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Operator algebras generated by partial isometries and their adjoints form the basis for some

of the most well studied classes of C*-algebras. Representations of such algebras encode

the dynamics of orthonormal sets in a Hilbert space. We instigate a research program on

concrete operator algebras that model the dynamics of Hilbert space frames.

The primary object of this thesis is the norm-closed operator algebra generated by a left

invertible T together with its Moore-Penrose inverse T †. We denote this algebra by AT . In

the isometric case, T † = T ∗ and AT is a representation of the Toeplitz algebra. Of particular

interest is the case when T satisfies a non-degeneracy condition called analytic. We show

that T is analytic if and only if T ∗ is Cowen-Douglas. When T is analytic with Fredholm

index −1, the algebra AT contains the compact operators, and any two such algebras are

boundedly isomorphic if and only if they are similar.
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Chapter 1

Introduction

Mathematical objects are frequently defined with the intent to encode interesting dynam-

ics. For example, groups are reflect the rigid symmetries of geometrical objects. Operator

algebras and the tools surrounding them have proven to be powerful at analyzing compli-

cated phenomena. Indeed, many operator algebras reflect the structures of algebraic and

combinatorial objects, such as groups and directed graphs.

Representations of operator algebras are often formed by choosing sufficiently nice linear

maps on a Hilbert space that encapsulate the features of the underlying algebraic object.

Often, these maps are rigid in the sense that they will preserve Hilbert space structure from

the domain into their range. For example, if H is a Hilbert space, {en}∞n=1 is an orthonormal

basis for H , and U ∈ B(H ) is a unitary, then {Uen}∞n=1 is once again an orthonormal basis.

Similarly, an isometry S ∈ B(H ) moves an orthonormal basis for H to its range space.

More generally, if S is a partial isometry, then S preserves orthonormality on ker(S)⊥. In

each case, the operator models the movement from one orthonormal set (on the domain

space) to another (on the range space). The adjoint models walking backwards between

these two subspaces.

One can take a collection of partial isometries {Sα}α∈A. Each Sα and S∗α encodes this

“single step” dynamics discussed above - moving one orthogonal set to another. To codify

all possible finite walks, one would need to consider the algebra generated by the collection
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{Sα, S∗α}α∈A. Closing this algebra with respect to some topology, such as the operator norm,

describes the infinite walks as well.

An important class of operator algebras generated by partial isometries are graph C*-

algebras. Representations that reflect the directed graph structure are described as follows.

Given a directed graph, a Hilbert space is chosen for each vertex of the graph. Let H denote

the direct sum of these spaces. By choosing orthonormal sequences for each of these closed,

orthogonal spaces of H , one chooses partial isometries that map one summand to another

subject to the Cuntz-Krieger relations coming from the graph [36]. Specifically, let E0 be the

set of vertices and E1 is the set of edges for a graph. Let s(e) and r(e) denote the range and

source of an edge respectively. Given a set {Pv : v ∈ E0} of mutually orthogonal projections

and a set {Se : e ∈ E1} of partial isometries, the Cuntz-Krieger relations are given by

1. S∗eSe = Ps(e) for all e ∈ E1

2. Pv =
∑

e∈E1:r(s)=v SeS
∗
e whenever v is not a source.

This representation of the graph C*-algebra can be viewed as encoding walks on the graph.

Orthonormal bases are rigid structures. The requirement that each element within the

set be orthogonal to one another is strict and has precluded them from finding applications

in some realms of applied harmonic analysis. This naturally led to the definition of a frame

for a Hilbert space. A sequence {fn} of points in a Hilbert space H is said to be a frame if

there exists constants 0 < A ≤ B such that

A‖x‖2 ≤
∑
n

|〈x, fn〉|2 ≤ B‖x‖2

for all x ∈ H . Associated to each Hilbert space frame {fn} is a (canonical) dual frame

{gn}. Using this dual frame, one can reconstruct elements f of the Hilbert space H in an
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analogous way to orthonormal basis:

f =
∑
n≥1

〈f, gn〉fn

It is easy to see that orthonormal bases are frames, but not all frames need be orthog-

onal, norm one, or even contain a unique set of elements. A frame does not enforce the

rigidity of inner products that an orthonormal basis does - allowing for variation between

individual frame elements (rather than just 0 or 1). The flexibility of the definition has found

applications across signal processing and harmonic analysis. Frames may be constructed for

particular features of a problem, allowing one choose linear dependent sets, or even add

multiple copies of a single element. This extra redundancy helps to protect signals from

degradation, ensuring that the effects of erasures are minimized. The looseness of the struc-

ture allows one to construct the analog of frames for structures that don’t necessarily come

equipped with suitable generalization of an orthonormal basis. Indeed, certain classes of

Hilbert C*-Modules and Banach spaces posses frames [20], [6]. For more on basics of frame

theory, see [5], [9], [8].

As discussed, partial isometries between closed subspaces of H preserve orthonormal

sets. The adjoint of a partial isometry also preserves orthonormality, and acts as an inverse

wherever it makes sense. More generally, if {fn}∞n=1 is a frame, and T ∈ B(H ) is invertible,

then {Tfn}∞n=1 is a new frame for the Hilbert space. Hence, a left invertible operator moves

a frame to its range space. Generalizing this one last step, closed range operators preserve

the property of a frame on ker(T )⊥. See Proposition 3.1.5.

If T has closed range, T has a pseudo inverse T † that acts like an inverse wherever

it makes sense. This operator, called the Moore-Penrose inverse encodes the dynamics of

walking backward from the range subspace to the source subspace. When T is isometric,

T † = T ∗. See Proposition 3.1.1.
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The previous discussion lays the groundwork for a natural extension of C*-algebras of

isometries, one that codifies frames over orthonormal bases. One arrives at a such an ex-

tension by replacing partial isometries and their adjoints with closed range operators and

their Moore-Penrose inverses. As discussed above, the closed range operators preserve frame

theoretic quantities. Therefore, by replacing all instances of “unitary” with “invertible”, we

arrive at a natural generalization of concrete C*-algebras, integrating frame theory over

orthonormal bases.

One cannot hope to fully understand the C*-algebra generated by arbitrary set of par-

tial isometries. For this reason, algebraic conditions, such as the Cuntz Krieger relations

(constraints that arise from a directed graph), are imposed. This leads us to the following

general program:

Program. Given a set of operators with closed range and their Moore-Penrose inverses,

construct the norm-closed algebra subject to the constraints of a directed graph. What is the

structure of these algebras?

The focus of this paper is on one particular class of examples within this program.

Consider the following directed graph Γ:

v1 v2

It is well known that the graph C*-algebra associated to Γ is isomorphic to the Toeplitz

algebra T [36]. As a concrete operator algebra, T may be represented as the C*-algebra

generated by T = Mz on the Hardy space H2(T). The graph C*-algebra representations

associated to Γ can be described as follows. Let Hi represent the Hilbert space associated

to vertex vi, and T1 : H1 → H2, T2 : H2 → H2 be chosen (partial) isometries. Since

H = H1⊕H2, and ran(T1)⊕ ran(T2) = H2, we have that T := T1⊕T2 defines an isometry
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with Fredholm index equal to−dim(H1). Thus, the representations can be succinctly written

as C∗(T ) for some isometry T .

The same argument can be applied to the operator algebras described above. Concretely,

choose T1 : H1 → H2, T2 : H2 → H2 closed range operators with orthogonal ranges

summing to H2. Then T := T1 ⊕ T2 is left invertible. The associated operator algebra can

be expressed as

AT := Alg(T, T †)

where the closure is in the operator norm. The goal of this paper is to analyze the

structure of the operator algebras AT .

If T is an isometry, then its Moore-Penrose inverse T † is T ∗. If T is purely isometric

(no unitary summand) with Fredholm index −1, then T is unitarily equivalent to Mz on

H2(T). Hence, AT is the Toeplitz algebra T . This representation is particularly nice, as

every operator A ∈ T can be uniquely represented as a compact perturbation of a Toeplitz

operator with continuous symbol. The purpose of this thesis is to understand the following

question:

Question. To what extent do the elements of AT have the form “compact perturbation of a

continuous function”?

The paper is organized as follows. In the second chapter, we review the background

material needed for this thesis. This includes an explicit construction of the Moore-Penrose

inverse, and a more detailed analysis of the Toeplitz algebra.

Chapter Three is devoted to operator theoretic properties of left invertible operators, and

elementary observations about AT . We discover that if the Fredholm index of T is finite, AT

has the following description:

Heuristic 1.0.1. If T has finite Fredholm index, then the operators in AT are compact
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perturbations of Laurent series.

In its construction, AT is built by replacing instances of “unitary” with “invertible”.

Hence, this heuristic is intuitive. Therefore our goal is to explore the extent to which this

description is true. We justify that in order to make any serious progress understanding the

rich structure of AT , we need to restrict ourselves to a subclass of left invertible operators,

known as analytic operators.

In the fourth chapter, we discuss Cowen-Douglas operators, a class of operators that

have rich analytic structure. In that chapter, we connect analyticity of T to the class of

Cowen-Douglas operators. Given an open set Ω ⊂ C and a positive integer n, the operators

in the Cowen-Douglas class Bn(Ω) are defined in Definition 4.0.1. We prove the following

connection:

Theorem A. Let T ∈ B(H ) be left invertible operator with Fredholm index equal to −n,

for a positive integer n ∈ N. Then the following are equivalent:

i. T is analytic

ii. T †
∗

(the Cauchy Dual of T ) is analytic

iii. There exists ε > 0 such that T ∗ ∈ Bn(Ω) for Ω = {z : |z| < ε}

iv. There exists ε > 0 such that T † ∈ Bn(Ω) for Ω = {z : |z| < ε}.

This result has several applications. First, it gives an analytic model for representing T

in the sense that T is unitarily equivalent to Mz on a reproducing kernel Hilbert space of

analytic functions. This further furnishes our description of AT as “compacts plus Laurent

series”. It also provides us with a decomposition theorem. If T is an isometry, the Wold

decomposition lets us decompose T into a direct sum of Fredholm index −1 isometries (and

a unitary). A corollary of Theorem A is that we cannot reduce our study to the case where
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the Fredholm index of T is −1. Rather, T ∼ ⊕Tj where each Tj are strongly irreducible

operators - operators that are analogous to Jordan blocks in B(H ).

Theorem A also allows us to analyze the isomorphism classes of AT in the case when the

Fredholm index of T is −1. In Chapter Five, we focus on the case when the index of T is

−1. Here, we determine the conditions for two such algebras to be isomorphic, establishing

our main theorem. It gives a rather rigid structure on bounded isomorphisms between the

algebras AT :

Theorem B. Let Ti, i = 1, 2 be left invertibles (analytic with Fredholm index −1) and

Ai = ATi. Suppose that φ : A1 → A2 a bounded isomorphism. Then there exists some

invertible V ∈ B(H ) such that φ(A) = V AV −1 for all A ∈ A1.

In particular, this theorem shows that all bounded isomorphisms are completely bounded,

and reduces the isomorphism problem to a similarity orbit problem. We remark that the

problem of finding the similarity orbit of Cowen-Douglas operators is classic. Using the

results of Jiang and others on K0 groups of strongly irreducible operators, we complete the

classification in this case. We also analyze the similarity orbit via associated reproducing

kernel Hilbert spaces.

In Chapter Five, we investigate a class of illustrative examples arising from the theory of

subnormal operators. If S is a subnormal operator, we let N = mne(S) denote the minimal

normal extension of S, and σap(S) denote the approximate point spectrum of S. We show

that this class, AS can be described by the heuristic of compact perturbations of Toeplitz

operators with Laurent series:

Theorem C. Let S be an analytic left invertible, Fredholm index −1, essentially normal,

subnormal operator with N := mne(S) such that σ(N) = σap(S). Let B be the uniform
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algebra generated by the functions z and z−1 on σe(S). Then

AS = {Tf +K : f ∈ B, K ∈ K (H )}.

Moreover, the representation of each element as Tf +K is unique.
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Chapter 2

Background

This chapter is dedicated to reviewing the background material necessary for this thesis. We

will begin by reviewing some of the basics of functional analysis to establish some notation.

We also spend time reviewing the Toeplitz algebra and its associated reproducing kernel

Hilbert space H2(D), as it forms the classic model this theory hopes to generalize. We also

cover the basics of subnormal operators and K-theory required for examples and theory used

later in the paper.

2.1 Basic Definitions and Notation

In this section, we briefly recall some definitions and establish some notation. Throughout,

H and K will denote Hilbert spaces over the complex numbers. We denote the collection

of all bounded operators over H by B(H ).

An operator T ∈ B(H ) is said to be a compact operator if the image of the unit ball

under T has compact closure in H . We let K (H ) denote the set of all compact operators

over H . It is well known that K (H ) is the closure of the finite rank operators in the

operator norm. The compact operators are a norm-closed two sided ideal of B(H ). Hence,

one can form the quotient algebra B(H )/K (H ) known as the Calkin algebra.
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Recall that for T ∈ B(H ), the spectrum of T is defined as

σ(T ) := {λ ∈ C : T − λ is not invertible}.

The point spectrum of T is the collection of eigenvalues of T , denoted σp(T ). The approximate

point spectrum consists of the collection of approximate eigenvalues:

σap(T ) := {λ ∈ C : there exists xn ∈H , ‖xn‖ ≤ 1 such that ‖(T − λ)xn‖ → 0}.

If π is the canonical map from B(H ) onto B(H )/K (H ), the essential spectrum is

σe(T ) := σ(π(T )).

An operator T ∈ B(H ) is said to be Fredholm if

1. T has closed range

2. dim ker(T ) <∞

3. dim(H /ran(T )) = dim(ker(T ∗)) <∞.

The well known theorem of Atkinson classifies Fredholm operators via invertibility in the

Calkin algebra. Namely, T ∈ B(H ) is Fredholm if and only if π(T ) is invertible. The

Fredholm domain of T is

ρF (T ) := {λ ∈ C : T − λ is Fredholm} = C \ σe(T ).

For each λ ∈ ρF (T ), the function

ind(T − λ) := dim(ker(T ))− dim(ker(T ∗))
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is a well defined integer, called the index. It is well known that the index is constant on each

component of ρF (T ).

2.2 The Toeplitz Algebra

If {en}n≥0 is an orthonormal basis for H , the unilateral shift on {en}n≥0 is the bounded

linear operator S defined by Sen = en+1. The unilateral shift is isometric (S∗S = 1) and is

Fredholm with ind(S) = −1. In this section, we review a particularly nice representation

of C∗(S), the C*-algebra generated by the unilateral shift. This representation forms the

model our own analysis of AT .

Let L2(T) denote the square integrable functions over T with respect to the normalized

Lebesgue measure. It is well known that the functions en(z) = zn for n ∈ Z form an

orthonormal basis for L2(T). The Hardy space H2(T) is the subspace functions defined by

H2(T) = span{en : n ≥ 0}. We let H∞(T) denote the space H2(T) ∩ L∞(T) equipped with

the norm coming from L∞(T).

If f ∈ L∞(T), is a bounded measurable function on T, define the multiplication operator

Mf ∈ B(L2(T)) via Mf (g) = fg for each g ∈ L2(T). Let P denote the projection of L2(T)

onto the closed subspace H2(T). Then the Toeplitz operator Tf is the bounded operator on

H2(T) defined by

Tf := PMf |H2(T) .

The function f is called the symbol of the Toeplitz operator Tf . The following result con-

cerning the norm of Toeplitz operators is well known:

Proposition 2.2.1 ([17] Prop. V.1.1.). If f ∈ L∞(T), then ‖Tg‖ = ‖g‖∞.

The Toeplitz algebra T is the C*-algebra generated by all the Toeplitz operators Tf with
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continuous symbols f ∈ C(T):

T = C∗({Tf : f ∈ C(T)}).

Using Proposition 2.2.1 and a Stone-Weierstrass argument, one finds that T is generated

by Tp where p is a trigonometric polynomial. It then follows that T is the C*-algebra

generated by Tz. Now, it is easy to see that the operator Tz is unitarily equivalent to the

unilateral shift S. Therefore, the C*-algebra C∗(S) is unitarily equivalent to T . However,

more can be said. We begin with a definition:

Definition 2.2.2. Let A be an operator algebra. Given a, b ∈ A, the commutator of

a and b is the element ab − ba. The commutator ideal C of A is the two sided ideal

generated by the commutators of A. In other words, the commutator ideal is the smallest

ideal of A such that A/C is commutative.

The commutator ideal plays a central role in understanding the structure of T . The

following results provide us with the principal characterization of T .

Proposition 2.2.3 ([18], Prop. 7.4 [17] Cor. V.1.4). If Tf , Tg ∈ T , then TfTg − TgTf

is compact. That is, the commutator ideal C of T is K (H2(T)). Moreover, the semi-

commutators TfTg − Tfg are compact.

Theorem 2.2.4 ([17] Thm. V.1.5.). Each element of T can be written uniquely as a Toeplitz

operator plus compact. Namely,

T = {Tf +K : f ∈ C(T), K ∈ K (H2(T))}

and if A ∈ T , then A = Tf +K for exactly one f ∈ C(T) and K ∈ K (H2(T)). Furthermore,

T is irreducible, K (H2(T)) is the unique minimal ideal of T , and we have the following exact
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sequence

0 K (H2(T)) T C(T) 0
ι π

2.3 Reproducing Kernel Hilbert Spaces

In this section, we provide a brief primer on reproducing kernel Hilbert spaces. We begin

with a definition:

Definition 2.3.1. Given a set X, we say that H is a reproducing kernel Hilbert space

(RKHS) over X if

i. H is a Hilbert space of functions over X

ii. For every x ∈ X, the linear maps Ex : H → C defined by

Ex(f) = f(x)

are bounded.

Unless otherwise stated, throughout the remainder of this subsection, H will denote a

reproducing kernel space over some set X. As H is a Hilbert space, every bounded linear

functional is arises as the inner product with a unique element in H . In particular, for every

f ∈H , and x ∈ X, there exists a unique kx ∈H such that

f(x) = Ex(f) = 〈f, kx〉.

Definition 2.3.2. The function kx is called the reproducing kernel for the point x.
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The function K : X ×X → C defined by

K(x, y) := ky(x) = 〈ky, kx〉

is called the reproducing kernel for H .

As the name suggests, the reproducing kernel is a classifying feature of reproducing kernel

Hilbert spaces. We have the following result:

Theorem 2.3.3 ([2]). Let H be a RKHS with kernel K. Then

H = span{kx : x ∈ X}

If H ′ is another RKHS with kernel K ′ such that K(x, y) = K ′(x, y) for all x, y ∈ X, then

H = H ′ and ‖f‖H = ‖f‖H ′.

As reproducing kernel Hilbert spaces are classified by their kernels, and the span of the

reproducing kernels are dense in H , a natural question that arises is the following: Which

functions K : X ×X → C are reproducing kernels for some Hilbert space? This brings us

to the following definition:

Definition 2.3.4. A function K : X ×X → C is said to be a kernel function if for every

finite subset {x1, . . . xn} ⊂ X, the matrix (K(xi, xj))
n
i,j=1 is a positive matrix. That is,

〈(K(xi, xj))y, y〉 > 0

for each y ∈ Cn.

It is easy to see that given a RKHS H with reproducing kernel K, that K is a kernel

function. A well known theorem of Moore gives us the converse:



15

Theorem 2.3.5 ([2]). Let K : X ×X → C be a kernel function. Then there exists a RKHS

H of functions over X such that K is the kernel of H . Indeed, if for each x, y ∈ X, we

define ky(x) := K(x, y) and

H0 = span{ky : y ∈ X}

then H is the closure of the H0 with respect to the norm induced by the inner product

〈kx, ky〉 := K(y, x).

An important example of a RKHS comes from the Hardy space H2(T). We let H2(D)

denote the space of holomorphic functions on D that satisfy the following growth condition:

sup
0<r<1

(
1

2π

∫ 2π

0

|f(reiθ)|2 dθ
) 1

2

<∞.

The above quantity defines a norm. The norm on H2(D) is induced by the following inner

product.

〈f, g〉 = sup
0<r<1

1

2π

∫ 2π

0

f(reiθ)g(reiθ) dθ.

If f ∈ H2(D), then it is holomorphic. Hence, f has a Taylor series expansion f(z) =∑
n≥0 anz

n for each z ∈ D. Therefore,

‖f‖2
H2(D) = sup

0<r<1

1

2π

∫ 2π

0

(∑
n≥0

anr
neinθ

)(∑
m≥0

amr
me−imθ

)
dθ =

∑
n

|an|2.

If f(z) =
∑

n≥0 anz
n and g(z) =

∑
n≥0 bnz

n, then then inner product of may be more

simply computed as

〈f, g〉 =
∑

anbm.

It is well known that there is an isometric isomorphism of H2(T) with H2(D) via the Cauchy
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Transform [32]. Namely, if f ∈ H2(T), then the function f̂ defined by

f̂(z) =
1

2π

∫ 2π

0

f(eit)

1− ze−it
dt

is in H2(D).

To see that H2(D) is a RKHS, first note that it is a Hilbert space of (analytic) functions

over the set X = D. Furthermore, one has

|Ez(f)| = |f(z)| =
∣∣∑

n≥0 anz
n
∣∣ ≤∑n≥0 |an||zn|

≤
(∑

n≥0 |an|2
) 1

2
(∑

n≥0 |zn|2
) 1

2

= ‖f‖H2(T)
1√

1−|z|2
.

The reproducing kernel at w ∈ D is given by

kw(z) =
∑
n≥0

wnzn.

Hence, the reproducing kernel for H2(D) is

K(z, w) = kw(z) =
∑

wnzn =
1

1− wz
.

Of common interest are the linear operators on a reproducing kernel Hilbert space over

a set X. If f : X → C, then one can perform pointwise multiplication of f by any function

g in the reproducing kernel Hilbert space. Naturally, one would want to understand when

this type of operator is a bounded operator. This leads us to the following definition.

Definition 2.3.6. Let H1 and H2 be reproducing kernel Hilbert spaces over a set X. A

function f : X → C is called a multiplier of H1 into H2 if fH1 ⊂H2. We denote the set

of multipliers by M(H1,H2). If H1 = H2, we write M(H1) :=M(H1,H1).
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Given a multiplier f ∈ M(H1,H2), we let Mf : H1 → H2 denote the linear map given

by Mf (g) = fg. One has the following result relating the boundedness of Mf and the kernels

Ki of Hi.

Proposition 2.3.7 ([32]). Let Hi be RKHS over X with kernels Ki, i = 1, 2. Let f : X → C.

Then the following are equivalent:

i. f ∈M(H1,H2)

ii. Mf ∈ B(H1,H2)

iii. there exists a c > 0 such that f(x)K1(x, y)f(y) ≤ cK2(x, y) for each x, y ∈ X.

Furthermore, the least constant c in iii. above is ‖Mf‖2.

2.4 Subnormal Operators

In this section, we discuss some of the basics of subnormal operators. We begin with a

definition:

Definition 2.4.1. An operator S ∈ B(H ) is called subnormal if there exists a Hilbert

space K such that K ⊃H and a normal operator N ∈ B(K ) such that

i. NH ⊂H

ii. S = N |H

Such a normal operator N is called a normal extension of S. The operator N is said to

be a minimal normal extension if K has no proper subspace reducing N and containing

H .
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It can be shown that any two minimal normal extensions of a subnormal operator S

are unitarily equivalent [12]. Thus, we usually refer to the minimal normal extension, and

denote it by N := mne(S).

Classic examples of a subnormal operators are the Toeplitz operators Tf on H2(T) for

f ∈ L∞(T). The minimal normal extension is given by Mf on L2(T) (for f non-constant).

It is not hard to see that all subnormal operators have this form. We make the following

definition:

Definition 2.4.2. Let S ∈ B(H ) be a subnormal operator, and N = mne(S) ∈ B(K ). If

µ is a scalar-valued spectral measure associated to N , and f ∈ L∞(σ(N), µ), we define the

Toeplitz operator Tf ∈ B(H ) via

Tf := P (f(N)) |H

where P is the orthogonal projection of K onto H .

In the case when S is the unilateral shift, the above are the Toeplitz operators on H2(T).

For any subnormal operator S, we have that Tz = S, and that TznTzm = Tznzm . Consequently,

{Tf : f ∈ C(σ(N))} ⊂ C∗(S). We remark that, while the map from L∞(σ(N), µ) to B(H )

via f 7→ Tf is positive and norm decreasing, it is not multiplicative.

Ultimately, we are interested in algebras of operators generated by left invertible oper-

ators. Salient examples will arise from the subnormal operators, due in large part to their

rich spectral theory. The following is the first useful result in that direction.

Proposition 2.4.3 ([12]). Let S be a subnormal operator with N = mne(S). Then the

following inclusions hold:

∂σ(S) ⊆ σap(S) ⊆ σap(N) = σ(N) ⊆ σ(S)
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where σap(S) is the approximate point spectrum of S.

Next we highlight some C*-algebraic results about subnormal operators due to Olin,

Thomson, Keough and McGuire. If N is a normal operator, there is a natural identification

of C∗(N) with C(σ(N)) given by the Gelfand transform. There is also an intimate connec-

tion between the C*-algebra generated by a subnormal operator S and its minimal normal

extension N .

When S is the unilateral shift, its minimal normal extension N is a unitary. The com-

mutative C*-algebra C∗(N) ∼= C∗(σ(N)) ∼= C(T) appears in the symbols of the Toeplitz

operators. Being a subnormal operator, by definition S dilates to a normal operator. The

unilateral shift also has the additional property the image of S in the Calkin algebra is

normal (in fact, unitary). This later property is known as essentially normal.

Definition 2.4.4. An operator S ∈ B(H ) is called essentially normal if its image π(S)

is normal in the Calkin algebra B(H )/K (H ).

In summary, three key properties that the unilateral shift possesses are irreducibility,

sub-normality and essential normality. If S is any operator with these three properties, one

obtains a construction similar to the Toeplitz algebra. It is helpful to view the following

theorem with Proposition 2.4.3 in mind.

Theorem 2.4.5 ( [27] [29] [31] ). If S is an irreducible, subnormal, essentially normal

operator, then

i. σap(S) = σe(S)

ii. For each f, g ∈ C(σ(N)), we have

a. Tf ∈ K (H ) if and only if f vanishes on σe(S)

b. ‖Tf + K (H )‖ = ‖f‖σe(S)
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c. Tfg − TfTg ∈ K (H )

d. σe(Tf ) = f(σe(S))

iii. Every element of C∗(S) can be written as a sum of a Toeplitz operator and compact:

C∗(S) = {Tf +K : f ∈ C(σ(N)), K ∈ K (H )}.

Moreover, if σ(N) = σap(S), then each element has A ∈ C∗(S) has a unique represen-

tation of the form Tf + K. If σ(N) 6= σap(S), A may be expressed as A = Tf1 + K1 =

Tf2 +K2, where f1 |σe(S)= f2 |σe(S).

2.5 K-Theory

To any (not necessarily self-adjoint) operator algebra A, one can define groups K0(A) and

K1(A) that encode homological and non-commutative topological aspects of A. If A ∼= B,

then the K-groups are naturally isomorphic. Miraculously, the K-theory of several classes of

C*-algebras are a complete invariant [38].

K-theory will play an interesting role in the classification of the algebras AT for certain

classes of T . Specifically, the K0 group of a certain commutative algebra will be key in

our analysis. Throughout this section, A will denote a unital operator algebra. In this

subsection, we review the definition of the K0 group. We begin by defining some relationships

on idempotents of the algebra A.

Definition 2.5.1. Two idempotents p, q ∈ A are algebraically equivalent if there exists

x, y ∈ A such that xy = p and yx = q. The two idempotents are similar if there exists an

invertible u ∈ A such that up = qu. Lastly, they are homotopic if there exists a continuous

path of idempotents starting at p and ending at q.
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THe definitions in Definition 2.5.1 are equivalence relations on the set of idempotents of

A. Each relation encodes algebraic and topological information within them. These relations

are not the same in general - however they “stably equivalent” in the following sense.

Let Mn(A) = Mn⊗A, the algebra of n×n matrices with entries in A. If a ∈Mn(A) and

b ∈Mm(A), define

diag(a, b) =

a 0

0 b

 ∈Mn+m(A).

The algebra Mn(A) embeds into Mn+1(A) via a 7→ diag(a, 0). Using this inclusion, we define

M∞(A) as the inductive limit of the {Mn(A)}n≥1. We then have the following lemma.

Lemma 2.5.2 ([39]). In M∞(A), algebraic, similarity, and homotopy equivalence coincide.

Let ∼ denote any of the identical equivalence relations in M∞(A). We define

V (A) := {p ∈M∞(A) : p = p2}/ ∼ .

If [p], [q] ∈ V (A), we can always find p′ ∈ [p] and q′ ∈ [q] such that p is orthogonal to q in

the sense that pq = qp = 0. This allows one to build a well-defined binary operation + on

V (A) via [p] + [q] := [p′ + q′]. This operation turns V (A) into an abelian semigroup with a

zero element [0].

It follows by definition that V (·) is functorial. Namely, if φ : A→ B is a homomorphism,

then φ induces a map φ∗ : V (A) → V (B). Further, V (A ⊕ B) ∼= V (A) ⊕ V (B) and is

continuous with respect to direct limits.

As V (A) is an abelian semigroup, it can be made into a group via the Grothendieck

construction, which we describe here. Let S be a semigroup. Consider pairs (m1,m2) ∈

S × S representing formal differences m1 −m2. Define addition on S × S coordinate-wise:

(m1,m2)+(n1, n2) = (m1+n1,m2+n2). We then define an equivalence relation on (S×S,+)
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via (m1,m2) ∼ (n1, n2) if there exists some element d ∈ S such that m1+n2+d = m2+n1+d.

Definition 2.5.3. If A is a unital operator algebra, then K0(A) is the Grothendieck group

of V (A).
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Chapter 3

Properties of Left Invertible Operators and AT

The focus of this chapter is elementary properties of left invertible operators and the algebra

AT . We will begin by discussing the Moore-Penrose inverse of a closed range operator

formally, and then move on to prove some basic facts about left invertible operators. In

order to make meaningful headway, we impose a Fredholm condition on our left invertibles.

We then discover some coarse properties of the algebra AT , noting that a dense set may be

written as finite rank operator plus polynomials in T and T †. This initiates our description

of AT as compact perturbations of Laurent series. Drawing on analogies with isometric

operators, we describe a non-degeneracy condition of left invertible operators called analytic.

This allows one to build a type of basis on which T acts like a shift operator. We conclude

this chapter by demonstrating that one cannot hope to recover a decomposition exactly like

the Wold decomposition for left invertible operators.

3.1 Basics of Closed Range and Left Invertible Operators

We begin this chapter by providing a more rigorous definition of the Moore-Penrose inverse,

and prove its existence. We then shift our focus towards to, left invertible operators. After

proving some equivalent definitions for an operator to be left invertible, we move towards

proving general results that will be required throughout the text.
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Proposition 3.1.1. Let T ∈ B(H ) be an operator with ran(T ) closed. Then there exists a

unique operator T † ∈ B(H ) such that

i. ker(T †) = ran(T )⊥ = ker(T ∗)

ii. T †Tx = x for each x ∈ ker(T )⊥.

Proof. Consider the operator T̃ : ker(T )⊥ → ran(T ) obtained by restricting the domain of

T to ker(T )⊥ and the range of T to ran(T ). Since T has closed range, T̃ is a bijective op-

erator between two Hilbert spaces, and therefore boundedly invertible by the open mapping

theorem. Define T † ∈ B(H ) via

T †x =


T̃−1x x ∈ ran(T )

0 x ∈ ran(T )⊥.

By construction, T † satisfies properties i. and ii..

For uniqueness, suppose that L was another such operator. Then for all x ∈ ran(T )⊥,

Lx = 0 = T †x. Moreover, if x ∈ ran(T ), x = Ty for some y. Using the second property, we

have

Lx = LTy = y = T †Ty = T †x

So L agrees with T † on all of H .

Definition 3.1.2. The operator T † that appears in Proposition 3.1.1 is called the Moore-

Penrose Inverse of T.

The Moore-Penrose inverse behaves like a left inverse for an operator only where it makes

sense. The focus of this thesis is on left invertible operators. Our present goal is to show

that left invertible operators are a subclass of the closed range operators. To demonstrate
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this property, as well as other equivalent characterizations of left invertible operators, we

will require the following definition.

Definition 3.1.3. An operator T ∈ B(H ) is said to be bounded below if there exists a

c > 0 such that for each x ∈H , ‖Tx‖ ≥ c‖x‖.

Proposition 3.1.4. For T ∈ B(H ), the following are equivalent:

i. T is left-invertible

ii. T ∗ is right-invertible

iii. T is bounded below

iv. T is injective and has closed range

v. T ∗T is invertible.

Proof. If L is a left inverse of T , then L∗ is a right inverse of T ∗. The equivalence of i. and

ii. follows immediately. To see that i. implies iii., let T be left invertible. Then for each

x ∈H , we have

‖x‖ = ‖LTx‖ ≤ ‖L‖‖Tx‖.

Hence, ‖Tx‖ ≥ c‖x|| where c = ‖L‖−1.

Next we demonstrate the equivalence of iii. and iv.. If T is bounded below, then T is

certainly injective. To see that T has closed range, suppose that Txn → y. Then {xn} form

a Cauchy sequence because

‖Txn − Txm‖ = ‖T (xn − xm)‖ ≥ c‖xn − xm‖.

Since {xn} are Cauchy, they must converge to some x ∈H . Hence, y = Tx so the range of T

is closed. Conversely, suppose that T is injective and has closed range. Let T̂ : H → ran(T )
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be the restriction of T to the range of T . Then T̂ is bijective, and therefore boundedly

invertible by the open mapping theorem. Hence, for each x ∈H ,

‖x‖ = ‖T̂−1T̂ x‖ ≤ ‖T̂−1‖‖T̂ x‖ = ‖T̂−1‖‖Tx‖

Therefore, c‖x‖ ≤ ‖Tx‖ for c = ‖T̂−1‖−1.

Finally, we show iii. implies v. implies i.. Notice that if T is bounded below, that for

each x ∈H we have

〈T ∗Tx, x〉 = ‖Tx‖2 ≥ c2‖x‖2.

It follows from Cauchy-Schwartz that

〈T ∗Tx, x〉 ≤ ‖T ∗Tx‖‖x‖.

Hence, ‖T ∗Tx‖ ≥ c2‖x‖. Therefore, T ∗T is a self-adjoint operator that is bounded below.

In particular, T ∗T is injective, and since ran(T ∗T )⊥ = ker(T ∗T ) = 0, it is also bijective.

Hence, T ∗T is invertible by the open mapping theorem. To see that v. implies i., notice that

[(T ∗T )−1T ∗] is a left inverse of T .

In the introduction we stated our interest in operator algebras that model dynamics of

Hilbert space frames. Recall, a sequence {fn} of points in a Hilbert space H is a frame if

there exists constants 0 < A ≤ B such that

A‖x‖2 ≤
∑
n

|〈x, fn〉|2 ≤ B‖x‖2

for all x ∈ H . We have the following result about relating Hilbert space frames and left

invertible operators.
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Proposition 3.1.5. If {fn} is a frame for H , and T ∈ B(H ) is left invertible, then {Tfn}

is a frame for ran(T ).

Proof. Let x ∈ ran(T ). The upper bound follows from the fact that T is bounded:

∑
n

|〈x, Tfn〉|2 =
∑
n

|〈T ∗x, fn〉|2 ≤ B‖T ∗x‖2 ≤ B‖T‖2‖x‖2.

By Proposition 3.1.4, if we regard T ∈ B(H , ran(T )), then T is invertible. Consequently,

T ∗ ∈ B(H , ran(T )) is also invertible, and in particular, is left invertible. Again by Propo-

sition 3.1.4, T ∗ is bounded below by some constant c > 0. Hence,

∑
n

|〈x, Tfn〉|2 =
∑
n

|〈T ∗x, fn〉|2 ≥ A‖T ∗x‖2 ≥ Ac2‖x‖2.

In the case of left invertible operators, the Moore-Penrose inverse is a left inverse. It is a

special left inverse that takes on a particular form as the following propositions demonstrate.

Proposition 3.1.6. Let T ∈ B(H ) be left invertible. Then T † = (T ∗T )−1T ∗.

Proof. By Proposition 3.1.4, T ∗T is invertible. Let L = (T ∗T )−1T ∗. Clearly L is a left

inverse of T , and since ker(L) = ker(T ∗), it follows from Proposition 3.1.1 that L = T †.

Proposition 3.1.7. Given any left invertible T ∈ B(H ), the following hold:

i. TT † is the (orthogonal) projection onto ran(T )

ii. I − TT † is the (orthogonal) projection onto ran(T )⊥

iii. ker(T †) = ran(T )⊥ = ker(T ∗)

iv. ran(T †) = ran(T ∗).
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Proof. By Proposition 3.1.6, we know T † = (T ∗T )−1T ∗. So, TT † = T (T ∗T )−1T ∗. Therefore,

TT † is a self-adjoint idempotent. Also, since T † is onto, we have ran(TT †) = ran(T ), so TT †

is a projection onto ran(T ). The rest follows from previous observations.

Proposition 3.1.8. Let T ∈ B(H ) be left invertible. Then every left inverse is of the form

L = T † + A(I − TT †).

for some A ∈ B(H ).

Proof. Let A ∈ B(H ). Then it follows that L = T † + A(I − TT †) is a left inverse of T :

LT = T †T + A(I − TT †)T = I + A(T − T ) = I

Conversely, suppose that L is a left inverse of T . Then if x ∈ ran(T ), x = Ty for some

y ∈ B(H ) so that

Lx = LTy = y = T †Ty = T †x

Hence, L agrees with T † on ran(T ). It may be the case that L is non-zero on ran(T )⊥. Let

A denote the action of L on ran(T )⊥. By Proposition 3.1.7, I − TT † is the projection onto

ranT⊥, so that

L = T †(TT †) + A(I − TT †) = T † + A(I − TT †)

Lemma 3.1.9. Let T ∈ B(H ) be left invertible. If S ∈ B(H ) satisfies ‖T −S‖ < ‖T †‖−1,

then S is also left invertible. The operator (T †S)−1T † is a left inverse of S.

Proof. Notice that

‖T †S − I‖ = ‖T †(S − T )‖ ≤ ‖T †‖‖S − T‖ < 1.
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Therefore, T †S is invertible. Hence, (T †S)−1T † is a left inverse of S.

This paper will largely be concerned with the case when dim(ran(T )⊥) < ∞. This can

be viewed as a Fredholm assumption on T , which will make the theory more interesting.

Furthermore, our interest is in left invertible operators which are not invertible. We make

the following definition:

Definition 3.1.10. An left invertible operator T ∈ B(H ) is said to be natural if the

dim(ker(T ∗)) is a natural number. Specifically,

0 < dim(ker(T ∗)) = dim(ran(T )⊥) <∞

Note that if T is a natural left invertible, then ker(T ∗) is a positive integer. Hence, T ∗ is

not invertible, so neither is T . Moreover, natural left invertibles are Fredholm:

Proposition 3.1.11. Let T be a natural left invertible. Then 0 ∈ σ(T ), and 0 /∈ σe(T ).

Indeed, T is Fredholm with ind(T ) = −dim(ker(T †)) = −ind(T †).

Proof. Since T is not invertible, 0 ∈ σ(T ). As dim(ran(T )⊥) < ∞, and I − TT † is the

projection onto the ran(T )⊥, T is invertible in B(H )/K (H ). Therefore, T is Fredholm.

Because T is injective, the Fredholm index of T is

ind(T ) = dim(ker(T ))− dim(ker(T ∗)) = −dim(ker(T †)).

Note that (T †)∗ = T (T ∗T )−1. Hence (T †)∗ is injective, so that

ind(T †) = dim(ker(T †))− dim(ker((T †)∗)) = dim(ker(T †)) = −ind(T ).
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Corollary 3.1.12. If T is a natural left invertible, then all left inverses L of T are finite

rank perturbations of T †. Hence, all left inverses L of T are Fredholm with index ind(L) =

dim(ker(T †)) = ind(T †).

This type of result makes our study more interesting. Hence, going forward all left

invertible operators will assumed to be natural, unless otherwise specified.

Proposition 3.1.13. If T, S ∈ B(H ), T is a natural left invertible and ‖T −S‖ < ‖T †‖−1,

then S is Fredholm with ind(S) = ind(T ).

Proof. Let T̃ : H → ran(T ) be the restriction of T . Then T̃ is invertible, with ‖T̃‖ = ‖T †‖.

Therefore, if A ∈ B(H , ran(T )) with

‖A− T̃‖ < ‖T̃‖−1 = ‖T †‖−1

then A is invertible as well.

By assumption, T has closed range. So, H = ran(T ) ⊕ ran(T )⊥. Write S = S1 + S2

where S1 = Pran(T )S and S2 = Pran(T )⊥S. Then,

‖S1 − T̃‖ = ‖Pran(T )(S − T )‖ < ‖T †‖−1.

Hence, S1 is invertible. Moreover since dim(ran(T )⊥) is finite, S2 ∈ K (H ). Therefore, S is

a compact perturbation of an invertible operator, and thus Fredholm.

By Lemma 3.1.9, S is left invertible with left inverse L = (T †S)−1T †. By Proposition

3.1.8, S† = K + L for some compact K ∈ K (H ). Therefore,

ind(S†) = ind((T †S)−1T †) = ind((T †S)−1) = ind(T †) = ind(T †)

By Proposition 3.1.11, ind(S) = ind(T ).
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We will always use ET := ran(T )⊥. If T is understood, we simply write E . That is,

E := ran(T )⊥ = ker(T †) = ker(T ∗).

For isometric operators, T nE ⊥ TmE for all n 6= m. This is not true for general left

invertible operators, even though E is perpendicular to the range of T . However, it is true

that ker((T †)n) =
∨n−1
k=0 T

kE :

Proposition 3.1.14. Let T be a natural left invertible, and P = I − TT † be the projection

onto E . Then for each n ≥ 1, we have

I − T nT †n =
n−1∑
k=0

T kPT †
k
. (3.1)

Consequently,

ker((T †)n) =
n−1∨
k=0

T kE .

Proof. By a telescopic sum, I − T nT †n =
∑n−1

k=0 T
kPT †

k
. To prove the set equality, suppose

x ∈
∨n−1
k=0 T

kE . Then it follows immediately that T †
n
x = 0. On the other hand, if x ∈

ker((T †)n), then by Equation (3.1),

x = (I − T nT †n)x =
n−1∑
k=0

T kPT †
k
x.

Since PT †
k
x ∈ E for all k, it follows that x ∈

∨n−1
k=0 T

kE .

3.2 Basic Properties of AT

In this section, we begin to analyze the basics of the algebra AT . We note two ways in which

left invertible operators are close to invertible. In Section 2.4, we remarked how the shift S
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is almost unitary. If S is an isometry, it dilates to a unitary. Moreover, π(S) is a unitary in

B(H )/K (H ). Similar statements are true for general left invertibles. This is done first

by taking a particular quotient of AT , and then by looking at a dilation. This allows us to

describe the algebra AT as “Laurent series plus compacts”.

Throughout, let C denote the commutator ideal of AT . We make the following trivial

but important observation.

Lemma 3.2.1. The projection P = I − TT † = T †T − TT † ∈ C

We prove that when the dimension of ker(T ∗) is finite, C ⊂ K (H ). We then show that

AT/C consists of formal Laurent polynomials, namely polynomials in z and z−1. Moreover

T may also be dilated to an invertible, allowing us to identify AT as the corner of the algebra

generated by this invertible. Combining these results allows one to heuristically describe

AT as sums of compact operators and Laurent series. We begin this section with a simple

observation that will be used throughout the paper:

Lemma 3.2.2. Let T be a left invertible operator. Then AT ⊂ C∗(T ).

Proof. Since T † = (T ∗T )−1T ∗, T † ∈ C∗(T ).

This paper is concerned with the case when dim(E ) < ∞, the natural left invertible

operators. In particular, we will have much to say when the Fredholm index of T is −1. We

have the following result about the commutator ideal of AT .

Lemma 3.2.3. Let T be left invertible. If T is natural, then C ⊂ K (H ).

Proof. Let X = T nT †
m

and Y = T kT †
l
. If we can show that XY − Y X is finite rank, then

it will follow from taking linear combinations and limits that C ⊂ K (H ). To this end,

notice that

XY − Y X = T nT †
m
T kT †

l − T kT †lT nT †m
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Now if m ≤ k, T nT †
m
T kT †

l
= T n+k−mT †

l
. On the other hand, if m ≥ k, then

T nT †
m
T kT †

l
= T nT †

l+m−k
. Likewise, T kT †

l
T nT †

m
= T n+k−lT †

m
if l ≤ n and T kT †

l+m−n

otherwise. Therefore, the expression T nT †
m
T kT †

l−T kT †lT nT †m can be simplified depending

on the values of n,m, k and l. This leaves us with eight total cases to check. For example,

two cases arise from m ≥ k and l ≥ n. By above, if m ≥ k and l ≥ n, then

T nT †
m
T kT †

l − T kT †lT nT †m = T nT †
l+m−k − T kT †l+m−n.

This leaves us with two sub-cases: either n ≤ k or k ≤ n. If n ≤ k, we have

T nT †
l+m−k − T kT †l+m−n = T n(I − T k−nT †k−n)T †

l+m−k
.

By Proposition 3.1.14, I−T k−nT †k−n is a sum of finite rank operators, and thus, T nT †
m
T kT †

l−

T kT †
l
T nT †

m
is finite rank. The case when k ≤ n is the same. The other six cases are simi-

lar.

We now investigate the quotient of AT by the commutator ideal C . Let π denote the

canonical map π : AT → AT/C . As P = I − TT † is in C , it follows that π(T ) is invertible

with inverse π(T †). Hence, AT/C is a commutative Banach algebra (in fact, operator algebra

[3]) generated by the invertible π(T ) and its inverse π(T †). We have the following:

Lemma 3.2.4. Let A be a commutative unital Banach algebra generated by an invertible a

and its inverse a−1. Then the character space Ω(A) is homeomorphic to σ(a).

Proof. Let φ ∈ Ω(A). Since a − φ(a) ∈ ker(φ), a proper ideal of A, we must have that

a− φ(a) is not invertible. Hence, φ(a) ∈ σ(a). Let θ : Ω(A)→ σ(a) via θ(φ) = φ(a).

By definition, θ is continuous. Moreover, θ is injective. Indeed, θ(φ) = θ(ψ) if and only

if φ(a) = ψ(a). This happens if and only if φ and ψ agree on the dense subset
∑M
−N αna

n.
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By continuity, ψ agrees with φ on all of A.

Next, we show that θ is onto. If λ ∈ σ(a), then a − λ is not invertible. Thus, there

exists some maximal ideal J of A that contains a− λ. Let φ ∈ Ω(A) be the character that

corresponds to J . Then φ(a − λ) = φ(a) − λ = 0, so that φ(a) = λ. As θ is a bijective

continuous map between compact Hausdorff spaces, θ is a homeomorphism.

By the previous lemma, the Gelfand map provides a norm decreasing homomorphism of

Γ : AT/C → C(σ(π(T ))).

For each λ ∈ σ(π(T )), let z : σ(π(T )) ↪→ C represent the inclusion function. Namely,

z(λ) = λ for all λ ∈ σ(π(T )). Then z is invertible by construction, with inverse z−1(λ) := λ−1

for all λ ∈ σ(π(T )). Under the Gelfand identification, π(T ) 7→ z and π(T †) 7→ z−1 on

σ(π(T )). Consequently, z and z−1 generate the image of AT/C under Γ. In this sense,

AT/C consists of Laurent polynomials centered at zero.

A few comments are necessary at this point. First, the Gelfand map need not have closed

range, and thus, Γ(AT/C ) may not be complete. Moreover, Γ may not even be injective in

general. If A is a commutative Banach algebra, and a ∈ A has σ(a) = 0, then Γ(a) = 0.

However, since AT/C is generated by π(T ) and π(T †) = π(T )−1, it follows that z (and

therefore z−1) are non-zero. As Γ is norm decreasing, we do have that every function in the

range of Γ is a Laurent series in z and z−1.

It will be shown in Section 5.1 that when the Fredholm index of T is −1, C = K (H ).

In some cases, this furnishes a rather detailed analysis of the quotient. In particular, the case

of essentially normal subnormal operators will be studied in Section 5.4. However, presently

we will concern ourselves with an algebraic characterization of the commutator ideal. To do

this, we will first get a description of the algebra generated by T and T † pre-closure.

We just analyzed how quotienting by the commutator ideal results in T becoming in-
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vertible. As a consequence, “Laurent polynomials” in z and z−1 over σe(T ) are dense in

the quotient. Next, we observe that if T ∈ B(H ) is left invertible, then it dilates to an

invertible. This will allow us to succinctly describe Alg(T, T †).

Let P = I − TT †. Then the operator W ∈ B(H ⊕H ) given by

W =

H HT † 0

P T


is invertible, with inverse given by

W−1 =

T P

0 T †

 .

Let Q1 and Q2 denote the projections onto H1 := H ⊕ 0 and H2 := 0 ⊕H respectively.

By construction T = Q2W |H2 and T † = Q2W
−1 |H2 . Furthermore, for each n,

W n =

T †n 0

Dn T n

 W−n =

T n Dn

0 T †
n


where Dn :=

∑n−1
k=0 T

kPT †
n−1−k

. Since dim(E ) < ∞ by assumption, Dn is a finite rank

operator for each n. Furthermore, for every n, T n = Q2W
n |H2 and T †

n
= Q2W

−n |H2 .

It therefore follows that Alg(T, T †) = Q2Alg(W |H2 ,W
−1 |H2). Now, a straightforward

calculation reveals the following:
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Q2W
−nQ1W

m |H2 = 0

Q2W
−nQ2W

m |H2 = T †
n
Tm

Q2W
mQ1W

−n |H2 = DmDn

Q2W
mQ2W

−n |H2 = TmT †
n
.

(3.2)

Since Alg(T, T †) = Q2Alg(W |H2 ,W
−1 |H2), the operators appearing in Equation (3.2) span

Alg(T, T †). Namely, using Equation (3.2) we have

DmDn + TmT †
n

= Q2W
mW−n |H2= Q2W

m−n |H2=

 Tm−n if m > n

T †
m−n

else.
(3.3)

Also,

T †
n
Tm = Q2W

−nWm |H2=

 Tm−n if m > n

T †
n−m

else.
(3.4)

Thus, TmT †
n

is equal to some power of a generator, up to the finite rank perturbation DmDn.

Consequently, every operator A in Alg(T, T †) may be “simplified” to an operator of the form

F +
N∑
k=0

akT
k +

M∑
l=1

blT
†l,

where F is some finite rank operator. Hence, the dense subalgebra Alg(T, T †) are finite

rank operators plus Laurent polynomials in T and T †. We record this result here for future

reference:

Proposition 3.2.5. Let T be a natural left invertible operator with ind(T ) = −n for some
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positive integer n. If A ∈ Alg(T, T †) (pre-closure of AT ), is the operator

A =
N∑

n,m=0

αn,mT
mT †

n

then A may be rewritten as

A = F +
∑

N≥m≥n≥0

αn,mT
m−n +

∑
N≥n≥m≥1

αn,mT
†n−m

where F is the finite rank operator given by F = −
∑N

n,m=0 αn,mDmDn, and Dn =
∑n−1

k=0 T
kPT †

n−1−k
.

Combining these two coarse descriptions of AT - one via the quotient and one via dilation,

we arrive at our heuristic for AT :

Heuristic 3.2.6. The algebra AT is compact perturbations of Laurent series centered at zero.

One further comment on the commutator ideal C of AT . Recall that P = I − TT † ∈

C . Hence by the preceding, all the finite rank operators F from this construction are in

the commutator ideal C . Combined with Proposition 3.2.5, this observation allows us to

algebraically characterize a dense subset of C .

Proposition 3.2.7. Let P = I − TT † and set

KT := span{T nPT †m : n,m ≥ 0}.

Then KT = C .

Proof. First we show that KT is an ideal of AT . If A ∈ Alg(T, T †), then by Proposition

3.2.5,

A = −
N∑

n,m=0

αn,mDmDn +
∑

N≥m≥n≥0

αn,mT
m−n +

∑
N≥n≥m≥1

αn,mT
†n−m.
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Now consider the product A(T kPT †
l
) for some k, l. Using Equations (3.3) and (3.4), it

follows that T kPT †
l

multiplied by any part in the decomposition of A above is once again

in span{T nPT †m : n,m ≥ 0}. Similarly, (T kPT †
l
)A ∈ span{T nPT †m : n,m ≥ 0}. It

follows that all polynomials from span{T nPT †m : n,m ≥ 0} multiplied by A belong to

span{T nPT †m : n,m ≥ 0}.

If B ∈ KT , it follows from taking limits and using the closure of KT that AB,BA ∈ KT .

By density of Alg(T, T †) in AT , we have that KT is an ideal for AT .

By definition, P ∈ KT and so, AT/KT is commutative. Hence, C ⊆ KT . However,

notice that KT is the principal ideal generated by P . Indeed, if J is an ideal of AT , and

P ∈J , then at a minimum each T nPT †
m

must be inside of J . Hence, KT = C .

Ideally, we would like a canonical representation of T as multiplication by z on some

reproducing kernel Hilbert space. If we further have T † represented as multiplication by z−1,

then AT could be further described as compact perturbations of multiplication operators with

symbols Laurent series. This turns out to be the case for special class of operators, which

we call analytic. We will expand on this particular topic in our discussion of Cowen-Douglas

operators.

3.3 Wold-Type Decompositions

Much of the model theory and elementary properties of left invertible operators draws its

inspiration from isometric operators. Isometries are a tractable class of operators due to

the celebrated Wold decomposition. For future notational considerations, we state the Wold

Decomposition here:
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Theorem 3.3.1 (Wold Decomposition for Isometries). Let S be an isometry on H . Define

HI :=
⋂
n≥1 S

nH

HA :=
∨
n≥0 S

nE .

Then HI and HA are reducing for S, H = HI ⊕HA, S |HI
is a unitary and S |HA

is a

unilateral shift of rank n.

In other words, all isometries decompose the Hilbert space into two orthogonal, reducing

subspaces for S. On HI , the isometry S is invertible, and hence, a unitary. On HA, the

isometry is purely isometric. The isometric summand yields an analytic model. Concretely,

S |HA
is unitarily equivalent to dim(E ) orthogonal copies of the unilateral shift. The unilat-

eral shift is is unitarily equivalent to the operator of multiplication by z on a reproducing

kernel Hilbert space of analytic functions. For a general left invertible operator T ∈ B(H ),

one would like to arrive at a similar type of decomposition. We make the following definition:

Definition 3.3.2. Given a left invertible T ∈ B(H ), we define:

HI :=
⋂
n≥1 T

nH

HA :=
∨
n≥0 T

nE .

As a caution to the reader, HI and HA need not be reducing. However, HI and HA are

clearly invariant subspaces for T . Moreover, HI is invariant for T † and T |HI
is invertible,

with inverse T † |HI
. We shall show that T |HA

acts like a shift, not on a orthonormal basis,

but on a more general basis. This will be discussed below.

For some isometries, the Wold-decomposition is trivial. For example, the unilateral shift

on `2(N) is purely isometric since the subspace HI = 0. This leads us to the following

definition:

Definition 3.3.3 ([40]). An operator T ∈ B(H ) is analytic if HI = 0.
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The terminology analytic is appropriate because we show that when a natural left in-

vertible operator is analytic, then T is unitarily equivalent to Mz on a reproducing kernel

Hilbert space of analytic functions.

In general, there is no Wold-type decomposition for T with regards to the spaces HI

and HA. See Example 3.5.1 below. However, Shimorin in [40] observed that there is almost

a Wold-type decomposition. This decomposition is related to a canonical left invertible

operator associated to T , called the Cauchy dual of T :

Definition 3.3.4 ([40]). Given a left invertible operator T , the Cauchy dual of T , denoted

T ′, is the left invertible given by

T ′ := T (T ∗T )−1 = T †
∗
.

Proposition 3.3.5. Let T be a left invertible operator, and T ′ its Cauchy dual. The following

statements hold:

i. T ′ is left invertible with Moore-Penrose inverse T ′† = T ∗

ii. E ′ := ker((T ′)∗) = ker(T †) = ker(T ∗) = E

iii. ind(T ′) = ind(T )

Proof. It is clear from the definition that T ′ is left invertible with T ∗ a left inverse. That

T ′† = T ∗ follows from a simple computation:

T ′
†

= (T ′
∗
T ′)−1T ′

∗
= (T †T ′)−1T † = (T ∗T )T † = T ∗.

The remaining observations now follow.
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For the Cauchy dual T ′, we define the analogous invariant subspaces:

H ′
I :=

⋂
n≥1 T

′nH

H ′
A :=

∨
n≥0 T

′nE .

We now explain why the terminology of Cauchy dual is sensible. While one cannot hope

to arrive at a decomposition H = HI ⊕HA, there is a duality between the spaces HI ,H ′
I

and HA,H ′
A.

Proposition 3.3.6 ([40], Prop 2.7). Let T be a left invertible operator. Then

H = HI ⊕H ′
A = H ′

I ⊕HA.

where ⊕ is an orthogonal direct summand of closed subspaces.

This duality is key in analyzing AT . We will leverage information between T and T ′ (or

T † and T ∗) in order to prove theorems about AT . The first example of this is the construction

of a Schauder bases used throughout the subsequent analysis.

3.4 Basis and Dual Basis

We now explore how T |HA
acts as a shift on a general basis. This will be done by showing if

T is a natural analytic left invertible, then it endows the Hilbert space with a type of basis

analogous to that of a (Hamel) basis for a vector space, called a Schauder basis.

Definition 3.4.1. A Banach space X is said to have a Schauder basis if there exists a

sequence {xn} of X such that for every element x ∈ X, there is a unique sequence of scalars

αn such that

x =
∑
n≥0

αnxn
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where the above sum is converging in the norm topology of X. Alternatively, {xn} is a

Schauder basis if and only if

i. span{xn} = X

ii.
∑
anxn = 0 if and only if an = 0 for all n.

Recall that a subspace E is said to be a wandering subspace for an operator T ∈ B(H )

if for each n ∈ N, E ⊥ T nE [21]. In the case of isometric operators, one further has

T nE ⊥ TmE for each n,m ∈ N with n 6= m.

Let T be a natural analytic left invertible operator, and L be a left inverse of T . The

next result shows that E = ker(T ∗) is a wandering subspace for T and L∗. However, T nE

may not be orthogonal to TmE for n 6= m. The invariant subspace generated in this fashion

in the whole Hilbert space. Thus, the orbit of T and L∗ on ker(T ∗) give rise to a Schauder

basis:

Theorem 3.4.2. Let T be a natural analytic left invertible operator with ind(T ) = −n for

some positive integer n. Let {xi,0}ni=1 be an orthonormal basis for ker(T ∗), and L be a left

inverse of T . Then

i. xi,j := T jxi,0, i = 1, . . . n, j = 0, 1, . . . is a Schauder basis for H

ii. x′i,j := (L∗)jxi,0, i = 1, . . . n, j = 0, 1, . . . is a Schauder basis for H .

Proof. We will only prove the case when ind(T ) = −1. The general case is no more compli-

cated, but simply requires extra notation for bookkeeping. In this case, ker(T ∗) = span{x0}

for some norm one element x0 ∈H .

The proof will proceed as follows. First we will show that the wandering space for

T ′ := T †
∗

produces a Schauder basis. Then we show that the orbit of x0 under powers of T
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will produce a Schauder basis, which will allow us to conclude that for any left inverse L,

the orbit of L∗ yields a Schauder basis.

Since T is analytic, by Proposition 3.3.6, we have that

H = H ′
A =

∨
j≥0

T ′
j
ker(T ∗). (3.5)

Let x′j := T ′jx0 for j = 0, 1, . . . . Then by construction, T ′x′j = x′j+1 and

T ∗mx′j =

 0 if m > j

x′j−m if m ≤ j

Notice that {x′j} is a Schauder basis. Indeed by (3.5), span{x′j} = H . Furthermore, if∑
j≥0 ajx

′
j = 0, then

0 = (I − TT †)T ∗m
(∑
j≥0

ajx
′
j

)
= (I − TT †)

(∑
j≥m

ajx
′
j−m

)
= amx0. (3.6)

Thus, aj = 0 for all j. Therefore {x′j} form a Schauder basis.

We now show that xj := T jx0 is a Schauder basis. Let K be the closed subspace of

H given by K := spanj≥1{xj}. Suppose that z ⊥ K . Then by above, z has a unique

expansion in the Schauder basis x′j. Say, z =
∑

j≥0 bjx
′
j. Thus,

0 = 〈z, xm〉 = 〈T ∗mz, x0〉 = 〈T ∗mz, (I − TT †)x0〉 = 〈(I − TT †)T ∗mz, x0〉 = bm.

Hence, bj = 0 for all j, so z = 0. Therefore, K is dense in H . But since K is closed,

K = H . Now suppose that
∑

j≥0 cjxj = 0. Then the exact same argument appearing in

Equation (3.6) with T ∗m replaced with T †
m

shows cj = 0 for all j.

Finally, suppose L is any left inverse of T . Let yj = L∗jx0. Replacing the roles of xj with
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yj and x′j with xj in the preceding paragraph, one concludes that yj is a Schauder basis for

H .

Corollary 3.4.3. Let T ∈ B(H ) be left invertible. Then T is analytic if and only if T ′ is

analytic.

Proof. If T is analytic, then by Theorem 3.4.2, HA = H . Hence H ′
I = 0. The converse

statement is identical.

Theorem 3.4.2 illustrates how to construct Schauder bases for H using a natural analytic

left invertible operator T and its Cauchy dual. We reserve the notation of Theorem 3.4.2 for

these bases. We make the following definition:

Definition 3.4.4. Let T be a natural analytic left invertible operator and L be a left inverse

of T . Fix an orthonormal basis {xi,0}ni=1 for E = ker(T ∗). Then

xi,j := T jxi,0

x′i,j := L∗jxi,0.
(3.7)

We refer to the Schauder basis {xi,j} in Equation (3.7) as the basis of T with respect to

{xi,0}ni=1. Similarly, we refer to the basis {x′i,j} as the dual basis of T with respect to

{xi,0}ni=1 and L.

If no mention is made to the choice of left inverse L, it is assumed that L = T †. While

the above definition depends on the choice of orthonormal basis {xi,0}ni=1 for ET , we will

usually refer to each as the basis of T and dual basis of T without reference.

By definition of a Schauder basis, for each f ∈ H , there exists a unique sequences of

scalars {αi,j} and {α′i,j} such that

f =
∑
j≥0

n∑
i=1

αi,jxi,j =
∑
j≥0

n∑
i=1

α′i,jx
′
i,j.
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Naturally, one would like to have a relationship between {αi,j} or {α′i,j} in terms of the

element f ∈H . We have the following useful characterization:

Proposition 3.4.5. For each f ∈H , we have the following expansions:

f =
∑
j≥0

n∑
i=1

〈f, x′i,j〉xi,j =
∑
j≥0

n∑
i=1

〈f, xi,j〉x′i,j.

Proof. Suppose that f =
∑

j≥0

∑n
i=1 αi,jxi,j. Now, T †

m
xi,j = 0 if j ≤ m and xi,j−m otherwise.

Also, since {xi,0} is an orthonormal basis for ker(T ∗), we have for each m ≥ 0,

〈f, x′i,m〉 = 〈T †mf, xi,0〉 = αi,m.

The same argument shows that if we expand f in terms of the dual basis of T as f =∑
j≥0

∑n
i=1 α

′
i,jx
′
i,j, then α′i,m = 〈f, xi,m〉.

Corollary 3.4.6. The basis of T is bi-orthogonal to the dual basis of T . That is, 〈xl,m, x′i,j〉 =

δl,iδm,j

Proof. By Proposition 3.4.5, we have that

xl,m =
∑
j≥0

n∑
i=1

〈xl,m, x′i,j〉xi,j.

However by definition, Schauder bases have a unique expansion in terms of the basis. Hence,

〈xl,m, x′i,j〉 = 0 unless i = l and j = m.

Briefly, we would like to caution the reader about the order of basis and dual basis of T .

A convergent series
∑

n≥0 xn in a Banach space X is said to be unconditionally convergent if

for every permutation σ of N, the series
∑

n≥0 xσ(n) converges. Otherwise, the series is said

to be conditionally convergent. A Schauder basis {xn} in a Banach space X is said to be a
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unconditional basis if the series expansion x =
∑

n≥0 αnxn is unconditional for every x ∈ X.

Otherwise, the basis is said to be conditional. Examples of unconditional bases for Hilbert

spaces include orthonormal bases, and more generally, some frames.

Unfortunately, all infinite dimensional Banach spaces with a basis must have conditional

bases [33]. What is worse, verifying that a basis is unconditional is, in general, a very difficult

task. Explicit constructions of conditional bases exist for Hilbert spaces. Indeed, there is

a class of examples for L2(T) of the form {e2πintφ(t)}n∈Z for some φ ∈ L2(T) (See [41],

Example 11.2). From the author’s perspective, it is not clear when the basis and dual basis

of T are unconditional. Fortunately, this will not affect our analysis in any serious way. At

a minimum, we have the following trivial rearrangements:

Proposition 3.4.7. Let T be a natural analytic left invertible with ind(T ) = −n for some

1 ≤ n <∞. Then for any permutation σ of {1, . . . , n}, we have

∑
j≥0

n∑
i=1

αi,jxi,j =
n∑
i=1

∑
j≥0

αi,jxi,j =
n∑
i=1

∑
j≥0

ασ(i),jxσ(i),j =
∑
j≥0

n∑
i=1

ασ(i),jxσ(i),j

whenever the sum converges. Consequently,
∑

j≥0

∑n
i=1 αi,jxi,j converges if and only if∑

j≥0 αi,jxi,j converges for each i = 1, . . . , n.

Since we are interested in the case when ind(T ) is a negative integer, the above proposition

fits into the purview of our study. This remark is useful when we construct a canonical model

for T as multiplication by z on a reproducing kernel Hilbert space of analytic functions in

Chapter Four. In order to conduct a more thorough analysis of AT , we will later consider the

case when ind(T ) = −1. In the next section, we discuss the ways in which a left invertible

can fail to have a Wold-type decomposition.
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3.5 Failure of Wold Decompositions for Left Invertibles

We have mentioned that for a general left invertible operator, one cannot hope to reconstruct

a exact replica of the Wold decomposition. Namely, it is not the case that H = HI ⊕HA.

Their sum can fail to be orthogonal, and hence, HI + HA may not be equal to H . We have

the following example:

Example 3.5.1. Let H = `2(N)⊕ `2(Z), and define T ∈ B(H ) as

T =

A 0

B C


where A is the unilateral shift on `2(N), C is the bilateral shift on `2(Z), and B : `2(N) →

`2(Z) is the inclusion map given by

B((an)n≥1) = (. . . 0, 0̂, a1, a2, . . . )

where the ˆ symbol denotes the entry in the zeroth slot. Let {en}∞n=1 and {fn}∞n=−∞ denote

the standard orthonormal basis for `2(N) and `2(Z) respectively.

In order to compute the subspaces HI and HA above, we will first need to analyze T n.

Note that

T n =

An 0

Dn Cn


where Dn :=

∑n−1
k=0 C

kBAn−1−k. By construction, Dnem = nfm+n−1. Therefore, Dn =

nCn−1B, so

T n =

 An 0

nCn−1B Cn

 .
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Notice that if x⊕ y ∈H , then

T n

x
y

 =

 Anx

nCn−1Bx+ Cny

 . (3.8)

We now show that

HI = 0⊕ `2(Z).

Indeed, suppose that x ⊕ y ∈ HI . Then for each n ∈ N there exists a sequence xn ∈ `2(N)

and yn ∈ `2(Z) such that T n(xn ⊕ yn) = x⊕ y. By Equation (3.8), we must have Anxn = x.

But since the unilateral shift A is analytic, it follows that x = 0 so that HI ⊆ 0⊕ `2(Z). On

the other hand, suppose y ∈ `2(Z). Since the bilateral shift C is invertible, Cn is invertible

for all n ∈ Z. Thus, for all n there exists yn ∈ `2(Z) such that Cnyn = y. Hence, 0⊕y ∈HI ,

demonstrating equality.

Next we compute HA. Notice that

T ∗ =

A∗ B∗

0 C∗


where B∗ : `2(Z) → `2(N) is the projection onto the coordinates greater than zero. Conse-

quently, if x⊕ y ∈H ,

T ∗

x
y

 =

A∗x+B∗y

C∗y

 .

If x ⊕ y ∈ ker(T ∗), then since C∗ is invertible, it follows that y = 0. Consequently, x ∈

ker(A∗) = span{e1}. Therefore, E = ker(T ∗) = ker(A∗) ⊕ 0 = span{e1} ⊕ 0. Now, by
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Equation (3.8),

T n

e1

0

 =

en+1

nfn

 . (3.9)

As a result, we have that

span0≤n≤N{T n(e1 ⊕ 0)} =

{(
N∑
n=0

αnen+1

)
⊕

(
N∑
n=1

αnnfn

)
: α0, . . . αN ∈ C

}
.

Now because

∥∥∥(∑N
n=0 αnen+1

)
⊕
(∑N

n=1 αnnfn

)∥∥∥2

=
∥∥∥∑N

n=0 αnen+1

∥∥∥2

+
∥∥∥∑N

n=1 αnnfn

∥∥∥2

= |α0|2 + |αN+1|2 +
∑N

n=1(1 + n2)|αn|2

it follows that

HA =

{(∑
n≥0

αnen+1

)
⊕

(∑
n≥1

αnnfn

)
:
∑
n≥1

(1 + n2)|αn|2 <∞

}
.

With HA computed, we now remark that HI = 0 ⊕ `2(Z) is not orthogonal to HA.

Nevertheless, HI ∩HA = 0. This is clear by the form of HA and HI .

Finally, we remark that HI + HA is dense in H , but not closed. To see this, note that

0⊕fn ∈ 0⊕`2(Z) = HI for all n. By Equation (3.9), it follows that {en⊕0}n≥0 ⊂HI +HA.

Since {0⊕fn}n∈Z ⊂HI , it follows that HI+HA is dense in H . However, HI+HA 6= H , as

HI +HA is not closed. Indeed, if we let z = ((1+n2)−1)⊕0, then z ∈H but z /∈HI +HA.

This concludes the example.

The above example turns out to be generic. If T ∈ B(H ) is left invertible, then HI+HA

is dense in H with HI ∩HA = 0. To show this, we establish a few simple results.

Proposition 3.5.2. Let T ∈ B(H ) be left invertible. Consider the decomposition H =
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H ′
A ⊕HI afforded by Proposition 3.3.6. Then with respect to this decomposition,

T =

A 0

B C


with A analytic left invertible, and C invertible.

Proof. Note that HI is invariant for T . Therefore, T necessarily has the form above. That

the operator C = T |HI
is invertible is clear. Let Q be the projection onto H ′

A. To show

that A = QT |H ′
A

is left invertible, we show that A∗ is right invertible. Indeed, notice that

H ′
A is invariant under T ′, and that

T ∗ =

A∗ B∗

0 C∗

 .

Thus, if x ∈H ′
A, we have

A∗(T ′x) = T ∗(T ′x) = x

since T ∗T ′ = I. Therefore A∗ is right invertible, so A is left invertible. That A is analytic

follows from the orthogonality of the decomposition. To see this, observe

T n =

An 0

∗ Cn

 .

Hence, An = QT n |H ′
A

. Now,

⋂
AnH ′

A =
⋂

QT nH ′
A ⊂ Q

(⋂
T nH

)
= QHI = 0.
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Proposition 3.5.3. Suppose that T ∈ B(H ), H = H1 ⊕H2 and

T =

A 0

B C


with A analytic left invertible, and C invertible. Then T is left invertible, with HI = 0⊕H2,

ker(T ∗) = ker(A∗)⊕ 0, and HI ∩HA = 0.

Proof. Let L be the operator defined by

L =

 A† 0

−C−1BA† C−1

 .

Then L is a left inverse of T , so T is left invertible. Now, we remark that

T n =

An 0

Dn Cn


where Dn is an operator whose formula is not relevant for the remainder of the proof. If

x⊕ y ∈
⋂
T nH , then there exists xn, yn such that

T n

xn
yn

 =

 Anxn

Dnxn + Cnyn

 =

x
y

 .

Since A is analytic, it follows that x = 0. Thus,
⋂
T nH ⊂ 0 ⊕ H2. Conversely, given

y ∈ H2, since Cn is invertible, there exists yn such that Cnyn = y. So, T n(0⊕ yn) = 0⊕ y.

It follows that
⋂
T nH = 0⊕H2.
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Concerning the intersection of HI and HA, notice that

T ∗ =

A∗ B∗

0 C∗

 .

Since C∗ is invertible, it follows that x ⊕ y ∈ ker(T ∗) if and only if y = 0 and x ∈ ker(A∗).

Thus, E = ker(A∗) ⊕ 0. Consequently if x0 ∈ ker(A∗), HA is densely spanned by elements

of the form

T n

x0

0

 =

Anx0

Dnx0

 .

Since A is analytic, Anx0 form a Schauder basis for HA by Theorem (3.4.2). As a result,

0⊕ y ∈HA if and only if y = 0.

Corollary 3.5.4. Given a left invertible operator T ∈ B(H ), HI +HA is dense in H with

HI ∩HA = 0.

Proof. Proposition (3.5.3) established that HI ∩HA = 0. All that remains to be shown is

that HI + HA is dense in H . To this end, consider the decomposition H = H ′
A ⊕HI .

Write,

T =

A 0

B C

 .

Let x0 ⊕ 0 ∈ ker(T ∗) = ker(A∗)⊕ 0, so that

T n

x0

0

 =

Anx0

Dnx0


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as before. Given that 0⊕ (−Dnx0) ∈ 0⊕HI , we have

T n

x0

0

+

 0

−Dnx0

 =

Anx0

0

 ∈HA + HI .

Since A is an analytic left invertible on H ′
A, Anx0 is a Schauder basis for H ′

A. It follows that

the closure of HA + HI contains H ′
A and HI , and therefore is dense in H = H ′

A⊕HI .
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Chapter 4

Cowen-Douglas Operators - The Analytic Model

In the late 70s, Cowen and Douglas discovered that operators possessing an open set of

eigenvalues can be associated with a particular Hermitian holomorphic bundle [14], [15].

These operators, now called Cowen-Douglas operators, could in some cases be completely

classified by simple geometric properties. For example, when the rank of the bundle is one,

the curvature serves as a complete set of unitary invariants [15].

Cowen-Douglas operators have played an important role in operator theory, servicing as

a bridge between operator theory and complex geometry. The definition is rigid enough to

allow for classification based on local spectral data. However, the definition is also flexible

enough to allow for rich examples - including many backward weighted shifts and adjoints

of some subnormal operators. The definition of Cowen-Douglas operators is as follows:

Definition 4.0.1. Given an open subset Ω of C and a positive integer n, we say that R is

of Cowen-Douglas class n, and write R ∈ Bn(Ω) if

i. Ω ⊂ σ(R)

ii. (R− λ)H = H for all λ ∈ Ω

iii. dim(ker(R− λ)) = n for all λ ∈ Ω

iv.
∨
λ∈Ω ker(R− λ) = H
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Thus if R ∈ Bn(Ω), then R contains an open set of eigenvalues such that each eigenspace

has dimension n, and the span of these eigenspaces is dense in H . Associated to Cowen-

Douglas operators is a bundle structure known as a Hermitian holomorphic vector bundle.

Definition 4.0.2. A Hermitian holomorphic vector bundle of rank n over Ω consists

of the following data:

i. A complex manifold E

ii. A holomorphic map π : E → Ω such that each fiber Eλ := π−1(λ) is isomorphic to Cn

iii. For each λ0 ∈ Ω, there exists a neighborhood ∆ of λ0 and functions {γi}ni=1 with γi :

Ω→ E such that {γi(λ)}ni=1 form a basis for Eλ.

A cross-section E is a map γ : Ω → E such that π(γ(λ)) = λ for all λ ∈ Ω (namely

γ(λ) ∈ Eλ for each λ). The bundle is trivial if ∆ may be taken to be Ω. The trivial

bundle of rank n over Ω is Ω× Cn with π(λ, x) = λ.

If R ∈ Bn(Ω), then the set

ER := {(λ, x) ∈ Ω×H : x ∈ ker(R− λ)}

with the mapping π : ER → Ω via π(λ, x) = λ defines sub-bundle of the trivial bundle

of rank n over Ω. It is known that ER provides a complete set of unitary invariants for

operators in the Cowen-Douglas class [14]. Specifically, if ER1 is isomorphic to ER2 as

holomorphic vector bundles, then R1 is unitarily equivalent to R2. This approach to Cowen-

Douglas theory highlights the beautiful connections that exist between complex geometry

and operator theory.

The sections of the bundle ER provide an equivalent avenue of study. Given R ∈ Bn(Ω),

we can represent R as the adjoint of multiplication by z on a reproducing kernel Hilbert space.
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The approach of this paper more closely follows this model. We will outline this construction

below, and connect it to our work on bases in Chapter Three. For more information about

Cowen-Douglas operators, see [14], [16], [44].

4.1 Analytic Left Invertibles and Cowen-Douglas Operators

The connection between Cowen-Douglas operators and left invertibles is found in the follow-

ing:

Theorem A. Let T ∈ B(H ) be a left invertible operator with ind(T ) = −n, for n ≥ 1.

Then the following are equivalent:

i. T is analytic

ii. T ′ is analytic

iii. There exists ε > 0 such that T ∗ ∈ Bn(Ω) for Ω = {z : |z| < ε}

iv. There exists ε > 0 such that T † ∈ Bn(Ω) for Ω = {z : |z| < ε}

Theorem A is a cornerstone result for this work. It serves two fundamental roles. First,

Theorem A allows us to leverage the powerful machinery associated with Cowen-Douglas

operators into classifying the algebras AT . Second, it provides us with a desirable canonical

model. Concretely, Theorem A allows us to represent T as multiplication by z restricted to

a reproducing kernel Hilbert space of analytic functions.

To help illuminate this relationship, we will take a constructive approach to proving

Theorem A. This will also connect to our results on Schauder bases from the previous

chapter. We prove the implication (3) implies (1) after stating the following lemma noted

in Cowen and Douglas’ original work:
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Lemma 4.1.1 ([14]). Let Θ be an open subset of C and S ∈ Bm(Θ). Then for any fixed

µ0 ∈ Θ, ∨
k≥1

ker(S − µ0)k = H .

Moreover, if Ω ⊂ C is open, λ0 ∈ Ω, n is a positive integer, and R ∈ B(H ) satisfies

i. Ω ⊂ σ(S)

ii. (R− λ)H = H for all λ ∈ Ω

iii. dim(ker(R− λ)) = n for all λ ∈ Ω

iv.
∨
k≥1 ker(R− λ0)k = H .

Then R ∈ Bn(Ω).

Corollary 4.1.2. Let T ∈ B(H ), n ∈ N, ε > 0 and Ω = {z : |z| < ε}. If T ∗ ∈ Bn(Ω), then

T is an analytic, left invertible operator with ind(T ) = −n.

Proof. By assumption, 0 ∈ Ω ⊂ σ(T ∗). By condition (2) of the definition of Cowen-Douglas

operators, T ∗ is onto. Since T ∗ has closed range, it follows from the closed range theorem

that T also has closed range. Moreover, since T ∗ is onto, T must be injective. Therefore, T

is left invertible.

As T is left invertible, its Cauchy dual T ′ is well defined. Recall that T ∗ = (T ′)†. Since

T ∗ ∈ Bn(Ω), it follows that ind(T ′) = −n. By Proposition 3.3.5 and condition (3) of Cowen-

Douglas operators, we have ind(T ) = ind(T ′) = −n. Thus, all that remains to be shown is

that T is analytic. By lemma 4.1.1, H =
∨
k≥1 ker(T ∗k). Therefore,

0 =

(∨
k≥1

ker(T ∗k)

)⊥
=
⋂
k≥1

ker(T ∗k)⊥ =
⋂
k≥1

ran(T k).
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Next we show that if T is a natural analytic left invertible, then T ∗ ∈ Bn(Ω). This will

be done in several steps. First, we will show that T ∗ possess an open set Ω of eigenvalues.

We establish some notation for the open set Ω that will appear in the implication (1) implies

(3) of Theorem A:

Definition 4.1.3. Suppose T is a natural analytic left invertible operator. We define

ΩT := {z ∈ C : |z| < ‖T †‖−1}.

Corollary 4.1.4. If T is a natural analytic left invertible operator, and λ ∈ ΩT , then T + λ

is left invertible with ind(T ) = ind(T + λ).

Proof. Notice that

‖(T + λ)− T‖ = |λ| < ‖T †‖−1.

By Lemma 3.1.9 and Proposition 3.1.13, T + λ is left invertible with the same Fredholm

index as T .

Lemma 4.1.5. Let T be an analytic left invertible operator with ind(T ) = −n for some

n ≥ 1. Then for all λ ∈ ΩT , the operator I − λT ′ is invertible with

(I − λT ′)−1 =
∑
j≥0

λjT ′
j
.

Proof. As |λ| < ‖T †‖−1 and T ′ = T †
∗
, the operator λT ′ has norm less than 1.

Lemma 4.1.6. Let T be an analytic left invertible operator with ind(T ) = −n for some

positive integer n. Let {xi,0}ni=1 be an orthonormal basis for ker(T ∗), and

x′i,j = T ′
j
xi,0 = ((T †)∗)jxi,0
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be the dual basis of T with respect to T †. Then for each i = 1, . . . , n, the maps γi : ΩT →H

via

γi(λ) :=
∑
j≥0

λjx′i,j

are well defined. Furthermore, the maps γi : ΩT →H are analytic.

Proof. By Lemma 4.1.5, I − λT ′ is invertible. Thus for each i = 1, . . . n,

(I − λT ′)−1 (xi,0) =
∑
j≥0

λjT ′
j
(xi,0) =

∑
j≥0

λjx′i,j = γi(λ)

exists for each λ ∈ ΩT . Since the map λ 7→ (I − λT ′)−1 is well defined and analytic on ΩT ,

we have that the maps γi are analytic.

In light of these observations, we make the following definition:

Definition 4.1.7. Given an analytic left invertible T with ind(T ) = −n for some positive

integer n, let ΩT be as in Definition 4.1.3. Let {xi,0}ni=1 be an orthonormal basis for ker(T ∗),

and x′i,j = T ′jxi,0 be the dual basis of T with respect to T †. We define

γi(λ) :=
∑
j≥0

λjx′i,j.

Lemma 4.1.8. Let T be an analytic left invertible with ind(T ) = −n, and {γi}ni=1 be as in

Definition 4.1.7. Then for each i,

γi(λ) ∈ ker(T ∗ − λ).

Hence, ΩT ⊂ σp(T
∗).
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Proof. Since T ∗ is the Moore-Penrose inverse of T ′, it follows from the definition of γi that

T ∗γi(λ) =
∞∑
j=0

λjT ∗x′i,j =
∞∑
j=1

λjx′i,j−1 = λγi(λ).

The rest of the statement follows.

Proposition 4.1.9. Let T be an analytic left invertible operator with ind(T ) = −n for some

positive integer n. Let ΩT be be as in Definition 4.1.3. Then T ∗ ∈ Bn(ΩT )

Proof. Pick an orthonormal basis {xi,0} for ker(T ∗). By Corollary 4.1.4, if λ ∈ ΩT , then

T − λ is left invertible with Fredholm index −n. Therefore, each eigenspace ker(T ∗ − λ)

is n-dimensional for each λ ∈ ΩT . By Lemma 4.1.8, we have {γi(λ)}ni=1 ⊂ ker(T ∗ − λ).

Moreover, since {x′i,j} form a Schauder basis, we must have that the collection {γi(λ)}ni=1 is

linearly independent.

Indeed, suppose there exists a µ ∈ C such that γi(λ) = µγk(λ) for some λ ∈ ΩT with

i 6= k. If xi,j = T jxi,0 is the basis associated to T , then by Lemma 3.4.6 we have for each j

λj = 〈γi(λ), xi,j〉 = µ〈γk(λ), xi,j〉 = µ
∞∑
j=0

λj〈x′k,j, xi,j〉 = 0.

This forces λ = 0. Hence, x′i,0 = γi(0) = µγk(0) = µx′k,0. But since {xi,0}ni=1 form an

orthonormal basis for ker(T ∗), this cannot happen. Hence, {γi(λ)}ni=1 form a (perhaps non-

orthogonal) basis for ker(T ∗ − λ).

Lastly, if we choose λ0 = 0, then

ker(T ∗ − λ0)k = ker((T ∗)k) = (ranT k)⊥ =

(
k⋂
j=0

T jH

)⊥
.

Since T is analytic, it follows that
∨
k≥1 ker((T ∗)k) = H . By Lemma 4.1.1, we have that

T ∗ ∈ Bn(Ω).
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We highlight an important and interesting feature of the basis {x′i,j} that came up in the

previous proof:

Corollary 4.1.10. Let T be an analytic left invertible operator with ind(T ) = −n for some

positive integer n, and {γi}ni=1 be the analytic maps from Definition 4.1.7. Then for each

λ ∈ ΩT , {γi(λ)}ni=1 form a spanning set for ker(T ∗ − λ).

We have thus shown that statements (1) and (3) of Theorem A are equivalent. However,

when paired with Corollary 3.4.3 we see that T † must also be Cowen-Douglas. This completes

the proof of Theorem A.

One consequence of Theorem A is a reformulation of the definition of AT and the operator

algebra generated by a Cowen-Douglas operator and a particular right inverse. Indeed, recall

that AT is defined by

AT := Alg{T, T †}.

If ε > 0, Ω = {z : |z| < ε} , and R ∈ Bn(Ω), then by definition R is right invertible. There

exists a canonical right inverse of R, which we denote by T , such that ran(T ) = ker(R)⊥.

By construction, T is left invertible, and R = T †, the Moore-Penrose inverse of T . Thus, we

arrive at an equivalent viewpoint of study:

Corollary 4.1.11. Let ε > 0, Ω = {z : |z| < ε}, and R ∈ Bn(Ω). If T is the right inverse

of R such that ran(T ) = ker(R)⊥, then T is an analytic left invertible operator with R = T †.

Hence,

AT = Alg{T,R}.

4.2 The Associated Reproducing Kernel Hilbert Space

As previously remarked, the general theory of Cowen-Douglas operators allows one to repre-

sent T as multiplication by z on a reproducing kernel Hilbert space of analytic functions over
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Ω. This construction is highlighted here. We then connect this model to the Schauder bases

associated to T and T ′ discussed in Chapter Three. First, let us establish some notation.

Given a set G ⊂ C, let G∗ := {λ : λ ∈ G}. Notice that Ω∗T = ΩT as a set. We make the

following definition:

Definition 4.2.1. Let R ∈ Bn(Ω). A holomorphic cross-section of γ : Ω→ ER of the bundle

ER is a spanning holomorphic cross-section if

span{γ(λ) : λ ∈ Ω} = H .

Spanning holomorphic cross-sections give rise to reproducing kernel Hilbert spaces of

analytic functions. Indeed, fix a spanning holomorphic section γ. For each f ∈ H , define

an analytic function f̂γ ∈ H(Ω∗) as follows:

f̂γ(λ) = 〈f, γ(λ)〉 λ ∈ Ω∗. (4.1)

Let Ĥγ = {f̂γ : f ∈H } ⊂ H(Ω∗). Equip Ĥγ with the inner product afforded by H . That

is, for each f, g ∈H , define the inner product on Ĥγ via

〈f̂γ, ĝγ〉γ := 〈f, g〉.

Define a linear map Uγ : H → Ĥγ via Uγ(f) = f̂γ. Notice that because γ is a spanning

section, Uγ is a unitary. Indeed, if f̂γ = ĝγ, then for each λ ∈ Ω∗,

0 = f̂γ(λ)− ĝγ(λ) = 〈f − g, γ(λ)〉

Since the span of {γ(λ) : λ ∈ Ω} is dense in H , f − g = 0.

Furthermore, Ĥγ is a reproducing kernel Hilbert space over the set Ω∗. Indeed, as
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γ(λ) ∈H , there exists a function
’
γ(λ)γ ∈ Ĥγ. For all f ∈H and λ ∈ Ω,

f̂γ(λ) = 〈f, γ(λ)〉 =
〈
f̂γ,

’
γ(λ)γ

〉
γ
.

Hence, the reproducing kernel at λ ∈ Ω∗ is given by kλ =
’
γ(λ)γ. Therefore, given λ, µ ∈ Ω∗,

the reproducing kernel may be computed as follows:

K(λ, µ) = 〈kµ, kλ〉 =
〈’γ(µ)γ,

’
γ(λ)γ

〉
γ

= 〈γ(µ), γ(λ)〉.

If R ∈ Bn(Ω), then the Hermitian holomorphic vector bundle (ER, π) has many choices

of cross sections γ : Ω → ER. For example, if T is a natural analytic left invertible, the γi

in Definition 4.1.7 are cross sections for T ∗. By construction, the collection of cross-sections

{γi}ni=1 satisfy {γi(λ)}ni=1 form a basis for Eλ. Since the fibers Eλ of ER are ker(R− λ), and∨
ker(R− λ) = H , we have that the collection of γi : Ω→H have dense span in H . The

following theorem states that we can combine these sections to get a spanning holomorphic

cross-section:

Theorem 4.2.2 ([44] - Theorem 5). Let H be a Hilbert space, and {γi}ni=1 be holomorphic

functions from Ω to H such that

∨
λ∈Ω

spani=1,...,n{γi(λ)} = H .

Then there exists holomorphic functions {φi}ni=1 from Ω→ C such that the map γ : Ω→H

defined by

γ(λ) :=
n∑
i=1

φi(λ)γi(λ) λ ∈ Ω

also spans H .
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The functions φi that appear in Theorem 4.2.2 are built as follows. Let H1 =
∨
λ∈Ω γ1(λ).

Then by construction, γ1 is a holomorphic spanning cross-section for H1. Consider the

RKHS of analytic functions built from γ1. One can find a set of points {al} ⊂ Ω that is a

uniqueness set of Ω, in the sense that the only function in this space associated to γ1 that

vanishes on {al} is the zero function. Using a separation theorem due to Weierstrass, one

can pick a holomorphic function φ2 that vanishes exactly on {al}. Then γ1 + φ2γ2 ends up

being a spanning section for the space H2 =
∨
λ∈Ω spani=1,2{γi(λ)}. Iteratively, one selects

holomorphic functions φi until a spanning section for the whole Hilbert space is built. In

particular, one can choose φ1 to be the identity function on Ω. For details, see [44].

For a concrete example of how this idea may be applied, let H = H2(D) ⊕H2(D) and

T = Tz ⊕ Tz. Then T ∗ ∈ B2(D). Define γ1, γ2 : D→H via

γ1(λ)(z) = kλ(z) ⊕ 0

γ2(λ)(z) = 0 ⊕ kλ(z)

It is well-known that if f ∈ H2(D) is non-zero, then the zero set Z(f) = {an} satisfies

the Blaschke condition:
∑

1 − |an| < ∞. Therefore, if S = {1 − 1
n
}n≥1, the only function

f ∈ H2(D) that vanishes on S is the zero function. Using Blaschke products, there exists an

analytic function φ over D with Z(φ) = S. Now, define γ : D→H via

γ(λ)(z) = γ1(λ)(z) + φ(λ)γ2(λ)(z) = kλ(z)⊕ (φ(λ)kλ(z)) .

The map γ is a spanning section for H . Indeed, if f = f1 ⊕ f2 ∈ H is orthogonal to γ(λ)

for each λ ∈ D, then

0 = 〈f, γ(λ)〉 = 〈f1, kλ〉+ φ(λ)〈f2, kλ〉 = f1(λ) + φ(λ)f2(λ).



65

Since φ vanishes on S, we have that for each λ ∈ S, 0 = f1(λ) + 0 = f1(λ). Hence, f1

vanishes on S so f1 = 0. Therefore, 0 = φ(λ)f2(λ) for all λ ∈ D. In particular, f2 vanishes

on a set with a limit point in D, and thus is the zero function as well. Therefore, γ spans

H .

Notice that this construction is far from unique. Indeed, γ depends on a choice S and

function φ which vanishes on S. Nevertheless, Theorem 4.2.2 provides a method for con-

structing spanning sections for all R ∈ Bn(Ω).

Corollary 4.2.3. If R ∈ Bn(Ω), then (ER, π) admits a spanning holomorphic cross-section.

Suppose R ∈ Bn(Ω). A consequence of Corollary 4.2.3 is that R is unitarily equivalent

to multiplication by z on a collection of analytic functions over Ω∗.

Let Mz denote the operator of multiplication by the indeterminate z. That is, for each

λ ∈ Ω∗, Mz(f̂γ)(λ) = λf̂γ(λ). Since λ ∈ Ω, it follows from the definition Cowen-Douglas

operators that λ is an eigenvalue for R. Consequently, Uγ intertwines Mz on Ĥγ and R∗ on

H . Indeed for all f ∈H ,

(UγR
∗f)(λ) = ◊�(R∗f)γ(λ) = 〈R∗f, γ(λ)〉

= 〈f,Rγ(λ)〉

= 〈f, λγ(λ)〉

= (MzUγf)(λ).

(4.2)

Thus, we have UγR
∗ = MzUγ, so R∗ is unitarily equivalent to Mz on Ĥγ.

In our current study of natural analytic left invertible operators, Theorem A says that

T ∗ ∈ Bn(ΩT ). Therefore, Equation (4.2) tells us that T is unitarily equivalent to Mz on Ĥγ.

Furthermore, ΩT = Ω∗T as sets, so for ease of notation, we consider the functions in Ĥγ on

ΩT . We record this as a corollary.
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Corollary 4.2.4. Let T be an analytic, left invertible operator with ind(T ) = −n for some

positive integer n. Then T is unitarily equivalent to multiplication by z on a reproducing

kernel Hilbert space of analytic functions on Ω∗T = ΩT .

A natural question one might ask is, “What are the analytic functions in Ĥγ ”? The

answer will depend on the choice of analytic section γ described above. We will describe

a salient representation Uγ that blends together the Cowen-Douglas theory with the basis

theory developed in Chapter Three.

Let {xi,0}ni=1 be an orthonormal basis for ker(T ∗), and {γi}ni=1 be defined as in Definition

4.1.7. By Corollary 4.1.10 and Theorem 4.2.2, there exists holomorphic functions {φi}ni=1

from Ω→ C such that

γ(λ) :=
n∑
i=1

φi(λ)γi(λ) =
n∑
i=1

φi(λ)
∑
j≥0

λjx′i,j

is a holomorphic spanning cross-section for H . By the comments following Theorem 4.2.2,

φ1 may be chosen to be the identity function. For each f ∈ H and λ ∈ ΩT , we have by

Equation (4.1)

f̂(λ) = 〈f, γ(λ)〉 =
n∑
i=1

φi(λ)
∑
j≥0

λj〈f, x′i,j〉

where here we have repressed the subscript γ on f̂ . The reproducing kernel Hilbert space

associated with this choice of analytic section will be simply denoted Ĥ . We store this

information in a definition:

Definition 4.2.5. Given a natural analytic left invertible T , let ΩT be as in Definition 4.1.3.

Let {xi,0}ni=1 be an orthonormal basis for ker(T ∗). Pick {φi}ni=1 holomorphic functions such

that the map

γ(λ) =
n∑
i=1

φi(λ)
∑
j≥0

λjx′i,j
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each λ ∈ ΩT is a spanning holomorphic cross-section with φ1 = 1. For each each f ∈H , set

f̂(λ) =
n∑
i=1

φi(λ)
∑
j≥0

λj〈f, x′i,j〉. (4.3)

Let Ĥ denote the reproducing kernel Hilbert space of functions f̂ arising from Equation

(4.3) with inner product 〈f̂ , ĝ〉 = 〈f, g〉. The representation of T as Mz on Ĥ is called the

canonical representation of T relative to {xi,0}ni=1 and {φi}ni=1.

The terminology canonical is fitting for the above representation. In the canonical rep-

resentation, the basis elements associated to T become the functions φkz
l. That is, if

k = 1, . . . n, then ‘xk,l(λ) = φk(λ)λl for each λ ∈ Ω. This follows directly by Corollary

3.4.6 and Equation (4.3):

‘xk,l(λ) =
n∑
i=1

φi(λ)
∑
j≥0

λj〈xk,l, x′i,j〉 = φk(λ)λl (4.4)

In particular, since φ1 = 1, we have that Ĥ contains the functions of the form zl. Further-

more, ˆxk,0 = φk ∈ Ĥ for each k = 1, . . . , n. Since {xk,0}nk=1 form an orthonormal basis for

ker(T ∗), the functions {φk}nk=1 are also orthogonal.

Recall that in general, the reproducing kernel at λ is given by kλ = γ(λ). Hence, for the

canonical representation, the reproducing kernel K : Ω2 → C for Ĥ takes on the following

form:

K(λ, µ) = 〈γ(µ), γ(λ)〉 =
n∑
k=1

n∑
i=1

φi(λ)φk(µ)
∑
l≥0

∑
j≥0

µlλj〈x′k,l, x′i,j〉

where by Proposition 3.4.7, convergence does not depend on the order of the four sums. The

kernel is analytic in λ, and co-analytic in µ by construction.

Under the canonical representation, T † becomes “division by z”. To make this precise,

we require a simple lemma:
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Lemma 4.2.6. Let T1 and T2 be left invertible operators with Moore-Penrose inverses T †1

and T2
†. If T2 = UT1U

∗ for some unitary U , then T2
† = UT †1U

∗ = (UT1U
∗)†.

Proof. Recall that T2
† = (T2

∗T2)−1T2
∗. Hence,

T2
† = (UT ∗1 T1U

∗)−1UT ∗1U
∗ = U(T ∗1 T1)−1U∗UT ∗1U

∗ = UT †1U
∗.

Corollary 4.2.7. If T is analytic with index −n, and Uγ : H → Ĥγ is the unitary such

that Mz = UγTU
∗
γ , then M †

z = (UγTU
∗
γ )†.

Now, the functions inside ker(M †
z ) are the span of the orthogonal functions {φi}ni=1.

Furthermore, ran(Mz) = ker(M †
z )⊥ consists of functions of the form zĝ. From the preceding

corollary, M †
zMz = I, so it follows that either M †

z f̂ = 0 (if f̂ is linear combination of the φi)

or M †
z f̂ = z−1f̂ otherwise.

Expanding on this computation, suppose that f̂ ∈ Ĥ is of the form φiz
j. Consider

the action of M †
z
n

on f̂ . By construction, M †
z
n
(φiz

j)(λ) is equal to 0 if n ≥ j and φiz
j−n

otherwise.

For emphasis, the operator Mz−1 of division by z is not well defined on Ĥ since 0 ∈ Ω

and Ĥ contains the constant functions. Yet Mz−1 is well defined as a map from ran(Mz) =

ker(M †
z )⊥ to Ĥ . By the above computation, M †

z is Mz−1 on ker(M †
z )⊥. Hence, T † is Mz−1

wherever the operator Mz−1 is well defined, and 0 otherwise. This can be succinctly written

as

M †
z = Mz−1Q1

where Q1 is the projection onto ker(M †
z )⊥. More generally for each n, we have that

M †
z

n
= Mz−nQn
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where Qn is the projection onto ker(M †
z
n
)⊥.

This model gives intuition into the structure of AT . By Proposition 3.2.5, Alg(Mz,M
†
z )

consists of operators of the form

F +
N∑
k=0

akMz
k +

M∑
l=1

blM
†
z

l
= F +

N∑
k=0

akMzk +
M∑
l=1

blMz−lQl

where F is a finite rank operator. One could combine via linearity the “analytic” component

of the above sum to get

F +M∑N
k=0 akz

k +
M∑
l=1

blMz−lQl.

In some sense, the “principal part”
∑M

l=1 blMz−lQl may also be combined into a single multi-

plication operator. Unfortunately, this is not done as effortlessly. We do have that Ql ≤ Qk

for all k ≤ l. Therefore, for all f̂ ∈ ker(T †M)⊥, the sum of the principal pieces combine into

a single multiplication operator. That is,

(
M∑
l=1

blMz−lQl

)
(f̂)(λ) =

M∑
l=1

bl
f̂(λ)

λl
=
(
M∑M

l=1 blz
−l f̂
)

(λ)

However, this fails on ker(T †
M

), as some operators in the principal part have kernels con-

tained in ker(T †
M

). For example, if f̂ is perpendicular to ker(T †
L
) but not perpendicular to

ker(T †
L+1

), then

(
M∑
l=1

blMz−lQl

)
(f̂)(λ) =

L∑
l=1

bl
f̂(λ)

λl
=
(
M∑L

l=1 blz
−l f̂
)

(λ).

This discussion demonstrates that we have a canonical analytic model to represent AT . It

is the norm limit of finite rank operators plus multiplication operators that have “Laurent”

polynomials as symbols.
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Heuristic 4.2.8. If T is a natural analytic left invertible operator, then the algebra AT is

compact perturbations of multiplication operators whose symbols are Laurent series centered

at zero.

In this section, we have shown that T = Mz on a RKHS of analytic functions. To some

extent, a converse statement is true as well. In [37], Richter shows if T is Mz on a reproducing

kernel Hilbert space of analytic functions, then under suitable assumptions, T is an analytic

left invertible operator. We discuss this result in Section 5.3.2 on the classification of AT via

the reproducing kernel Hilbert space Ĥ .

4.3 Reduction of Index - Strongly Irreducible Operators

Suppose that T is an analytic (pure) isometry with Fredholm index −n for n ≥ 2. Then T

can be decomposed as a direct sum of pure isometries Ti each with Fredholm index -1. This

decomposition is clearly unique up to unitary equivalence. A similar, though much weaker,

statement is true for general analytic left invertible operators. We require some terminology.

Definition 4.3.1 ([23]). An operator R ∈ B(H ) is strongly irreducible if there is no

non-trivial idempotent in {R}′, the commutant of R. Equivalently, R is strongly irreducible

if XRX−1 is an irreducible operator for every invertible operator X. We denote the set of

all strongly irreducible operators over H by (SI).

Clearly, strong irreducibility is a similarity invariant. Moreover, it follows by definition

that R ∈ (SI) if and only if R∗ ∈ (SI).

Strongly irreducible operators play an important role in single operator theory. They

serve a role equivalent to the Jordan blocks in the infinite dimensional setting. To see why,

we recall some facts about Jordan canonical forms.
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Definition 4.3.2. For k ∈ N and λ ∈ C, let

Jk(λ) :=



λ 0

1 λ

. . . . . .

0 1 λ


denote the Jordan block of size k for λ.

The next proposition lists some important facts about Jordan blocks for our current

conversation. It will also be useful in characterizing the similarity orbit of Cowen-Douglas

operators in Section 5.2. First, we recall a definition:

Definition 4.3.3. If A is a unital Banach algebra, then Jacobson radical is

rad(A) = {b ∈ A : ρ(ab) = 0 for all a ∈ A}

where ρ(x) is the spectral radius of x. Equivalently, it is the largest ideal satisfying σ(b) = 0

for all b in the ideal.

Proposition 4.3.4 ([26]). For k ∈ N and all λ ∈ C, the following hold:

i. The commutant of the Jordan block Jk(λ) is

{Jk(λ)}′ =





a1 0

a2 a1

. . . . . .

ak a2 a1




.

ii. Jk(λ) is strongly irreducible.
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iii. If A ∈Mk is strongly irreducible, then A is similar to Jk(µ) for some µ ∈ C.

If A ∈ Mn, the Jordan canonical forms theorem states that A is similar to a direct

sum of Jordan blocks. This decomposition is unique, up to the ordering of the blocks. If

σ(A) = {λi}ni=1, then we write

A ∼
l⊕

i=1

Jki(λi)
(mi)

where the superscript (mi) denotes the orthogonal direct sum of mi copies of the Jordan block

Jki(λi). In other words, the Jordan decomposition theorem states that, up to similarity, each

matrix has a unique decomposition as a direct sum of strongly irreducible operators.

Our current goal is to understand how this statement translates into the infinite dimen-

sional setting. To help make this more precise, we have the following definition:

Definition 4.3.5 ([23]). A sequence {Ej}lj=1, 1 ≤ l ≤ ∞ of non-zero idempotents on H is

called a spectral family if

i. there exists an invertible operator X ∈ B(H ) such that {XEjX−1} are pairwise or-

thogonal projections

ii.
∑l

j=1Ej = I.

Furthermore, if R ∈ B(H ), then the spectral family is a strongly irreducible decompo-

sition of R if

iii. EjR = REj for all j

iv. R | ran(Ej) ∈ (SI).

In other words, R has a strongly irreducible decomposition if R is the topological direct

sum strongly irreducible operators. Equivalently, R is similar to the orthogonal direct sum

of strongly irreducible operators. We denote this by R ∼ ⊕lj=1Rj.
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In finite dimensions, Jordan canonical forms force each matrix to have a unique SI decom-

position up to similarity. This is not the case for operators in B(H ). Not every operator

in B(H ) has a strongly irreducible decomposition. Moreover, even if an operator has a

strongly irreducible decomposition, it may not be unique [26]. Therefore, we make the

following definition:

Definition 4.3.6. Let R ∈ B(H ), and E = {Ej}l1j=1 and E ′ = {E ′j}
l2
j=1 be two strongly

irreducible decompositions of R. We say E and E ′ are similar if

i. l1 = l2 = l

ii. there exists an invertible operator X ∈ {R}′, the commutant of R, such that XEjX
−1 =

E ′j for all 1 ≤ j ≤ l.

If R has a strongly irreducible decomposition, we say that R has a unique strongly irre-

ducible decomposition up to similarity if any two of the decompositions are similar.

There is an extensive amount of work relating strongly irreducible decompositions of

operators to K-theory [4], [23], [25], [26]. We will mention some of these results in in a later

section. Of particular interest to us in the present are the following deep results due to Y.

Cao, J. Fang and C. Jiang:

Theorem 4.3.7 ([26] - Theorem 5.5.12). Each operator in S ∈ B1(Ω) is strongly irreducible.

Moreover for any n, if R ∈ Bn(Ω), then R has a unique SI decomposition up to similarity.

Furthermore, R ∼ ⊕mj=1Rj where Rj ∈ (SI) ∩Bnj
(Ω) and

∑m
j=1 nj = n.

Corollary 4.3.8. Let T be an analytic left invertible operator with ind(T ) = −n for some

1 ≤ n <∞. Then T ∼ ⊕mj=1Tj where Tj are analytic,
∑m

j=1 ind(Tj) = −n and Tj ∈ (SI).

Theorem 4.3.7 states that operators in the Cowen-Douglas class have a decomposition

analogous to the Jordan canonical forms for matrices. Without loss of generality, we may
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assume that if R ∈ Bn(Ω), then R = ⊕mj=1Rj where Rj ∈ (SI)∩Bnj
(Ω) where

∑m
j=1 nj = n.

This decomposition suggests that in order to understand AT , we should first study the natural

analytic left invertible operators that are strongly irreducible. In particular, we should study

the analytic left invertible operators with Fredholm index −1.

In the isometric case, T ∗ ∈ Bn(Ω) decomposes to a direct sum of n strongly irreducible

operators in B1(Ω). Equivalently, pure isometric operators with ind(T ) = −n decompose

into n “Jordan blocks” of size 1. This turns out to not be the case in general. Notice

that if R ∈ Bn(Ω) ∩ (SI), then it cannot be further decomposed as a direct sum. Indeed,

suppose to the contrary that R ∈ Bn(Ω) ∩ (SI) and R ∼ ⊕nk=1Rk with Rk ∈ B1(Ω). By

Theorem 4.3.7, each operator in B1(Ω) is strongly irreducible. Hence, R would have two

strongly irreducible decompositions that are dissimilar. But Theorem 4.3.7 states that all

Cowen-Douglas operators have a unique SI decomposition up to similarity, contradicting the

assumption that R ∈ Bn(Ω) ∩ (SI) and R ∼ ⊕nk=1Rk .

Thus, if there exists left invertible operators with T ∗ ∈ Bn(Ω) ∩ (SI) for n ≥ 2, it would

not be possible to decompose T as a direct sum of left invertibles with Fredholm index −1.

This is unfortunately the case, as the following example outlines:

Example 4.3.9. In this example, we will construct Toeplitz operators on a subspace of a

Sobolev space. These operators will be strongly irreducible, and after combining them into

an operator that looks like a Jordan block, we can form strongly irreducible operators of any

index. Throughout, we fix ε > 0, and let Ω = {λ : |λ| < ε}. We begin with a definition.

Definition 4.3.10. If dm denotes the planar Lebesgue measure, then the Hilbert space

W 2,2(Ω) consists of the f ∈ L2(Ω, dm) such that the first and second order distributional

partial derivatives of f belong to L2(Ω, dm).

Let Mz be multiplication by the independent variable on Ω. Then Mz ∈ W 2,2(Ω). Let

R denote the algebra generated by rational functions of Mz with poles off Ω. Consider the
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action of this algebra on the identity function 1 over Ω. We let R(Ω) be the subspace of

W 2,2(Ω) given by

R(Ω) := R1.

Note that R(Ω) is the subspace generated by rational functions with poles off of Ω. Moreover,

R(Ω) is invariant under Mf for f ∈ R(Ω). For f ∈ R(Ω), define Tf ∈ B(R(Ω)) via

Tf := Mf |R(Ω). Then we have the following:

Lemma 4.3.11 ([23] - Corollary 3.3). Tz is a left invertible operator with ind(Tz) = −1. In

particular, T ∗z ∈ B1(Ω).

Now for any n ∈ N, define Jn(Tz) ∈ B(
⊕n

j=1 R) via

Jn(Tz) :=



Tz 0

1 Tz

. . . . . .

0 1 Tz


.

Proposition 4.3.12 ([23] - Theorem 3.5). For Jn(Tz) defined above, we have

{Jn(Tz)}′ =





Tf1 0

Tf2 Tf1
. . . . . .

Tfn Tf2 Tf1


: f1, . . . fn ∈ R(Ω)


.

From Proposition 4.3.12, it follows that Jn(Tz) is strongly irreducible. Indeed, if P ∈

{Jn(Tz)}′ is an idempotent, then since P 2 = P , it follows that f 2
1 = f1 on Ω. Hence, f1 = 1

or f1 = 0. In either case, if P 2 = P , then the terms on the off diagonal must all be zero.

This concludes our example.
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The previous example illustrates a general result about Cowen-Douglas operators. Namely,

Cowen-Douglas operators of rank n take the form of triangular operators of size n:

Theorem 4.3.13 ([23] - Theorem 1.49). Let R ∈ Bn(Ω) for 1 ≤ n <∞. Then there exists

n operators R1, . . . Rn such that Ri ∈ B1(Ω) and

R =



R1 ∗ ∗ ∗

R2 ∗ ∗
. . .

...

Rn


with respect to some decomposition H = ⊕ni=1Hi.

Corollary 4.3.14. If T is an analytic left invertible with ind(T ) = −n for 1 ≤ n <∞, then

there exists n analytic left invertibles T1, . . . Tn such that ind(Ti) = −1 and

T =



T1

∗ T2

...
...

. . .

∗ ∗ . . . Tn


(4.5)

with respect to some decomposition H = ⊕ni=1Hi.

Corollary 4.3.14 further emphasizes the need to analyze analytic left invertible operators

with ind(T ) = −1. We showed above that we can always decompose T into a direct sum of

strongly irreducible pieces. The strongly irreducible blocks have the form of lower triangular

operators. If T is decomposed as in Corollary 4.3.14, then Tn = T |Hn and Tn is an analytic

left invertible operator with ind(Tn) = −1. If we are to gain any insight into a general AT ,
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it is mandatory to understand the index −1 case first. This analysis will be taken up next

chapter.
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Chapter 5

The Algebra AT

As remarked earlier, given a left invertible T , we view AT as a natural generalization of

the concrete C*-algebra generated by an isometry. By the Wold-decomposition, we can

always reduce an isometry to its purely (analytic) isometric component. If the Fredholm

index of the analytic isometry is −n, then this isometry is unitarily equivalent to a direct

sum of n unilateral shift operators. Hence, in order to analyze the C*-algebra generated

by an isometry, it is important to first understand the C*-algebra generated by an analytic

isometry of Fredholm index −1.

The preceding sections showed that, in general, we cannot reduce to either of these

assumptions (analytic or ind(T ) = −1) as we could in the isometric case. Example 3.5.1

demonstrated that T cannot be decomposed as a direct sum of an analytic operator and an

invertible operator. Furthermore, Example 4.3.9 shows that even if an operator is analytic,

it cannot be reduced to the index −1 case. Nevertheless, there is a summand on which T will

be analytic. Similar statements may be made about strong irreducibility and the Fredholm

index. Under the assumption of analytic, Theorem A implies that T ∗ is Cowen-Douglas.

Corollary 4.3.14 tells us that, in this case, T may be written as a triangular operator where

each element on the diagonal is an analytic left invertible of index −1.

Although we cannot reduce to the case of analytic or index −1, the epistemological

viewpoint of the author is that an important first step in understanding AT is simplifying to
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this case. We therefore make the following minimality assumptions on T for the remainder

of this chapter:

Assumption. Henceforth, our left invertible operators will satisfy

i. The Fredholm index: ind(T ) = −1

ii. Analytic:
⋂
T nH = 0

As discussed in Section 2.2, if T is an analytic isometry with ind(T ) = −1, we can repre-

sent T as Mz on H2(T). This yielded an elegant representation for C∗(T ). The analyticity

ensures that the basis associated to Mz, the orthonormal basis zn, spans the Hilbert space.

The Fredholm index guarantees that T will be an irreducible C*-algebra, which contains

a compact I − TT ∗, and therefore all the compacts. Furthermore, one discovers that each

element of T may be uniquely written as Tf +K for some f ∈ C(T) and K ∈ K (H ).

The general case is similar. That is, if T is an analytic, left invertible operator with

Fredholm index −1, then AT contains the compact operators. As a consequence, we will

determine the isomorphism classes of AT .

It is worth remarking that since AT is a concrete operator algebra, it belongs to many

reasonable categories. A priori, it is not clear which choice of morphism one should consider

(bounded, completely bounded, etc.). Fortunately, all reasonable choices are equivalent. It

will be shown that two such algebras are boundedly isomorphic if and only if the isomorphism

is implemented by an invertible. This will bring us to analyze the similarity orbit of T . For

Cowen-Douglas operators, the similarity orbit has been extensively studied. We will leverage

these results into our analysis of the study of AT .
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5.1 The Compact Operators

In this section, we show that if T is analytic left invertible with ind(T ) = −1, then AT

contains the compact operators. Our approach is to show that, more generally Alg(T, L)

contains the compact operators for any left inverse T and left inverse L. This will allow us

to conclude that Alg(T, L) = AT for any left inverse L. First, let us establish some notation.

Fix a left inverse L of T . We set F0,0 = I − TT †. That is, F0,0 is the projection onto

ker(T †). We define

Fn,m,L := T n(I − TT †)Lm

for each n,m ∈ Z≥0. For x, y, z ∈H we use θx,y to denote the rank one operator z 7→ 〈z, y〉x.

Recall the Schauder basis and dual basis associated to T and L. Notice that since

ind(T ) = −1, we have a simplified notation. Concretely, let x0 ∈ ker(T ∗) be a unit vector.

Then span{x0} = ker(T ∗). Denote the Schauder basis of T and dual basis T (with respect

to L) via xn := T nx0 and x′n := (L∗)nx0. Then by definition, I−TT † is the projection θx0,x0 .

So for each n,m and x ∈H ,

Fn,m,L(x) = T n(I − TT †)Lm(x) = T n(〈Lm(x), x0〉x0) = 〈x, x′m〉xn.

That is, Fn,m,L is the rank one operator θxn,x′m . Let

KL := span{Fn,m,L}n,m≥1.

Recall from Proposition 3.2.7 that if L = T †, then KL = KT = C , the commutator ideal.

As Fn,m,L ∈ Alg(T, L), KL ⊂ Alg(T, L). Furthermore, the Fn,m,L are rank one operators

for each n,m; and so KL ⊂ K (H ). Our previous work on Schauder bases allows us to

conclude that KL = K (H ).
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Theorem 5.1.1. Let T ∈ B(H ) be an analytic, left invertible with ind(T ) = −1, and L be

a left inverse of T . Then K (H ) = KL. Thus, Alg(T, L) contains the algebra of compact

operators K (H ).

Proof. Let y, z ∈H . Since span{xn} = H = span{x′n}, there exists a sequence of sums in

xn and x′n converging to y and z respectively. It follows that the rank one operator θy,z is a

norm limit of the span of the {Fn,m,L} by simple estimates. Thus, KL contains all the rank

one operators. Since KL is norm-closed by definition, KL ⊃ K (H ). Since KL ⊂ K (H ),

we have KL = K (H ).

A consequence of Theorem 5.1.1 is that the definition of AT is not dependent on the

choice of left inverse.

Corollary 5.1.2. Let T ∈ B(H ) be left invertible (analytic with ind(T ) = −1), and L be

a left inverse of T . Then AT = Alg(T, L).

Proof. By Proposition 3.1.8, each left inverse L of T has the form

L = T † + A(I − TT †)

for some A ∈ B(H ). Thus, each left inverse of T differs from T † by a compact operator. By

Theorem 5.1.1, Alg(T, L) contains K (H ), and therefore T †. So Alg(T, L) ⊆ AT . Reversing

the argument, Alg(T, L) = AT .

Recall that an ideal K of a Banach Algebra A is said to be essential if it has non-trivial

intersection with all non-zero ideals of A. Alternatively, if A ∈ A and AK = 0, then A = 0.

In the next section, we investigate the morphisms between algebras of the form AT . An

important result required in subsequent analysis is the following:
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Proposition 5.1.3. The compact operators K (H ) are an essential ideal of AT . In fact,

K (H ) is contained in any closed ideal of AT .

Proof. Let J be a non-zero closed two sided ideal of AT , and A ∈ J be non-zero. Then there

is some x ∈ H such that ‖Ax‖ = 1. Fix y ∈ H , and let B := θy,A(x). Then B(A(x)) = y.

Thus for all h ∈H , we have

BAθx,xA
∗B∗(h) = BA (〈h,BA(x)〉x) = 〈h, y〉y = θy,y(h).

Since K (H ) ⊂ AT , it follows that the rank one operators B and θx,xA
∗B∗ are in AT . Since

A ∈ J and J is an ideal, we must have that θy,y is inside of J. Thus for any w, z ∈ H ,

θw,z = θw,yθy,yθy,z is in J, so J contains all the finite rank operators, and thus contains

K (H ).

5.2 Isomorphisms of AT

Now that we have established that the compact operators K (H ) ⊆ AT as a minimal ideal,

we may identify the isomorphism classes of AT . We will show that if T1 and T2 are two

analytic left invertible operators with Fredholm index −1, then AT1 is boundedly isomorphic

to AT2 if and only if the algebras are similar. This will be done by looking at how the

bounded isomorphism behaves on the compact operators.

An interesting fact about bounded homomorphisms of C*-algebras is that they necessarily

have closed range. Indeed, we have the following observation due to Pitts:

Theorem 5.2.1 ([34] - Theorem 2.6). Suppose A is a C*-algebra and φ : A → B(H ) is a

bounded homomorphism. Let J = kerφ. Then there exists a real number k > 0 such that for
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each n ∈ N, and R ∈Mn(A),

kdist(R,Mn(J)) ≤ ‖φn(R)‖.

Corollary 5.2.2. If φ : K (H )→ B(H ) is a bounded monomorphism, then there exists a

real number k such that

k‖R‖ ≤ ‖φ(R)‖.

That is, φ has closed range.

Given an invertible operator V ∈ B(H ), we define AdV : B(H ) → B(H ) via

AdV (T ) = V TV −1. As previously mentioned, to fully analyze AT , we need to determine

which category we are working in. On the one hand, we can view AT as an operator algebra,

with our morphisms being completely bounded homomorphisms. On the other hand, we

may want to simply view AT as a Banach algebra, where the morphisms are bounded homo-

morphisms. Fortunately, Theorem 5.1.1 forces the monomorphisms of these two categories

to coincide:

Theorem B. Let Ti, i = 1, 2 be left invertibles (analytic with ind(Ti) = −1) and Ai = ATi.

Suppose that φ : A1 → A2 is a bounded isomorphism. Then φ = AdV for some invertible

V ∈ B(H ).

Proof. Let φ : A1 → A2 be a bounded isomorphism. A brief outline of the proof is as follows.

We first show that φ |K (H ) is similar to a *-automorphism of K (H ). It is well known that

all *-automorphisms of K (H ) have the form AdU for some unitary operator U . We then

use the fact that φ restricted to an essential ideal has the form AdV to conclude that it must

be equal to AdV on all of A1. The details are as follows.

Note that φ |K (H ): K (H )→ A2 ⊂ B(H ) is a bounded representation of the compact

operators. It can be shown that every bounded representation of the compact operators is
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similar to a *-representation (more generally, every bounded representation of a nuclear C*-

algebra is similar to a *-representation [7]). Let W ∈ B(H ) be the invertible that conjugates

φ |K (H ) to a *-representation ψ. That is, φ(u) = Wψ(u)W−1 for every u ∈ K (H ).

Now let us consider the ∗−representation ψ. Note that ψ : K (H ) → W−1A2W . The

map AdW−1 : A2 → W−1A2W carries K (H ) to K (H ). Since every ideal of W−1A2W

has the form W−1JW for J an ideal of A2, it follows that K (H ) is minimal in W−1A2W .

Therefore, we must have that K (H ) ⊆ ψ(K (H )).

Now, K (H ) is equal to the closed span of the rank one projections on H . As a result,

if we can show that each rank one projection p gets sent to another rank one projection

under ψ, then ψ(K (H )) ⊂ K (H ), yielding equality.

To this end, let p be a rank one projection, and p′ = ψ(p). If p′ is not rank one, then

there exists a non-zero projection q′ properly contained under p′. Since ψ(K (H )) contains

K (H ), there exists a projection q ∈ K (H ) such that ψ(q) = q′. Regarding ψ mapping

from K (H ) to ψ(K (H )), ψ is a *-isomorphism and hence invertible. ψ−1 is of course

also a *-isomorphism, and therefore a positive map. Hence, if q′ < p′, then q < p by

positivity of ψ−1. This is absurd, since p was rank one. Thus, ψ(K (H )) ⊂ K (H ), so that

K (H ) = ψ(K (H )).

What we have just shown is that φ |K (H ) is similar to a *-automorphism ψ of K (H ).

Every *-automorphism of K (H ) is of the form AdU for some unitary operator U . Hence,

we have that

φ |K (H )= AdWψ = AdWAdU = AdV

where V = UW . We now show that φ = AdV . To do this, first note that for all A ∈ A1 and

K ∈ K (H ),

φ(A)φ(K) = φ(AK) = ψ(AK) = AdV (AK) = AdV (A)AdV (K) = AdV (A)φ(K)
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So it follows that

(φ(A)− AdV (A))AdV (K) = 0

for each K ∈ K (H ). Cycling over all K ∈ K (H ), we see that

(φ(A)− AdV (A))K (H ) = 0.

Since K (H ) is essential in A2, we have that φ(A) = AdV (A).

Theorem B is a harsh rigidity statement about classification. Indeed, A1 is boundedly

isomorphic to A2 if and only if the algebras are similar. Consequently, if we wish to delineate

these operator algebras into isomorphism classes, we need to understand the similarity orbit

of left invertible operators. We define the following notation for the similarity orbit:

S(T ) := {V TV −1 : V ∈ B(H ) is invertible}.

In classifying the algebra AT , we do not need to keep track of the similarity orbit of the

Moore-Penrose inverse. Indeed, suppose T is left invertible with Moore-Penrose inverse T †,

V is an invertible operator, and T2 := V TV −1. Then L2 := V T †V −1 is a left inverse of T2.

By Corollary 5.1.2, Alg(T2, L2) = AT2 . Therefore to identify the isomorphism class of AT ,

we may disregard S(T †). Hence, we pose the following question:

Question. If T is left invertible (analytic, ind(T ) = −1), what is S(T )?

In general, it is impossible to completely classify the similarity orbit of an operator.

However, analytic left invertible operators have added structure that aid in this analysis. By

Theorem A, if T is analytic, T ∗ ∈ Bn(Ω) for a disc Ω centered at the origin. Clearly if we

could identify S(T ∗), then we would know S(T ). Fortunately, similarity orbits of Cowen-

Douglas operators have been extensively studied [15] [16] [25] [28] [44]. The similarity orbit
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of Cowen-Douglas operators can be completely described by K-theoretic means. We will

highlight these results in the next section.

While the question of addressing the similarity orbit is paramount to a complete clas-

sification of our algebras AT , it is not sufficient. More explicitly, suppose T1 and T2 are

left invertible operators (analytic, ind(T ) = −1) with A1 and A2 isomorphic. Let V be the

invertible that implements the isomorphism between A1 and A2, and let T3 := V T1V
−1 and

L3 := V T †1V
−1. Notice L3 is a left inverse of T3 and that Alg(T3, L3) = A2. By Corollary

5.1.2, A3 = A2.

One would therefore be tempted to reduce to the case where T2 = T3 = AdV (T1).

However, it turns out that not every left invertible S ∈ AT will satisfy AS = AT . Consider

the following example:

Example 5.2.3. We will construct a left invertible operator T inside the Toeplitz algebra

T such that AT 6= T . Consider the Hardy space H2(T). Let φ0 ∈ C(T) be given by

φ0(z) := exp

(
πi

2
(z − 1)z

)

for all z ∈ T. Then φ0(1) = 1 and φ0(−1) = −1. Let

εn(z) = zn.

Define φ := Mε1φ0. Then φ satisfies φ(1) = φ(−1) = 1. Recall the following facts about

invertible functions on C(T) and their associated Toeplitz operators:

Theorem 5.2.4 ([30] Lem. 3.5.14, Thm. 3.5.15). Let φ ∈ C(T) be invertible. Then

i. There exists a unique integer n such that φ = εne
ψ some ψ ∈ C(T)

ii. If φ = εne
ψ, then the winding number n
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iii. We have ind(Tφ) = negative the winding number of φ

iv. Tφ is invertible if and only if the winding number is zero if and only if φ = eψ some

ψ ∈ C(T)

By Theorem 5.2.4, the winding number of φ is 1, so ind(Tφ) = −1. Since both ε1 and φ0

belong to H∞(T) we have that Tε1 and Tφ0 commute, so the Toeplitz operator Tφ factors:

Tφ = Tε1φ0 = Tε1Tφ0 .

Also by Theorem 5.2.4, Tφ0 is invertible. The point-wise inverse of φ0 is also continuous on

T. Therefore, the Toeplitz operator Tφ is left invertible with left inverse

L = Tφ0
−1T ∗ε1 = Tφ0−1T ∗ε1 ∈ T .

Moreover, since Tε1 and Tφ0 commute, we have (Tφ)n = TεnTφ0n . Since Tφ0n is invertible,

Tφ0nH
2(T) = H2(T). Consequently,

⋂
Tφ

nH2(T) =
⋂

TεnH
2(T) = 0

so Tφ is analytic. Recall that AT ⊂ C∗(T ) for any left invertible T . We remark that

C∗(Tφ) 6= T . This follows from the following result due to Coburn:

Lemma 5.2.5 ([10] Cor. 6.3). If φ is in the disc algebra, then C∗(Tφ) = T if and only if φ

is injective.

It is shown in [10] that C∗(Tφ)/K (H ) is isomorphic to continuous functions on T/ ∼,

where ∼ is an equivalence relation identifying all points z, w ∈ T such that φ(z) = φ(w).
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Since φ(1) = φ(−1), it follows by the above lemma that AT ⊆ C∗(Tφ) 6= T . This concludes

our example.

What the above example demonstrates is that not every left invertible operator in AT

generates AT . Therefore, determining the similarity orbit is not sufficient to delineate the

isomorphism classes of AT . Concretely, suppose A1 and A2 are generated by T1 and T2

respectively. To determine if A1 is isomorphic to A2, it is not sufficient to verify that A2

possesses an operator T3 similar to T1. This would demonstrate that A1 is isomorphic to a

subalgebra of A2. If one wanted A1 to be isomorphic to A2, it is necessary to show that T3

also generates A2. With this caveat emphasized, we spend the next section investigating the

similarity orbit of our class of left invertible operators.

5.3 The Similarity Orbit of T

If T is an analytic left invertible operator with ind(T ) = −1, then by Theorem A, T ∗ ∈ B1(Ω)

for Ω = {λ : |λ| < ε}. Therefore, classifying S(T ) is equivalent to classifying the similarity

orbit of Cowen-Douglas operators over a small disc centered at the origin. The problem of

identifying when two Cowen-Douglas operators are similar is a classic one. In Cowen and

Douglas’ original work, they show that two operators R1, R2 ∈ B1(Ω) are unitarily equivalent

if and only if the curvature on the associated hermitian holomorphic vector bundles are equal

[15]. Cowen and Douglas did not find a similarity classification however. They asked what is

a complete similarity invariant of B1(Ω), and more generally, Bn(Ω). Various authors have

since worked on this problem, successfully describing the similarity orbit of Cowen-Douglas

operators.

There are two approaches one could take to classification of the algebra AT for T analytic,

left invertible with Fredholm index −1. One might try to parameterize the similarity orbit

S(T ) via some abstract object. Another approach is to try to find computable methods for
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determining when two left invertibles T1 and T2 are similar. In this section, we tackle both

of these problems.

We begin by discussing some results of Jiang et. al. that allow us to classify S(T ) via

a K0 group. This approach also provides a semi-computable method to determine when

T1 ∼ T2. We then seek a more concrete invariant that would allow one to quickly determine

when two analytic left invertible operators with index −1 are not similar. We leverage the

canonical reproducing kernel Hilbert space associated with T to achieve this result.

5.3.1 Similarity via K0

In [24], Jiang describes the similarity orbit of strongly irreducible Cowen-Douglas operators

using the K0-group of the commutant algebra. Later, Jiang, Guo, and Ji gave a similarity

classification of all Cowen-Douglas operators using the commutant [26]. Here we briefly

outline these results, and how they connect to the discussion about strongly irreducible

operators and Jordan forms from Section 4.3.

We begin by demonstrating how the classic Jordan canonical forms theorem can be

phrased in terms of K-theory. Let A ∈ Mn. Then A ∼
⊕l

i=1 Jki(λi)
(mi) as in Section 4.3.

We then have the following:

Proposition 5.3.1 ([26] - Theorem 2.2.6, 2.2.7). Let A ∈ Mn, with A ∼
⊕l

i=1 Jki(λi)
(mi).

Then

V ({A}′) ∼= Nl

K0({A}′) ∼= Zl.

The map that induces this isomorphism is given by

h([I]) = (m1,m2, . . .ml)

where [I] is the equivalence class corresponding to the identity matrix. Moreover, let B,C ∈
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Mn and B =
⊕l

i=1B
(mi)
ki

where Bki are strongly irreducible (i.e. Bki are similar to Jordan

block) and Bki is not similar to Bkj for i 6= j. Then B ∼ C if and only if there exists an

isomorphism

h : K0({B ⊕ C}′)→ Zl

with h([I]) = (2m1, 2m2, . . . 2ml).

In other words, the K0 group of the commutant of A contains all the information of the

Jordan decomposition. Two matrices are similar if and only if they are both similar to the

same Jordan decomposition
⊕l

i=1 Jki(λi)
(mi). This is equivalent to the direct sum of the

matrices having Jordan decomposition
⊕l

i=1 Jki(λi)
(2mi), and this information is encoded in

the K0 group of the commutant.

This theory extends to the infinite dimensional setting. We have the following deep result

due to Jiang et al.:

Theorem 5.3.2 ([26] - Theorem 4.2.1, 4.3.1). Let R ∈ B(H ). Then the following are

equivalent:

i. R ∼
⊕l

i=1R
mi
i , Ri ∈ (SI), Ri is not similar to Rj for i 6= j and R(n) has a unique SI

decomposition for all n.

ii. K0({R}′) ∼= Zl via the isomorphism

h([I]) = (m1,m2, . . .ml).

By Theorem 4.3.7, we know that Cowen-Douglas operators have a unique SI decom-

position. By definition, if R ∈ Bn(Ω), then R(m) ∈ Bn∗m(Ω), and hence has a unique SI

decomposition. Combining Theorems 4.3.7 and 5.3.2, Jiang, Guo and Ji gave the complete

classification of Cowen-Douglas operators up to similarity:
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Theorem 5.3.3 ([24]). Let A,B ∈ Bn(Ω). Suppose that A =
⊕l

i=1A
(mi)
i where Ai ∈ (SI)

and Ai is not similar to Aj for i 6= j. Then A ∼ B if and only if (K0({A ⊕ B}′), V ({A ⊕

B}′), I) ∼= (Zl,Nl, 1) via the isomorphism

h([I]) = (2m1, 2m2, . . . , 2ml).

In particular, the result for Cowen-Douglas operators with Fredholm index 1 is as follows:

Theorem 5.3.4 ([26] - Proposition 5.1.7). Let A,B ∈ B1(Ω). Then A is similar to B if

and only if

K0({A⊕B}′) ∼= Z.

This result and its generalizations solve the question of the similarity orbit, and therefore,

the isomorphism problem for AT from the last section. As stated, Theorem 5.3.4 is a rather

difficult theorem to apply. Luckily in [24], Jiang provided the following theorem which

concretely identifies the requirements on the isomorphism between the K0 groups generated

by A and B:

Theorem 5.3.5 ([24] - Theorem 4.4). Two strongly irreducible Cowen-Douglas operators A

and B are similar if and only if there is a group isomorphism α : K0({A}′) → K0({B}′)

satisfying the following:

i. α(V ({A}′)) = V ({B}′)

ii. α([I{A}′ ]) = [I{B}′ ], where [I{A}′ ] is the equivalence class associated to the identity in the

idempotents of M∞({A}′)

iii. there exists non-zero idempotents p ∈ M∞({A}′) and q ∈ M∞({B}′) such that α([p]) =

[q] and p is equivalent to q in M∞({A⊕B}′).
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5.3.2 Similarity via Ĥ

Theorems 5.3.4 and 5.3.5 establish that the obstruction to similarity is K-theoretic. As

remarked, Theorem 5.3.4 is difficult to verify in practice. Theorem 5.3.5 is more intuitive,

since it prescribes the similarity largely in terms of K-theory of the algebras {A}′ and {B}′

rather than {A⊕B}′. Nevertheless, from an applications standpoint, this theorem is still a

bit mysterious since we don’t have an understanding of commutant {T ∗}′ for T ∗ ∈ B1(Ω).

Here we attempt to remedy this by providing a description of the commutant in terms of

multipliers, as well as a method to determine when two Cowen-Douglas operators fail to be

similar in terms of the associated reproducing kernel Hilbert spaces.

As discussed in Chapter Four, if T is an analytic, left invertible operator with ind(T ) =

−n, then T ∗ ∈ Bn(ΩT ). Consequently, T is unitarily equivalent to Mz on a reproducing

kernel Hilbert space of analytic functions over ΩT . There, we discussed one particularly

interesting representation involving the Schauder bases associated to T and T ′, namely, the

canonical representation of T . In this chapter, we have assumed that ind(T ) = −1. In this

case, the Schauder basis representation of Definition 4.2.5 cleans up spectacularly. Fixing

x0 ∈ ker(T ∗), we let xn := T nx0 and x′n := T ′nx0. Then for every λ ∈ ΩT , we have

xλ =
∑
j≥0

λjx′j

Then for each f ∈H , we have that f̂ ∈ Ĥ is given by

f̂(λ) = 〈f, xλ〉 =
∑
j≥0

λj〈f, x′j〉
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for all λ ∈ ΩT . The reproducing kernel simplifies to

K(λ, µ) = 〈xµ, xλ〉 =
∑
i≥0

∑
j≥0

µiλj〈x′i, x′j〉 (5.1)

Our goal in this section is to show that the reproducing kernel Hilbert space Ĥ is a similarity

invariant of T . This will be done in two different ways - one emphasizing multipliers while

the other emphasizes the positive kernel K.

The functions in Ĥ satisfy a nice factorization property studied by Richter [37]. He was

interested in the invariant subspaces of well-behaved Banach spaces of analytic functions.

Concretely, he investigated Banach spaces that satisfied the following axioms.

Properties 5.3.6. Given Ω ⊂ C be open and connected, let B be a Banach space of analytic

functions that satisfy properties:

I. The functional of evaluation at λ is continuous for all λ ∈ Ω

II. If f ∈ B, then zf ∈ B

III. If f ∈ B and f(λ) = 0, then there exists a g ∈ B such that (z − λ)g = f .

Note that if a Hilbert space H satisfies the above axioms, the first condition requests H

be a reproducing kernel Hilbert space. The second condition says that H is invariant under

multiplication, and combined with the first says that Mz is bounded. The final condition is

equivalent to asking that Mz − λ is bounded below for every λ ∈ Ω.

It is easy to see that if T is an analytic left invertible with ind(T ) = −1, then the

reproducing kernel Hilbert space Ĥ will satisfy these axioms. In [37] it is shown that a

Hilbert space satisfies the axioms if and only if the Hilbert space arises from a Cowen-

Douglas operator:
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Proposition 5.3.7 ([37] - Theorem 2.10). Let Ω ⊂ C be connected and open, and R ∈

B(H ). Then R ∈ B1(Ω∗) if and only if there is a Hilbert space Ĥ of analytic functions on

Ω satisfying I-III in Properties 5.3.6 such that R∗ is unitarily equivalent to Mz ∈ B(Ĥ ).

In the same paper, Richter showed that when a Banach space of analytic functions satisfies

Properties 5.3.6, the similarity orbit of Mz can be identified in terms of multipliers. If the

Banach spaces are actually Hilbert spaces, then the multipliers between them arise in a very

natural way:

Proposition 5.3.8 ([37], Prop 2.4). Suppose H1 and H2 are Hilbert spaces of analytic

functions over Ω that satisfy I-III in Properties 5.3.6. Write Mi for multiplication by z on

Hi. Then V ∈ B(H1,H2) satisfies VM1 = M2V if and only if there exists a multiplier

φ ∈M(H1,H2) such that V = Mφ. In particular, {M1}′ = {Mφ : φ ∈M(H1)}.

Proposition 5.3.8 translates the problem of classifying the similarity orbit of T , a hard

operator theoretic question, into a question about geometry of Hilbert spaces. To see how,

we will require the following notation and lemma:

Definition 5.3.9 ([1]). Suppose Ω = {z : |z| < ε}, K : Ω2 → C is an analytic kernel, and

0 < r < 1. Set Ωr := {z : rz ∈ Ω}. The r-dilation of K is the function Kr : Ω2
r → C

given by Kr(λ, µ) := K(rλ, rµ). If f is a function on Ω, let fr : Ωr → C be the function

fr(λ) := f(rλ).

Lemma 5.3.10 ([1], Thm. 2.3). Suppose Ω = {z : |z| < ε}, K : Ω2 → C is an analytic

kernel, and 0 < r < 1. Let H and Hr denoted the reproducing kernel space associated with

K and Kr respectively. The operator V : H → Hr via V f = fr is a unitary operator that

preserves multipliers. That is, φ ∈ M(H ) if and only if φr ∈ M(Hr), and Mφ is unitarily

equivalent to Mφr .
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Supposing T1, T2 ∈ B(H ) are left invertible (analytic, ind(Ti) = −1), represent Ti as Mi

on Ĥi. Now, it may be the case that the underlying sets Ωi = {z : |z| < εi} for Ĥi might not

agree. However, one is certainly contained in the other. Without loss of generality, suppose

that ε1 < ε2. We can perform an r-dilation of K2 so that Ω2,r = Ω1. Lemma 5.3.10 says that

this new reproducing kernel Hilbert space Ĥ2,r will be unitarily equivalent to Ĥ2 in a way

that preserves multipliers. Furthermore, the operator of M2 will be unitarily equivalent to

Mz on Ĥ2,r. So without loss of generality, we may assume that Ω1 = Ω2. Going forward, we

refer to this set simply as Ω.

In light of this observation and Proposition 5.3.8, our goal is to determine if there exists

an invertible multiplier between Ĥ1 and Ĥ2. This opens the following question:

Question. Let T1, T2 ∈ B(H ) with T ∗i ∈ B1(Ω). Represent each as Ti as Mi on Ĥi. Does

there exist φ ∈M(Ĥ1, Ĥ2) such that Mφ is invertible?

In order to answer this question, one might first want investigate the structure ofM(Ĥ1, Ĥ2).

In particular, one would like to know that M(Ĥ1, Ĥ2) 6= 0. The theory of multipliers on

reproducing kernel Hilbert spaces of analytic functions is a well explored subject [32]. Much

work has been done classifying the multipliers of various well studied reproducing kernel

Hilbert spaces. However, multipliers between reproducing kernel Hilbert spaces of analytic

functions is a more sensitive subject. To understand why this is delicate problem, we make

a few simple observations:

Proposition 5.3.11. If φ ∈M(Ĥ1, Ĥ2), and f̂1 ∈ Ĥ1, then

i. φ ∈ Ĥ2

ii. for each λ ∈ Ω such that f̂1(λ) = 0, Mφ(f̂1)(λ) = 0

If in addition if Mφ is invertible, then
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i. φ(λ) 6= 0 for all λ ∈ Ω

ii. the function ψ on Ω defined by ψ(λ) := φ(λ)−1 satisfies ψ ∈M(Ĥ2, Ĥ1)

iii. (Mφ)−1 = Mψ

iv. for each λ ∈ Ω, f̂1(λ) = 0 if and only if Mφ(f̂1)(λ) = 0

Proof. Note that since Ĥi contains the constant functions, if φ ∈ M(Ĥ1, Ĥ2) then φ =

Mφ(1) ∈ Ĥ2. This proves (1). Clearly if f̂1(λ) = 0, then Mφ(f̂1)(λ) = f̂1(λ)φ(λ) = 0.

Now suppose that Mφ is invertible. Since φ ∈ M(Ĥ1, Ĥ2), Proposition 5.3.8 forces

MφM1 = M2Mφ. Since Mφ is invertible, clearly we have that (Mφ)−1M2 = M1(Mφ)−1.

Therefore once again by Proposition 5.3.8, (Mφ)−1 = Mψ for some ψ ∈M(Ĥ2, Ĥ1).

Now, suppose to the contrary that φ(λ) = 0 for some λ ∈ Ω. Since 1 ∈ Ĥ1, we have

Mφ(1) = φ ∈ Ĥ2. Hence, 1 = (Mφ)−1(φ) = Mψ(φ) = ψφ. Then 1 = ψ(λ)φ(λ) = 0, which

is absurd. Consequently, φ(λ) 6= 0 for all λ ∈ Ω. Since the constant functions are in both

Ĥi, we must have that ψ(λ) = φ(λ)−1 for all λ ∈ Ω. Since φ(λ) 6= 0 for all λ, it follows that

f̂2(λ) = 0 if and only if f̂1(λ) = 0.

It is well known that when Ω is the unit disc,M(H2, H2) =M(A2, A2) = H∞(Ω), where

H2 and A2 denote the Hardy and Bergman space on Ω respectively. Stegenga characterized

the elements ofM(H2, A2) in terms of a growth condition on the boundary of the disc [42].

In particular,M(H2, A2) 6= 0. However since there are g ∈ A2 that have zeros different from

all f ∈ H2, Proposition 5.3.11 forces M(A2, H2) = 0.

This example illustrates the sensitive nature of multipliers between reproducing kernel

Hilbert spaces. Indeed, M(H2, H2) and M(A2, A2) are in some sense, as large as possible,

filling up the entire space H∞(Ω). On the other extreme,M(A2, H2) = 0. Yet reversing the

roles of A2 and H2, we find thatM(H2, A2) is a non-zero subspace of H∞(Ω). Since our class
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of operators contains shifts on the Hardy space and the Bergman space, we concede that a

general solution to the isomorphism problem in term of multipliers is likely unobtainable.

Nevertheless, the theory in this section provides a tool by which to verify when two

left invertible operators (analytic, Fredholm index −1) fail to be similar. The following

proposition displays a necessarily relationship between the kernels of the spaces H1 and H2.

Proposition 5.3.12. Given T1, T2 ∈ B(H ) left invertible operators (analytic, ind(Ti) =

−1) represent each as Mi = Mz on Ĥi over Ω. Suppose that φ ∈ H(Ω), and define K1,φ :

Ω2 → C via K1,φ(λ, µ) := φ(λ)K1(λ, µ)φ(µ). Then the following are equivalent:

i. φ ∈M(Ĥ1, Ĥ2) and Mφ is invertible

ii. K2 = K1,φ

Proof. Note Mφ is invertible if and only if every f̂2 ∈ Ĥ2 may be uniquely represented as

f̂2 = φf̂1 for some f̂1 ∈ Ĥ1. Let xi,λ denote the reproducing kernel at λ associated to Ĥi.

Then f̂2 = φf̂1 if and only if for each λ ∈ Ω,

〈f, x2,λ〉 = f̂2(λ) = φ(λ)f̂1(λ) = 〈f, φ(λ)x1,λ〉

Since this holds for all f ∈H , it follows that f̂2 = φf̂1 if and only if x2,λ = φ(λ)x1,λ, which

is equivalent to

K2(λ, µ) = 〈x2,µ, x2,λ〉 = φ(λ)〈x1,µ, x1,λ〉φ(µ) = K1,φ(λ, µ)

A consequence of this result is the following. If K2 cannot be factored as K1,φ for some

φ, then there is no invertible multiplier between the two reproducing kernel Hilbert spaces.

In this case, T1 is not similar to T2.
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5.4 Example from Subnormal Operators

We now turn to an important class of non-trivial examples of AT . These examples will

involve the theory of subnormal operators. Using the work of Olin, Thomson, Keough and

McGuire describing the C*-algebra generated by a subnormal, essentially normal, irreducible

operator (Theorem 2.4.5), we characterize the algebras AS for S a subnormal, essentially

normal left invertible operator. We begin with a simple connection between spectral data of

the operators appearing in Theorem 2.4.5 and left invertibility.

Lemma 5.4.1. Let S be a subnormal operator with N = mne(S). If N is invertible, then

S is left invertible with L = Tz−1 a left inverse. If σ(N) = σap(S), then S is left invertible if

and only if N is invertible.

Proof. If N is invertible, then the Toeplitz operator Tz−1 = P (N−1) |H is well defined. Since

N is a normal extension of S, we have for each x ∈H

Tz−1Sx = Tz−1(Nx) = P (N−1Nx) = Px = x.

If σ(N) = σap(S), then S is left invertible implies 0 /∈ σe(S) = σ(N).

Using the basic theory of subnormal operators, we now describe the structure of AS for

a prototypical class of subnormal operators.

Theorem C. Let S be an analytic left invertible, ind(S) = −1, essentially normal, subnor-

mal operator with N := mne(S) such that σ(N) = σap(S). Let B be the uniform algebra

generated by the functions z and z−1 on σe(S). Then

AS = {Tf +K : f ∈ B, K ∈ K (H )}.

Moreover, the representation of each element as Tf +K is unique.
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Proof. By Lemma 5.4.1, L := Tz−1 is a left inverse of S. By Corollary 5.1.2, AS is the

norm-closed subalgebra of C∗(S) generated by Tz and Tz−1 . Since S is analytic, it is strongly

irreducible, and hence, irreducible. Therefore by Theorem 2.4.5, each element of AS has

a unique representation as Tf + K for some f ∈ C(σ(N)) and σ(N) = σap(S) = σe(S).

Moreover by Theorem 2.4.5, Ln = Tz−n +K for some compact operator K. Since AS contains

the compacts, it follows that Tzk ∈ AS for each k ∈ Z. Hence, for each p ∈ Alg(z, z−1), we

have that Tp ∈ AS. Using this information, we now show that AS = {Tf + K : f ∈ B, K ∈

K (H )}. To do this, it suffices to show that Tf ∈ AS if and only if f ∈ B.

First, suppose that Tf ∈ AS for some f ∈ C(σ(N)). Since Alg{Tz, Tz−1} is dense in AS,

for every ε > 0 there exists a Laurent polynomial p ∈ Alg(z, z−1) and compact K such that

‖Tf − (Tp +K)‖ < ε. By Theorem 2.4.5,

ε > ‖Tf − (Tp +K)‖ = ‖Tf−p −K‖ ≥ ‖Tf−p + K (H )‖ = ‖f − p‖.

Hence, f ∈ B. For the other inclusion, suppose to the contrary that f ∈ B but Tf /∈ AS.

Then there exists a δ > 0 such that for each p ∈ Alg(z, z−1) and K ∈ K (H ), we have

‖Tf − (Tp +K)‖ > δ. In particular, this should hold for any p such that ‖f − p‖ < δ
2
. Hence

δ ≤ inf
K∈K (H )

‖Tf − (Tp +K)‖ = ‖Tf−p + K (H )‖ = ‖f − p‖ < δ

2

which is absurd. Hence, Tf must be in AS, completing the proof.

Notice that in Theorem C, we can drop the requirement that σ(N) = σap(S), so long as

the minimal normal extension is invertible. In this case however, one will lose the uniqueness

of the representation Tf + K as discussed in Theorem 2.4.5. As a corollary to Theorem C,

we get a description of AT for analytic Toeplitz operators on H2(T) with Fredholm index

−1.
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Corollary 5.4.2. Let g be an analytic function on T and X = ran(g) with winding number of

g equal to 1. Then σe(Tg) = X, and Tg is an analytic left invertible operator with ind(Tg) =

−1. Moreover, if B is the uniform algebra generated by z and z−1 on X, then we have the

following short exact sequence

0 K (H2(T)) ATg B 0
ι π

Moreover, each element of ATg has a unique representation of Tf +K for f in the uniform

algebra generated by g and g−1 and K compact.

The hypotheses of Theorem C are natural, but numerous. This is to guarantee that

S remain within our current focus of study. We remark that even if S is left invertible,

irreducible, subnormal, essentially normal operator, it need not be analytic.

Recall, an operator R ∈ B(H ) is said to be cyclic if there exists an x ∈ H such that

{Rnx}∞n=0 is norm dense in H . A result by Qing shows that every Cowen-Douglas operator

is cyclic [35]. While all Cowen-Douglas operators must be cyclic, the adjoints of general

subnormal operators need not be cyclic. A long-standing problem posed by Deddens and

Wogen asked which subnormal operators had cyclic adjoints [12]. Feldman answered this

question in [19]. A subnormal operator is said to be pure if it has no non-trivial normal

summand. Every subnormal operator can be decomposed as S = Sp ⊕N , where Sp is pure

and N is normal. The general cyclicity result is as follows:

Theorem 5.4.3 (Feldman [19]). If S = Sp ⊕ N is a subnormal operator, then S∗ is cyclic

if and only if N is cyclic. In particular, pure subnormal operators have cyclic adjoints.

Having a cyclic vector clearly is not sufficient for an operator to be Cowen-Douglas.

However, Theorem 5.4.3 is a condition of necessity. Thomson showed in [43] that if S is a

pure, cyclic subnormal operator, then S∗ is Cowen-Douglas. However, as far the author is

aware, there is no known elementary equivalence to guarantee S∗ is Cowen-Douglas.
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We remark that the similarity orbit of subnormal operators was classified by Conway

[13]. He showed two subnormal operators are similar if and only if the scalar valued spectral

measure associated to the minimal normal extensions were the same. In this case, there is

no need to investigate the K0 group of the commutant. Rather, the spectral data encodes

all the information about the similarity orbit.
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Chapter 6

Further Directions

In this dissertation, we initiated a research program on concrete operator algebras that

model the dynamics of Hilbert space frames. We directed our focus on the simplest possible

classes of algebras, those generated by a single left invertible operator and its Moore-Penrose

inverse. We argued for the study of a non-degenerate class of left invertibles (the analytic

operators) was necessary, and paid extra attention to those analytic left invertible operators

with Fredholm index −1. In this special case, we concluded that the algebras AT had very

similar characteristics to the Toeplitz algebra. We showed that AT contained the compact

operators, and that the elements of AT could heuristically be described as “compact plus

Laurent series”. We also determined two such algebras are isomorphic if and only if they are

similar, and characterized the isomorphism classes by K-theoretic and RKHS methods.

Concerning the algebras AT , there is still a lot which is not known. A great portion of our

efforts were directed at the case when ind(T ) = −1. Following the discussion in Section 4.3,

the next logical class to investigate are the strongly irreducible left invertible operators of

finite index. In the index −1 case, we showed that if φ : A1 → A2 is a bounded isomorphism,

then φ restricted to the compact operators (which was equal to the commutator ideal C )

mapped back into the compact operators. The essentialness and nuclearity of K (H ) in AT

allowed one to then conclude that φ was adjunction. The hope is that a similar theorem

holds for the strongly irreducible operators.
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Specifically, if Ti are strongly irreducible left invertibles with the same index, and φ :

A1 → A2 is a bounded isomorphism, we would like it to be the case that φ is a similarity. By

Proposition 3.2.7, the commutator ideal in the strongly irreducible case is still C = KT =

sp{T n(I − TT †)T †m}. Moreover, φ(C1) = C2 However, it is not clear how this information

could be elevated to show that the two algebras are isomorphic if and only if they are similar.

We would require C be essential in AT . This implies that such a theorem might require a

new proof technique.

If this type of similarity result is true for the strongly irreducible operators, then we again

we can apply Theorem 5.3.5 to classify the algebras AT by the K0 group. For the general case,

recall that each Cowen-Douglas operator has a unique strongly irreducible decomposition up

to similarity. Therefore, in the general case, we can consider T = ⊕mj=1Tj where each Tj

are strongly irreducible. The author conjectures that this type of diagonalization result

could be leveraged to state that isomorphisms are direct sums of similarities. The general

classification of Cowen-Douglas operators by K0 groups could be used to classify the algebras

AT in this case as well.

It is interesting to note that in the index −1 case, the similarity orbit S(T ) determined

the isomorphism classes of AT . Given T ∈ B(H ), the fine spectral picture of T consists of

detailed spectral, (semi)-Fredholm and algebraic (Riesz projections) data. All the informa-

tion that is contained in the fine spectral picture is retained under similarity. The work of

Herrero, Apostol, Voiculescu and many others showed that under most conditions, this crite-

rion determined the closure of the similarity orbit [11]. In [22], Herrero classified the spectral

pictures of Cowen-Douglas operators. Combining these results and our work above, we have

a classification of S(T ) for T a natural analytic left invertible operator. Consequently, if

S(T1) = S(T2), then we have a sequence of invertibles that, in the limit, conjugate T1 with

T2. If two natural analytic left invertibles are approximately similar in this sense, what can

be said about their algebras? Is it the case that the algebras are similar? This would be
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interesting, because it would imply that spectral data is all that is required to classify the

algebras (as was the case for subnormal operators).

Nearly all the operator algebraic analysis in this thesis is centered around AT , the algebra

generated by a single left invertible operator and its Moore-Penrose inverse. This algebra

arose from considering the directed graph generated by a Γ in the introduction. There are,

of course, many other directed graphs that give rise to well studied classes of C*-algebras.

Most notably, the Cuntz algebra On is the graph algebra from a single vertex with n loops.

This graph yields the next natural class of operator algebras to study in this program.
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