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 Ultra-thin layer chromatography (UTLC) is a growing field in analytical 

separations. UTLC is a branch of planar and liquid chromatography that is related to thin 

layer chromatography. The main advantage of UTLC compared to other techniques is it 

uses much less material, allowing for faster and more sensitive separations to take place. 

The UTLC devices fabricated in this project used either silicon oxide or silicon 

nanopillars deposited on a glass slide using glancing angle deposition (GLAD). Even a 

thin layer of these nanopillars deposited on a glass slide provide a large surface area for 

the analyte to be separated. GLAD is a physical vapor deposition technique that allows, 

in this case, silicon oxide or silicon to be vaporized by an ion source and deposited in 

slanted pillar structures onto a glass substrate. 

 The overall goal of this thesis is to develop and optimize a nanomaterial 

support/stationary phase for a UTLC device that can be utilized for affinity 

chromatography. The studies performed in this thesis provide proof-of-concept that SiO2 

nanopillars can perform efficient separations and that protein can also be immobilized 

onto the surface of the nanopillars. With further studies, protein immobilization can be 

fully optimized and affinity separations performed on these UTLC devices.  
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CHAPTER 1: GENERAL INFORMATION 

1.1 ULTRA-THIN LAYER CHROMATOGRAPHY 

Although it takes its roots from some of the earliest methods in chromatography, 

ultra-thin layer chromatography (UTLC) has seen much interest and development in 

recent years. UTLC, in its most basic form, is simply planar chromatography. Simple 

planar chromatography, such as thin layer chromatography (TLC), has been used as a 

preparative technique for thousands of years and has been commonly used for analytical 

separations for the past hundred years.1,2 Advantages of using planar chromatography, as 

compared to column chromatography, are its simplicity, cost-efficiency, and 

compatibility with most off-line detection methods on the market.3,4 Therefore, the 

further development of UTLC is advantageous to future applications of chromatography. 

To fully understand UTLC, the properties of planar chromatography and how it 

works must be explored. The basic setup of any planar chromatographic system is given 

in Figure 1.1. In planar chromatography, the interaction between the mobile phase (or 

solvent) and the analyte (or solute) is described by the retardation factor (Rf). The 

retardation factor is similar to the retention factor in column chromatography and is a 

unitless measurement of retention. The value of Rf always falls between 0 to 1 and is 

given in equation (1.1). 

𝑅𝑓 =
𝑑𝑎

𝑑𝑚𝑝
      (1.1) 

In this equation, da is the distance traveled by the analyte in a given amount of time, and 

dmp is the distance traveled by the mobile phase or solvent front in the same amount of 
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time, with both measurements beginning at the initial spotting point.4,5 Although the 

value of the retardation factor does not give any definitive qualitative information that 

can be used to describe the efficiency of planar separations, this value does help with 

identifying analytes if their separation is taking place under identical experimental 

conditions to those used to obtain a reference value.  
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Figure 1.1. The theory of planar chromatography. A sample is 

applied in a spot, and the mobile phase is wicked onto the system 

via capillary forces. The sample will separate into its 

components based on how strongly each analyte interacts with 

the stationary phase. The retardation factor of an analyte is 

measured in relation to the base line, or point of sample 

application, on the support material. 
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Other parameters that can help describe separation efficiency in planar 

chromatography are the plate height (H) and the plate number (n), which are given by 

equations (1.2) and (1.3). As the plate number increases and the plate height decreases, 

the overall efficiency of the system improves and results in sharper peaks or bands.  

𝑛 = 16 (
𝑑𝑎

𝑊𝑏,𝑎
)

2

     (1.2) 

𝐻 =
𝑑𝑎

𝑛
=

𝑊𝑏,𝑎
2

16𝑑𝑎
     (1.3) 

In these equations, da is the distance traveled by the analyte from the initial spotting point 

and Wb,a is the baseline width of the analyte peak.1  

 Another way of describing the plate height in planar chromatography is by using a 

modified form of the van Deemter equation, known as the Knox equation, as shown in 

equation (1.4).6 

𝐻 = 𝐴√𝑢
3

+
𝐵

𝑢
+ 𝐶𝑢     (1.4) 

The A term in the equation corresponds to how eddy diffusion affects the separation. The 

effect of A can be decreased by using smaller particles for the support and making sure it 

is well packed. The B term corresponds to how longitudinal diffusion affects the 

separation. The effect of the B term on the separation can be decreased by increasing the 

flow rate, which allows the analyte to pass through the system quicker, leading to less 

longitudinal diffusion. The C term corresponds to how the resistance to mass transfer 

affects the separation. The effect of the C term can be decreased by minimizing the time 
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it takes for partitioning to occur for a solute between the mobile phase and stationary 

phase.2,7 

 Like TLC and high-performance TLC (HPTLC), the separations that occur on an 

UTLC plate can be characterized by these various parameters. UTLC was formally 

introduced in 2002 in studies by Hauck and Schultz.3,8,9 UTLC is unique compared to 

other types of planar chromatography because of its support size, with monolithic 

supports of around 10 µm serving as the stationary phase/support. Separations also occur 

within distances of 1-3 cm in UTLC, compared to a much longer separation distance in 

TLC and HPTLC. Another novel feature of UTLC is that the stationary phase/support can 

be directly bonded onto the silicon or a glass slide, which acts as the substrate.9 The use 

of a monolith allows a smaller amount of stationary phase/support to be used because of 

the complexity of the monolith. The monoliths are typically made up of two different 

sized pores: macropores, which measure greater than 50 nm, and mesopores, which 

measure between 2-50 nm. The small pore sizes allow for better separation in the short 

distances used by UTLC. Another advantage of utilizing UTLC plates is that the volume 

of material that is used (i.e. both the solute and solvent) is significantly less than other 

planar chromatographic systems.5 The analyte can be applied in nanoliter quantities and 

most of the time only a few milliliters of solvent is needed to perform the separation. The 

application of such small quantities of liquid will be discussed in a later chapter.  

 There have been several recent studies that have shown how UTLC can be used in 

diverse applications. Most commonly, UTLC is incorporated into lab-on-a-chip devices 

and paired with an offline detector to provide rapid, portable screening devices.10–12 The 

most frequently used offline detectors are based on surface enhanced Raman 
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spectroscopy. This pairing has been used in the analysis of a variety of analytes, 

including organic and biochemical mixtures. These separations can also be enhanced by 

incorporating silver nanoparticles into the stationary phase/support to provide for even 

more efficient separations.13,14 Nanoparticles and other support ligands will be discussed 

in a later section of this chapter. 

1.2 AFFINITY CHROMATOGRAPHY 

Affinity chromatography is a chromatographic technique that utilizes biologically-

related compounds as a stationary phase to perform selective separations.15–20 A simple 

diagram of the separation process in affinity chromatography is shown in Figure 1.2. In 

affinity chromatography, a binding agent (or “affinity ligand”) is first immobilized onto a 

support. A solution is then applied to the system and the desired analyte is allowed to 

bind to the affinity ligand while non-retained sample components are eluted from the 

system. The desired analyte is then eluted off the column by changing the system 

conditions, which is most commonly achieved by changing the composition of the mobile 

phase. By returning the system to the original conditions, the affinity ligand is then 

allowed to regenerate for future use. This format gives good reproducibility throughout 

the experiments and also lowers the cost of the overall method by reusing the binding 

agent.15–17  
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Valuable information about the analyte can be gained by using affinity 

chromatography, such as its retention factor (k), association constant (Ka), and 

dissociation constant (Kd). All of these values can be calculated by knowing the 

concentration of the analyte and of the solution, the amount of mobile phase that has been 

applied, and time the analyte has eluted off the column. The retention factor, association 

constant, and dissociation constant are described by equations (1.5-1.7). 

𝑘 =
𝑡𝑟−𝑡𝑚

𝑡𝑚
     (1.5) 

𝐾𝑎 =
[𝐴−𝐿]

[𝐴][𝐿]
     (1.6) 

𝐾𝑑 =
1

𝐾𝑎
     (1.7) 

In these equations, tr and tm are the retention time of the analyte and the column void 

time, respectively; [A] is the concentration of the analyte in the applied sample solution, 

and [L] is the concentration of the affinity ligand that is immobilized onto the support of 

the system.17  

 Although traditionally performed in the form of column chromatography, affinity 

chromatography can also be applied to UTLC under the right conditions.21–23 The 

retention factor that is used in column chromatography will be replaced in this case by 

the retardation factor, as given earlier in equation (1.1). One setback in applying the 

principles of affinity chromatography to UTLC is that the support/stationary phase of the 

UTLC system should be compatible with the affinity ligand. This is also a concern with 

column chromatography, but UTLC tends to employ a greater variety of supports that 
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would not be a good host for biological ligands. For instance, silica with a hydrophilic 

layer is often used as a support in high performance affinity chromatography (HPAC); 

this means silica supports must be designed on a micro-scale for use in a comparable 

separation method in UTLC.14 Some of the nanomaterials that are being used as supports 

in UTLC will be discussed in the next section.  

1.3 NANOMATERIALS AS CHROMATOGRAPHIC SUPPORTS 

Using nanomaterials as a chromatographic support is a growing field of study. 

Nanomaterials have several advantages compared to other chromatographic support 

including their ability to sometimes provide greater sensitivity, higher binding capacity, 

and higher enrichment efficiency. Another large advantage of using a nanomaterial as a 

chromatographic support is that it is highly customizable, which allows for greater 

selectivity in the system.10,13,14,24,25 This also makes nanomaterials of interest as possible 

supports for affinity chromatography. Nanomaterials have a higher surface-to-volume 

ratio than traditional particle-based supports.10,13,14 For this reason, nanomaterials are the 

most commonly used chromatographic support in UTLC because they can provide good 

separation efficiencies on a small scale. 

Nanomaterials are becoming more common in affinity chromatography due to their 

ease of customizability. This has been particularly true in two sub-branches of affinity 

chromatography that have used metal nanoparticles: immobilized metal affinity 

chromatography (IMAC) and metal oxide affinity chromatography (MOAC). Metal-

based nanoparticle hybrid supports have been used in several studies and have been 

shown to provide efficient separations of biological mixtures.21–23,26,27 Organic-based 
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nanomaterials are also a viable option when performing affinity chromatographic studies. 

In addition, carbon nanotubes have been explored for several years as a support for 

biological separations.10,12 

The most common nanomaterial supports that have been used in UTLC are inorganic 

polymers. The most common of these nanomaterials in UTLC are silica nanoparticles, 

which have been either electrospun or directly deposited onto the base of the device (i.e. 

a glass slide or silicon).28,29 Vapor deposition of nanoparticles will be discussed in a later 

chapter. There have also been several studies performed with polymer nanofibers that 

have been deposited on a device by using electrospinning.30 To enhance the separations, 

metal nanoparticles can also coat the support. Several studies have been performed using 

a thin coating of Ag, Au, Zn, or Ti on top of a base nanomaterial support. This extra 

coating allows the sample to be more easily detected by offline detectors or allows for 

more specific analytes to be targeted, as in affinity chromatography.10,11,21–23,26,27  

1.4 OVERALL GOAL AND SUMMARY OF WORK 

The overall goal of this thesis is to develop and characterize nanomaterial supports 

for ultra-thin layer chromatography, with possible applications in affinity 

chromatography. A method has already been developed for depositing a SiO2 

nanomaterials onto a UTLC device, but affinity separations had not been tested in prior 

work with this type of substrate. The goal of this study is to develop a separation method 

on a UTLC device that may allow bioaffinity separations to be performed.  

Chapter 2 will focus on the separation of a lipophilic dye mixture on a SiO2 

nanopillar stationary support that is present on a UTLC device. This study will discuss 



11 
 

 
 

the development of a method to run samples on the UTLC device effectively and to 

provide quantitative data on the separation. This study will also be used to determine the 

optimum conditions for such separations to occur. Chapter 3 will focus on the process of 

immobilizing human serum albumin (HSA) onto the SiO2 nanopillar supports. This study 

will examine the optimization of an immobilization method and quantification of protein 

that has been immobilized onto the nanopillar supports. Chapter 4 will give an overview 

of the work presented in this thesis and will discuss the future directions for this project. 

One such future direction would be to perform UTLC studies of a lipophilic dye mixture 

on HSA that has been immobilized onto SiO2 nanopillar supports. 
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CHAPTER 2: SEPARATION OF LIPOPHILIC DYES UTILIZING ULTRA-THIN 

LAYER CHROMATOGRAPHY AND SiO2 NANOPILLARS 

2.1 INTRODUCTION 

 Lipophilic dyes are commonly used as tags to help aid in the several types of 

chromatographic studies. They can be used in their simplest form on a macroscopic scale 

to help track tagged compounds visually, or they can be used on an instrumental level as 

fluorescent tags.1–6 Because of their structure, lipophilic dyes work well in systems which 

use a non-polar mobile phase.4 The separation of lipophilic dyes on a SiO2 nanopillar 

support/stationary phase is an important technique to master because lipophilic dyes can 

be employed as a model with this method for the chromatographic separation of 

biological compounds.  

 In the following experiments, the SiO2 nanopillars are deposited onto a glass 

support using glancing angle deposition (GLAD). GLAD is a physical vapor deposition 

technique commonly used to deposit inorganic compounds onto a variety of substrates. 

GLAD takes place in a high-vacuum chamber, which allows for a controlled deposition 

of small pillar- or column-like structures. While depositions measuring into the 

micrometer range (most commonly < 10 µm) can be done, GLAD experiments tend to 

perform good, consistent pillars in the nanometer range (i.e., depositions of <100 nm are 

common).7–11 A diagram of a GLAD unit is shown in Figure 2.1. 
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Figure 2.1. A diagram of a GLAD system. The vapor flux is deposited onto the substrate. 

The substrate angle can be changed to control the angle at which the deposition occurs on 

the substrate. This figure was reproduced with permission from [10]. 
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GLAD operates on the principle that vapor deposition is occurring at oblique angles, 

which ensures that the vapor flux is not parallel to the substrate onto which it is 

deposited. This is what gives rise to column-like structures being deposited on the 

substrate. Based on the angle of the substrate during deposition, columns will form on the 

substrate at a desired angle to maximize the surface area of deposited pillars, as well as to 

determine the incident flux on the substrate. This oblique deposition, in principle, leads to 

the columns having anisotropic properties.7,9  

 The work in this chapter will focus on the development of a method to separate a 

mixture of lipophilic dyes on a SiO2 nanopillar stationary phase on a UTLC device. 

Several challenges were faced during the process of trying to effectively separate the dye 

mixture, including optimizing the mobile phase and the concentration of the dye mixture. 

After optimizing these parameters, studies were performed and quantitative data were 

obtained from the experiments, including the retardation factor of each dye. This 

information could be determined visually and also confirmed the ability to use this type 

of material with anisotropic contrast optical microscopy (ACOM), an ellipsometric 

technique.12  

2.2 EXPERIMENTAL SECTION 

  2.2.1 Materials 

 Dimethyl yellow indicator, Sudan Blue II (dye content 98%), hexane (for HPLC, 

purity > 97.0%), toluene (HPLC Plus, purity > 99.9%), 1-bromo-2-chloroethane (purity 

98%), and isopropanol (HPLC grade, purity > 99.5%) were all purchased from Sigma-

Aldrich (St. Louis, MO, USA).  
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  2.2.2 Apparatus 

 The following studies were performed using a syringe pump for dispensing a 

mobile phase through PEEK tubing at 0.5 µL/min. The mobile phase was comprised of a 

2:1:1 mixture of toluene: hexane: 1-bromo-2-chloroethane. A Kim-wipe was cut into a 

strip of approximately 0.5 in × 3 in and used as a wick to transport mobile phase from the 

PEEK tubing onto the UTLC device. The dye mixture spot was deposited onto the UTLC 

plate using a GeSIM Nano-Plotter 2.1 (located in Dr. Rebecca Lai’s lab in the UNL 

Department of chemistry) approximately 0.25 in away from the near edge of the plate, 

with the direction of the flux being in the same direction as the mobile phase flow. The 

UTLC device was contained in an evaporation dish, and once the system was set up, 

covered with a watchglass. A diagram of the apparatus setup is shown in Figure 2.2. Both 

the custom-built GLAD chamber and the Fiji200 (Cambridge Nanotech, Inc.) atomic 

layer deposition (ALD) systems that were used are located in the UNL Department of 

Electrical Engineering. 
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Figure 2.2. Setup used in this study for the UTLC separations. Every part of this diagram 

except the syringe pump is contained in a larger evaporating dish and covered with a 

watchglass during the separation. 
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  2.2.3 Preparation of UTLC plates 

 The silica UTLC plate used in this study was prepared using both GLAD and 

atomic layer deposition (ALD). The glass substrate was cut into a 2 cm × 2 cm square, 

cleaned with a soap solution, rinsed with deionized water, and dried using nitrogen gas. It 

was then secured onto the sample holder using carbon tape and placed into a vacuum 

chamber; the pressure was decreased to a level of at least 10-9 mbar for the duration of the 

deposition process. The silica was deposited onto the glass substrate using a four pocket 

e-beam evaporation system at approximately 3 A°/s and at an 85° angle. The silica was 

grown to a height of 2.5 µm on the substrate. The nanopillars were then coated with a 4 

nm layer of Al2O3 using an ALD system. 

  2.2.4 Chromatographic studies 

 Stock solutions of both the yellow and blue dyes were prepared at 150 mM 

concentrations, using toluene as the solvent. Equal parts of the yellow and blue dyes were 

combined to create a stock solution for the 150 mM green dye solution. More dilute 

solutions of green dye mixture were created with toluene for chromatographic testing, 

including 100 mM, 75 mM, and 50 mM solutions. These dye solutions could be used for 

studies performed within one week of the dye solution being made. After this point, 

toluene evaporation was visible in the storage vials, leading to a higher-than-desired 

concentration for the chromatographic studies.  

 A dye solution was spotted onto the UTLC plate using a nanoplotter. The dye 

solution could be pulled up into the nanoplotter tip and dispensed uniformly onto the 

surface of the UTLC plate without damaging the nanopillars. The nanoplotter produced 
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spots of approximately 400 to 700 pL, depending on the trial. Trials allowing for 10 

droplet spots and 100 droplet spots were performed, giving an overall sample volume of 

approximately 5 to 50 nL in a dye spot. A picture of the size of the spot on the UTLC 

plate is shown in Figure 2.3. 

 The chromatographic studies were performed on the apparatus described and 

pictured in Figure 2.3. Videos were taken of the green dye solution during its separation 

and were referred to in the determination of quantitative measurements for each dye. 

Further confirmatory measurements were performed on the ACOM, which was built in 

the UNL Department of Electrical Engineering. A schematic of the ACOM device is 

provided in Figure 2.4. This technique relies heavily on anisotropic contrast to generate 

an image. Polarized light is generated and passes through the sample, where it then 

reaches a detector and is turned into an image of varying intensities using a Mueller 

matrices algorithm.12 
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Figure 2.4. General design of the ACOM system that was used in this study. The UTLC 

plate was placed on top of the anisotropic support for analysis. This figure was 

reproduced with permission from [12]. 
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2.3 RESULTS AND DICUSSION 

2.3.1 Determination of the mobile phase composition 

 Approximately 2.5 µm tall SiO2 nanopillars were prepared and coated with Al2O3, 

Chromatographic studies were then performed on the UTLC plate. One important step 

was determining the composition of mobile phase that would give the best separation for 

the dye mixtures. Factors that were considered during this process were the 

cost/availability of the mobile phase, its volatility, and its polarity. Reference tables with 

the characteristics of common organic solvents were consulted to help compare possible 

solvent combinations.13  

 Because the goal of this study was to separate a lipophilic dye mixture, a low 

polarity and mildly volatile solvent mixture was the best choice to ensure effective 

separations. Based on this criteria, toluene and hexane were chosen as the initial solvent 

combination to keep the mobile phase at an extremely low polarity. Different 

concentrations of toluene and hexane were explored, with the most positive results being 

seen when using an 8:7 toluene:hexane mixture. A picture of a typical separation that was 

observed when using an 8:7 toluene:hexane mixture as the mobile phase is shown in 

Figure 2.5. 
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Figure 2.5. A representative picture of a separation in this study performed using an 8:7 

toluene:hexane mobile phase. (top) Starting spot of the green dye at the beginning of the 

separation. (bottom) End of separation with the blue and yellow dye bands separated. 

Measurements were taken from the middle of the respective color band. 
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Although adequate separation was seen using this mixture, once the watchglass was 

removed from the system, the solvent began to evaporate quickly, and the blue dye 

component receded with the mobile phase. This was not ideal because the watch glass 

had to be taken off so that the plate could be transported to the Electrical Engineering 

Department for analysis on the ACOM. Because the experiment could not be run on the 

ACOM directly, another solvent combination was needed so that the blue dye component 

could be seen, both visually and through the ACOM, after the mobile phase had 

evaporated off the plate.  

 To help prevent this quick evaporation of the mobile phase once the watch glass 

had been taken off and the system was opened, a less volatile solvent was added to the 

mobile phase mixture to decrease the overall volatility of the mixture while still 

maintaining at least the same separation parameters. Using this logic, 1-bromo-2-

chloroethane was chosen to add to the solvent mixture and different proportions of the 

three solvents were tested. The mixture that gave the best results was a 2:1:1 

toluene:hexane:1-bromo-2-chloroethane. This mobile phase composition provided a 

better separation than the 8:7 toluene:hexane mixture and allowed the mobile phase to 

evaporate off the plate once the system was opened while still making the blue dye 

component visible after the separation was complete. A picture of a typical separation 

that was observed when using the 2:1:1 toluene:hexane:1-bromo-2-chloroethane as the 

mobile phase is shown in Figure 2.6.  
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Figure 2.6. A representative picture of a separation in this study performed using a 2:1:1 

toluene:hexane:1-bromo-2-chloroethane mobile phase. (top) Starting spot of the green 

dye at the beginning of the separation. (bottom) End of separation with the blue and 

yellow dye bands separated. Measurements were taken from the middle of the respective 

color band. 
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  2.3.2 Effect of analyte concentration 

 Another challenge that had to be addressed was to determine the optimum settings 

on the nanoplotter for depositing the dye samples onto the UTLC plates. If the optimum 

settings were not configured for a specific dye mixture, the nanoplotter would not expel 

the sample from the attached tip. The three parameters that had to be optimized were the 

pulse width, the voltage, and the frequency. All three of these parameters were important 

because the tip could only dispense the chosen analyte based on the optimum electrical 

properties that corresponded to the analyte. For the dye mixture that was used in this 

study, the ideal parameters for the pulse width, voltage, and frequency were found to be 

38 µs, 50 V, and 100 Hz, respectively. These values only apply to the GeSIM Nano-

Plotter 2.1 found in the lab of Dr. Rebecca Lai (UNL Department of Chemistry). 

 Once these settings had been identified for the nanoplotter, three concentrations of 

the dye sample were tested to determine the lowest detectable concentration.  These 

concentrations were 100 mM, 75 mM, and 50 mM. Because multiple droplets were used 

for each spot, the separation could easily be seen and measured using the 50 mM dye 

mixture. Separations using this concentration of dye were performed using spots formed 

from 10 droplets (5 nL) and spots formed from 100 droplets (50 nL). For measurements 

performed solely in our lab, 10 droplet spots provided more than enough analyte to 

follow and examine the separation. For separations that were completed and then 

examined using the ACOM, 100 droplet spots were used to allow for easier detection and 

clear data to be obtained. Overall, the measurements taken from both the 10 droplet spot 

separations and 100 droplet spot separation gave comparable results for the retardation 

factor and separation factor.  
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  2.3.3 Determination of separation factors 

 After a separation had been completed on the UTLC plate, the retardation factor 

(Rf) and retention factor (k) could be calculated for each dye. The expressions used to 

calculate these values are given in Equations (2.1) and (2.2).14,15 

Rf =
distance traveled by solute

distance traveled by solvent
    (2.1) 

k =
1-Rf

Rf
     (2.2) 

All distances for the solute bands were calculated from the middle of the band since some 

of the bands were spread out. These quantitative measurements were performed both 

visually and using the ACOM. When determining these values visually, a video of the 

separation was stopped, and the measurements were taken just as the system was opened 

and the mobile phase began to evaporate and recede. This was done so that the 

measurement made visually would be comparable to the measurement taken using the 

ACOM. The average values for the retardation factor and retention factor, in both the 10 

droplet spot separations and 100 droplet spot separations, are given in Table 2.1. 
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Table 2.1. Table comparing the retardation values and retention factors of both the 

yellow and blue dye components. Values are consistent, at the 95% confidence level, 

between the results for the 10 droplet spots and 100 droplet spots. 
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 The ACOM measurements were performed and a picture was generated using the 

absorption values generated by the Mueller matrix data. These measurements were only 

performed using the 100 droplet spots. An image that was generated by this data is shown 

in Figure 2.7. In this image, the yellow dye is represented as red, the blue dye is 

represented as blue, and the mobile phase is represented as green.  
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Figure 2.7. Mueller matrix image generated by the data obtained from the ACOM 

measurement for the separation of a blue and yellow dye mixture. Red represents the 

yellow dye, blue represents the blue dye, and green represents the mobile phase. 
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Using this image, measurements were taken to confirm that the retardation factor and 

retention factor were comparable to the measurements taken visually. Because the 

measurements for yellow were easier to take, the values were very similar, while the blue 

had a larger difference in the retardation factor value. A larger difference in retardation 

factor value lead to a larger difference in the retention factor for the blue dye when 

compared using the optical microscope vs. the ACOM. These values are listed and 

compared to the values that were determined visually in Table 2.2. No standard deviation 

values could be listed in the table since only one trial was measured by the ACOM. 
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Table 2.2. Table comparing the retardation values and retention factors from the optical 

microscope measurements vs. the ACOM measurement. 
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2.4 CONCLUSION 

 In this study, the formation of SiO2 nanopillars was explored for use as a 

stationary phase in UTLC. Using these UTLC devices, the separation of a lipophilic dye 

mixture was performed, and quantitative data were obtained. It was found that the 

optimum mobile phase to perform these separations consisted of a 2:1:1 toluene: hexane: 

1-bromo-2-chloroethane mixture. It was determined that a 50 mM dye solution could be 

used in these separations and that the separation could be visually quantified by using as 

little as a 10 droplet spot (50 nL). When performing the separation for analysis by 

ACOM, a 100 droplet spot was used. The measurements that were performed using the 

ACOM were found to be comparable to those done visually under a microscope. 

 Because it has been shown that lipophilic dyes can be separated on this type of 

UTLC plate, further exploration should be done into the possibility of using other 

stationary phases, such as an immobilized protein, onto the surface of the SiO2 

nanopillars. This study will be discussed in the next chapter of this thesis.  
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CHAPTER 3: IMMOBILIZATION OF HUMAN SERUM ALBUMIN ON SiO2 

NANOPILLARS FOR USE IN ULTRA-THIN LAYER CHROMATOGRAPHY 

3.1 INTRODUCTION 

 Based on the positive results obtained in the previous chapter, the possibility of 

immobilizing a protein onto the surface of SiO2 nanopillars was next considered. The 

protein that was chosen for the following studies was human serum albumin (HSA). HSA 

in commonly studied in biological binding studies because it is the most abundant protein 

in human blood, making up approximately 50% to 60% of the total protein content that is 

found in the blood and with a normal concentration in the range of 35-55 g/L.1–3 HSA is a 

transport protein responsible for carrying a variety of small compounds throughout the 

circulatory system, including fatty acids, hormones, and drugs.4 

 Studying how HSA binds to drugs in both its modified and normal forms can 

provide helpful information to prevent giving too much or too little of a drug in some 

diseases. One such area of study has been for drugs that are used to treat type-II 

diabetes.5–7 Chromatographic studies of sulfonylurea drugs, which are used to treat this 

disease and which bind strongly to HSA, with various forms of HSA that have been 

modified with glucose have shown that the binding constants between these drugs and 

HSA can significantly vary based on the degree of HSA modification.8–10  

 HSA has been shown to bind well through covalent methods to silica supports in 

traditional high performance affinity chromatography (HPAC).6,8–10 Because of this, it 

stands to reason that HSA could also be immobilized to the SiO2 nanopillars that were 

examined in the previous chapter for use in UTLC. HSA is often immobilized onto silica 
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using covalent binding methods such as the epoxy method and Schiff base method.11 

However, because the UTLC plate is fragile and the SiO2 nanopillars delicate, a much 

gentler, non-covalent method based on simple adsorption was used in the immobilization 

of HSA onto the nanopillars.  

3.2 EXPERIMENTAL SECTION 

  3.2.1 Reagents 

 The Cibacron Blue 3GA (dye content ~55%), toluene (HPLC Plus, purity > 

99.9%), isopropanol (HPLC grade, purity > 99.5%), and HSA (essentially fatty acid free, 

purity > 96%) were all purchased from Sigma-Aldrich (St. Louis, MO, USA). The Micro 

BCA reagents were purchased from ThermoScientific (Rockford, IL, USA). 

  3.2.2 Apparatus 

 The following studies were performed using the same apparatus as described in 

Section 2.2.2. The mobile phase used in this study was pH 7.4, 0.067 M potassium 

phosphate buffer. Because this mobile phase is aqueous-based instead of organic, filter 

paper was used for the wick with the same dimensions as the wick described in the 

previous studies. In these experiments, the Cibacron blue dye solution was dispensed 

onto the UTLC device as a 1 µL drop from a mechanical pipet. A watchglass was not 

needed to cover the system in these studies because solvent evaporation during the course 

of the separation was not an issue when using the aqueous mobile phase.  
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  3.2.3 Preparation of UTLC plates 

 The UTLC plates used in this study were fabricated using a custom-built GLAD 

chamber.12 The glass substrates were cut into 2 cm by 2 cm pieces, washed thoroughly 

with isopropanol, and dried using nitrogen gas before being secured to the sample holder 

by using carbon tape. Three substrates could be secured onto the sample holder at the 

same time, which allowed for uniformity of deposition between the plates. The sample 

holder was placed into the GLAD chamber and maintained at a pressure of at least 10-7 

mbar for the entire deposition. The silicon was deposited onto the substrate at a rate of 

1.977 A°/s with the flux of the nanopillars being at an angle of 85° to the substrate. 

 The silicon UTLC plates were left out in the ambient air for one week to allow for 

the conversion of silicon nanopillars to silica nanopillars. Once confirmation was 

obtained that the nanopillars had become oxidized to silica using an X-ray photoelectron 

spectroscopy (XPS) measurement, stock solutions of HSA in pH 7.4, 0.067 M potassium 

phosphate buffer were made at concentrations of 1 mg/mL, 3 mg/mL, and 5 mg/mL. The 

silica UTLC plates were soaked in these HSA solutions for 72 h to allow immobilization 

to occur. A sample of the HSA solution that was in contact with the nanopillars was taken 

every 12 h to follow the rate at which HSA immobilization was occurring. These samples 

were analyzed using a bicinchoninic acid (BCA) assay to determine the concentration of 

HSA that was immobilized onto the surface of the silica nanopillars.   

  3.2.4 Chromatographic studies 

 A stock solution of 10 mM Cibacron blue dye was made by using pH 7.4, 0.067 

M potassium phosphate buffer as the solvent. This stock solution was diluted with more 
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of the same buffer to create 5 mM and 1 mM working solutions to see how this dye was 

bound to the HSA silica UTLC plate. Because the dye solutions were made with an 

aqueous solvent, the shelf-life of the solutions was approximately 1 month when stored in 

the refrigerator. As previously stated, the dye solution was spotted onto the UTLC plate 

as a 1 µL drop dispensed via a mechanical pipet.   

 The chromatographic studies were performed to examine the behavior of the 

immobilized HSA on the silica nanopillars. Based on the retention of the dye solution on 

an HSA plate versus a control plate, it was believed that it should be possible to use this 

information to detect the presence of the immobilized HSA. One modification that had to 

be made in this experiment compared to those in the previous chapter was that because 

this aqueous solvent was not volatile and did not have appreciable evaporation, the flow 

rate of the mobile phase had to be reduced dramatically to allow for a separation to be 

seen.   

3.3 RESULTS AND DISCUSSION 

 After the silicon nanopillars were deposited onto the glass substrate using GLAD, 

ellipsometry measurements were performed to determine the exact height of the 

nanopillars and the angle at which the flux was deposited. It was determined that the 

silicon was deposited at a thickness of 408 nm and the flux was deposited at a 62.5° angle 

from vertical. A scanning electron microscope (SEM) image of what the silicon 

nanopillars look like is shown in Figure 3.1.   
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Figure 3.3. SEM image of silicon nanopillars grown using GLAD. 

417 nm Si nanopillars 
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To confirm that the silicon had oxidized to silica by leaving it in an ambient 

environment, X-ray photoelectron spectroscopy (XPS) was used to examine the surface 

of this material. Based on the resulting spectrum, as shown in Figure 3.2, there was a 

silicon oxide layer present on the silicon nanopillars. Unfortunately, the depth probe on 

the XPS instrument was not operational at the time the measurement was done, so the 

exact depth of the SiO2 layer could not be determined. Based on the properties of an XPS 

measurement, it was estimated that the SiO2 layer was approximately 5 nm thick. This is 

known because an XPS generally measures the surface of the sample to a depth of about 

10 nm.13 Because the silicon oxide and silicon peak are approximately the same intensity, 

it can be inferred that the amount of silicon oxide and silicon in the sample measurement 

is approximately equal, leading to a SiO2 layer of 5 nm. 
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Figure 3.2. An SEM spectrum of the UTLC plate used in this study. The left peak (~103 

eV) represents silicon oxide (silica) and the right peak (~98.5 eV) represents silicon. This 

spectrum indicates that both silicon oxide and silicon were present on the UTLC plate. 
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 Once it was confirmed that the surface of the nanopillars had been oxidized to 

SiO2, tests for immobilizing HSA onto the surface began. Because the SiO2 nanopillars 

were already deposited onto the UTLC plate, complex immobilization methods were not 

practical. It was decided that the simplest and most effective way to immobilize HSA 

onto the nanopillar surface was to soak the plates in an HSA solution and allow non-

covalent adsorption of HSA to occur onto the silica. The results that were obtained when 

soaking the plates in the three different HSA concentrations showed that using a 1 

mg/mL solution was adequate because only 0.213 mg/mL of HSA was really needed to 

saturate the SiO2 nanopillars. When taking into account the volume of this solution, this 

meant that approximately 77.1 nmol of HSA was immobilized onto the UTLC plate. 

Control tests were done to see if HSA would also bind to the original glass substrate.  

However, these experiments indicated that there was only negligible binding by HSA to 

the glass plate in the absence of the SiO2 nanopillars. The data for these studies is 

summarized in Table 3.1. It was also determined that almost all of the protein 

immobilization occurred within the first 24 hours of soaking the UTLC plate in the HSA 

solution.  
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Table 3.1. Table comparing the protein concentration of a glass substrate and UTLC plate 

at 0 hours and 24 hours. These results confirm that protein is immobilized onto the UTLC 

plate and no protein is immobilized on the glass substrate. 

 

 

 

 

 

 

 

 

 

 

 

 

 

  Glass Substrate   ( soaked in  

5 mg/ mL HSA solution)   
UTLC Plate   (soaked in  

3 mg/mL HSA solution)   

Protein concentration  

a t t=0 hrs   
4.391 (±0.371)   1.985 (±0.153)   

Protein concentration  

a t t = 24 hr s   
4.393 (±0.346)   1.772 (±0.216)   

Difference in protein  

concentration   (mg/mL)   
- 0.002   0.213   
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 Once immobilization of HSA onto the plate was achieved, chromatographic 

studies were performed with the plate to examine its binding properties. Cibacron blue 

dye was chosen for use in this study because of it has well-documented binding to 

HSA.14–16 It was found that a 1 mM solution of Cibacron blue was needed to adequately 

see the dye moving across the UTLC plate. A pH 7.4, 0.067 M potassium phosphate 

buffer was used as the mobile phase in this study and dispensed via syringe pump at a 

rate of 0.5 µL/min. When the mobile phase was applied to the UTLC plate, the Cibacron 

blue was eluted off the plate. Unfortunately, as the dye was eluted off, so were the SiO2 

nanopillars. This could have occurred for several reasons. For instance, the flow rate of 

the mobile phase may have been too high. Another possibility is that the pH 7.4 buffer 

may have weakened the nanopillars and caused them to wash away. A set of images that 

compare an undamaged UTLC plate and one after this process are shown in Figure 3.3.  
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Figure 3.3. (top image) Image comparing an undamaged UTLC plate vs. a damaged UTLC 

plate. (bottom image) Magnified picture of damaged UTLC plate. The white streaks are where 

the nanopillars have been stripped off the glass substrate. 

Control UTLC Plate 

(no HSA immobilized) HSA-immobilized UTLC Plate 
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3.4 CONCLUSION 

 In this study, the immobilization of a protein onto the surface of SiO2 nanopillars 

was performed. XPS was used to characterize the UTLC plate to confirm that the silicon 

had been oxidized to form silica. Next, the parameters surrounding HSA immobilization 

were explored and optimized so that chromatographic studies could be performed. When 

the chromatographic studies were performed using a Cibacron blue dye solution, it was 

discovered that the nanopillars were washed away with the dye solution.  

 It is hypothesized that the degradation of the nanopillars was caused by either the 

flow rate of the mobile phase or the pH/composition of the mobile phase. Ways that this 

can be fixed in future studies is to 1) decrease the flow rate of the mobile phase, 2) to 

change the composition of the mobile phase to a solution that is still at physiological pH, 

or 3) to change the pH of the buffer and see which of these changes does not degrade the 

SiO2 nanopillars. These solutions will be discussed in the following chapter of this thesis.  
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CHAPTER 4: SUMMARY AND FUTURE DIRECTIONS 

4.1 SUMMARY OF WORK 

 This thesis has explored the possibility of using nanomaterial supports as 

stationary phases for ultra-thin layer chromatography (UTLC) devices. By depositing 

SiO2 nanopillars onto a glass substrate, a variety of separations could be performed on the 

UTLC device. Separations that were performed in this thesis included the separation of a 

lipophilic dye mixture and the use of UTLC in dye-protein binding studies. The lipophilic 

dye mixture separations could be analyzed by using a novel ellipsometry method based 

on anisotropic contrast optical microscope (ACOM). Because this study used SiO2 

nanopillars, dye-protein studies could also be performed by using proteins that were 

adsorbed onto silica. By using the data collected during these studies, quantitative 

parameters for these separations could be determined, such as the retention factors and 

retardation factors. These UTLC studies were bound to be cost-effective and relatively 

efficient, as well as requiring only a small amount of sample for analysis. 

 Chapter 1 gave an overview of the main principles that were being utilized in 

these studies and general scope of the studies that were to be performed. A general 

background of planar chromatography and UTLC, and the theory behind them, was also 

presented. A history and summary of affinity chromatography was provided. The use and 

history of nanomaterials as chromatographic supports or stationary phases was also 

discussed.  

 Chapter 2 focused on separating a lipophilic dye mixture by ULTC, which was 

used as a proof-of-concept study. Different mobile phases and dye separation 
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concentrations were tested to find the optimal parameters to perform these experiments. 

Based on the results of these optimization experiments, data were collected by optical 

microscope and used to determine the quantitative parameters for these separations, such 

as the retardation factor and retention. These studies also confirmed that ACOM could be 

used as a way to monitor the results of the UTLC separation. 

 Chapter 3 focused on the immobilization of a protein onto the surface of the 

silica nanopillars for used as a stationary phase for a UTLC device. Human serum 

albumin (HSA) was non-covalently bound to the silica nanopillars by soaking the UTLC 

plates in an HSA solution.  The HSA was then used as a binding agent and stationary 

phase for UTLC. To confirm that the HSA had been immobilized onto the silica 

nanopillars, a protein assay was performed. Dye retention studies were also performed on 

the UTLC plates to confirm the presence of HSA on the silica nanopillars. These dye-

protein studies were unsuccessful, however, because the silica nanopillars were washed 

away during the elution of the dye from the UTLC plate. 

4.2 FUTURE DIRECTIONS OF WORK 

 Knowing that HSA can be bound onto silica nanoparticles opens up several 

possibilities for future studies. The first thing that must be studied is the reason for why 

the silica nanoparticles washed away during the dye-protein binding studies. While 

lowering the flow rate may be helpful to prevent extra pressure on the nanopillars, the 

solvent buffer may also need to be changed if this were the cause of the nanopillars being 

lost over time. This is especially important to consider in work with proteins like HSA 

because the UTLC plates containing these proteins would probably be stored in the same 

type of buffer when not in use. There are several buffer options in the literature that 
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should not degrade the nanopillars over time.1,2 The most readily available of these 

buffers is tris(hydroxymethyl)aminomethane (Tris) buffer, which can also be used at a 

physiological of pH 7.4. 

 Once the dye-protein binding studies have been optimized, the same method 

could be used to perform drug-protein binding studies. To confirm that the drug-protein 

binding studies compare to the results for other methods in high performance affinity 

chromatography (HPAC), a number of previously-studied drugs could be used, such as 

gliclazide or glibenclamide.3–5 If these studies produce values consistent to those in the 

literature, it means that ULTC may provide a cheaper method for this type of analysis. 

The elution runoff could also be collected and run through an off-line detector that could 

be hooked up to the UTLC device. This could provide real-time absorbance or 

fluorescence values for the separations taking place on the device.  
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