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a b s t r a c t

Many inelastic solids accumulate numerous cracks before failure due to impact loading, thus rendering
any exact solution of the IBVP untenable. It is therefore useful to construct computational models that
can accurately predict the evolution of damage during actual impact/dynamic events in order to develop
design tools for assessing performance characteristics. This paper presents a computational model for
predicting the evolution of cracking in structures subjected to dynamic loading. Fracture is modeled
via a nonlinear viscoelastic cohesive zone model. Two example problems are shown: one for model val-
idation through comparison with a one-dimensional analytical solution for dynamic viscoelastic debond-
ing, and the other demonstrates the applicability of the approach to model dynamic fracture propagation
in the double cantilever beam test with a viscoelastic cohesive zone.

Published by Elsevier Ltd.

1. Introduction

Recently, considerable research has been focused on the subject
of dynamic crack propagation in solid continua, both experimen-
tally [1–3], and theoretically [4,5]. As is well known, in the case
wherein the object is ductile, the application of the J-integral [6]
may be erroneous due to path dependence in the energy released
during crack growth. Indeed, while the Griffith criterion [7] may
still apply to crack propagation, it is possible that the energy re-
quired for crack propagation may not even be a material constant,
but is more likely a material property that is both rate and history
dependent [8]. Thus, it is quite likely that new fracture models
need to be developed in order to predict crack propagation in these
complicated media.

While several models have been previously proposed for pre-
dicting fracture of viscoelastic media [8–12], few have proposed
a methodology whereby the fracture toughness may be measured
a priori. One model that has been proposed utilizes a microme-
chanical analysis to build a cohesive zone model [13,14], thereby
resulting in a cogent methodology for determining the fracture
toughness of viscoelastic media [15,16]. The model by Allen and
Searcy [15,16] results in a set of constitutive equations for the
plane ahead of the crack tip. Predictions of energy release rates
during crack growth have been made with the model for the case
of quasi-static crack propagation [17,18].

It should be pointed out that in recent years numerous cohesive
zone models have been proposed in the open literature. For exam-
ple, the plasticity type models [19,20], while they do account for
history dependence, are not rate dependent. The micromechanical
model by Sha et al. [21], while they do proceed from a microscale
sufficient to experimentally determine material parameters, are
also not rate dependent. In addition, numerical algorithms have
been developed for predicting crack propagation. However, they
either do not contain a rate-dependent cohesive zone model
[22,23], or they do not contain a micromechanical description of
the cohesive zone model [24]. Finally, while analytical models of
crack growth have been developed for media with imbedded cohe-
sive zones [25,26], they are not generally useful for computational
code verification because they consider only a single crack under-
going mode III crack propagation.

In the current study, the authors focus on the issue of dynamic
crack propagation, such as that which occurs in armor subjected to
projectile impact [27]. In applications such as this, it is often ob-
served experimentally that multiple cracks grow and interact
simultaneously. Obviously, the prediction of the response of these
types of structural components is analytically untenable, so that
numerical approximations are the most likely candidates for utili-
zation. In this study, a nonlinear viscoelastic cohesive zone model
is incorporated into an explicit finite element program that was
developed for the eventual goal of predicting the propagation of
multiple cracks in viscoelastic media under dynamic loading con-
ditions. In order to validate the model, analytic solutions for some
problems are compared to computationally generated solutions.
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Analytic results derived and presented elsewhere [28] for one-
dimensional elastic media with an elastic or viscoelastic cohesive
zone are compared herein to predictions made with the computa-
tional model developed. The validated computational code is then
used on the analysis of an elastic dynamic double cantilever beam
test with an embedded viscoelastic cohesive zone model for the
propagating crack in order to demonstrate the applicability of
the approach to model more complex problems. The important as-
pects of multiple dynamic crack propagation in viscoelastic media
that focus on the interplay between viscoelastic dissipation in the
cohesive zone and the bulk structure, and dynamic insertion crite-
ria for cohesive zones in viscoelastic media are relegated to future
work.

2. Model formulation

An initial boundary value problem for a general body develop-
ing cracks due to impact loading is considered in this study.
Fig. 1 shows a general body containing discrete cracks with cohe-
sive zones.

The body has an interior volume V and a boundary @V that is
composed of two parts: @Ve, which denotes the part of the external
boundary; and @Vc , which denotes the internal boundary herein
associated with cohesive zones. The state variables to be predicted
by the model are the displacement vector uiðxk; tÞ, the stress tensor
rijðxk; tÞ, and the strain tensor eijðxk; tÞ, where xk are the spatial
coordinates and t is time.

Considering body forces and inertial effects, the conservation of
linear momentum (for small displacements) can be expressed by,

rji;j þ qbi ¼ q€ui in volume V ð1Þ

where q is the mass density per unit volume, bi is the specific body
force vector, and €ui is the acceleration of the material point.

Neglecting any body moments, the conservation of angular
momentum implies that the stress tensor must be symmetric, i.e.,

rji ¼ rij in volume V and on boundary @V ð2Þ

The linearized form of the strain–displacement relationship for
small strains is given by,

eij ¼
1
2
ðui;j þ uj;iÞ in volume V ð3Þ

The linear elastic constitutive relationship can be expressed as,

rijðxk; tÞ ¼ CE
ijkleklðxk; tÞ in volume V ð4Þ

where CE
ijkl is the elastic modulus tensor, which is time independent,

and t is the time of interest.
If the material is linear viscoelastic, the constitutive equation

may be represented by a convolution integral of the form,

rijðxk; tÞ ¼
Z t

0
CVE

ijklðt � nÞ @eklðxk; nÞ
@n

dn in volume V ð5Þ

where CVE
ijklðtÞ is the stress relaxation modulus tensor, which is time

dependent, and n is an integration variable.
At the crack tips the cohesive zones have constitutive behavior

that reflects the change in the cohesive zone material properties
due to microscopic damage accumulation ahead of crack tips. This
behavior may be expressed by the general traction–displacement
relationship as follows,

Tiðxk; tÞ ¼ Tifuk;aðtÞg on @Vc ð6Þ

where Ti is the cohesive zone traction vector, and aðtÞ is a function
representing damage evolution characteristics.

The cohesive zone internal boundary, @Vc , is typically time
varying. The fg implies history dependence for damaged zones
which behave viscoelastically. The state of damage is characterized
by the time-dependent damage evolution function, aðtÞ.

The initial condition for all state variables are known and as-
sumed to be zero, i.e.,

rijðxk; t ¼ 0Þ ¼ 0 in the volume V and on the boundary @V

eijðxk; t ¼ 0Þ ¼ 0 in the volume V and on the boundary @V

uiðxk; t ¼ 0Þ ¼ 0 in the volume V and on the boundary @V

ð7Þ

In addition, either tractions or displacements are specified along
sub-sets of the boundary of the body. These general mixed bound-
ary conditions are,

Tiðxk; tÞ ¼ bT i on @Ve1 ð8Þ
uiðxk; tÞ ¼ ûi on @Ve2 ð9Þ

where bT i are the known boundary tractions, and ûi are the known
boundary displacements.

The union of @Ve1 and @Ve2 becomes the total external bound-
ary, @Ve, and @Ve1 cannot overlap @Ve2. With Eq. (1) through Eq.
(9), the above initial boundary value problem is well-posed. A solu-
tion to this problem generally exists and depending on the specific
nonlinearities introduced by crack propagation may be obtainable
analytically and/or numerically.

A displacement-based finite element formulation is obtained
from the weak form of the conservation of linear momentum, Eq.
(1). The weak form at time t using the principle of virtual work is
given by,Z

V
ðrij;j þ qbi � q€uiÞdui dV ¼ 0 ð10Þ

where dui represents an arbitrary virtual displacement field.
Integrating by parts and applying Gauss’ divergence theorem

and Cauchy’s formula to Eq. (10) then gives,Z
@V

Tidui dS�
Z

V
rijdui;j dV þ

Z
V
qbidui dV �

Z
V
q€uidui dV ¼ 0 ð11Þ

The first term in Eq. (11), representing the virtual work of trac-
tions acting on the boundary, can then be separated into two parts:
virtual work due to tractions acting on external ð@VeÞ and internal
ð@VcÞ boundaries, respectively.Z
@Ve

Tidui dSe �
Z
@Vc

Tidui dSc �
Z

V
rijdui;j dV þ

Z
V
qbidui dV

�
Z

V
q€uidui dV ¼ 0 ð12Þ

Fig. 1. A general body containing discrete cracks with cohesive zones.
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Artificial viscosity is employed to mitigate high frequency ring-
ing phenomena by augmenting the pressure in compressed ele-
ments, similar to the method in other explicit codes [29].Z
@Ve

Tidui dSe �
Z
@Vc

Tidui dSc �
Z

V
ðrij þ QdijÞdui;j dV

þ
Z

V
qbidui dV �

Z
V
q€uidui dV ¼ 0 ð13Þ

Q ¼ qv j _ekkjðQ 1vj _ekkj þ Q 2CÞ ð14Þ

where Q is the artificial bulk viscosity, dij is the Kronecker delta, v is
the volume of the element, C is the speed of sound in the material,
and Q1;Q2 are dimensionless constants.

By employing a spatial discretization scheme such as the finite
element method, Eq. (13) can be finally written for explicit integra-
tion as,

€uipMpqduiq ¼ f EXT
i � f INT

i ð15Þ
Mpq ¼ qvdpq ð16Þ

f EXT
i ¼

Z
@Ve

Tidui dSe þ
Z

V
qbidui dV ð17Þ

f INT
i ¼

Z
V
ðrij þ QdijÞdui;j dV þ

Z
@Vc

Tidui dSc ð18Þ

where Mpq is the diagonalized mass matrix (lumped mass matrix),
f EXT
i is the external force vector, and f INT

i is the internal force vector.
The equations of motion are then algebraically solved by an ex-

plicit time integration scheme using a modified central difference
method.

3. Nonlinear viscoelastic cohesive zone model

Modeling of fracture zones preceding crack tips is a complex
subject. The fracture behavior can be modeled in many different
ways, and one of the well-known approaches is to implement so-
called ‘‘cohesive zones” as illustrated in Fig. 1 and in Eq. (6). Cohe-
sive zone models are well-established tools in classical fracture
mechanics developed to remove stress singularities ahead of crack
tips. Many researchers [13,14,19,20,30–37] have attempted to
model the constitutive behavior for a cohesive zone in which the
tractions are described in terms of the displacement differences
across the cohesive zone.

The cohesive zone is typically modeled by employing interface
elements to model the growth of new boundary surfaces both
internal and external to the body through the incorporation of
the microscale damage evolution law. A constitutive relation gov-
erning mechanical behavior of the cohesive zone is typically repre-
sented either by rate-independent models or by rate-dependent
models. Needleman [19] and Tvergaard [20] presented rate-inde-
pendent cohesive zone models based on continuum level depic-
tions of inter-atomic forces and inter-atomic bond separation.
However, rate-independent models often are not suitable for pre-
dicting rate-dependent crack growth in viscoelastic bodies. Re-
cently, several studies [25,38] have recognized the importance of
including rate dependence in cohesive zone models.

Yoon and Allen [18] proposed a damage-dependent constitutive
model for a rate-dependent cohesive zone in a thermo-viscoelastic
solid. By using the Helmholtz free energy for a nonlinear viscoelas-
tic material the cohesive zone constitutive equation can be con-
structed, with the resulting constitutive model containing an
internal state variable representing microscale damage evolution
within the cohesive zone. The nonlinear viscoelastic cohesive zone
model [15,18] can be expressed by,

TiðtÞ ¼
uiðtÞ

kðtÞ � di
� ½1� aðtÞ� �

Z t

0
Ecðt � nÞ @kðnÞ

@n
dn

� �
on @Vc ð19Þ

where i ¼ n (mode I direction), s (mode II direction), or r (mode III
direction), TiðtÞ is the cohesive zone area-averaged traction, kðtÞ is
the dimensionless Euclidean norm of the cohesive zone displace-
ments, uiðtÞ is cohesive zone displacement, di is the cohesive zone
material length parameter, aðtÞ is the damage evolution function,
and EcðtÞ is the linear viscoelastic relaxation modulus of the cohe-
sive zone.

The kðtÞ in the convolution integral is a normalized quantity
coupling all three displacement components as follows,

kðtÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
unðtÞ
dn

� �2

þ usðtÞ
ds

� �2

þ urðtÞ
dr

� �2
s

ð20Þ

The damage evolution is characterized by internal state variable,
aðtÞ. Note from Eq. (19) that when aðtÞ reaches the value of unity,
the crack face traction decays to zero, thus resulting in crack exten-
sion. The damage evolution function can be directly determined by
performing fracture tests as shown in several recent studies
[35,39,40]. Alternatively, a phenomenological form of the damage
evolution, Eqs. (21) and (22), which is a form of power relationship
[15] as a function of the kðtÞ and internal state variable, aðtÞ can also
be used, since it is appropriate for simulating rate-dependent dam-
age growth due to cracking.

_a ¼ A½kðtÞ�m; when _k > 0 and a < 1 ð21Þ
_a ¼ 0; when _k 6 0 or a ¼ 1 ð22Þ

where A and m are microscale phenomenological material
constants.

Rate-dependent viscoelastic damage evolution characteristics
of the cohesive zone model used herein is demonstrated in Allen
and Searcy [16] and is reproduced in Fig. 2 for purposes of illustra-
tion. Numerical simulations were performed for a single fibril in a
cohesive zone subjected to three different rates, U0, of ramp dis-
placement. The damage accumulation, a, parameter shown in the
figure indicates a direct relationship between loading rate and
damage evolution rate: as the rate of loading increases, so does
the rate of damage. Also of note, slower rates of loading naturally
induce a longer delay in damage initiation. Furthermore, a slower
loading rate produces more compliant response due to the fact that
the slow loading rate gives more time for the viscous mechanisms
and microstructural damage in the cohesive zone to occur.

4. Model validation

In order to validate the computational model, a simple one-
dimensional finite elastic strip that is cohesively bonded to a rigid
substrate, as illustrated in Fig. 3, has been studied and then ana-
lytic solutions of the problem were compared to computationally
obtained predictions using the explicit finite element code. The
good agreement between model predictions and analytic solutions
verify that the developed computational technique is a useful tool
to predict dynamic behavior including material viscoelasticity and
rate-dependent fracture.

Analytical solutions were derived [28] for a variety of cohesive
zone constitutive behaviors including linear elastic, viscous, and
viscoelastic without debonding, and elastic cohesive zones with
evolving internal damage. The computational model validation in
this study was performed in two separate forms: validation of cohe-
sive zone viscoelasticity by using the analytic solutions derived for
the viscoelastic cohesive zone without debonding (Case 1) and the
validation of cohesive zone fracture by comparing computational
predictions to the analytic solutions developed for elastic cohesive
zones with evolving internal damage (Case 2). These two subse-
quent steps were employed in this study, because there was no ana-
lytic solution currently available that could be compared to the
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nonlinear viscoelastic cohesive zone fracture by the computational
model and the two separate validations in a combined form in this
study can still check the model in terms of both material viscoelas-
ticity and fracture failure of the cohesive zones.

4.1. Case 1: viscoelastic cohesive zone without debonding

Transient behavior of a finite strip with viscoelastic cohesive
zones between the strip and the rigid substrate can be viewed as
a one-dimensional wave equation using dimensionless variables,
Eq. (23) and boundary conditions, Eqs. (24) and (25), as given,

@2uðx; tÞ
@x2 ¼ @

2uðx; tÞ
@t2 ð23Þ

E
@uð0; tÞ
@x

¼ kuð0; tÞ þ g _uð0; tÞ ð24Þ

E
@uðl; tÞ
@x

¼ pðtÞ ¼ poHðtÞ ð25Þ

where E is the Young’s modulus of the elastic finite strip, k is the
elastic stiffness of the cohesive zone, g is the viscosity of the cohe-
sive zone, l is the length of the strip, po is the constant tensile pres-

sure applied on right-end boundary of the strip, and HðtÞ is the
Heaviside step function.

Following the notation found in Gazonas and Allen [28], analyt-
ical solutions to this boundary value problem in terms of the
dimensionless D’Alembert solution for displacements and stresses
in the finite strip are given,

uðx; tÞ ¼ F1ðt þ xÞ þ F2ðt � xÞ ð26Þ
rðx; tÞ ¼ E½F 01ðt þ xÞ � F 02ðt � xÞ� ð27Þ

F1ðtÞ ¼
po

E

X1
n¼0

L�1 1

S2

1� a1 � a2=S
1þ a1 þ a2=S

� �n� �
Hðt � 2n� 1Þ ð28Þ

F2ðtÞ ¼
po

E

X1
n¼0

L�1 1
S2

1� a1 � a2=S
1þ a1 þ a2=S

� �nþ1
( )

Hðt � 2n� 1Þ ð29Þ

a1 ¼
gt
E

ð30Þ

a2 ¼
lk
E

ð31Þ

where L�1 is the inverse Laplace transform operator, S is the Laplace
transform variable, and primed quantities in Eq. (27) refer to spatial
derivatives, d/dx.
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Fig. 2. Rate-dependent behavior of the viscoelastic cohesive zone model: (a) cohesive zone traction vs. loading time, and (b) accumulated damage vs. loading time.
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The dimensionless analytic solution for the stress at the center
of the elastic strip with a viscoelastic cohesive zone, and subjected
to a tensile Heaviside step loading is illustrated in Fig. 4 which
compares well with computational predictions. Good agreement
between the two results suggests that the finite element code
has been developed appropriately in terms of material viscoelastic-
ity of the cohesive zones. Furthermore, it is obvious that stresses
are attenuated with time due to relaxation resulting from visco-
elastic energy dissipation. Table 1 presents inputs including mate-
rial properties, loading conditions, and geometry of the strip for
each case used in this study.

4.2. Case 2: cohesive zone with growing damage

The computational model can be further validated by consider-
ing a general case where the viscoelastic cohesive zones are
degraded and eventually resulting in decohesion due to rate-

dependent damage evolution. In this case the boundary conditions
are as follows,

E
@uð0; tÞ
@x

¼ ½1� að0; tÞ� � 1
dn

Z t

0
Ecðt � nÞ @uð0; nÞ

@n
dn

� �
ð32Þ

E
@uðl; tÞ
@x

¼ pðtÞ ¼ poHðtÞ ð33Þ

The damage evolution function, aðtÞ has been previously defined
and can be written as,

_a ¼ A
uð0; tÞ

dn

� �m

ð34Þ

It can be noted that Eqs. (32) and (34) are reduced forms of Eqs. (19)
and (21), respectively, from three-dimensional to one-dimensional
case.

Note from Eq. (32) above that when a attains its maximum va-
lue of unity, the traction at the left end of the strip will become
null, thus resulting in rigid body motion of the strip in the direction
of the externally applied loading on the other boundary. Due to the
nonlinearity in this problem, analytic solutions have been obtained
only for a special case with the following conditions on the left
boundary of the strip,

að0; tÞ ¼
0 t < tf

1 t P tf

� �
ð35Þ

It is to be noted that Eq. (35) represents a special case of Eq. (34)
that physically represents instantaneous crack growth at time
t ¼ tf . This solution represents a limiting case that is nevertheless
useful for validating the computational model. In order to obtain
an analytic solution to the problem, the following boundary condi-
tions are posed,

E
@uð0; tÞ
@x

¼ kuð0; tÞHðt � tf Þ ð36Þ

E
@uðl; tÞ
@x

¼ pðtÞ ¼ 0: ð37Þ

The dimensionless displacements and stresses for this problem are

uðx; tÞ ¼ F1ðt þ xÞ þ F2ðt � xÞ ð38Þ
rðx; tÞ ¼ E½F 01ðt þ xÞ � F 02ðt � xÞ� ð39Þ

where u(0, t) is the boundary displacement for the elastic cohesive
zone problem without failure [28], and

Fig. 3. A finite elastic strip subjected to dynamic tractions.
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Fig. 4. Analytic solution vs. finite element solution at the center of the elastic strip with a viscoelastic cohesive zone (Case 1).
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F1ðtÞ ¼ �a
X1
n¼0

Hðt � 2n� 2� tf Þ
Z t�2n�2

tf

uð0; nÞdn ð40Þ

F2ðtÞ ¼ �a
X1
n¼0

Hðt � 2n� tf Þ
Z t�2n

tf

uð0; nÞdn ð41Þ

a ¼ lk
E

ð42Þ

The solution to the problem with the cohesive zone failure is illus-
trated in Fig. 5 which compares favorably with the explicit finite
element solution. After failure, t P tf , the stress wave traverses
the ‘‘failed” finite elastic strip and remains unaltered in form for
all time. The solutions derived in this section are general in form
and can predict the transient failure behavior of finite elastic strips
with arbitrary values of the post-failure stiffness characterized by
the material constant a, shown in Eq. (42).

5. Application of the model

In order to demonstrate the applicability and efficacy of this
computational modeling approach, a double cantilever beam
(DCB) specimen with damage-induced viscoelastic cohesive zones
is subjected to dynamic loading by either displacement-controlled
or force-controlled mode. The material properties of the specimen
were arbitrarily selected and are given in Table 2. The finite ele-
ment mesh used herein is shown in Fig. 6 where the cohesive zone
interface elements are inserted along the middle of the specimen
(from 0.02-m to 0.10-m). Note that a 0.02-m long pre-crack is
embedded along the centerline of the double cantilever beam spec-
imen. The viscoelastic constitution of the cohesive zone is repre-

sented by a Prony series stress relaxation modulus based on the
generalized Maxwell model [11].

For the force-controlled loading mode, a dynamic, monotoni-
cally increasing vertical force F ¼ �1:5� 103tHðtÞ (in Newton)
was applied to the upper and lower tips of each cantilever beam
to induce opening mode failure. Similarly, for the displacement-
controlled loading condition, a monotonically increasing vertical
displacement u ¼ �5:0� 10�2tHðtÞ (in meter) was applied to each
cantilever beam. Simulations were terminated when all of visco-
elastic cohesive zones were failed resulting in complete separation
of the double cantilever beam into two pieces. Elastic cohesive
zone simulations were also performed by specifying all relaxation
times (i.e., gi=Ei) in the Prony series to be infinite. It is important to
note that the ‘‘elastic” cohesive zone model, as described herein, is
history-dependent in order to directly compare the effects of rate
dependence due to material viscoelasticity alone without damage
evolution effects. In order to simulate history-independent cohe-
sive behavior, one might use models such as those described in
Tvergaard [43], Camacho and Ortiz [41], or Zhou and Molinari [34].

Fig. 7 shows the applied force–tip displacement curve for elastic
and for viscoelastic cohesive zones when the specimen is under
force-controlled mode. As can be clearly seen from the figure, the
viscoelastic cohesive zone produces a more compliant response
than the elastic cohesive zone; the elastic and viscoelastic re-
sponses become indistinguishable at the highest loading rate of
1500 N/s for the particular choice of material properties.

Fig. 8 presents the evolution of the normal traction at the first
cohesive zone interface element (0.02 m), where one can see the
gradual degradation of the cohesive zone for both force-controlled
and displacement-controlled mode. It can also be observed from
Fig. 8 that more energy is dissipated from the viscoelastic cohesive
zones, as expected.

The damage evolution at different locations along the specimen
center line for both loading conditions is shown in Fig. 9. From the
figure, it can be seen that the shape of damage evolution varies
with location and the loading mode.

Fig. 10 presents the time at which the crack has propagated (i.e.,
aðtÞ ¼ 1:0) as a function of location along the center line of the
specimen where damage is induced from the viscoelastic cohesive
zone. One interesting result is that for the material properties used,
a single major crack is typically observed to propagate the length of
the DCB specimen; for some simulations, however, cohesive ele-
ments close to the right end of the specimen (i.e., x ¼ 0:10 m)

Table 1
Inputs used for model validation.

Input Case 1 Case 2

Elastic strip
E (kPa) 2:07� 108 2:07� 108

qðkgf s2=m4Þ 7:99� 102 7:99� 102

l (m) 7:62� 10�1 7:62� 10�1

Cohesive zone
kðkgf=mÞ 1:79� 106 1:79� 106

gðkgf s=m2Þ 7:03� 103 –

Load
Po (kPa) 6:895� 103 6:895� 103
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Fig. 5. Analytic solution vs. finite element solution at the center of the elastic strip with an elastic cohesive zone that is subjected to failure (Case 2).
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sometimes fail prior to the time that the major crack reaches that
position, indicating that a secondary crack has been initiated, due
to stress waves that have reached the right-end boundary. This
behavior is more pronounced for the force-controlled case. It is
important to note that the numerical approach used in the current
study allows damage growth for any stress level greater than zero
(note that Eq. (19) has no parameter defining the stress level at
which damage is allowed to initiate), which allowed the initiation
of the secondary crack from the right-end boundary as stress
waves have reached that position. A more realistic approach can
be developed by adding to the model a parameter that defines
the stress level at which damage is allowed to initiate and use a
constraint condition such as the Lagrange multiplier method to

preclude cohesive zone opening at lower stress levels. Another ap-
proach that could be used to avoid damage initiation at any stress
level is the use of an extrinsic cohesive zone model and the algo-
rithm to automatically insert cohesive zone elements into the
mesh [34,41].

One can also note from Fig. 10 that initially the crack propagates
at an approximately constant velocity and at the same velocity for
both force-controlled and displacement-controlled cases, which is
also in good agreement with experimental and analytical results
[42].

In an attempt to more closely investigate the energy dissipation
behavior associated with cohesive zone damage in the specimen,
each source of energy (strain energy, kinetic energy, and cohesive
zone dissipated energy) from the displacement-controlled test
was computed and is presented in Fig. 11. The cohesive zone dissi-
pated energy is equivalent to the work done by the cohesive zone
traction while damage is evolving and is calculated as follows,

UCZðtÞ ¼
Z t

0

Z
SCZ

kðtÞTiðtÞ _uiðtÞdSdt ð43Þ

where UCZðtÞ is the dissipated energy on the cohesive zones at time
t; SCZ is the area of the cohesive zone interface elements, and k is a
constant used to prevent UCZðtÞ from growing while damage is not
evolving and is defined as,

kðtÞ ¼ 1; when _k > 0
0; otherwise

(
ð44Þ

Fig. 11 demonstrates that even though the applied external work al-
ways increases, at certain times the strain energy stored in the spec-
imen decreases due to crack propagation, and approaches zero as

Table 2
Material properties used for the double cantilever beam simulations.

Bulk material
E (kPa) 10,000
m 0.30
q ðkg=m3Þ 400

Damage parameters Viscoelastic material parameters

Cohesive zone
dn (mode I) (m) 0.00125 i Ei (kPa) gi (kPa s)
ds (mode II) (m) 0.00125 1 8000 –
A 10,000 1 200.0 4:0� 10�3

m 0.25 2 200.0 4:0� 10�2

3 200.0 4:0� 10�1

4 200.0 4:0� 100

5 200.0 4:0� 101

6 200.0 4:0� 102

7 200.0 4:0� 103

Fig. 6. Finite element mesh representing double cantilever beam geometry.
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the crack length approaches the specimen size. It can also be seen
that the viscoelastic cohesive zone dissipates more energy than
the elastic cohesive zone.

Fig. 12 plots the level of damage developed along the viscoelas-
tic cohesive zone at selected times for both loading cases. As ex-
pected, the damage level increases as loading continues, and
cohesive zone elements closer to the crack tip experience a more
accelerated damage build-up resulting in crack propagation. How-
ever, as previously noted, the cohesive zone elements closer to the
right end of the specimen ðx ¼ 0:10 mÞ fail somewhat earlier than
the time it takes for the major crack to reach that position, due to
the reasons previously discussed, which leads to two cracks: a pri-
mary crack propagating from the left to the right and a secondary
crack propagating from the right end to the left. Another interest-
ing fact to be noted from the figure is that damage curves along the
cohesive zones exhibit fluctuation due to stress wave effects.

The cohesive zone normal traction vs. time (at 0.02 m) response
is shown in Fig. 13 which demonstrates that at low rates of loading
stresses are lower than at higher rates of loading due to viscoelastic
dissipation in the cohesive zone.

The ratios of kinetic energy, strain energy and cohesive zone
dissipated energy to the total applied external work for three
different loading (tip displacement) rates are plotted in
Fig. 14a, b, and c, respectively. Fig. 14c illustrates that the lowest
rate dissipates more energy through the cohesive zone, and al-
lows more strain energy to be stored in the bulk of the elastic
strip, as expected. Also note from Fig. 14(a–c) that in the initial
stage of loading, the energy partition is the same for all loading
rates, but as the cohesive zones develop and the crack propa-
gates, the rate-dependent viscoelastic behavior is more
pronounced.

6. Concluding remarks

A finite element method-based computational model has been
presented herein for analysis/design of structures subjected to dy-
namic/impact loading and corresponding damage growth due to
cracking. A nonlinear viscoelastic cohesive zone fracture model
has been implemented into the explicit finite element formulation
to represent time- and rate-dependent crack growth.
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Computational results obtained using the model have been suc-
cessfully validated by comparing model predictions with analytical
solutions for a simple one-dimensional finite strip that is cohe-
sively bonded to a rigid substrate. Results obtained from computa-

tional simulations have essentially, within its accuracy, reproduced
the analytical solutions, mathematically derived. Also, results ob-
tained for a dynamic double cantilever beam (force- and displace-
ment-controlled) with a growing crack appear to be qualitatively
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correct, even though the authors have not been able to compare
these with experimental data. The proposed technique may be use-
ful for modeling various types of materials that exhibit viscoelastic
behavior and complex nonlinear damage evolution characteristics
due to dynamic/impact loading. The approach herein presented
may be also utilized within a multiscale computational model in
order to provide a predictive design tool for various structures sub-
jected to dynamic/impact loading. Further validation of the model
based on comparisons to experimental results is currently under-
way by the authors.
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