
University of Nebraska - Lincoln University of Nebraska - Lincoln 

DigitalCommons@University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln 

Final Reports & Technical Briefs from Mid-
America Transportation Center Mid-America Transportation Center 

2019 

Validation of the Validation of the Highway Capacity ManualHighway Capacity Manual  Urban Street Travel Urban Street Travel 

Time Reliability Methodology using Empirical Data Time Reliability Methodology using Empirical Data 

Ernest Tufuor 
University of Nebraska - Lincoln, ernest.tufuor@huskers.unl.edu 

Laurence Rilett 
University of Nebraska - Lincoln, lrilett2@unl.edu 

Follow this and additional works at: https://digitalcommons.unl.edu/matcreports 

 Part of the Civil Engineering Commons, and the Transportation Engineering Commons 

Tufuor, Ernest and Rilett, Laurence, "Validation of the Highway Capacity Manual Urban Street Travel Time 
Reliability Methodology using Empirical Data" (2019). Final Reports & Technical Briefs from Mid-America 
Transportation Center. 99. 
https://digitalcommons.unl.edu/matcreports/99 

This Article is brought to you for free and open access by the Mid-America Transportation Center at 
DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Final Reports & Technical 
Briefs from Mid-America Transportation Center by an authorized administrator of DigitalCommons@University of 
Nebraska - Lincoln. 

https://digitalcommons.unl.edu/
https://digitalcommons.unl.edu/matcreports
https://digitalcommons.unl.edu/matcreports
https://digitalcommons.unl.edu/matc
https://digitalcommons.unl.edu/matcreports?utm_source=digitalcommons.unl.edu%2Fmatcreports%2F99&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/252?utm_source=digitalcommons.unl.edu%2Fmatcreports%2F99&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1329?utm_source=digitalcommons.unl.edu%2Fmatcreports%2F99&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.unl.edu/matcreports/99?utm_source=digitalcommons.unl.edu%2Fmatcreports%2F99&utm_medium=PDF&utm_campaign=PDFCoverPages


 

Validation of the Highway Capacity 
Manual Urban Street Travel Time 

Reliability Methodology using  
Empirical Data 

Ernest O. A. Tufuor1 and Laurence R. Rilett2  

1 University of Nebraska–Lincoln, Lincoln, NE 
2 Nebraska Transportation Center, University of Nebraska–Lincoln, Lincoln, NE 

Corresponding author — Ernest O. A. Tufuor, ntc-etufuor@unl.edu   

Abstract 
The 6th edition of the Highway Capacity Manual (HCM-6) includes the concept 
of travel time reliability (TTR), which attempts to determine the distribution of av-
erage trip travel times over an extended period. TTR is an inherent part of travel-
ers’ route choice decisions and is used by traffic managers to better quantify oper-
ations rather than simply using average travel times. The focus of this paper is on 
the HCM-6 urban street TTR methodology contained in Chapter 17. The approach 
uses historical data (e.g., weather and volume fluctuations) and simple empirical 
data (e.g., 1-day volume count) to provide the user with average travel time and 
reliability predictions for a traffic facility over an extended period (e.g., a year). To 
the best of the authors’ knowledge, there is no existing literature on validating the 
HCM-6 methodology with empirical data. The goals of this paper were to validate 
the HCM-6 urban street reliability methodology by comparing the empirical Blue-
tooth (BT) travel time distributions with the estimated HCM-6 distribution, and to 
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propose potential HCM-6 augmentation strategies. Archived BT data from a 0.5-
mi urban arterial in Lincoln, Nebraska was used for comparison. It was found that 
there were statistically significant differences, but minimal practical differences, be-
tween the mean of the predicted HCM-6 travel time distribution and the mean of 
the empirical distribution. However, the HCM-6 distribution had a lower variance 
than the empirical distribution. Not surprisingly, the HCM-6 model underestimated 
the TTR metrics (buffer index and the planning time index) by approximately 62% 
and 9%, respectively. 

Traffic agencies use travel time distributions for many applications includ-
ing improving (a) transportation agency operations, (b) information for 
travelers’ trip planning purposes, (c) arterial and freeway rerouting and 
detours selections, (d) calibration and validation of traffic microsimulation 
models, and travel time reliability (TTR) metrics. The benefits of accurate 
reporting of travel times are presented by Toppen and Wunderlich (1). 

TTR has been defined in a number of different ways. For example, 
the United States Federal Highway Administration formally defines TTR 
‘‘as the consistency or dependability in travel times, as measured from 
day-to-day and across different times of the day’’ (2). The Future Stra-
tegic Highway Research Program (F-SHRP) defines TTR as the variation 
in travel times over a time period, for example, an hour-to-hour or day-
to-day variations (3). Other SHRP projects used the concept of variabil-
ity to define TTR. A broad definition was proposed by the SHRP report 
2 project L08 as follows: 

TTR aims to quantify the variation of travel time. It is defined 
using the entire range of travel times for a given trip, for a se-
lected time period (e.g., the P.M. peak hour during weekdays) 
over a selected horizon (e.g., a year). For the purpose of mea-
suring reliability, a trip can be defined as occurring on a spe-
cific segment, facility (combination of multiple consecutive seg-
ments), or any subset of the transportation network, or the 
definition can be broadened to include a traveler’s initial ori-
gin and final destination. Measuring travel time reliability re-
quires that a sufficient history is described by the travel time 
distribution for a given trip. 

It is clear that an accurate travel time distribution is a critical input for 
successful TTR applications. 

The current and 6th edition of the Highway Capacity Manual (HCM-
6) assumes that TTR reflects ‘‘the distribution of trip travel time over an 
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extended period’’ (4) and uses travel time distributions as input for deriv-
ing the TTR performance metrics of a road segment or facility. The HCM-6 
identifies and defines two groups of TTR performance metrics: (1) time-
based (e.g., buffer time), and (2) index-based (e.g., travel time index). 

Chapter 17 of the HCM-6 proposes a methodology for evaluating the 
TTR metrics that are experienced by motorists on an urban street facility, 
and this is the focus of this paper. The HCM-6 approach uses historical 
data (e.g., weather and volume fluctuations) and simple empirical data 
(e.g., 1-day volume count) to provide the user with a predicted travel 
time distribution for a given extended period of time (e.g., 1 year). This 
distribution is used to identify (1) the expected average travel time and 
(2) the forecast reliability metrics for the extended period. Note that the 
HCM-6 approach does not separate the effect of measurement or pre-
diction errors from the reliability estimates. 

Overview of HCM-6 Methodology 

The HCM-6 methodology is designed to account for the main causes of 
travel time variability including (a) traffic demand variations, (b) incident 
occurrences, (c) weather events, (d) work zones, and (e) special events. 
The approach incorporates demand fluctuations and the nonrecurring 
congestion effects to estimate current reliability metrics and predict fu-
ture facility reliability metrics over a given time period (5). 

Every analysis period (e.g., 15-min interval) within the reliability re-
porting period (typically, 6 months to a year) is identified as a scenario. A 
unique combination of the main causes of variability is defined for each 
scenario. The effect of these factors on running speed or saturation flow 
rates is quantified for each scenario. 

The scenarios are evaluated using an HCM-6 computational engine 
to estimate the expected value of the performance measures for each 
arterial segment and the facility within an analysis period. The collective 
set of the performance (e.g., travel times) is used to formulate the travel 
time distribution for the reliability reporting period. 

By definition, the resultant performance metric describes the variation 
in average travel time between the analysis periods or scenarios and not 
travel times from individual vehicles. Hence some of the variability in per-
formance is not accounted for by the HCM-6 methodology. Typically, a 
15-min analysis period is used, and this was adopted in this paper as well. 

It is important to note that the HCM-6 approach is based on a sin-
gle day volume count within the year, and the volume for the remaining 
364 days are estimated based on this volume, demand factors, predicted 



Tufuor  &  R i l ett  in  Transportat ion Research  Record  2673  (2019 )        4

weather, and expected incident occurrence. There is no attempt ‘‘to iso-
late the effects of measurement error or prediction error from the reli-
ability measurements or estimates’’ (5). 

In addition, ‘‘when dealing with predictions of performance, no at-
tempt was made to add a separate component for prediction uncer-
tainty’’ (5). Therefore, the HCM-6 measurement of reliability includes 
measurement uncertainty, which is defined as an estimated amount by 
which an observed value may differ from the ‘‘true value.’’ 

The HCM-6 methodology has default values for a number of inputs 
including demand factors, weather, and incidents. However, HCM-6 rec-
ommends the use of local datasets to minimize the uncertainties and the 
user may input this information into the HCM-6 computational engine. 
Samandar et al. (6) validated the HCM-6 freeway TTR prediction using 
local probe data. It was shown that the HCM-6 model could sufficiently 
predict travel times and reliability measures for freeways. However, to 
the best of the authors’ knowledge, no existing literature has used real 
data to validate the HCM-6 urban street methodology. The goal of this 
paper is to fill the gap. 

It is generally accepted that direct measurements of travel time are 
preferred over indirect travel time estimation methods such as estimat-
ing travel times from instantaneous speed collected at point detectors. 
Because Bluetooth (BT) data provide point-to-point travel time measure-
ments at relatively inexpensive cost, these systems have been adopted 
across the United States. 

It should be noted that with the advent of connected vehicles, Wi-Fi, 
sensors, and powerful communication devices, the ability to collect point-
to-point travel time data will continue to improve. 

The objective of this paper is to evaluate the TTR of an urban street fa-
cility using low cost archived BT data. The goals are to validate the HCM-6 
urban street reliability methodology by comparing an empirical BT aver-
age travel time distribution with the forecast HCM-6 average travel time 
distribution, and to propose potential HCM-6 augmentation strategies. 

The remainder of this paper is organized as follows. First, the details 
of the selected study area are provided. This is followed by a brief de-
scription of the conceptualization of the HCM-6 methodology and its 
application on the testbed. Next, the methodology for BT data collec-
tion and processing on the testbed are presented. Finally, a compara-
tive analysis of the results of the BT and HCM-6 outcomes is presented, 
and the proposed augmentation strategies of the HCM-6 methodology 
are discussed.  
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Study Area, Data Collection, and Processing 

Description of Study Area 

Figure 1 shows the 3.6-mi study corridor in Lincoln, NE. It is located 
on the N 27th Street from O Street in the south to Folkways Boulevard 
in the North. There are 14 signalized intersections, 32 exit/entry points 
per traffic direction, and the link distances vary from 0.5 to 1.2 mi. The 
selected HCM-6 testbed, shown in Figure 1b, is 0.5 mi in length and 
begins at Vine Street in the south and extends to Holdrege Street in 
the North. It has two lanes in both directions, a 1 to 2m median, pro-
tected and permissible left turn movements, and a speed limit of 35 
mph (56.33 km/h). 

The study corridor is part of the Nebraska Transportation Center’s 
(NTC) arterial corridor system data collection and monitoring testbed. 

The corridor was simulated using Synchro™, and Table 1 shows the re-
lationship between signal delay and the estimated level of service (LOS) 
as a function of the period of day for each signalized intersection. 

Figure 1. Case study area showing (a) Bluetooth detector locations and (b) test-
bed volume count.  
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It may be seen in Table 1 that the estimated LOS on the corridor 
ranges from A through E. The HCM-6 testbed had control delays ranging 
from 10.2 to 46.3 s, and corresponding LOS values that range from B to D. 

Application of the HCM-6 Methodology 

High-Level Representation 

The HCM-6 methodology for estimating the segment/ corridor averaged 
travel time distributions and the associated reliability performance met-
rics is illustrated in Figure 2. 

The HCM-6 methodology assumes that the day-today variability 
in travel time can be estimated by adjusting demand and predicting 
weather and incident occurrences over an extended period of time. The 
method is based on a simulation approach in which prediction models 
on the impacts of changes in demand, incidents, and weather are used. 
The result is a forecast of the average travel time distribution over an 
extended period. This distribution is used to identify the average travel 
time on the corridor as well as key reliability metrics. 

Table 1. Study Corridor Signal Control Delay and Level of Service at Peak Periods   

N 27th street signalized                   Peak period signal delay (s) and LOS
intersections  	 AM 	 Midday 	 PM

O St. 	 58.7 (E) 	 41.1 (D) 	 48.4 (D)
P St. 	 3.7 (A) 	 7.2 (A) 	 16.5 (B)
Vine St.* 	 38.8 (D) 	 33.4 (C) 	 46.3 (D)
Y St.* 	 13.9 (B) 	 10.2 (B) 	 20.0 (B)
Holdrege St.* 	 26.4 (C) 	 23.7 (C) 	 37.9 (D)
Fair St. 	 5.2 (A) 	 3.3 (A) 	 4.6 (A)
Cornhusker 	 39.0 (D) 	 40.7 (D) 	 53.3 (D)
Knox St. 	 9.0 (A) 	 16.6 (B) 	 15.8 (B)
Fairfield St. 	 10.0 (A) 	 13.3 (B) 	 15.6 (B)
Old Dairy Rd. 	 2.6 (A) 	 4.7 (A) 	 5.1 (A)
Superior St. 	 38.4 (D) 	 34.9 (C) 	 38.7 (D)
Ticonderoga 	 10.9 (B) 	 14.2 (B) 	 16.5 (B)
Kensington Dr. 	 3.6 (A) 	 8.7 (A) 	 8.1 (A)
Folkways Blvd. 	 28.4 (C) 	 11.4 (B) 	 13.8 (B)

*HCM testbed.
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A brief description of the HCM-6 procedure is outlined as follows:  

1. Create an input data file: This step requires the following data: (a) 
the functional class and geometric features of the subject urban 
street facility, (b) weather data [reference to NCDC (7)], (c) basic 
traffic volumes and count date and time under clear weather con-
ditions, (d) segment and intersection annual crash frequency, and 
(e) duration of the analysis period (typically 15 min), study period 
(e.g., PM peak 4.5 to 5.5 h), and reliability reporting period (e.g., 
all weekdays in a year). The outcome of this step is a base data-
set of the testbed, which consists of data required to evaluate the 
base performance for a single study period and data that describe 
weather, demand, and incident variations. 

2. Scenario generation: This step involves the use of the HCM-6 com-
putational engine, known as the STREET eVALuation (STREETVAL), 
to adjust the base dataset demand and capacity to reflect their 
variations under a combination of conditions. The engine has four 
steps that are conducted sequentially. First, the engine predicts 
weather event date, time, duration, and type. Secondly, it identi-
fies traffic adjustment factors for time and date in the reporting pe-
riod. Thirdly, it predicts incident event date, time, duration, event 
type (crash or no crash), crash severity level, and incident location. 

Figure 2. HCM-6 method for estimating average travel time distribution (Source: 
[4] Exhibit 17-2). 
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Lastly, the STREETVAL produces one input file for each analysis pe-
riod (i.e., each scenario) of the reliability reporting period. Each in-
put file contains the adjustments to saturation flows at intersec-
tions, running speed on the segment, and traffic demand variations. 

3. Facility evaluation: In this step, each segment scenario input file 
from the previous step is subjected to the HCM-6 urban street fa-
cility evaluation methodology (i.e., Chapter 16) to predict the aver-
age travel time on the testbed for each analysis period. Note that 
the estimate represents an average of the 15-min aggregated travel 
time for each analysis period. 

4. Performance measure: In this final step, the estimated averages for 
each analysis period are compiled over the reliability reporting pe-
riod into an average travel time distribution. The statistical descrip-
tion of the distribution and the base free-flow travel times are used 
to determine reliability performance metrics. 

HCM-6 Travel Time Reliability Analysis 

For illustrative purposes, the reliability of two testbed segments on the 
N 27th Street were used for the HCM-6 analysis: (a) from Vine Street to 
Y Street; (b) from Y Street to Holdrege Street. The period analyzed was 
the PM peak period (4:30–5:30 p.m.). All weekdays were selected as the 
study period, and 1 year was selected as the reliability reporting period. 
The input data for the HCM-6 analysis are shown below in Table 2. 

Table 2. HCM-6 Methodology Input Data

Input                                              Default used            Non-default value used

Reliability methodology
Geometric design 	 □ 	 Each segment is 0.25 mi (Segment 1 = Vine–Y,  
		     and Segment 2 = Y–Holdrege)
Functional class 	 □ 	 Urban principal arterial
Analysis period 	 □ 	 15 min for the facility
Study period 	 □	 4:30–5:30 p.m. for all weekdays
Reliability period 	 □	 1 year (2016)
Signal timings 	 □	 Provided by the City of Lincoln
Alternative dataset 	 ⌧ 	 No work zones considered
Weather data, demand ratios, and	 ⌧ 	 Selected HCM-6 default data for Lincoln, NE
   factors influencing accident duration
Segment and intersection crash data 	 □	 Available locally
Scenario evaluation interval 	 □	 Evaluate the scenarios of each day in chronologic 		
	              order (i.e., set to 1)
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The functional class input of the testbed is used in the HCM-6 to de-
termine the hour-of-day and month-of-year traffic adjustment factors, 
which are based on the findings from Hallenbeck et al. (8). 

It is important to note that the STREETVAL has a database of long-
term regional weather conditions with probabilities developed on 10 
years of data for Lincoln, NE, and other cities. Consequently, it is as-
sumed that there are no geographic or spatial transferability issues re-
lated to weather. 

Figures 3 and 4 give a snapshot of the base data input from the 
STREETVAL computational engine for the first segment of the testbed. 

Figure 3. HCM-6 methodology computational engine: (a) free-flow speed compu-
tation; (b) segment and intersection details. 
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The details of a typical intersection base dataset in the STREETVAL are 
presented in Figure 4. The signal timings are from the City of Lincoln; 
the PM peak hour settings were not changed over the reliability report-
ing period  

Figure 5 provides the estimated average of the 15-min aggregates 
travel time distribution of each segment for the northbound movement 
(i.e., Segment A, from Vine Street to Y Street) that was derived using the 
HCM-6 methodology. 

It can be seen from Figure 5a that the aggregated 15- min travel time 
distribution of Segment 1 is positively skewed with a long tail, in which 
the mean value is higher than the median value. Segment 2 (Figure 5b) 
has a bimodal distribution, which may be because of traffic signal coor-
dination issues. 

Following HCM-6 protocol, and since the HCM-6 methodology was 
based on a single day volume count within the year, and the volumes 
for the remaining 364 days were estimated, a simulation study was con-
ducted on the travel time results to estimate the bounds. 

Table 3 shows a summary of the predicted motorized vehicle perfor-
mance metrics for the testbed after four repetitions. The simulation was 
done by varying demand and keeping weather, incidents, and all other 
factors constant. Given that for this study, the PM peak period is 1 h, four 
15-min analysis periods, and considering all weekdays in 2016 resulted 
in 4,176 separate estimates of average travel time. 

Figure 4. A typical intersection base dataset on the testbed. 
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Figure 5. HCM-6 results for the averaged 15-min aggregate travel times on test-
bed: (a) Vine Street to Y Street; (b) Y Street to Holdrege Street.
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It may be seen from Table 3 that the HCM-6 procedure forecast the 
average travel time of 69.59 s and an average speed of 26 mph, which 
is 65% of the free-flow speed. The vehicles stop at an average rate of 
1.28 per mile, and the testbed operates at LOS C during the PM peak 
throughout the year. 

In summary, the HCM-6 methodology forecasts average travel time 
and associated reliability metrics on urban arterials based on a single day 
volume input by a user. To the best of the authors’ knowledge, there has 
been no research conducted to validate the HCM-6 urban street meth-
odology using empirical data. In the following section, an empirical 15-
min average travel time distribution on the same HCM-6 testbed over 
the same period of time is estimated using BT data. 

Application of the Empirical BT Travel Time Data 

Data Collection 

Figure 6 illustrates the setup of the BT devices and the data collection 
system. The BT detectors are located in City of Lincoln traffic cabinets. 
The detectors capture the date and time of passive BT-enabled devices. 
The data are transmitted to a host computer server at NTC. 

For security purposes, the detected unique media access control 
(MAC) addresses of the captured devices within the controller are en-
crypted and replaced with a new identifier (9). The encrypted data from 
all the testbed intersections are compared. When an exact match is 
found, the travel time is calculated by taking the difference in the time-
stamps. In this study, the link HCM-6 free-flow travel time was used as 

Table 3. HCM-6 Predicted Motorized Vehicle Performance Measures

Indicators (averaged 15-min 
aggregates, N = 4,176) 	 Mean 	 SD of mean 	 Median

Travel time (s) 	 69.59 	 3.50 	 68.94
Travel speed (mph)	  25.93	  1.26	  26.11
Stop rate (stops/mi) 	 1.28 	 0.20 	 1.21
Base free-flow travel time (s) 	 45.17
Level of service 	 C
    (reference: Exhibit 16-3, HCM 2016)

SD = standard deviation.
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the lower bound and twice the median BT travel time was used as the 
upper bound. Any travel time that was out of this range was considered 
an outlier and removed. 

A total of 208,170 individual vehicle travel times were collected from 
January 2015 to May 2017 on the study corridor. The data were ag-
gregated at 15-min intervals to ensure consistency with the HCM-6 
methodology.  

Methodology for BT Data Processing 

The BT data processing methodology is presented in the flowchart shown 
in Figure 7. In the first step, the 15-min aggregates of the BT dataset are 
divided into a number of subsets. In this study, five subjects were iden-
tified. Each subset contains the empirical BT travel times corresponding 
to the time periods associated with each category. Note that these sub-
sets are not mutually exclusive. 

In the second step, a subset can be extracted from the BT dataset de-
pending on the objectives of the user. For example, if the goal is to de-
termine TTR for rainy days in AM peak periods, then the BT travel times 
for rainy days within AM peaks over the number of days for which reli-
ability is to be computed (i.e., the reliability reporting period) is selected. 
In this study, the PM peaks for all weekdays was the scenario identified 
for analysis. 

The third step is to determine the travel time distribution and de-
scriptive statistics of the 15-min aggregates of the scenario under 

Figure 6. Bluetooth detector collection systems (Source: [9]).  



Tufuor  &  R i l ett  in  Transportat ion Research  Record  2673  (2019 )        14

consideration. The distribution is used in the fourth step to determine 
the corresponding reliability performance metrics for the chosen sce-
nario. Lastly, the above steps are performed for each road segment and 
aggregated to estimate the average 15-min travel time distribution on 
the corridor. The distribution is then used to estimate the TTR metrics. 

Bluetooth Data Analysis 

To use the BT dataset, it is necessary to test its capability and accuracy. 

BT Penetration Rate 

The BT penetration rate or sampling rate is defined as the ratio of the 
number of travel times captured by the BT sensor to the actual volume 
of arriving vehicles within a specific time frame. Its penetration rate for 
the ith intersection, Pi , can be mathematically expressed as: 

Pi =
 VBi   for all i=1, 2, …, N (the number of intersections)    (1) 

                       VAi 

Figure 7. BT data processing methodology. 
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where VBi = number of travel times captured by the BT sensor at the ith 
intersection and VAi = number of arriving vehicles at the ith intersection. 

The penetration rate for each 15-min analysis period within the ob-
served PM peak period (e.g., from 4:30–5:30 p.m.) was estimated using 
Equation 1. 

The penetration rate ranged from 4% to 6% (for only a 2-day count), 
which is similar to estimated penetration rates from previous studies and 
is large enough to use for statistical inference (10–12). It should be noted 
that the rate does not account for double counting, (i.e., when two or 
more BT-enabled devices are captured from the same vehicle). 

BT Travel Time Trends 

Figure 8 illustrates the travel time trends for the O Street to Vine Street 
segment of the five chosen subsets. Similar patterns were obtained from 
the other five segments but are not shown because of space constraints. 

Figure 8. Box plots of Bluetooth travel times of (a) monthly variations, (b) traffic 
conditions, and (c) weather conditions from the O Street to Vine Street segment. 
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The display format follows standard boxplot protocols where the bot-
tom, the middle, and the top of each box represent the 25th percentile, 
the median, and the 75th percentile travel times, respectively. The points 
marked ‘‘X’’ are the mean travel times and the maximum and minimum 
values are shown as the upper and lower limits of each box. 

Figure 8a shows the average 15-min aggregate travel time pattern by 
month. It may be seen that, the summer months (June, July, August) gen-
erally have higher mean travel times and higher variability in travel time. 
It is hypothesized that this occurs because of increased construction. 

Figure 8b shows that the highest average 15-min aggregate travel 
times occur on football game days. This is not surprising because the 
football stadium, which has sold out for every game since 1962, hosts 
over 90,000 fans per game. On regular days, the PM peak has the high-
est travel times. 

With regards to different weather conditions, Figure 8c shows that 
rainy and snowy conditions have the highest travel times. This is not sur-
prising because precipitation reduces tire friction, which results in drivers 
slowing down, increasing headways, and increasing travel times. 

BT Travel Time Distributions 

The descriptive statistics of each BT average 15-min aggregate travel time 
subsets, which correspond to Figure 8, are shown in Table 4. 

It may be seen that, the mean of each subset is higher than its cor-
responding median value. Hence the distribution patterns are positively 
skewed and are consistent with the HCM-6 distribution in Figure 5. 

The measure of dispersion (e.g., the standard deviation) are approx-
imately 38% larger in May–August as compared to other months. It is 
hypothesized that the difference in the dispersion may be because of 
the frequent stop and yield control within work zones that often occurs 
during summer. 

The descriptive statistics support the findings in other empirical stud-
ies—that the distribution of link travel times is generally not symmet-
rical (13). Tufuor and Rilett give a more extensive statistical analysis to 
determine the best fit distributions for the data obtained on the same 
testbed (9). The lognormal and gamma distributions were found to fit 
best for the short and long links, respectively, as it also pertains in other 
studies (10, 13, 14). 
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Comparative Analysis of Results 

Figure 9 shows the distributions of the averaged 15-min aggregated 
travel times and the corresponding cumulative frequency curves for both 
the HCM-6 forecast average travel time distribution and the empirical 
average travel time distribution. 

Table 4. Descriptive Statistics of Averaged 15-min BT at Varying Conditions (s)

                                                                                First                       Third  
Variability effects     Subsets                      Min.     quartile   Median    quartile    Max.      Mean      Size        SD   Skewness

1. Short arterial road links (0.5 mi), that is, from O Street to Vine Street

Traffic condition 	 Off-peak 	 40.0 	 49.0 	 53.0 	 60.0 	 120.0 	 56.5 	 3,379 	 11.9 	 2.0
	 AM peak 	 40.0 	 51.0 	 56.0 	 63.0 	 117.0 	 58.1	  3,263	  10.7	  1.4
	 Midday peak 	 41.0 	 55.0 	 61.0 	 70.0 	 120.0 	 64.0 	 2,413	  12.4 	 1.5
	 PM peak 	 42.0 	 57.0 	 63.0 	 71.0 	 120.0	  65.5	  2,424 	 11.6 	 1.5
Game day 	 Pre-game 	 60.0	  67.0 	 73.5 	 79.0 	 89.0	  73.9	  26	  8.0	  0.2
	 Post-game 	 57.0 	 73.5 	 88.0	  93.0 	 131.0 	 86.9	  18 	 17.9 	 0.6
Monthly variations 	 Jan 	 40.0 	 52.0	  57.0 	 63.0 	 120.0 	 58.7	  1,840 	 10.1 	 1.5
	 Feb 	 40.0	  52.0 	 57.0 	 65.0 	 120.0 	 59.8	  1,808 	 11.4	  1.5
	 Mar 	 40.0	  51.0	  56.0 	 63.0	  120.0 	 58.3 	 2,097 	 10.5 	 1.7
	 Apr 	 40.0	  54.0 	 60.0 	 67.0 	 118.0 	 61.5 	 1,952 	 11.3 	 1.2
	 May 	 40.0	  54.0 	 60.0 	 69.0 	 120.0 	 62.9 	 1,973	  13.5 	 1.3
	 Jun 	 40.0	  53.0	  59.0 	 68.0	 120.0 	 62.2 	 1,053	  13.8 	 1.5
	 Jul 	 40.0 	 52.0 	 59.0 	 74.0 	 120.0 	 64.7 	 1,003	  16.8 	 1.2
	 Aug 	 40.0 	 52.0 	 58.0 	 69.5	  120.0 	 62.0 	 1,379 	 13.8 	 1.3
	 Sept 	 40.0	  52.0 	 57.0 	 65.0 	 119.0 	 59.3 	 1,294 	 10.5	  1.5
	 Oct 	 40.0 	 52.0 	 58.0 	 65.0 	 115.0 	 59.2	  1,352 	 10.0 	 1.2
	 Nov 	 40.0	  52.0 	 57.0 	 64.0 	 111.0 	 59.2 	 1,304	  9.9	  1.2
	 Dec 	 40.0 	 53.0	  58.0 	 65.0 	 113.0 	 59.9 	 1,380 	 10.3	 1.0
Weather variations 	 Clear	  40.0	  58.0 	 63.0	  69.0 	 80.0 	 63.6	 299 	 7.7 	 –0.2
	 Snow 	 58.0 	 63.5 	 68.5 	 75.3 	 84.0 	 69.2 	 32 	 7.6	 0.5
	 Rain 	 50.0 	 57.0 	 61.0 	 77.5 	 95.0 	 68.0	  15 	 15.4 	 0.8
	 Partly cloudy 	 44.0 	 58.3 	 63.0 	 70.0 	 102.0 	 65.1 	 42 	 11.7 	 0.9
	 Mostly cloudy 	 48.0 	 59.0 	 65.0 	 72.0 	 84.0 	 65.1 	 41	  9.4	  0.0

2. Long arterial road links (3.6 mi), that is, from O Street to Folkways

Traffic condition 	 AM peak	  311.0 	 419.0 	 464.0 	 513.0 	 555.0	  467.9 	 1,558	  63.0	  0.06
	 Midday peak 	 311.0	  419.8	  466.0	  514.0 	 576.0	  530.4	  1,404 	 62.9	 0.06
	 PM peak	  311.0 	 422.0 	 467.0	  516.0	  600.0 	 552.3 	 1,429	  62.9	  0.03

SD = standard deviation.
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It may be seen from Figure 9 that the mean travel times are relatively 
close. However, the forecast HCM-6 model is much less dispersed as 
compared to the empirical travel time distribution. In fact, the range of 
the empirical distribution (52 s) is approximately three times greater than 
the range of the HCM-6 distribution (18 s). The forecast HCM-6 travel 
time distribution is less more dispersed as compared to the empirical BT 
travel time distribution. 

Table 5 provides a summary of the results of the mean travel times 
and the reliability performance metrics for the weekday PM peak peri-
ods. It may be seen from Table 5 that there is a statistically significant dif-
ference, but not a practical difference, between the facility’s mean travel 
times for the two procedures. The estimated mean travel from the HCM-6 
is about 4 s higher than the BT case. 

More critically, the variability of the BT travel time distribution is much 
higher than the HCM-6 travel time distribution. The following hypothe-
sis was tested using analysis of variance, that is: 

H0 : Population variance of HCM distribution= Population variance 
of empirical distribution 

Ha : Population variance of HCM distribution ≠ Population variance 
of empirical distribution 

Figure 9. Travel time distributions and cumulative frequency curves. 
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The results show that there are statistically significant differences be-
tween the variance, and there is evidence to reject the null hypothesis. In 
other words, assuming a Gaussian distribution for both travel time dis-
tributions, the population variances are statistically different. 

The travel time index (TTI) in both cases shows that the facility is not 
very congested. The percent of vehicle-miles-traveled (VMT) associated 
with a TTI less than 2.5 is more than 95%. This implies that the facility is 
likely to provide more than 95% of VMT associated with LOS D or better 
in both cases. That the testbed operates at LOS C during PM peak peri-
ods is confirmed in Table 4. 

The planning time index of 1.71 for the HCM-6 method implies that 
for a trip lasting 69.59 s, one must plan a total time of about 119 s. 
Whereas in the empirical BT case, one has to plan a total of 122 s. 

The buffer index depicts the extra time most travelers need to add 
to the average travel time to ensure on-time arrival. The HCM-6 under-
estimates the buffer index by about 62% as compared to the empirical 
BT results. 

Potential HCM Augmentation Strategies 

This paper illustrated that the HCM-6 TTR methodology although use-
ful and an important step for traffic operation analyses might not give 

Table 5. Testbed Reliability Performance and Statistics

Reliability performance measures of 	 HCM-6	 BT	 Difference 
average 15-min aggregates of travel time	 (SD)	 (SD)	 (% change)

Mean travel time (MTT) in seconds 	 69.59 (3.5) 	 65.50 (11.6) 	 –4.1 (–6)
95% confidence interval 	 [69.37, 69.81] 	 [64.78, 66.22]
Mean travel time index (TTI) (ratio of 	 1.54 	 1.46 	 –0.1 (–5)
   mean to free-flow travel time)
Planning time index (PTI ) (95th percentile	 1.71 	 1.87 	 0.2 (9)
    time divided by the free-flow time)
Buffer index (95th percentile travel time 	 0.11 	 0.29 	 0.2 (62)
   minus mean travel time, divided by  
   the mean travel time)
t-statistic (comparing mean travel times  	 9.70 (p-value = 1.1E-21) 
   assuming unequal variance)
F-statistic (analysis of variance ) 	 115.01 (p-value = 3.9E-26)

SD = standard deviation



Tufuor  &  R i l ett  in  Transportat ion Research  Record  2673  (2019 )        20

accurate results. A number of potential reasons for this discrepancy were 
provided. For example, it is hypothesized that one of the leading causes 
is owing to the inability of the HCM-6 methodology to control both the 
systematic and random elements in the scenario generation process. 

The systematic variations such as changes in weather and traffic de-
mand on periods within the day, month, and year are recognized and 
predicted by the HCM-6 using averages. It is also easy to hypothesize 
that the relative sparsity of the input data (e.g., 1-day volume data) and 
the reliance on default aggregate datasets (e.g., monthly weather in-
formation) may also result in forecast errors. This section discusses two 
potential augmentation strategies that the authors believe may lead to 
more accurate results. 

Calibrate the HCM-6 Model with Local Empirical Data 

At its heart, the HCM-6 methodology relies on Monte Carlo simulation. 
It is well known that simulation models perform best when the key pa-
rameters are calibrated and validated to local conditions. An overview of 
a proposed calibration process is leveraged from Spiegelman et al. (15) 
and illustrated in Figure 10. 

Figure 10. Proposed HCM calibration process.
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The first step is to collect appropriate empirical performance data 
on a number of arterial roadways that will be studied. Intuitively, the 
best data would be individual trajectory data that may be aggregated 
into average travel times for specific periods (e.g., 15 min) that corre-
spond to the HCM-6 output. In this paper, BT data were utilized. With 
the recent growth in vehicle-to-vehicle and vehicle-to-road infrastruc-
ture communications, there is great potential in using these technol-
ogies to obtain accurate point-to-point travel times on urban street 
facilities. The continuous development of the connectivity of commu-
nication devices is now improving on accuracy and cost-effectiveness 
for travel time research (7). 

The second step is to model the arterials by using the STREETVAL en-
gine. As discussed in this paper the primary output is the distribution of 
average travel times for the given study period. This information is used 
to develop the TTR metrics. 

The third step is to compare the output from the STREETVAL engine 
with the empirical data. Based on experience the authors argue that the 
average travel time distributions should be analyzed statistically. This 
would involve a goodness of fit measure such as the K–S test or chi-
square test or some of the more typical nonparametric tests. 

If the two distributions are not statistically different, then the pro-
cess can be stopped, and the model can be considered calibrated. Note 
that it would be useful to validate the model using empirical data that 
were not part of the calibration process (15). It should also be noted that 
other output, such as mean travel time (MTT) or absolute percentage er-
ror, may also be used to ascertain how similar the travel time distribu-
tions are to each other.  

Assuming that the simulated results and empirical data are dissimi-
lar, the user may then change the STREETVAL parameters. The process is 
repeated until the results are acceptable or until a set number of itera-
tions has been reached. The authors assume that this procedure will be 
automatic such that the optimization step utilizes standard techniques 
such as genetic algorithms or the Simplex Method (15). 

The proposed calibration methodology may also be used to aug-
ment the HCM-6 reliability methodology for predicting TTR for other 
scenarios not currently included such as traffic signal malfunction, 
adverse weather conditions, and railroad crossing and preemption 
events (5). 
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More Robust Input Data 

As shown in Figure 10, there are four main input classes: supply, traffic, 
weather, and incidents. The current HCM methodology is designed to 
provide forecast TTR metrics in an input data-poor environment. How-
ever, there is the potential to allow for more disaggregate input data. For 
example, cities such as Lincoln have detailed weather data disaggregated 
by day of year and hour of day. These data may be directly correlated 
to the travel time data that were collected in this study and aggregated 
into 15-min averages for each day of the year. It would be useful if users 
could employ these data as input to STREETVAL. It is hypothesized that 
this would result in more accurate travel time distributions particularly if 
coupled with the calibration scheme proposed in Figure 10. 

Similarly, it is possible in many cities to obtain general volume pat-
terns, and incident/crash patterns at a fairly disaggregate level. This in-
formation could also be used as input and would potentially allow for 
more accurate results from the scenario degeneration process. It is hy-
pothesized that if all four input data input streams were more disaggre-
gate and were disaggregated at the same level (e.g., crash, volume, and 
weather data at 15-min intervals) the resulting travel time distribution 
from the Monte Carlo simulation study would be much more accurate. 

In summary, two augmentation schemes have the potential to lead 
to more realistic travel time distributions and, ultimately, more accurate 
TTR metrics. Note that these two approaches are not mutually exclusive 
and it could be argued that using both approaches would be superior 
to using only one. 

Concluding Remarks 

The current and 6th edition of the HCM methodology for evaluating TTR 
on an urban street facility incorporates nonrecurring congestion effects 
including weather events, incident events, and work zones. The HCM-6 
approach is based on a single day volume count within the year, and the 
volume for the remaining 364 days are estimated based on this volume, 
demand factors, predicted weather, and expected incident occurrences. 

The objective of this paper was to evaluate the TTR of an urban street 
facility using low cost archived BT data. The goals were to validate the 
HCM-6 urban street reliability methodology by comparing the empirical 
BT travel time distributions with the estimated HCM-6 distribution, and 
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to propose potential HCM-6 augmentation strategies. The selected tes-
tbed was an urban street facility in Lincoln, NE, a city that has its weather 
data recommended as one of the default settings in the HCM- 6 compu-
tational engine. The PM peak travel times for all weekdays within a year 
were analyzed. The results from the BT analysis were compared to the 
outcome of the HCM-6 methodology. It was determined that: 

1. The testbed MTTs differ by approximately 4 s. This difference was 
found to be statistically significant at a 95% confidence level. How-
ever, from a practical or engineering perspective, this difference is 
negligible. 

2. The HCM-6 methodology resulted in travel time estimates that had 
considerably less variability than the empirical data. It was hypoth-
esized that the differences occurred because of measurement un-
certainty, highly aggregated input data, and the fact that the model 
was not calibrated to local conditions. 

3. The HCM-6 methodology underestimated the buffer index and 
the planning time index by approximately 62% and 9%, respec-
tively. However, both the HCM-6 results and the empirical BT results 
yielded a TTI that implied that the testbed is likely to provide more 
than 95% VMT associated with a LOS D or better. This was true be-
cause the predetermined LOS was at ‘‘C.’’ 

Two augmentation strategies for the HCM-6 travel time forecasting 
methodology were proposed including calibrating the model to local 
conditions and allowing for more disaggregate input data to be used. In 
addition to studying these proposed augmentation strategies, it would 
be useful to examine the temporal and geographic transferability con-
ditions associated with the HCM-6 model. It would also be useful to ex-
amine other test scenarios including snow days, lane closures, and work 
zone capacity reductions.  
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