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The R Package smicd: Statistical Methods
for Interval-Censored Data
by Paul Walter

Abstract The package allows the use of two new statistical methods for the analysis of interval-
censored data: 1) direct estimation/prediction of statistical indicators and 2) linear (mixed) regression
analysis. Direct estimation of statistical indicators, for instance, poverty and inequality indicators,
is facilitated by a non parametric kernel density algorithm. The algorithm is able to account for
weights in the estimation of statistical indicators. The standard errors of the statistical indicators are
estimated with a non parametric bootstrap. Furthermore, the package offers statistical methods for
the estimation of linear and linear mixed regression models with an interval-censored dependent
variable, particularly random slope and random intercept models. Parameter estimates are obtained
through a stochastic expectation-maximization algorithm. Standard errors are estimated using a
non parametric bootstrap in the linear regression model and by a parametric bootstrap in the linear
mixed regression model. To handle departures from the model assumptions, fixed (logarithmic) and
data-driven (Box-Cox) transformations are incorporated into the algorithm.

Introduction

Interval-censored or grouped data occurs when only the lower Ak−1 and upper Ak interval bounds
(Ak−1, Ak) of a variable are observed, and its true value remains unknown. Instead of measuring
the variable of interest on a continuous scale, for instance, income data, the scale is divided into nk
intervals. The variable k (1 ≤ k ≤ nk) indicates in which of the nk intervals an observation falls into.
This leads to a loss of information since the shape of the distribution within the intervals remains
unknown. In the field of survey statistics, asking for interval-censored data is often done in order
to avoid item non-response and thus increase data quality. Item non-response is avoided because
interval-censored data offers a higher level of data privacy protection (Hagenaars and Vos, 1988; Moore
and Welniak, 2000). Among others, popular surveys and censuses that collect interval-censored data
are the German Microcensus (Statistisches Bundesamt, 2017), the Colombian census (Departamento
Administrativo Nacional De Estadística, 2005), and the Australian census (Australian Bureau of
Statistics, 2011). While item non-response is reduced or avoided, the statistical analysis of the data
requires more elaborate mathematical methods. Even statistical indicators that are easily calculated
for metric data, e.g., the mean, cannot be estimated using standard formulas (Fahrmeir et al., 2016).
Also, estimating linear and linear mixed regression models, which are applied in many fields of
statistics, requires advanced statistical methods when the dependent variable is interval censored.
Therefore, the presented R package implements three major functions: kdeAlgo() to estimate statistical
indicators (e.g., the mean) from interval-censored data, semLm(), and semLme() to estimate linear and
linear mixed regression models with an interval-censored dependent variable. The package code
and the open-source contribution guidelines for the package are available on GitHub. Potential code
contributions, feature requests, and bugs can be reported there by creating issues.

For the estimation of statistical indicators from interval-censored data, different approaches are
described in the literature. These approaches can be broadly categorized into four groups: Estimation
on the midpoints (Fahrmeir et al., 2016), linear interpolation of the distribution function, non paramet-
ric modeling via splines (Berger and Escobar, 2016), and fitting a parametric distribution function to
the censored data (Dagum, 2008; McDonald, 1984; Bandourian et al., 2002). Some of these methods
are implemented in R packages available on the Comprehensive R Archive Network (CRAN). The
method of linear interpolation is implemented for the estimation of quantiles in the R package actuar
(Goulet et al., 2020; Dutang et al., 2008). The package also enables the estimation of the mean on the
interval midpoints. Fitting a parametric distribution to interval-censored data can be done by using
the R package fitdistrplus (Delignette-Muller et al., 2020; Delignette-Muller and Dutang, 2015).

In survey statistics, interval-censored data is often collected for income or wealth variables. Thus,
the performance of the above-mentioned methods is commonly evaluated by simulation studies that
rely on data that follows some kind of income distribution. The German statistical office (DESTATIS)
uses the method of linear interpolation for the estimation of statistical indicators from interval-censored
income data collected by the German Microcensus. This approach gives the same results as assuming
a uniform distribution within the income intervals. Estimation results are reasonably accurate if the
estimated indicators do not depend on the whole shape of the distribution, e.g., the median (Lenau
and Münnich, 2016). Fitting a parametric distribution to the data enables the estimation of indicators
that rely on the whole shape of the distribution. This method works well when the data is censored to
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only a few equidistant intervals (Lenau and Münnich, 2016). Non parametric modeling via splines
shows especially good results for a high number of intervals in ascending order (Lenau and Münnich,
2016). However, according to Lenau and Münnich (2016), all of the above-mentioned methods show
large biases and variances when the estimation is based on a small number of intervals. Therefore, a
novel kernel density estimation (KDE) algorithm is implemented in the smicd package that overcomes
the drawbacks of the previously mentioned methods (Walter, 2019, 2020). The algorithm bases the
estimation of statistical indicators on pseudo samples that are drawn from a fitted non parametric
distribution. The method automatically adapts to the shape of the true unknown distribution and
provides reliable estimates for different interval-censoring scenarios. It can be applied via the function
kdeAlgo().

Similar to the direct estimation of statistical indicators from interval-censored data, there exists
a variety of ad-hoc approaches and explicitly formulated mathematical methods for the estimation
of linear regression models with an interval-censored dependent variable. The following methods
and approaches are used for handling interval-censored dependent variables within linear regression
models: Ordinary least squares (OLS) regression on the midpoints (Thompson and Nelson, 2003),
ordered logit- or probit-regression (McCullagh, 1980), and regression methodology formulated for
left-, right-, and interval-censored data (Tobin, 1958; Rosett and Nelson, 1975; Stewart, 1983). All of
these methods are implemented in different R packages available on CRAN. OLS regression on the
midpoints is applicable by using the lm() function from the stats package (R Core Team, 2020), ordered
logit regression is implemented in the MASS package (Ripley, 2019; Venables and Ripley, 2002), and
interval regression is implemented in the survival (Therneau, 2020; Therneau and Grambsch, 2000)
package.

While OLS regression on the midpoints of the intervals is easily applied, it comes with the
disadvantage of giving biased estimation results (Cameron, 1987). This approach disregards the
uncertainty stemming from the unknown true distribution of the data within the intervals, and
therefore, leads to biased parameter estimates. Its performance relies on the number of intervals, and
estimation results are only comparable to more advanced methods when the number of intervals is
very large (Fryer and Pethybridge, 1972). Conceptualizing the model as an ordered logit or probit
regression is feasible by treating the dependent variable as an ordered factor variable (McCullagh,
1980). However, this approach also neglects the unknown distribution of the data within the intervals.
Furthermore, the predicted values are not on a continuous scale but are in terms of the probability of
belonging to a certain group. To overcome these disadvantages and obtain unbiased estimation results
Stewart (1983) introduces regression methodology for models with an interval-censored dependent
variable. Walter (2019) further develops his approach and introduces a novel stochastic expectation-
maximization (SEM) algorithm for the estimation of linear regression models with an interval-censored
dependent variable that is implemented in the smicd package. The model parameters are unbiasedly
estimated as long as the model assumptions are fulfilled. The function semLm() provides the SEM
algorithm and enables the use of fixed (logarithmic) and data-driven (Box-Cox) transformations
(Box and Cox, 1964). The Box-Cox transformation automatically adapts to the shape of the data and
transforms the dependent variable in order to meet the model assumption.

In order to analyze longitudinal or clustered data (e.g., students within schools), linear mixed
regression models are applicable. These kinds of models control for the correlated structure of the
data by including random effects in addition to the usual fixed effects. In order to deal with an
interval-censored dependent variable in linear mixed regression models, there are several approaches
described in the literature. Linear mixed regression models, just like linear regression models, can be
estimated on the interval midpoints of the censored-dependent variable. Furthermore, conceptualizing
the model as an ordered logit or probit regression model is feasible (Agresti, 2010). These approaches
inherit the same advantages and disadvantages as previously discussed. Linear mixed regression
on the midpoints can be applied by the lme4 (Bates et al., 2020b, 2015) or nlme (Pinheiro et al., 2020)
package and the ordered logit regression is implemented in the ordinal package (Christensen, 2019).
To my knowledge, there are no R packages for the estimation of linear mixed regression models with
an interval-censored dependent variable. Therefore, the package smicd contains the SEM algorithm
proposed by Walter (2019) for the estimation of linear mixed regression models with an interval-
censored dependent variable. If the model assumptions are fulfilled, the method gives unbiased
estimation results. The function semLme() enables the estimation of the regression parameters, and it
also allows for the usage of the logarithmic and Box-Cox transformation in order to fulfill the model
assumptions (Gurka et al., 2006).

The paper is structured into two main sections. Section 2.2 deals with the direct estimation of
statistical indicators from interval-censored data, whereas Section 2.3 introduces linear and linear
mixed regression models with an interval-censored dependent variable. Both sections have been
divided into three subsections: first, the statistical methodology is introduced, then the core functions
of the smicd package are presented, and finally, illustrative examples with two different data sets are
provided. In Section 2.4, the main results are summarized, and an outlook is given.
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Direct estimation of statistical indicators

In the following three subsections, the methodology for the direct estimation of statistical indicators
from interval-censored data is introduced, the core functionality of the function kdeAlgo() is presented,
and statistical indicators are estimated using the synthetic EU-SILC (European Union Statistics on
Income and Living Conditions) data set from Austria.

Methodology: Direct estimation of statistical indicators

In order to estimate statistical indicators from interval-censored data, the proposed algorithm generates
metric pseudo samples of an interval-censored variable. These pseudo samples can be used to estimate
any statistical indicator. They are drawn from a non parametrically estimated kernel density. Kernel
density estimation was first introduced by (Rosenblatt, 1956) and (Parzen, 1962). By its application, the
density f (x) of a continuous independently and identically distributed random variable is estimated
without assuming any distributional shape of the data. The estimator is defined as:

f̂h(x) =
1

nh

n

∑
i=1

K
(

x − xi
h

)
, i = 1, . . . , n,

where K (·) is a kernel function, h > 0 the bandwidth, and x = {x1, x2, . . . , xn} denotes a sample of
size n. The performance of the estimator is determined by the optimal choice of h. The selection of
an optimal h is widely discussed in the literature; see Jones et al. (1996); Loader (1999); Zambom and
Dias (2012). When working with interval-censored data, a standard KDE cannot be applied since x is
not observed on a continuous scale. Nevertheless, its unobserved true distribution is of continuous
form. As an ad hoc solution, the density f̂h (x) can be estimated based on the interval midpoints. The
resulting density estimate will be spiky unless the bandwidth is sufficiently large. A large bandwidth,
however, leads to a loss of information (Wang and Wertelecki, 2013). Therefore, Walter (2019) proposes
an iterative KDE algorithm for density estimation from interval-censored data. The approach is based
on Groß et al. (2017), who introduce a similar KDE algorithm in a two-dimensional setting with an
equidistant interval width. Walter (2019) shows that the algorithm can be adjusted to one-dimensional
data with an arbitrary class width. For the estimation of linear and non-linear statistical indicators, the
unknown distribution of x has to be reconstructed by using the observed interval k = {k1, k2, . . . , kn}
that an observation falls into. From Bayes’ theorem (Bayes, 1763), it follows that the conditional
distribution of (x|k) is:

π (x|k) ∝ π (k|x)π (x) ,

with π (k|x) is defined by a product of a Dirac distribution π (k|x) = ∏n
i=1 π (ki|xi) with

π (ki|xi) =

{
1 if Aki−1 ≤ xi ≤ Aki

,
0 else,

for i = 1, . . . , n. Since π (x) is unknown, it is replaced by a kernel density estimate f̂h (x).

Estimation and computational details

To fit the model, pseudosamples of xi are drawn from the conditional distribution

π (xi|ki) ∝ I
(

Aki−1 ≤ xi ≤ Aki

)
f (xi) ,

where I (·) denotes the indicator function. The conditional distribution of π (xi|ki) is given by the
product of a uniform distribution and density f (xi). As the density is unknown, it is replaced by an
estimate f̂h (x), which is obtained by the KDE. In particular, xi is repeatedly drawn from the given
interval

(
Aki−1, Aki

)
by using the current density estimate f̂h (x) as a sampling weight. The explicit

steps of the iterative algorithm as given in Walter (2019) are stated below:

1. Use the midpoints of the intervals as pseudo x̃i for the unknown xi. Estimate a pilot estimate
of f̂h (x) by applying KDE. Note: Choose a sufficiently large bandwidth h in order to avoid
rounding spikes.

2. Evaluate f̂h (x) on an equal-spaced grid G = {g1, . . . , gj} with grid points g1, . . . , gj. The width
of the grid is denoted by δg. It is given by

δg =
|A0 − Ank |

j − 1
,
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and the grid is defined as:

G = {g1 = A0, g2 = A0 + δg, g3 = A0 + 2δg, . . . , gj−1 = A0 + (j − 2) δg, gj = Ank}.

3. Sample from π (x|k) by drawing randomly from Gk = {gj|gj ∈ (Ak−1, Ak)} with sampling
weights f̂h (x̃i) for k = 1, . . . , nk. The sample size for each interval is given by the number of
observations within each interval. Obtain x̃i for i = 1, . . . , n.

4. Estimate any statistical indicator of interest Î using x̃i.

5. Recompute the density f̂h (x) using the pseudo samples x̃i obtained in iteration Step 3.

6. Repeat Steps 2-5, with B(KDE) burn-in and M(KDE) additional iterations.

7. Discard the B(KDE) burn-in iterations and estimate the final Î by averaging the obtained M(KDE)

estimates.

For open-ended intervals, e.g., (15000,+∞), the upper bound has to be replaced by a finite number.
Walter (2019) shows through model-based simulations that a value of three times the value of the
lower bound (15000, 45000) gives appropriate estimation results when working with income data.

The variance of the statistical indicators is estimated by bootstrapping. Bootstrap methods were
first introduced by Efron (1979). These methods serve as an estimation procedure when the variance
cannot be stated as a closed-form solution (Shao and Tu, 1995). While bootstrapping avoids the
problem of the non-availability of a closed-form solution, it comes with the disadvantage of long
computational times. In the package, a non parametric bootstrap that accounts for the additional
uncertainty coming from the interval-censored data is implemented. This non parametric bootstrap is
introduced in Walter (2019).

Core functionality: Direct estimation of statistical indicators

The presented KDE algorithm is implemented in the function kdeAlgo() (see Table 1). The arguments
and default settings of kdeAlgo() are briefly summarized in Table 2. The function gives back an S3
object of class "kdeAlgo". A detailed explanation of all components of a "kdeAlgo" object can be found
in the package documentation. The generic functions plot() and print() can be applied to "kdeAlgo"
objects to output the main estimation results (see Table 1). In the next section, the function kdeAlgo()
is used to estimate a variety of statistical indicators from interval-censored EU-SILC data, and its
arguments are explained in more detail.

Table 1: Implemented functions for the direct estimation of statistical indicators.

Function Name Description

kdeAlgo() Estimates the statistical indicators and its standard errors from
interval-censored data

plot() Plots convergence of the estimated statistical indicators and
estimated density of the pseudo x̃i

print() Prints the estimated statistical indicators and its standard errors

Example: Direct estimation of statistical indicators

To demonstrate the function kdeAlgo(), the equivalized household income and the corresponding
household sample weight from the Austrian synthetic EU-SILC survey data set are used. The data set
is included in the laeken package (Alfons et al., 2020; Alfons and Templ, 2013). Its synthetic nature
makes it unusable for inferential statistics. However, the data set has the advantage over the scientific
use file by being freely available which enables the easy reproducibility of the presented example.
Since the total disposable household income is measured on a continuous scale, it is censored to
22 intervals for demonstration purposes. For a realistic censoring scheme, the interval bounds are
chosen such that they closely follow the interval bounds used in the German Microcensus from 2013
(Statistisches Bundesamt, 2014). The German Microcensus is a representative household survey that
covers 830,000 persons in 370,000 households (1% of the German population) in which income is only
collected as an interval-censored variable (Statistisches Bundesamt, 2016).

In a first step, the variable total disposable household income called hhincome_net is interval-
censored according to 22 intervals using the function cut(). The vector of interval bounds is called
intervals, and the newly obtained interval-censored income variable is called c.hhincome.
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Table 2: Arguments of function kdeAlgo().

Argument Description Default

xclass Interval-censored variable
classes Numeric vector of interval bounds
threshold Threshold used for poverty indicators

(% of the median of the target variable) 0.6

burnin Number of burn-in iterations B(KDE) 80

samples Number of additional iterations M(KDE) 400
bootstrap.se If TRUE, standard errors of the statistical

indicators are estimated FALSE
b Number of bootstraps for the estimation of

the standard errors 100
bw Smoothing bandwidth used "nrd0"
evalpoints Number of evaluation grid points 4000
adjust Bandwidth multiplier bw = adjust ∗ bw 1
custom_indicator A list of user-defined statistical indicators NULL
upper If upper bound of the upper interval is +∞, e.g.,

(15000,+∞), then +∞ is replaced by
15000 ∗ upper 3

weights Survey weights NULL
oecd Household weights of equivalence scale NULL

R> intervals <- c(
+ 0, 150, 300, 500, 700, 900, 1100, 1300, 1500, 1700, 2000, 2300, 2600, 2900,
+ 3200, 3600, 4000, 4500, 5000, 5500, 6000, 7500, Inf
+ )
R> c.hhincome <- cut(hhincome_net, breaks = intervals)

In order to get a descriptive overview of the distribution of the censored income data, the function
table() is applied.

R> table(c.hhincome)
c.hhincome

(0,150] (150,300] (300,500]
66 113 280

(500,700] (700,900] (900,1.1e+03]
462 1137 1433

(1.1e+03,1.3e+03] (1.3e+03,1.5e+03] (1.5e+03,1.7e+03]
2040 1811 1671

(1.7e+03,2e+03] (2e+03,2.3e+03] (2.3e+03,2.6e+03]
2006 1383 849

(2.6e+03,2.9e+03] (2.9e+03,3.2e+03] (3.2e+03,3.6e+03]
508 389 242

(3.6e+03,4e+03] (4e+03,4.5e+03] (4.5e+03,5e+03]
158 107 61

(5e+03,5.5e+03] (5.5e+03,6e+03] (6e+03,7.5e+03]
21 18 52

(7.5e+03,Inf]
17

Most incomes are in interval (1100, 1300], and only 17 incomes are in the upper interval. For the
estimation of the statistical indicators, the function kdeAlgo() of the smicd package is called with the
following arguments.

R> Indicators <- kdeAlgo(
+ xclass = c.hhincome, classes = intervals,
+ bootstrap.se = TRUE, custom_indicator =
+ list(
+ quant05 = function(y, threshold, weights) {
+ wtd.quantile(y, probs = 0.05, weights)
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+ },
+ quant95 = function(y, threshold, weights) {
+ wtd.quantile(y, probs = 0.95, weights)
+ }
+ ),
+ weights = hhweight
+ )

The variable c.hhincome is assigned to the argument xclass, and the vector of interval bounds
intervals is assigned to the argument classes. The default settings of the arguments burnin, samples,
bw, evalpoints, adjust, and upper are retained. Simulation results from Walter (2019) and Groß et al.
(2017) show that these settings give good results when working with income data. Changing these
arguments has an impact on the performance of the KDE algorithm. As default, the statistical
indicators: mean, Gini coefficient, headcount ratio (HCR), the quantiles (10%, 25%, 50%, 75%, 90%),
the poverty gap (PGAP), and the quintile share ratio (QSR) are estimated (Gini, 1912; Foster et al.,
1984). The HCR and PGAP rely on a poverty threshold. The default choice of the threshold argument
is 60% of the median of the target variable, as suggested by Eurostat (2014). Besides the mentioned
indicators, any other statistical indicator can be estimated via the argument custom_indicator. In the
example, the argument is assigned a list that holds functions to estimate the 5% and 95% quantile.
The custom indicators must depend on the target variable, the threshold (even if it is not needed
for the specified indicator), and optionally on the weights argument if the estimation of a weighted
indicator is required. To estimate the standard errors of all indicators, bootstrap.se = TRUE, and
the number of bootstrap samples is 100 (the default value as suggested in Walter (2019)). Lastly,
the household weight (hhweight) is assigned to the argument weights in order to estimate weighted
statistical indicators. It can also be controlled for households of different sizes by assigning oecd a
variable with household equivalence weights. By applying the print() function to the "kdeAlgo"
object, the estimated statistical indicators (default and custom indicators) as well as their standard
errors are printed. For instance, in this example, the estimated mean is about 1,658 Euro and its
standard error is 8.486.

R> print(Indicators)
Value:

mean gini hcr quant10 quant25 quant50
1658.329 0.265 0.145 802.227 1117.714 1507.947
quant75 quant90 pgap qsr quant05 quant95
2020.063 2654.707 0.040 3.920 630.326 3142.296

Standard error:
mean gini hcr quant10 quant25 quant50

8.486 0.002 0.002 5.839 5.977 6.605
quant75 quant90 pgap qsr quant05 quant95
10.548 21.622 0.001 0.044 10.327 24.401

For demonstration purposes, the statistical indicators are also estimated using the continuous
household income variable from the synthetic EU-SILC data set (Table 3). The estimation results of the
KDE algorithm using the interval-censored data are very close to those based on the continuous data.
Slightly larger deviations are observable for the more extreme quantiles. This is due to the fact that
these quantile estimates fall into intervals with a lower number of observations (compared to the other
quantile estimates). Estimation results for these quantiles could potentially be further improved by
increasing the number of evalpoints of the kdeAlgo().

Table 3: Estimated weighted statistical indicators using the continuous household income variable
from the synthetic EU-SILC data set.

mean gini hcr quant10 quant25 quant50
1657.910 0.265 0.144 805.468 1114.028 1508.657

quant75 quant90 pgap qsr quant05 quant95
2017.585 2653.617 0.040 3.960 619.666 3153.425

In Walter (2019), the performance of the KDE algorithm is evaluated via detailed simulation
studies. By applying the function plot(), "kdeAlgo" objects can be plotted. Thereby, convergence
plots for all estimated statistical indicators and a plot of the estimated final density are obtained.

R> plot(Indicators)
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Figure 1 shows convergence plots for two of the estimated indicators. Additionally, a plot of the
estimated final density with a histogram of the observed data in the background is given in Figure 2.
In Figure 1, the estimated statistical indicator (Gini, 10% quantile) for each iteration step of the KDE
algorithm and the average over the estimates up to iteration step M (excluding the burn-in iterations)
are plotted. A vertical line marks the end of the burn-in period. The horizontal line gives the value of
the final estimate (average over the M iterations). All convergence plots indicate that the number of
iterations is chosen sufficiently large for the estimates to converge.

If convergence were not achieved, the arguments burnin and samples should be increased. It is
notable that the estimated 10% quantile has the same value for almost all iterations steps. This is the
case because the quantile, as any other statistical indicator, is estimated using the pseudo samples
that are drawn on 4,000 grid points G. Estimating a quantile on only 4,000 unique outcomes (pseudo
values) leads to equal quantile estimates for numerous iteration steps of the KDE algorithm.
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Figure 1: Convergence plots of the estimated indicators (Gini and 10% quantile).

Lastly, it should be mentioned that the computation time can be very long if the estimation
of the standard errors is enabled. Hence, if the estimation of the standard errors is not required,
the argument bootstrap.se should be set to FALSE. Furthermore, it should always be checked how
many iterations are needed for the desired statistical indicator to converge. Reducing the number of
required iterations (arguments burnin and samples) lowers the computation time significantly (with
and without standard errors).
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Figure 2: Estimated final density with a histogram of the observed distribution of the data in the
background.

Regression analysis

In the following three subsections, the statistical methodology for linear and linear mixed regression
models with an interval-censored dependent variable is introduced, the core functionality of the
functions semLM() and semLME() is presented, and examination scores of students from schools in
London are exemplary modeled.

Methodology: Regression analysis

The theoretical introduction of the new regression method, proposed by Walter (2019), is presented
for linear mixed regression models. The theory for linear regression models can be obtained by
simplifying the introduced method. In its standard form, the linear mixed regression model serves
to analyze the linear relationship between a continuous dependent variable and some independent
variables (Goldstein, 2010). Random parameters (random slopes and random intercepts) are included
in the model to account for correlated data, e.g., students within schools. The model in matrix notation
(Laird and Ware, 1983) is given by

y = Xβ + Zv + e, (1)

where y is an n × 1 column vector of the dependent variable, n is the sample size, X is a n × p matrix
where p is equal to the number of predictors, β is a column vector of the fixed effects regression
parameters of size p × 1, Z is the n × q design matrix with q random effects, v is a q × 1 vector of
random effects, and e is the residual vector of size n × 1. The distribution of the random effects is
given by

v ∼ N (0, G) , where G =


σ2

0 σ01 . . . σ0q
σ10 σ2

1 . . . σ1q
...

...
. . .

...
σq0 σq1 . . . σ2

q

 ,

and the distribution of the residuals is given by e ∼ N (0, R) with R = Inσ2
e , where In is the identity

matrix, and σ2
e is the residual variance. The random effects v and the residuals e are assumed to be

independent. For a more detailed introduction of mixed models, see Searle et al. (1992); McCulloch
et al. (2008); Snijders and Bosker (2011). In the case of an interval-censored dependent variable, the
parameters of Model (1) have to be estimated without observing y on a continuous scale. Instead,
only the interval identifier k, now defined as n × 1 column vector, is observed. Open-ended interval
bounds A0 = −∞ and Ank = +∞ and unequal interval widths are allowed. Since the true distribution
of y is unknown, the aim is to reconstruct the distribution of y using the known intervals k and the
linear relationship stated in Model (1). As presented in Walter (2019), in order to reconstruct the
unknown distribution of f (y|X, Z, v, k, θ), where θ = (β, R, G), the Bayes theorem (Bayes, 1763) is
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applied. Hence,
f (y|X, Z, v, k, θ) ∝ f (k|y, X, Z, v, θ) f (y|X, Z, v, θ) ,

with f (k|y, X, Z, v, θ) = f (k|y) because the conditional distribution of the interval identifier k only
depends on y. It is given by f (k|y) = r, with r being an n × 1 column vector r = (r1, r2, . . . , rn)

T , with

ri =

{
1 if Aki−1 ≤ yi ≤ Aki

,
0 else,

for i = 1, . . . , n and
f (y|X, Z, v, θ) ∼ N (Xβ + Zv, R) . (2)

The relationship in Equation (2) follows from the linear mixed model assumptions (Model (1)). The
unknown parameters θ = (β, R, G) are estimated based on pseudo samples ỹ (since y is unknown)
that are iteratively drawn from f (y|X, Z, v, k, θ). The next subsection states the computational details
of the SEM algorithm.

Estimation and computational details

To fit Model (1), the parameter vector θ̂ =
(

β̂, R̂, Ĝ
)

is estimated, and pseudo samples of the unknown
y are iteratively generated by the following SEM algorithm. The pseudo samples ỹ are drawn from
the conditional distribution

f (y|X, Z, v, k, θ) ∝ I (Ak−1 ≤ y ≤ Ak)× N (Xβ + Zv, R) ,

where I (·) denotes the indicator function. Hence, for y with explanatory variables X, the corresponding
ỹ is drawn from N (Xβ + Zv, R) conditional on the given interval (Ak−1 ≤ y ≤ Ak). If θ̂ is estimated,
the conditional distribution f (y|X, Z, v, k, θ) follows a two-sided truncated normal distribution. Its
probability density function equals

f̂
(
y|X, Z, v̂, k, θ̂

)
=

ϕ
(

y−µ̂
σ̂e

)
σ̂e

(
Φ
(

Ak−µ̂
σ̂e

)
− Φ

(
Ak−1−µ̂

σ̂e

)) , (3)

with µ̂ = Xβ̂ + Zv̂. ϕ (·) denotes the probability density function of the standard normal distribution,

and Φ(·) denotes its cumulative distribution function. From its definition, it follows that Φ
(

Ak−µ̂
σ̂e

)
= 1

if Ak = +∞, and Φ
(

Ak−1−µ̂
σ̂e

)
= 0 if Ak−1 = −∞. The steps of the SEM algorithm as described in

Walter (2019) are:

1. Estimate θ̂ =
(

β̂, R̂, Ĝ
)

from Model (1) using the midpoints of the intervals as substitutes for
the unknown y. The parameters are estimated by restricted maximum likelihood theory (REML)
(Thompson, 1962).

2. Stochastic step: For i = 1, . . . , n, draw randomly from N
(

Xβ̂ + Zv̂, R̂
)

within the given interval

(Ak−1 ≤ y ≤ Ak) (the two-sided truncated normal distribution given in Equation (3)) obtaining
(ỹ, X, Z). The drawn pseudo ỹ are used as replacements for the unobserved y.

3. Maximization step: Re-estimate the parameter vector θ̂ from Model (1) by using the pseudo
samples (ỹ, X, Z) from Step 2. Again, parameter estimation is carried out by REML.

4. Iterate Steps 2-3 B(SEM) + M(SEM) times, with B(SEM) burn-in iterations and M(SEM) additional
iterations.

5. Discard the burn-in iterations B(SEM) and estimate θ̂ by averaging the obtained M(SEM) esti-
mates.

If open-ended intervals A0 = −∞ and Ank = +∞ are present, the midpoints M1 and Mnk of these
intervals in iteration Step 1 are computed as follows:

M1 =
(

A1 − D
)

/2,

Mnk =
(

Ank−1 + D
)

/2,

where

D =
1

(nk − 2)

nk−1

∑
k=2

|Ak−1 − Ak|.
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These midpoints serve as proxies for the unknown interval midpoints in Step 1 of the algorithm. The
SEM algorithm for the linear regression model is obtained by simplifying the conditional distribution
f (y|X, Z, v, θ) ∼ N (Xβ + Zv, R) to f

(
y|X, β, σ2

e
)
∼ N

(
Xβ, σ2

e
)

according to the model assumptions
of a linear regression model. In the SEM algorithm for linear models, it is then drawn from N

(
Xβ, σ2

e
)

within the given interval.

The standard errors of the regression parameters are estimated using bootstrap methods. For the
linear regression model, a non parametric bootstrap (Efron and Stein, 1981; Efron, 1982; Efron and
Tibshirani, 1986, 1993) and for the linear mixed regression model, a parametric bootstrap (Wang et al.,
2006; Thai et al., 2013) is used to estimate the standard errors. The non parametric, as well as the
parametric bootstrap, are further developed to account for the additional uncertainty that is due to
the interval-censored dependent variable. Both newly proposed bootstraps are available in the smicd
package, and the theory is explained in (Walter, 2019).

To assure that the model assumptions are fulfilled, the logarithmic and the Box-Cox transformations
are incorporated into the function semLm() and semLme().

Core functionality: Regression analysis

The introduced SEM algorithm is implemented in the functions described in Table 4. The arguments
and default settings of the estimation functions semLm() and semLme() are summarized in Table 5. Both
functions return an S3 object of class "sem", "lm" or "sem", "lme". A detailed explanation of all the
components of these objects can be found in the smicd package documentation. The generic functions
plot(), print(), and summary() can be applied to objects of class "sem","lm" and "sem","lme" in
order to summarize the main estimation results. In the next section, the functionality of semLm() and
semLme() is demonstrated based on an illustrative example.

Table 4: Implemented functions for the estimation of linear and linear mixed regression models.

Function Name Description

semLm() Estimates linear regression models with an interval-censored
dependent variable

semLme() Estimates linear mixed regression models with an
interval-censored dependent variable

plot() Plots convergence of the estimated parameters and estimated
density of the pseudo ỹ from the last iteration step

print() Prints basic information of the estimated linear and linear mixed
regression models

summary() Summary of the estimated linear and linear mixed regression models

Table 5: Arguments of functions semLm() and semLme().

Argument Description Default

formula A two-sided linear formula object
data A data frame containing the variables of the model
classes Numeric vector of interval bounds
burnin Burn-in iterations 40
samples Additional iterations 200
trafo Transformation of the dependent variable: None, "None"

logarithmic, or Box-Cox transformation
adjust Extends the number of iterations for the estimation 2

of the Box-Cox transformation parameter:
(burnin + samples) ∗ adjust

bootstrap.se If TRUE, standard errors and confidence intervals of FALSE
the regression parameters are estimated

b Number of bootstraps for the estimation of
the standard errors 100
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Example: Regression analysis

To demonstrate the functions semLm() and semLme(), the famous London school data set that is
analyzed in Goldstein et al. (1993) is used. The data set contains the examination results of 4,059
students from 65 schools in six Inner London Education Authorities. The data set is available in
the R package mlmRev (Bates et al., 2020a) and also included in the package smicd. The variables
used in the following example are: general certificate of secondary examination scores (examsc), the
standardized London reading test scores at the age of 11 years (standLRT), the sex of the student
(sex), and the school identifier (school). In the original data set, the variable examsc is measured on a
continuous scale. In order to demonstrate the functionality of the functions semLm() and semLme(), the
variable is arbitrarily censored to nine intervals. As before, the censoring is carried out by the function
cut(), and the vector of interval bounds is called intervals.

R> intervals <- c(1, 1.5, 2.5, 3.5, 4.5, 5.5, 6.5, 7.7, 8.5, Inf)
R> Exam$examsc.class <- cut(Exam$examsc, intervals)

The newly created interval-censored variable is called examsc.class. The distribution is visualized
by applying the function table().

R> table(Exam$examsc.class)
(1,1.5] (1.5,2.5] (2.5,3.5] (3.5,4.5] (4.5,5.5] (5.5,6.5]

1 32 249 937 1606 951
(6.5,7.7] (7.7,8.5] (8.5,Inf]

267 15 1

It can be seen that most examination scores are concentrated in the center intervals. To fit the linear
regression model, the function semLM() is called.

R> LM <- semLm(
+ formula = examsc.class ~ standLRT + sex, data = Exam,
+ classes = intervals, bootstrap.se = TRUE
+ )

The formula argument is assigned the model equation, where examsc.class is regressed on
standLRT and sex. The argument data is assigned the name of the data set Exam, and the vector of
interval bounds intervals is assigned to the classes argument. The arguments burnin and samples
are left as defaults. The specified number of default iterations is sufficiently large for most regression
models. However the convergence of the parameters has to be checked by plotting the estimation
results with the function plot() after the estimation. No transformation is specified for the interval-
censored dependent variable and therefore, trafo is assigned its default value. The argument adjust is
only relevant if the Box-Cox transformation trafo="bc" is chosen. In this case, the number of iterations
for the estimation of the Box-Cox transformation parameter λ can be specified by this argument. The
convergence of the transformation parameter λ has to be checked using the function plot(). More
information on the Box-Cox transformation and on the estimation of the transformation parameter
is given in Walter (2019). For the estimation of the standard errors of the regression parameters, the
argument bootstrap.se is set to TRUE. The number of bootstrap samples b is 100, its default value,
which again is reasonable for most settings. A summary of the estimation results is obtained by the
application of the function summary().

R> summary(LM)
Call:
semLm(formula = examsc.class ~ standLRT + sex, data = Exam,

classes = intervals, bootstrap.se = TRUE)

Fixed effects:
Estimate Std.Error Lower 95%-level Upper 95%-level

(Intercept) 5.0702791 0.01816102 5.0326739 5.1033905
standLRT 0.5908015 0.01349275 0.5614197 0.6163845
sexM -0.1715966 0.03093346 -0.2308930 -0.1010877

Multiple R-squared: 0.3501 Adjusted R-squared: 0.3498
Variable examsc.class is divided into 9 intervals.

The output shows the function call, the estimated regression coefficients, the bootstrapped standard
errors, and the confidence intervals, as well as the R-squared and the adjusted R-squared. Furthermore,
the output reminds the user that the dependent variable is censored to nine intervals. All estimates are
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interpreted as in a linear regression model with a continuous dependent variable. Hence, if standLRT
increases by one unit and all other parameters are kept constant, examsc.class increases by 0.59 on
average. The bootstrapped confidence intervals indicate that all regressors have a significant effect on
the dependent variable.

By using the generic function plot() on an object of class "sem" and "lm", convergence plots of
each estimated regression parameter and of the estimated residual variance are obtained. Furthermore,
the density of the generated pseudo ỹ variable from the last iteration step is plotted with a histogram
of the observed distribution of the interval-censored variable examsc.class in the background.

R> plot(LM)
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Figure 3: Convergence plots of estimated model parameters (β1 and σe).

In Figure 3, a selection of convergence plots is given, and in Figure 4, the density of the pseudo ỹ
from the last iteration step of the SEM algorithm is plotted. In the convergence plots, the estimated
parameter and the average up to iteration step M (excluding B) are plotted for each iteration step of
the SEM algorithm. A vertical line indicates the end of the burn-in period (40 iterations). The final
parameter estimate marked by the horizontal line is obtained by averaging the M(SEM) additional
iterations (200). The selected 240 iterations are enough to obtain reliable estimates in this example
because the estimates have converged.

As already mentioned, the smicd package also enables the estimation of linear mixed regression
models by the function semLme(). In the London school data set, students are nested within schools,
and therefore, it is necessary to control for the correlation within-schools. In order to do that, the
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Figure 4: Estimated final density with a histogram of the observed distribution of the data in the
background.

variable school is specified as a random intercept. If necessary, a random slope parameter could
also be included in the model. Again, the variable sex is included as an additional regressor. Hence,
the formula argument is assigned the following model equation examsc.class ∼ standLRT + sex
+ (1|school). So far, the function semLme() enables the estimation of linear mixed models with a
maximum of one random slope and one random intercept parameter. Regarding all other arguments,
the same specifications as before are made.

R> LME <- semLme(
+ formula = examsc.class ~ standLRT + sex + (1|school),
+ data = Exam, classes = intervals, bootstrap.se = TRUE
+ )

By using the generic function summary(), the estimation results are printed. In addition to the
fixed effects, the estimated random effects are obtained as in the lme4 and nlme packages. Since
the R-squared and the adjusted R-squared are not defined for mixed models, the summary() function
prints the marginal R-squared and conditional R-squared (Nakagawa and Schielzeth, 2013; Johnson,
2014).

> summary(LME)
Call:
semLme(formula = examsc.class ~ standLRT + sex + (1 | school),

data = Exam, classes = intervals, bootstrap.se = TRUE)

Random effects:
Groups Name Variance Std.Dev.
school (Intercept) 0.08755431 0.2958958

Residual 0.58417586 0.7643140

Fixed effects:
Estimate Std.Error Lower 95%-level Upper 95%-level

(Intercept) 5.0777581 0.0005188930 5.0769749 5.0791095
standLRT 0.5605049 0.0003665976 0.5599456 0.5613711
sexM -0.1711065 0.0008159909 -0.1724193 -0.1692369

Marginal R-squared: 0.324 Conditional R-squared: 0.4121
Variable examsc.class is divided into 9 intervals.

Again, interpretation is the same as in linear mixed models with a continuous dependent variable.
By applying the generic function plot() to a "sem" "lme" object, the same plots as for the linear
regression model are plotted.
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Discussion and outlook

Asking for interval-censored data can lead to lower item non-response rates and increased data quality.
While item non-response is potentially avoided, applying traditional statistical methods becomes
infeasible because the true distribution of the data within each interval is unknown. The functions of
the smicd package enable researchers to easily analyze this kind of data. The paper briefly introduces
the new statistical methodology and presents, in detail, the core functions of the package:

• kdeAlgo() for the direct estimation of any statistical indicator,

• semLm() to estimate linear models with an interval-censored dependent variable,

• semLme() to estimate linear mixed models with an interval-censored dependent variable.

The functions are applied in order to estimate statistical indicators from interval-censored synthetic
EU-SILC income data and to analyze interval-censored examination scores of students from London
with linear and linear mixed regression models.

Further developments of the smicd package will include the possibility to estimate the boot-
strapped standard errors in parallel computing environments. Additionally, it is planned to allow for
the use of survey weights in the linear (mixed) regression models.

Bibliography

A. Agresti. Analysis of Ordinal Categorical Data. Wiley, New Jersey, 2010. URL https://doi.org/10.
1002/9780470594001. [p397]

A. Alfons and M. Templ. Estimation of social exclusion indicators from complex surveys: The R
package laeken. Journal of Statistical Software, 54(15):1–25, 2013. URL http://www.jstatsoft.org/
v54/i15/. [p399]

A. Alfons, J. Holzer, and M. Templ. laeken: Estimation of Indicators on Social Exclusion and Poverty, 2020.
URL https://CRAN.R-project.org/package=laeken. R package version 0.5.1. [p399]

Australian Bureau of Statistics. Census household form, 2011. URL https://unstats.un.org/unsd/
demographic/sources/census/quest/AUS2011en.pdf. Accessed: 2020-07-18. [p396]

R. Bandourian, J. McDonald, and R. S. Turley. A comparison of parametric models of income distribu-
tion across countries and over time. Technical report, Luxembourg Income Study, 2002. [p396]

D. Bates, M. Mächler, B. Bolker, and S. Walker. Fitting linear mixed-effects models using lme4. Journal
of Statistical Software, 67(1):1–48, 2015. URL https://doi.org/10.18637/jss.v067.i01. [p397]

D. Bates, M. Maechler, and B. Bolker. mlmRev: Examples from Multilevel Modelling Software Review,
2020a. URL https://CRAN.R-project.org/package=mlmRev. R package version 1.0-8. [p406]

D. Bates, M. Maechler, B. Bolker, and S. Walker. lme4: Linear Mixed-Effects Models using ’Eigen’ and S4,
2020b. URL https://CRAN.R-project.org/package=lme4. R package version 1.1-23. [p397]

T. Bayes. An essay towards solving a problem in the doctrine of chances. By the late Rev. Mr. Bayes, F.
R. S. communicated by Mr. Price, in a letter to John Canton, A. M. F. R. S. Philosophical Transactions,
53:370–418, 1763. URL https://doi.org/10.1098/rstl.1763.0053. [p398, 403]

Y. G. Berger and E. L. Escobar. Variance estimation of imputed estimators of change for repeated
rotating surveys. International Statistical Review, 85(3):421–438, 2016. URL https://doi.org/10.
1111/insr.12197. [p396]

G. E. P. Box and D. R. Cox. An analysis of transformations. Journal of the Royal Statistical Society: Series
B, 26(2):211–252, 1964. URL http://www.jstor.org/stable/2984418. [p397]

T. A. Cameron. The impact of grouping coarseness in alternative grouped-data regression models.
Journal of Econometrics, 35(1):37–57, 1987. URL https://doi.org/10.1016/0304-4076(87)90080-7.
[p397]

R. H. B. Christensen. ordinal: Regression Models for Ordinal Data, 2019. URL https://CRAN.R-project.
org/package=ordinal. R package version 2019.12-10. [p397]

C. Dagum. A New Model of Personal Income Distribution: Specification and Estimation, pages 3–25. Springer
New York, New York, NY, 2008. URL https://doi.org/10.1007/978-0-387-72796-7_1. [p396]

The R Journal Vol. 13/1, June 2021 ISSN 2073-4859

https://doi.org/10.1002/9780470594001
https://doi.org/10.1002/9780470594001
http://www.jstatsoft.org/v54/i15/
http://www.jstatsoft.org/v54/i15/
https://CRAN.R-project.org/package=laeken
https://unstats.un.org/unsd/demographic/sources/census/quest/AUS2011en.pdf
https://unstats.un.org/unsd/demographic/sources/census/quest/AUS2011en.pdf
https://doi.org/10.18637/jss.v067.i01
https://CRAN.R-project.org/package=mlmRev
https://CRAN.R-project.org/package=lme4
https://doi.org/10.1098/rstl.1763.0053
https://doi.org/10.1111/insr.12197
https://doi.org/10.1111/insr.12197
http://www.jstor.org/stable/2984418
https://doi.org/10.1016/0304-4076(87)90080-7
https://CRAN.R-project.org/package=ordinal
https://CRAN.R-project.org/package=ordinal
https://doi.org/10.1007/978-0-387-72796-7_1


CONTRIBUTED RESEARCH ARTICLES 410

M. L. Delignette-Muller and C. Dutang. fitdistrplus: An R package for fitting distributions. Journal of
Statistical Software, 64(4):1–34, 2015. URL http://www.jstatsoft.org/v64/i04/. [p396]

M.-L. Delignette-Muller, C. Dutang, and A. Siberchicot. fitdistrplus: Help to Fit of a Parametric Distribution
to Non-Censored or Censored Data, 2020. URL https://CRAN.R-project.org/package=fitdistrplus.
R package version 1.1-1. [p396]

Departamento Administrativo Nacional De Estadística. Censo general 2005, 2005. URL https:
//www.dane.gov.co/files/censos/libroCenso2005nacional.pdf?&. Accessed: 2020-07-18. [p396]

C. Dutang, V. Goulet, and M. Pigeon. actuar: An r package for actuarial science. Journal of Statistical
Software, 25(7):38, 2008. URL http://www.jstatsoft.org/v25/i07. [p396]

B. Efron. Bootstrap methods: another look at the jackknife. The Annals of Statistics, 7(1):1–26, 1979.
URL https://www.jstor.org/stable/2958830. [p399]

B. Efron. The Jackknife, the Bootstrap and Other Resampling Plans. Stanford University, Philadelphia, 1982.
URL https://doi.org/10.1137/1.9781611970319. [p405]

B. Efron and C. Stein. The jackknife estimate of variance. The Annals of Statistics, 9(3):586–596, 1981.
URL https://doi.org/10.1214/aos/1176345462. [p405]

B. Efron and R. Tibshirani. Bootstrap methods for standard errors, confidence intervals, and other
measures of statistical accuracy. Statistical Science, 1(1):54–75, 1986. URL https://doi.org/10.1214/
ss/1177013815. [p405]

B. Efron and R. Tibshirani. An Introduction to the Bootstrap. Chapman & Hall, New York, 1993. [p405]

Eurostat. Statistics explained: at-risk-of-poverty rate, 2014. URL http://ec.europa.eu/eurostat/
statistics-explained/index.php/Glossary:At-risk-of-poverty_rate. Accessed: 2020-07-11.
[p401]

L. Fahrmeir, R. Künstler, I. Pigeot, and G. Tutz. Statistik - Der Weg zur Datenanalyse. Springer, Berlin,
2016. URL https://doi.org/10.1007/978-3-662-50372-0. [p396]

J. Foster, J. Greer, and E. Thorbecke. A class of decomposable poverty measures. Econometrica, 52(3):
761–766, 1984. URL https://doi.org/10.2307/1913475. [p401]

J. G. Fryer and R. J. Pethybridge. Maximum likelihood estimation of a linear regression function
with grouped data. Journal of the Royal Statistical Society: Series C, 21(2):142–154, 1972. URL
https://doi.org/10.2307/2346486. [p397]

C. Gini. Variabilità e mutabilità: contributo allo studio delle distribuzioni e delle relazioni statistiche.
Studi economico-giuridici pubblicati per cura della facoltà di Giurisprudenza della R. Univer-
sità di Cagliari. Tipogr. di P. Cuppini, Bologna, 1912. URL https://books.google.de/books?id=
fqjaBPMxB9kC. [p401]

H. Goldstein. Multilevel Statistical Models. Wiley, New York, 2010. URL https://doi.org/10.1002/
9780470973394. [p403]

H. Goldstein, J. Rasbash, M. Yang, G. Woodhouse, H. Pan, D. Nuttall, and S. Thomas. A multilevel
analysis of school examination results. Oxford Review of Education, 19(4):425–433, 1993. URL
https://doi.org/10.1080/0305498930190401. [p406]

V. Goulet, C. Dutang, M. Pigeon, J. A. Ryan, R. Gentleman, R. Ihaka, R Core Team, and R Foundation.
actuar: Actuarial Functions and Heavy Tailed Distributions, 2020. URL https://CRAN.R-project.org/
package=actuar. R package version 3.0-0. [p396]

M. Groß, U. Rendtel, T. Schmid, S. Schmon, and N. Tzavidis. Estimating the density of ethnic minorities
and aged people in Berlin: multivariate kernel density estimation applied to sensitive georeferenced
administrative data protected via measurement error. Journal of the Royal Statistical Society: Series A,
180(1):161–183, 2017. URL https://doi.org/10.1111/rssa.12179. [p398, 401]

M. J. Gurka, L. J. Edwards, K. E. Muller, and L. Kupper. Extending the Box-Cox transformation to
the linear mixed model. Journal of the Royal Statistical Society: Series A, 169(2):273–288, 2006. URL
https://doi.org/10.1111/j.1467-985X.2005.00391.x. [p397]

A. Hagenaars and K. D. Vos. The definition and measurement of poverty. Journal of Human Resources,
23(2):211–221, 1988. URL https://doi.org/10.2307/145776. [p396]

The R Journal Vol. 13/1, June 2021 ISSN 2073-4859

http://www.jstatsoft.org/v64/i04/
https://CRAN.R-project.org/package=fitdistrplus
https://www.dane.gov.co/files/censos/libroCenso2005nacional.pdf?&
https://www.dane.gov.co/files/censos/libroCenso2005nacional.pdf?&
http://www.jstatsoft.org/v25/i07
https://www.jstor.org/stable/2958830
https://doi.org/10.1137/1.9781611970319
https://doi.org/10.1214/aos/1176345462
https://doi.org/10.1214/ss/1177013815
https://doi.org/10.1214/ss/1177013815
http://ec.europa.eu/eurostat/statistics-explained/index.php/Glossary:At-risk-of-poverty_rate
http://ec.europa.eu/eurostat/statistics-explained/index.php/Glossary:At-risk-of-poverty_rate
https://doi.org/10.1007/978-3-662-50372-0
https://doi.org/10.2307/1913475
https://doi.org/10.2307/2346486
https://books.google.de/books?id=fqjaBPMxB9kC
https://books.google.de/books?id=fqjaBPMxB9kC
https://doi.org/10.1002/9780470973394
https://doi.org/10.1002/9780470973394
https://doi.org/10.1080/0305498930190401
https://CRAN.R-project.org/package=actuar
https://CRAN.R-project.org/package=actuar
https://doi.org/10.1111/rssa.12179
https://doi.org/10.1111/j.1467-985X.2005.00391.x
https://doi.org/10.2307/145776


CONTRIBUTED RESEARCH ARTICLES 411

P. Johnson. Extension of Nakagawa & Schielzeth’s R2
GLMM to random slopes models. Methods in

Ecology and Evolution, 5(9):944–946, 2014. URL https://doi.org/10.1111/2041-210X.12225. [p408]

M. C. Jones, J. S. Marron, and S. J. Sheather. A brief survey of bandwidth selection for density
estimation. Journal of the American Statistical Association, 91(433):401–407, 1996. URL https://doi.
org/10.2307/2291420. [p398]

M. N. Laird and J. H. Ware. Random-effects models for longitudinal data. Biometrics, 38(4):963–74,
1983. URL https://doi.org/10.2307/2529876. [p403]

S. Lenau and R. Münnich. Estimating income poverty and inequality from income classes. Technical
report, InGRID Integrating Expertise in Inclusive Growth: Case Studies, 2016. [p396, 397]

C. R. Loader. Bandwidth selection: classical or plug-in? Annals of Statistics, 27(2):415–438, 1999. URL
https://doi.org/10.1214/aos/1018031201. [p398]

P. McCullagh. Regression models for ordinal data. Journal of the Royal Statistical Society: Series B, 42(2):
109–142, 1980. URL http://www.jstor.org/stable/2984952. [p397]

C. E. McCulloch, S. R. Searle, and J. M. Neuhaus. Generalized, Linear, and Mixed Models. Wiley, New
Jersey, 2008. [p403]

J. B. McDonald. Some generalized functions for the size distribution of income. Econometrica, 52(3):
647–663, 1984. URL https://doi.org/10.2307/1913469. [p396]

J. C. Moore and E. J. Welniak. Income measurement error in surveys: a review. Journal of Official
Statistics, 16(4):331–361, 2000. [p396]

S. Nakagawa and H. Schielzeth. A general and simple method for obtaining R2 from generalized
linear mixed-effects models. Methods in Ecology and Evolution, 4(2):133–142, 2013. URL https:
//doi.org/10.1111/j.2041-210x.2012.00261.x. [p408]

E. Parzen. On estimation of a probability density function and mode. The Annals of Mathematical
Statistics, 33(3):1065–1076, 1962. URL https://doi.org/10.1214/aoms/1177704472. [p398]

J. Pinheiro, D. Bates, and R-core. nlme: Linear and Nonlinear Mixed Effects Models, 2020. URL https:
//CRAN.R-project.org/package=nlme. R package version 3.1-148. [p397]

R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical
Computing, Vienna, Austria, 2020. URL https://www.R-project.org/. [p397]

B. Ripley. MASS: Support Functions and Datasets for Venables and Ripley’s MASS, 2019. URL https:
//CRAN.R-project.org/package=MASS. R package version 7.3-51.5. [p397]

M. Rosenblatt. Remarks on some nonparametric estimates of a density function. The Annals of
Mathematical Statistics, 27(3):832–837, 1956. URL https://www.jstor.org/stable/2237390. [p398]

R. N. Rosett and F. D. Nelson. Estimation of the two-limit probit regression model. Econometrica, 43(1):
141–146, 1975. URL https://doi.org/10.2307/1913419. [p397]

S. R. Searle, G. Casella, and C. E. McCulloch. Variance Components. Wiley, New York, 1992. [p403]

J. Shao and D. Tu. The Jackknife and Bootstrap. Springer, New York, 1995. URL https://doi.org/10.
1007/978-1-4612-0795-5. [p399]

T. Snijders and R. Bosker. Multilevel Analysis: An Introduction to Basic and Advanced Multilevel Modeling.
Sage, London, 2011. [p403]

Statistisches Bundesamt. Codebook microsensus 2014, 2014. URL https://www.
forschungsdatenzentrum.de/sites/default/files/mz_2014_suf_dhb.pdf. Accessed: 2020-
07-18. [p399]

Statistisches Bundesamt. Data supply: microcensus, 2016. URL https://www.
forschungsdatenzentrum.de/de/haushalte/mikrozensus. Accessed: 2020-07-18. [p399]

Statistisches Bundesamt. Datenhandbuch zum Mikrozensus Scientific-Use-File 2012.
http://www.forschungsdatenzentrum.de/bestand/mikrozensus/suf/2012/fdz_mz_suf_2012_
schluesselverzeichnis.pdf, 2017. Accessed: 2020-07-18. [p396]

M. Stewart. On least square estimation when the dependent varaible is grouped. The Review of Economic
Studies, 50(4):737–753, 1983. URL https://doi.org/10.2307/2297773. [p397]

The R Journal Vol. 13/1, June 2021 ISSN 2073-4859

https://doi.org/10.1111/2041-210X.12225
https://doi.org/10.2307/2291420
https://doi.org/10.2307/2291420
https://doi.org/10.2307/2529876
https://doi.org/10.1214/aos/1018031201
http://www.jstor.org/stable/2984952
https://doi.org/10.2307/1913469
https://doi.org/10.1111/j.2041-210x.2012.00261.x
https://doi.org/10.1111/j.2041-210x.2012.00261.x
https://doi.org/10.1214/aoms/1177704472
https://CRAN.R-project.org/package=nlme
https://CRAN.R-project.org/package=nlme
https://www.R-project.org/
https://CRAN.R-project.org/package=MASS
https://CRAN.R-project.org/package=MASS
https://www.jstor.org/stable/2237390
https://doi.org/10.2307/1913419
https://doi.org/10.1007/978-1-4612-0795-5
https://doi.org/10.1007/978-1-4612-0795-5
https://www.forschungsdatenzentrum.de/sites/default/files/mz_2014_suf_dhb.pdf
https://www.forschungsdatenzentrum.de/sites/default/files/mz_2014_suf_dhb.pdf
https://www.forschungsdatenzentrum.de/de/haushalte/mikrozensus
https://www.forschungsdatenzentrum.de/de/haushalte/mikrozensus
http://www.forschungsdatenzentrum.de/bestand/mikrozensus/suf/2012/fdz_mz_suf_2012_schluesselverzeichnis.pdf
http://www.forschungsdatenzentrum.de/bestand/mikrozensus/suf/2012/fdz_mz_suf_2012_schluesselverzeichnis.pdf
https://doi.org/10.2307/2297773


CONTRIBUTED RESEARCH ARTICLES 412

H. Thai, F. Mentre, N. Holford, C. Veyrat-Follet, and E. Comets. A comparison of bootstrap approaches
for estimating uncertainty of parameters in linear mixed-effects models. Pharmaceutical Statistics, 12
(3):129–140, 2013. URL https://doi.org/10.1002/pst.1561. [p405]

T. M. Therneau. survival: Survival Analysis, 2020. URL https://CRAN.R-project.org/package=
survival. R package version 3.2-3. [p397]

T. M. Therneau and P. M. Grambsch. Modeling Survival Data: Extending the Cox Model. Springer, New
York, 2000. [p397]

J. W. A. Thompson. The problem of negative estimates of variance components. Annals of Mathematical
Statistics, 33(1):273–289, 1962. URL https://doi.org/10.1214/aoms/1177704731. [p404]

M. L. Thompson and K. Nelson. Linear regression with type I interval- and left-censored response
data. Environmental and Ecological Statistics, 10(2):221–230, 2003. URL https://doi.org/10.1023/A:
1023630425376. [p397]

J. Tobin. Estimation of relationships for limited dependent variables. Econometrica, 26(1):24–36, 1958.
URL https://doi.org/10.2307/1907382. [p397]

W. N. Venables and B. D. Ripley. Modern Applied Statistics with S. Springer, New York, 2002. URL
https://doi.org/10.1007/978-0-387-21706-2. [p397]

P. Walter. A Selection of Statistical Methods for Interval-Censored Data with Applications to the German
Microcensus. PhD thesis, Freie Universität Berlin, 2019. URL https://doi.org/10.17169/refubium-
1621. [p397, 398, 399, 401, 403, 404, 405, 406]

P. Walter. smicd: Statistical Methods for Interval Censored Data, 2020. URL https://CRAN.R-project.
org/package=smicd. R package version 1.1.1. [p397]

B. Wang and M. Wertelecki. Density estimation for data with rounding errors. Computational Statistics
& Data Analysis, 65:4–12, 2013. URL https://doi.org/10.1016/j.csda.2012.02.016. [p398]

J. Wang, J. R. Carpenter, and M. A. Kepler. Using SAS to conduct nonparametric residual bootstrap
multilevel modeling with a small number of groups. Computer Methods and Programs in Biomedicine,
82(2):130–143, 2006. URL https://doi.org/10.1016/j.cmpb.2006.02.006. [p405]

A. Z. Zambom and R. Dias. A review of kernel density estimation with applications to econometrics.
International Econometric Review, 5(1):20–42, 2012. URL https://EconPapers.repec.org/RePEc:erh:
journl:v:5:y:2013:i:1:p:20-42. [p398]

Paul Walter
Freie Universität Berlin
Garystraße 21, 14195 Berlin
Germany
paul.walter@fu-berlin.de

The R Journal Vol. 13/1, June 2021 ISSN 2073-4859

https://doi.org/10.1002/pst.1561
https://CRAN.R-project.org/package=survival
https://CRAN.R-project.org/package=survival
https://doi.org/10.1214/aoms/1177704731
https://doi.org/10.1023/A:1023630425376
https://doi.org/10.1023/A:1023630425376
https://doi.org/10.2307/1907382
https://doi.org/10.1007/978-0-387-21706-2
https://doi.org/10.17169/refubium-1621
https://doi.org/10.17169/refubium-1621
https://CRAN.R-project.org/package=smicd
https://CRAN.R-project.org/package=smicd
https://doi.org/10.1016/j.csda.2012.02.016
https://doi.org/10.1016/j.cmpb.2006.02.006
https://EconPapers.repec.org/RePEc:erh:journl:v:5:y:2013:i:1:p:20-42
https://EconPapers.repec.org/RePEc:erh:journl:v:5:y:2013:i:1:p:20-42
mailto:paul.walter@fu-berlin.de

	The R Package smicd: Statistical Methods for Interval-Censored Data
	The R Package smicd: Statistical Methods for Interval-Censored Data
	Introduction
	Direct estimation of statistical indicators
	Methodology: Direct estimation of statistical indicators
	Estimation and computational details
	Core functionality: Direct estimation of statistical indicators
	Example: Direct estimation of statistical indicators

	Regression analysis
	Methodology: Regression analysis
	Estimation and computational details
	Core functionality: Regression analysis
	Example: Regression analysis

	Discussion and outlook


