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krippendorffsalpha: An R Package for
Measuring Agreement Using
Krippendorff’s Alpha Coefficient
by John Hughes

Abstract R package krippendorffsalpha provides tools for measuring agreement using Krippendorff’s
α coefficient, a well-known nonparametric measure of agreement (also called inter-rater reliability
and various other names). This article first develops Krippendorff’s α in a natural way and situates
α among statistical procedures. Then, the usage of package krippendorffsalpha is illustrated via
analyses of two datasets, the latter of which was collected during an imaging study of hip cartilage.
The package permits users to apply the α methodology using built-in distance functions for the
nominal, ordinal, interval, or ratio levels of measurement. User-defined distance functions are also
supported. The fitting function can accommodate any number of units, any number of coders, and
missingness. Bootstrap inference is supported, and the bootstrap computation can be carried out in
parallel.

Introduction

Krippendorff’s α (Hayes and Krippendorff, 2007) is a well-known nonparametric measure of agree-
ment (i.e., consistency of scoring among two or more raters for the same units of analysis (Gwet,
2014)). In R (Ihaka and Gentleman, 1996), Krippendorff’s α can be applied using function kripp.alpha
of package irr (Gamer et al., 2012), function kripp.boot of package kripp.boot (Proutskova and
Gruszczynski, 2020), function krippalpha of package icr (Staudt and L’Ecuyer, 2020), and functions
krippen.alpha.raw and krippen.alpha.dist of package irrCAC (Gwet, 2019). However, these pack-
ages fail to provide a number of useful features. In this article we present package krippendorffsalpha,
which improves upon the above mentioned packages in (at least) the following ways. Package
krippendorffsalpha

• offers commonly used built-in distance functions for the nominal, ordinal, interval, and ratio
levels of measurement and also supports user-defined distance functions;

• conforms to the R idiom by providing S3 methods confint, influence, plot, and summary;

• supports embarrassingly parallel bootstrap computation; and

• supports verbose communication with the user, including the display of a progress bar during
the production of the bootstrap sample.

The remainder of this article is organized as follows. In Section 2.2, we locate Krippendorff’s
α among statistical procedures. In Section 2.2.1, we first develop a special case of Krippendorff’s
α (call it αSED) in a well-known parametric setting, and then we present α in its most general (i.e.,
nonparametric) form. In Section 2.2.2, we show that α is a type of multiresponse permutation procedure.
In Section 2.2.3, we generalize αSED in a fully parametric fashion, arriving at Sklar’s ω. In Section 2.3,
we describe our package’s bootstrap inference for α and compare the performance of our procedure
to that of two alternative approaches. In Section 2.4, we briefly discuss robustness and influence. In
Section 2.5, we provide a thorough demonstration of krippendorffsalpha’s usage before concluding
in Section 2.6.

Situating Krippendorff’s Alpha among statistical procedures

Since Krippendorff’s α is defined in terms of discrepancies (Krippendorff, 2013), at first glance,
one might conclude, erroneously, that α is a measure of dis-agreement, and so answers the wrong
question. In Sections 2.2.1–2.2.3, we will show, by examining Krippendorff’s α’s place among statistical
procedures, that α is, in fact, a sensible measure of agreement. Also, establishing a context for α may
help practitioners make educated decisions regarding α’s use.

The UML class diagram (Fowler et al., 2004) shown below in Figure 1 provides a conceptual
roadmap for our development. Briefly, a special case of α (which we denote as Alpha(SED) or αSED)
arises naturally in the context of the one-way mixed-effects ANOVA model. Alpha(SED) can then be
generalized in a nonparametric fashion to arrive at Krippendorff’s α as it has been presented by Hayes
and Krippendorff (see Gwet (2015) for development of nonparametric α in terms of agreement rather
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than discrepancies); this nonparametric form of α is a (slightly modified) multiresponse permutation
procedure. Alternatively, αSED can be generalized in a parametric fashion to arrive at Sklar’s ω, a
Gaussian copula-based methodology for measuring agreement.

Figure 1: A UML class diagram that shows the relationships between Krippendorff’s α and other
statistical procedures.

Parametric genesis of Krippendorff’s Alpha coefficient

In this section, we develop Krippendorff’s α (Hayes and Krippendorff, 2007) in an intuitive and
bottom-up fashion. Our starting point is a fully parametric model, namely, the classic one-way mixed-
effects ANOVA model (Ravishanker and Dey, 2001). To ease exposition, we will consider only a
balanced version of the model. We have, for nu units and nc coders, scores

Yij = µ + τi + εij, (i = 1, . . . , nu; j = 1, . . . , nc),

where

• µ (the population mean) is a fixed real number,

• the τi are independent N (0, σ2
τ) random variables,

• the εij are independent N (0, σ2
ε ) random variables, and

• the τi are independent of the εij.

In this setup, we have nc Gaussian codes Yi1, . . . , Yinc for unit i ∈ {1, . . . , nu}. Conditional on τi, said
codes are N (µ + τi, σ2

ε ) random variables. Since the variables share the “unit effect” τi, the variables
are correlated. The correlation, which is usually called the intraclass correlation, is given by

α =
σ2

τ

σ2
τ + σ2

ε
= 1 − σ2

ε

σ2
τ + σ2

ε
.

We use α to denote this quantity precisely because Krippendorff’s α is the intraclass correlation for
codes that conform to this model. That is, for the one-way mixed-effects ANOVA model, Krippen-
dorff’s α is the intraclass correlation. The reader may recall that the estimator of α for this model
is

α̂ = 1 − σ̂2
ε

σ̂2
τ + σ2

ε

= 1 −
1

nu(nc−1) ∑nu
i=1 ∑nc

j=1(Yij − Ȳi•)
2

1
nunc−1 ∑nu

i=1 ∑nc
j=1(Yij − Ȳ••)2

, (1)
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where Ȳi• and Ȳ•• denote the arithmetic means for the ith unit and for the entire sample, respectively.
The form of this estimator is not surprising, of course, since it is well-known that assuming Gaussianity
leads to variance estimators involving sums of weighted squared deviations from sample arithmetic
means.

We can eliminate the arithmetic means in (1) by employing the identity

n

∑
i=1

(xi − x̄•)2 =
1

2n

n

∑
i=1

n

∑
j=1

(xi − xj)
2.

This gives

α̂ = 1 −
1

2nunc(nc−1) ∑nu
i=1 ∑nc

j=1 ∑nc
k=1(Yij − Yik)

2

1
2nunc(nunc−1) ∑nu

i=1 ∑nc
j=1 ∑nu

k=1 ∑nc
l=1(Yij − Ykl)2

. (2)

Now, let d2(x, y) = (x − y)2, and rewrite (2) as

α̂ = 1 − Do

De
= 1 −

1
2nunc(nc−1) ∑nu

i=1 ∑nc
j=1 ∑nc

k=1 d2(Yij, Yik)

1
2nunc(nunc−1) ∑nu

i=1 ∑nc
j=1 ∑nu

k=1 ∑nc
l=1 d2(Yij, Ykl)

, (3)

where Do and De denote observed and expected disagreement, respectively. This is Krippendorff’s α
for the squared Euclidean distance (which is not a metric but a Bregman divergence (Bregman, 1967)).
We will henceforth refer to this version of α as Alpha(SED) or αSED. As we mentioned above, this
form of Krippendorff’s α arises quite naturally when the data at hand conform to the one-way mixed-
effects ANOVA model, for which agreement corresponds to a positive correlation. More generally,
Krippendorff recommends this form of α for the interval level of measurement. For other levels of
measurement, Krippendorff presents other distance functions d2 (several possibilities are shown in
Table 1). Note that package krippendorffsalpha supports user-defined distance functions as well as
the interval, nominal, and ratio distance functions shown in the table.

Level of Measurement Distance Function

interval d2(x, y) = (x − y)2

nominal d2(x, y) = 1{x ̸= y}

ratio d2(x, y) =
(

x−y
x+y

)2

bipolar d2(x, y) = (x−y)2

(x+y−2xmin)(2xmax−x−y)

circular d2(x, y) =
{

sin
(

π
x−y

I

)}2
(I = number of equal intervals on circle)

ordinal d2(x, y) = (x − y)2 (adjacent ranks are equidistant)

Table 1: Several distance functions that may be appropriate for use in Krippendorff’s α.

Alpha as a multiresponse permutation procedure

In any case, (3) is nonparametric for arbitrary d2 since then the estimator α̂ does not usually correspond
to a well-defined population parameter α. This more general form of Krippendorff’s α is, in fact,
a special case of the so-called multiresponse permutation procedure (MRPP). The MRPPs form a
class of permutation methods for discerning differences among two or more groups in one or more
dimensions (Mielke and Berry, 2007). Note, however, that although α can be viewed as an MRPP
(as we are about to show), α has been modified for the purpose of measuring agreement rather than
discerning differences.

To show that Krippendorff’s α is an MRPP, we first present the general form of the MRPP. Following
Mielke and Berry, let Ω = {ω1, . . . , ωn} be a finite sample that is representative of some population of
interest, let S1, . . . , Sa+1 denote a partition of Ω into a + 1 disjoint groups, and let ρ be a metric that
makes sense for the objects of Ω. (Strictly speaking, ρ need not be a metric; a symmetric distance
function will suffice.) To ease notation a bit, let ρjk ≡ ρ(ωj, ωk). Then, the MRPP statistic can be
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written as

δ =
a

∑
i=1

Ciθi,

where Ci > 0 are group weights such that ∑i Ci = 1;

θi =
1ni

2


∑
j<k

ρjk1i{ωj}1i{ωk}

is the average distance between distinct pairs of objects in group Si; ni ≥ 2 is the number of objects in
group i; l = ∑a

i=1 ni; na+1 = n − l ≥ 0 is the number of remaining unclassified objects in group Sa+1;
and 1i is the indicator function for membership in group i.

Note that this formulation is quite general since the objects in Ω can be scalars, vectors, or more
exotic objects, and we are free to choose the metric and the weights. In the case of Krippendorff’s
α, we can produce δ = Do by letting ρ = d2 for some appropriately chosen distance function d2 and
choosing weights Ci = 1/nu.

A parametric generalization of Alpha(SED)

In the preceding sections, we generalized αSED in a nonparametric fashion by substituting other notions
of distance for the squared Euclidean distance. Now, we will present a fully parametric generalization
of αSED, namely, Sklar’s ω (Hughes, 2018).

The statistical model underpinning Sklar’s ω is a Gaussian copula model (Xue-Kun Song, 2000).
The most general form of the model is given by

Z = (Z1, . . . , Zn)
′ ∼ N (0, Ω)

Ui = Φ(Zi) ∼ U (0, 1) (i = 1, . . . , n)

Yi = F−1
i (Ui) ∼ Fi, (4)

where Ω is a correlation matrix, Φ is the standard Gaussian cdf, and Fi is the cdf for the ith outcome
Yi. Note that U = (U1, . . . , Un)′ is a realization of the Gaussian copula, which is to say that the Ui are
marginally standard uniform and exhibit the Gaussian correlation structure defined by Ω. Since Ui
is standard uniform, applying the inverse probability integral transform to Ui produces outcome Yi
having the desired marginal distribution Fi.

To see that the one-way mixed-effects ANOVA model (and hence αSED) is a special case of Sklar’s
ω, let the copula correlation matrix Ω be block diagonal, where the ith block corresponds to the ith
unit (i = 1, . . . , nu) and has a compound symmetry structure. That is,

Ω = diag(Ωi),

where

Ωi =


c1 c2 . . . cnc

c1 1 ω . . . ω
c2 ω 1 . . . ω
...

...
...

. . .
...

cnc ω ω . . . 1

.

Complete the specification by letting Fij (i = 1, . . . , nu; j = 1, . . . , nc) be the cdf for the Gaussian
distribution with mean µ and variance σ2. Then ω = α, the intraclass correlation coefficient.

Inference for Krippendorff’s Alpha

Mielke and Berry describe hypothesis testing for MRPPs. Specifically, they discuss three approaches:
permutation, Monte Carlo resampling, and Pearson type III moment approximation. The latter has
significant advantages. For Krippendorff’s α, though, we are interested not in hypothesis testing but in
interval estimation. This can be done straightforwardly and efficiently using Monte Carlo resampling.
Since De is invariant to permutation of the scores, our resampling procedure focuses on Do only. The
algorithm proceeds as follows.

1. Collect the scores in an nu × nc matrix, A, where each row corresponds to a unit.
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2. For i ∈ {1, . . . , nb}, form matrix Ai by sampling, with replacement, nu rows from A.

3. For each Ai, compute D(i)
o using the same distance function d2 that was used to compute α̂.

4. For each D(i)
o , compute α̂i = 1 − D(i)

o /De.

The resulting collection {α̂1, . . . , α̂nb} is a bootstrap sample for α̂, sample quantiles of which are
estimated confidence limits for α.

We carried out a number of realistic simulation experiments and found that this approach to
interval estimation performs well in a wide variety of circumstances. When the true distribution of α̂
is (at least approximately) symmetric, Gwet’s closed-form expression for V̂(α̂), which is implemented
(for categorical data only) in package irrCAC, also performs well. By contrast, we found that the
bootstrapping procedure recommended by Krippendorff (2016), which is implemented in packages
kripp.boot and icr, generally performs rather poorly, producing intervals that are far too narrow (e.g.,
95% intervals achieve 74% coverage).

Robustness and interpretation

For some levels of measurement, one may, in the interest of robustness, be tempted to replace squares
with absolute values (in the distance function d2). This would be advantageous if one aimed to do
hypothesis testing. But for Krippendorff’s α, using absolute values instead of squares proves disastrous,
for the resulting estimator α̂ is substantially negatively biased and tends to lead to erroneous inference
regarding agreement. All is not lost, however, since package krippendorffsalpha provides a means of
investigating the influence on α̂ of any unit or coder (see the next section for examples).

Illustrations

Here we illustrate the use of krippendorffsalpha by applying Krippendorff’s α to a couple of datasets.
We will interpret the results according to the ranges given in Table 2, but we suggest—as do Krippen-
dorff and others (Artstein and Poesio, 2008; Landis and Koch, 1977)—that an appropriate reliability
threshold may be context-dependent.

Range of Agreement Interpretation

α ≤ 0.2 Slight Agreement

0.2 < α ≤ 0.4 Fair Agreement

0.4 < α ≤ 0.6 Moderate Agreement

0.6 < α ≤ 0.8 Substantial Agreement

α > 0.8 Near-Perfect Agreement

Table 2: Guidelines for interpreting values of an agreement coefficient.

Nominal data analyzed previously by Krippendorff

Consider the following data, which appear in (Krippendorff, 2013). These are nominal values (in
{1, . . . , 5}) for twelve units and four coders. The dots represent missing values.

Note that the scores for all units except the sixth are constant or nearly so. This suggests near-
perfect agreement, and so we should expect α̂ to be greater than 0.8.

To apply Krippendorff’s α to these data, first we load package krippendorffsalpha.

R> library(krippendorffsalpha)

krippendorffsalpha: Measuring Agreement Using Krippendorff's Alpha Coefficient
Version 1.1 created on 2021-01-13.
copyright (c) 2020-2021, John Hughes
For citation information, type citation("krippendorffsalpha").
Type help(package = krippendorffsalpha) to get started.
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u1 u2 u3 u4 u5 u6 u7 u8 u9 u10 u11 u12

c1 1 2 3 3 2 1 4 1 2 • • •

c2 1 2 3 3 2 2 4 1 2 5 • 3

c3 • 3 3 3 2 3 4 2 2 5 1 •

c4 1 2 3 3 2 4 4 1 2 5 1 •

Figure 2: Some example nominal outcomes for twelve units and four coders, with seven missing
values.

Now, we create the dataset as a matrix such that each row corresponds to a unit and each column
corresponds to a coder.

R> nominal = matrix(c(1,2,3,3,2,1,4,1,2,NA,NA,NA,
+ 1,2,3,3,2,2,4,1,2,5,NA,3,
+ NA,3,3,3,2,3,4,2,2,5,1,NA,
+ 1,2,3,3,2,4,4,1,2,5,1,NA), 12, 4)
R> nominal

[,1] [,2] [,3] [,4]
[1,] 1 1 NA 1
[2,] 2 2 3 2
[3,] 3 3 3 3
[4,] 3 3 3 3
[5,] 2 2 2 2
[6,] 1 2 3 4
[7,] 4 4 4 4
[8,] 1 1 2 1
[9,] 2 2 2 2
[10,] NA 5 5 5
[11,] NA NA 1 1
[12,] NA 3 NA NA

Next, we apply Krippendorff’s α for the nominal level of measurement. If argument level is set
to "nominal", the discrete metric d2(x, y) = 1{x ̸= y} is used by default. We do a bootstrap with
sample size nb = 1,000 (argument confint defaults to TRUE, and control parameter bootit defaults to
1,000). We set control parameter parallel equal to FALSE because the dataset is too small to warrant
parallelization of the bootstrap computation. Finally, we set argument verbose equal to TRUE so that a
progress bar is shown during the bootstrap computation. The computation took less than one second.

R> set.seed(42)
R> fit.full = krippendorffs.alpha(nominal, level = "nominal", control = list(parallel = FALSE),
+ verbose = TRUE)

|++++++++++++++++++++++++++++++++++++++++++++++++++| 100% elapsed=00s

As is customary in R, one can view a summary by passing the fit object to summary.krippendorffsalpha,
an S3 method. If krippendorffs.alpha was called with confint = TRUE, summary displays a 95% con-
fidence interval by default. The confidence level can be specified using argument conf.level. In any
case, the quantile method (Davison and Hinkley, 1997) is used to estimate the confidence limits. Any
arguments passed to summary.krippendorffsalpha via . . . are passed on to R’s quantile function.
This allows the user to control, for example, how the sample quantiles are computed.

R> summary(fit.full)

Krippendorff's Alpha

Data: 12 units x 4 coders

Call:
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krippendorffs.alpha(data = nominal, level = "nominal", verbose = TRUE,
control = list(parallel = FALSE))

Control parameters:

parallel FALSE
bootit 1000

Results:

Estimate Lower Upper
alpha 0.7429 0.4644 1

We see that α̂ = 0.74 and α ∈ (0.46, 1.00). This point estimate indicates only substantial agreement,
which is not what we expected. At least the interval is consistent with near-perfect agreement, but we
should not take this interval too seriously since the interval is rather wide (owing to the small size of
the dataset).

Perhaps the substantial disagreement for the sixth unit was influential enough to yield α̂ ≤ 0.8. We
can use influence.krippendorffsalpha, another S3 method, to investigate. This function, like other
R versions of influence (e.g., influence.lm, influence.glm), computes DFBETA statistics (Young,
2017), as illustrated below.

R> (inf.6 = influence(fit.full, units = 6))

$dfbeta.units
6

-0.1141961

Leaving out the sixth unit yields a DFBETA statistic of -0.11, which implies that α̂ would have been
0.86. This is consistent with our initial hypothesis.

R> fit.full$alpha.hat - inf.6$dfbeta.units

alpha
0.8571429

Let us call krippendorffs.alpha again to get a new interval.

R> fit.sub = krippendorffs.alpha(nominal[-6, ], level = "nominal",
+ control = list(parallel = FALSE))
confint(fit.sub)

0.025 0.975
0.6616541 1.0000000

We see that excluding the sixth unit leads to α ∈ (0.66, 1.00). The new 95% interval was returned by
S3 method confint.krippendorffsalpha, whose level argument defaults to 0.95, in keeping with R’s
other confint methods. Note that confint.krippendorffsalpha, like summary.krippendorffsalpha,
passes any . . . arguments on to the quantile function.

We conclude this example by producing a visual display of our results (Figure 3). The figure was
produced via a call to S3 method plot.krippendorffsalpha, which in turn calls hist and abline, and
does not show a kernel density estimate. Function plot.krippendorffsalpha is capable of producing
highly customized plots; see the package documentation for details. Since α̂ is close to 1 and the
dataset is small, the bootstrap distribution is substantially skewed to the left. Thus, these data provide
a textbook example of the importance of bootstrapping.

R> plot(fit.sub, xlim = c(0, 1), xlab = "Bootstrap Estimates", main = "Nominal Data",
+ density = FALSE)

Since the dataset used in this example has missing values, we take this opportunity to explain
how the package handles missingness. First, the scores for a given unit of analysis are included in
the computation only if two or more scores are present for that unit. Otherwise, the unit’s row of
the data matrix is simply ignored. Second, if two or more scores are present for a given unit, each NA
for that unit is ignored in the computations for that row. This is handled both by the loop (adjusted
denominator) and by the distance function, which should return 0 if either of its arguments is NA. In
the next example, we illustrate this by way of a user-defined distance function, and of course, the
package’s built-in distance functions take the same approach.
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Nominal Data

Bootstrap Estimates
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Figure 3: A plot of the results from our analysis of the nominal data. The histogram shows the
bootstrap sample, the solid orange line marks the value of α̂, and the dashed blue lines mark the 95%
confidence limits.

Interval data from an imaging study of hip cartilage

The data for this example, some of which appear in Figure 4, are 323 pairs of T2* relaxation times (a
magnetic resonance quantity) for femoral cartilage (Nissi et al., 2015) in patients with femoroacetabular
impingement (Figure 5), a hip condition that can lead to osteoarthritis. One measurement was
taken when a contrast agent was present in the tissue, and the other measurement was taken in the
absence of the agent. The aim of the study was to determine whether raw and contrast-enhanced T2*
measurements agree closely enough to be interchangeable for the purpose of quantitatively assessing
cartilage health.

u1 u2 u3 u4 u5 . . . u319 u320 u321 u322 u323

c1 27.3 28.5 29.1 31.2 33.0 . . . 19.7 21.9 17.7 22.0 19.5

c2 27.8 25.9 19.5 27.8 26.6 . . . 18.3 23.1 18.0 25.7 21.7

Figure 4: Raw and contrast-enhanced T2* values for femoral cartilage.

First, we load the cartilage data, which are included in the package. The cartilage data are
stored in a data frame; we convert the data frame to a matrix, which is the format required by
krippendorffs.alpha.

R> data(cartilage)
R> cartilage = as.matrix(cartilage)

Now, we compute α̂ for the interval level of measurement, i.e., squared Euclidean distance. We
also produce a bootstrap sample of size 10,000. Since this dataset is much larger than the dataset
analyzed in the preceding section, we parallelize the bootstrap computation. We use three CPU cores
(of the four available on the author’s computer). Setting argument verbose to TRUE causes the fitting
function to display a progress bar once again. The computation took five seconds to complete.
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Figure 5: An illustration of femoroacetabular impingement (FAI). Top left: normal hip joint. Top right:
cam type FAI (deformed femoral head). Bottom left: pincer type FAI (deformed acetabulum). Bottom
right: mixed type (both deformities present).

R> set.seed(12)
R> fit.sed = krippendorffs.alpha(cartilage, level = "interval", verbose = TRUE,
+ control = list(bootit = 10000, parallel = TRUE,
+ nodes = 3))

Control parameter 'type' must be "SOCK", "PVM", "MPI", or "NWS". Setting it to "SOCK".

|++++++++++++++++++++++++++++++++++++++++++++++++++| 100% elapsed=05s

A call of function summary.krippendorffsalpha produced the output shown below.

R> summary(fit.sed)

Krippendorff's Alpha

Data: 323 units x 2 coders

Call:

krippendorffs.alpha(data = cartilage, level = "interval", verbose = TRUE,
control = list(bootit = 10000, parallel = TRUE, nodes = 3))

Control parameters:

bootit 10000
parallel TRUE
nodes 3
type SOCK

Results:

Estimate Lower Upper
alpha 0.8369 0.808 0.8648

We see that α̂ = 0.84 and α ∈ (0.81, 0.86). Thus these data suggest that raw T2* measurements
agree almost perfectly with contrast-enhanced T2* measurements, perhaps rendering gadolinium-
based contrast agents (GBCAs) unnecessary in T2*-based cartilage assessment. This finding could
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have clinical significance since the use of GBCAs is not free of risk to patients, especially pregnant
women and patients with impaired kidney function. For much additional information regarding the
potential risks associated with the use of GBCAs, we refer the interested reader to the University
of California, San Francisco’s policy on MRI with contrast: https://radiology.ucsf.edu/patient-
care/patient-safety/contrast/mri-with-contrast-gadolinium-policy.

Figure 6 provides a visual display of the cartilage results. The histogram and kernel density
estimate show the expected large-sample behavior of α̂, i.e., the estimator is approximately Gaussian-
distributed and has a small variance.
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Figure 6: A plot of the results from our analysis of the cartilage data. The histogram and kernel density
estimate (dotted black curve) show the bootstrap sample, the solid orange line marks the value of α̂,
and the dashed blue lines mark the 95% confidence limits.

We mentioned above that attempting to robustify Krippendorff’s α by using absolute values in
place of squares may prove problematic. This is evident for the cartilage data, as we now demonstrate.

First, define a new distance function as follows. Note that any user-defined distance function must
deal explicitly with NAs if the data at hand exhibit missingness. There are no missing values in the
cartilage data, but we illustrate the handling of NA anyway.

R> L1.dist = function(x, y)
+ {
+ d = abs(x - y)
+ if (is.na(d))
+ d = 0
+ d
+ }

Now we call krippendorffs.alpha, supplying our new distance function via the level argument.

R> fit.L1 = krippendorffs.alpha(cartilage, level = L1.dist, verbose = TRUE,
+ control = list(bootit = 10000, parallel = TRUE,
+ nodes = 3))

Control parameter 'type' must be "SOCK", "PVM", "MPI", or "NWS". Setting it to "SOCK".

The R Journal Vol. 13/1, June 2021 ISSN 2073-4859

https://radiology.ucsf.edu/patient-care/patient-safety/contrast/mri-with-contrast-gadolinium-policy
https://radiology.ucsf.edu/patient-care/patient-safety/contrast/mri-with-contrast-gadolinium-policy


CONTRIBUTED RESEARCH ARTICLES 423

|++++++++++++++++++++++++++++++++++++++++++++++++++| 100% elapsed=05s

The results are summarized below. These results strongly suggest that only moderate to substantial
agreement exists between raw T2* measurements and contrast-enhanced T2* measurements. This
contradicts not only our αSED analysis but also a Sklar’s ω analysis that assumed a non-central t
marginal distribution to accommodate slight asymmetry.

R> summary(fit.L1)

Krippendorff's Alpha

Data: 323 units x 2 coders

Call:

krippendorffs.alpha(data = cartilage, level = L1.dist, verbose = TRUE,
control = list(bootit = 10000, parallel = TRUE, nodes = 3))

Control parameters:

bootit 10000
parallel TRUE
nodes 3
type SOCK

Results:

Estimate Lower Upper
alpha 0.6125 0.5761 0.648

Summary and discussion

In this article, we described Krippendorff’s α methodology for measuring agreement and illustrated
the use of R package krippendorffsalpha. We first established α’s context among statistical procedures.
Specifically, the one-way mixed-effects ANOVA model provides a natural, intuitive genesis for α as
the intraclass correlation coefficient. This form of α can be generalized in a parametric fashion to arrive
at Sklar’s ω, or in a nonparametric fashion to arrive at the form of α presented by Krippendorff, which
is a special case of the multiresponse permutation procedure.

We demonstrated the use of krippendorffsalpha version 1.1 by analyzing two datasets: a nominal
dataset previously analyzed by Krippendorff, and a sample of raw and contrast-enhanced T2* values
from an MRI study of hip cartilage. These analyses highlighted the benefits of the package, which
include the use of S3 methods, parallel bootstrap computation, support for user-defined distance
functions, and a means of identifying influential units and/or coders.

Computational details

The results in this paper were obtained using R 4.0.3 for macOS and the pbapply 1.4-2 package.
R itself and all packages used (save kripp.boot) are available from the Comprehensive R Archive
Network (CRAN) at http://CRAN.R-project.org. Package krippendorffsalpha may be downloaded
from CRAN or from the author’s GitHub repository, which can be found at https://github.com/
drjphughesjr/krippendorffsalpha. Information about the author’s other R packages can be found
at http://www.johnhughes.org/software.html.

John Hughes
Department of Statistics
The Pennsylvania State University
University Park, PA
USA
drjphughesjr@gmail.com
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