), (t, y) ∈ Ω,

f1(t, y) ≥ f1(t, x) + f
(1)
1 (t, x)(y − x), (5.13)

and

f2(t, y) ≥ f2(t, x) + f
(1)
2 (t, y)(y − x). (5.14)

Next, consider the following two BVPs where α, β : Nb
a → R are fixed functions



(Lay)(t) = f1(t, α) + f
(1)
1 (t, β)(y − α) + f2(t, α) + f

(1)
2 (t, α)(y − α)

= f(t, α) + [f
(1)
1 (t, β) + f

(1)
2 (t, α)](y − α)

≡ F (t, α, β; y), t ∈ Nb−1
a+1,

y(a) = A, y(b) = B,

(5.15)

and



(Laz)(t) = f1(t, β) + f
(1)
1 (t, β)(z − β) + f2(t, β) + f

(1)
2 (t, α)(z − β)

= f(t, β) + [f
(1)
1 (t, β) + f

(1)
2 (t, α)](z − β)

≡ G(t, α, β; z), t ∈ Nb−1
a+1,

z(a) = A, z(b) = B.

(5.16)

Letting α = α0, β = β0 in BVPs (5.15), (5.16). We first prove that α0(t) and β0(t)

are lower and upper solutions of BVP (5.15), respectively. In fact, from the condition
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(H3.5), we have

(Laα0)(t)≥ f1(t, α0) + f2(t, α0) = F (t, α0, β0;α0), t ∈ Nb−1
a+1,

α0(a)≤ A, α0(b) ≤ B,

and by using the inequalities (5.13), (5.14), it follows that

(Laβ0)(t)≤ f1(t, β0) + f2(t, β0)

≤ f1(t, α0) + f
(1)
1 (t, β0)(β0 − α0) + f2(t, α0) + f

(1)
2 (t, α0)(β0 − α0)

= F (t, α0, β0; β0), t ∈ Nb−1
a+1,

β0(a)≥ A, β0(b) ≥ B.

These show that α0(t) and β0(t) are lower and upper solutions of BVP (5.15). Fur-

thermore, note that F : Nb−1
a+1 ×R→ R is continuous and nondecreasing with respect

to y. Thus, by Lemma 5.15, it follows that there exists a unique solution α1(t) of

BVP (5.15) such that α0(t) ≤ α1(t) ≤ β0(t) on Nb
a.

Similarly, using the condition (H3.5), and the inequalities (5.13), (5.14), we obtain

(Laα0)(t)≥ f1(t, α0) + f2(t, α0)

≥ f1(t, β0) + f
(1)
1 (t, β0)(α0 − β0) + f2(t, β0) + f

(1)
2 (t, α0)(α0 − β0)

= G(t, α0, β0;α0), t ∈ Nb−1
a+1,

α0(a)≤ A, α0(b) ≤ B,

and

(Laβ0)(t)≤ f1(t, β0) + f2(t, β0) = G(t, α0, β0; β0), t ∈ Nb−1
a+1,

β0(a)≥ A, β0(b) ≥ B.
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These show that α0(t) and β0(t) are lower and upper solutions of BVP (5.16). Fur-

thermore, note that G : Nb−1
a+1 ×R→ R is continuous and nondecreasing with respect

to z. Thus, by Lemma 5.15, it follows that there exists a unique solution β1(t) of

BVP (5.16) such that α0(t) ≤ β1(t) ≤ β0(t) on Nb
a.

Next, we show that α1(t) and β1(t) are lower and upper solutions of the original

BVP (5.7). Toward this end, using the fact that α1(t) is the unique solution of BVP

(5.15), the condition (A4.1) (iii), and the inequalities (5.13), (5.14), we have

(Laα1)(t) = f1(t, α0) + f
(1)
1 (t, β0)(α1 − α0) + f2(t, α0) + f

(1)
2 (t, α0)(α1 − α0)

≥ f1(t, α0) + f
(1)
1 (t, α1)(α1 − α0) + f2(t, α0) + f

(1)
2 (t, α0)(α1 − α0)

≥ f1(t, α1) + f2(t, α1), t ∈ Nb−1
a+1,

α1(a) = A, α1(b) = B,

which proves α1(t) is a lower solution of BVP (5.7). Similar arguments show that

(Laβ1)(t)≤ f1(t, β1) + f2(t, β1), t ∈ Nb−1
a+1,

β1(a) = A, β1(b) = B,

which shows that β1(t) is an upper solution of BVP (5.7).

Finally, to see that α1(t) ≤ β1(t) recall that, as we have shown above, for each

fixed t ∈ Nb
a, α0(t) ≤ α1(t), β1(t) ≤ β0(t). That is, α1, β1 ∈ S(α0, β0). As such,

f̄(t, α1(t)) = f(t, α1(t)) and f̄(t, β1(t)) = f(t, β1(t)) and so α1 and β1 are also lower

and upper solutions to BVP (5.11). Since f̄ : Nb−1
a+1 × R → R is nondecreasing with

respect to x and, from Step 1, we know that x is the unique solution to BVP (5.11),

we can invoke Lemma 5.10, to conclude α1(t) ≤ x(t) ≤ β1(t) on Nb
a. And so, we
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obtain

α0(t) ≤ α1(t) ≤ x(t) ≤ β1(t) ≤ β0(t) on Nb
a.

Thus, by iteration, we get

α0(t) ≤ α1(t) ≤ · · · ≤ αn(t) ≤ x(t) ≤ βn(t) ≤ · · · ≤ β1(t) ≤ β0(t) on Nb
a

where we obtain the functions αn+1 and βn+1 by the iterative schemes:


(Laαn+1)(t) = F (t, αn, βn;αn+1), t ∈ Nb−1

a+1,

= f(t, αn) + [f
(1)
1 (t, βn) + f

(1)
2 (t, αn)](αn+1 − αn)

αn+1(a) = A, αn+1(b) = B,

(5.17)

and 
(Laβn+1)(t) = G(t, αn, βn; βn+1), t ∈ Nb−1

a+1,

= f(t, βn) + [f
(1)
1 (t, βn) + f

(1)
2 (t, αn)](βn+1 − βn)

βn+1(a) = A, βn+1(b) = B.

(5.18)

Step 3: For any fixed t ∈ Nb
a, the monotone sequences {αn(t)} and {βn(t)} are

bounded above/below by x(t). As such, they converge pointwise to some limit func-

tions, ρ and r. That is, the functions ρ, r : Nb
a → R and satisfy

lim
n→∞

αn(t) = ρ(t) ≤ x(t) ≤ r(t) = lim
n→∞

βn(t).

By taking the limit as n → ∞ of the difference equation in BVPs (5.17) and (5.18)

we can show that ρ(t) and r(t) are solutions of BVP (5.7). Since ρ(t) and r(t) also

lie in S(α0, β0), it must be the case that ρ(t) = x(t) = r(t) on Nb
a. Hence αn(t) and
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βn(t) both converge monotonically to x(t).

Step 4: Finally, we show that the convergence of the sequences {αn(t)} and {βn(t)}

is quadratic. For this purpose, set

pn+1(t) = x(t)− αn+1(t) ≥ 0, and qn+1(t) = βn+1(t)− x(t) ≥ 0, t ∈ Nb
a.

By Corollary 5.4, the condition (A4.1) and the Mean Value Theorem, Lemma 5.3, and

Cauchy’s Inequality (respectively), we obtain

pn+1(t) =

ˆ b

a

G(t, s)f(s, x(s))∇s−
ˆ b

a

G(t, s)F (s, αn(s), βn(s);αn+1(s))∇s

=

ˆ b

a

G(t, s)
[
f1(s, x) + f2(s, x)

]
∇s

−
ˆ b

a

G(t, s)

 f1(s, αn) + f
(1)
1 (s, βn)(αn+1 − αn)+

f2(s, αn) + f
(1)
2 (s, αn)(αn+1 − αn)

∇s

=

ˆ b

a

G(t, s)


[
f

(1)
1 (s, βn) + f

(1)
2 (s, αn)

]
pn+1+[

f
(1)
1 (s, ξ3)− f (1)

1 (s, βn)
]
pn+[

f
(1)
2 (s, ξ4)− f (1)

2 (s, αn)
]
pn

∇s
≤
ˆ b

a

G(t, s)
[
f

(2)
1 (s, η1)(ξ3 − βn)pn + f

(2)
2 (s, η2)(ξ4 − αn)pn

]
∇s

≤
ˆ b

a

|G(t, s)|
[
A1‖pn + qn‖‖pn‖+B1‖pn‖‖pn‖

]
∇s

≤MA1‖pn‖(‖pn‖+ ‖qn‖) +MB1‖pn‖2

=
(3

2
MA1 +MB1

)
‖pn‖2 +

1

2
MA1‖qn‖2

where M := max
t∈Nba

∑b
s=a+1 |G(t, s)| = (b−a)2

4Γ(ν+2)
, αn(t) ≤ ξ3(t), ξ4(t) ≤ x(t), ξ3(t) ≤

η1(t) ≤ βn(t), αn(t) ≤ η2(t) ≤ ξ4(t), |f (2)
1 (t, x)| ≤ A1, |f (2)

2 (t, x)| ≤ B1 for t ∈ Nb
a.
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So, we have

‖pn+1‖ ≤
(3

2
MA1 +MB1

)
‖pn‖2 +

1

2
MA1‖qn‖2.

Similarly, we may obtain

‖qn+1‖≤
(
MA1 +

3

2
MB1

)
‖qn‖2 +

1

2
MB1‖pn‖2.

The proof is complete.

Next, we will apply the Gauss-Seidel method to possibly improve upon the con-

vergence rate of the iterative scheme described in Theorem 5.16.

Theorem 5.17 Let all the hypotheses of Theorem 5.16 hold. Consider the iterative

schemes given by



(Laα
∗
n+1)(t) = f1(t, α∗n) + f

(1)
1 (t, β∗n)(α∗n+1 − α∗n)

+ f2(t, α∗n) + f
(1)
2 (t, α∗n)(α∗n+1 − α∗n)

≡ F (t, α∗n, β
∗
n;α∗n+1), t ∈ Nb−1

a+1,

α∗n+1(a) = A, α∗n+1(b) = B,

(5.19)

and 

(Laβ
∗
n+1)(t) = f1(t, β∗n) + f

(1)
1 (t, β∗n)(β∗n+1 − β∗n)

+ f2(t, β∗n) + f
(1)
2 (t, α∗n+1)(β∗n+1 − β∗n)

≡ G(t, α∗n+1, β
∗
n; β∗n+1), t ∈ Nb−1

a+1,

β∗n+1(a) = A, β∗n+1(b) = B.

(5.20)

starting with α∗0 = α0, β∗0 = β0 on Nb
a. The two sequences obtained via this iterative

scheme{α∗n(t)} and {β∗n(t)}, n ≥ 0 converge monotonically to the x(t), the one so-

lution of the BVP (5.7) which lies between α0 and β0, and the convergence is faster
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than (or equal to) quadratic.

Proof. Initially, we compute α∗1(t) using the following BVPs


(Laα

∗
1)(t) = f1(t, α∗0) + f

(1)
1 (t, β∗0)(α∗1 − α∗0) + f2(t, α∗0) + f

(1)
2 (t, α∗0)(α∗1 − α∗0)

≡ F (t, α∗0, β
∗
0 ;α∗1), t ∈ Nb−1

a+1,

α∗1(a) = A, α∗1(b) = B.

(5.21)

Now, we compute β∗1(t) using β∗0(t) and α∗1(t), that is, β∗1(t) is a solution of


(Laβ

∗
1)(t) = f1(t, β∗0) + f

(1)
1 (t, β∗0)(β∗1 − β∗0) + f2(t, β∗0) + f

(1)
2 (t, α∗1)(β∗1 − β∗0)

≡ G(t, α∗1, β
∗
0 ; β∗1), t ∈ Nb−1

a+1,

β∗1(a) = A, β∗1(b) = B.

(5.22)

It is clear that α0(t) = α∗0(t) ≤ α∗1(t) and β∗1(t) ≤ β∗0(t) = β0(t) on Nb
a.

Put p(t) := β∗1(t)− β1(t). Then p(a) = p(b) = 0. Also, we have

(Lap)(t) = [f1(t, β∗0) + f
(1)
1 (t, β∗0)(β∗1 − β∗0) + f2(t, β∗0) + f

(1)
2 (t, α∗1)(β∗1 − β∗0)]

− [f1(t, β0) + f
(1)
1 (t, β0)(β1 − β0) + f2(t, β0) + f

(1)
2 (t, α0)(β1 − β0)]

≥ f
(1)
1 (t, β0)(β∗0 − β1) + f

(1)
2 (t, α∗1)(β∗0 − β1)

= [f
(1)
1 (t, β0) + f

(1)
2 (t, α∗1)]p.

So p is a lower solution to a BVP of the form BVP (5.9). Thus, by Corollary 5.12,

we know p(t) ≤ 0 on Nb
a. That is, β∗1(t) ≤ β1(t) on Nb

a. Using similar arguments we

are iteratively able to show that for all n ≥ 0, αn(t) ≤ α∗n(t) and β∗n(t) ≤ βn(t) for

all t ∈ Nb
a. Hence the sequences {α∗n(t)} and {β∗n(t)} must converge at least as fast

as the sequences {αn(t)} and {βn(t)} that were computed using the iterative scheme
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described in Theorem 5.16. The proof is complete.

Remark 5.18 When the function f(t, x) is the sum of (n − 1)-hyperconvex and

(n− 1)-hyperconcave functions (i.e. f(t, x) = f1(t, x) + f2(t, x), where f (n)
1 (t, x) ≥ 0,

and f
(n)
2 (t, x) ≤ 0), we can obtain two monotone sequences {αn(t)} and {βn(t)},

whose convergence is of order n (n ≥ 2). The proof is similar to that of Theorem

5.16, so we omit the details.

5.4 Example

Now, we give an example to illustrate the results established in the previous section.

Example 5.19 Consider the following BVP


(Lax)(t) = −1

3
x3(t) +

1

2
x2(t) + x(t), t ∈ N4

1,

x(0) = 0, x(5) = 1,

(5.23)

where a = 0, ν = 1
2
.

Taking α0(t) ≡ 0, β0(t) ≡ 1, it is quick to verify that α0(t), β0(t) are lower and

upper solutions of BVP (5.23), respectively. Let f(t, x) = f(x) = −1
3
x3 + 1

2
x2 + x.

Then f(x) = f1(x) + f2(x) where f1(x) = 1
2
x2 + x and f2(x) = −1

3
x3. Thus,

f
(1)
1 (t, x) = x+ 1 > 0, f

(2)
1 (t, x) = 1 > 0 on Ω = N4

1 × [0, 1],

f
(1)
2 (t, x) = −x2 ≤ 0, f

(2)
2 (t, x) = −2x(t) ≤ 0 on Ω.
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Table 5.1: Table of three α, β-iterates of (5.23).

t α0(t) α1(t) α2(t) α3(t) β3(t) β2(t) β1(t) β0(t)

0 0 0 0 0 0 0 0 1
1 0 0.007355 0.021545 0.027694 0.028628 0.067598 0.354038 1
2 0 0.025743 0.058914 0.069876 0.071137 0.115480 0.405802 1
3 0 0.087341 0.152969 0.167201 0.168294 0.205791 0.454208 1
4 0 0.295581 0.391591 0.403170 0.403700 0.424171 0.582092 1
5 0 1 1 1 1 1 1 1

Table 5.2: Table of three α∗, β∗-iterates of (5.23).

t α∗0(t) α∗1(t) α∗2(t) α∗3(t) β∗3(t) β∗2(t) β∗1(t) β∗0(t)

0 0 0 0 0 0 0 0 1
1 0 0.007355 0.021572 0.028417 0.028532 0.066598 0.353610 1
2 0 0.025743 0.058982 0.070027 0.070946 0.112921 0.404336 1
3 0 0.087341 0.153110 0.167290 0.168026 0.200221 0.449635 1
4 0 0.295581 0.391971 0.403220 0.403523 0.418531 0.570861 1
5 0 1 1 1 1 1 1 1

Now, if we apply the iteration scheme of Theorem 5.16, after three iterations we

find the α, β-iterates given in Table 5.1. The graph in Figure 5.1 shows the α-iterates

(with broken line) and the β-iterates (with unbroken line).

If we apply the iteration scheme of Theorem 5.17, after three iterations we find

the α∗, β∗-iterates given in Table 5.2. The graph in Figure 5.2 shows the α∗-iterates

(with broken line) and the β∗-iterates (with unbroken line).
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Figure 5.1: α, β-iterates
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Figure 5.2: α∗, β∗-iterates
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Appendix A

Select Definitions and Results from Discrete Fractional

Calculus by C. Goodrich and A. C. Peterson

Definition A.1. (See [5, Definition 3.4]). The (generalized) rising function is defined

in terms of the Gamma function by

tr :=
Γ(t+ r)

Γ(t)
(A.1)

for those values of t and r so that the right-hand side of (A.1) is sensible.

Definition A.2. (See [5, Definition 3.56]). Let ν 6= −1,−2, · · · . Then we define the

ν-th order nabla fractional Taylor monomial Hν(t, a), by

Hν(t, a) :=
(t− a)ν

Γ(ν + 1)
=

Γ(t− a+ ν)

Γ(t− a)Γ(ν + 1)
(A.2)

whenever the right-hand side of this equation is sensible. 1

1In this dissertation, we extend the ν-th order Taylor monomials by defining

H̃ν(t, a) := lim
ε→0

Γ(t− a+ ν + ε)

Γ(t− a+ ε)Γ(ν + 1 + ε)

for all ν ∈ R, and all t ∈ Za. Since the Gamma function is continuous on (0,∞) and has no zeros,
it is clear that when t > a and ν > −1, H̃ν(t, a) = Hν(t, a).
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Definition A.3. (Nabla Fractional Sum [5, Definition 3.58]). Let f : Na → R, ν > 0

be given. Then

(∇−νa f)(t) =

ˆ t

a

Hν−1(t, ρ(s))f(s)∇s, t ∈ Na. (A.3)

Definition A.4. (Nabla Fractional Difference [5, Definition 3.61]). Let f : Na → R,

ν > 0 be given, and let N := dνe, where d·e is the ceiling function. Then we define

the νth-order nabla fractional difference ∇ν
af(t) by

(∇ν
af)(t) = (∇N(∇−(N−ν)

a f))(t), t ∈ Na+N . (A.4)

Definition A.5. (Caputo Nabla Fractional Difference [5, Definition 3.117]). Let

f : Na−N+1 → R, ν > 0 be given, and let N := dνe. Then we define the νth-order

Caputo nabla fractional difference ∇ν
a∗f(t) by

(∇ν
a∗f)(t) = (∇−(N−ν)

a (∇Nf))(t), t ∈ Na+1. (A.5)

Theorem A.6. (See [5, Definition 3.61 and Theorem 3.62]). Assume f : Na → R,

ν > 0, ν /∈ N1, and choose N ∈ N1 such that N − 1 < ν < N . Then

(∇ν
af)(t) =

ˆ t

a

H−ν−1(t, ρ(s))f(s)∇s, t ∈ Na+N , (A.6)



112

Theorem A.7. (Nabla Leibniz Formula [5, Theorem 3.41]). Assume f : Na×Na+1 →

R. Then for t ∈ Na+1,

∇
(ˆ t

a

f(t, τ)∇τ
)

=

ˆ t

a

∇tf(t, τ)∇τ + f(ρ(t), t). (A.7)

Also,

∇
(ˆ t

a

f(t, τ)∇τ
)

=

ˆ t−1

a

∇tf(t, τ)∇τ + f(t, t). (A.8)

Corollary A.8. (See [5, Corollary 3.122]). For ν > 0, N = dνe, and h : Na+1 → R,

we have that

(∇−(N−ν)
a (∇N−ν

a h))(t) = h(t), t ∈ Na+1.
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Appendix B

Summary of Results from Chapters 2 and 3

Definition B.1. For all γ ∈ R, and all s, t ∈ Za, we define:

H̃γ(t, s) := lim
ε→0

Γ(t− s+ γ + ε)

Γ(t− s+ ε)Γ(γ + 1 + ε)
and Hγ(t, s) :=

 H̃γ(t, s), t > s,

0 , t ≤ s.

Corollary B.2. For all γ ∈ R and all t, s ∈ Za

H̃γ(t, s) =


Pt−s−1(γ), for t > s and γ ∈ R

Pγ(t− s− 1), for t ≤ s and γ = n ∈ N0

0, for t ≤ s and γ ∈ R \ N0.

Remark B.3. Theorem 1.8 and 1.9 and Corollary 3.11 combine to give us the fol-

lowing formula and complete picture of H̃γ(t, s) for all γ ∈ R and all t, s ∈ Za.

H̃γ(t, s) = Pρ(t)−s(γ) + (−1)γ
(
|t− s|
γ

)
1N0

(γ)1(−∞,s](t) .
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t

γ

s− 4 s− 3 s− 2 s− 1 s+ 1 s+ 2 s+ 3 s+ 4 s+ 5

2

1

−1
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1

)
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(

2
1

)
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(

3
1

)
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(

4
1

) (
1
1

) (
2
1

) (
3
1

) (
4
1

)
(

2
2

)(
3
2

)(
4
2

) (
2
2

) (
3
2

) (
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2
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2

)

(
0
0

) (
0
1

) (
0
2

) (
0
3

)
(

1
0

)
−
(

1
1

) (
1
2

) (
1
3

)
(

2
0

)
−
(

2
1

) (
2
2

) (
2
3

)
(

3
0

)
−
(

3
1

) (
3
2

)
−
(

3
3

)

1 ≤ <∞
0 < < 1

0 = = 0
−1 < < 0
−∞ < ≤ −1

H̃γ(t, s) := lim
ε→0

Γ(t−s+γ+ε)
Γ(t−s+e)Γ(γ+1+e)

Figure B.1 - H̃γ(t, s) with tν Annotated

tν

Theorem B.4. For fixed ν > 0, Hν(t, a)→∞ as t→∞.

Corollary B.5. For ν > 0, Hν(·, a) is strictly increasing and without bound on Na.

Theorem B.6. For fixed ν > 0, H−ν(t, a)→ 0 as t→∞.

Theorem B.7. (P-Integrals)

ˆ ∞
a

H−p(t, a)∇t =


0 , whenever p > 1

1 , when p = 1

∞ , whenever p < 1.

Definition B.8. For ν > 0, we put N := dνe and define

tν := sup{t ∈ Za : t ≤ a+N and (∇|H−ν(·, a)|) (t) ≥ 0}.
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Corollary B.9. (‖H−ν‖∞ and Monotonicity) For all ν > 0,

tν = a+ bν
2
c+ 1.

|H−ν(·, a)| is increasing on (−∞, tν ] and decreasing on [tν ,∞). Therefore, 1

‖H−ν(·, a)‖∞ = |H−ν(tν , a)| =
∣∣∣Pbν/2c(−ν)

∣∣∣.
Definition B.10. For ν > 0, we define

Tν := sup{t ∈ Za : |H−ν(t, a)| ≥ 1}.

That is, Tν is the latest time for which |H−ν(t, a)| ≥ 1.

Corollary B.11. For ν > 0 and Tν as defined above,

Tν = a+ max{bνc, 1}.

Theorem B.12. For ν > 0, sgnH−ν(·, a) alternates on [a+ 1, Tν ] and is constant on

[Tν + 1,∞). That is, sgnH−ν(t, a) = c for all t ∈ NTν+1, where

c =


1, when ν ∈ (0, 1)

(−1)Tν−a, when ν ∈ (1,∞) \ N1

0, when ν ∈ N1

=


(−1)bνc, when ν ∈ (0,∞) \ N1

0, when ν ∈ N1.

1Interesting fact: The function f(ν) := ‖H−ν(·, a)‖∞ is continuous and increasing on [0,∞).
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Remark B.13. Recall that for all γ ∈ R, ν > 0, N := dνe, and for all t ∈ Za:

(∇γ
af)(t) =

ˆ t

a

H−γ−1(t, ρ(s))f(s)∇s

(∇γf)(t) =

ˆ t

−∞
H−γ−1(t, ρ(s))f(s)∇s =

ˆ ∞
−∞

H−γ−1(t, ρ(s))f(s)∇s = (H−γ−1 ∗ f)(t)

(∇ν
a∗f(t) := (∇ν−N

a ∇Nf)(t).

Theorem B.14. For k, n ∈ N0, α, β ∈ R, ν > 0, and N := dνe the following

equations show how the various nabla operators act on the Taylor monomials. For all

t ∈ Za,

∇γ
· Hβ(t, a) = Hβ−γ(t, a) where ∇γ

· ∈ {∇α,∇α
a ,∇ν

a∗}

∇α
aH̃k(t, a) = Hk−α(t, a)

∇nH̃k(t, a) =


H̃k−n(t, a), (k − n) ≥ 0

0, (k − n) < 0

∇ν
a∗H̃k(t, a) =


Hk−ν(t, a), (k − ν) ≥ 0

0, (k − ν) < 0.

Remark B.15. The following operator composition rules hold for all f : Za → R.

For all α, γ ∈ R, µ, ν ∈ [0,∞), M := dµe, N := dνe, and m,n ∈ N0: 2:

(i) (a) ∇γ∇α
a = ∇γ+α

a

(b) ∇γ
a∇α

a = ∇γ+α
a

(c) ∇µ
a∗∇α

a = ∇µ+α
a

2Setting γ = 0 in (iii)(a) gives us a formula for the Caputo fractional difference in terms of the
Riemann-Liousville fractional difference.
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(ii) (a) ∇γ∇n = ∇γ+n

(b) ∇γ
a∇nf = ∇γ+n

a

[
f−

n−1

Σ
k=0

[(∇kf)(a)]Hk(·, a)

]
(c) ∇µ

a∗∇n = ∇µ+n
a∗

(iii) (a) ∇γ∇ν
a∗f = ∇γ+ν

a

[
f−

N−1

Σ
k=0

[(∇kf)(a)]Hk(·, a)

]
(b) ∇γ

a∇ν
a∗f = ∇γ∇ν

a∗f

(c) ∇µ
a∗∇ν

a∗f = ∇µ∇ν
a∗f.
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