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Typically, the cool side of an airmass boundary is stable to vertical motions due to 

its associated negative buoyancy. However, under certain conditions, the air on the cool 

side of the boundary can undergo a transition wherein it assumes an equivalent potential 

temperature and surface-based convective available potential energy that is higher than 

that of the airmass on the warm side of the boundary. The resultant airmass is herein 

referred to as a mesoscale airmass with high theta-e (MAHTE).  

Results are presented from an observational and mesoscale modeling study 

designed to examine MAHTE characteristics and the processes responsible for MATHE 

formation and evolution. Observational analysis focuses on near-surface observations of 

a MAHTE in northwestern Kansas on 20 June 2016 collected through multiple transects 

executed with an Integrated Mesonet and Tracker. The highest equivalent potential 

temperature is found to be 15 – 20 K higher than what was observed in the warm sector 

and located 2 – 5 km on the cool side of the boundary. This case was modeled using 

WRF-ARW to examine the processes involved in MAHTE formation that could not be 

inferred through observations alone. Simulations faithfully reproduce many 

characteristics of the observed MAHTE.  Model analysis indicates that differential 

vertical advection of equivalent potential temperature across the boundary is important 



for simulated MAHTE formation. Specifically, deeper vertical mixing/advection in the 

warm sector reduces moisture (equivalent potential temperature), while vertical 

motion/mixing is suppressed on the cool side of the boundary thereby allowing largely 

unmitigated diurnally-driven increases in equivalent potential temperature. Model 

analysis also suggests that surface fluxes did not play a major direct role in MAHTE 

formation.  
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Chapter 1 

Introduction 

Thunderstorm outflow is typically colder and thus more gravitationally stable than 

the ambient environment. However, there are cases where a thin area along the leading 

edge of the outflow air mass can have higher conditional instability (and thus, higher 

convective available potential energy, CAPE) due to higher equivalent potential 

temperature. This localized area will be referred to as a Mesoscale Air mass with High 

Theta-E, or MAHTE. MAHTEs are typically 10-20 km in width (Rasmussen et al. 2000; 

Gilmore and Wicker 2002), and may extend along significant lengths of synoptic 

boundaries; however the limited observations available are insufficient to reveal the exact 

lengths of MAHTEs. Forecasting their development is complicated because most 

forecasting models cannot resolve them, and because the processes responsible for their 

formation are not fully understood; thus, conceptual models and forecasting heuristics 

have not been developed. This study aims to address the characterized MAHTE structure 

using data collected within a MAHTE, and examine the possible mechanisms for 

MAHTE formation through mesoscale modeling. 

Although convection may not initiate in these thin areas of higher conditional 

instability, they could potentially influence any convection that forms along the boundary 

and interacts with the MAHTE. A notable example was the Aurora, Nebraska, supercell 

on 22 June 2003 (Guyer and Ewald 2004). Overnight on the 21st-22nd, thunderstorms 

produced an outflow boundary which was positioned north-south across central 
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Nebraska. As an upper-level trough approached the region from the west, storms initiated 

in the warm sector adjacent to the outflow boundary where confluence was observed 

(Guyer and Ewald 2004). Prior to thunderstorm initiation, the outflow boundary showed 

characteristics of a MAHTE. Guyer and Ewald (2004) found the highest values of θe were 

located at the leading edge of the outflow, which they attributed to the combination of 

“moisture pooling” on the cool side of the boundary and insolation across the entire 

region. As storms crossed the boundary, rapid intensification was observed potentially as 

a result of the increased  CAPE of 500 to 1000 J kg-1 (Guyer and Ewald 2004; Wakimoto 

et al. 2004). The storm which passed near Aurora, NE, produced a record-breaking seven 

inch hailstone.  

 Another well documented case of a MAHTE occurred on 2 June 1995. During the 

morning, storms in the northern Texas panhandle produced a southward-advancing 

outflow boundary. By the afternoon, mobile mesonets associated with the Verification of 

the Origins of Rotation in Tornadoes EXperiment  (VORTEX) (Rasmussen et al. 1994) 

transected this boundary and recorded a localized increase in water vapor mixing ratio 

directly on the cool side of the outflow boundary (Rasmussen et al. 2000). Soundings 

taken on each side of the boundary suggested that vertical mixing was occurring through 

greater depths on the warm side of the boundary than on the cool side (Gilmore and 

Wicker 2002). The cause of the higher water vapor mixing ratio directly along the cool 

side of the boundary was not known; however, shallower mixing in the outflow air mass 

would allow for less dry air entrainment into the cold pool compared to the 

environmental air mass. This would allow water vapor mixing ratios to remain higher in 
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the outflow air mass. Slightly lower temperatures and increased water vapor mixing 

ratios resulted in the outflow air mass directly on the cool side of the boundary having a 

higher θe than the air in the warm sector (Rasmussen et al. 2000). Storms in the afternoon 

initiated in the warm sector, rapidly strengthened after moving across the boundary, and 

produced several significant tornadoes (Rasmussen et al. 2000). 

 MAHTEs can also form along warm fronts (e.g., Groenemijer et al. 2011). An 

example of this occurred on the cool side of a warm front that was positioned over central 

England on 28 July 2005. Dewpoint temperatures directly on the cool side of the warm 

front were higher than those observed in the warm air mass. Despite lower temperatures, 

this resulted in a localized maximum in θe and CAPE directly on the cool side of the 

warm front. Groenemijer et al. (2011) hypothesized that the difference in dewpoint 

temperatures, and thus differences in θe, were caused by differences in insolation and 

mixing on either side of the boundary. Clearing south of the warm front resulted in 

deeper convective mixing which reduced dewpoint temperatures in the warm air mass. 

Cloud cover remained along and north of the warm front into the afternoon, reducing 

insolation and therefore reducing the vertical depth of convective mixing north of the 

warm front. Groenemijer et al. (2011) speculate that this, combined with an easterly wind 

off the ocean, kept dewpoint temperatures high and resulted in the formation of a 

MAHTE by the afternoon. 

From these cases, it is evident that MAHTEs can pose a significant risk for 

increased severity in thunderstorms with which they interact. Due to the small width of 

MAHTEs, on the order of meso-γ, current operational models are not able to adequately 
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resolve their formation. It is important to understand the characteristics of MAHTEs, as 

well as the processes responsible for their formation in order for forecasters to predict 

when thunderstorm outflow will undergo this transition into a MAHTE so as to properly 

assess the potential for severe weather in a localized area.  

 

Chapter 2 

Background 

Changes in θe that ultimately lead to MAHTE formation can be described through 

the rate of change of entropy. Entropy is a thermodynamic state variable which describes 

the amount of available energy that can be converted into mechanical work. It is given by  

𝑠𝑠 =  �𝑐𝑐𝑝𝑝𝑝𝑝 + 𝑟𝑟𝑡𝑡𝑐𝑐𝑙𝑙�𝑙𝑙𝑙𝑙(𝑇𝑇) − 𝑅𝑅𝑝𝑝𝑙𝑙𝑙𝑙(𝑝𝑝𝑝𝑝) + 𝐿𝐿𝑣𝑣𝑟𝑟
𝑇𝑇
− 𝑟𝑟𝑅𝑅𝑣𝑣𝑙𝑙𝑙𝑙(𝐻𝐻), 

where 𝑠𝑠 is entropy, 𝑐𝑐𝑝𝑝𝑝𝑝 is the heat capacity of dry air at constant pressure, 𝑟𝑟𝑡𝑡 is the total 

water mixing ratio, 𝑐𝑐𝑙𝑙 is the heat capacity of liquid water, 𝑇𝑇 is the temperature, 𝑅𝑅𝑝𝑝 is the 

gas constant of dry air, 𝑝𝑝𝑝𝑝 is the partial pressure of dry air, 𝐿𝐿𝑣𝑣 is the latent heat of 

vaporization of water, 𝑟𝑟 is the mixing ratio, 𝑅𝑅𝑣𝑣 is the gas constant for water vapor, and 𝐻𝐻 

is the relative humidity (Emanuel 1994). Entropy is directly related to equivalent 

potential temperature through  

�𝑐𝑐𝑝𝑝𝑝𝑝 + 𝑟𝑟𝑡𝑡𝑐𝑐𝑙𝑙�𝑙𝑙𝑙𝑙(𝜃𝜃𝑒𝑒) ≝ 𝑠𝑠 + 𝑅𝑅𝑝𝑝𝑙𝑙𝑙𝑙(𝑝𝑝0), 
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where 𝜃𝜃𝑒𝑒 is the equivalent potential temperature, 𝑅𝑅𝑝𝑝 is the gas constant for dry air, and 𝑝𝑝0 

is a reference pressure (Emanuel 1994). Entropy, and thus θe, is a function of 

temperature, pressure, and the mass concentrations of water vapor (Hauf and Holler 

1987). In the atmosphere, the most important quantity of mass is water in all its various 

phases. Entropy and θe are typically conserved in the absence of irreversible processes. 

The most dominant of these irreversible processes that result in an increase in entropy is 

diabatic heating at constant pressure, primarily through increased heat fluxes driven by 

insolation (Peixoto et al. 1991; Goody 2000; Raymond 2013). After diabatic processes, 

increases in entropy due to irreversible processes are dominated by phase transitions of 

water (Pauluius and Held 2002). This includes the evaporation of rain in unsaturated air 

(Emanuel 1994), non-equilibrium phase changes, and evaporation from either a body of 

water or land surface where the heat capacity of the storage term is large enough that 

energy for evaporation is drawn from the body of water or land surface, rather than being 

removed from the atmosphere (Emanuel 1994; Raymond 2013). For evaporation to result 

in an increase in entropy, the temperature at which this phase transition occurs is 

important. Evaporation occurring at warmer temperatures, i.e. temperatures comparable 

to those typically at cloud base or in the boundary layer, results in a entropy increase, 

while evaporation at colder temperatures like those found at cloud tops do not (Banno 

2002; Pauluis and Held 2002). Other irreversible processes which can result in an 

increase in entropy include the diffusion of water vapor into the system, frictional 

dissipation, and molecular diffusion (Peixoto et al. 1991; Raymond 2013). Most of these 

processes either result in an increase in temperature of the system, or result in an increase 

of mass and therefore an increase in entropy (Raymond 2013). Because equivalent 
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potential temperature is derived from entropy, any increase in entropy will result in an 

increase in equivalent potential temperature. These irreversible changes to entropy would 

apply to changes of entropy observed in both a Lagrangian and Eulerian frame of 

reference. In an Eulerian frame of reference, one would also have to also include the 

advection of θe and advection of variables which could change θe over time. This includes 

the advection of moisture and temperature.  

Laboratory studies have shown that cold pools can be treated as atmospheric 

density currents (Charba 1974; Simpson 1987). Some of these studies have illustrated 

that the head of the density current remains relatively undiluted throughout the duration 

of the cold pool life cycle (Lowe et al. 2002). The highest wind speeds at the surface 

within a density current were found to be directly behind the cold pool head and 

underneath the dissipative wake, with average wind speed in this region 30% to 50% 

higher than the velocity of the density current (Figure 2.1; Lowe et al. 2002). Within the 

cold pool head, observed wind velocities are approximately 10% higher than the speed of 

the density current (Lowe et al. 2002), resulting in the formation of an internal circulation 

in the density current head (Robinson et al. 2013). 
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Figure 2.1: Schematic of a density current taken from Lowe et al. (2002) illustrating 
where the fastest winds were found in their study, as well as the dissipative wake and 

internal flow.  
These wind characteristics within the density current have been shown to apply to 

cold pools. These higher wind velocities have been observed to be strongest during the 

mature stage of the cold pool life cycle, rapidly weakening during the dissipating stage of 

the cold pool life cycle (Engerer et al. 2008). Depending on the vertical wind profile, cold 

pools typically have gustier wind associated with them due to the transport of air from the 

midlevels down to the surface through convective downdrafts (Engerer et al. 2008). The 

strongest potential temperature perturbations are located near the surface within the first 5 

km behind the leading edge of the cold pool, while the strongest winds are located 

directly behind this temperature perturbation, in the cold pool body (Grant and van den 

Heever 2016). Cold pools have also been observed to have a higher water vapor mixing 

ratio compared to the ambient environment (Karan 2014).  

Higher values of moisture are often found collocated with areas of convergence, 

suggesting that moisture convergence may be important for MAHTE formation. Faster 

winds in the body of the density current result in convergence at its leading edge. 
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Moisture flux convergence (MFC) is the convergence of moisture in a location associated 

with the convergence of winds following the conservation of mass equations, given by  

MFC =  −𝑢𝑢 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
− 𝑣𝑣 𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
− 𝑞𝑞 �𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
+ 𝜕𝜕𝑣𝑣

𝜕𝜕𝜕𝜕
�, 

where 𝑞𝑞 is the specific humidity, and 𝑢𝑢 and 𝑣𝑣 are the horizontal wind components 

(Bancos and Schultz 2004). The importance of each term depends on the scale at which 

this convergence is occurring. On the scale of synoptic fronts, convergence and advection 

terms are comparable in magnitude, while for mesoscale boundaries such as sea breezes 

or thunderstorm outflow boundaries, horizontal mass convergence is an order of 

magnitude larger than the advection terms (Bancos and Schultz 2004). MFC leads to an 

increase in the depth of moisture in the area of surface convergence. Increases in vertical 

mixing in the boundary layer will thus be less impactful on removing moisture from this 

deeper area of moisture, which will result in a localized area with higher moisture content 

as the afternoon progresses (Markowski and Richardson 2008). This is one mechanism 

that could potentially explain why the cold side of thermal boundaries can have higher θe 

by the early afternoon hours, given MFC and equal insolation across the boundary.   

 In addition to causing MFC along the leading edge of the cold pool, changes to 

wind speed, temperature, and moisture content in the cold pool can also have impacts on 

surface fluxes. One way to undergo irreversible changes to entropy and thus θe is through 

surface fluxes of energy and moisture. Energy is primarily transported from the surface to 

the atmosphere through two mechanisms, sensible heat fluxes and latent heat fluxes. One 

way to see how the changes in meteorological conditions commonly observed in cold 
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pools will affect the surface heat fluxes is through the bulk aerodynamic formulas 

adapted from Yokoi et al. (2014). Sensible heat flux is given by 

SHF = 𝜌𝜌𝑐𝑐𝑝𝑝𝐶𝐶𝐶𝐶(𝜃𝜃𝑠𝑠𝑠𝑠𝑠𝑠 − 𝜃𝜃𝑎𝑎𝑎𝑎𝑟𝑟), 

and the latent heat flux is given by  

LHF =  𝜌𝜌𝐿𝐿𝑣𝑣𝐶𝐶𝐶𝐶(𝑞𝑞𝑠𝑠𝑠𝑠𝑠𝑠 − 𝑞𝑞𝑎𝑎𝑎𝑎𝑟𝑟), 

where 𝜌𝜌 is the surface air density, 𝑐𝑐𝑝𝑝 is the specific heat of moist air at constant pressure, 

𝐿𝐿𝑣𝑣 is the latent heat of vaporization of water, 𝐶𝐶 is the bulk transfer coefficient of heat and 

moisture, 𝐶𝐶 is the surface wind speed, θ is the potential temperature of the surface or air, 

and q is the specific humidity of the surface or air. From these equations, it is apparent 

that the surface heat flux will increase with increasing temperature difference between the 

air and the surface, and with increasing wind speeds. Similarly, latent heat flux will 

increase with increasing humidity difference between the surface and air, and with 

increasing wind speeds. The latent heat flux can be related to the moisture flux from the 

surface, 𝐹𝐹𝑤𝑤𝑎𝑎𝑡𝑡𝑒𝑒𝑟𝑟, through 

𝐹𝐹𝑤𝑤𝑎𝑎𝑡𝑡𝑒𝑒𝑟𝑟 =  LHF
𝐿𝐿𝑣𝑣

. 

Examining the factors which control the exchange of moisture with the surface and the 

atmosphere can provide insight into the potential mechanisms for MAHTE formation. 

Decreases in moisture content combined with stronger winds in thunderstorm outflow 

could act to increase the surface moisture flux, resulting in a localized increase in 

moisture content. Several cold pool studies (Young et al. 1994; Yokoi et al. 2014; 

Schlemmer and Hohenegger 2015; Skyllingstad and Szoeke 2015) have found that an 

increase of wind speed within cold pools was the primary cause of increases in observed 
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surface latent heat fluxes, rather than due to the decreases of moisture typically observed 

within cold pools. It was demonstrated that moisture fluxes can be responsible for 30% of 

the moisture anomaly found in the cold pool head (Schlemmer and Hohenegger 2015).  

Multiple studies of cold pools over tropical oceans have documented examples 

where rings of moisture are found at the leading edge of cold pools. Thompson (2001) 

found that these areas of increased moisture were associated with areas of higher θe and 

CAPE, similar to a MAHTE. Thompson (2001) attributed this increase in moisture to the 

evaporation of rain and advection of this initial evaporation-enhanced area of moisture to 

the leading edge of the cold pool with the first development of the thunderstorm 

downdraft. The increase in moisture at the leading edge of thunderstorm outflow can also 

be explained by changes to surface fluxes in cold pools. Longhans and Romps (2015) 

attributed the primary cause of these areas of increased moisture along thunderstorm 

outflow to latent heat fluxes from the surface. As cold pools expand laterally, the absolute 

instability which forms as a result of the temperature difference between the surface and 

the cold pool can generate turbulent kinetic energy, which will result in an intensification 

of both sensible and latent heat fluxes from the surface (Ross et al. 2004). These 

increases in surface latent heat fluxes can maintain any humidity anomaly found in the 

cold pool head as it spreads, which further acts to reduce vertical mixing impacts on 

moisture in the cold pool head (Ross et al. 2004).  Other potential sources for the 

formation of these rings of higher moisture could include the evaporation of rain, and the 

advection of preexisting boundary layer moisture (Seifert and Heus 2013; Schlemmer and 

Hohenegger 2015). 
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Along with wind having an impact on surface moisture fluxes, perturbations to 

temperature and moisture can also have an impact on surface fluxes and resulting 

MAHTE formation. Temperature differences between tropical cold pools and the ocean 

surface can create a nearly 300% increase in surface sensible heat flux (Young et al. 

1994). Sensible heat fluxes are also increased due to increasing wind speed, however this 

increase in sensible heat flux is primarily caused by increased temperature differences 

between the surface and the cold pool air (Yokoi et al. 2014). Increasing the surface 

roughness length in simulated cold pools also increases the surface heat fluxes (Gentine 

et al. 2016). This is due to increasing the turbulence in the cold pool near the surface, 

which intensifies the surface and sensible latent heat fluxes (Ross et al. 2004).  

Examining how cold pools evolve and dissipate can provide insight into another 

potential cause for MAHTE formation. Dissipation of simulated cold pools through 

surface fluxes leads to a warming and moistening in the body of the cold pool (Seifert 

and Heus 2013). One of the main causes of cold pool dissipation and recovery is the 

entrainment of air into the cold pool through Kelvin-Helmholtz waves which form along 

the top of cold pools (Grant and van den Heever 2015). The impact of surface fluxes on 

the static stability of the cold pool and the resulting entrainment plays a more significant 

role on the evolution of the cold pool than just the impact of surface heat fluxes alone 

(Grant and van den Heever 2015).  

This goal of this study is to address the characteristics of MAHTEs, and the 

processes responsible for their formation and evolution. Surface characteristics of the 

MAHTE will be determined using surface observations, while processes responsible for 
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their formation will be examined through high resolution numerical simulations as these 

processes in MAHTE formation and evolution cannot be determined from surface 

observations alone. It is hypothesized that:  

1. A primary mechanism for MAHTE formation is differential vertical advection 

across the boundary. As vertical advection is suppressed in the cool air 

compared to the ambient environment, higher moisture within the colder air 

mass will remain in place as solar insolation raises the θe through time. 

2. As θe is a conserved variable, initially higher θe air is lifted above and 

entrained into the cold pool as it dissipates. As differential vertical advection 

occurs and with solar insolation, the θe in the cold pool increases to values 

above those observed in the ambient environment.   

3. Increased surface fluxes within the colder air mass due to increased 

temperature perturbations and increased winds will result in maintenance or 

even an increase in moisture within the MAHTE.  

Chapter 3 

Observational Component  

3.1 Methodology  

This analysis focuses on a MAHTE that occurred along the cool side of a slowly 

moving, east-west oriented synoptic cold front in northwestern Kansas on 20 June 2016. 

Four transects of the MATHE were made between 1900 and 2300 UTC, from roughly 20 

km south of the boundary in the warm air mass, to roughly 40 km north of the boundary 
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in the cool air mass. Surface observations of temperature, relative humidity, pressure, and 

wind direction and speed were collected using an Integrated Mesonet and Tracker 

(IMeT). Information on IMeT sensor models and their accuracy can be found in Table 

3.1.  The surface data were transformed to a boundary relative frame of reference 

following the methodology of Riganti and Houston (2016) for analysis, where positions 

of the boundary were taken as the southern edge of the 20 dBZ reflectivity fine line 

observed by the Goodland, Kansas, Weather Surveillance Radar 1988 Doppler (WSR-

88D). Due to the less defined nature of the boundary at the initial times of the study, the 

location of the boundary is more approximate during the initial transects compared to the 

later transects.  

Table 3.1: Information on sensors used on the IMeT 

Component               Model        Output Accuracy 
RH and slow- 
temperature 

Vaisala HMP155A-L-PT Temp: -80 to +60 °C 
  RH: 0 to 100% 

Temp: ±(0.226 - 0.0028 × 
temperature)°C 
RH: ±(1.0 + 0.008 × reading) % RH 
Response time: 20s 

Fast temperature Campbell Scientific 
109SS-L Thermistor 

-40° to +70 °C ± 0.1 C 
Response time: 7.5 s (3 m s-1) 

Pressure Vaisala PTB210 500-1100 hPa ± 0.25 hPa 

Wind RM Young 05103-L-PT WS: 0 to 100 m s-1 

WD: 0 to 360 ° 
WS: ± 1% 
WD: ± 3 

 

 Rapid Refresh (RAP) model point soundings were obtained to examine how the 

MAHTE would impact other forecast parameters, such as CAPE. CAPE for these 

modified soundings was calculated using SHARPpy (Bloomberg et al. 2017). For these 

modifications, surface observations of temperature and dewpoint temperature in the 

ambient warm environment 10 km south of the cold front and within the MAHTE where 

the maximum value of θe was observed were used as the modified sounding surface 
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observations. Sounding modifications were done to examine how surface based 

convective available potential energy (SBCAPE) changes across the boundary. 

Examining how the MAHTE modifies the local environment can provide insight into 

how a local storm would evolve if it were to interact with the MAHTE, allowing for 

some inference and comparison with past observed cases of MAHTEs. 

One important issue with MAHTEs noted previously is that their small areal 

extent makes observing them with the current National Weather Service surface 

observation network difficult. During the late afternoon, this MAHTE passed over the 

Colby, Kansas automated surface observation station (ASOS) (Figure 3.1). To compare 

the collected observations of a MAHTE to how an ASOS station would resolve a 

MAHTE, 20 minute data from the Colby, Kansas ASOS was obtained, and θe was 

calculated for each available time.  

3.2 Results  

3.2.1 Synoptic Overview  

At 1800 UTC on 20 June 2016, there was an east-northeast to west-southwest 

oriented cold front over extreme northwestern Kansas into southcentral Nebraska moving 

slowly to the south (Figure 3.1). The front was most apparent in the surface wind field, as 

the temperature gradient across the boundary was rather diffuse. Temperatures of 25-30 

°C were reported in Nebraska, and 31-34 °C in Kansas. Winds north of the boundary 

were from the northeast, with southwesterly winds to the south of the boundary. 

Dewpoint temperatures were relatively similar across the cold front, ranging from 15 °C 
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in Nebraska, and 20 °C to the south of the cold front. Midlevels were characterized by a 

trough at 500 hPa positioned over the southcentral United States. By 0000 UTC 21 June 

2016, the surface cold front had progressed slightly farther to the south, with 

temperatures across central Kansas reaching the as high as 36 °C, and with 26-27 °C 

across Nebraska (not shown). Based on the synoptic-scale observations, dewpoint 

temperatures remained at 15-17 °C across the region. Throughout the day, winds at 850 

hPa were out of the south across the entire region. By 2000 UTC 20 June 2016, storms 

had formed approximately 150 km to the north of the cold front, and progressed towards 

the east-southeast.  

 

Figure 3.1: Synoptic surface observations at 1800 UTC when surface transects first 
began. The annotated location of the cold front is indicated in blue, with the location of 

the Colby, Kansas, ASOS station (observations unreported on this map at this time) 
indicated by the red star. 

 



16 
 
3.2.2 Characteristics of the MAHTE 

The location and evolution of the synoptic cold front is indicated by the 

reflectivity fine line in Figure 3.2. Transects of the MAHTE were collected roughly 

perpendicular to the cold front, as indicated by the blue lines in Figure 3.2. The goal of 

these transects was to capture the characteristics of the warm environment, the MAHTE, 

and the location north of the cold front where θe returned to values observed in the warm 

air mass.  
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Figure 3.2: Goodland Kansas WSR-88D observations of the cold front mesoscale 
evolution not adequately captured by the ASOS observation network at a) 1859 UTC, b) 
2101 UTC, and c) 2259 UTC. Also shown are the approximate locations of the surface 
transects (blue line), the location of the Colby, Kansas ASOS station (red star), and the 

location of the modified RAP soundings (yellow dot). 

a) 

b) 

c) 
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The maximum θe during each transect was observed to be approximately 2 – 6 km 

behind the leading edge of the boundary (Figure 3.3). The highest θe (372.9 K) was 

observed during the first transect at 1942 UTC, and steadily decreased during subsequent 

transects (Figure 3.3). The maximum θe was observed near the maximum dewpoint 

temperature in most transects. Similar to θe, the maximum dewpoint temperature (23.4 

°C) was observed during the first transect. The maximum θe was 12.2 K higher than the 

θe observed at the boundary, and 19.8 K higher than that observed in the warm sector. 

This was due to an increase in dewpoint temperature of 5.8 °C (Figure 3.4), despite the 

corresponding drop in temperature of 1 – 2 °C (Figure 3.5). In general, transects revealed 

that the MAHTE had θe values that were 13 – 20 K higher than the ambient environment 

(Figure 3.3), and a dewpoint temperature that was 6 to 8 °C higher than the ambient 

environment (Figure 3.4). Within the MAHTE, θe and dewpoint temperature decreased as 

the afternoon progressed, though temperature within the MAHTE remained nearly 

constant despite insolation. On the warm side of the boundary, θe remained nearly 

constant throughout the afternoon.  
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Figure 3.3: Observed θe during each transect. Observations are transformed into a 
boundary-relative frame of reference, where positive distances represent the cool side of 

the boundary, and negative distances represent the warm side of the boundary. UTC 
times indicate when the boundary was crossed. 

 
Throughout the observation period, winds to the south of the boundary were out 

of the south, while winds to the north of the boundary were out of the northeast (Figure 

3.6). Winds to the south of the boundary remained constant in magnitude and direction 

despite the likely deeper vertical mixing due to winds of similar magnitude existing 

throughout the lower levels of the atmosphere as indicated by nearby RAP soundings, 

which will be discussed in further detail in the next section.  
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Figure 3.4: Observed dewpoint temperature during each boundary transect in a boundary 
relative frame of reference as in Figure 3.3. 

 

 

Figure 3.5: Observed temperature during each boundary transect in a boundary relative 
frame of reference as in Figure 3.3. 
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The width of a MAHTE is defined here as the distance from the boundary to the 

point on the cool side where θe first drops back to the θe observed at the boundary. Based 

on this definition, the 20 June 2016 MAHTE had an approximate width of 30 – 45 km 

(Figure 3.3), which is wider than what was anticipated based on the theoretical model of 

MAHTE widths. Due to the sensitivity of the MAHTE width to the position of the 

boundary, calculations of the MAHTE width were also confirmed through manual 

analysis. The smaller theoretical size compared to our results could be due to limited 

observations of past MAHTE. Even with transects of MAHTE during the VORTEX-95 

field campaign, researchers were not explicitly looking for the width of the θe maximum 

on the cold side of the boundary, so the exact width of the 02 June 1995 MAHTE is not 

known. Although Gronemeijer et al. (2011) did not examine the exact point at which θe 

or dewpoint temperature reached magnitudes comparative with the warm sector, they 

found that SBCAPE was higher in the MAHTE compared to the non-zero SBCAPE in 

the warm environment, and reached zero approximately 60 km north of the warm front. 

This indicates that their MAHTE width would be less than 60 km.  
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Figure 3.6: Observed wind direction during each boundary transect in a boundary relative 
frame of reference as in Figure 3.3. 

 

3.2.3 Sounding Modifications 

Observations collected by the IMeT were used to modify RAP soundings to 

examine the possible impact of the MAHTE on SBCAPE. Vertical profiles from RAP 

analysis grids at 2000 and 2300 UTC were modified with data collected at the 

approximate time of the MAHTE transects. Initial RAP profiles representative of the air 

mass south of the boundary were extracted at a point approximately 25 km south of 

Colby, Kansas, as indicated in Figure 3.2. IMeT observations of temperature and 

dewpoint temperature from the location of maximum θe at each transect were used for the 

near-surface conditions for the MAHTE sounding. Inferred low-level profiles of 

temperature were developed by assuming that IMeT near-surface observations of 

temperature were well-mixed through a 100 hPa layer.  Profiles of moisture within the 



23 
 
MAHTE were developed by setting the surface dewpoint temperature to that observed by 

the IMeT at the location of maximum θe; moisture content was not assumed to be well 

mixed as it is difficult to know what the exact moisture profile would look like through 

the convective boundary layer. Representative warm environment soundings were 

similarly modified by IMeT observations collected approximately 10 km south of the 

boundary. 

 Figure 3.7 shows how SBCAPE changed by modifying the soundings with 

MAHTE data. At 2000 UTC, RAP soundings modified with the warm sector 

observations showed that SBCAPE was 2159 J kg-1, while the MAHTE modified 

sounding had an SBCAPE of 6843 J kg-1. This difference in SBCAPE is mainly due to 

the higher moisture in the MAHTE. Throughout the observation period, SBCAPE for the 

modified warm sector soundings remained between approximately 2200 to 2600 J kg-1, 

while SBCAPE for the modified MAHTE soundings decreased steadily in magnitude 

from approximately 6800 to 5000 J kg-1. This shows that the MAHTE could have had 

2000 to 3000 J kg-1 higher SBCAPE than the warm sector. These changes in SBCAPE 

across the boundary were much greater than those discussed by Rasmussen et al. (2000) 

or Gilmore and Wicker (2002), however their dataset recorded a difference in θe of 

approximately 10 K between the warm sector and the MAHTE, while our observations 

were characterized by differences of 13 – 20 K. Combined with the favorability of shear 

profiles along thermal boundaries (Maddox et al. 1980), these increases in SBCAPE 

could impact the evolution of storms encountering a MAHTE through increased updraft 

strength.  
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Figure 3.7: a) and b) unmodified RAP soundings, c) and d) RAP soundings modified with surface 

observations in the warm environment, and e) and f) RAP soundings modified with surface 
observations in the MAHTE. 

a) b) 

d) c) 

f) e) 
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3.2.4 ASOS station comparison 

To compare how the National Weather Service observation network would 

resolve a MAHTE, data from the Colby, Kansas ASOS (hereafter KCBK; Figure 3.1) 

over the period of our analysis was examined. Prior to the cold front passing KCBK, θe 

was observed to be 360 – 364 K before 1700 UTC, and then dropped to 358 – 361 K in 

the afternoon (Figure 3.8). θe in the warm environment as observed by KCBK was 

approximately 1 – 3 K higher than what was observed during the MAHTE transects, 

likely due differences in instrument resolution. The MATHE passed KCBK at 

approximately 2300 UTC on 20 June 2016 with a corresponding drop in temperature 

while θe rose approximately 10 K to a maximum value of 367 K. This was of equal 

magnitude to the peak value of θe in the MAHTE observed in the final surface transect 

near this time. One hour after the passage of the MAHTE, θe dropped to values below 

those observed in the warm air mass during the afternoon, likely due to the continued 

southward propagation of the MAHTE. This illustrates that MAHTEs can be resolved 

when they interact with an observation station; however, due to the limited areal coverage 

of our current observation network, it is still difficult to adequately resolve the formation 

of every MAHTE.  
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Figure 3.8: Surface observations of θe (K, in red) and temperature (°C, in blue) from the Colby, 
Kansas ASOS station (KCBK), from 1400 UTC, 20 June 2016 to 0200 UTC, 21 June 2016. The 

MAHTE passed over KCBK at approximately 2300 UTC. 

 

Chapter 4 

Modeling component  

4.1 Methodology  

The Advanced Research Weather Research and Forecasting model version 3.8 

(WRF-ARW; Shamarock et al. 2008) was utilized for the modeling component of this 

study. WRF was initialized using analysis fields from the 4-km North American 

Mesoscale (NAM) forecast system.  The outer domain of this study was 950 by 750 km 

and had a grid spacing of 1 km, with an inner domain of dimensions 150 by 150 km 

nested down to 333 m grid spacing (Figure 4.1). Ninety vertical levels were selected, 
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preferentially stacked within the boundary layer with approximately 38 levels below 2 

km, and the lowest level at 25 m AGL. The high resolution was chosen to ensure that all 

processes occurring within the small MAHTE area would be accurately resolved. This 

inner domain was centered near Atwood, Kansas, as this was the approximate location of 

the observations collected across the MAHTE in the afternoon for this event. The model 

was initialized at 1400 UTC 20 June 2016, 5 hours before the MAHTE formed, to allow 

adequate spin up time, and to allow for analysis of the conditions leading up to MAHTE 

formation. The model was run without nudging until 0200 UTC 21 June 2016.  

Simulations used the Rapid Radiative Transfer Model (RRTM) radiation 

longwave radiation parameterization (Mlawer et al. 1997) with the Dudhia shortwave 

radiation parameterization (Dudhia, 1989). The RRTM longwave radiation scheme was 

selected because of its accuracy in accordance with line-by-line calculations of radiative 

transfer (Mlawer et al. 1997). The Morrison microphysics parameterization (Morrison et 

al. 2009) was selected for the microphysical scheme. This is a two-moment microphysics 

scheme that parameterizes 5 different water phases and is ideally suited for accurate 

representation of deep convective processes.  Although deep convection is not simulated 

in this work, storm-generated MAHTEs will be the focus of future work and Morrison 

microphysics are therefore included for consistency with this subsequent research. The 

Mellor–Yamada–Nakanishi–Niino (MYNN) planetary boundary layer (PBL) and surface 

physics schemes were selected in accordance with a study conducted by Coniglio et al. 

(2013) which found that this scheme produced a more accurate representation of the 

convective boundary layer compared to other WRF PBL schemes. It was also found that 



28 
 
in addition to more accurate prediction of PBL height, afternoon temperature and 

moisture were nearly unbiased (Coniglio et al. 2013). Finally, the unified Noah land-

surface model (Tewari et al. 2004) was selected as the land-surface scheme in accordance 

with past mesoscale studies (Coniglio et al. 2013; Burghardt et al. 2014).  The unified 

Noah land-surface model has four soil layers, and calculates soil moisture and 

temperature, as well as surface energy fluxes. This land-surface model has one vegetation 

layer, and only assigns one vegetation type per grid cell when making temperature and 

flux calculations (Liang et al. 2012). Other more complex surface models, such as the 

Community Land Model (CLM4), utilize 10 soil layers, with differing drainage 

calculations. The CLM assigns a grid cell with up to 10 differing vegetation types, and 

calculates temperature and surface energy fluxes for eight sub-grids (Oklaebo et al. 

2016). Due to the high resolution of our simulations, it is assumed that the Noah land-

surface will be sufficient for representing surface energy fluxes in this study. Future work 

will include comparing different land-surface models to address how surface fluxes might 

change within a MAHTE.  
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Figure 4.1: WRF domain configuration used for simulations. Domain 2 was used for all 
analyses. 

 

To examine the time evolution of surface variables during MAHTE formation, 

averages were calculated over two 15 by 15 km areas: 1) one area was located where the 

values of θe initially rose the most rapidly, and 2) one area was to the south of the 

boundary. Averages taken in areas representative of MAHTE formation and the warm 

environment allow for an examination and comparison of variables which can change θe 

to determine what is responsible for MAHTE formation. These areas are illustrated as the 

polygons in Figure 4.2; they remained in those locations throughout the analysis.  
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Figure 4.2: 15 by 15 km areas used for variable averages overlaid on temperature and θe 
at 2000 UTC. Red box indicates the area representative of the MAHTE, and black box 

the area representative of the warm environment. 
 

4.2 Results  

4.2.1 Comparison of the simulation to observations   

The simulation was initialized with the cold front at 40˚ N. Once the MAHTE had 

formed by 2200 UTC, there was a change in θe of approximately 15 K across the front, 

similar to the difference in θe across the front in observations discussed in the previous 

section. The maximum θe was approximately 372 K directly on the cold side of the cold 

front, similar to what was observed in the surface transects. Dewpoint temperatures in the 

simulations reach a maximum value of approximately 22 °C within the MAHTE. This is 

1 °C lower than the maximum in observed dewpoint temperatures within the MAHTE; 

however the difference in dewpoint across the cold front is approximately 6 °C, similar to 

observations. Due to the accurate representation of surface variables, we will assume that 
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the processes within the MAHTE that contribute to MAHTE formation and evolution in 

the simulation are characteristic of what would be observed in the atmosphere. 

4.4.2 Overview of simulated MAHTE formation and evolution  

At 1400 UTC, when the model was first initialized, the simulated cold front, 

manifest principally in the wind field, was located near latitude 40˚ N (Figure 4.3a). 

Simulated 2-m θe was highest at this time to the south of the front (Figure 4.4a), while 

there was a diffuse southwest to northeast gradient in dewpoint temperature across the 

domain (Figure 4.5a). By 1600 UTC, temperatures increased more rapidly to the south of 

the front than to the north of the front (Figure 4.3b). The gradient in θe across a 10 km 

transect along the longitude of our surface transects was only 0.21 K km-1, and was now 

directed north to south, due to the beginning of the reduction in dewpoint temperature to 

the south of the front (Figure 4.4b, 4.5b). Cross sections of θe show that θe was relatively 

uniform across the surface, with an area of lower θe aloft over the southern portion of the 

domain (Figure 4.6b). The transition to a convective boundary layer by 1800 UTC is 

associated with a decrease in θe south of the cold front (Figure 4.6c). From 1400 UTC to 

1800 UTC, θe south of the cold front decreased by as much as 8 – 12 K, while θe steadily 

rose to be approximately 10 K higher north of the front (Figure 4.4c). This reduction of θe 

in the warm sector was due to a reduction in low-level moisture; average dewpoint 

temperatures across the southern subdomain decreased approximately 5 °C between 1600 

and 1800 UTC (Figure 4.5a). Area averaged dewpoint temperatures to the north of the 

front remained largely unchanged (Figure 4.7). By 1800 UTC, average temperatures were 

higher across the entire domain but more significant warming had occurred across the 

warm sector compared to the cold sector (Figure 4.7).  
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Figure 4.3: Simulated 2-m temperature (°C) and 10-m winds (m s-1) at a) initialization of 
the model, b) and c) prior to the development of the MAHTE, d) during MAHTE 

formation, e) at peak intensity of the MAHTE, and f) the beginning of the dissipation of 
the MAHTE. 
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Figure 4.4: As in Figure 4.3 except simulated 2-m θe (K) and 10-m winds (m s-1). 
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Figure 4.5: As in Figure 4.3 except simulated 2-m dewpoint temperature (°C) and 10-m 
winds (m s-1). 
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Figure 4.6: South-north vertical cross section of simulated θe (K). The approximate 
location of the cold front is indicated by the black arrow. 
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Figure 4.7: Area averaged 2-m temperature (°C), dewpoint temperature (°C), and θe (K). 
The blue line represents averages in the northern area and the red line represents the 

southern area. 
Over the period from 1800 UTC to 2000 UTC, θe continued to increase north of 

the front (Figure 4.4d) with peak values increasing to 369 K. There was a clearly defined 

south-north gradient in temperature (Figure 4.1d), with a northeast-southwest gradient in 

dewpoint temperature across the domain (Figure 4.5d). θe at this time was highest where 

dewpoint temperature is highest (Figures 4.4d and 4.5d). During this period, the gradient 

in dewpoint temperature continued to increase along the cold front. This resulted in an 

increase of the θe gradient, to 0.83 K km-1. However, as a consequence of the north-to-

south temperature gradient, the θe gradient reversed 3-5 km north of the cold front, 

yielding θe values along the northern extent of the domain that were nearly identical to 

those in the warm sector.  This 35 km wide zone of high θe north of the front is the 

MAHTE.   
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By 2200 UTC, further increases in the dewpoint temperature gradient across the 

cold front had yielded concomitant increases in the θe gradient, now reaching a maximum 

of 1.84 K km-1 (Figure 4.4). The highest values of θe at 2200 UTC were approximately 

372 K, and were found directly along the cold side of the cold front. The overall width of 

the MAHTE at this point was approximately 30 km. As the afternoon progressed into the 

evening, the peak θe within the MAHTE decreased and the overall width of the MAHTE 

continued to contract (Figure 4.4f). The decrease in peak θe was due to a slight reduction 

in surface dewpoint temperature to the north of the front (Figure 4.5f), as well as a 

reduction in temperature across the entire domain (Figure 4.3f) due to decreased 

insolation.  

Soundings from the model illustrate the vertical thermodynamic profile at a given 

point, allowing the diagnosis of potential explanations for MAHTE development; 

specifically, vertical stability and extent of vertical mixing. To be consistent with the 

methodology of the modified RAP soundings, the soundings within the warm 

environment were taken at a fixed location approximately where the RAP point 

soundings were obtained, while soundings in the MAHTE were taken in a location of the 

maximum θe along the same longitude of the surface transects (Figure 4.8). The model 

soundings at 2200 UTC (Figure 4.9) indicate in the warm environment that there is a 

well-mixed boundary layer up to approximately 725 mb, with a small inversion above the 

well mixed layer. Within the MAHTE, there is a shallow stable layer located at 850 hPa. 

Below this, dewpoint temperatures indicate a well-mixed boundary layer, while above 

this stable layer is a drier layer. Above this stable layer at the top of the well-mixed 
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boundary layer, the MAHTE sounding profile begins to match the profile observed in the 

warm environment. This slight stable layer is likely arising from warm air advection as 

winds are southerly above the MAHTE, and could act to suppress mixing between the 

MAHTE mixed layer and the overlying elevated mixed layer. This suppression of vertical 

mixing would allow moisture content and θe within the MAHTE boundary layer to 

remain higher into the afternoon.  

 

Figure 4.8: Locations of the soundings in the MAHTE (red dot) and warm environment 
(black dot). 
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Figure 4.9: Soundings taken in the warm environment (black), in the MAHTE (magenta). 
Solid lines indicate temperature, dashed lines indicate dewpoint temperature.  
Soundings derived from these simulations are generally consistent with the 

modified RAP soundings using near-surface observations. These modified soundings, 

discussed previously, showed that SBCAPE was significantly higher within the MAHTE 

compared to the warm environment, and the spatial distribution of most unstable 

convective available potential energy (MUCAPE) at the time of the highest θe in the 
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simulations also reflects this (Figure 4.10). The most unstable parcel was used for these 

calculations of CAPE, which in these simulations were surface based parcels; therefore 

the MUCAPE calculated is equivalent to the SBCAPE. When the MAHTE had fully 

developed by 2200 UTC, MUCAPE approached 4000 J kg-1 directly on the cold side of 

the cold front (Figure 4.10a). With the observed increase of the gradients of dewpoint 

temperature and θe, there is a tight gradient in MUCAPE across the boundary, with 

MUCAPE below 1000 J kg-1 in the warm air mass. This illustrates that there was an 

approximate 3000 J kg-1 increase in MUCAPE in the MAHTE. This difference in 

MUCAPE is similar to differences observed with the modified RAP soundings discussed 

previously, despite the values of MUCAPE being lower both in the MAHTE and in the 

warm environment. Within the MAHTE, most unstable convective inhibition (MUCIN) 

decreased throughout the morning, reaching values between 0 J kg-1 and -25 J kg-1 by 

2200 UTC when the MAHTE was mature (Figure 4.10b).  

 

Figure 4.10: a) simulated MUCAPE and b) MUCIN at 22 UTC. 

a) b) 
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Chapter 5 

Discussion of processes leading to MAHTE formation  

To diagnose the mechanisms responsible for MAHTE formation, θe tendency 

must be evaluated. As discussed previously, θe changes primarily due to changes to 

temperature and atmospheric moisture. Because diabatic heating through insolation 

occurred nearly uniformly across the entire domain and because temperature advection 

should serve to decrease θe within the MAHTE, the primary mechanism(s) responsible 

for θe changes must be changes in moisture content. θe can change in a localized area 

through moisture fluxes from the surface, horizontal advection of θe which accounts for 

both moisture and temperature advection, and through vertical mixing. Each of these 

components will be examined here.  

Increased surface moisture flux within the colder air mass attributable to stronger 

surface winds could increase atmospheric moisture (Yokoi et al. 2014). However, 

throughout the development stages of the MAHTE, 1800 – 2200 UTC, surface fluxes of 

moisture are slightly higher south of the front (Figure 5.1). This is due to the higher 

temperatures in the warmer air mass and similar wind speeds across the front. Due to 

uniformity in surface moisture flux across the domain for the duration of the simulation, 

this parameter alone cannot be responsible for maintaining moisture within the MAHTE.   
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Figure 5.1: Area averaged upward surface moisture flux (10-4 g m-2 s-1), horizontal θe 
advection (10-4 g kg-1 s-1), and θe (K). 

 Another way that θe can change is through horizontal θe advection. Time series 

plots of average horizontal θe advection to the north and south of the front in Figure 5.1 

show that horizontal θe advection is similar across the front during the formation stages 

of the MAHTE, with both areas having near zero horizontal θe advection. θe advection 

remains near zero throughout the simulation in the southern area, while advection 

becomes negative after 2200 UTC in the MAHTE area. This is due to the MAHTE 

progressing to the south, as well as due to the negative θe gradient to the north of the 

MAHTE moving into the area used for averaging. Ultimately, the lack of substantial 

differences in horizontal θe advection across the front during the time of MAHTE 

development means that that horizontal θe advection was not responsible for formation of 

the simulated MAHTE.  
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For differential vertical mixing to be important for MAHTE formation, there 

should be a difference in vertical velocity evolution across the cold front, resulting in a 

greater reduction in θe where vertical velocities are the strongest. The evolution of 

vertical cross sections of vertical velocity (Figure 5.2) illustrate that there is differential 

vertical mixing occurring across the boundary: vertical mixing throughout the morning 

and afternoon is stronger and deeper to the south of the cold front than the vertical mixing 

simulated to the north of the cold front (Figure 5.2).  To quantify the impacts of 

differential vertical mixing on the development of the MAHTE, average vertical 

advection in a volume was calculated. This was done for a volume at the location of the 

15 by 15 km areas used for all other averages (Figure 4.2), with a vertical dimension 

extending from the lowest model grid point to the 7th model grid point, corresponding to 

a height of approximately 375 m. This height was selected to roughly fill the stable 

boundary layer at the start of the simulations (as evident in Figure 4.6a) without 

extending above this. Initially at 1400 UTC, average vertical advection for both volumes 

was near zero (Figure 5.3), as vertical velocities were near zero (Figure 5.2a). By 1600 

UTC, the boundary layer begins to transition into a convective boundary layer and 

vertical mixing begins to increase (Figure 5.2b). As the boundary layer deepens, lower θe 

air aloft is advected downward towards the surface, resulting in negative θe advection, 

strongest at 1630 UTC in the southern volume. This results in a lowering of average 2-m 

θe to the south of the cold front (Figure 4.4b), after which average vertical advection of θe 

to the south of the cold front becomes slightly positive once the boundary layer becomes 

well mixed. On contrast, vertical motions are suppressed within the MAHTE (Figure 

5.2). Volume averaged vertical advection is near zero initially within the MAHTE, and 
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then becomes positive likely due to the increasing θe at the surface with time (Figure 5.3). 

This illustrates that because the vertical depth of mixing is lower within the MAHTE, 

lower θe air aloft is never mixed throughout the boundary layer directly on the north side 

of the front, which allows moisture to remain constant and θe to rise within the MAHTE 

into the afternoon. Because of the difference in vertical advection of θe across the cold 

front, it is concluded that differential vertical advection is an important component in 

MAHTE formation. 
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Figure 5.2: South-north vertical cross section of simulated vertical velocity (m s-1). The 
approximate location of the front is indicated by the black arrow. 
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Figure 5.3: Average vertical advection of θe (10-4 K s-1) and averaged 2-m θe (K). 

 

Chapter 6 

Summary and conclusions  

A MAHTE along a synoptic cold front in northwest Kansas on 20 June 2016 was 

targeted for an investigation on MAHTE characteristics and formation. This case was 

modeled in WRF-ARW to examine the processes resulting in MAHTE formation and 

evolution, which cannot be deduced from observations alone. Observations showed that 

the MAHTE was approximately 40 km wide, which is wider than expected MAHTE 

width along an outflow boundary. The maximum value of θe was observed to be 372 K, 

decreasing steadily into the afternoon with each subsequent transect. The highest value of 
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θe was observed to be consistently 2 – 5 km on the cold side of the cold front, and was 

approximately 15 – 20 K higher than observations at the boundary and within the warm 

environment. The highest values of θe within the MAHTE were observed to be collocated 

with the greatest value of dewpoint temperature, in the region of quickly decreasing 

surface temperatures (within 10 km of the frontal boundary).  

 Simulations of this MAHTE accurately represented the formation of the MAHTE 

and its peak magnitude determined by the differences in θe and dewpoint temperatures 

between the warm air mass and the MAHTE. The greatest driver in MAHTE formation 

was differential vertical mixing across the boundary. Within the warmer air mass, vertical 

mixing was stronger and deeper than in the MAHTE, resulting in a decrease of the 

surface dewpoint and θe in the warm air mass, while suppressed vertical mixing within 

the MAHTE allowed dewpoint temperature to remain constant, while θe increased into 

the afternoon due to increasing insolation. Due to their similarities in magnitude across 

the boundary, horizontal θe advection and surface moisture fluxes cannot have resulted in 

a difference in the observed moisture, or the maintenance of moisture within the 

MAHTE, and thus are likely not responsible for the formation of the MAHTE. SBCAPE 

was approximately 3000 J kg-1 higher than observations in the warm air mass. This 

illustrates that MAHTE formation can have a significant impact on the convective 

environment over a localized area, which, if combined with a favorable backing of winds 

on the cool side of the boundary, could lead to an increased local severe thunderstorm 

potential.  
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 Future work will include expanding research to include cases of MAHTE along 

thunderstorm outflow, similar to the cases referenced in the introduction. This will 

include a similar methodology as this study, taking both an observational and mesoscale 

modeling approach to determine the characteristics of these MAHTE, and the processes 

which lead to their formation and evolution. This will provide a more detailed knowledge 

base, which will help properly assess severe convective potential on a given day.  
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