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Targeting Thioredoxin Reductase 1 Reduction in
Cancer Cells Inhibits Self-Sufficient Growth and DNA
Replication
Min-Hyuk Yoo1, Xue-Ming Xu1, Bradley A. Carlson1, Andrew D. Patterson1¤, Vadim N. Gladyshev2, Dolph L. Hatfield1*

1 Molecular Biology of Selenium Section, Laboratory of Cancer Prevention, Center for Cancer Research, National Cancer Institute, National Institutes of
Health, Bethesda, Maryland, United States of America, 2 Department of Biochemistry, University of Nebraska, Lincoln, Nebraska, United States of
America

Thioredoxin reductase 1 (TR1) is a major redox regulator in mammalian cells. As an important antioxidant selenoprotein, TR1 is
thought to participate in cancer prevention, but is also known to be over-expressed in many cancer cells. Numerous cancer
drugs inhibit TR1, and this protein has been proposed as a target for cancer therapy. We previously reported that reduction of
TR1 levels in cancer cells reversed many malignant characteristics suggesting that deficiency in TR1 function is
antitumorigenic. The molecular basis for TR1’s role in cancer development, however, is not understood. Herein, we found
that, among selenoproteins, TR1 is uniquely overexpressed in cancer cells and its knockdown in a mouse cancer cell line
driven by oncogenic k-ras resulted in morphological changes characteristic of parental (normal) cells, without significant
effect on cell growth under normal growth conditions. When grown in serum-deficient medium, TR1 deficient cancer cells lose
self-sufficiency of growth, manifest a defective progression in their S phase and a decreased expression of DNA polymerase a,
an enzyme important in DNA replication. These observations provide evidence that TR1 is critical for self-sufficiency in
growth signals of malignant cells, that TR1 acts largely as a pro-cancer protein and it is indeed a primary target in cancer
therapy.

Citation: Yoo M-H, Xu X-M, Carlson BA, Patterson AD, Gladyshev VN, et al (2007) Targeting Thioredoxin Reductase 1 Reduction in Cancer ?Cells
Inhibits Self-Sufficient Growth and DNA Replication. PLoS ONE 2(10): e1112. doi:10.1371/journal.pone.0001112

INTRODUCTION
Dietary selenium has potent cancer prevention activity [1] and

both selenium-containing proteins (selenoproteins) [2,3 and

references therein] and low molecular weight selenium-containing

compounds (selenocompounds) [2 and references therein] have

been implicated in this activity. The major role of selenium in

providing health benefits is likely through the action of

selenoproteins [1]. Thioredoxin reductase 1 (TR1) is one of 24

known selenoproteins in rodents [4], is a major antioxidant and

redox regulator in mammalian cells [5,6 and references therein]

and has an essential role in mammalian development [7].

However, this enzyme appears to have opposing effects in cancer

development as it has been implicated in both cancer prevention

[8] and cancer promotion [9–12]. For example, TR1 supports p53

function and has other tumor suppressor activities, and its

targeting by carcinogenic, electrophilic compounds argue for its

role in cancer prevention [13]. Alternatively, TR1 is overexpressed

in many cancer cells [9–12] and its inhibition by a variety of

potent cancer drugs altered cancer-related properties of numerous

tumors and malignant cells suggesting that this enzyme is a target

for cancer therapy [9–12,14,15].

It is not clear whether TR1 cancer-preventing or cancer-

promoting properties exert greater influence on cancer, whether

these contrasting effects operate simultaneously or are specific to

different stages of cancer development, and how these properties

could be utilized in cancer prevention and/or therapy. To address

these issues, we initially examined the role of TR1 in a mouse lung

cancer cell line and a mouse animal model and observed that

reduction of TR1 levels reversed numerous malignant properties

including tumorigenecity [16]. Herein, we examined TR1

function and roles in cancer development in a malignant mouse

cell line for which the corresponding parental (normal) cell line

was available, and further verified the findings in several human

cancer cell lines.

RESULTS

Generation of the malignant and parental cell lines

and analysis of their TR1 levels along with several

cancerous human cell lines
DT cells, which encode oncogenic k-ras [17,18], and the parental

NIH3T3 (control) cells were labeled with 75Se and the resulting

protein extracts electrophoresed to examine the levels of TR1 and

other selenoproteins (Fig. 1A, upper left panel). The 55 kDa TR1 is

one of the major selenoproteins, along with other selenoproteins,

labeled in this figure. Clearly, DT cells have higher amounts of TR1

than control cells. TR1 levels were also examined in control and DT

cells by western blotting (Fig. 1A, lower left panel) which confirmed
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increased levels of TR1 in DT cells. Interestingly, elevated TR1

expression was at the expense of other selenoproteins, which were at

reduced levels in DT cells compared to control cells.

In addition, mouse Lewis lung carcinoma (LLC1) cells [16]

along with four human cell lines, along with, were labeled with
75Se and selenoprotein expression analyzed (Fig. 1A, right upper

panel). Although no corresponding control cells were available for

these malignant cell lines, we compared their selenoprotein

labeling patterns to those of normal NIH3T3 cells. The only

labeled selenoprotein that appeared to be overexpressed in each of

the cancer cells lines was TR1. Western blot analysis also showed

high levels of TR1 in the human and mouse malignant cell lines

(Fig. 1A, lower right panel).

Stable transfection of DT and control cells with

a siRNA-TR1 knockdown vector and their

characterization
DT cells were stably transfected with the siRNA-TR1 knockdown

(designated DT/siRNA) or control vector (designated DT/pU6-

m3) (Fig. 1B, upper panel). TR1 was virtually absent in DT/

siRNA transfected cells as demonstrated by metabolic 75Se

labeling and western blotting (Fig. 1B, lower panel).

The phenotypes of the two transfected DT cell lines were

examined and compared to those of untransfected DT and control

cells (Fig. 2). Control cells grew in monolayer and tightly attached

to the culture dish which are characteristics of normal cells, while

DT/pU6-m3 and DT cells grew in multilayer and loosely attached

to the culture dish which are characteristics of malignant cells

(Fig. 2A). However, DT/siRNA cells had a significantly di-

minished ability to grow in multilayer and were more tightly

attached to the culture dish than either DT/pU6-m3 or DT cells.

Since many cancer cells can grow unanchored in soft agar, but

most normal cells cannot, the ability of control, DT, DT/pU6-m3

and DT/siTR1 cells to grow in soft agar was examined (Fig. 2B).

DT and DT/pU6-m3 cells grew in soft agar, while control

and DT/siTR1 cells grew poorly under these conditions. The

growth properties in soft agar of two human cell lines, A549 and

HCT116, following transfection with the corresponding human

TR1 knockdown vector and control vector lacking siTR1 were

also examined (see Fig. S1 and figure legend). Interestingly, both

cell lines encoding siTR1 lost their ability to grow in soft agar.

Self-sufficiency in growth signals
Self-sufficiency in growth signals has been suggested as one of six

acquired capabilities of cancer phenotypes and the Ras-Raf-

MAPK signaling cascade is known to be involved in this acquired

capability by mimicking growth signals [19]. We examined the

effect of TR1 reduction on this phenotype by growing control,

DT/pU6-m3 and TR1 knockdown cells in regular and serum-

deficient media (Fig. 2C). Under normal growth conditions, both

DT and DT/siTR1 cells grew more than twice the rate of

NIH3T3 cells, while DT/siTR1 cells grew only about 10% less

effectively than DT/pU6-m3 cells (left panel, Fig. 2C). Thus, TR1

knockdown did not decrease the growth of DT cells, excluding the

effects associated with TR1 essentiality for cell growth. As many

malignant cells grow more efficiently than normal cells when

cultured in serum-deficient medium, we examined the abilities of

the two transfected cell lines to grow in serum-deficient conditions

(right panel). DT/siTR1 cells grew at about half the rate as the

DT/pU6-m3 cells, further suggesting that cancer-associated

properties of cells were specifically affected by the TR1

knockdown.

Figure 1. Thioredoxin reductase (TR1) expression in mouse and human malignant cells. Indicated cell lines were metabolically labeled with 75Se,
the resulting protein cell extracts electrophoresed and the gels exposed to a PhosphorImager (see Methods). Selenoproteins identified previously in
cell extracts [25,26] are indicated by an arrow and name on the right of each panel. TR1 was also identified by western blotting in protein extracts of
each cell line as shown in the lower panels. (A, left panel) Control (parental; NIH3T3) and DT cells. (A, right panel) NIH3T3 (control, parental cells used
in generating DT cells), LLC1 (mouse Lewis lung cell carcinoma), ACHN (human kidney renal cell carcinoma), A549 (human lung non-small cell
carcinoma), HCT116 (human colon cell adenocarcinoma) and SNB19 (human cell glioblastoma). NIH3T3 was used as an indicator cell line for
comparison of TR1 levels in a normal cell line to the malignant cell lines. (B) DT/pU6-m3 and DT/siTR1. DT (obtained by overexpression of mutant k-
ras in NIH3T3) cells were stably transfected with the pU6-m3 (control) vector or siTR1 knockdown vector, respectively (see Methods).
doi:10.1371/journal.pone.0001112.g001

TR1 Reduction in Cancer Cells
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Cell cycle analsis
Cell cycle analysis of control, DT/siTR1 and DT/pU6-m3 cells,

when grown in serum-deficient medium, was carried out to

elucidate the stage affected by the reduction in TR1 expression

resulting in growth retardation (Fig. 3). The three cell lines were

grown in complete medium overnight and then placed in serum-

deficient medium for 0, 24 and 48 hrs. Cells were incubated with

5-bromo-2-deoxyuridine (BrdU) and stained with BrdU antibodies

to assess DNA replication and were incubated with 7-amino-

actinomycin (7-AAD) to assess genomic DNA. These cells were

then analyzed by FACS (Fig. 3A) and the appropriate areas

quantitated (Fig. 3B). The three cell lines had large numbers of

cells in both the G0-G1 and S phases when analyzed immediately

following active growth in complete medium, although DT/siTR1

had more cells in the S phase while the other two cell lines had

more cells in the G0-G1 phase (see Time 0 in Figs. 3A and B). The

Figure 2. Morphology, growth in soft agar and growth rates of TR1-expressing and -deficient cells. (A) Control (NIH3T3, parental), DT, DT/pU6-m3
and DT/siTR1 cells. Cells were grown on culture plates and photographed during exponential growth (see Methods). (B) Anchorage-independent
growth of control, DT, DT/pU6-m3 and DT/siTR1 knockdown cells. One thousand cells were suspended in soft agar and grown for two weeks. Plates
were then stained with INT overnight and photographed. Details are given in Methods. (C) Growth rates of control, DT/pU6-m3 and DT/siTR1 cells
under normal and serum-deficient conditions. Control, DT/pU6-m3 and DT/siTR1 cells were seeded (26105 cells/60mm dish) and grown under normal
growth conditions (left panel), and DT/pU6-m3 and DT/siTR1 cells were seeded (56105 cells/60 mm dish) and grown in serum-deficient medium
(right panel). Growth rates in serum-deficient medium were compared to those obtained under normal growth conditions.
doi:10.1371/journal.pone.0001112.g002

TR1 Reduction in Cancer Cells
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control cell line had approximately 90% of its cells retained in the

G0-G1 phase throughout growth in serum-deficient medium. This

observation most certainly indicates that most of the control cells

are retained in the quiescent (G0) state which is consistent with

their inability to grow under these growth conditions. A major

difference occurred in the amounts of cells in DT/pU6-m3 and

DT/siTR1 cell lines at 24 hrs of growth in the G0-G1 and S

phases in that DT/pU6-m3 cells had a much higher percentage of

its cells in the S phase and lower percentage in the G0-G1 phase

than did DT/siTR1. Within the S phase, DT/pU6-m3 had about

1.5 times more cells in early than late S, while DT/siTR1 had

about 3 times more cells in early than late S. Although the

amounts of cells in both transfected cell lines in the G0-G1 and S

phases more closely approximated each other at 48 hrs of growth,

the large divergence was still present between the early and late S

phases in these two cell lines. These findings suggest that DNA

replication was arrested in the early S phase in DT/siTR1 cells. It

should also be noted that DT/siTR1 cells have higher amounts of

their cell population retained in the G2-M phase than either

control or DT/pU6-m3 cells during growth analysis suggesting

Figure 3. Cell cycle analysis. Control, DT/pU6-m3 and DT/siTR1 cells were grown in serum-deficient medium for 0, 24 and 48 hrs and incubated with
BrdU for 6 hours. Harvested cells were stained with anti-BrdU antibody to monitor newly replicated genomic DNA and 7-AAD to monitor whole
genomic DNA. (A) Stained cells were analyzed by flow cytometry and (B) quantitated in each phase of the growth cycle by FlowJO. Phases of the
growth cycle, G0-G1, S phase (Early S and Late S) and G2-M were shown and the values given represent the percent of the total cell population.
Details of the experiments shown in the figure are given in Methods.
doi:10.1371/journal.pone.0001112.g003

TR1 Reduction in Cancer Cells
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that more cells within the DT/siTR1 population have trouble

transitioning into mitosis. The possible defect causing greater

retardation of DTsiTR1 cells in the G2-M phase warrants further

investigation but was not pursued in this study as it does not

appear to affect the overall reduction in DT/siTR1 growth rate

compared to that of DT/pU6-m3 in serum-deficient medium (see

Fig. 2C).

Analysis of DNA polymerase factors
To elucidate which component(s) might be involved in DNA

replication causing a reduction in overall growth rate in serum-

deficient medium in DT/siTR1 cells compared to DT/pU6-m3

cells, we examined the levels of DNA Pol a, b, c and e, Cdc45 and

PCNA which all play a role in this process [20]. Western analyses

of these components were carried out with the three cell lines at

each time point (Fig. 4). DNA Pol a and Cdc45 were highly

enriched in both transfected cell lines compared to control cells at

each of the time points. Interestingly, DNA Pol a appeared to be

reduced in DT/siTR1 cells compared to DT/pU6-m3 cells at

24 hrs and most significantly at 48 hrs. In addition, the levels of

DNA Pol e appeared to be reduced in control and DT/siTR1 cells

compared to DT/pU6-m3 cells at 48 hrs, while DNA Pol

b appeared to be reduced at all three time points in DT/siTR1

compared to either control or DT/pU6-m3 cells. It would seem

that the most pronounced effect of TR1 reduction in DT/siTR1

cells is on DNA Pol a resulting in reduced growth of these cells in

serum-deficient medium. However, TR1 reduction may also result

in reducing the levels of DNA Pol b, whereas the reduced levels of

DNA Pol e at 48 hrs in control and DT/siTR1 cells may result

from the serum-deficient growth medium.

DISCUSSION
TR1 has many cellular functions and is broadly involved in

cellular processes that are regulated by redox [9–12]. For example,

TR1 has roles in cell proliferation, angiogenesis, transcription,

DNA repair and serves in antioxidant defense and redox

regulation of cell signaling (see reviews [9–12]). Its major function

is thought to maintain cytosolic thioredoxin (Trx1) in the reduced

state using NADPH as an electron donor [21]. In turn, Trx1

donates reducing equivalents to disulfides in nuclear and cytosolic

proteins maintaining reduced cysteine residues in these proteins.

Herein, we elucidated the role of TR1 in self-sufficiency of growth

by showing that inhibition of DNA replication in a malignant TR1

knockdown cell line is associated with a reduction in DNA Pol

a expression. In addition, other studies have suggested that DNA

replication can be retarded by limiting the DNA synthesis since

thioredoxin has a role in maintaining the intracellular deoxynu-

cleotide pool [11,22,23]. However, we ruled out this possibility by

examining the deoxynucleotide pools in control, DT, DT/pU6-

m3 and DT/siTR1 cells and showing that they did not vary

during growth in serum-deficient medium (see Fig. S2).

Numerous TR1 functions and properties suggest that this

selenoprotein has anti-cancer functions: 1) oxidative stress is one of

major characteristics of cancer cells and TR1 is a key player in

antioxidant defense by reducing Trx1 and other redox regulators

in cells [9–12]; 2) TR1 is essential for proper function of tumor

suppressor p53 [13]; 3) TR1 inhibition by carcinogenetic,

electrophilic compounds implicated it in cancer prevention [1];

and 4) the selenium-containing amino acid, Sec, occupies the

active catalytic site of TR1 [4] and selenium is known to have

potent cancer prevention properties [1]. However, TR1 has also

been implicated in tumor development and maintenance: 1) it is

overexpressed in many tumors and cell lines [9–12]; 2) several

antitumor drugs are potent inhibitors of TR1 suggesting that this

enzyme is a target for cancer therapy [9–14]; 3) the targeted

removal of TR1 reverses morphology and other cancer char-

acteristics of malignant cells [16] (see also Figs. 2 and 3 and Text

S1); and 4) selenium deficiency has been reported to decrease

tumor formation is some cancer models in animals [24].

How can the role of TR1 in cancer development be reconciled

with its role in tumor suppression as well as the known anti-cancer

properties of selenium, which is a catalytic component of TR1? It

is tempting to speculate that adequate amounts of dietary selenium

in general, and a sufficient expression level of TR1 in particular,

maintain cellular redox homeostasis in normal cells, protecting

them against oxidative stress, mutations in DNA and damage to

other cellular components. Thus, TR1, along with other

selenoproteins, can function in cancer prevention by inhibiting

malignant transformation. However, in newly emerging tumors,

demands for TR1 greatly increase as this protein would seem to be

required to sustain tumor growth, likely because of the increased

demand for its reducing equivalents via the Trx1 pathway and, as

shown in this work, DNA replication. This proposal explains both

the potent cancer prevention activity of dietary selenium and the

contrasting roles of TR1 in both preventing and promoting

cancer. Furthermore, this study provides the basis to explain

disparate literature data on the role of this enigmatic protein in

cancer and elevates TR1 even further as a [8–12,14–16] will

undoubtedly have a major impact on how we vision the intake of

selenium in the diet of humans and other mammals. It has been

known for sometime that diets containing sufficient or supple-

mental amounts of selenium have beneficial effects in preventing

certain forms of cancer possibly through the action of enriching

the selenoprotein population [1]. However, caution should be

expressed in that once a malignancy is initiated, then adequate or

enriched amounts of selenium in the diet may serve to drive

tumorigenesis. Our study adds an important layer towards

understanding the roles of redox processes in cancer developments

and the use of diet in cancer prevention and treatment.

Figure 4. Analysis of components involved in DNA replication.
Expression levels of DNA polymerase components, DNA Pol a, b, d and
e, Cdc45 and PCNA, in control, DT/pU6-m3 and DT/siTR1 cells were
analyzed by western blotting. Cells were grown in serum-deficient
medium for 0, 24 and 48 hrs, harvested, protein cell extracts prepared
and electrophoresed as described in Methods.
doi:10.1371/journal.pone.0001112.g004
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MATERIALS AND METHODS

Materials
75Se (specific activity 1000 Ci/mmol) was obtained from the

Research Reactor Facility, University of Missouri, Columbia,

MO. PVDF membrane, NuPage 4–12% Bis-Tris gels, hygromycin

B, lipofectamine 2000, Dulbecco’s modified Eagle’s medium

(DMEM), antibiotic-antimycotic solution and fetal bovine serum

were from Invitrogen Life Technologies. siRNA vector pSilencer

2.1-U6 Hygro was purchased from Ambion, Inc. and r-

iodonitrotetrazolium violet (INT) from Sigma. Antibodies against

DNA polymerase a, b, d and e were purchased from Abcam, Inc.

and antibodies against PCNA and Cdc45 were from Santa Cruz

Biotechnology, Inc.. BCA protein assay reagent, SuperSignal West

Dura Extended Duration Substrate and HRP-conjugated second-

ary antibody were from Thermo Fisher Scientific Inc. FITC BrdU

flow kit was purchased from BD PharmingenTM. Cancer cell line

DT which encodes oncogenic k-ras and originated in NIH3T3

(parental) cells was generously provided by Dr. Yoon Sang Cho-

Chung and NIH3T3 cells were obtained from the American Type

Culture Collection. LLC1 (mouse Lewis lung carcinoma) cells

were obtained as given [16] and human cell lines ACHN (human

kidney renal cell carcinoma), A549 (human lung non-small cell

carcinoma), HCT116 (human colon cell adenocarcinoma) and

SNB19 (human cell glioblastoma) were obtained from the NCI,

DTP, DCTD Tumor Repository at the NIH, Bethesda, MD.

Culture of mammalian cells and cell growth assays
NIH3T3 and DT cells were grown in DMEM supplemented with

10% fetal bovine serum and antibiotic-antimycotic solution at

37uC, 5% CO2 in a humidified incubator. Stably transfected

siTR1 (TR1 knockdown) DT cells and stably transfected pU6-m3

control DT cells were prepared by transfecting with the

corresponding constructs with lipofectamine 2000 and then

selecting cells in the presence of 500 mg/ml of hygromycin B

exactly as described [16].

Morphology of NIH3T3, DT, DT/pU6-m3 and DT/siTR1

cells were assessed during exponential growth by seeding cells onto

60 mm culture dishes, the cells grown exponentially and

photographed with an inverted phase-contrast microscope.

Growth rates of NIH3T3, DT/pU6-m3 and DT/siTR1 cells

were assessed by seeding 26105 cells/60 mm culture dish and

after 48 hrs growth, cells were harvested with trypsin-EDTA, and

the cells counted by the trypan blue extrusion method [16]. For

assessing the growth rate of cells in serum-deficient condition, cells

(56105 cells/60 mm culture dish) were seeded and harvested after

24 and 48 hours incubation in medium containing all components

as complete medium except 0.5% FBS in place of 10% FBS, and

the cells counted as above.

Western blot analysis and 75Se labeling of cells
Techniques for western blot analysis and labeling of cells with 75Se

have been detailed elsewhere [16]. Briefly, for western blot

analysis, cells were washed with cold PBS and whole cell lysates

prepared using lysis buffer (20 mM Tris-Cl, 150 mM NaCl, 1%

Triton X-100, 0.5% sodium deoxycholate, 10 mM NaF, 5 mM

EDTA, and proteinase inhibitor cocktail). The amounts of protein

in cell extracts were measured using the BCA protein assay

reagent, 30 mg of protein samples electrophoresed on NuPAGE 4-

12% Bis-Tris gels, the separated proteins transferred to a PVDF

membrane, and then incubated initially with primary antibody

(polyclonal anti-TR1, anti-DNA Pol a, b, d, e, anti-PCNA and

anti-Cdc45) and finally with HRP-conjugated secondary antibody.

Membranes were reacted with SuperSignal West Dura Extended

Duration Substrate and exposed to X-ray film.

For 75Se-labeling, cells were seeded onto a 6 well plate (36105

cells/well), incubated 24 hours, then labeled with 40 mCi of 75Se

for 24 hours, harvested and lysed as described above. 40 mg of

each sample were applied to NuPAGE 4-12% Bis-Tris gel,

electrophoresed, proteins stained with Coomassie Blue staining

solution, the gel dried and exposed to a PhosphorImager

(Molecular Dynamics). 75Se-Labeled selenoproteins on exposed

gels were identified by autoradiography [16].

Soft agar assay
Growth of cells in soft agar to assess their ability to sustain

anchorage independent growth has been detailed elsewhere [16].

Briefly, a total of 1000 control, DT, DT/pU6-m3 or DT/siTR1

cells were suspended in 3ml of 0.35% noble agar in growth

medium with 10% FBS, and spread evenly onto 60 mm plates

covered with a 4 ml basal layer of 0.7% noble agar in DMEM.

Plates were incubated in a humidified CO2 incubator for 14 days,

0.5 ml of fresh growth medium added onto the agar plate every

5 days. The colonies that developed were visualized by staining

with r-iodonitrotetrazolium violet (INT) overnight and the plates

photographed.

Cell cycle analysis
Cells were seeded onto cell culture dish (56105 cells/60 mm dish)

and incubated overnight before transferring to serum-deficient

media (0.5% FBS in DMEM). Cells were incubated with 5-bromo-

2-deoxyuridine (BrdU) 6 hrs before harvesting, BrdU labeled cells

harvested at determined time points (0 hr, 24 hrs and 48 hours)

and stained with antibodies to monitor replicated DNA. Harvested

cells were fixed and permeabilized with BD Cytofix/Cyto-

permTM Fixation/Permeabilization solution for intracellular

staining. For replicated DNA staining, incorporated BrdU was

probed with anti-BrdU antibody and whole genomic DNA was

stained with 7-amino-actinomycin D (7-AAD) following the

manufacturer’s procedures. Cells containing the respective DNA

states were analyzed by flow cytometry using a FACS Calibur 2

Sorter (Beckton Dickinson) and the number of cells in each phase

of the cell cycle quantitated by FlowJo (Tree Star, Inc.).

SUPPORTING INFORMATION

Text S1

Found at: doi:10.1371/journal.pone.0001112.s001 (0.03 MB

DOC)

Figure S1

Found at: doi:10.1371/journal.pone.0001112.s002 (3.54 MB TIF)

Figure S2

Found at: doi:10.1371/journal.pone.0001112.s003 (0.82 MB TIF)
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