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A room-temperature ferroelectric semimetal
Pankaj Sharma1,2*†, Fei-Xiang Xiang2,3*†, Ding-Fu Shao4*, Dawei Zhang1, Evgeny Y. Tsymbal4†,
Alex R. Hamilton2,3†, Jan Seidel1,2†

Coexistence of reversible polar distortions and metallicity leading to a ferroelectric metal, first suggested by
Anderson and Blount in 1965, has so far remained elusive. Electrically switchable intrinsic electric polarization,
together with the direct observation of ferroelectric domains, has not yet been realized in a bulk crystalline
metal, although incomplete screening by mobile conduction charges should, in principle, be possible. Here,
we provide evidence that native metallicity and ferroelectricity coexist in bulk crystalline van der Waals
WTe2 by means of electrical transport, nanoscale piezoresponse measurements, and first-principles calculations.
We show that, despite being a Weyl semimetal, WTe2 has switchable spontaneous polarization and a natural
ferroelectric domain structure at room temperature. This new class of materials has tantalizing potential for
functional nanoelectronics applications.

INTRODUCTION
Ferroelectric materials have a spontaneous electric dipole moment,
i.e., polarization, even in the absence of an external electric field. This
spontaneous electric dipole moment can be repeatedly transitioned
between two ormore energetically equivalent states or directions upon
application of an external electric field that breaks the degeneracy and
forms the fundamental underpinning of numerous technological ap-
plications of ferroelectric materials (1). For piezoelectricity, noncentro-
symmetric crystal structure is the only requirement (2). In contrast, for a
polar material, not only must the crystal structure be noncentrosym-
metric but also there should exist a unique polar axis. For a material
to be considered a ferroelectric, it needs both to be polar and to show
bistability of the polarization along the polar axis (2). Conventionally,
ferroelectricity has often been associated with and observed inmaterials
that are insulating or semiconducting rather thanmetallic because con-
duction electrons in metals screen out the static internal fields arising
from a long-range dipolar order. In the 1960s, Anderson and Blount (3)
proposed a new class of materials with these seemingly incompatible
characteristics, i.e.,metalswith a polar axis and an inversion asymmetric
crystal structure termed “ferroelectric metals.” Since then, an experi-
mental demonstration of this concept for a room-temperature
single-phase material has remained elusive. Metallic systems under-
going a centrosymmetric-to-noncentrosymmetric structural transition
have been observed recently, e.g., in LiOsO3 at 140 K (4) and
Cd2Re2O7 at 200 K (5), hinting at the possibility of sustaining ferro-
electricity in a metal at room temperature. More progress has been
made lately with a study (6) reporting on the observation of polar do-
mains and strain-induced ferroelastic switching in bulk polar metal
Ca3Ru2O7 at room temperature. Another strategy that has also been
commonly used, besides investigating metallic systems with a non-
centrosymmetric crystal structure (7), is to dope well-established fer-
roelectric materials, such as BaTiO3-d (8, 9) and Nb-doped PbTiO3

(10). However, the ferroelectric instability weakens with increasing
electronic density in these systems and will eventually be destroyed
above a certain critical density (11). Furthermore, it is not clear that
the ferroelectricity and metallicity coexist in a single phase in these
materials (12), as other studies suggest a nanoscale phase separation
into separate metallic and ferroelectric phases (13). Another approach
to obtaining a ferroelectric metal has been to engineer interface-based
polar metals in oxide heterostructures (14–16). Despite these investi-
gations, the experimental realization of a native metal with bistable
and electrically switchable spontaneous polarization states, the hall-
mark of ferroelectricity, is yet to be demonstrated. During the submis-
sion process of this manuscript, we became aware of a closely related
work (17), in which ferroelectric switching has been demonstrated in
device structures through electrical transport measurements for bi-
layer and trilayer WTe2. Fei et al. (17) quantify and establish the tem-
perature dependence of the polarization. However, a natural question
arises as to whether ferroelectricity persists to samples thicker than
three layers, or even to bulk crystals, and whether ferroelectric do-
mains can be formed.

Here, we observe the coexistence of native metallicity and ferro-
electricity in bulk crystalline WTe2 at room temperature. Bulk single
crystals in their pristine state show ferroelectric domains that are vi-
sualized directly.We demonstrate that the bistable spontaneous ferro-
electric polarization state is switchable under an external electrical bias
and explain the mechanism for “metallic ferroelectricity” in WTe2
through a systematic study of the crystal structure, electronic trans-
portmeasurements, and theoretical considerations. Density functional
theory (DFT) calculations show that the ferroelectricity is related to
the anisotropy of the crystal structure. A van der Waals material that
is both metallic and ferroelectric in its bulk crystalline form at room
temperature has potential for new nanoelectronics applications.

RESULTS
Noncentrosymmetric crystal structure and semimetallic
ground state
Tungsten ditelluride,WTe2, belongs to the class ofmaterials known as
transition metal dichalcogenides (TMDCs). These materials exhibit
many different crystal structures, such as hexagonal (2H), monoclinic
(1T), and orthorhombic (Td) (18, 19). WTe2 crystallizes in a layered
orthorhombic structure (also known as the Td phase; Fig. 1A), in which
the tungsten atoms are octahedrally coordinated by the telluriumatoms,
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and the successive layers in between are rotated by 180° (20, 21). Be-
cause of strong intermetallic bonding, the tungsten atoms form slightly
buckled zigzag chains resulting in distortion of the tellurium octahedra
(around each tungsten atom) (19). Figure 1B shows a typical x-ray dif-
fraction (XRD) pattern of c axis–oriented WTe2 single crystals investi-
gated in this work. The (00l) diffraction peaks confirm the presence of
the single-crystalline Td phase of WTe2 (20). The lack of inversion
symmetry in the Td phase of WTe2 (polar space group, Pmn21) has
played an important role in its identification as a type IIWeyl semimetal
(22). Unlike most TMDCs, WTe2 is a semimetal in its native ground
state (23, 24), instead of being a semiconductor.We confirmed the semi-
metallic ground state of WTe2 by electrical transport measurements
(Fig. 1C). The resistance of WTe2 decreases with decreasing tempera-
ture from room temperature down to 10 K, a behavior typical of metal-
lic systems. Furthermore, magnetoresistance measurements at 30 mK
with magnetic fields up to 10 T reveal pronounced Shubnikov–de Haas
(SdH) oscillations with four main frequencies (Fig. 1, D and E). These
oscillations confirm the existence of four well-defined Fermi surfaces,
consisting of two sets of electron and hole pockets (25). The presence
of both free electrons and holes is believed to be the origin of the
extremely large, nonsaturated magnetoresistance in WTe2 (26–28).
Given the existence of metallic conduction down to 30 mK, and the
fact that noncentrosymmetry is a necessary but insufficient require-
ment for a material to be ferroelectric, an intriguing question arises: Is
semimetallic WTe2 with a noncentrosymmetric space group (Pmn21)
a ferroelectric (7)?

Ferroelectric domains in single crystals
To address this question and probe ferroelectricity inWTe2, we used
piezoresponse force microscopy (PFM) to spatially map the polar-

ization. PFM is a standard technique used extensively to investigate
domain microstructure and dynamics of polarization in classical fer-
roelectric materials. It exploits the converse piezoelectric effect and
detects lattice deformation due to an applied electric field (29, 30). To
ensure pristine surfaces for the investigation, we prepared freshly
cleaved WTe2 single-crystal samples (several tens of micrometers
thick; Fig. 2, A andB, and seeMaterials andMethods for details).Mea-
surements were performed in an inert dry N2 environment at room
temperature immediately after the crystals were cleaved. In this exper-
iment, the conductive nanoscale tip acts as a movable top electrical
contact. Spectroscopic electrical transport measurements performed
using conductive atomic forcemicroscopy (c-AFM) reveal the expected
metallic behavior of WTe2 and establish the ohmic nature of the elec-
trical contacts (see fig. S1). The measured current-bias curves are linear
and show appreciable conduction over a rather small bias range. Sub-
sequently, we performed PFM imaging (seeMaterials andMethods for
details). The PFM images (Fig. 2, C to H) show the presence of anti-
parallel ferroelectric domains. A few of these domains are visualized in
more detail in the high-resolution PFM images (Fig. 2, G and H). The
domains usually exhibit a distorted circular profile with an average
domain size in the range of ~20 to 50 nm. The domain shape resem-
bles those of well-known ferroelectric materials such as strontium bis-
muth tantalate (29) and triglycine sulfate (31). The piezoresponse
characteristics are textbook (29, 32) examples of ferroelectric behavior
(Fig. 2, J and K): (i) Domain walls appear as dark lines (i.e., as a min-
imum in the PFM amplitude signal) in the amplitude image, and
(ii) the PFM phase inverts by ~180° between adjacent domains in
the corresponding phase image. The surface of the sample is atom-
ically flat (root mean square roughness, ~0.2 nm) with occasional
step edges (Fig. 2C) from the cleaving process. We note that, in some

Fig. 1. Crystal and electronic structure of WTe2. (A) Atomistic model of the Td phase of WTe2. (B) XRD q-2q scan on a WTe2 single crystal. Inset shows a zoom-in on
the (002) diffraction peak. a.u., arbitrary units. (C) Temperature-dependent resistance of a WTe2 sample with a thickness of ~50 nm measured from room tem-
perature to 10 K. Inset shows the optical micrograph of the sample. (D and E) SdH oscillations of a WTe2 sample with a thickness of ~30 nm measured at 30 mK
(D) and corresponding fast Fourier transform (E).
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but not all cases, submonolayer surface variations close to the resolution
limit of ourmeasurement systemwere observed near the position of the
domains (Fig. 2I). In addition to the small oval domains, micrometer-
sized stripe-like domains (shown by arrows in Fig. 2D) were also re-
solved. This observation of domains in semimetallic WTe2 single
crystals implies that WTe2 not only has a polar axis (c axis) but also
has bistable polarization states manifesting as static antiparallel do-
mains. Therefore, the above results strongly support the existence of
ferroelectricity in semimetallic WTe2 at room temperature.

Another aspect that deserves mention here is the stability ofWTe2.
It is well known that the surface of WTe2 is quite sensitive and can
undergo oxidation in air. Previous works (33–36) have investigated in
detail the physical and chemical properties of this surface oxide using
a range of techniques including Raman spectroscopy, energy dispersive
x-ray spectroscopy, cross-sectional transmission electronmicroscopy,
x-ray photoelectron spectroscopy, and electrical transport studies. The
surface oxide forms through evolution of W––O (WOx) and Te––O
(TeO2) secondary bonds at the surface of WTe2 in air. The WTe2
oxidation is a self-limiting process (35) and results in an amorphous
surface oxide layer, which is about 2 nm thick (34). To independently
determine time-dependent thickness evolution of the surface oxide,
we performed ellipsometry measurements (see section S2 and fig. S2).
From our measurements, we find that the thickness of surface oxide
saturates at about 2.5 nm after several hours of atmospheric exposure
(fig. S2). These results thus are consistent with earlier published reports
(34). The exposure time for surface oxide formation ranges from a few
hours to days (37). The bulk crystals and relatively thickWTe2 samples
are more stable in air compared to samples with just few layers, espe-
cially monolayer and bilayerWTe2 (35, 36). Moreover, there is no polar
space group in amorphousmaterials, and ferroelectricity cannot arise as
it exists only in crystalline materials. This is the very reason that, in the
literature, there are no publications reporting on the observation of
existing ferroelectric domains or domain-like features using PFM in
amorphous materials. Nevertheless, we performed the measurements

presented in Fig. 2 on a freshly cleaved atomically smoothWTe2 single
crystal in a controlled N2 environment (see also fig. S1), and thus, the
observed behavior cannot be ascribed to the surface oxide.

Probing ferroelectricity and polarization switching
One of the defining aspects of ferroelectrics is the reorientation of
polarization by means of an external electric field. However, unlike
insulating ferroelectrics, switching the polarization is difficult in WTe2
because of its high conductivity: The applied bias induces electrical
current rather than acts on the polar distortion (fig. S1). Nonetheless,
if the flow of large electrical currents can be prevented, e.g., by insertion
of a dielectric layer between the contacts, then it is possible to apply an
electric field to WTe2 and realize ferroelectric switching. To achieve
such a configuration and to preclude the possibility of direct charge
injection (30) from the tip into theWTe2, we prepared thin film samples
in a capacitor geometry (Fig. 3A and seeMaterials andMethods for de-
tails). In these capacitor structures, current flow is inhibited by a di-
electric layer at the ferroelectric/metal interface (see also section S3)
(38), as theWTe2 sample surface briefly exposed to air before the metal
deposition forms a very thin oxide layer (34). Figure 3B shows a metal-
gatedWTe2 flake on the surface of a Ti/Au-coated silicon substrate. The
WTe2 flake is 15 nm thick, and the Ti/Au metal electrode on top of it is
9.5 nm thick (Fig. 3B, inset). In this configuration, the electrical current
flow across the WTe2 is strongly suppressed (fig. S3), although the
WTe2 flake is still metallic (25).

To demonstrate switching of the ferroelectric polarization of WTe2,
spectroscopic PFM measurements were performed through the top
electrode in a capacitor geometry, which has been successfully used
before for subelectrode PFM measurements (29, 30). The acquired
piezoresponse as a function of applied bias (Fig. 3, C and D) shows
switchable hysteretic behavior consistent with that seen in traditional
ferroelectrics such as BaTiO3 and Pb(ZrxTi1-x)O3 (32). The PFM am-
plitude response displays a characteristic “butterfly” curve, while the
corresponding phase response exhibits a phase inversion (i.e., a phase

Fig. 2. Ferroelectric domains resolved in WTe2single crystals. (A) Schematic of the experimental setup for imaging domains in WTe2 single crystals. (B) High-
magnification optical image of the WTe2 single crystal sample. Inset shows optical image of a bulk WTe2 single crystal. (C to E) Topography (C), corresponding
PFM amplitude (D), and PFM phase images (E). (F to H) High-magnification imaging of small ferroelectric domains enclosed within the rectangle shown in (E), topo-
graphy (F), corresponding PFM amplitude (G), and PFM phase images (H). (I to K) Cross-sectional profiles of topography (I), PFM amplitude (J), and phase (K) across the
dashed white line shown in (H) for respective images in (F) to (H).
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change of approximately 180°) atminima of the amplitude response. To
directly visualize these switchable polarization states, we applied switching
bias pulses with the subsequent acquisition of PFM images to capture
the remnant state. The bias-driven, oppositely oriented remnant polar-
ization can be clearly seen in the PFM images of different color contrasts
(Fig. 3, E to G). The initial near-uniform bright contrast of the phase
image transforms to a predominant dark phase contrast. This bias-
induced transformation between antiparallel equivalent polarization
states of the WTe2 can be accomplished repeatedly and in a reversible
fashion by inverting the polarity of the appliedwriting bias (fig. S4). These
measurements therefore demonstrate that the polarization of WTe2 is
switchable under an external bias.

Theoretical insight into the ferroelectric instability
To gain further insight into electronic and structural origins of the
ferroelectric instability of WTe2, we performed first-principles DFT
calculations.Td-phaseWTe2 (Td-WTe2) has aC2vpoint group symmetry,
corresponding to the noncentrosymmetric space group Pmn21. TheC2v

point group contains mirror ac and bc planes precluding polarization
along [100] or [010] direction. The mirror ab plane does not belong to
this point group and therefore allows for polarization along the [001]
direction. Theoretical predictions also show that polar axis orienta-
tion can be correlated with electronic anisotropy in layered materials
(7). Figure 4A shows the electronic band structure of Td-WTe2 cal-
culated by DFT (27, 39). The valence band maximum and the con-
duction band minimum cross the Fermi energy in the G-X direction,
resulting in the formation of small hole and electron pockets, respec-
tively. The valence band dispersion in the G-Z direction is very flat,
consistent with nonuniform conduction charge densities in the [001]

direction in Fig. 4B and the anisotropic transport in bulk WTe2 (40).
Therefore, a spontaneous electrical polarization in Td-WTe2 along the
[001] direction is feasible. In a ferroelectric material, the total polar-
ization P can be split into contributions from ionic cores (Pion) and
electrons below EF (Pelectron). In Td-WTe2, Pelectron can be further
split into the contribution of the valence bands (PVB), the contribu-
tion of the electron pocket (Pep), and that of the hole pocket (Php).

Therefore, the total polarization is

P ¼ Pion þ Pelectron ¼ Pion þ PVB–Php þ Pep

Pion + PVB dominates the overall effect and is trivial to compute by
the Berry phase method (41, 42) with fixed band occupations. We
obtain Pion + PVB = 0.19 mC/cm2. On the other hand, calculating
Php and Pep is not standard. Here, we take the method suggested by
Filippetti et al. (7) to estimate Php and Pep by calculating the dipole
associated with the conduction electrons. As shown in Fig. 4B, the
planar averaged charge density from the electron pocket for each
WTe2 layer is almost symmetric, which does not contribute a dipole.
On the other hand, the carriers in the hole pocket contribute a dipole
within the layer. However, because of the tiny carrier density, the re-
sulting polarization is negligible (<0.01 mC/cm2). The total estimated
polarization P is ~0.19 mC/cm2.

Normally, for a ferroelectric, the opposite (i.e., antiparallel) Pup and
Pdown polarization states can be transformed into one another by
application of an inversion operation. The calculated energy barrier
for such a transformation in Td-WTe2 is rather high [0.70 eV/formula
unit (f.u.)] (Fig. 4D, top). This is because such a transformation is

Fig. 3. Probing ferroelectricity in a metal-gated WTe2thin film sample. (A) Schematic of the experimental setup and geometry. Inset shows zoomed-in side view of
the device structure. (B) Topography image of the metal (Ti/Au)–encapsulated WTe2 flake on a Si/SiO2 substrate covered with a conductive buffer layer of Ti/Au. Inset
shows the profile of surface morphology along dashed white line. (C and D) Spectroscopic bias-dependent piezoresponse phase (C) and amplitude (D) hysteretic curves
acquired through the top metal electrode gating the WTe2 flake. (E and F) Topography image showing zoom-in on the metal-gated WTe2 (E) and the corresponding
piezoresponse phase image (F). (G) PFM phase image after application of a bias pulse of −2.5 V.
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associated with a large in-plane lattice displacement. However, the
Td phase is a distorted form of the hexagonal structure with a three-
fold rotation symmetry (Fig. 4C). Therefore, there are three equivalent
distortion vectors (43). The switching between opposite polarization
states with different distortion vectors (i.e., Pup of one distortion vector
and Pdown of another distortion vector) should have smaller in-plane
atomic displacements on average, leading to a smaller energy barrier.
As shown in Fig. 4D (bottom), in this scenario, the energy barrier be-
tween opposite polarization states denoted as Pup1 and Pdown2 is reduced
to 0.29 eV/f.u. This value is smaller than (but comparable to) the energy
barrier of ~0.43 eV/f.u. for BiFeO3 (44), a prototypical ferroelectric with
a high Curie temperature (~1000 K). A transition path for polarization
switching inWTe2 with an even lower energy barrier has also been pro-
posed recently (45). Hence, polarization switching inWTe2 is achievable
under normal experimental conditions from a theoretical point of view,
supporting the theory that WTe2 is not only polar but also ferroelectric.

DISCUSSION
Using density functional perturbation theory (46) and the finite dif-
ferences method (47), we calculated the magnitude of the piezo-
electric coefficient of WTe2 (see table S1 and fig. S5 for details).
The calculated value of the longitudinal piezoelectric coefficient (d33)

is about 6.5 pm/V. We find that this calculated value is about an
order of magnitude larger than the experimentally measured value
of ~0.7 pm/V (see fig. S6 and corresponding text in section S5).
However, the experimentally determined rather low value of the piezo-
electric constant is understandable if one were to consider that we likely
extract the piezoresponse within the Debye length of WTe2, which is
~1.6 nm (see section S6 for details on the calculation of Debye length).
Moreover, the calculation is done for a uniform system, while in the
measurements, the electric field distribution is likely highly non-
uniform. While the detection of piezoresponse at these small length
scales of few nanometers is challenging, it is nevertheless not unrealistic.
Furthermore, we are aware of electrically induced extrinsicmechanisms
(e.g., electrostatic effects and/or electrochemical processes) that can
manifest as a piezoelectric- or a ferroelectric-like effect in PFM studies
of nominally nonferroelectric materials. However, the experimental
data in the present study ofWTe2 cannot be explained by these spurious
extrinsicmechanisms (see section S7 for a detailed discussion).We note
that the Debye length of ~1.6 nm is relatively short compared to the
material thicknesses investigated in our study. Nevertheless, one can
obtain depth-sensitive data from electrical measurements for thick-
nesses larger than the Debye length inWTe2 (48). In our study, we have
observed ferroelectric domains in thick bulk crystals and ferroelectric
switching in ~15-nm films. The question of the physical extent of these

Fig. 4. First-principles DFT calculations. (A) Band structure of Td-WTe2. (B) Planar averaged conduction charge densities contributed from the electron pocket (top)
and the hole pocket (bottom). (C) Schematic of different distortion vectors in 1T-WTe2. The solid straight arrows denote three equivalent distortion vectors for the
polarization up states (Pup1, Pup2, and Pup3), while the dashed straight arrows denote three equivalent distortions vectors for the polarization down states (Pdown1, Pdown2,
and Pdown3). The purple curved arrows denote the possible transition paths from Pup1 to Pdown1, involving the switching of different distortion vectors. (D) The energy
evolution between opposite polarization states of Td-WTe2. The two opposite polarization states (Pup1 and Pdown1) are connected by the inversion operation (top), while
the polarization down state (Pdown2) has a different distortion vector, which can be obtained by application of a threefold rotation on Pdown1 (bottom). The energies of
intermediate states are calculated using the atomic position r(a) = rup + a(rdown – rup), where 0 < a < 1 and rup and rdown are the atomic positions of Pup and Pdown,
respectively. Insets show the top views of the different states. The red dashed boxes in the insets denote the unit cell of Td-WTe2.
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domains is an interesting one. One possibility is that the piezoresponse
and ferroelectric domains come only from within a Debye length of the
surface. However, it is also possible that the ferroelectric domains extend
much deeper into the material because ferroelectricity and ferroelasticity
are often coupled in conventional ferroelectrics and because ferroelastic
domains have been predicted for bulkWTe2 (43). In this latter scenario,
ferroelectric domains could potentially propagate through elastically
mediatedwallmotion, where fluctuation in bond lengths by electric fields
initiated on the surface (within the Debye length) generates strain down
into the bulk of thematerial and large domains could propagate through
into the depth of thematerial (6).We hope that our study will stimulate
further theoretical and experimental studies to answer this question.

In summary, the concept of ferroelectric metals predicted in the
1960s has been realized in a Weyl semimetal, WTe2. A combination
of experimental and first-principles DFT techniques demonstrates the
coexistence of nativemetallicity and ferroelectricity at room temperature.
Bulk crystalline WTe2 exhibits bistable polarization states that are
switchable under an external electric field—thus, ferroelectricity is a bulk
property of WTe2—and is not just confined to few-layer samples. The
investigation of ferroelectric domain walls (49, 50) in metallic systems
constitutes an interesting aspect for future research and potential na-
noelectronics applications, following recent findings in conventional
ferroelectrics. Our findings also raise prospects for discovering ferro-
electricity in other metallic layered materials.

MATERIALS AND METHODS
Sample fabrication details
All WTe2 samples were prepared from bulk crystals purchased from
HQ Graphene, The Netherlands (www.hqgraphene.com). For the
PFMmeasurements on bulk samples, theWTe2 single crystals were first
mounted on ametal disc using conductiveAgpaste. To ensure a pristine
surface for the measurements, the WTe2 single crystals were cleaved
using the Scotch tape method. For measurements on WTe2 thin
samples in a capacitor geometry, we first deposited 15 nm Ti/Au on
the SiO2 surface of the doped Si substrates. The WTe2 thin flakes exfo-
liated from the bulk crystals were then transferred onto the substrates
and were covered by poly(methyl methacrylate). Thereafter, electron
beam lithography was used to pattern the area for subsequent metal
deposition (10 nm Ti/Au). To remove any residual resist and control
the surface oxides on theWTe2 sample, the patterned areas were briefly
etched with an Ar plasma. The cleaned surface was exposed to air for
~10 min before loading into the vacuum chamber for the metal depo-
sition, so that only a very thin oxide layer was formed at the surface.

XRD characterization
XRD q-2q scans were performed with a PANalytical X’Pert Pro dif-
fractometer using Cu Ka-1 radiation.

Electrical transport measurements
The temperature-dependent resistance of WTe2 was measured in a
home-built variable temperature system. The SdH oscillations were
measured in anOxford dilution fridge with a base temperature of 30mK
and magnetic fields up to 10 T. The magnetic field direction was per-
pendicular to the ab plane of the WTe2 sample.

Scanning probe microscopy measurements
The scanning probemicroscopymeasurements were implemented on a
commercial AIST-NT SmartSPM1000 atomic forcemicroscope at room

temperature in an inert atmosphere (i.e., controlled N2 environment).
The PFMmeasurements were performed at an AC imaging bias of 1 V
(peak to peak) and a frequency of approximately 700 kHz. The spectro-
scopic piezoresponse hysteresis loops were acquired at fixed spatial
locations by supplying a triangular DC waveform with a superimposed
low-amplitude AC modulation.

Ellipsometry measurements
The ellipsometry measurements to determine surface oxide thickness
were performed using a variable-angle spectroscopic ellipsometry sys-
tem (J.A. Woollam Co. Inc.) under ambient conditions. The incident
angle of light used in the study was 70°, and the wavelength range
was from 300 to 2000 nm with wavelength increments of 10 nm.

First-principles DFT calculations
First-principles DFT calculations have been performed using Quantum
ESPRESSO (51) and Vienna Ab initio Simulation Package (VASP)
(52, 53). In Quantum ESPRESSO, the optimized norm-conserving
Vanderbilt pseudopotentials (54, 55) were used. In VASP, the projector
augmented wave method (56) was used. The exchange and correla-
tion effects were treated within the generalized gradient approxima-
tion (57). The lattice constant and atomic coordinates were relaxed
until the force on each atom was less than 0.001 eV/Å. For the cal-
culation of bulk Td-WTe2, we used a 16 × 12 × 8 k-point mesh in the
irreducible Brillouin zone. Spin-orbit coupling was included in the
electronic structure calculations. For the simulation of Td-WTe2
with different distortion vectors, we used supercells (2 × 2√3 ) of a
monolayer and a k-point mesh (12 by 8 by 1). We used the lattice
constants and atomic positions of the supercells reported in (43)
as the initial input for the structure relaxation.

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/5/7/eaax5080/DC1
Section S1. Electrical transport behavior of WTe2 single-crystal samples in c-AFM
Section S2. Ellipsometry measurements on a WTe2 single-crystal
Section S3. Electrical transport behavior of WTe2 thin films in a capacitor geometry
Section S4. Polarization switching in the metal-gated WTe2 thin film sample
Section S5. Piezoelectric coefficient of WTe2
Section S6. Calculation of Debye length of WTe2
Section S7. Extrinsic mechanisms as the origin of PFM response in WTe2?
Table S1. The calculated piezoelectric constant e3i (C/m

2) and d3i (pm/V) for WTe2 with a
polarization along +z direction.
Fig. S1. Spectroscopic current-bias curves recorded in c-AFM mode on a pristine surface of a
freshly cleaved WTe2 single-crystal sample in a controlled N2 environment.
Fig. S2. Ellipsometry measurements determining the thickness of the surface oxide on WTe2.
Fig. S3. Current-bias characteristics of metal-gated WTe2 thin film samples.
Fig. S4. Polarization switching in a metal-gated WTe2 thin film sample.
Fig. S5. The polarization change DP with respect to the strain x along z direction.
Fig. S6. The calibrated piezoresponse measurements versus bias for a metal-gated WTe2 thin
film sample.
Fig. S7. Stable ferroelectric domains in a WTe2 single crystal.
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