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This study aims to analyze what processes are mainly responsible for nocturnal 

convective precipitation during the 1991-2000 period for May-June-July over the Great 

Plains. Firstly, based on the Weather Research and Forecasting model (WRF) coupled 

with the NCAR Community Land Model (CLM) and the North American Regional 

Reanalysis (NARR) reanalysis data, the simulations of the diurnal cycles of LLJ and the 

convective precipitation are examined. Then, the LLJ-related moisture transport is 

evaluated since the moisture supply is critical for the development of the heavy rainfall. 

Results show that the WRF model fails to simulate the nocturnal peak rainfall shown in 

the reanalysis data. The failure in simulating nocturnal maximum precipitation is related 

to the bias occurring in the modeled nighttime moisture flux divergence/convergence, 

which suggests that the nocturnal peak convective precipitation may the result of the 

large-scale processes. 

 



 

To further figure out the mechanisms controlling the nighttime convection, based on the 

composite analysis, three 10-case groups are classified: (a) cases that the WRF cannot 

simulate the timing of the nocturnal peak convective precipitation; (b) cases that the 

timing of the nocturnal maximum rainfall can be simulated in the model; (c) cases that 

the maximum precipitation is shown during the afternoon hours in both the NARR data 

and the WRF model. The comparisons among the three groups suggest that the 

suppression of daytime convective precipitation and the favoring of nighttime convective 

precipitation over the Great Plains is closely related to the diurnal cycle of zonal 

circulation, which is induced by the mountain-plain baroclinic instability. In addition, 

during nighttime, the intensified anomalous southerly wind, together with the southward 

forcing above, may have a positive effect on the maintenance of the mountain-plain 

circulation.
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Chapter 1. Introduction 

 

During the warm season (April–September), the central United States, typically 

consisting of North Dakota, South Dakota, Nebraska, Kansas, Oklahoma, Texas, 

Minnesota, Iowa, Missouri, Arkansas, Louisiana, Wisconsin, and Illinois, is characterized 

by the frequent occurrence of the nocturnal low-level jet (LLJ; Izumi and Barad 1963; 

Hoecker 1963, 1965; Bonner 1968; Mitchell et al. 1995). In this region, there also exists 

pronounced precipitation at night, much of which is formed by the deep convection. (e.g., 

Kincer 1916; Palmen and Newton 1969; Wallace 1975). The relationship between the 

LLJ and nocturnal maximum rainfall has been widely documented, but are still not well 

understood (e.g., Means 1952, 1954; Pitchford and London 1962; Higgins 1997; Shapiro 

et al. 2016). Figuring out the relationship between them and the mechanisms for the 

formation of the nocturnal peak precipitation can improve the performance of numerical 

models in the Great Plains. Currently, though the LLJ is simulated quite well, skills on 

forecasting the nocturnal maximum in rainfall need further improvement. 

 

The LLJ, as the name implies, is a fast-flowing air current typically found in the lower 

part of the troposphere. There are mainly two classifications of the LLJ, the mid-latitude 

cyclone induced LLJ and the nocturnal LLJ. For the Great Plains, the latter one is the 

dominant type and often exhibits a southerly flow. Within the Continental U.S., the LLJ 

from the Gulf of Mexico is considered to be a major source of moisture supply (Helfand 

and Schubert 1995; Higgins et al. 1997). Bonner (1968) found that the strength of the 

diurnal cycle of the LLJ in the warm season (April–September) is stronger than the cold 
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season (October – March), which is typically in the area of 25–45°N, 90–105°W (Pu and 

Dickinson 2014). Under the cloud-free and dry atmosphere, surface cooling usually 

makes it develop in the late afternoon and achieve maximum intensity around midnight. 

Then after sunrise, the density of turbulence in the planetary boundary layer (PBL) 

becomes increasingly strong and the LLJ vanishes. During the process, it can bring warm, 

moist air from the Gulf of Mexico into the continental U.S. 

 

Previous studies have suggested that the formation of the LLJ may be attributed to the 

following theories. Blackadar (1957) held that the nocturnal LLJ is caused by the inertial 

oscillation of ageostrophic wind. Due to the surface cooling in the late afternoon, the 

turbulence in the PBL diminishes, making the daytime balance among the horizontal 

pressure gradient force, Coriolis force and frictional force (induced by turbulence) break 

up, finally accelerating air parcels. Holton (1961) showed that the frequent occurrence of 

the nocturnal LLJ in the Great Plains is the result of pressure gradient force caused by the 

terrain-related baroclinicity. The above two theories both underline the effects of the 

PBL. In addition, Wexler (1961) proposed that the topography of North American 

Cordillera blocks the trade wind from the East and channel the wind northward. 

Synoptic-scale systems like cold fronts are also conductive to the development of the 

nocturnal LLJ (Whiteman et al. 1997). Though the mechanism offered by Blackadar 

(1957) is the most prominent, the nocturnal LLJ may be the result of a combination of the 

theories. 
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Over the Great Plains, precipitation exhibits a strong seasonal and diurnal cycle. Not only 

does the seasonal distribution show a maximum rainfall during the warm season (e.g., 

Boyle 1998; Wang and Chen 2009), but the diurnal cycle in this period is most significant 

as well, producing much more rainfall during the nighttime (typically from 0500 – 0800 

UTC) than the daytime (e.g., Kincer 1916; Palmen and Newton 1969; Wallace 1975; Dai 

et al. 1999; Carbone et al. 2002; Carbone and Tuttle 2008). Since most of the nocturnal 

precipitation is caused by mesoscale convection (e.g. Maddox 1980; Fritsch et al. 1986), 

convective precipitation, rather than stratiform precipitation, is the main objective in this 

study. To figure out how the convection occurs, Carbone and Tuttle (2008) summarized 

that there may mainly be three favorable factors: 1) the eastward-propagating convective 

episodes cause the convection near the leeside of the Continental Divide and the wave-

like (such as gravity wave) mechanisms may result in the propagation velocity; 2) due to 

the elevated topography of the Rocky Mountains, there is an oscillation of the mountain-

plains circulation and ascent movement over the central U.S.; 3) the LLJ transports moist 

and warm air, producing the moisture convergence.  

 

Since the nocturnal maximum convective precipitation frequently occurs when there 

exists a nocturnal LLJ (e.g., Bonner 1968; Maddox 1983; Arritt et al. 1997; Tuttle and 

Davis 2006), how the LLJ relates to the nocturnal peak rainfall has received considerable 

attention for several decades. Trier and Parsons (1993) conducted a case study over the 

southern Great Plains, showing that the LLJ can make the environment unstable by 

transporting warm and moist air. Wilson and Roberts (2006) further pointed out that the 

coexistence of a stable boundary layer (SBL) and LLJ makes elevated convection (EL) 
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more likely to happen. The convergence zone is above SBL with the existence of 

instability.  

 

Although the simulation of LLJ is robust, most numerical models, especially general 

circulation models (GCMs), still perform relatively low skills in simulating the diurnal 

cycle of precipitation over the Great Plains, which produce much less precipitation during 

nighttime than in the daytime (e.g., Ghan et al. 1996; Dai and Trenberth 2004; Demott et 

al. 2007; Surcel et al. 2010; Pritchard et al 2011). There must be fundamental deficiencies 

in the structure of the physics parametrization, in which the vital problem lies in the deep 

convection scheme (e.g., Xie and Zhang 2000; Zhang 2003). Currently, most cumulus 

schemes employ convective available potential energy (CAPE) as the closure, meaning 

that the consumption of the deep convection is based on CAPE. As a result, the diurnal 

cycle of simulated convective precipitation is roughly in phase with the CAPE variation, 

while the actual situation is that their trends are out of phase (e.g., Dai et al. 1999; Zhang 

2003; Demott et al. 2007). Due to the surface cooling, the turbulence in the PBL is 

reduced, convective inhibition (CIN) increases and the CAPE is much smaller than 

during the daytime. The resulting large negative buoyancy below the level of free 

convection (LFC) makes it difficult for the nocturnal deep convection to develop in the 

model (Kain and Fritsch 1992). Lee et al. (2007) suggested that CAPE is too sensitive to 

the PBL forcing and there should include dynamical controls on regulating the 

convection in the scheme, such as the low-level convergence. Furthermore, Lee et al. 

(2010) noted that the cloud-radiation interaction and middle-level convection should be 

parametrized into the model. Due to the cloud-top cooling and cloud-base warming, the 
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atmospheric longwave cooling destabilizes the vertical stability. With the assistance of 

large-scale vertical moisture advection, the nocturnal convection occurs, of which the 

mechanism is similar to the convection in the tropical ocean. 

 

This study aims to evaluate the performance of the high-resolution WRF regional climate 

model to simulate the LLJ and the convective precipitation in the Great Plains, figuring 

out the processes in the model that are responsible for the simulated biases, which can be 

used to discuss the mechanisms on how the nocturnal peak precipitation develops and its 

relationship to the LLJ. In Chapter 2, the simulation configuration and the observed data 

are described, as well as the methods. Chapter 3 shows the comparisons between the 

simulated and the reanalyzed data, based on the analysis of 10-year climatology and the 

composite method. A summary and discussions are provided in Chapter 4. 

 

 

 

 

 

 

 

 



 6 

Chapter 2. Data and Methods 

 

2.1 Reanalysis Data 

 

Ten years (1991–2000) of the National Centers for Environmental Prediction (NCEP) 

North American Regional Reanalysis (NARR) data (available at 

http://www.esrl.noaa.gov/psd/) are used to validate the simulation. Furthermore, initial 

and lateral boundary conditions of the WRF model are also derived from the dataset. 

 

The NARR data is an upgrade of the NCEP Global Reanalysis with higher resolution for 

the North American continent (Mesinger et al. 2006). Based on the NCEP Eta Model and 

the Regional Data Assimilation System, the NARR includes a collection of data recorded 

8 times a day at 29 vertical levels, from 1000 to 100hPa. There are 349×277 grid points 

defined on a Lambert Conformal Conic map projection. The horizontal resolution of the 

dataset is 32 km (approximately 0.3 degrees at the lowest latitude). Since the NARR data 

assimilates surface rain gauge observations, the precipitation field agrees well with the 

actual observations, though extreme precipitation is likely underestimated (Mesinger et 

al. 2006; Sun et al. 2016). Other fields, such as horizontal winds, humidity, temperature 

and pressure, show significant improvement as well (Jiang et al. 2007; Lee et al. 2007). 

Berg et al. (2015) also noted that the NARR data can reasonably describe the structure of 

southerly low-level jet (LLJ) and the patterns of moisture convergence/divergence in the 

central U.S. However, the frequency of occurrence of the LLJ and its contribution to the 

total moisture transport are diminished. 
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2.2 Model Configuration 

 

The simulation by the WRF model (version 3.6) coupled with the NCAR Community 

Land Model (CLM, version 4.0) was acquired as a product of an NSF funded project 

(Grant AGS-1355916) on “Quantifying the Relative Roles of Progressive Land Use 

Change, Irrigation, and Remote Forcing in Southern Great Plains Precipitation 

Variability”. Though the WRF model was not intentionally developed for climate 

modeling, it has been successfully used for regional climate simulations in the recent 

decade (Wang and Yang 2008; Caldwell et al. 2009; Zhang et al. 2009; Druyan et al. 

2009; Tulich et al. 2011; Sun et al. 2016). For the CLM, more detailed vegetation and 

hydrological processes are included, such as interactive vegetation canopy and multilayer 

snow (Cai et al. 2014). 

 

The experiments by the WRF-based regional climate model were carried out in two 

nested domains (Fig. 1). The outer domain covers approximately from 140–60°W and 

23–51°N at a 12-km horizontal resolution (containing 398×284 grid points), and the inner 

domain is approximately from 85–110°W and 29.8–43.6°N at a 4-km horizontal 

resolution (containing 451×385 grid points). The model extends vertically from the 

surface up to 100hPa in 29 hybrid sigma-pressure levels. Physical parameterization 

schemes used in the model are the Kain–Fritsch scheme describing convection (Kain and 

Fritsch 1990), the Single-Moment 5-class scheme for cloud microphysics (Hong et al. 

2004), YSU scheme for the planetary boundary layer (Hong et al. 2006), and Dudhia 
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(Dudhia 1989) and Rapid Radiative Transfer Model (Mlawer et al. 1997) (RRTM) 

schemes for shortwave and longwave radiation transfer, respectively.  

 

It is noted that although the 4-km horizontal resolution in the model inner domain is 

considered as a convection-permitting resolution (e.g., Weisman et al. 1997; Kain et al. 

2008), the assumption that convection can be explicitly resolved by the non-hydrostatic 

vertical momentum equation at such resolution remains to be further tested (e.g., Bryan et 

al. 2003; Deng and Stauffer 2006; Gerard 2015). Previous studies have shown that within 

the range of 1–5km horizontal resolution, employing a convection parameterization 

scheme decreased a model’s prediction skills, e.g., the overlapping of the parameterized 

and directly resolved convective precipitation (Kuo et al. 1997; Gerard 2007; Gerard et 

al. 2009; Mahoney 2016; Lind et al. 2016). However, there are still benefits for using 

convection parameterization in models of such high resolution. Mahoney et al. (2013) 

suggested that it is helpful to avoid unrealistic accumulation of CAPE when convection 

parameterization is used. Cintineo et al. (2014) showed that without a convection scheme, 

it is not sufficient to represent moist convection only based on the microphysics 

parameterization. Lackmann (2011) pointed out that some fake stratus cloud cover 

resulted from the absence of a shallow mixing component formulated in the 

parameterized convection. On the other hand, coarse resolution models that rely on 

convection schemes often produce spurious sub-grid scale convective precipitation 

(Molinari and Dudek 1992; Arakawa and Jung 2011; Zheng et al. 2016). These results 

suggest that the use of convection schemes in a model of convection-resolving horizontal 

resolution can show some benefits. 
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Model simulation from 1991–2000 are used in the current study to aid our effort to 

understand the role of the LLJ from the Gulf of Mexico and the development of nocturnal 

convection during summertime (May, June and July) in the Great Plains. More details of 

these schemes and their suitability for the simulation in the NSF funded project were 

documented in Van Den Broeke et al. (2017) and Hu et al. (2017).  

 

2.3 Methods 

 

First, the performance of the WRF-based regional climate model in simulating the diurnal 

cycles of convective precipitation and the LLJ over the Great Plains need to be 

investigated. As prior studies have shown that the GCMs are able to describe the diurnal 

cycle of the LLJ but unable to describe the diurnal cycle of convection and precipitation 

(Ghan et al. 1996; Lee et al. 2007; Demott et al. 2007). This discrepancy raised the 

concern on any important role of the LLJ in initiation and development of nocturnal 

convection and precipitation in the U.S. Great Plains.  

 

Because the LLJ is most active in May, June and July (Weaver and Nigam 2008), the LLJ 

events is identified in those months of 1991–2000 based on Bonner’s LLJ criteria. The 

criteria 1, 2 and 3 are defined as follows: the maximum wind velocity is at least 12, 16 or 

20 𝑚	𝑠$% within 1000hPa and 850hPa, and the minimum wind velocity must be no 

greater than 6, 8, or 10 𝑚	𝑠$% between the level of maximum wind speed and 700hPa 

(Bonner 1968; Whiteman et al. 1997; Marengo et al. 2004). Over the same period, 

moisture transport to the Great Plains is evaluated in terms of changes in low-level 
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vertically integrated moisture flux and moisture flux divergence, of which their 

developments are related the large-scale processes. 

 

After identifying the similarities and differences in the diurnal cycle of convective 

precipitation, the LLJ and the LLJ-related moisture transport between the model and the 

NARR, composite analysis is employed to examine and interpret those differences and 

similarities. 
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Chapter 3. Results 

 

3.1 10-Year Climatology 

 

3.1.1 Diurnal Cycle of Convective Precipitation 

Prior research has shown that many GCMs exhibited a relatively high skill in simulating 

the LLJ but need further improvement in forecasting nocturnal rainfall (e.g., Ghan et al. 

1996; Lee at el. 2007). To compare with those prior studies, the diurnal cycles of 

convective precipitation by the NARR data and the WRF-based regional climate model 

are analyzed over the 10-year (1991-2000) period for May-June-July (MJJ). 

 

 

The diurnal cycle of 3h-accumulated MJJ convective precipitation from the NARR and 

the WRF are shown in Figs. 2 and 3, respectively. There are clear differences in the 

simulated and reanalyzed diurnal cycle of convection in the Great Plains. In the NARR, 

Fig. 2 shows the convective precipitation maximum occurring from 2100-0300 LT in the 

area from northern Oklahoma to Kansas and Nebraska. The temporal evolution of 

convection in Fig. 2 suggests that convection occurred in the Great Plains with weak 

southeastward propagation after peak convection in the midnight hour.  

 

On the contrary, the WRF simulated convection and convective precipitation shown in 

Fig. 3 have their maximum in the early- to mid-afternoon hours, which is most distinct 

along the Continental Divide (off to the west of the Great Plains). There is little 
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convective precipitation in the late night-early morning hours. It suggests that the WRF 

model, even with a high resolution, still cannot capture the nocturnal peak rainfall over 

the Great Plains. 

 

3.1.2 Diurnal Cycle of the LLJ 

The LLJ events in MJJ of 1991-2000 are identified based on Bonner’s LLJ criteria. 

Figure 4 shows the direction (phase) of the most frequently occurring LLJ (criterion 2) 

averaged for MJJ of 1991-2000 from the NARR data (Fig. 4a) and from the WRF (Fig. 

4b). The vectors pointing to south, west, north and east in Fig. 4 indicate highest 

frequency of the southerly LLJ occurring at 0000, 0600, 1200 and 1800 LT. Though the 

model generally simulates nocturnal LLJ events with a larger frequency than that in the 

NARR data, the result shows that simulated strongest southerly low-level winds occur 

most often around local midnight hour, consistent with the NARR data.  

 

Some large differences in the diurnal cycle of the low-level winds between the simulated 

and the reanalysis data are found in the areas where the mountainous terrain meets with 

the plains in eastern Colorado and Wyoming. In those areas, the maximum LLJ 

frequency occurs at 0600 LT in the reanalysis data, but it occurs around local noon hour 

in the WRF. It suggests that the model is still weak in simulating low-level winds in areas 

of complex terrain. Another difference is in the narrow corridor from southwestern Texas 

to northeastern Oklahoma where the simulation is approximately 3 hours ahead of that in 

the NARR data. 
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Though the simulated LLJ in the Great Plains is relatively consistent with the NARR (Fig 

4), compared to the in-phase relationship shown in the NARR (Fig. 2), there is a 

mismatch between the simulated diurnal cycle of the LLJ and convective precipitation in 

the Great Plains (Fig 3).  The simulation results of the strong LLJ during the nocturnal 

hours and the absence of simultaneous convective precipitation make it necessary to 

investigate the role of the LLJ in initiation and development of convection in the 

nocturnal hours. In the following section, to answer the question why the strong LLJ 

corresponded with little convection in the nocturnal hours, the LLJ-related moisture 

transport needs to be first examined. 

 

3.1.3 Diurnal Cycle of Low-Level Moisture Transport 

For moderate and heavy precipitation, it is the abundant moisture supply that sustains 

such events, not directly from evaporation (Trenberth et al. 2003). Since most water 

vapor is concentrated below 700hPa (Van Zomeren and Van Delden 2007), vertically 

integrated moisture flux (VIMF) and moisture flux divergence (VIMFD) in the lower 

troposphere are employed to investigate the impact of LLJ on the moisture transport.  

 

As the direction of the LLJ is usually northward, the low-level VIMF for meridional wind 

is calculated using the following equation (Torres-Alavez et al. 2014), 

VIMF = − %
( ∫ (𝑣𝑞)𝑑𝑝0

01
   (3.1.1) 

The low-level VIMFD is defined as follows (Van Zomeren and Van Delden 2007),  

VIMFD = − %
( ∫ 2345

36
+ 385

39
: 𝑑𝑝0

01
  (3.1.2) 
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where u and v represent the zonal and meridional wind velocity respectively, q is the 

specific humidity, and g is the gravitational acceleration. Both integrations in (3.1.1) and 

(3.1.2) are calculated between 1000hPa (taken as surface) and 700hPa. The units are 

𝑘𝑔	𝑚$%	𝑠$% for VIMF and 𝑘𝑔	𝑚$=	𝑠$% for VIMFD.  

 

The temporal and spatial patterns of low-level troposphere VIMF calculated from the 

NARR data and the WRF both exhibit similar diurnal cycles, with the intensity of 

northward low-level moisture transport overnight being much larger than that in the 

daytime (Figs. 5 and 6). The core of the flow is found between 102°W and 92°W. VIMF 

from the NARR data shows strong nighttime transport persistent for a longer time (0000 

to 0600 LT), with the maximum occurring at 0600 LT in the northeast Texas. In 

comparison, the VIMF calculated from the WRF output is lower than that from the 

reanalysis data. Along the Rocky Mountains, there appears southward transport in the 

lower troposphere, which is almost absent in the VIMF calculated from NARR data. In 

general, the peak intensity of VIMF around the local midnight hour in both these results 

matches with the peak intensity of the LLJ (Fig 2), indicating a strong contribution of the 

LLJ to the large VIMF. 

 

Vertically integrated convergence and divergence of moisture in the lower troposphere 

calculated from equation (3.1.2) using NARR data and the WRF model is shown in Figs. 

7 and 8. Convergence (divergence) can cause rising (sinking) motion in the lower 

troposphere, often being used as an indicator for precipitation development (e.g., 

Moseley et al. 2016). In Figs. 7 and 8, positive values represent moisture flux divergence 



 15 

and negative indicate moisture flux convergence.  

 

As shown in Fig. 7, positive VIMFD is observed spreading in the Plains in local 

afternoon hours, with a narrow strip of convergence in the eastern slope of the Rocky 

Mountains (1200–1800 LT). It reflects intensification of the uphill winds in the 

mountain-plain topography. This pattern is reversed after the sunset and persists through 

the early morning hours (2100–0600 LT), when mountain winds develop from the cool 

eastern slope of the Rockies. The mountain winds converge over the central and southern 

Great Plains where the intensifying LLJ brings moisture into the region. Consistent with 

the development of the mountain winds and related convergence over the Plains, 

convective precipitation shown in Fig. 2 occurs along the convergence zone, and the rain 

areas spread slowly toward the mountain hills as the LLJ intensifies in the early morning 

hours. 

 

For the WRF model (Fig. 8), in the afternoon, the pattern of low-level moisture flux 

divergence/convergence is similar to that in the NARR data. However, during nighttime, 

the simulated moisture flux divergence in the lower troposphere along the eastern slope 

of the Rocky Mountains is not strong enough or organized well. Meanwhile, the 

convergence in the central Plains is much weaker than that diagnosed from the NARR 

data. The lack of strong moisture flux convergence in the plains could have contributed to 

the lack of precipitation from midnight to early morning hours in the model simulation.   
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Previous studies have suggested that it is the convection schemes that could be 

responsible for the phase bias in model-simulated diurnal rainfall in the warm season 

(e.g. Lee et al. 2007; Demott et al. 2007). Most cumulus schemes, including the Kain-

Fritsch (KF) scheme, employ CAPE as the measure of vertical instability and the drive 

for convection. In the following sections, how the convection in the Great Plains varies in 

relation to the CAPE will be examined in WRF model and in the NARR. And then, the 

cause of processes for the development of those different convection cases will be 

identified. 

 

3.2 Composite Analysis 

 

Composite analysis is a useful tool to smooth out the anomalies of individual cases and 

refine the most prominent dynamic and thermodynamic features. In this study, the 

philosophy for the analysis is as follows: 

 

1) A domain of 2×2 degrees, covering 37–39˚N and 99–97˚W, is used to select 

convective precipitation (CP) cases. The study area covers southern Kansas, 

where there shows a distinct nocturnal maximum in rainfall; 

2) When selecting the precipitation cases, a “day” is defined from 1200 LT of the 

current day to 1200 LT of the following day. In this way, the early morning 

CP events can be put in the “same day” with the afternoon events that 

occurred in the previous calendar day.   
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Since convective precipitation could occur in different times of a day (e.g., afternoon, 

early evening and early morning hours), based on the above criteria, three groups of CP 

cases (each containing 10 cases) are categorized during the 1991–2000 period for May–

July. The composite results are shown in Fig. 9, in which the solid lines show the 

precipitation from convective events in the NARR and the dashed lines represent the 

simulated precipitation. In Group 1, the NARR data shows a strong peak in convective 

precipitation in the early morning hours (peak at 0300 LT) whereas the simulation results 

show very weak convective precipitation (weaker than 1/3 of that from the NARR data) 

in the early afternoon hours (1200–1500 LT). This complete mismatch indicates the 

model’s inability to describe the nocturnal convection and precipitation in this Group.  

 

Composite results in Group 2 are shown in Fig. 9b. Increased convective rainfall in this 

group begins at 2100 LT and achieves maximum 3 hours later. The model-simulated 

convection averaged for the same days occurred near the midnight (2100 LT) with a 

relatively small peak. For these events, the model apparently could describe the timing of 

convective precipitation as that reported in the NARR data although the intensity is about 

1/3 of that in the NARR data.  

 

Composite results for Group 3 are shown in Fig. 9c. Convective precipitation in this 

group occurred in the early afternoon hours with a peak at 1500 LT in the NARR data 

and a peak around 1200 LT in the model simulation. Both the phase and the intensity of 

the simulated convective precipitation are similar to that in the NARR data.  
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3.2.1 Diurnal Cycle of Convective Precipitation and CAPE 

In KF scheme, the convection is largely determined by the amount of CAPE and CIN, 

which are generally used to measure atmospheric instability in the atmosphere. Moseley 

et al. (2016) pointed out that CAPE generally intensifies after the occurrence of 

precipitation and declines with precipitation continuing. Since CAPE (CIN) represents 

the integral of positive buoyancy (negative buoyancy), they are defined by: 

CAPE =  ∫ 𝑔 >?@A$?@
?@

B 𝑑𝑧DEF
DFGH

   (3.2.1) 

CIN =  ∫ 𝑔 >?@A$?@
?@

B𝑑𝑧DFGH
DIGH

   (3.2.2) 

where 𝑍KLM  is the height of the level of free convection, 𝑍NKis the height of equilibrium 

level and 𝑍OLM  is that of the surface level or the beginning of a parcel path. 𝑇80 represents 

the virtual temperature of the parcel, and 𝑇8 denotes the virtual temperature of the 

environment. Zhang (2003) has noted that 𝑇80 can be modified by the surface sensible 

and latent heat while 𝑇8 can change due to large-scale processes. 

 

The composite of the CAPE and CIN for convection events in each of the three groups 

are shown in Figs. 9d–f. Compared to the corresponding convective precipitation in Figs. 

9a–c, some striking differences are shown between the NARR data and the WRF model.  

 

In Group 1, the convective precipitation in the NARR (Fig. 9a) reaches maximum in the 

early morning (0300 LT) when the CAPE is near its diurnal minimum and the CIN is 

relatively large. Yet, the model-simulated peak precipitation in the early afternoon (1500 

LT) occurs simultaneously with the maximum CAPE and the minimum CIN shown in the 
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Fig. 9d. Compared to the simulated results with the reanalysis data, the difference in the 

relationship between the CAPE and convective rainfall suggests that the KF cumulus 

scheme used in the WRF model may result in the misrepresentation of diurnal cycle of 

convective precipitation. 

 

For Group 2, the diurnal variations of the CAPE in both the WRF and the NARR reach 

maximum at 1800 LT (Fig 9e), which is generally consistent with that of nocturnal 

precipitation shown in Fig 9b. Though the nocturnal peak rainfall in the WRF occurs 3 

hours earlier than that in the NARR, it shows that the model in Group 2 can simulate the 

timing of the nocturnal convective precipitation relatively well. It is also noted that, 

compared to the first group, the timing of the maximum CAPE occurs 3 hours later, and 

its magnitude is much smaller. As Zhang (2003) noted that the CAPE can be influenced 

either by the PBL forcing or by the large-scale forcing, the closer relationship between 

the CAPE and nocturnal convective rainfall may suggest that in this group the PBL 

forcing is less dominant and the large-scale processes are simulated relatively well.  

 

In Group 3, the maximum CAPE in the WRF occurs at the noon hour (1200 LT) and in 

the NARR data, it occurs at 1500 LT, both of which are consistent with that of convective 

precipitation in Fig 9c. These convective rainfall events occurred at the time when the 

CAPE is relatively large and the CIN is relatively weak (Figs. 9c and 9f). It is likely that 

the convection in afternoon hours in this group is primarily caused by the PBL forcing 

which can be simulated well by this model (e.g. Dai et al. 1999; Lee et al. 2007; Moseley 

et al. 2016).  
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To summarize, three groups of convective precipitation cases in our study region of the 

Great Plains are identified. In Group 1, the WRF model can simulate neither the timing of 

nocturnal convective precipitation nor the amount of it. For events in Group 2, though the 

precipitation intensity in the simulation is still much smaller, the timing of convective 

precipitation in the model is relatively consistent with the NARR data, which occurs 3 

hours before convective precipitation reaches the maximum in the reanalysis data. The 

convective rainfall in Group 3 exhibits peak intensity in the afternoon in both the WRF 

and the NARR data. For all three groups, it is noted that the convective precipitation 

simulated by the WRF model is closely related to the CAPE, which suggests that the 

CAPE may be inappropriate to be used for simulating nocturnal convection over the 

Great Plains.  

 

Finding the cause of the model’s failure in simulating the nocturnal convective 

precipitation is beyond the scope of this work. In the next section, the differences in the 

zonal circulation between the WRF model and the NARR are analyzed for the three 

groups. Investigating the problem from a different angle, not from the CAPE, would 

strengthen the understanding of how nocturnal convection develops over the Great Plains 

and the relationship between the CAPE and nocturnal convective precipitation.   

 

3.2.2 Diurnal Cycle of Zonal Circulation 

To figure out what mechanisms induce the different diurnal cycles of convective 

precipitation in those three groups, the longitudinal cross sections of diurnal anomalies 
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(from daily mean) of zonal circulation, meridional wind and temperature are examined, 

which are averaged over 37–39˚N. 

 

Figures 10 and 11 show the cross sections of zonal circulation between the convective 

precipitation events in Group 1, using the NARR reanalysis data and the WRF model 

simulation. In Fig. 10, from 1200 to 1500 LT, due to the solar radiation, there is a distinct 

horizontal temperature gradient in the lower troposphere (below 700hPa) between the 

mountainous areas and the plains, for which the mountainous areas are relatively warmer. 

Consequently, the baroclinic instability induced by the temperature gradient produces a 

clockwise circulation extending from the ground surface to almost 250hPa. The 

downward branch of the circulation is over the Great Plains and the upward branch is 

over the mountainous areas, which corresponds to the divergence/convergence pattern in 

the same period shown in Fig. 7. Meanwhile, the sensible and latent heating intensify, 

making the boundary layer well mixed. The resulting frictional force in the PBL reduces 

the meridional wind (anomalous northerly) in the lower levels (below 850hPa), and an 

anomalous northward wind is shown in the upper levels (above 850hPa) due to the 

Coriolis force on the westward motion. Together with the low-level moisture 

convergence over the Rockies, the moisture transported by the anomalous northward 

wind is favorable for the occurrence of convective precipitation in the afternoon (Fig. 3). 

 

In the late afternoon and evening (1800–2100 LT), since the intensity of solar radiation 

diminishes, the temperature gradient begins to decrease, making the direction of the zonal 

circulation reverse and become counterclockwise at 2100 LT. Compared to the conditions 
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in the afternoon, the downward branch of the circulation changes to be over the Rockies 

and the upward branch over the Great Plains. Meanwhile, the anomalous southerly wind, 

induced by the decoupling of nighttime PBL from surface and the thermal wind, 

represents that the LLJ transports moisture into the Great Plains, which is consistent with 

the results in Fig. 5. In addition, because of Coriolis effect, the intensified southerly wind, 

together with the northerly wind above, can make the zonal circulation stronger. As 

surface cooling continues, the counterclockwise circulation reaches most pronounced at 

0000 LT and begin to decay until 0600 LT. During the period (0600 – 0900 LT), the 

pattern of daytime diurnal anomalies of zonal circulation, meridional wind and 

temperature start to rebuild.  

 

For the WRF model in Group 1 (Fig. 11), it is difficult to identify a mountain-plain 

circulation in the simulation results. Although there occurs a clear downward motion over 

the Rocky Mountains at 0000CST, the zonal vertical motion is less organized over the 

Great Plains. In addition, the simulation of anomalous northward forcing in the lower 

levels is also less organized. One possible reason is that the downward motion over the 

Rockies in simulation is not as strong as in the NARR data after the sunset, especially 

around midnight. A weaker downward motion over the mountains would have weaker 

circulation so that the upward forcing to lift warmer and moist air over the Plains is hard 

to initiate and support the convection.  

 

For Group 2, the diurnal anomalies of the simulated zonal circulation, meridional wind 

and temperature are more comparable to the NARR data (Figs. 12 and 13) than that in 
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Group 1. Similar to the Fig. 10, the NARR data shows a clockwise circulation in the 

afternoon hours (1500–1800 LT), and a reversed counterclockwise circulation in 

nocturnal hours (2100–0300 LT). In contrast, though less pronounced than that in the 

NARR (Fig. 12), the temporal and spatial patterns of anomalous zonal circulation and 

meridional wind are simulated relatively well (Fig. 13). By comparing the NARR with 

the WRF model in Group 2, it suggests that the weaker zonal circulation shown in the 

WRF may be one of the possible reasons that result in the smaller intensity of 

precipitation (Fig. 9b). 

 

In Group 3, it is the only group with more modeled convective precipitation than that 

reported in NARR data. For the NARR, though the overall pattern of zonal circulation is 

similar to that in the Groups 1 and 2, the structure of the circulation in the reanalysis data 

is a lot weaker (Fig. 14), which may reduce the suppression/favoring effect on convection 

over the plains in the afternoon/midnight. In this way, the PBL forcing can overcome the 

suppression and induce peak rainfall at 1500 LT in the domain (99–97˚W, 37–39˚N) for 

composite analysis. And the nocturnal maximum convective precipitation is hard to 

produce during the nighttime (0000–0300 LT). In WRF model, over the Great Plains, the 

simulated zonal circulation (Fig. 15) can facilitate/suppress the occurrence of convective 

precipitation in the afternoon/night, which is similar to Group 1 (Fig. 11).  

 

To summarize, the three groups of cases are used to calculate the longitudinal cross 

sections of diurnal variations of zonal circulation, meridional wind and temperature, 

which can strengthen the understanding of how the nocturnal convective precipitation 
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develops. For the NARR data, in Groups 1 and 2, the suppression of daytime convective 

rainfall over the Great Plains is due to the down-branch of the clockwise solenoid 

circulation. In contrast, maximum convective precipitation over the Plains occurred 

around the midnight and has an in-phase relationship with the establishment of the 

counterclockwise solenoidal circulation, which has a deep layer of upward motion over 

the Great Plains. In Group 3, due to the weaker structure of zonal circulation, the PBL 

forcing can overcome the suppression of the down-branch of the clockwise circulation 

and produce rainfall with a relative small intensity. As shown in Figs 16–18, which 

respectively show east-west-oriented cross sections of diurnal cycles of vertical velocity, 

relative humidity and isentropes averaged between 37°N and 39°N for Groups 1–3, the 

diurnal cycles of vertical velocity are consistent with the diurnal deviations of zonal 

vertical circulation, further suggesting that the solenoid circulation is closely related to 

the suppression/inducement of convection over the Great Plains. 

 

For the WRF model, in Groups 1 and 3, the diurnal cycles of anomalous zonal circulation 

are not well simulated. It may be due to the fact that the model employs the CAPE to 

assess the likelihood of convection and the CAPE usually reaches maximum mostly 

because of the sensible and latent heating. In contrast, the CAPE in the Group 2 reaches 

maximum later than the other two groups, suggesting that the large-scale processes (e.g. 

the mountain-plain solenoidal circulation) may be more significant. For more 

mechanically induced convection without substantial amount of CAPE involved, the 

model may have difficulty in recognizing the large-scale processes. Moreover, the 

intensity of the simulated nighttime convective rainfall is much smaller compared to the 
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NARR data. One possible reason is that the model does not take the moisture transported 

by the LLJ into consideration. A lager domain (4˚×4˚) for the composite analysis, 

covering 36–40˚N and 100–96˚W, has also been analyzed (not shown). The results shown 

in the NARR data also shows similar diurnal cycles of zonal circulation and vertical 

velocity, further strengthening the conclusion. 

 

Consistent with previous studies (Carbone and Tuttle 2008; Sun et al. 2016), the 

mountain-plain circulation is shown in the NARR data for all the three groups. Sun et al. 

(2016) also found that the anomalous zonal circulation was simulated relatively well 

based on May-through-August averages for 10 years (2000–2009). However, in this 

study, there are no similar diurnal cycles of zonal circulation for the simulation in Groups 

1 and 3, One possible reason is that they averaged the fields for a larger latitudinal range 

(30–40˚N), which would smooth out the distinct features for convective systems. 
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Chapter 4. Discussion and Conclusion 

 

Based on the WRF-based regional climate model and the NARR data, this study aims to 

evaluate its performance in simulating the nocturnal peak convective precipitation and try 

to figure out the mechanisms for its development during the 1991-2000 period for May-

June-July over the Great Plains. Previous studies have shown that fields like temperature, 

LLJ, moisture transport, wind fields etc. are realistic in the NARR data, which can be 

used as the verification (e.g. Jiang et al. 2007; Lee et al. 2007; Sun et al. 2016).  

 

The LLJ is widely considered to be an important factor in the formation of the nocturnal 

convection. Though the high-resolution (4km) model can simulate the amplitude and 

phase of maximum LLJ frequency, it fails to describe the nocturnal peak rainfall. 

Furthermore, LLJ-related moisture transport is examined. Though the smaller intensity, 

the diurnal cycle of the simulated VIMF is generally consistent with that in the NARR. 

However, the simulation of the VIMFD shows that the simulated low-level moisture flux 

divergence along the eastern slope of the Rocky Mountains is not organized well and the 

convergence over the Plains is relatively weak. It suggests that the nocturnal maximum 

convective precipitation is related to large-scale processes. 

 

In order to identify the above discrepancies, three groups of 10-case composites are 

defined as follows: (a) cases that the WRF cannot capture the timing of nocturnal peak 

convective precipitation; (b) cases that the model can simulate the timing of nocturnal 

rainfall; (c) cases that there shows peak convective precipitation during afternoon hours 

in both the WRF and the NARR. Since the deep convection is closely related the amount 
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of CAPE in the WRF model, the simulation of the peak convective precipitation occurs in 

the afternoon for both the Groups 1 and 3. However, for the nocturnal maximum 

convective precipitation in Groups 1 and 2, it shows a relatively closer relationship 

between CAPE and rainfall in the model and the reanalysis data. Since the CAPE is 

related to either the PBL forcing or the large-scale processes (Zhang 2003), the CAPE in 

these events may be more related to the large-scale processes. 

 

Through the longitudinal cross sections of diurnal variations of the anomalous zonal 

vertical circulation and the vertical velocity, the interaction between large-scale forcing 

and PBL forcing is further investigated. Since in the afternoon the downward large-scale 

forcing (baroclinic instability) is usually larger than the upward PBL forcing (sensible 

and latent heating), the daytime convection in central U.S. is often suppressed below 

500hPa. While at night, though the shutdown of solar radiation, the net effect of upward 

forcing by the mountain-plain baroclinic instability favors the development of nocturnal 

rainfall. In addition, the LLJ not only transports a large amount of warm and moist air, 

but also may have a positive effect on the structure of mountain-plain circulation.  

 

One concern on nocturnal convection is the elevated convection, which is considered to 

explain how the nighttime convection is maintained with the occurrence of the LLJ and a 

stable boundary layer (e.g. Reif and Bluestein 2017; Blake et al. 2017; Trier et al. 2017). 

As shown in Fig. 19a, the acceleration of the vertical velocity from 925hPa to 850hPa is 

suppressed when the surface cooling occurs (0000 LT), while the velocity in upper levels 

(500hPa and 300hPa) increases a lot, indicating that the deep convection begins to 
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develop above the PBL, not the typical near-surface layer. For the Group 2 (Fig. 19b), the 

diurnal cycle of vertical motion is similar to Group 1, though the timing for intensified 

upper-level vertical motion is 3 hours earlier. Compared to Groups 1 and 2, there is no 

nighttime upper-level vertical motion shown in Group 3 (Fig. 19c), which is consistent 

with the diurnal cycle of rainfall in Fig. 9c.  

 

In the future, the mechanisms suggested in this study will be tested by the model 

experiments and verified by more observational cases. Since there are different 

convective modes, which have different locations, wind profile and etc., the relationship 

between the zonal circulation and convective modes can be analyzed in the meantime. 

More details on how the mountain-plain solenoidal circulation is favorable for the 

initiation and development of the elevated convection should also be further examined. 

Besides the cumulus scheme, model parameterizations like the PBL scheme and 

microphysics are also significant in resolving the large-scale forcing and should be 

analyzed and modified.  
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Figure 1. WRF model domains 
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Figure 2. Diurnal cycle of convective precipitation by the NARR data averaged for May, June 
and July of the 10 years (1991–2000) (unit: mm/3h). The time is given as local time (LT). 
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Figure 3. As in Fig. 2 but for the WRF model. 
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Figure 4. Amplitude and phase of the maximum LLJ frequency, (left) calculated by the NARR 
data based on Bonner criterion 2 (a), and (right) same as the left but for the WRF model (b). 

Southward, westward, northward, and eastward vectors indicate maximum frequency at 0000, 
0600, 1200, and 1800 local time (LT). 
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Figure 5. Diurnal cycle of low-level VIMF by the NARR data averaged for May, June and July 
over the 10 years (1991–2000) (unit: 𝑘𝑔	𝑚$%	𝑠$%). The time is given as local time (LT). 

 

 

 

 

 

 

 

 

 

 

 



 41 

 

Figure 6. As in Fig. 5 but for the WRF model. 
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Figure 7. Diurnal cycle of low-level VIMFD by the NARR data averaged for May, June and July 
over the 10 years (1991–2000) (unit: 10$S𝑘𝑔	𝑚$=	𝑠$%). The time is given as local time (LT). 
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Figure 8. As in Fig. 7 but for the WRF model. 
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Figure 9. Composite diurnal cycles of the three groups. (left) Group 1, (middle) Group 2, and 
(right) Group 3: (a)–(c) convective precipitation of the NARR reanalysis (solid) and the WRF 

model (dashed); (d)–(e) CAPE of the NARR reanalysis (solid) and the WRF model (dashed), and 
CIN of the NARR reanalysis (solid with markers) and the WRF model (dashed with markers). 

The time is given as local time (LT). 
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Figure 10. East-west-oriented cross sections of diurnal anomalies (from daily mean) of zonal 
vertical circulation (𝑢 unit: 𝑚	𝑠$%, 𝑤 unit: 𝑐𝑚	𝑠$%), temperature (shaded, unit: °C), and 

meridional wind (contours, intervals of 1 𝑚	𝑠$%) averaged between 37°N and 39°N based on the 
averages of the 10-day composite from the NARR data in the Group 1. The green, black, and 

white contours are negative, zero and positive anomalies, respectively. The time is given as local 
time (LT). 
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Figure 11. As in Fig. 10 but for the WRF model in the Group 1. 
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Figure 12. As in Fig. 10 but for the NARR model in the Group 2. 
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Figure 13. As in Fig. 10 but for the WRF model in the Group 2. 
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Figure 14. As in Fig. 10 but for the NARR model in the Group 3. 
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Figure 15. As in Fig. 10 but for the WRF model in the Group 3. 
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Figure 16. East-west-oriented cross sections of diurnal cycles of vertical velocity (colored 
contours, intervals of 1 𝑐𝑚	𝑠$%), relative humidity (green shaded, unit: %) and isentropes (black 
contours, intervals of 3𝐾) averaged between 37°N and 39°N based on the averages of the 10-day 

composite from the NARR data in the Group 1. The red, purple, and blue contours represent 
positive, zero and negative velocities, respectively. The time is given as local time (LT). 
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Figure 17. As in Fig. 16 but for Group 2. 
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Figure 18. As in Fig. 16 but for Group 3. 
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Figure 19. Diurnal cycles of vertical velocity (unit: 𝑐𝑚	𝑠$%) over the composite area, southern 
Kansas (37-39˚N, 99-97˚W), for (a) Group 1, (b) Group 2, and (c) Group 3. The time is given as 

local time (LT). 
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