
University of Nebraska - Lincoln
DigitalCommons@University of Nebraska - Lincoln
Dissertations, Theses, and Student Research Papers
in Mathematics Mathematics, Department of

8-2019

TheT3,T4-conjecture for links
Katie Tucker
katherine.tucker@huskers.unl.edu

Follow this and additional works at: https://digitalcommons.unl.edu/mathstudent

Part of the Geometry and Topology Commons

This Article is brought to you for free and open access by the Mathematics, Department of at DigitalCommons@University of Nebraska - Lincoln. It
has been accepted for inclusion in Dissertations, Theses, and Student Research Papers in Mathematics by an authorized administrator of
DigitalCommons@University of Nebraska - Lincoln.

Tucker, Katie, "The T3,T4-conjecture for links" (2019). Dissertations, Theses, and Student Research Papers in Mathematics. 97.
https://digitalcommons.unl.edu/mathstudent/97

https://digitalcommons.unl.edu?utm_source=digitalcommons.unl.edu%2Fmathstudent%2F97&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.unl.edu/mathstudent?utm_source=digitalcommons.unl.edu%2Fmathstudent%2F97&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.unl.edu/mathstudent?utm_source=digitalcommons.unl.edu%2Fmathstudent%2F97&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.unl.edu/mathematics?utm_source=digitalcommons.unl.edu%2Fmathstudent%2F97&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.unl.edu/mathstudent?utm_source=digitalcommons.unl.edu%2Fmathstudent%2F97&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/180?utm_source=digitalcommons.unl.edu%2Fmathstudent%2F97&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.unl.edu/mathstudent/97?utm_source=digitalcommons.unl.edu%2Fmathstudent%2F97&utm_medium=PDF&utm_campaign=PDFCoverPages

THE T3, T4-CONJECTURE FOR LINKS

by

Katie Tucker

A DISSERTATION

Presented to the Faculty of

The Graduate College at the University of Nebraska

In Partial Fulfilment of Requirements

For the Degree of Doctor of Philosophy

Major: Mathematics

Under the Supervision of Professors Mark Brittenham and Susan Hermiller

Lincoln, Nebraska

August, 2019

THE T3, T4-CONJECTURE FOR LINKS

Katie Tucker, Ph.D.

University of Nebraska, 2019

Adviser: Mark Brittenham and Susan Hermiller

An oriented n-component link is a smooth embedding of n oriented copies of S1 into

S3. A diagram of an oriented link is a projection of a link onto R
2 such that there are

no triple intersections, with notation at double intersections to indicate under and over

strands and arrows on strands to indicate orientation. A local move on an oriented link

is a regional change of a diagram where one tangle is replaced with another in a way that

preserves orientation. We investigate the local moves t3 and t4, which are conjectured to

be an unlinking set (i.e., turns the link into an unlink) on oriented links (Kirby Problem

List # 1.59(4)). Using combinatorial and computational methods, we show all oriented

links with braid index at most 5, except for possibly the link formed from the closure of

(σ1σ
−1
2 σ3σ

−1
4 σ3σ

−1
2)3, are t3, t4 unlinkable. We extend these methods to oriented links with

braid index 6 and crossing number at most 12.

iii

Table of Contents

1 Introduction 1

2 Background 5

2.1 Braids . 7

2.2 Group theory results . 10

2.3 Cyclic branched covers . 11

3 Proof of the t3, t4 conjecture for the closures of 3- and 4-strand braids 13

3.1 3-strand braids . 13

3.2 4-strand braids . 15

4 Proof of main theorem 18

4.1 First pass elimination: cyclic permutation 19

4.2 Braid reduction in Python . 22

4.3 Local braid replacement moves as a consequence of t3, t4 24

4.4 5-strand braids of length at least 15 . 30

4.5 The braid (σ1σ
−1
2 σ3σ

−1
4 σ3σ

−1
2)3 . 33

5 Extensions 35

5.1 Extending to B6 . 35

5.2 Extending the method to other local moves 36

iv

A Python code 39

A.1 Coset Computation . 39

A.2 First pass elimination (B5 firstpass.py) . 40

A.3 Braid rewriting wrapper (B5 simplify.py) 42

A.4 Braid rewriting (braidreductions.py) . 44

A.5 B6 enumeration script . 65

B Conjugacy classes of Q5 70

Bibliography 76

1

Chapter 1

Introduction

A local move on a knot or link diagram is a move which replaces one section of the diagram,

often without regard to isotopy in the original diagram. An unknotting move is a local move

that can transform any diagram of a knot into an unknotted S1 when used in conjunction

with isotopy. Analogously, an unlinking move is a local move that can transform any link

diagram into some number of copies of disjoint, unknotted S1. These moves can vary in

complexity from crossing changes, which swap the over- and under-strands of a crossing

in the diagram, to moves on larger regions, perhaps involving multiple crossings or with

restrictions on how the crossings need be arranged in order to utilize the local move.

To this end, when considering a local move, the first question to answer is whether or

not the move is an unknotting (or unlinking) move. For some local moves, such as crossing

changes and crossing smoothings, it is known that they are unknotting moves; for others,

such as the 3-move (similar to Figure 1.1, but without orientation restrictions), counterex-

amples have been constructed. That is, there are knots which cannot be transformed to

an unlink under the given local move.

Two families of local moves are the tk and tk moves on oriented links [Prz88b]. A tk

move replaces two parallel strands with the same orientation and no twists with two parallel

strands with k positive half-twists between them or with k negative half-twists between

them, and vice versa. The t3 move is shown in Figure 1.1. A tk move is analogous but

2

Figure 1.1: t3 move

Figure 1.2: t4 move

works only on two strands with opposite orientation; see Figure 1.2 for the t4 move. These

families are special cases of the n-move on unoriented links, which replaces two untwisted

strands with two strands with n half-twists between them.

Several combinations of these moves have been studied as possible unlinking sets, or sets

of local moves which can transform any link into an unlink. The 3-move (the combination t3

and t3) was conjectured to be an unlinking move but this conjecture was disproven in 2002

by Dabkowski and Przytycki [DP02]. On the other hand, Nakanishi’s conjecture [Nak90]

regarding whether the 4-move is an unlinking move is still an open question. No n-move,

for n ≥ 5, is an unlinking move [Prz88b].

Of particular note for this thesis is the combination t3, t4, shown in Figures 1.1 and

1.2. The t3, t4 moves are conjectured to be an unlinking set (see problem #1.59(4) on the

Kirby problem list [Kir]), and this conjecture has been proved for some families of oriented

knots and links.

Theorem 1.1. The t3, t4 moves are unlinking operations for:

(a) the closures of oriented 3-braids [Prz88b, Example 3.11],

3

Figure 1.3: Matched diagram tangles

(b) oriented links with matched diagrams, oriented 2-bridge links, and oriented algebraic

links [Prz90, Theorem 3, Corollary 6, and Corollary 8], and

(c) oriented links of up to 11 crossings [Prz93, Corollary 1.9].

Chen uses the methods of the proof of Theorem 1.1(a) to prove that the closures of all

5-strand braids are 3-move equivalent to an unlink in [Che00] and asserts that his methods

apply to the combination of t3, t4 on the closures of oriented 5-braids. However, there are

issues with how his results are proven and extended. This is discussed further in Remark

3.3.

In Theorem 1.1(b), a matched diagram refers to a diagram of an oriented knot (or link)

where the crossings can be paired up into anti-parallel bigons: regions with two crossings

of the same sign where the two strands involved are oriented in opposite directions; see

Figure 1.3. However, it is known that not all knots have a matched diagram, as the pretzel

knot P(3, 3, -3) is a counterexample [DS11, Corollary in Section 5].

It has also been shown that the t3, t4 moves preserve the first homology of the 3-fold

cyclic cover of the exterior of a link with coefficients from Z2 [Prz88b, Theorem 3.2], [Prz88a,

Lemma 2]. That is, if L and L′ are t3, t4 equivalent links, thenH1(M
(3)
L ,Z2) = H1(M

(3)
L′ ,Z2),

where M
(3)
L and M

(3)
L′ are the 3-fold cyclic covers of the exteriors of L and L′, respectively.

4

Since dimH1(M
(3)
Un

,Z2) = 2(n− 1) where Un is the n-component unlink, this result can be

used to predict to which unlink a given link should be t3, t4 equivalent.

In this thesis, we prove the t3, t4-conjecture for all but one t3, t4-equivalence class of

oriented links which are the closure of 5-strand braids, and we extend the methods to the

closures of 6-strand braids to begin proving a similar result.

Theorem 4.1. The closures of all oriented 5-braids, except possibly for those t3, t4 equiv-

alent to the closure of (σ1σ
−1
2 σ3σ

−1
4 σ3σ

−1
2)3, are t3, t4 equivalent to an unlink.

We note that if that the closure of (σ1σ
−1
2 σ3σ

−1
4 σ3σ

−1
2)3 is t3, t4 equivalent to an unlink

then using homology calculations it is equivalent to the 5-component unlink U5.

Theorem 5.1. All oriented links which result from the closure of a 6-strand braid with at

most 12 crossings are t3, t4 unlinkable.

In Chapter 2 we cover background material on braids, the Todd-Coxeter algorithm for

computing cosets, and the homology of the 3-fold cyclic cover of the exterior of a knot. In

Chapter 3 we review the proof of Theorem 1.1(a) and extend these methods to prove the

t3, t4 conjecture for the closures of oriented 4-braids. In Chapter 4 we prove Theorem 4.1,

and in Section 4.5 we examine the closure of (σ1σ
−1
2 σ3σ

−1
4 σ3σ

−1
2)3 in detail. Section 5.1

extends the methods used in the proof in Chapter 4 to the closures of oriented 6-strand

braids and proves Theorem 5.1. Section 5.2 investigates extensions of the methods used in

Chapter 4 to other local moves. Appendix A.4 contains the Python code used in proving

Theorem 4.1.

5

Chapter 2

Background

This thesis assumes a basic knowledge of classical knot theory; for a good reference, see

[Rol03]. Some of the basic facts we will use are contained in this section.

We view knots as smooth embeddings of S1 in S3, and two knots are equivalent if there

is an isotopy from one to the other. Similarly, an n-component link is a smooth embedding

of a disjoint union of n copies of S1 in S3. For visualization purposes, we often deal with

a knot (or link) diagram, which is a projection of the knot (or link) onto R
2 satisfying

some restrictions. For a projection to be a diagram, the resultant image must have no

sharp corners, and any self-intersections must involve only two strands; that is, there are

no triple (or more) intersection points. To preserve crossing information, when two strands

‘intersect’ in the projection, the understrand is broken near the crossing. Some knot and

link diagram examples are shown in Figure 2.1. Two knot (or link) diagrams are equivalent

(i.e., represent the same knot or link) if there is a finite sequence of the three Reidemeister

moves, shown in Figure 2.2, taking one diagram to the other.

A local move on a knot or link diagram involves changing a region of the diagram by

replacing one tangle with another. Common examples are the crossing change (see Figure

2.3 (a)) and crossing smoothing (see Figure 2.3 (b)). The t3 and t4 moves (see Figures 1.1

and 1.2), which are the focus of this thesis, are also examples of local moves.

This thesis focuses on oriented knots and links, which are knots and links where each

6

41
figure eight knot

221
hopf link

031
3-component unlink

Figure 2.1: Examples of a knot, link, and unlink

III.

II.

I.

Figure 2.2: Reidemeister Moves I, II, and III

7

(a) crossing change

(b) crossing smoothing

Figure 2.3: Crossing change and crossing smoothing

embedded S1 has a fixed orientation. For knots, the choice of orientation does not matter,

as changing the orientation of the only component changes the global orientation. For

links, however, changing the orientation on one component may change the oriented link

type.

2.1 Braids

Knots and links are closely related to braids, which can be viewed as a collection of crossed

strands whose origins and endpoints are fixed. To be a braid rather than a tangle, we

further place the restriction that the strands all move from their origins to their endpoints

monotonically. For example, the first two images in Figure 2.4 are braids with origins

at the top and endpoints at the bottom, while the third is not. We can close a braid

by connecting the first origin to the first endpoint via an arc, the second origin to the

second endpoint, etc., without introducing new crossings, to get a link. By a theorem of

Alexander [Ale23], the reverse also holds: any oriented link can be viewed as the closure

8

σ1σ
−1
2 σ1σ

−2
2 σ1σ2σ3σ

−1
1 σ−1

2
a non-braid tangle

Figure 2.4: Two braids, with associated braid words, and a tangle

of an oriented braid on some number of strands. Due to the structure of a braid, braids

also have an inherent orientation where all strands are oriented from the origins to the

endpoints.

Two braids are equivalent if they are isotopic through braids. The collection Bn of

equivalences classes of braids on n strands can formally be viewed as a group, with the

group operation being composition: given two braids on n strands, we can compose them

by gluing the origins of the second braid to the endpoints of the first braid in such a way

that the ith origin of the second braid attaches to the ith endpoint of the first braid.

This group is generated by the set of σi for i = 1, . . . , n − 1, where σi is the braid

with the strand in the i position crossing over the strand in the i + 1 position, and all

other strands remaining straight and uncrossed. This group also has a commutativity

relation: when crossings are far enough apart (i.e., do not involve the same strand(s)), the

order of the crossings does not matter. The Reidemeister moves are also realized within

the braid group. The first Reidemeister move gives stabilization and destabilization and

changes the number of strands (see Figure 2.5). Thus the first Reidemeister move changes

9

Figure 2.5: Destabilization (right arrow) and stabilization (left arrow) of braids

an element of Bn to an element of Bn+1 (in the case of stabilization) or Bn−1 (in the case of

destabilization). The second Reidemeister move is realized as σiσ
−1
i = 1Bn = σ−1

i σi within

Bn, and the third Reidemeister move gives the relation shown in Figure 2.6. With this and

the previous, one can construct the following presentation for the n-strand braid group:

Definition 2.1. The braid group on n strands is the group presented by

Bn = 〈σ1, . . . , σn−1 | [σi, σj] = 1 if |i− j| ≥ 2, σiσi+1σi = σi+1σiσi+1 for 1 ≤ i < n− 1〉

10

σiσi+1σi σi+1σiσi+1=

∼

Figure 2.6: RIII move in braids

2.2 Group theory results

One of the principal group-theoretic tools we will use is the Todd-Coxeter algorithm [CT36].

This algorithm is one method for enumerating the right cosets of the quotient of a finitely

presented group and at the same time discovering where the cosets are mapped under the

action of right multiplication by the group generators. Upon input of a finite generating

set and finite set of relators, the Todd-Coxeter algorithm constructs a coset table where

each row corresponds to a coset of the quotient group and each column corresponds to a

generator (or its inverse). Thus, if the generators of the group are {a1, . . . , ak}, the coset

table will have 2k columns. Each entry in the jth row tells which coset the jth coset, Cj, is

mapped to under the right multiplication by the generator corresponding to that column.

In particular, the first entry of the jth row gives which coset Cj is mapped to under right

multiplication by a1, the second entry is where Cj is mapped under right multiplication

by a−1
1 , and so on. By convention, the first coset is represented by the identity element

of the group. A representative for Cj can thus be constructed by finding a path from

C1 = 1G to Cj in the generating set {a1, . . . , ak}±1. Note the first occurrence of any value

s occurs within the first s − 1 rows; that is, one of the first s − 1 cosets maps to the sth

coset under right multiplication by one of the generators, so when constructing a shortest

representative, we continually move up the table and the process terminates in a finite

11

number of steps.

To find a shortest representative for the j-th coset Cj, with 2 ≤ j ≤ n, where n is the

number of cosets (and thus the number of rows in the coset table), we find the first row

in which the value j appears. Call this row r1; then 1 ≤ r1 < j by the construction in

the Todd-Coxeter algorithm. Note that for j = 1 we have C1 = 1G by convention so we

only need consider j ≥ 2. This gives that the r1-st coset Cr1 is mapped to Cj under right

multiplication by one of the generators. That is, there is some α1 ∈ {a1, . . . , ak}±1 such

that Cr1α1 = Cj. If r1 is 1 (i.e., j appears in the first row of the coset table), we are done,

and a shortest representative for the coset Cj is α1. Otherwise, repeat: suppose thatm such

steps have occured, so that the rm-th coset Crm is mapped to Cj under right multiplication

by αm · · ·α1 with each αi ∈ {a1, . . . , ak}±1. That is, Crmαm · · ·α1 = Cj. Then find the first

row rm+1, where 1 ≤ rm+1 < rm, in which the value rm appears. Then the rm+1-st coset

Crm+1 goes to coset Crm by right multiplication by one of the generators, indicated by which

column contains the value rm within row rm+1; call this generator αm+1. Thus the coset

Crm+1 is mapped to coset Crm under right multiplication by αm+1 and to coset Cj under

right multiplication by αm+1αm · · ·α1. This process continues working up the coset table

until we have that the first coset goes to the jth coset by some sequence of generators

α� · · ·α1 and therefore the jth coset has shortest representative α� · · ·α1. Because this

method always chooses the first occurrence of a coset, the representative produced is of

shortest length.

2.3 Cyclic branched covers

Another tool we utilize is the first homology of the 3-fold cyclic cover of the exterior of a

link L in S3 with coefficients from Z2. This is preserved by t3 [Prz88a, Theorem 1] and t4

moves [Prz88b, Theorem 3.2].

12

To begin we find the 3-fold cyclic cover of the exterior of K, S3\K. We follow the

construction laid out in [Rol03, Chapter 5(C)]. Let Σ be a Seifert surface for the knot

K in S3 and let N ∼= int(Σ) × (−1, 1) be an open bicollar of int(Σ) = Σ\K. Let N+ ∼=
int(Σ) × (0, 1) and N− ∼= int(Σ) × (−1, 0). Let Y = S3\Σ be the complement of Σ

and X = S3\K be the complement of K. We thus have two triples (N,N+, N−) and

(Y,N+, N−), as N+ and N− can be viewed as subspaces of both N and Y . As we focus on

the 3-fold cyclic cover, we form three copies of each, denoted (Ni, N
+
i , N

−
i) and (Yi, N

+
i , N

−
i)

for i = 0, 1, 2. Let ˜N = ∪2
i=0Ni and ˜Y = ∪2

i=0Yi be the disjoint unions. Finally, identify

N+
i ⊂ Yi with N+

i ⊂ Ni and N−
i ⊂ Yi with N−

i+1 ⊂ Ni+1 via the identity maps, with

N−
2 ⊂ Y2 identified with N−

0 ⊂ N0. This resulting space is M
(3)
K , the 3-fold cyclic cover of

the exterior of K.

To compute the homology of M
(3)
K with integer coefficients we consider bases B of

H1(int(Σ)) and β of H1(Y). We push each basis element b ∈ B off of Σ and into N+ and

N− to get b+ and b−, respectively, and mimic this in each of the three copies of Yi to get a

system of equations relating {b+i , b−i |i = 0, 1, 2; b ∈ B} to A = {αi|i = 0, 1, 2;α ∈ β}. The

first homology H1(M
(3)
K ,Z) is generated by the set A, along with an additional generator

loop γ which runs once aroundM
(3)
K and contributes a free abelian component to the group.

The group has for relations the consequences of the system of equations.

Finally, to compute the homology of M
(3)
K with coefficients from Z2 we use the exact

sequence

0 → H1(M
(3)
K ,Z)/{2[z] : [z] ∈ H1(M

(3)
K ,Z)} → H1(M

(3)
K ,Z/2) → Z2 → 0.

13

Chapter 3

Proof of the t3, t4 conjecture for the closures of 3- and 4-strand

braids

In this chapter we prove that the closures of oriented 4-strand braids are t3, t4-unlinkable,

following Przytycki’s method for the closures of 3-strand braids, which is summarized in

Section 3.1. We extend this concept to the closures of 4-strand braids in Section 3.2 and

5-strand braids in Chapter 4.

3.1 3-strand braids

Przytycki’s proof begins with the oriented 3-strand braid group B3 = 〈σ1, σ2|σ1σ2σ1 =

σ2σ1σ2〉 (see Definition 2.1). This is an infinite group which makes handling each individual

element unfeasible. Due to the orientation in braids inherited by following each strand from

its origin to its endpoint, the t3 move can be replicated on oriented 3-strand braids by the

following four relations:

σ3
1 = 1 σ−3

1 = 1 σ3
2 = 1 σ−3

2 = 1

Note that including these as relators in the group presentation also yields that all

conjugates of σ±3
i are also identified with 1 in the quotient. Because conjugation in the

14

t4 RIII t3

Figure 3.1: Using t3, t4 to unlink the figure-eight knot

braid group is realized as ambient isotopy on knot and link diagrams – the closure of

αβα−1 is isotopic to the closure of α−1αβ � β – these relations do in fact replicate the

t3 move on 3-strand braids. Thus, to prove the t3, t4 conjecture holds for links formed

by closing 3-strand braids, it suffices to consider the quotient group Q3 of B3 where we

include these relations. This quotient has presentation Q3 = 〈σ1, σ2|σ1σ2σ1 = σ2σ1σ2, σ
3
1 =

1, σ3
2 = 1〉 = B3/〈σ3

1〉N . Note this final equivalence holds as σi is conjugate to σj in

Bn for each i, j ∈ {1, . . . , n − 1}: we have that σ1 = (σ2σ1)σ2(σ
−1
1 σ−1

2), and in general,

σi = (σi+1σi)σi+1(σ
−1
i σ−1

i+1) for 1 ≤ i ≤ n− 2. As conjugacy is an equivalence relation, we

thus have the generators of the braid group on n strands are all conjugate to each other.

Thus, looking at B3 in particular, we have that 〈σ3
1, σ

3
2〉N = 〈σ3

1〉N = 〈σ3
2〉N .

The quotient group Q3 has order 24 by a result of Coxeter [Cox57, page 99], and the

elements of Q3 are t3 equivalence classes of 3-strand braids. That is, there is a bijection

between Q3 and the t3 equivalence classes of 3-strand braids. Thus if any one element in

a t3 equivalence class is t3, t4 equivalent to an unlink, then so is every element of that t3

equialence class. Hence only one element from each t3 equivalence class need be considered.

In [Prz88b], Przytycki considers a smallest braid word representing each element of Q3 and

concludes that these elements have braid closures which are isotopic to an unlink of at

most 3 components or the figure-eight knot, which is t3, t4 equivalent to the 2-component

unlink as shown in Figure 3.1. Theorem 3.1 thus follows.

15

Theorem 3.1 (Przytycki, 1988). Every oriented link which can be represented by a braid

on 3 strands is t3, t4 equivalent to an unlink.

3.2 4-strand braids

In this section and the following chapter we extend this method to the 4- and 5-strand braid

groups, using a result of Coxeter [Cox57, pages 102, 105] that also gives that the resultant

quotients Q4 and Q5 are finite, of order 648 and 155,520 respectively. However, Bn/〈σ3
1〉N

is infinite for n ≥ 6. Using the computer program Groups, Algorithms, Programming

(GAP) [GAP17], the Todd-Coxeter method is used to build a coset table for each quotient of

the respective braid groups. This table is then used to build a set of shortest representatives

for elements of Q4 and Q5 as products of the σi generators, and we then are left to show

each representative is t3, t4 equivalent to an unlink.

In this section, we work with the closures of 4-strand braids and the quotient Q4 with

presentation

Q4 = 〈σ1, σ2, σ3|σ1σ2σ1 = σ2σ1σ2, σ2σ3σ2 = σ3σ2σ3, σ1σ3 = σ3σ1, σ
3
1 = 1, σ3

2 = 1, σ3
3 = 1〉

= B4/〈σ3
1〉N .

The GAP code used to compute a coset table for the cosets of B4/〈σ3
1〉N is given below:

gap> f := FreeGroup(3);;

gap> b4 := f / [f.1*f.3*f.1^-1*f.3^-1, f.1*f.2*f.1*f.2^-1*f.1^-1*f.2^-1,

f.2*f.3*f.2*f.3^-1*f.2^-1*f.3^-1];;

gap> n4t3 := NormalClosure(b4, Subgroup(b4, [b4.1^3]));;

gap> table := CosetTable(b4, n4t3);;

gap> PrintArray(TransposedMat(table));

16

σ1 σ−1
1 σ2 σ−1

2 σ3 σ−1
3

1 [[2 , 3 , 4 , 5 , 6 , 7] ,
2 [3 , 1 , 8 , 9 , 10 , 11] ,
3 [1 , 2 , 12 , 13 , 14 , 15] ,
4 [16 , 17 , 5 , 1 , 18 , 19] ,
5 [20 , 21 , 1 , 4 , 22 , 23] ,
6 [10 , 14 , 24 , 25 , 7 , 1] ,
7 [11 , 15 , 26 , 27 , 1 , 6] ,
8 [28 , 29 , 9 , 2 , 30 , 31] ,
9 [32 , 33 , 2 , 8 , 34 , 35] ,

10 [14 , 6 , 36 , 37 , 11 , 2] , . . .

Figure 3.2: First 10 rows of the B4/〈σ3
1〉N coset table from the Todd-Coxeter algorithm

The first 10 rows of this output array are shown in Table 3.2, with line numbers included

for clarity. The printed array contains the information needed to construct a representative

for each coset by using the methods outlined in Section 2.2.

For example, to compute a shortest representative for coset 36, C36, using Figure 3.2,

we can see that coset 10, C10, is mapped to C36 under right multiplication by σ2; coset 2,

C2, is mapped to C10 under right multiplication by σ3; and coset 1, C1 = 1Q4 goes to C2

under right multiplication by σ1. Thus a shortest representative for C36 is σ1σ3σ2.

To construct a list with a shortest representative for each coset, we wrote a program in

Python that iteratively built up a list with the shortest representative for each coset. The

program takes the representative for the current row from the existing list of representa-

tives, appends the appropriate element for each column, and then saves the representative

corresponding to that column entry in the next open position of the representative list if

the coset in that column entry does not already have a representative stored in the list

of representatives. The code used for 4-strand braids is in Appendix A.1, with generator

values stored by their subscript (with a negative for inverses) for later computational pro-

cessing. For example, the representative σ1σ3σ2 for coset 36 in B4 found in the previous

17

paragraph is stored as [1, 3, 2] in the list of representatives.

For the 4-strand braid group quotient, each of the 648 cosets has a representative of

length at most 9; that is, each coset has a member whose braid closure is an oriented link

diagram with at most 9 crossings. Thus, by Theorem 1.1(c), each of these links is t3, t4

equivalent to an unlink, and as the closure of every 4-strand braid is t3 equivalent to one

of these links, we have Theorem 3.2.

Theorem 3.2. Every oriented link that can be represented as an oriented braid on at most

4 strands is t3, t4 equivalent to an unlink.

Remark 3.3. This result was announced previously [Che00, Theorem 5.1(b)] but we in-

clude our proof here to shed light on the methods used in Chapter 4. A version of Theo-

rem 4.1 was also previously announced in weaker form as it excludes six t3, t4 equivalence

classes [Che00, Theorem 5.1(c)]. There are also oversights in the proof of [Che00, Theo-

rem 5.1(c)], namely when changing from unoriented to oriented links. Our proof addresses

these oversights.

18

Chapter 4

Proof of main theorem

In this chapter we build on the results of Chapter 3 to prove the main theorem, restated

here.

Theorem 4.1. The closures of all oriented 5-braids, except possibly for those t3, t4 equiv-

alent to the closure of (σ1σ
−1
2 σ3σ

−1
4 σ3σ

−1
2)3, are t3, t4 equivalent to an unlink.

In the case of 5-strand braids we start with 155,520 elements in Q5, which has presen-

tation

Q5 = 〈σ1, σ2, σ3, σ4 |σ1σ2σ1 = σ2σ1σ2, σ2σ3σ2 = σ3σ2σ3, σ3σ4σ3 = σ4σ3σ4, σ1σ3 = σ3σ1,

σ1σ4 = σ4σ1, σ2σ4 = σ4σ2, σ
3
1 = 1, σ3

2 = 1, σ3
3 = 1, σ3

4 = 1〉

= B5/〈σ3
1〉N

Of these, 68,192 of the cosets have a representative of length at most 11 and are thus

handled by Theorem 1.1(c). The remaining 87,328 have a shortest representative of length

between 12 and 20. Since the case for the closures of oriented braids on at most 4 strands

has already been handled by Theorem 3.2, any cosets with a representative that misses

one of the σi generators has already been shown to be t3, t4 equivalent to an unlink. This

is because missing a σ1 or σ4 means we have a disjoint union of an unknotted component

19

with the closure of a 4-strand braid, while missing a σ2 or σ3 means we have the disjoint

union of the closure of a 2-strand braid with the closure of a 3-strand braid. There are

5,718 such cosets with representative of length at least 12. This leaves 81,680 cosets that

must still be considered.

We first show that all oriented links formed from the closures of 5-strand braids with

at most 14 crossings are t3, t4 equivalent to unlinks, and then use conjugacy classes to

extend the result to all but one t3, t4 equivalence class of links formed from the closure of

5-strand braids. The method used to analyze the closures of 5-strand braids is laid out in

a flowchart in Figure 4.1. In these paragraphs we have covered the first three boxes of this

flowchart.

Note that since the procedure above finds shortest-length representatives, reducing a

coset representative in length means that the new element must represent a coset that the

inductive process has shown is t3, t4-equivalent to an unlink. That is, it cannot lie in a

coset in which our shortest representative has higher length, because all elements of that

coset have length at least that of the representative.

4.1 First pass elimination: cyclic permutation

We deal with the remaining 81,680 cases by an induction argument using previous results

and properties of cosets. For the base case, we first show that all of the given coset

representatives of length 12 have braid closures which can be reduced to the closures of

braid words of length 11 or less using the t3 and t4 moves, and thus their corresponding

braid closures are t3, t4 equivalent to an unlink. For the inductive step, it then suffices to

show that for a given coset representative of length n, we can reduce the length by at least

one by using t3, t4 moves. This reduction implies the closure of the given representative is

t3, t4 equivalent to the closure of an element in a coset that has a shortest representative

20

1) GAP:
- Build B5

- Build coset table for B5/〈σ3
1〉N

2) Python:
- Build list of shortest representatives
- Appendix A.4

3) Python:
- Filter
- Partition by length
- Appendix A.3

Length at most 11
done by Przytycki

4) Braids are in the form:
- σ1σ

±1
2 σ∓1

3 σ±1
2 w

- σ1σ
±1
2 σ±1

3 σ±1
4 w

for w ∈ B5

and length at least 12

5) Python:
- Braid reduction patterns
- Success if length reduced
by at least 1
- Appendix A.2 for multiple calls
of Appendix A.1

Length at most 14:
Success

6) MAGMA:
- Build Q5

- Find a representative
for each conjugacy class

7) Python:
- Braid reduction patterns
- Success if length at most 14
- Appendix A.2 for multiple calls
of Appendix A.1

(σ1σ
−1
2 σ3σ

−1
4 σ3σ

−1
2)3:

unknown

All others:
Done

Length at most 14:
Done

pass coset table
as .txt file

pass representatives
as .txt file

pass files broken up by length

length at least 15: need more work

length at least 15

still needs work

Figure 4.1: Flowchart of 5-strand braid methods

21

of length at most n− 1 which is t3, t4 equivalent to an unlink by induction.

Because we are primarily concerned with the oriented knot (or link) that arises from a

given braid word, without loss of generality we need only consider braids that begin with

σ±1
1 . This is because when closed to form a link, the braid σ±1

i wu yields the same link as

the braid uσ±1
i w of the same length, where u, w ∈ B5. Moreover, since t3 and t4 moves can

be replicated on the mirror image of any link, we can further restrict to braids beginning

with σ1. Additionally, we need only consider when the second element of the braid is σ±1
2 ,

since σ±1
3 and σ±1

4 commute with σ1 and thus can commute from the second position to the

head of the braid and then cycle to the end, and σ±1
1 as the second element would allow a

reduction using a Reidemeister II move or a t3 move. Note a σ±1
2 must occur within the

braid word by the logic in the preceding section. Similarly, commuting and reduction by

a Reidemeister II move or a t3 move imply that the cases where the third element is σ±1
4

or σ±1
2 are already covered. Thus we need only consider braids of the forms σ1σ

±1
2 σ±1

1 w or

σ1σ
±1
2 σ±1

3 w, where w ∈ B5.

The first of these two cases can further be reduced: if a braid is of the form σ1σ2σ
±1
1 w or

σ1σ
−1
2 σ−1

1 w, a Reidemeister III move allows this to be rewritten as σ±1
2 σ1σ2w or σ−1

2 σ−1
1 σ2w,

respectively. The leading σ±1
2 can then be cycled to the end of the braid, and we are left

with a braid of the form σ1σ2wσ
±1
2 or σ−1

1 σ2wσ
−1
2 . In the former case, this is a braid

already under consideration; in the latter, the mirror image is a braid already under con-

sideration. Therefore we can restrict our attention to braids in B5 of the forms σ1σ
−1
2 σ1w

and σ1σ
±1
2 σ±1

3 w, where the exponents in the latter form can be independently chosen.

By considering the fourth entry, we can narrow the possibilities down to σ1σ
−1
2 σ1σ

±1
3 w,

σ1σ2σ
−1
3 σ2w, σ1σ

−1
2 σ3σ

−1
2 w, and σ1σ

±1
2 σ±1

3 σ±1
4 w where the signs on the exponents are in-

dependently chosen. The first case comes from further examining σ1σ
−1
2 σ1w for w ∈ B5.

If the first generator in w is σ±1
1 then either a t3 or inverses can be used to simplify; if

the first generator is a σ2 a Reidemeister III move can be used followed by a t3 reduction;

22

if the first generator is σ−1
2 then an (A1) move (see Section 4.3) can be used to move a

σ2 to the head, which can then be cycled to the end; and if w begins with a σ±1
4 then

this can be commuted to the beginning of the braid then cycled to the end. The latter

cases arise from σ1σ
±1
2 σ±1

3 w. In this case, if w begins with σ±1
1 we can commute to get

σ1σ
±1
2 σ±1

1 σ±1
3 w′ for some w′ ∈ B5, which has already been considered. If w begins with

σ±1
3 , then a Reidemeister II move or a t3 move can be used to reduce. If w begins with a

σ±1
2 and the sign on σ3 matches the sign on either occurrence of σ±1

2 , then a Reidemeister

III move can be used, followed by commuting, to push a σ3 to the head of the braid. Thus

if w begins with a σ±1
2 , we need only consider when the signs on the σ2’s agree and are

opposite to the sign on σ3; i.e., the braid must begin with σ1σ2σ
−1
3 σ2 or σ1σ

−1
2 σ3σ

−1
2 .

This reduces the number of braids to consider from 81,610 down to 7,971 and covers

the fourth box in the flowchart in Figure 4.1.

4.2 Braid reduction in Python

We wrote a program in Python that, upon input of a braid word from B5, iteratively

constructs conjugate and t3, t4 equivalent braids using a set of replacement rules. If the

program finds a braid of shorter length (which is t3, t4 equivalent to an unlink by induction),

then the input braid has braid closure that is t3, t4 equivalent to an unlink. In Section

4.3, the six types of replacement rules (A1)-(A6) used by this program are identified and

explained. The complete Python code can be found in Appendix A.4.

While ideally, the program would find every braid that is conjugate and t3, t4 equivalent

to the input braid, this is not computationally possible due to limitations on computer

resources. In particular, allowing all commutation rewritings permitted within the braid

group (i.e., rewritings of the form σiσj → σjσi where |i − j| ≥ 2) significantly increases

computation time, and allowing length increases by a t3 move (σ±1
i → σ∓2

i) or a crossing-

23

increasing Reidemeister II move (inserting σ±1
i σ∓1

i) in general creates an infinite family of

t3 equivalent links, as the same location can be repeatedly expanded. As a compromise,

targeted t3 increases were included (see (A6)).

A targeted commuting function lookLR (within Appendix A.4) was also created to

utilize commutation rules to enable the (A1) - (A6) replacement rules. If looking at a

replacement rule of the form αuβ → v for α, β ∈ {σ1, σ2, σ3, σ4}±1 and u, v ∈ B5, the

function works as follows: first, the function tries to locate u as a subword of the braid

word. Upon finding the subword u, the function looks at the braid entries prior to u to

find the last occurrence of α before u. The function then attempts to use commutation

rules to move α to immediately before u, so that αu is a subword of the new braid word

and the new braid is equivalent to the original. If successful, the program then looks at the

braid entries after αu to find the first occurrence of β. As before, the program then uses

commutation rules to try to move β to immediately after αu so that αuβ is a subword of

the new braid word and the new braid word is equivalent to the original.

Using the replacement rules in Chapter 4.3, the program successfully reduced the length

of the coset representatives in the constructed transversal of length 12, 13, and 14 by one,

except for 2 representatives of length 14. Those representatives are:

(1) 1 2-3 2 1 4-3-2 1 4 3-2 3 4 (2) 1-2 3-2 1-4 3-2 1-4 3-2 3-4

These representatives were reduced by hand, using the same replacement rules used in

the Python program but with more leniency on commuting. A reduction for (1) is shown

below; (2) can be handled similarly.

24

1 2 −3 2 1 4 −3 −2 1 4 3 −2 3 4 Initial braid (1) (14 crossings)

−3 2 1 4 −3 −2 1 4 3 −2 3 4 1 2 Cyclic permutation of first two entries

−3 2 4 −3 1 −2 1 4 3 −2 3 4 1 2 commuting

−3 2 4 −3 1 −2 −1 −1 4 3 −2 3 4 1 2 t3 expansion on second 1 (15 crossings)

−3 2 4 −3 1 −2 −1 4 3 −1 −2 1 3 2 4 commuting

−3 2 4 −3 −2 −1 2 4 3 2 −1 −2 3 2 4 two RIII moves

−3 4 2 −3 −2 −1 4 2 3 2 −1 −2 3 2 4 commuting

−3 4 −3 −2 3 −1 4 3 2 3 −1 3 2 −3 4 three RIII moves

−3 4 −3 −2 3 −1 4 3 2 −1 3 3 2 −3 4 commuting

−3 4 −3 −2 3 −1 4 3 2 −1 −3 2 −3 4 t3 reduction (14 crossings)

−3 4 −3 4 −3 −2 3−1 4 3 2 −1 −3 2 cycle last two entries to front

−4 3 −4 −2 3 −1 4 3 2 −1 −3 2 (A2) move at head (12 crossings)

When the 1,766 braids of length 15 were input into the program, all but 13 were able

to be quickly (less than 4 minutes each) reduced in length by at least one. Similar results

were found with the braids of length 16. We thus get Theorem 4.2 and have covered the

first five boxes of the flowchart in Figure 4.1.

Theorem 4.2. Any oriented link that can be realized as the closure of a 5-strand braid

with at most 14 crossings is t3, t4 equivalent to an unlink.

4.3 Local braid replacement moves as a consequence of t3, t4

In this section we examine the consequences of the t3 and t4 moves on braid closures

and construct replacement rules based on these consequences. The patterns herein are

written for oriented 5-braids and their closures but can be extended to the closures of

25

σiσ
−1
i+1σiσ

−1
i+1

σ−2
i σ−1

i+1σiσ
−1
i+1

t3 RIII

σ−1
i σi+1σ

−1
i σ−2

i+1

t3

σ−1
i σi+1σ

−1
i σi+1

Figure 4.2: (A1) Example of consequence of t3 in braids

oriented braids on 6 or more strands. These replacement rules are used in conjunction

with Reidemeister moves in the proof in Section 4.2.

(A1) As a consequence of t3 moves in conjunction with a Reidemeister III move we have,

for i = 1, 2, 3:

σiσ
−1
i+1σiσ

−1
i+1 ↔ σ−1

i σi+1σ
−1
i σi+1 ↔ σi+1σ

−1
i σi+1σ

−1
i ↔ σ−1

i+1σiσ
−1
i+1σi

This follows from the (expansion) rewritings σ±1
i → σ∓2

i due to a t3 move, followed

by one or two Reidemeister III moves and a t3 collapse; expanding in the first, one

of the middle two, or last position yields the three equalities. See Figure 4.3 for a

visualization.

(A2) Due to rewriting (A1) and a t3 move, the following replacement rules also apply for

26

σi+1σ
−1
i σi+1σ

−1
i σ−1

i+1σiσ
−1
i+1σi

σiσ
−1
i+1σiσ

−1
i+1 σ−1

i σi+1σ
−1
i σi+1

Figure 4.3: (A1) Consequence of t3 in braids

i = 1, 2, 3:

σ±1
i σ∓1

i+1σ
±1
i σ∓1

i+1σ
±1
i → σ±1

i+1σ
∓1
i σ±1

i+1

σ±1
i+1σ

∓1
i σ±1

i+1σ
∓1
i σ±1

i+1 → σ±1
i σ∓1

i+1σ
±1
i

(A3) In the situation where σ1 occurs precisely twice and σ−1
1 does not appear, t4 gives

that the closure of the braid is equivalent to the closure of the same braid where σ1

is replaced by σ−1
1 in both instances; see Figure 4.5. This follows as a t4 move in

27

2 RII’s t4

Figure 4.4: Utilizing t4 to change crossings on antiparallel bigons

conjunction with two Reidemeister II moves can be used on bigons with antiparallel

orientation to change both crossings in the bigon. This equivalence is laid out in

Figure 4.4. Similarly, if σ−1
1 occurs precisely twice and σ1 does not appear, we can

replace each σ−1
1 with σ1. This gives us the following rewritings, where w, u, v ∈

{σ2, σ3, σ4}±1∗, i.e. w, u, and v are words over σ2, σ3, and σ4 and their inverses:

wσ1uσ1v ↔ wσ−1
1 uσ−1

1 v

When working in B5, if σ
±1
4 appears precisely twice with no occurrences of σ∓1

4 , we

can replace both σ±1
4 with σ∓1

4 , which gives the following rewritings with w, u, v ∈
{σ1, σ2, σ3}±1∗:

wσ4uσ4v ↔ wσ−1
4 uσ−1

4 v

(A4) To reduce computation time, a special case of the (A3) rewriting is also targeted for

identification. In particular, if one of the patterns (A4.1)-(A4.4) appears and these

are the only occurrences of σ±1
1 or σ±1

4 , as in Figure 4.5, then a t4 move on the braid

closure followed by a Reidemeister III move permits the braid to be destabilized (see

Section 2.1). That is, a Reidemeister I move can be used to remove the sole σ±1
1 or

σ±1
4 and thus reduce the braid index. Since the resulting braid is then a braid on 4

strands, the closure is t3, t4 equivalent to an unlink by Theorem 3.2.

(A4.1) σ±1
1 σ∓1

2 σ±1
1 σ∓1

2

(A4.2) σ±1
2 σ∓1

1 σ±1
2 σ∓1

1

(A4.3) σ±1
3 σ∓1

4 σ±1
3 σ∓1

4

(A4.4) σ±1
4 σ∓1

3 σ±1
4 σ∓1

3

28

t4

Figure 4.5: (A3) t4 move on braid closures

Note that without the alternating signs, the result still holds. When at least two

neighboring signs agree, a Reidemeister III move can be used and so the program is

already equipped to handle those patterns.

(A5) If we have precisely one occurrence each of σ1 and σ−1
1 , then two Reidemeister II moves

on the braid closure can be used to swap the signs on each; i.e., the σ1 becomes a

σ−1
1 and vice versa; see Figure 4.6. The same holds for σ4 and σ−1

4 in B5. This gives

the following rewritings, where w, u, v ∈ {σ2, σ3, σ4}±1∗ and x, y, z ∈ {σ1, σ2, σ3}±1∗:

wσ1uσ
−1
1 v ↔ wσ−1

1 uσ1v

xσ4yσ
−1
4 z ↔ xσ−1

4 yσ4z

29

RII

Figure 4.6: (A5) Reidemeister II move realized on braid closures

(A6) Targeted t3 increases (i.e., rewrites of the form σ±1
i → σ∓2

i) are used to enable

Reidemeister III moves, such as in the following examples. For a complete list, see

the list t3exps2 in Appendix A.4.

σ1σ
−1
2 σ1σ3σ

−1
2 σ1 → σ1σ

−1
2 σ−2

1 σ3σ
−1
2 σ1

σ2σ
−1
1 σ2σ

−1
3 σ2 → σ2σ

−1
1 σ−2

2 σ−1
3 σ2

Rather than enforcing one or both RIII moves, this was kept as a single t3 expansion

to ensure more possibilities were examined.

These move sequences were all implemented in the code to search for braid length

reductions.

30

4.4 5-strand braids of length at least 15

In order to handle the braids of length 15 and greater, we use conjugacy classes. Note that

the closures of conjugate braids yield the same knot or link. This is because conjugating

a braid is equivalent to a collection of Reidemeister II moves on a knot or link diagram.

Using the Computational Algebra System MAGMA [BCP97], the 102 conjugacy classes of

Q5 = B5/〈σ3
1〉N are computed and representatives in the σi’s are found in B5, completing

the sixth box of Figure 4.1.

Remark. In the code below, L is a permutation group isomorphic to Q5, and f : B5 → L

a surjective group homomorphism.

magma> B5< a, b, c, d > := Group< a, b, c, d | a*c=c*a, a*d = d*a, b*d = d*b,

a*b*a = b*a*b, b*c*b = c*b*c, c*d*c = d*c*d >;

magma> t3 := sub< B5 | a^3 >;

magma> T3 := t3^B5;

magma> f, L, K := CosetAction(B5, T3);

magma> cl := ConjugacyClasses(L);

Since MAGMA computes conjugacy classes through a permutation group, one element

of the preimage of each class is found using the code cl[i][3] @@ f;. This element, a

representative in B5 of the ith conjugacy class, is not necessarily of shortest length, so an

inductive argument as in Section 4.2 will not work here. For the conjugacy classes with a

representative of length at most 14, we are done by Theorem 4.2; for the rest, it suffices to

reduce the braid closure of the representative to the closure of a 5-strand braid of length

at most 14 or to the closure of a braid on at most 4 strands. The representative output by

MAGMA for a given conjugacy class is not necessarily unique – executed more than once,

the same code will output different representatives, because MAGMA grabs an element in

31

the preimage of the input conjugacy class at random. Due to this, the following results may

vary by conjugation from other executions of the previous code snippets. In one execution

of the code, the 102 representatives found in Appendix B were returned by MAGMA. Of

these, 80 are of length at most 14, and the following 22 are of length 15 or more.

1. [1,-2, 3,-4, 3,-2, 1,-2, 3,-4, 3,-2, 1,-2, 3,-4, 3,-2]

2. [1, 2, 1, 3,-4, 3,-2, 1, 3, 2, 4,-3, 2, 1, 4, 3,-2, 3,-4, 3]

3. [1, 2, 1, 4,-3,-2, 1,-4, 3,-2, 1, 3,-4, 3,-2, 1, 3,-2,-4,-3]

4. [1, 2, 1, 3,-4, 3,-2, 1, 3, 2, 4,-3, 2, 1, 4, 3,-2, 3,-4]

5. [1, 2, 1, 4,-3, 2, 1, 4,-3, 2, 1, 4,-3, 2, 1, 4,-3, 2, 4]

6. [1, 2, 1, 4,-3,-2, 1,-4, 3,-2, 1, 3,-4, 3,-2, 1, 3,-2,-4]

7. [1, 2,-4,-3, 2,-1, 2, 3,-4, 3,-2, 1, 3, 4,-2, 1,-3,-2,-4]

8. [2,-1, 2, 3,-4, 3, 2,-1, 2,-3, 2, 4,-3, 4,-2]

9. [2, 1, 3,-2,-4, 3,-2, 1,-2,-4, 3,-2, 1,-4, 3,-4]

10. [2,-1, 2, 3,-4, 3, 2,-1, 2, 3,-4, 3, 2,-1, 2, 3,-4]

11. [2,-1, 2,-3, 4,-3, 2,-1, 2,-3, 4,-3, 2,-1, 2,-3, 4]

12. [4, 3,-2,-1,-3, 2,-3, 4,-3, 2,-1, 2,-3, 4,-2]

13. [4, 3,-2, 3,-1, 2,-4, 3, 2,-1,-4, 3,-2, 3, 4]

14. [1,-2, 1,-3, 2,-3, 4,-3, 2,-1, 2,-3, 4,-3, 2]

15. [1, 2,-4,-3, 2, 1,-3,-2,-4, 3,-2, 1,-4, 3, 2]

16. [-1, 2, 3,-1,-4,-3, 2,-1,-3, 2, 4,-1,-3, 2,-4]

32

17. [1,-4,-3, 2,-1,-3, 2,-1,-4, 3, 2,-1,-4, 3, 2]

18. [1, 2, 3,-4,-3,-2, 1,-2,-3, 4,-3,-2, 1,-2, 3,-2]

19. [2,-1,-3, 2,-1,-3,-4,-3, 2,-1,-3, 2,-1,-3,-4,-3]

20. [1, 2,-1,-4, 3,-2, 1,-4, 3,-2, 1,-4, 3,-2, 3]

21. [4,-1, 2,-3, 4,-3, 2,-1, 2,-3, 2, 1, 4,-3,-2, 1]

22. [-4,-3, 2,-1, 2,-3, 4,-3,-2, 1,-2,-3, 4,-3, 2,-1]

Note that many these representatives can be shortened using conjugation. Representa-

tives 8, 12, and 13 can be shortened to length at most 14 by conjugation by the inverse of

the leading element, followed by (commuting and) a reduction using inverses or a t3 move;

representative 21 can likewise be reduced by conjugating by the final element and com-

muting. Representative 14 can similarly be reduced by conjugating by the final element,

then using an RIII move to enable a t3 reduction. As a result of these observations, we

compare the cyclic permutations of the conjugacy class representatives in the previous list

with the coset table output using Todd-Coxeter to see which coset each fell into. This was

accomplished using the TracedCosetFpGroup method in GAP, which automates tracing

each word through the coset table built with the Todd-Coxeter algorithm and outputs the

coset number. These coset numbers were then compared to the list of shortest represen-

tatives computed using the code in Appendix A.1. All but five are cyclically equivalent

to an element of a t3 equivalence class with a shortest representative of length at most

14; cosets 1, 2, 3, 10, and 11 in the above list were the exceptions. Cosets 2, 3, 10, and

11 were successfully reduced to braids of at most 14 crossings by using moves (A1)-(A6),

completing the proof of Theorem 4.1.

Theorem 4.1. The closures of all oriented 5-braids, except possibly for those t3, t4 equiv-

alent to the closure of (σ1σ
−1
2 σ3σ

−1
4 σ3σ

−1
2)3, are t3, t4 equivalent to an unlink.

33

Figure 4.7: The closure of (σ1σ
−1
2 σ3σ

−1
4 σ3σ

−1
2)3

Corollary 4.3. If the closure of (σ1σ
−1
2 σ3σ

−1
4 σ3σ

−1
2)3 is t3, t4 equivalent to an unlink, then

the closure of every oriented 5-braid is t3, t4 equivalent to an unlink.

4.5 The braid (σ1σ
−1
2 σ3σ

−1
4 σ3σ

−1
2)3

The closure of the remaining 5-strand braid β = (σ1σ
−1
2 σ3σ

−1
4 σ3σ

−1
2)3 is a 5-component

link with 18 crossings. A diagram is given in Figure 4.7. To determine whether the closure

of this braid is t3, t4 equivalent to an unlink, we need to utilize other methods.

One of these methods uses the homology of the 3-fold cyclic cover of the knot com-

plement. By using t3 moves on the first four crossings of the closure of β, we obtain the

22-crossing knot that is the closure of β′ = σ−2
1 σ2

2σ
−2
3 σ2

4σ3σ
−1
2 (σ1σ

−1
2 σ3σ

−1
4 σ3σ

−1
2)2. Using

SnapPy [CDGW], we compute the 3-fold cyclic cover M
(3)
c(β′) of the complement of the

closure c(β′) of β′ and compute the first homology with Z-coefficients. One should note

34

that attempts were made to simplify this knot first using SnapPy; however, no crossing

reductions were found.

In [1] : L = Link (b r a i d c l o s u r e = [−1 , −1, 2 , 2 , −3, −3, 4 , 4 , 3 ,

−2, 1 , −2, 3 , −4, 3 , −2, 1 , −2, 3 , −4, 3 , −2])

In [2] : M = L . e x t e r i o r ()

In [3] : covs = M. cover s (3) # Obtain the 3− f o l d cove r s

In [4] : M3 = covs [0] # Get the c y c l i c cover

In [5] : M3. homology () # Compute the f i r s t homology

Out [5] : Z/2 + Z/2 + Z/2 + Z/2 + Z/2 + Z/2 + Z/182 + Z/182 + Z

SnapPy yields that H1(M
(3)
c(β′),Z) = (Z/2)6⊕ (Z/182)2⊕Z. Then, using the short exact

sequence from Section 2.3 we find that H1(M
(3)
c(β′),Z/2)

∼= (Z/2)8. The first homology

of the 3-fold cyclic branched cover is preserved by t3 moves [Prz88a, Theorem 1] and t4

moves [Prz88b, Theorem 3.2]. Thus, as dimH1(M
(3)
Un

,Z/2) = 2(n − 1) where Un is the

n-component unlink, we have that if c(β′) is t3, t4 equivalent to an unlink, it must be

equivalent to U5, the unlink of 5 components. As c(β′) is t3 equivalent to the closure of β,

it follows that if the closure of β is t3, t4 unlinkable, then it too must be equivalent to the

5-component unlink.

35

Chapter 5

Extensions

5.1 Extending to B6

In Chapter 3, we proved the t3, t4-conjecture for the closures of all oriented 4-braids and

in Chapter 4 we proved the t3, t4-conjecture the closures of all but one conjugacy class

of oriented 5-braids. In this section, we extend those results to the closures of oriented

6-braids. Although the quotient Q6 = B6/〈σ3
1〉N is infinite by a result of Coxeter [Cox57],

for a given braid word length there are only finitely many 6-strand braids. Thus we utilize

the induction argument from 5-braids and begin by examining 6-braids with 12 crossings.

The logic in Section 4.1 regarding the head of these braids still holds. Since we are

concerned with the links resulting from the closures of these braids, we again may assume

without loss of generality that the braids begin with one of σ1σ
−1
2 σ1σ

±1
3 , σ1σ

±1
2 σ∓1

3 σ±1
2 , or

σ1σ
±1
2 σ±1

3 σ±1
4 . This reduces the number of 12 crossing 6-strand braids we need to consider

from 1012 braids to 11×108 braids. Furthermore, since σ±1
i σ±1

i may be reduced using either

a t3 move (if both exponents agree) or due to a Reidemeister II move (if the exponents

have opposite signs), we have that if a given entry is σ±1
i then the following entry must be

σ±1
j for j ∈ {1, 2, 3, 4, 5}\{i}. This again reduces the number of 12-strand braids we need

to consider down to 184,549,376, less than 0.02% of the original number.

To enumerate and simplify these braids, we wrote a program in Python to run within

36

SnapPy that (a) creates each of these braids, (b) tries to simplify the closure of each braid

within SnapPy, and (c) only keeps the braid word of the simplified closure if the result has

12 crossings and is a braid on 6 strands. That is, if the braid closure can be simplified to

at most 11 crossings or is the (connect sum or disjoint union of) closure of a braid on at

most 5 strands, then Theorem 4.1 applies. The enumeration script is included in Appendix

A.5. After this enumeration, approximately 13,577,568 braids are left and are then passed

to the Python program in Appendix A.4, which was extended to work for 6-strand braids.

These were all successfully reduced, leading to the following theorem.

Theorem 5.1. All oriented links which result from the closure of a 6-strand braid with at

most 12 crossings are t3, t4 unlinkable.

5.2 Extending the method to other local moves

By viewing a local move on diagrams as a local move on braids and their closures, the

methods outlined in Chapter 3 can be extended to apply to moves other than t3 and t4.

That is, a system of replacement rules based on a given local move can be developed to

iteratively reduce braid words and thus determine if the move is an unlinking move on the

braid group, as long as a finite quotient of a braid group can be found.

One example to consider is the delta move shown in Figure 5.1. Within the braid

group Bn with n ≥ 3, this move gives rise to the relations (σiσ
−1
i+1)

3 = 1 for 1 ≤ i ≤ n− 2.

However, neither GAP nor MAGMA can compute the quotient group B3/〈(σ1σ
−1
2)3〉N , and

so we cannot get a transversal to begin rewrites on.

In extending this method to the 3-move, we again use the quotient Bn/〈σ3
1〉N of the nth

braid group, but disregard moves that are consequences of t4 (i.e., move (A3) in Chapter

4.3). For oriented 4-strand braids, this extension is successfully able to reduce all 647 non-

trivial coset representatives by at least one crossing and thus the closures of all 4-strand

37

Figure 5.1: The delta move

braids are 3-move equivalent to an unlink. This reproduces a result of [Che00]. For 5-

strand braids, we observe that each generator must appear at least twice: if any generator

is missing, the braid closure in question is a split link of closures of braids on at most 4

strands; if any generator appears exactly once, the braid closure is a connect sum of braids

on at most 4 strands. Unfortunately, an analog to the replacement rule (A3) cannot be

realized on braids, as utilizing a t3 move in this situation results in a diagram which is

not immediately realizable as a braid. The issue here is with the inherited orientation

of the strands; an example is shown in Figure 5.2. Although the result is a diagram

of the unknot, it is not immediately a braid diagram and, when attempting to preserve

orientation, a conflict arises.

One should note that Chen wrote about the 3-move on 4- and 5-strand braids in [Che00].

As explained in Remark 3.3, the results in [Che00] regarding the 3-move on unoriented

links are based on results regarding t3, t4 on oriented links. Thus his results require further

examination.

38

t3

σ1σ
−1
2 σ1σ

−1
2

not a braid diagram

Figure 5.2: An t3 move resulting in a non-braid diagram

39

Appendix A

Python code

A.1 Coset Computation

This Python program builds a representative of shortest length for each of the 648 cosets in

the group B4/〈σ3
1〉N , utilizing the coset table output by the CosetTable method in GAP.

Modifications were made to build representatives for the group B5/〈σ3
1〉N .

import numpy as np

import sys

genera to r s

gens = [‘ 1 ’ , ‘−1 ’ , ‘ 2 ’ , ‘−2 ’ , ‘ 3 ’ , ‘−3 ’]

#Read in co s e t t a b l e output from GAP in to v a r i a b l e ‘ f i l e ’

data = []

for l i n e in f i l e :

l i n eda t a = []

for j in range (6) :

l i n eda t a . append (int (l i n e [3+6∗ j :8+6∗ j]))
l i n eda t a = np . asar ray (l i n eda t a)

data . append (l i n eda t a)

40

data = np . asar ray (data)

Create l a b e l output

cosetReps = np . empty (648 , dtype = ‘ object ’)

cosetReps [0] = ’ id ’

f o r j in range (6) :

cosetReps [data [0] [j]−1] = s t r (gens [j])

f o r i in range (1 , 648) :

f o r j in range (6) :

i f cosetReps [data [i] [j]−1] == None :

cosetReps [data [i] [j]−1] = cosetReps [i]+gens [j]

A.2 First pass elimination (B5 firstpass.py)

This Python program runs on the output from the code in Appendix A.1 and saves only

those beginning with the words from Section 4.1. It also partitions the saved representatives

by length so that an induction argument can be utilized.

−∗− coding : u t f−8 −∗−
”””

Program to e l im ina t e some b ra i d s : can reduce to b ra i d s t ha t s t a r t

wi th one o f :

− [1 ,−2 , 1,+/−3, . . .]

− [1,+/−2,−/+3,+/−2, . . .]

− [1,+/−2,+/−3,+/−4, . . .]

and are o f l e n g t h at l e a s t 12

”””

f i l e l o c = ”C:// Users // tenno //OneDrive//Documents// PythonScr ipts //”

41

def saveLine (l i n e) :

i f len (l i n e) == 25 : s t = ”12”

e l i f len (l i n e) == 27 : s t = ”13”

e l i f len (l i n e) == 29 : s t = ”14”

e l i f len (l i n e) == 31 : s t = ”15”

e l i f len (l i n e) == 33 : s t = ”16”

e l i f len (l i n e) == 35 : s t = ”17”

e l i f len (l i n e) == 37 : s t = ”18”

e l i f len (l i n e) == 39 : s t = ”19”

e l i f len (l i n e) == 41 : s t = ”20”

with open(f i l e l o c + ” f i r s t p a s s e l im v 3 // reps ” + s t + ” . txt ” , ’ a ’) as f :

f . wr i t e (l i n e)

f . c l o s e ()

i n f i l e = open(f i l e l o c + ”b5 output raw . txt ” , ’ r ’)

ou t s t r i n g = ””

for l i n e in i n f i l e :

i f (int (l i n e [: 2]) == 1) and (len (l i n e [: −1]) > 22) :

i f (int (l i n e [2 : 4]) == −2) and (int (l i n e [4 : 6]) == 1) and

(int (l i n e [7]) == 3) :

saveLine (l i n e)

e l i f (int (l i n e [3]) == 2) and (int (l i n e [5]) == 3) and

(int (l i n e [7]) == 4) :

saveLine (l i n e)

e l i f (int (l i n e [2 : 4]) == 2) and (int (l i n e [4 : 6]) == −3) and

(int (l i n e [6 : 8]) == 2) :

saveLine (l i n e)

e l i f (int (l i n e [2 : 4]) == −2) and (int (l i n e [4 : 6]) == 3) and

(int (l i n e [6 : 8]) == −2):

saveLine (l i n e)

42

i n f i l e . c l o s e ()

A.3 Braid rewriting wrapper (B5 simplify.py)

This Python program reads the output files from the first pass elimination code (Appendix

A.2) line by line – i.e., braid by braid – and runs the braid rewriting code (Appendix A.4)

on each braid. It stores successes and failures separately: for successes, both the original

and successfully reduced braid words are stored so that the program can be checked for

accuracy; for failures, the final braid list formed by the braid rewriting code is stored for

reference.

−∗− coding : u t f−8 −∗−
import bra id r educ t i on s

import csv

import datet ime

I n i t i a l i z e l i s t s

f a i l s = [] # s t o r e s o r i g i n a l b ra id word where program cou ld not s imp l i f y

s u c c e s s e s = [] # s t o r e s o r i g i n a l and reduced bra id

def toBraid (l i n e) :

”””Function to ca s t each l i n e as a bra id ”””

i f l i n e [−1] == ”\n” :
l i n e = l i n e [: −1]

l ength = len (l i n e)

i f l ength%2 != 0 :

return False

bra id = []

for i in range (0 , length , 2) :

bra id . append (int (l i n e [i : i +2]))

return bra id

43

def toSt r (braid , addLine) :

””” r e ca s t a braidword as a s t r i n g f o r sav ing ”””

i f type (bra id [0]) != int :

out = ’ ’

for i in range (len (bra id)) :

out . j o i n (toSt r (braid , Fa l se))

return out

s t r i n g = ’ ’

for gen in bra id :

i f gen > 0 :

s t r i n g += ” ” + str (gen)

else :

s t r i n g += str (gen)

i f addLine :

s t r i n g += ’ \n ’

return s t r i n g

s t = ”15” #va lue between 12 and 20

f i l e = open(”C:\\ Users \\ tenno \\OneDrive\\Documents\\PythonScr ipts \\ f i r s t p a s s e l i m \\ reps ” +

f i l e l o c = ”C:\\ Users \\ tenno \\OneDrive\\Documents\\PythonScr ipts \\v12Outputs march5”

Var iab l e to keep t rack o f p rogre s s

ct = 0

print (” Star t at ” + str (datet ime . datet ime . now ()))

for l i n e in f i l e :

bra id = toBraid (l i n e)

compbraid = bra id [:]

b r a i d l i s t , t f = bra id r educ t i on s . f i nd th eb r a i d s (compbraid)

44

i f not t f : f a i l s . append ([toSt r (braid , Fa l se) , str (b r a i d l i s t) , ’ \n ’])

else : s u c c e s s e s . append ([toSt r (braid , Fa l se) , t oSt r (b r a i d l i s t [0] , True)])

c t += 1

i f ct%50 == 0 : print (c t)

f i l e . c l o s e ()

print (”End at ” + str (datet ime . datet ime . now ()))

Save f a i l s , s u c c e s s e s to f i l e s

with open(f i l e l o c + ’ \\ f a i l s n o r e d ’ + s t + ’ . txt ’ , ’w ’) as f :

w r i t e r = csv . wr i t e r (f , d e l im i t e r = ” ”)

wr i t e r . wr i terows (f a i l s)

with open(f i l e l o c + ’ \\ s u c c e s s e s r e d ’ + s t + ’ . txt ’ , ’w ’) as f :

w r i t e r = csv . wr i t e r (f , d e l im i t e r = ” ”)

wr i t e r . wr i terows (s u c c e s s e s)

A.4 Braid rewriting (braidreductions.py)

This is the Python program that forms the core of the proof in Section 4.2. The main

function is findthebraids which, upon input of a braid word, iteratively constructs braids

whose closures are t3, t4 equivalent to the closure of the input braid using the replacement

rules from Section 4.3.

−∗− coding : u t f−8 −∗−

Define g l o b a l v a r i a b l e s

b r a i d l i s t = []

minlength = 100

s t a r t l e n g t h = 20

index = 0

f i l e l o c = ”//home//ubuntu//Documents// PythFi le s //v13Outputs //”

45

class GetOutOfLoop (Exception) : pass

Reduction rep lacement r u l e s t ha t are consequences o f the Reidemeis ter I I I

move , f o l l owed by a Reidemeis ter I I move or a t 3 move .

r 3 r ew r i t e s = [[[1 , 2 , 1 , −2] , [2 , 1]] , [[−2 , 1 , 2 , 1] , [1 , 2]] ,

[[2 ,1 ,−2 ,−1] , [−1 , 2]] , [[1 ,−2 ,−1 ,−2] , [−2 ,−1]] ,

[[2 ,−1 ,−2 ,−1] , [−1 ,−2]] , [[−2 ,−1 ,−2 , 1] , [−1 ,−2]] ,

[[−1 ,−2 ,−1 ,2] , [−2 ,−1]] , [[−1 , 2 , 1 , 2] , [2 , 1]] ,

[[2 , 1 , 2 , −1] , [1 , 2]] , [[1 ,2 ,−1 ,−2] , [−2 , 1]] ,

[[−2 ,−1 ,2 ,1] , [1 , −2]] , [[−1 ,−2 ,1 ,2] , [2 , −1]] ,

[[1 , 2 , 1 , 2] , [2 , 1 , −2]] , [[2 , 1 , 2 , 1] , [−2 , 1 , 2]] ,

[[1 , 2 , −1, 2] , [−2 , 1 , −2]] , [[−2 , 1 , 2 , −1] , [2 , 1 , 2]] ,

[[1 , −2, −1, 2] , [−2 , −1, −2]] , [[−2 , −1, 2 , −1] , [1 , −2, 1]] ,

[[−1 , −2, −1, −2] , [−2 , −1, 2]] , [[− 2 , −1, −2, −1] , [2 , −1, −2]] ,

[[−1 , 2 , 1 , −2] , [2 , 1 , 2]] , [[2 , 1 , −2, 1] , [−1 , 2 , −1]] ,

[[−1 , −2, 1 , −2] , [2 , −1, 2]] , [[2 , −1, −2, 1] , [−2 , −1, −2]] ,

[[2 , 3 , 2 , −3] , [3 , 2]] , [[−3 , 2 , 3 , 2] , [2 , 3]] ,

[[3 ,2 ,−3 ,−2] , [−2 , 3]] , [[2 ,−3 ,−2 ,−3] , [−3 ,−2]] ,

[[3 ,−2 ,−3 ,−2] , [−2 ,−3]] , [[−3 ,−2 ,−3 , 2] , [−2 ,−3]] ,

[[−2 ,−3 ,−2 ,3] , [−3 ,−2]] , [[−2 , 3 , 2 , 3] , [3 , 2]] ,

[[3 , 2 , 3 , −2] , [2 , 3]] , [[2 ,3 ,−2 ,−3] , [−3 , 2]] ,

[[−3 ,−2 ,3 ,2] , [2 , −3]] , [[−2 ,−3 ,2 ,3] , [3 , −2]] ,

[[2 , 3 , 2 , 3] , [3 , 2 , −3]] , [[3 , 2 , 3 , 2] , [−3 , 2 , 3]] ,

[[2 , 3 , −2, 3] , [−3 , 2 , −3]] , [[−3 , 2 , 3 , −2] , [3 , 2 , 3]] ,

[[2 , −3, −2, 3] , [−3 , −2, −3]] , [[−3 , −2, 3 , −2] , [2 , −3, 2]] ,

[[−2 , −3, −2, −3] , [−3 , −2, 3]] , [[− 3 , −2, −3, −2] , [3 , −2, −3]] ,

[[−2 , 3 , 2 , −3] , [3 , 2 , 3]] , [[3 , 2 , −3, 2] , [−2 , 3 , −2]] ,

[[−2 , −3, 2 , −3] , [3 , −2, 3]] , [[3 , −2, −3, 2] , [−3 , −2, −3]] ,

[[3 , 4 , 3 , −4] , [4 , 3]] , [[−4 , 3 , 4 , 3] , [3 , 4]] ,

[[4 ,3 ,−4 ,−3] , [−3 , 4]] , [[3 ,−4 ,−3 ,−4] , [−4 ,−3]] ,

[[4 ,−3 ,−4 ,−3] , [−3 ,−4]] , [[−4 ,−3 ,−4 , 3] , [−3 ,−4]] ,

46

[[−3 ,−4 ,−3 ,4] , [−4 ,−3]] , [[−3 , 4 , 3 , 4] , [4 , 3]] ,

[[4 , 3 , 4 , −3] , [3 , 4]] , [[3 ,4 ,−3 ,−4] , [−4 , 3]] ,

[[−4 ,−3 ,4 ,3] , [3 , −4]] , [[−3 ,−4 ,3 ,4] , [4 , −3]] ,

[[3 , 4 , 3 , 4] , [4 , 3 , −4]] , [[4 , 3 , 4 , 3] , [−4 , 3 , 4]] ,

[[3 , 4 , −3, 4] , [−4 , 3 , −4]] , [[−4 , 3 , 4 , −3] , [4 , 3 , 4]] ,

[[3 , −4, −3, 4] , [−4 , −3, −4]] , [[−4 , −3, 4 , −3] , [3 , −4, 3]] ,

[[−3 , −4, −3, −4] , [−4 , −3, 4]] , [[− 4 , −3, −4, −3] , [4 , −3, −4]] ,

[[−3 , 4 , 3 , −4] , [4 , 3 , 4]] , [[4 , 3 , −4, 3] , [−3 , 4 , −3]] ,

[[−3 , −4, 3 , −4] , [4 , −3, 4]] , [[4 , −3, −4, 3] , [−4 , −3, −4]]]

Replacements o f the form (A1)

r3t3moves = [[[1 , −2, 1 , −2] , [−1 , 2 , −1, 2] , [2 , −1, 2 , −1] , [−2 , 1 , −2, 1]] ,

[[2 , −3, 2 , −3] , [−2 , 3 , −2, 3] , [3 , −2, 3 , −2] , [−3 , 2 , −3, 2]] ,

[[3 , −4, 3 , −4] , [−3 , 4 , −3, 4] , [4 , −3, 4 , −3] , [−4 , 3 , −4, 3]]]

Further consequences o f (A1) and commuting

t 3 2 r ew r i t e s = [[[2 , −1, 2 , −1, −3, 2 , −3] , [1 , −2, 1 , 3 , −2, 3]] ,

[[2 , −1, 2 , −1, 3 , −2, 3] , [−1 , 2 , −1, −3, 2 , −3]] ,

[[−2 , 1 , −2, 1 , −3, 2 , −3] , [1 , −2, 1 , 3 , −2, 3]] ,

[[−2 , 1 , −2, 1 , 3 , −2, 3] , [−1 , 2 , −1, −3, 2 , −3]] ,

[[3 , −2, 3 , −2, −4, 3 , −4] , [2 , −3, 2 , 4 , −3, 4]] ,

[[3 , −2, 3 , −2, 4 , −3, 4] , [−2 , 3 , −2, −4, 3 , −4]] ,

[[−3 , 2 , −3, 2 , −4, 3 , −4] , [2 , −3, 2 , 4 , −3, 4]] ,

[[−3 , 2 , −3, 2 , 4 , −3, 4] , [−2 , 3 , −2, −4, 3 , −4]] ,

[[2 , −3, 2 , −3, −1, 2 , −1] , [3 , −2, 3 , 1 , −2, 1]] ,

[[2 , −3, 2 , −3, 1 , −2, 1] , [−3 , 2 , −3, −1, 2 , −1]] ,

[[−2 , 3 , −2, 3 , −1, 2 , −1] , [3 , −2, 3 , 1 , −2, 1]] ,

[[−2 , 3 , −2, 3 , 1 , −2, 1] , [−3 , 2 , −3, −1, 2 , −1]] ,

[[3 , −4, 3 , −4, −2, 3 , −2] , [4 , −3, 4 , 2 , −3, 2]] ,

[[3 , −4, 3 , −4, 2 , −3, 2] , [−4 , 3 , −4, −2, 3 , −2]] ,

[[−3 , 4 , −3, 4 , −2, 3 , −2] , [4 , −3, 4 , 2 , −3, 2]] ,

47

[[−3 , 4 , −3, 4 , 2 , −3, 2] , [−4 , 3 , −4, −2, 3 , −2]] ,

[[3 , −2, 3 , −1, 2 , −1, 2] , [−3 , 2 , −3, −1, 2 , −1]] ,

[[−3 , 2 , −3, −1, 2 , −1, 2] , [3 , −2, 3 , 1 , −2, 1]] ,

[[3 , −2, 3 , 1 , −2, 1 , −2] , [−3 , 2 , −3, −1, 2 , −1]] ,

[[−3 , 2 , −3, 1 , −2, 1 , −2] , [3 , −2, 3 , 1 , −2, 1]] ,

[[4 , −3, 4 , −2, 3 , −2, 3] , [−4 , 3 , −4, −2, 3 , −2]] ,

[[−4 , 3 , −4, −2, 3 , −2, 3] , [4 , −3, 4 , 2 , −3, 2]] ,

[[4 , −3, 4 , 2 , −3, 2 , −3] , [−4 , 3 , −4, −2, 3 , −2]] ,

[[−4 , 3 , −4, 2 , −3, 2 , −3] , [4 , −3, 4 , 2 , −3, 2]] ,

[[1 , −2, 1 , −3, 2 , −3, 2] , [−1 , 2 , −1, −3, 2 , −3]] ,

[[−1 , 2 , −1, −3, 2 , −3, 2] , [1 , −2, 1 , 3 , −2, 3]] ,

[[1 , −2, 1 , 3 , −2, 3 , −2] , [−1 , 2 , −1, −3, 2 , −3]] ,

[[−1 , 2 , −1, 3 , −2, 3 , −2] , [1 , −2, 1 , 3 , −2, 3]] ,

[[2 , −3, 2 , −4, 3 , −4, 3] , [−2 , 3 , −2, −4, 3 , −4]] ,

[[−2 , 3 , −2, −4, 3 , −4, 3] , [2 , −3, 2 , 4 , −3, 4]] ,

[[2 , −3, 2 , 4 , −3, 4 , −3] , [−2 , 3 , −2, −4, 3 , −4]] ,

[[−2 , 3 , −2, 4 , −3, 4 , −3] , [2 , −3, 2 , 4 , −3, 4]]]

Replacements o f the form (A2)

t 3 r ew r i t e s = [[[1 , −2, 1 , −2, 1] , [2 , −1, 2]] ,

[[−1 , 2 , −1, 2 , −1] , [−2 , 1 , −2]] ,

[[2 , −1, 2 , −1, 2] , [1 , −2, 1]] ,

[[−2 , 1 , −2, 1 , −2] , [−1 , 2 , −1]] ,

[[2 , −3, 2 , −3, 2] , [3 , −2, 3]] ,

[[−2 , 3 , −2, 3 , −2] , [−3 , 2 , −3]] ,

[[3 , −2, 3 , −2, 3] , [2 , −3, 2]] ,

[[−3 , 2 , −3, 2 , −3] , [−2 , 3 , −2]] ,

[[3 , −4, 3 , −4, 3] , [4 , −3, 4]] ,

[[−3 , 4 , −3, 4 , −3] , [−4 , 3 , −4]] ,

[[4 , −3, 4 , −3, 4] , [3 , −4, 3]] ,

[[−4 , 3 , −4, 3 , −4] , [−3 , 4 , −3]]]

48

Spe c i a l i z e d (A4) t a r g e t s

t4bar r3 s tabs4 = [[3 , −4, 3 , −4] , [−3 , 4 , −3, 4] ,

[4 , −3, 4 , −3] , [−4 , 3 , −4, 3]]

t 4bar r3 s tabs1 = [[2 , −1, 2 , −1] , [−2 , 1 , −2, 1] ,

[1 , −2, 1 , −2] , [−1 , 2 , −1, 2]]

Replacements o f the form (A6)

t3exps = [[[1 , −2, 1 , 3 , −2, 1] , [1 , −2, −1, −1, 3 , −2, 1]] ,

[[−1 , 2 , −1, −3, 2 , −1] , [−1 , 2 , 1 , 1 , −3, 2 , −1]] ,

[[4 , −3, 4 , 2 , −3, 4] , [−4 , 3 , −4, −4, 2 , −3, 4]] ,

[[−4 , 3 , −4, −2, 3 , −4] , [−4 , 3 , 4 , 4 , −2, 3 , −4]] ,

[[1 , −2, 3 , 1 , −2, 1] , [1 , −2, 3 , −1, −1, −2, 1]] ,

[[−1 , 2 , −3, −1, 2 , −1] , [−1 , 2 , −3, 1 , 1 , 2 , −1]] ,

[[4 , −3, 2 , 4 , −3, 4] , [4 , −3, 2 , −4, −4, −3, 4]] ,

[[−4 , 3 , −2, −4, 3 , −4] , [−4 , 3 , −2, 4 , 4 , 3 , −4]] ,

[[1 , −2, 1 , −3, −2, 1] , [1 , −2, −1, −1, −3, −2, 1]] ,

[[−1 , 2 , −1, 3 , 2 , −1] , [−1 , 2 , 1 , 1 , 3 , 2 , −1]] ,

[[4 , −3, 4 , −2, −3, 4] , [−4 , 3 , −4, −4, −2, −3, 4]] ,

[[−4 , 3 , −4, 2 , 3 , −4] , [−4 , 3 , 4 , 4 , 2 , 3 , −4]] ,

[[1 , −2, −3, 1 , −2, 1] , [1 , −2, −3, −1, −1, −2, 1]] ,

[[−1 , 2 , 3 , −1, 2 , −1] , [−1 , 2 , 3 , 1 , 1 , 2 , −1]] ,

[[4 , −3, −2, 4 , −3, 4] , [4 , −3, −2, −4, −4, −3, 4]] ,

[[−4 , 3 , 2 , −4, 3 , −4] , [−4 , 3 , 2 , 4 , 4 , 3 , −4]]]

More rep lacements o f the form (A6)

t3exps2 = [[[2 , −1, 2 , −3, 2] , [2 , −1, −2, −2, −3, 2]] ,

[[2 , −3, 2 , −1, 2] , [2 , −3, −2, −2, −1, 2]] ,

[[−2 , 1 , −2, 3 , −2] , [−2 , 1 , 2 , 2 , 3 , −2]] ,

[[−2 , 3 , −2, 1 , −2] , [−2 , 3 , 2 , 2 , 1 , −2]] ,

[[3 , −2, 3 , −4, 3] , [3 , −2, −3, −3, −4, 3]] ,

49

[[3 , −4, 3 , −2, 3] , [3 , −4, −3, −3, −2, 3]] ,

[[−3 , 2 , −3, 4 , −3] , [−3 , 2 , 3 , 3 , 4 , −3]] ,

[[−3 , 4 , −3, 2 , −3] , [−3 , 4 , 3 , 3 , 2 , −3]] ,

[[2 , 1 , 2 , −3, 2] , [2 , 1 , −2, −2, −3, 2]] ,

[[2 , 3 , 2 , −1, 2] , [2 , 3 , −2, −2, −1, 2]] ,

[[−2 , −1, −2, 3 , −2] , [−2 , −1, 2 , 2 , 3 , −2]] ,

[[−2 , −3, −2, 1 , −2] , [−2 , −3, 2 , 2 , 1 , −2]] ,

[[3 , 2 , 3 , −4, 3] , [3 , 2 , −3, −3, −4, 3]] ,

[[3 , 4 , 3 , −2, 3] , [3 , 4 , −3, −3, −2, 3]] ,

[[−3 , −2, −3, 4 , −3] , [−3 , −2, 3 , 3 , 4 , −3]] ,

[[−3 , −4, −3, 2 , −3] , [−3 , −4, 3 , 3 , 2 , −3]] ,

[[2 , −1, 2 , 3 , 2] , [2 , −1, −2, −2, 3 , 2]] ,

[[2 , −3, 2 , 1 , 2] , [2 , −3, −2, −2, 1 , 2]] ,

[[−2 , 1 , −2, −3, −2] , [−2 , 1 , 2 , 2 , −3, −2]] ,

[[−2 , 3 , −2, −1, −2] , [−2 , 3 , 2 , 2 , −1, −2]] ,

[[3 , −2, 3 , 4 , 3] , [3 , −2, −3, −3, 4 , 3]] ,

[[3 , −4, 3 , 2 , 3] , [3 , −4, −3, −3, 2 , 3]] ,

[[−3 , 2 , −3, −4, −3] , [−3 , 2 , 3 , 3 , −4, −3]] ,

[[−3 , 4 , −3, −2, −3] , [−3 , 4 , 3 , 3 , −2, −3]]]

Reidemeis ter I I I moves

r 3ba s i c = [[[1 , 2 , 1] , [2 , 1 , 2]] , [[1 , 2 , −1] , [−2 , 1 , 2]] ,

[[−1 , 2 , 1] , [2 , 1 , −2]] , [[−1 ,−2 ,1] , [2 ,−1 ,−2]] ,

[[1 ,−2 ,−1] , [−2 ,−1 ,2]] , [[−1 ,−2 ,−1] , [−2 ,−1 ,−2]] ,

[[2 , 3 , 2] , [3 , 2 , 3]] , [[2 , 3 , −2] , [−3 , 2 , 3]] ,

[[−2 , 3 , 2] , [3 , 2 , −3]] , [[−2 ,−3 ,2] , [3 ,−2 ,−3]] ,

[[2 ,−3 ,−2] , [−3 ,−2 ,3]] , [[−2 ,−3 ,−2] , [−3 ,−2 ,−3]] ,

[[3 , 4 , 3] , [4 , 3 , 4]] , [[3 , 4 , −3] , [−4 , 3 , 4]] ,

[[−3 , 4 , 3] , [4 , 3 , −4]] , [[−3 ,−4 ,3] , [4 ,−3 ,−4]] ,

[[3 ,−4 ,−3] , [−4 ,−3 ,4]] , [[−3 ,−4 ,−3] , [−4 ,−3 ,−4]]]

50

def f i n d s u b l i s t s (seq , s u b l i s t) :

””” Locates a l l occurrences o f SUBLIST wi th in input SEQ”””

l ength = len (s u b l i s t)

i x s = []

for index , va lue in enumerate(seq) :

i f value == s u b l i s t [0] and seq [index : index+length] == s u b l i s t :

i x s . append ([index , index+length])

return i x s , len (i x s) != 0

def r e p l a c e s u b l i s t (braid , st , st1 , i x s) :

”””Replaces s u b l i s t ST wi th in BRAID with s u b l i s t ST1 by us ing input

indexes IXS , output from FIND SUBLISTS”””

newbraids = []

for i in range (len (i x s)) :

newBraid = []

Check i nd i c e s are co r r e c t

i f bra id [i x s [i] [0] : i x s [i] [1]] != s t :

print (”ERROR! ”)

newbraids . append (bra id)

else :

newBraid = bra id [: i x s [i] [0]]

for j in range (len (s t1)) :

newBraid . append (s t1 [j])

for k in range (i x s [i] [1] , len (bra id)) :

newBraid . append (bra id [k])

newbraids . append (newBraid)

return newbraids

def r e s e t () :

”””Resets g l o b a l v a r i a b l e s a t s t a r t ”””

global b r a i d l i s t

51

global minlength

b r a i d l i s t = []

minlength = 100

def upda t eb r a i d l i s t (bra id) :

”””Checks i f inpu t BRAID (or a c y c l i c permutat ion) i s a l r eady in the

g l o b a l v a r i a b l e BRAIDLIST; i f not , appends BRAID to BRAIDLIST”””

global b r a i d l i s t

global minlength

global s t a r t l e n g t h

i f len (bra id) < minlength :

minlength = len (bra id)

print (”New min length i s ” + str (minlength))

t f f l a g = Fal se

newBraid = bra id [:]

i f newBraid in b r a i d l i s t : t f f l a g = True

for i in range (len (bra id)−1):

newBraid = cyc l e (newBraid)

i f newBraid in b r a i d l i s t : t f f l a g = True

i f not t f f l a g : b r a i d l i s t . append (bra id)

def trymove (braid , st , st1 , t r y t a i l = False , headlen = 0) :

”””Tries to l o c a t e the s u b l i s t ST wi th in BRAID; i f l oca ted , r e p l a c e s

ST with ST1 in BRAID and updates the g l o b a l v a r i a b l e BRAIDLIST. I f

TRYTAIL = TRUE, w i l l l ook to the head o f BRAID and cy c l e miss ing end

en t r i e s o f ST us ing commutation r u l e s . ”””

newBraid = bra id [:]

newBraids , t f = lookLRwrap (newBraid , s t)

i f t f :

for newbr in newBraids :

newBraid = newbr [:]

52

i x s , t f 2 = f i n d s u b l i s t s (newBraid , s t)

newBraids2 = r e p l a c e s u b l i s t (newBraid , st , st1 , i x s)

for i in range (len (newBraids2)) :

upda t eb r a i d l i s t (newBraids2 [i])

e l i f t r y t a i l :

newBraids , t f = lookTai lwrap (newBraid , st , headlen)

i f t f :

for newbr in newBraids :

newBraid = newbr [:]

ix s , t f 2 = f i n d s u b l i s t s (newBraid , s t)

newBraids2 = r e p l a c e s u b l i s t (newBraid , st , st1 , i x s)

for i in range (len (newBraids2)) :

upda t eb r a i d l i s t (newBraids2 [i])

def f i nd t 4ba r r 3 s t ab s (bra id) :

”””Looks f o r the (A4) pa t t e rn s w i th in BRAID, and i f t h e s e are the

on ly occurrences o f +/−1 or +/−4, r e tu rns TRUE (ie , us ing

rep lacement (A1) r e s u l t s in only one occurrence o f +/−1 or +/−4,

thus the b ra id can be d e s t a b i l i z e d . ”””

newBraid = bra id [:]

for i in range (len (t4bar r3 s tabs4)) :

ixs , tfnew = f i n d s u b l i s t s (newBraid , t4bar r3 s tabs4 [i])

i f not tfnew :

newBraids , tfnew = lookLRwrap (newBraid , t4bar r3 s tabs4 [i])

i f len (newBraids) != 0 : newBraid = newBraids [0]

else :

continue

i f tfnew and ((newBraid . count (4) == 2 and newBraid . count (−4) == 0) or

(newBraid . count (4) == 0 and newBraid . count (−4) == 2)) :

return newBraid , True

for i in range (len (t4bar r3 s tabs1)) :

53

i x s , tfnew = f i n d s u b l i s t s (newBraid , t4bar r3 s tabs1 [i])

i f not tfnew :

newBraids , tfnew = lookLRwrap (newBraid , t4bar r3 s tabs1 [i])

i f len (newBraids) != 0 : newBraid = newBraids [0]

else :

continue

i f tfnew and ((newBraid . count (1) == 2 and newBraid . count (−1) == 0) or

(newBraid . count (1) == 0 and newBraid . count (−1) == 2)) :

return newBraid , True

return braid , Fa l se

def reducet3 (bra id) :

”””Uses t 3 moves to reduce the number o f c r o s s i n g s ”””

i = 0

while i < len (bra id)−1:

newBraid = bra id [:]

i f newBraid [i] == newBraid [i +1] :

newBraid [i] = −newBraid [i]

newBraid . pop (i +1)

upda t eb r a i d l i s t (newBraid)

i += 1

def reduce inv (bra id) :

”””Uses a Reidemeis ter I I move (ie , i n v e r s e s in the b ra id group) to

reduce the number o f c r o s s i n g s ”””

i = 0

while i < len (bra id)−1:

newBraid = bra id [:]

i f newBraid [i] + newBraid [i +1] == 0 :

newBraid . pop (i +1)

newBraid . pop (i)

54

upda t eb r a i d l i s t (newBraid)

i += 1

def cy c l e (bra id) :

””” Cy c l i c a l l y permutes the b ra id by appending the f i n a l en try

to the f r on t ”””

newbraid = [bra id [−1]]

for i in range (len (bra id)−1):

newbraid . append (bra id [i])

return newbraid

def swap (bra id) :

”””Commutes ad jacen t e n t r i e s i f permi t t ed ”””

global usedswaps

global numswaps

newBraid = bra id [:]

for i in range (len (bra id) − 1) :

i f i not in usedswaps :

i f abs (abs (bra id [i]) − abs (bra id [i +1])) >= 2 :

newBraid [i] = bra id [i +1]

newBraid [i +1] = bra id [i]

u pda t eb r a i d l i s t (newBraid)

return newBraid , True

return braid , Fa l se

def targetSwap (bra id) :

”””Looks f o r the i n i t i a l en try in the b ra id towards the t a i l to commute

the l a t t e r occurrence to the end so t ha t a f t e r cyc l i ng , the b ra id can

be reduced . ”””

lookFor = [bra id [0] , −bra id [0]]

ind = max(l o c for loc , va l in enumerate(bra id) i f va l in lookFor)

55

i f ind != len (bra id) − 1 :

newbraid = bra id [0 : ind]

for i in range (ind+1, len (bra id)) :

i f abs (abs (bra id [i]) − abs (bra id [0])) >= 2 : newbraid . append (bra id [i])

else : return braid , True

newbraid . append (bra id [ind])

upda t eb r a i d l i s t (newbraid)

def lookLRwrap (braid , sub s t r i ng) :

”””A wrapper func t i on f o r lookLR . Tries to l o c a t e the core (ie , a l l

bu t the i n i t i a l and f i n a l e n t r i e s) o f SUBSTRING wi th in BRAID, and i f

s u c c e s s f u l , pas ses to lookLR . ”””

newBraid = bra id [:]

outBraids = []

t f s = Fal se

ixs , t f = f i n d s u b l i s t s (newBraid , sub s t r i ng [1 : −1])

i f t f :

for ind in range (len (i x s)) :

newBraid = bra id [:]

outBraid , t f = lookLR (newBraid , subs t r ing , i x s [ind])

i f t f :

outBraids . append (outBraid)

t f s = True

return outBraids , t f s

def lookLR (braid , subs t r ing , i x s) :

”””When the core o f SUBSTRING has a l r eady been l o ca t e d at IXS wi th in

BRAID: l o o k s f o r the i n i t i a l and f i n a l e n t r i e s o f SUBSTRING be f o r e

and l a t e r , r e s p e c t i v e l y , w i th in BRAID and when permi t t ed commutes

those e n t r i e s so t ha t SUBSTRING occurs c on s e c u t i v e l y w i th in BRAID. ”””

newBraid = bra id [:]

56

i f i x s [1] == len (newBraid) :

return braid , Fa l se #center o f s u b s t r i n g ends at end o f b ra id

l e f t t f = Fal se

i f newBraid [i x s [0] −1] == subs t r i ng [0] :

#i n i t i a l en try o f s u b s t r i n g i s immediate ly b e f o r e the core

l e f t t f = True

tempBraid = newBraid [:]

else :

try :

#look s f o r l a s t occurrence o f s u b s t r i n g [0] b e f o r e the core appears

l e f t i x = max(l o c for loc , va l in enumerate(newBraid [: i x s [0]]) i f

va l == subs t r i ng [0])

tempBraid = newBraid [0 : l e f t i x]

try :

#t r i e s to commute s u b s t r i n g [0] to immediate ly b e f o r e the core

for j in range (l e f t i x + 1 , i x s [0]) :

i f abs (abs (newBraid [j]) − abs (newBraid [l e f t i x])) >= 2 :

tempBraid . append (newBraid [j])

else : raise GetOutOfLoop

tempBraid . append (newBraid [l e f t i x])

for k in range (i x s [0] , len (newBraid)) :

tempBraid . append (newBraid [k])

l e f t t f = True

except GetOutOfLoop : return braid , Fa l se #commutation f a i l e d

except : return braid , Fa l se

#sub s t r i n g [0] does not appear b e f o r e the core

i f l e f t t f :

#sub s t r i n g [0:−1] occurs w i th in the braid , p o s s i b l y a f t e r commuting

i f tempBraid [i x s [1]] == subs t r i ng [−1] :

#f i n a l entry o f s u b s t r i n g i s immediate ly a f t e r the core

return tempBraid , True

57

else :

try :

#look s f o r f i r s t occurrence o f s u b s t r i n g [−1] a f t e r the core

r i g h t i x = min(l o c for loc , va l in enumerate(tempBraid [i x s [1] :])

i f va l == subs t r i ng [−1])

r i g h t i x += ix s [1]

outBraid = tempBraid [: i x s [1]]

outBraid . append (tempBraid [r i g h t i x])

try :

for j in range (i x s [1] , r i g h t i x) :

i f abs (abs (tempBraid [j]) − abs (tempBraid [r i g h t i x])) >=2:

outBraid . append (tempBraid [j])

else : raise GetOutOfLoop

for k in range (r i g h t i x +1, len (tempBraid)) :

outBraid . append (tempBraid [k])

return outBraid , True

except GetOutOfLoop : return braid , Fa l se #commutation f a i l e d

except : return braid , Fa l se

#sub s t r i n g [−1] does not occur a f t e r the core

return braid , Fa l se

def lookTai lwrap (braid , subs t r ing , headlen) :

”””A wrapper func t i on f o r l o o kTa i l . Locates the f i r s t HEADLEN en t r i e s o f

SUBSTRING wi th in BRAID, and i f s u c c e s s f u l , pas ses to l oo kTa i l . ”””

newBraid = bra id [:]

outBraids = []

t f s = Fal se

ixs , t f = f i n d s u b l i s t s (newBraid , sub s t r i ng [: headlen])

i f t f :

for ind in range (len (i x s)) :

newBraid = bra id [:]

58

outBraid , t f = lookTa i l (newBraid , subs t r ing , headlen , i x s [ind])

i f t f :

outBraids . append (outBraid)

t f s = True

return outBraids , t f s

def l o okTa i l (braid , subs t r ing , headlen , i x s) :

”””The f i r s t HEADLEN en t r i e s o f SUBSTRING occur c on s e c u t i v e l y w i th in

BRAID; t h i s f unc t i on t r i e s to commute the f i n a l e n t r i e s o f SUBSTRING

toward the head so t ha t SUBSTRING occurs c on s e c u t i v e l y w i th in BRAID. ”””

newBraid = bra id [:]

i f i x s [1] == len (bra id) :

return braid , Fa l se

i f newBraid [i x s [1] : i x s [1] + len (sub s t r i ng) − headlen] == subs t r i ng [headlen :] :

return newBraid , True

else :

try :

tempBraid = newBraid [:]

for j in range (headlen , len (sub s t r i ng)) :

#f ind f i r s t occurrence o f next entry o f SUBSTRING

i x = min(l o c for loc , va l in enumerate(tempBraid [i x s [1]+ j−headlen :])

i f va l == subs t r i ng [j])

i x += ix s [1]+ j−headlen

#i f p o s s i b l e , commute next entry forward

tempBraid , t f 2 = swapLocs (tempBraid , j+i x s [0] , i x)

i f not t f 2 : return braid , Fa l se

return tempBraid , True

except : return braid , Fa l se

return braid , Fa l se

def swapLocs (braid , ind1 , ind2) :

59

”””Tries to commute the entry at IND2 to occur b e f o r e IND1”””

newBraid = bra id [:]

tempBraid = newBraid [: ind1]

tempBraid . append (newBraid [ind2])

try :

for i in range (ind1 , ind2) :

i f abs (abs (newBraid [i]) − abs (newBraid [ind2])) >= 2 :

tempBraid . append (newBraid [i])

else : raise GetOutOfLoop

for j in range (ind2+1, len (bra id)) :

tempBraid . append (newBraid [j])

return tempBraid , True

except GetOutOfLoop : return braid , Fa l se

#bra id [ind2] couldn ’ t commute pas t something between ind2 and ind1

def t4bar (bra id) :

”””Uses an \ o v e r l i n e { t 4 } move ; ie , (A3) ”””

f l a g 4 = Fal se

f l a g 1 = Fal se

newBraid = bra id [:]

i f bra id . count (4) == 2 and bra id . count (−4) == 0 :

newBraid [newBraid . index (4)] = −4

newBraid [newBraid . index (4)] = −4

upda t eb r a i d l i s t (newBraid)

f l a g 4 = True

e l i f bra id . count (−4) == 2 and bra id . count (4) == 0 and not f l a g 4 :

newBraid [newBraid . index (−4)] = 4

newBraid [newBraid . index (−4)] = 4

upda t eb r a i d l i s t (newBraid)

f l a g 4 = True

newBraid = bra id [:]

60

i f bra id . count (1) == 2 and bra id . count (−1) == 0 :

newBraid [newBraid . index (1)] = −1

newBraid [newBraid . index (1)] = −1

upda t eb r a i d l i s t (newBraid)

f l a g 1 = True

e l i f bra id . count (−1) == 2 and bra id . count (1) == 0 and not f l a g 1 :

newBraid [newBraid . index (−1)] = 1

newBraid [newBraid . index (−1)] = 1

upda t eb r a i d l i s t (newBraid)

f l a g 1 = True

def r2move (bra id) :

”””Uses (A2) , an edge−s p e c i f i c Reidemeis ter I I move in b ra i d s ”””

newBraid = bra id [:]

i f bra id . count (4) == 1 and bra id . count (−4) == 1 :

ix = newBraid . index (−4)

newBraid [newBraid . index (4)] = −4

newBraid [i x] = 4

upda t eb r a i d l i s t (newBraid)

newBraid = bra id [:]

i f bra id . count (1) == 1 and bra id . count (−1) == 1 :

ix = newBraid . index (−1)

newBraid [newBraid . index (1)] = −1

newBraid [i x] = 1

upda t eb r a i d l i s t (newBraid)

i f bra id . count (2) == 1 and bra id . count (−2) == 1 :

ix = newBraid . index (−2)

newBraid [newBraid . index (2)] = −2

newBraid [i x] = 2

upda t eb r a i d l i s t (newBraid)

i f bra id . count (3) == 1 and bra id . count (−3) == 1 :

61

i x = newBraid . index (−3)

newBraid [newBraid . index (3)] = −3

newBraid [i x] = 3

upda t eb r a i d l i s t (newBraid)

def checkCnctSum (bra id) :

”””Checks i f the b ra id i s a connect sum”””

newBraid = bra id [:]

i f newBraid . count (2) == 1 and newBraid . count (−2) == 0 : return True

e l i f newBraid . count (2) == 0 and newBraid . count (−2) == 1 : return True

newBraid = bra id [:]

i f newBraid . count (3) == 1 and newBraid . count (−3) == 0 : return True

e l i f newBraid . count (3) == 0 and newBraid . count (−3) == 1 : return True

return False

def checkAllGens (bra id) :

”””Checks t ha t a l l g enera to r s occur w i th in BRAID”””

newBraid = bra id [:]

for i in range (1 , 5) :

i f newBraid . count (i) == 0 and newBraid . count(− i) == 0 : return True

return False

def d e s t a b i l i z e (bra id) :

”””Checks i f BRAID can be d e s t a b i l i z e d ”””

f l a g = Fal se

newBraid = bra id [:]

i f newBraid . count (4) == 1 and newBraid . count (−4) == 0 :

newBraid . pop (newBraid . index (4))

f l a g = True

e l i f newBraid . count (4) == 0 and newBraid . count (−4) == 1 :

newBraid . pop (newBraid . index (−4))

62

f l a g = True

i f newBraid . count (1) == 1 and newBraid . count (−1) == 0 :

newBraid . pop (newBraid . index (1))

f l a g = True

e l i f newBraid . count (1) == 0 and newBraid . count (−1) == 1 :

newBraid . pop (newBraid . index (−1))

f l a g = True

return newBraid , f l a g

def wr i t eout s (fn , t f) :

”””Writes r e s u l t s to f i l e ”””

global b r a i d l i s t

global index

global f i l e l o c

global s h o r t l i s t

with open(f i l e l o c + ’ d e bu g b r a i d l i s t ’ + fn + ’ . txt ’ , ’w ’) as f :

f . wr i t e (’ ’ . j o i n (str (b r a i d l i s t)))

with open(f i l e l o c + ’ d e bu g s h o r t l i s t ’ + fn + ’ . txt ’ , ’w ’) as f :

f . wr i t e (’ ’ . j o i n (str (s h o r t l i s t)))

def t rya l lmoves (bra id) :

”””Tries a l l moves on BRAID”””

br , t f = f i nd t 4ba r r 3 s t ab s (bra id)

i f t f : return br , True

br , t f = d e s t a b i l i z e (bra id)

i f t f : return br , True

t f = checkCnctSum (bra id)

i f t f : return br , True

t f = checkAllGens (bra id)

i f t f : return br , True

63

t4bar (bra id)

r2move (bra id)

reducet3 (bra id)

reduce inv (bra id)

targetSwap (bra id)

for i in range (len (r 3 r ew r i t e s)) :

trymove (braid , r 3 r ew r i t e s [i] [0] , r 3 r ew r i t e s [i] [1])

for i in range (len (t 3 r ew r i t e s)) :

trymove (braid , t 3 r ew r i t e s [i] [0] , t 3 r ew r i t e s [i] [1])

for i in range (len (t 3 2 r ew r i t e s)) :

trymove (braid , t 3 2 r ew r i t e s [i] [0] , t 3 2 r ew r i t e s [i] [1])

for i in range (len (r 3ba s i c)) :

trymove (braid , r 3ba s i c [i] [0] , r 3ba s i c [i] [1])

trymove (braid , r 3ba s i c [i] [1] , r 3ba s i c [i] [0])

for i in range (len (r3t3moves)) :

for j in range (len (r3t3moves [0])) :

for k in range (len (r3t3moves [0])) :

i f k != j :

trymove (braid , r3t3moves [i] [j] , r3t3moves [i] [k])

for i in range (len (t3exps)) :

trymove (braid , t3exps [i] [0] , t3exps [i] [1] , True , 3)

for i in range (len (t3exps2)) :

trymove (braid , t3exps2 [i] [0] , t3exps2 [i] [1] , True , 2)

return braid , Fa l se

def f i n db r a i d s (l ength) :

”””Finds a l l b r a i d s o f a g iven LENGTH wi th in the b r a i d l i s t ”””

global b r a i d l i s t

r e t s = []

for bra id in b r a i d l i s t :

64

i f len (bra id) == length : r e t s . append (bra id)

return r e t s

def r ew r i t e t h i s b r a i d (bra id) :

”””A wrapper func t i on to t r y a l l r ew r i t e s on the b ra i d ”””

global s t a r t l e n g t h

curbra id = bra id [:]

br , t f = f i nd t 4ba r r 3 s t ab s (curbra id)

i f t f : return [br] , True

br , t f = d e s t a b i l i z e (curbra id)

i f t f : return [br] , True

cycbra id = curbra id [:]

for i in range (len (curbra id)) :

br , t f = trya l lmoves (cycbra id)

i f t f : return [br] , True

i f minlength < s t a r t l e n g t h : return f i n db r a i d s (minlength) , True

cycbra id = cyc l e (cycbra id)

return [br] , Fa l se

def f i nd th eb r a i d s (bra id) :

”””The main func t i on ”””

global b r a i d l i s t

global minlength

global index

global t imeout

global startTime

global s t a r t l e n g t h

minlength = len (bra id)

s t a r t l e n g t h = len (bra id)

r e s e t ()

index = 0

65

upda t eb r a i d l i s t (bra id)

while index < len (b r a i d l i s t) :

b r l s t , t f = r ew r i t e t h i s b r a i d (b r a i d l i s t [index])

i f t f : return b r l s t , t f

index += 1

print (”Ran out o f b ra id s . . . ”)

return f i n db r a i d s (minlength) , Fa l se

A.5 B6 enumeration script

This Python program is written to be read into SnapPy, thus defining the function buildTheBraids.

This function is then run for each of the 11 combinations in Chapter 5.1, with input n= 8

and count= 4 when enumerating 12-crossing 6-strand braids. For example, one call takes

the form buildTheBraids([1,-2,1,3], 8, 4) to enumerate all 6-strand braids of length

12 beginning with σ1σ
−1
2 σ1σ3, modulo immediate reductions due to inverses within the

braid group and the t3 move.

gene ra to r s = [1 , −1, 2 , −2, 3 , −3, 4 , −4, 5 , −5]

o u t f i l e = ”//home//ubuntu//Documents// PythFi l e s //B6enum//1n21n3”

s imp f i l e c t = 0

s imp f i l e i n d = 0

o r i g f i l e c t = 0

o r i g f i l e i n d = 0

def i n i t () :

global s imp f i l e c t

global s imp f i l e i n d

global o r i g f i l e c t

66

global o r i g f i l e i n d

s imp f i l e c t = 0

s imp f i l e i n d = 0

o r i g f i l e c t = 0

o r i g f i l e i n d = 0

def writebrd (brd , count , f l a g = 0) :

global s imp f i l e c t

global s imp f i l e i n d

global o r i g f i l e c t

global o r i g f i l e i n d

i f f l a g == 1 :

s imp f i l e i n d = s imp f i l e i n d + 1

i f s imp f i l e i n d > 100000:

s imp f i l e i n d = 0

s imp f i l e c t = s imp f i l e c t + 1

with open(o u t f i l e + ” l e n ” + str (count) + ” simpBrd ” + str (s imp f i l e c t)

+ ” . txt ” , ’ a+’) as f :

f . wr i t e (str (brd) + ”\n”)
f . c l o s e ()

else :

o r i g f i l e i n d = o r i g f i l e i n d + 1

i f o r i g f i l e i n d > 100000:

o r i g f i l e i n d = 0

o r i g f i l e c t = o r i g f i l e c t + 1

with open(o u t f i l e + ” l e n ” + str (count) + ” or i gBrd ” + str (o r i g f i l e c t)

+ ” . txt ” , ’ a+’) as f :

f . wr i t e (str (brd) + ”\n”)
f . c l o s e ()

67

def countGens (brd) :

f l a g = True

for i in range (1 , 6) :

i f brd . count (i) + brd . count(− i) == 0 :

f l a g = Fal se

return f l a g

def reduceGens (ind) :

global gene ra to r s

r educedgenerator s = gene ra to r s [:]

r educedgenerator s . pop (reducedgenerator s . index (ind))

r educedgenerator s . pop (reducedgenerator s . index (−1∗ ind))

return r educedgenerator s

def bui ldTheBraids (braid , n , count = 0) :

global gene ra to r s

global o u t f i l e

global s imp f i l e c t

global s imp f i l e i n d

global o r i g f i l e c t

global o r i g f i l e i n d

i f n >= 1 :

i f bra id == [] :

print (” i n i t i a l i z i n g ”)

i n i t ()

else :

68

i f n == 2 :

f l a g = countGens (bra id)

i f f l a g :

for gen in reduceGens (bra id [−1]) :

newBraid = bra id [:]

newBraid . append (gen)

bui ldTheBraids (newBraid , n−1, count + 1)

e l i f n == 1 :

f l a g = True

for i in range (1 , 6) :

i f bra id . count (i) + bra id . count(− i) == 1 :

f l a g = Fal se

i f f l a g :

for gen in reduceGens (bra id [−1]) :

newBraid = bra id [:]

newBraid . append (gen)

bui ldTheBraids (newBraid , n−1, count + 1)

else :

for gen in reduceGens (bra id [−1]) :

newBraid = bra id [:]

newBraid . append (gen)

bui ldTheBraids (newBraid , n−1, count + 1)

else :

newBraid = bra id [:]

f l a g=countGens (newBraid)

i f f l a g :

L = Link (b r a i d c l o s u r e = newBraid)

i f L . s imp l i f y () :

try :

bra idInd = 0

brd = L . braid word ()

69

for i in range (len (brd)) :

i f abs (brd [i]) > bra idInd :

bra idInd = abs (brd [i])

i f (len (L . c r o s s i n g s) > 11) or (bra idInd > 3) :

wr i tebrd (brd , count , 1)

except :

wr i tebrd (newBraid , count)

else :

wr i tebrd (newBraid , count)

70

Appendix B

Conjugacy classes of Q5

Herein are the representatives for the 102 conjugacy classes ofQ5 constructed using MAGMA.

1. Identity

2. [1, -2, 3, -4, 3, -2, 1, -2, 3, -4, 3, -2, 1, -2, 3, -4, 3, -2]

3. [4, -2, -3, 4, -3, 2]

4. [1, 2, 1, 3, -4, 3, -2, 1, 3, 2, 4, -3, 2, 1, 4, 3, -2, 3, -4, 3]

5. [1, 2, 1, 4, -3, -2, 1, -4, 3, -2, 1, 3, -4, 3, -2, 1, 3, -2, -4, -3]

6. [2, 1, 3, -4, 3, -2, 1, 3, 2, 4, -3, 2, 1, 4, 3, -2, 3, -4, 3]

7. [2, 1, 3, -2, 1, -4, 3, -2, 1, 3, 4, -3, 2, -1, -3, 2, 4, -3, 4]

8. [2, 3, 2, -1, -2, 3, -4, 3, -2, 1, 3, -2, 1, 3, -4, 3, -2, 3, -4]

9. [-1]

10. [1]

11. [2, 1, 4, -3, -2, 1, -4, 3, -2, 1, 3, -4, 3, -2, 1, 3, -2, -4, -3]

12. [2, 3, -1, -4, 3, -2, 3, -1, -2, -4, 3, 2, -1, 2, -3, -4, -3, 2]

71

13. [1, 3]

14. [2, 1, 3, -2, -4, 3, -2, 1, -2, -4, 3, -2, 1, -2, -4, 3, 2, -4]

15. [4, -3, 2, 4, -3, 2, -1, 2, -3, 2, 4, -3, 4]

16. [1, 2, 1, -3, 2, 1, -3, 2]

17. [4, 3, 2, -1, 2, -3, 4, -3, 2, -1, 2, 3, 4]

18. [2, 1, 3, 4, -2, 3, 4, -2, 1, 3, -2, 1]

19. [4, -1, 2, -1, -3, -2, 1, -4, 3, -2, -1, -4, 3]

20. [2, -1, -3, -2, -4, 3, -2, -1, -4, -3, 2, -3, 4, -3]

21. [3, -1, 2, -1, -4, -3, 2, -3, 4, -3, -2, 1, -2, -3, 4]

22. [1, 2, -3, 4, -3, 2, 1, -3, 2, -3, 4, -3, 2, -3]

23. [2, -1, 2, -3, 2, -4, -3, 2, -1, 2, -3, 2, -4, -3]

24. [1, 2, -3, 2, -4, -3, 2, -1, 2, -3, 2, -4, -3, 2]

25. [2, -3, 2, -4, -3, 2, -1, 2, -3, 2, -4, -3, 2]

26. [2, 1, 3, 4, -2, 3, 4, -2, 1, 3, 2, -3, 4, -3]

27. [2, -3, 4, -3, 2, 1, -3, 2, -3, 4, -3, 2, -3]

28. [-2, 3, -4, 3, -2, 1, -2, 3, -4, 3, -2, 1, -2, 3, -4, 3, -2]

29. [2, 3, -4, 3, 2, -1, 2, 3, -4, 3, 2, -1, 2, 3, -4, 3, 2]

30. [1, 2, 3, -4, 3, -2, 1, 3, 4, -2, 3, 4, -2, 1, 3]

31. [-1, 2, -3, 2, 4, -1, 2, -3, 4, -2, 3, -1, -2, 3, -1]

72

32. [2, -1, 2, -3, 4, -3, 2, -1, 2, -3, 4, -3, -2, 1, -2, -3, 4]

33. [2, 4, -3, -2, -1, -4, 3, -2, 3, -1, -4, 3, -2]

34. [2, 1, 3, 4, -2, 3, 4, -2, 1, 3, 2, -3, 4]

35. [3, -1, -4, 3, -4]

36. [2, 1, 3, -4, 3, -2, 1, 3, 4, -2, 3, 4, -2, 1, 3, -2]

37. [2, -3, 2, -1, 2, 3, -4, -3, 2, -1, -3, 2, 4, -1, -3, -2]

38. [2, 1, 3, 2, -4, 3, 2, 1, -4, 3, 2]

39. [2, -1, 2, 3, -4, 3, -2, 1, -2, -3, 4, -3, -2, 1, -2]

40. [-2, -1, -3, -2, -4, 3, -2, -1, -4, -3, -2]

41. [1, 3, -4, 3, -4]

42. [2, 1, 3, -2, 1, -4, 3, -2, 3, 4, -3, -2, 1, -2, 3, -2]

43. [2, 3, -1, -2, 3, -4, 3, -2, 1, 3, -2, 1, -3, 4, -3, -2]

44. [2, 1, 3, 2, 4, -3, 2, 1, 4, 3, 2]

45. [2, -1, 2, 3, -4, 3, 2, -1, 2, -3, 4, -3, -2, 1, -2]

46. [-2, -1, -3, 4, -2, -3, 4, -2, -1, -3, -2]

47. [1, 4, -2, 3, -2, 1, -2, 3, 4, -2, -3, -2, 1, -2]

48. [2, 4, -3, 2, -1, 2, -3, 2, 4, -3, 2, 4, -1, 2, 3, -4]

49. [3, -4, -3, -2, 1, -2, -3, -4]

50. [2, -3, 2, -3, -4, -3, 2, -1, 2, -3, -4]

73

51. [2, -1, 2, -3, 2, 1, 4, 3, -2, 1, 3, 2, -4]

52. [3, 4, -2, 3, -1, -2, 3, -1, -2, -4, 3, 2, -1, 2]

53. [3, -4, -3, 2, -1, 2, 3, 4]

54. [2, 1, -3, -2, 1, -2, -3, 4, -3, 2, 1, -3, 2, -4]

55. [4, -2, -1, -3, 2, -1, -3, -2, -4, 3, -2, 1, -2]

56. [1, 2, -3, 2]

57. [4, 3, -2, 3, 4, -1, -2, 3, -2, 1, -2, -3, 4, -3, -2, 1]

58. [2, 3, -4, 3, -2, 1, 3, 4, -2, 1, -3, 4, -2, 1, -3, 4]

59. [-1, -2, 3, 4, -2, 3, -2, 1, -2, 3, 4]

60. [2, 3, -1, -2, -4, 3, -2, 1, -4, 3, -2, 1, 3, -2, -4, 3, -4]

61. [-3, -4, -3, -2, 1, -2, 3, 4]

62. [-1, -3, 2, -1, -3, 2, 4, -1, -3, 2, -4]

63. [1, -3, 2, 1, -4, -3, 2, 1, -3, 2, 4]

64. [2, -1, 2, -3, 4, -3, 2, -1, 2, 3, -4]

65. [3, 4, -2, 3, -1, -2, 3, -1, -2, -4, 3]

66. [1, -3, 2, 1, 4, -3, 2, 1, -3, 2, -4, -3]

67. [4, -3, 2, -1, 2, 3, -4, 3, 2, -1, 2]

68. [-2, -1, -4, 3, -2, 3, 4, -1, -2, 3]

69. [2, -1, -2, -3, -2, -1, -4, 3, -2, -1]

74

70. [2, 1, 3, 4, -2, -3, 4, -3, -2, 1, -2, 3, 4, -2, 3, -1]

71. [1, 2, 1, -3, 2, 1, 4, -3, 4, -2, 1, -2, 3, -2, -1, -4]

72. [2, -1, 2, -3, 4, -3, 2, -1, 2, -3, 4, -3, -2, -1]

73. [-2, 3, -1, -4, 3, -2, 3, -4, 3]

74. [3, -2, 1, 3, 4, -3, 2, 1]

75. [1, 3, -4, 3, 2, 1]

76. [2, -1, 2, -3, 2, -1, 2, -4, -3, 2, -1, 2]

77. [2, 1, 3, -2, -4, 3, -2, 1, -2, -4, 3, -2, 1, -4, 3, 2]

78. [2, -1, -3, 2, -1, -3, -4, -3, 2, -1, -3, 2, -1, -4, -3, 2]

79. [2, 1, 3, 2, 4, -1, -3, 2, 1, 4, 3, 2, -4, -3]

80. [2, -1, 2, 3, -4, 3, 2, -1, 2, 3, -4, 3, -2, 1, -2, -3, -4]

81. [2, -1, 2, -3, -2, 1, -2, -4, -3, -2, 1, -2]

82. [3, 4, 3, -1]

83. [1, 2, 1, 3, -2, -4, 3, -2, 1, -2, -4, 3, -2, 1, -4, 3, 2]

84. [1, 2, -1, -3, 2, -1, -3, -4, -3, 2, -1, -3, 2, -1, -4, -3, 2]

85. [2, 1, -3, 4, -3, 2, 1, -3, 4, -3, 2, -3, -4]

86. [2, -1, 2, 3, -4, 3, -2, 1, -2, 3, -4, 3, -2, 1, -2, -3, -4]

87. [1, 3, 4, 3]

88. [4, -3, 2, 1, 4, 3, 2]

75

89. [1, 2, 3, -1, -2, -4, 3, 2, -1, 2, -3, 4, -3, -2, 1, -2]

90. [1, -2, 1, 3, -2, 3, -1, -4, -3, 2, -1, -3, 4, -2]

91. [3, -1, -2, 3, -4, 3, 2, -1, 2, -3, 2, 1, -4]

92. [1, 2, 3, 4, -1, -3, 2, -3]

93. [2, 4, -1, 2, -3, 4, -2, 3, -1, -2, 3, -1, -2]

94. [2, -1, 2, -3, 2, -1, 2, -4, 3, -2, 1, -2, -4, 3]

95. [3, -4, 3, -2, 1, -2, -4, -3]

96. [3, 4, -2, 1, -2, -3, 4, -3]

97. [2, 4, 3, -2, 1, -2, 3, -4, 3, -2, 1, 3, 2, -4]

98. [2, 1, 3, -2, 1, 3, 2, -4, 3, 2, -1, 2, -4]

99. [4, -3, 2, -1, -3, 2, 4, -1, -3, -2]

100. [1, -4, -3, 2, -1, -3, 2, 4, -1, -3, 4]

101. [1, 3, 2, 1, 4, -3, 2, 1, 4, -3, 2, -3, 4]

102. [1, 3, -2, 1, 3, -4, 3, -2, 1, 3, -2, -4, 3, -2, 1, -4]

76

Bibliography

[Ale23] James Alexander, A lemma on a system of knotted curves, Proceedings of the

National Academy of Sciences of the United States of America 9 (1923), 93–95.

[BCP97] Wieb Bosma, John Cannon, and Catherine Playoust, The Magma algebra sys-

tem. I. The user language, J. Symbolic Comput. 24 (1997), no. 3–4, 235–265,

Computational algebra and number theory (London, 1993). MR MR1484478

[CDGW] Marc Culler, Nathan M. Dunfield, Matthias Goerner, and Jeffrey R. Weeks,

SnapPy, a computer program for studying the geometry and topology of 3-

manifolds, http://snappy.computop.org.

[Che00] Qi Chen, The 3-move conjecture for 5-braids, Knots in Hellas ’98 (2000), 36–47.

[Cox57] H. S. M. Coxeter, Factor groups of the braid group, Proc. Fourth Canadian Math.

Congress (1957), 95–122.

[CT36] H.S.M. Coxeter and J.A. Todd, A practical method for enumerating cosets of

a finite abstract group, Proceedings of the Eidenburgh Mathematical Society 5

(1936), 26–34.

[DP02] Mieczyslaw K. Dabkowski and Jozef H. Przytycki, Burnside obstructions to

the Montesinos-Nakanishi 3-move conjecture, Geometry and Topology 6 (2002),

355–360.

[DS11] S. Duzhin and M. Shkolnikov, Bipartite knots, arxiv (2011), 1–8.

77

[GAP17] The GAP Group, GAP – Groups, Algorithms, and Programming, Version 4.8.7,

2017.

[Kir] R. Kirby, Problems in low-dimensional topology,

https://math.berkeley.edu/˜kirby/.

[Nak90] Yasutaka Nakanishi, On Fox’s congruence classes of knots, Osaka Journal of

Mathematics 27 (1990), 207–215.

[Prz88a] Jozef Przytycki, Plans’ theorem for links: an application of tk moves, Canad.

Math. Bull. 31 (1988), 325–327.

[Prz88b] Jozef H. Przytycki, tk moves on links, Contemporary Math 78 (1988), 615–656.

[Prz90] , The t3, t4 moves conjecture for oriented links with matched diagrams,

Mathematical Proceedings of the Cambridge Philosophical Society 108 (1990),

55–61.

[Prz93] , Elementary conjectures in classical knot theory, Quantum Topology

(1993), 292–320.

[Rol03] Dale Rolfsen, Knots and links, American Mathematical Society, 2003.

	University of Nebraska - Lincoln
	DigitalCommons@University of Nebraska - Lincoln
	8-2019

	The T3,T4-conjecture for links
	Katie Tucker

	The $t_3, \overline{t_4}$ conjecture for links

