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Candidate gene analysis for loci affecting litter size
and ovulation rate in swine1,2,3,4

R. C. Linville*,5, D. Pomp*, R. K. Johnson*,6, and M. F. Rothschild†

*Department of Animal Science, University of Nebraska, Lincoln 68583-0908 and
†Department of Animal Science, Iowa State University, Ames 50011-3150

ABSTRACT: A candidate gene approach was used to
determine whether specific loci explain responses in
ovulation rate (OR) and number of fully formed (FF),
live (NBA), stillborn, and mummified pigs at birth ob-
served in two lines selected for ovulation rate and litter
size compared with a randomly selected control line.
Line IOL was selected for an index of OR and embryonic
survival for eight generations, followed by eight genera-
tions of two-stage selection for OR and litter size. Line
C was selected at random for 16 generations. Line COL,
derived from line C at Generation 8, underwent eight
generations of two-stage selection. Lines IOL and C
differed in mean EBV by 6.1 ova and 4.7 FF, whereas
lines COL and C differed by 2.2 ova and 2.9 FF. Pigs
of Generation 7 of two-stage selection lines were geno-
typed for the retinol binding protein 4 (RBP4, n = 190)
and epidermal growth factor (EGF, n = 189) loci,
whereas pigs of Generations 7 and 8 were genotyped for
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Introduction

Reproductive rate, especially litter size, is one of the
most economically important traits in pig production.
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the estrogen receptor (ESR, n = 523), prolactin receptor
(PRLR, n = 524), follicle-stimulating hormone β (FSHβ,
n = 520), and prostaglandin-endoperoxide synthase 2
(PTGS2, n = 523) loci. Based on chi-square analysis for
homogeneity of genotypic frequencies, distributions for
PRLR, FSHβ, and PTGS2 were different among lines
(P < 0.005). Differences in gene frequencies between
IOL vs C and COL vs C were 0.33 ± 0.25 and 0.16 ±
0.26 for PRLR, 0.35 ± 0.20 and 0.15 ± 0.24 for FSHβ,
and 0.16 ± 0.16 and 0.08 ± 0.18 for PTGS2. Although
these differences are consistent with a model of selec-
tion acting on these loci, estimates of additive and domi-
nance effects at these loci did not differ from zero (P >
0.05), and several of them had signs inconsistent with
the changes in allele frequencies. We were not able to
find significant associations between the polymorphic
markers and phenotypes studied; however, we cannot
rule out that other genetic variation within these candi-
date genes has an effect on the traits studied.

Increasing the number of pigs weaned per sow will
increase economic returns for pig producers with mini-
mal additional inputs (Rothschild, 1996).

Currently, litter size varies from approximately 2 to
20 pigs per litter, with means from 9 to 11, depending
on the breed. Phenotypic standard deviations are be-
tween 2.5 and 3 pigs, and heritability is 10 to 15%
(Johnson et al., 1999). Therefore, sufficient genetic vari-
ability exists to increase litter size. However, litter size
is sex-limited and selection response could be enhanced
by direct selection in both sexes for genes affecting
its expression.

Advances in molecular techniques can now be used
to increase rate of response to selection. It has been
proposed that candidate gene analyses be used to iden-
tify individual genes responsible for traits of economic
importance (Rothschild and Soller, 1997). For example,
Short et al. (1997) found the additive effect associated
with the B allele of the estrogen receptor (ESR) gene
was 0.42 pigs per litter in first-parity gilts. The objective
of this study was to determine whether certain candi-
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date genes explain responses in ovulation rate and litter
size in two lines that were selected either 16 or 8 total
generations for ovulation rate, embryonic survival, and
litter size.

Materials and Methods

Population. The population of pigs sampled in this
experiment was developed at the University of Ne-
braska Swine Research Station. Three lines that origi-
nated from the Index (I) and Control (C) lines described
in Johnson et al. (1999) were used. The Index and Con-
trol lines had a common base of a Landrace/Large White
composite population. Pigs were randomly assigned,
within litter, to either line I or line C at Generation 0
and then selected for increased values of an index of
ovulation rate and embryonic survival (Line I) or ran-
domly (Line C). At Generation 8 of index selection, the
lines reported on here and designated as IOL and COL
were formed from line I and line C, respectively. Eight
generations of two-stage selection in lines IOL and COL
were practiced. Stage-one selection included all gilts
from 50% of litters with the greatest number of fully
formed pigs at birth. Stage-two selection included the
50% of these gilts with the greatest ovulation rate, mea-
sured by counting the number of corpora lutea via lapor-
atomy at second estrus. Line C continued to be ran-
domly selected.

At Generation 0 of two-stage selection, line I, and
thus line IOL, differed from line C by 4.22 ova and 1.94
pigs (Ruiz-Flores et al., 1999). After eight generations
of two-stage selection, lines IOL and C differed in mean
estimated breeding value by 6.1 ova and 4.7 fully
formed pigs, whereas lines COL and C differed by 2.24
ova and 2.9 fully formed pigs. The inbreeding coeffi-
cients were 0.191, 0.141, and 0.137 for lines IOL, COL,
and C, respectively, at Generation 8.

Measurement of Traits. Animal management and pro-
cedures to record traits are described in Johnson et al.
(1999) and in Ruiz-Flores et al. (1999). All data are for
first-parity females. Gilts were observed for estrus and
date of final estrus was recorded. Laparotomy was per-
formed between 8 and 14 d after gilts expressed their
second estrus. Selected gilts were mated at their third
or fourth estrus and numbers of fully formed, live, still-
born, and mummified pigs at birth were recorded. Data
for this experiment are from pigs of Generations 7 and
8 of two-stage selection. Ovulation rate in 382 gilts and
litter size data in 244 gilts were recorded.

DNA Preparation. Ear tissue of pigs in Generations
7 and 8 was collected. In Generation 7, only the selected
gilts and boars that were mated were sampled (n = 192).
In Generation 8, tissue was collected from all gilts in
which laporatomy was performed and in all breeding
boars (n = 332). Genomic DNA was purified by standard
procedures using proteinase K digestion followed by
phenol/chloroform extraction and precipitation with
isopropanol.

Candidate Genes. Pigs were genotyped for six candi-
date genes (Table 1) chosen based on known physiologi-
cal mechanisms or because the gene was found to be
associated with litter size in other studies. Information
for PCR-based genotyping for all gene markers is in
Tables 1 and 2.

Primers and reaction conditions for estrogen receptor
(ESR) were those described in Short et al. (1997). The
pig specific primers and reaction conditions for epider-
mal growth factor (EGF) are described in Mendez et
al. (1999). Amplification of EGF with the pig specific
primers sometimes yielded ambiguous genotypes be-
cause the A allele in the heterozygote amplified ineffi-
ciently. A second primer pair was used to amplify only
the A allele (EGF L1 F, Table 1) to differentiate between
the AB and BB genotypes. The same reaction conditions
were used for both primer pairs.

Primers for the beta subunit of follicle-stimulating
hormone β (FSHβ) were developed from pig sequence
data (Genbank accession no. D00621). Primers for pro-
lactin receptor (PRLR) were developed by M. F. Roth-
schild (unpublished data). The AB and BB genotypes
for PRLR were distinguishable by the intensity of the
127-bp band (Table 1), which was much darker in the
AB genotype. A monomorphic band of size 35 bp comi-
grated with the 35-bp digestion product in the B allele.

Reaction conditions and primer sequences for prosta-
glandin-endoperoxide synthase 2 (PTGS2) are de-
scribed in Gladney et al. (1999). Primers for retinol-
binding protein 4 (RBP4) were developed by Rothschild
et al. (2000) and reaction conditions are in Messer et
al. (1996b).

Statistical Analysis. Allele frequencies were deter-
mined by the total count of an allele in a line divided
by twice the number of observations in that line. A chi-
square analysis for homogeneity of genotypic frequen-
cies across lines was conducted in a 3 × 3 contingency
table (Weir, 1996). The null hypothesis was that geno-
typic frequencies across lines were homogeneous. If a
significant chi-square was obtained from Generation 7
data, then pigs of Generation 8 were also genotyped for
that locus. The genotypes determined for Generation 7
animals were for the boars and gilts selected as parents
of Generation 8. Thus, if genotypic frequencies among
lines did not differ for parents, then differences among
their progeny were not expected. Generation 8 progeny
were genotyped to increase sample size if genotypic
frequencies differed among Generation 7 parents.

Changes in allele frequencies between lines IOL and
C and between COL and C were determined by subtrac-
tion. A standard error for the difference in gene fre-
quency was determined by a method described in Olli-
vier et al. (1997) that accounted for genetic drift. The
formula was: V (p̂gs − p̂gc) = q̂gcp̂gc(1/[2ngc] + Fgc) + q̂gsp̂gs(1/
[2ngs] + Fgs), where p̂ and q̂ are estimates of gene fre-
quencies, the subscript g represents the seventh or
eighth generation, the subscripts c and s code for either
the control line or a selection line, respectively, F is
the inbreeding coefficient in Generation g, and n is the
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Table 1. Primer sequences, restriction enzymes, allele sizes, and chromosomal locations of candidate genes

Allele size, bp

Candidate gene Primer sequence Enzyme A allele B allele Uncut Chromosome

Estrogen receptor ESRF 5′ CCT GTT TTT ACA GTG ACT TTT ACA GAG 3′ PvuII 55 65 120 1
ESRR 5′ CAC TTC GAG GGT CAG TCC AAT TAG 3′

Epidermal growth Pig EGF F 5′ GAA ACA ATT CCC GTG TTC TCT 3′ none 1,527 625 1,527 8
factor Pig EGF R 5′ TCA CTT CCA CAC CTG TAA CAT CT 3′ or 625

EGF L1 F 5′ TGA TCC CGT AGA AAG GTA AA 3′ none 600 600
EGF L1 R 5′ GGC ATC TAT CTG GAC AAA G 3′

Retinol binding RBP4 F 5′ GAG CAA GAT GGA ATG GGT T 3′ MspI 190 109 480 14
protein 4 RBP4 R 5′ CTC GGT GTC TGT AAA GGT G 3′ 154 136

136 125

Prostaglandin- COX2-3F 5′ GTG CAC TAC ATA CTT ACC CAC TTC 3′ MseI 360a 240a 1,550 9
endoperoxide COX2-4R 5′ AGG CTT CCC AGC TTT T(A/G)TA 3′ 120
synthase 2

Follicle stimulating FSHR2*N 5′ GTA TAC CAG GTC CTA AG 3′ αTaqI 1,650 975 1,650 2
hormone β FSH-F2-RL 5′ GTC TCG TAC ACC AGC TCC TT 3′ 675

Prolactin receptor PRLR4 5′ CGG CCG CAG AAT CCT GCT GC 3′ AluI 127a 92a 170 16
PRLR5 5′ ACC CCA CCT TGT AAC CCA TCA TCC 3′ 35

aMonomorphic bands were also present.

number of animals with genotypic data per line. The
line designated by s was either IOL or COL depending
on the standard error being calculated (IOL-C or
COL-C).

Data were analyzed using the MTDFREML program
(Boldman et al., 1993) with an animal model including
pedigree relationships back to the base generation of
the population, year, and line as fixed effects. In one
model, a covariate of the number of favorable alleles in
the genotype for each gene (0, 1, or 2) was added to
estimate the effects of allele substitution, and in a sepa-
rate model, the effects of each genotype were estimated
by fitting a fixed class variable with values of 0, 1, or
2 for the number of favorable alleles in the genotype.
Only phenotypic data for Generations 7 and 8 were
analyzed because genotypic data were available only
for these generations. Therefore, line was included in
the model to account for previous selection effects.

The genotypes of all six markers were fitted simulta-
neously. The favorable allele was defined as the one
with increased frequency in the selection lines com-
pared to the control line. Additive (a) and dominance
(d) effects, as defined by Falconer and Mackay (1996),
were estimated with orthogonal contrasts of solutions

Table 2. PCR reaction conditions for the candidate genesa

dNTP, Primer, MgCl2 Taq Reaction Genomic
Candidate gene �M each nM each mM units volume, �L DNA, ng

Estrogen receptor 200 200 1.5 1.15 30 50
Epidermal growth factor 100 300 2 1.15 30 50
Retinol binding protein 4 100 320 1.5 1 20 50
Prostaglandin-endoperoxide synthase 2 200 250 1.5 0.5 10 50
Follicle-stimulating hormone β 100 200 1.5 1 20 50
Prolactin receptor 100 200 1.5 1 20 50

aAll reactions used 1× concentration of the supplied PCR buffer and 1× RediLoad (Research Genetics, Huntsville, AL).

for genotypic effects. The mixed-model analysis was
expected to produce unbiased estimates of a and d ef-
fects of the loci studied, averaged within line, indepen-
dent of other polygenic effects on the traits (Kennedy
et al., 1992).

The a and d effects of each allele also were estimated
with PROC GLM of SAS (SAS Inst., Inc., Cary, NC) to
determine whether solutions differed without correc-
tion for the effects of the other candidate genes and
without correction for breeding values due to genes not
included in the model. These analyses were performed
fitting effects of each gene independently. The model
included fixed effects of year and line and the appro-
priate genotypic classes as fixed effects.

Results

Allele frequencies are presented in Table 3. As ex-
pected for Type I markers, only two alleles for each
marker existed. Both alleles for each marker were pres-
ent in all three lines, although sometimes at low fre-
quency, except for the B allele of ESR, which did not
exist in the sample of animals of the COL and C lines.
The A allele was designated as favorable for PTGS2
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Table 3. Allele frequencies overall and within lines IOL, COL, and Ca

Candidate gene Allele Overall IOL COL C

Estrogen receptor A 0.98 0.94 1 1
(ESR, n = 520) B 0.02 0.06 0 0

Epidermal growth factor A 0.08 0.06 0.1 0.1
(EGF, n = 190) B 0.92 0.94 0.9 0.9

Retinol binding protein 4 A 0.45 0.46 0.47 0.42
(RBP4, n = 190) B 0.54 0.54 0.53 0.58

Prostaglandin-endoperoxide synthase 2 A 0.91 0.98 0.9 0.82
(PTGS2, n = 523) B 0.09 0.02 0.1 0.18

Follicle-stimulating hormone A 0.2 0.03 0.23 0.38
(FSHβ, n = 520) B 0.8 0.97 0.77 0.62

Prolactin receptor A 0.33 0.19 0.36 0.42
(PRLR, n = 524) B 0.67 0.81 0.64 0.58

aLines IOL, COL and C are from the Nebraska selection lines. IOL was selected eight generations for
index of ovulation rate and embryo survival, followed by eight generations of two-stage selection for ovulation
rate and litter size. COL was selected at random for eight generations, followed by eight generations of
two-stage selection. Line C was randomly selected for 16 generations.

and RBP4, whereas B was designated as favorable for
ESR, FSHβ, EGF, and PRLR. There was an approxi-
mate linear increase in frequency of the favorable allele
for FSHβ, PTGS2, and PRLR, genes for which the fre-
quency of the favorable allele in line COL was interme-
diate to frequencies in lines C and IOL (Table 3).

Chi-square statistics for homogeneity of genotypic
frequencies (Table 4) for FSHβ, PTGS2, PRLR, and
ESR were significant. It is likely that the chi-square
statistic for ESR is significant because there were sev-
eral zeros in the observational cells of the contingency
table. Small values (less than 5) in individual cells of
the contingency table inflate the chi-square value (Weir,
1996). Thus, the chi-square test for the ESR locus is
not accurate and we cannot conclude that genotypic
frequencies differ across lines.

Changes in allele frequencies are presented in Table
5. After accounting for potential genetic drift, none of
the differences in allele frequencies between selection
lines and line C was significantly different from zero.

None of the estimates of the effects of allele substitu-
tion differed significantly from zero. These results are
not presented because they can be calculated with for-
mulas found in Falconer and Mackay (1996) using esti-
mates of gene frequencies (Table 3) and a and d effects
(Table 6).

Estimates of the additive and dominance effects of
alleles calculated with an animal model are in Table 6.
Only the estimate of dominance effect of PTGS2 on
number of mummies differed from zero. Estimates of a
and d effects calculated without an animal model (not
shown) were very similar to those in Table 6.

Discussion

Choice of Candidate Genes. The estrogen receptor lo-
cus was chosen because results from Rothschild et al.
(1996) and Short et al. (1997), using data from nearly
10,000 litters from several lines, reported that the ESR
B allele was significantly associated with increased

number of pigs per litter at birth. Estrogen is involved
in maternal recognition of pregnancy (Geisert et al.,
1990). It is produced by the growing conceptus and is

Table 4. Observed numbers of genotypes in lines IOL,
COL, and C and chi-square tests of homogeneity

of genotypic frequenciesa

Genotype IOL COL C χ2

ESR
AA 166 198 136
AB 22 0 0
BB 1 0 0 42.5***

EGF
AA 0 0 0
AB 8 13 11
BB 58 55 45 2.7

RBP4
AA 8 15 12
AB 46 35 21
BB 13 19 21 12.3

PTGS2
AA 181 162 94
AB 8 33 36
BB 0 2 7 47.2***

FSHβ
AA 0 8 16
AB 12 73 70
BB 176 115 50 124.7***

PRLR
AA 4 23 35
AB 64 97 73
BB 121 78 29 79.6***

aAA, AB, and BB are the genotypes for the markers estrogen recep-
tor (ESR), epidermal growth factor (EGF), retinol binding protein
(RBP4), prostaglandin endoperoxide-synthase 2 (PTGS2), follicle-
stimulating hormone (FSHβ), and prolactin receptor (PRLR). The
expected values were calculated by dividing the total for a genotype
by the grand total, then multiplying by the total for each line. IOL
was selected eight generations for index followed by eight generations
of two stage selection, COL was selected randomly for eight genera-
tions followed by eight generations of two-stage selection, and C was
randomly selected for 16 generations.

***P < 0.001.
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Table 5. Differences in allele frequencies of lines IOL and COL from Ca

SE
SE w/o SE SE

Candidate gene IOL-C w/drift drift COL-C w/drift w/o drift

Estrogen receptor 0.06 0.116 0.039 0 0.116 0.039
(ESR, n = 520)

Epidermal growth factor 0.04 0.156 0.035 0 0.156 0.038
(EGF, n = 190)

Retinol binding protein 4 0.04 0.29 0.063 0.05 0.27 0.063
(RBP4, n = 190)

Prostaglandin-endoperoxide 0.16 0.156 0.007 0.08 0.18 0.0005
synthase 2
(PTGS2, n = 523)

Follicle-stimulating hormone 0.35 0.2 0.03 0.15 0.24 0.035
(FSHβ, n = 520)

Prolactin receptor 0.33 0.25 0.038 0.16 0.26 0.038
(PRLR, n = 524)

aIOL was selected eight generations for index of ovulation rate and embryonic survival, followed by eight
generations of two-stage selection for ovulation rate and litter size. COL underwent two-stage selection for
eight generations, subsequent to eight generations of random selection. Line C was randomly selected for
16 generations.

recognized by receptors in the uterus of the sow. Also,
estrogen acts to induce hypertrophy and hyperplasia of
the myometrial cells (Hafez, 1993).

Epidermal growth factor was chosen based on its role
in the physiology of reproduction. Epidermal growth
factor is produced by the conceptus and in the uterus
of the sow. In the fetus, EGF stimulates growth and
proliferation of skin epithelia; in the neonate, EGF
stimulates pulmonary epithelia to grow and mature
(Hadley, 1996).

Follicle-stimulating hormone is a heterodimer com-
posed of alpha and beta subunits that are coded by
two distinct genes. The beta subunit offers specificity.
Follicle-stimulating hormone was chosen as a candidate
gene because it functions in maturation of small and
medium follicles into large follicles that ovulate (Wang
and Greenwald, 1993a,b; Mannaertz et al., 1994). Also,

Table 6. Additive (a) effects of favorablea allele and dominance (d) effects estimated with an animal modelb,c

Candidate gene Contrast OR SE FF SE NBA SE Stillborn SE Mummies SE

ESR BB-AA a 0.108 1.3 1.74 1.6 0.474 1.52 1.25 0.761 0.341 0.437
d 2.33 1.42 2.72 1.98 1.58 1.88 1.13 0.933 0.37 0.54

RBP4 AA-BB a −0.284 0.38 0.179 0.457 0.526 0.436 −0.346 0.22 −0.026 0.124
d 0.315 0.49 0.441 0.627 0.313 0.595 0.0936 0.298 −0.0479 0.17

PTGS2 AA-BB a 0.036 0.64 0.589 0.833 0.403 0.795 0.184 0.399 0.273 0.226
d 0.448 0.71 0.354 0.953 0.076 0.909 0.278 0.454 0.741* 0.259

FSHβ BB-AA a −0.04 0.34 0.163 0.466 0.12 0.446 0.045 0.223 0.246 0.127
d −0.039 0.41 0.979 0.577 0.759 0.549 0.222 0.273 0.0481 0.157

PRLR BB-AA a −0.287 0.27 −0.039 0.380 −0.007 0.366 −0.028 0.184 0.091 0.103
d −0.445 0.32 −0.229 0.462 −0.466 0.440 0.164 0.219 0.063 0.126

aFavorable allele was defined as the one whose frequence increased in lines IOL and COL relative to line C. The additive contrast (a) is
the favorable genotype minus the less favorable genotype, and d = AB − 1/2(AA + BB).

bEpidermal growth factor (EGF) could not be estimated with contrasts because only two genotypes occurred.
cTraits measured include ovulation rate (OR), number of fully formed (FF), live (NBA), stillborn, and mummified pigs. Candidate genes

were estrogen receptor (ESR), retinol binding protein (RBP4), prostaglandin endoperoxide-synthase 2 (PTGS2), follicle-stimulating hormone
(FSHβ), and prolactin receptor (PRLR).

in a candidate gene analysis, Li et al. (1998) found
major effects on litter size associated with a marker
within FSHβ.

The prolactin receptor locus was chosen as a candi-
date gene because Vincent et al. (1998) reported that
it was associated with litter size in three of the five
lines of pigs they studied. Prolactin affects production
of progesterone and relaxin from the corpora lutea, as
determined by comparison of hypophysectomized gilts
with and without prolactin treatment vs sham-operated
gilts (Yangfan et al., 1989). It was inferred in that study
that prolactin is leuteotropic during the latter part of
pregnancy.

Prostaglandin-endoperoxide synthase 2, also known
as cyclooxygenase 2 (COX2), was chosen because it is
the rate-limiting enzyme in the formation of prostaglan-
dins (Lim et al., 1997). A null mutation that produced
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multiple reproductive failures in mice was described
(Lim et al., 1997). Oocyte maturation was not complete,
and the first polar body was usually not extruded. Also,
when wild-type blastocysts were implanted into the
uteri of mutant mice, they failed to implant.

Retinol-binding protein 4 was studied as a possible
candidate gene affecting litter size because it is involved
in embryonic development. Yelich et al. (1997) stated
that most embryonic death losses occur between d 10
and 18 of gestation, concurrent with trophoblast elonga-
tion and secretion of estrogen by the conceptus. Retinol-
binding protein 4, a major protein produced by the con-
ceptus, may have a role in trophoblast elongation (Har-
ney et al., 1990). It also enhances gene expression of
transforming growth factor β via retinoic acid receptors
(Yelich et al., 1997). Rothschild et al. (2000), using data
of 2,500 litters of six commercial lines, reported an addi-
tive effect associated with RBP4 of 0.23 pigs/litter.

Allele Frequencies and Effects. The magnitude of the
differences in allele frequencies between IOL and C and
between COL and C were small (less than 0.06) for
markers within the ESR, RBP4, and EGF loci. The
differences in allele frequencies were greater for the
FSHβ, PRLR, and PTGS2 loci. Within these latter three
loci, there was an approximately linear increase in fre-
quency of the favorable allele between the lines that
were separated by eight generations of selection (COL
and C) and the lines separated by 16 generations of
selection (IOL and C).

The effects of selection, different frequencies in the
founder animals, and random genetic drift could have
caused allele frequencies to differ among lines. The base
generation was sampled to minimize founder effects.
The I and C lines were created from a common base
population in which littermates were assigned at ran-
dom to either the I or C line. All base generation parents
were represented in both lines.

Random genetic drift is a nondirectional force that
acts to change allele frequencies. In the absence of selec-
tion, the amount of drift depends on allele frequencies
and effective population size. The estimated inbreeding
coefficients at Generation 16 were used to estimate ef-
fective population sizes (N = 38, IOL; 53, COL; and 54,
C). For alleles with frequencies between 0.1 and 0.5,
these values of N result in estimates from 0.029 to 0.057
for SE of change in allele frequency within lines in any
generation due to drift. After drift begins, it is most
probable that an allele’s frequency will continue to
change in the same direction (Falconer and Mackay,
1996). Thus, drift could have caused the linear increase
in frequencies of favorable alleles at the PTGS2, FSHβ,
and PRLR loci. Knowledge of base generation allele
frequencies is needed to calculate the probability that
random drift alone caused the order of favorable allele
frequencies to be C, COL, to IOL at each of these
three loci.

The fact that frequencies of favorable alleles at three
loci are approximately linearly ordered according to
number of generations of selection also fits a selection

model. Equations from Falconer and Mackay (1996) for
an additive model were used to determine values of the
selection coefficient (s) against the homozygous geno-
types for the unfavorable alleles at each of the PTGS2,
FSHβ, and PRLR loci. Assuming allele frequencies in
the control line represent the base generation, values
of s that would have produced observed allele frequency
changes in line IOL are 0.13, 0.25, and 0.21 for the
PTGS2, FSHβ, and PRLR loci, respectively. However,
even with selection, allele frequencies at these loci were
subject to genetic drift. With selection, the amount of
drift depends approximately on the product of effective
population size and the selection coefficient at that locus
(Hartl and Clark, 1989). For effective population size
of N and selection coefficient of s against the least favor-
able homozygous genotype, selection has little effect on
rate of genetic drift if Ns < 1. Thus, selection coefficients
greater than 0.025 would have slowed the rate of in-
crease in the frequency of an unfavorable allele in lines
IOL and COL and would have speeded the rate of in-
crease of a favorable allele. With drift, selection coeffi-
cients less than these calculated values could have pro-
duced the same changes in allele frequencies.

The joint effects of selection and drift as forces for
change in allele frequencies in this study cannot be
separated. When inbreeding coefficients were incorpo-
rated into the variances of allele frequency differences
among lines, the estimates of standard errors were in-
creased in the range of three to seven times (Table
5). Changes in allele frequencies were not significant,
although differences calculated without including drift
variance were significant. Thus, a selection model can-
not be ruled out as the cause of the linear increase in
allele frequencies at the PTGS2, FSHβ, and PRLR loci
from lines C to COL to IOL (Table 3).

When selection lines have accumulated inbreeding of
the levels in these lines, changes in frequency for any
allele will not be significant, and evaluating changes
in gene frequency by itself is not informative. However,
allele frequency changes that are consistent with addi-
tive and dominance effects give greater evidence that
selection caused the changes.

The linear regression of phenotype on genotype, fit-
ting all marker genotypes simultaneously and using an
animal model to account for the background genotypes
and fixed effects of year and line, yielded no significant
estimates of allele substitution effects. At several loci,
including the FSHβ and PRLR loci for which there were
linear increases in allele frequencies, the estimate of
the effect of the favorable allele was negative. This
finding does not support a selection model operating at
these loci. In addition, using estimates of allele fre-
quency changes and the a and d effects, we calculated
that only 2 to 5% of the total responses in ovulation rate
and litter size could be explained by allele frequency
changes at all loci studied.

The additive and dominance effects were estimated
both with and without an animal model. Estimates
were nearly identical from both analyses. Only one ef-
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fect was found to be significantly different from zero, the
dominance effect of PTGS2 on the number of mummies.
Standard errors were approximately 10% greater for
effects estimated with an animal model, consistent with
the results of the simulation study of Kennedy et al.
(1992).

Finding no significant effects for any of the genes on
any of the traits was an unexpected result, based on
results of other studies. Messer et al. (1996a) reported
effects associated with RBP4 to be 0.52 ± 0.45 for litter
size in hyperprolific Large White sows in France and
0.32 ± 0.30 for control sows; Rothschild et al. (2000)
reported smaller effects in over 2,000 litters from across
several populations. Retinol binding proteins are syn-
thesized just before elongation of the trophoblast (Ye-
lich et al., 1997). This timing of transcription and the
role of RBP4 in embryo development implicate it as a
candidate gene for litter size. However, it did not seem
to explain response to selection in our lines.

The inconsistency across lines of the effects of an
allele is evident from the work reported by Vincent et
al. (1998). They reported the PRLR marker was linked
to a significant additive effect on litter size in three of
five PIC lines. Significant dominance effects occurred
in two of the three lines for number born alive, but they
were opposite in sign (d = −0.33, P < 0.1; d = 0.63, P <
0.01). Significant additive effects also existed in the
same two lines for total number born (P < 0.05; range
from a = 0.16 to a = 0.51) and the dominance effect was
also important in one line (P < 0.05, d = 0.55). In one
line, the additive effect for number born alive was −0.33,
whereas it was positive (0.47) in two other lines. There
were more records in the data reported by Vincent et
al. (1998) than in the current study. The lines with
significant effects mentioned above had from 261 to 416
animals per line, and some sows had multiple records,
giving a total of 685 to 1,197 records per line. The varia-
tion among lines in that study and the different results
in the current study could be due to sampling. Short et
al. (1997) stated that over 1,000 records were needed
before a stable estimate of 0.42 pigs per litter in first-
parity gilts of the additive effect of the B allele of the
ESR gene occurred.

The ESR locus did not explain response to selection
in the IOL and COL lines. The gene likely was segregat-
ing in the base generation because both the A and B
alleles existed in Line IOL. However, the frequency of
the B allele, defined as the favorable allele (Short et
al., 1997), was 0.06 after 16 generations of selection.
The B allele was lost due to random drift in line C,
presumably before the eighth generation when Line
COL was formed because it did not exist in either Lines
C or COL.

The candidate gene analysis of Li et al. (1998), in
which a significant difference of 2.53 pigs per litter for
alternative homozygotes for two alleles of FSHβ was
found, used a polymorphism different from the one we
studied. The polymorphism we studied may be in less
linkage disequilibrium with the causative mutation.

Cassady et al. (2000) found greater concentrations
of circulating FSH in the lines selected for increased
ovulation rate than in their randomly selected controls.
However, the FSHβ gene does not seem to explain re-
sponse to selection in Lines IOL and COL. It is im-
portant to stress that the lack of association between
a polymorphism within a gene and a phenotype does
not mean that the gene product is not important in
regulating the trait. Effects of transcriptional and(or)
translational events at other loci may combine to regu-
late FSH levels in these selection lines of pigs. Indeed,
a recent QTL scan for FSH levels in pigs identified
several chromosomal regions, independent of the FSHβ
locus, influencing this trait (G. Rohrer, personal com-
munication).

One possible reason for the lack of effect in the cur-
rent study, by genes that had positive effects on litter
size in other studies, is that different linkage disequilib-
rium existed in the populations. The polymorphism in
the genes studied may not directly affect the trait.
These polymorphisms could be markers linked with the
causative mutation within the gene or a closely linked
gene. Different linkage relationships may be the reason
estimates of the effects of genes differ across popu-
lations.

Background effects of other genes and interactions
of these genes with the markers can also cause esti-
mates of gene effects to differ across populations. Little
is known about the magnitude of epistatic variation in
the traits studied here. But if epistasis exists, the effect
of a particular allele depends on its frequency and the
frequency of alleles at other loci. Because of epistasis,
polymorphisms for one gene could have a small effect
in one population, yet explain a significant portion of
the variance in another population.

Cassady (1999) found results consistent with those
of this study. He performed a complete genome scan for
QTL affecting reproduction traits in an F2 population of
the Nebraska Index and Control lines that were the
foundation lines for those used here. He found evidence
(P < 0.05) of a QTL on chromosome 11 affecting number
of pigs per litter, one QTL on each of chromosomes 5
and 13 affecting number of stillborn pigs per litter, and
one QTL on chromosome 9 affecting ovulation rate. The
PTGS2 locus, located on chromosome 9, is the only one
of the candidate genes that we studied that is located
on one of these chromosomes. However, the QTL for
ovulation rate found by Cassady (1999) was at approxi-
mately the 1 cM position, whereas PTGS2 has been
mapped between markers S0295 and S0114, which are
at approximately positions 100 and 123 cM, respec-
tively, on the USMARC linkage map (Gladney et al.,
1999). Thus, results of the QTL genome scan support
the conclusion that the candidate genes studied here
do not have large effects on ovulation rate or litter size
in this population.

Implications

Six candidate genes for effects on ovulation rate and
litter size were studied in lines separated by 8 and 16
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generations of selection. The selection lines exceeded
the control line by 20 to 50% in ovulation rate and litter
size at birth. None of the markers studied explained a
significant portion of this response. Line differences in
frequencies of alleles of these markers were observed.
Random genetic drift likely caused these differences,
but effects of selection cannot be ruled out. The selection
response was likely due to small changes in the frequen-
cies of several genes. Other studies have reported that
the candidate genes studied affect litter size. However,
direct selection for alleles of these genes may not in-
crease litter size in all populations.
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