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a b s t r a c t

Metabolic DDT resistance in Drosophila melanogaster has previously been associated with constitutive
over-transcription of cytochrome P450s. Increased P450 activity has also been associated with increased
oxidative stress. In contrast, over-transcription of glutathione S transferases (GSTs) has been associated
with resistance to oxidative stress. However, little is known in regards to the impact of xenobiotics on
induction of P450s and GSTs and if there exist differences in inducibility between the pesticide suscep-
tible and resistant strains. Thus, we investigated the transcriptional expression of GSTs and P450s in DDT
resistant (Wisconsin) and susceptible (Canton-S) Drosophila strains in response to exposure to DDT and
the oxidative stressor H2O2. Wisconsin constitutively over-transcribed P450s, constitutively under-tran-
scribed 27% of its total GSTs, and was more susceptible to H2O2 than Canton-S. DDT exposure induced
GST expression only in the Wisconsin strain and not in the Canton-S strain. These results suggest that
there are potentially more differences between pesticide susceptible and resistant strains than just con-
stitutive expression of P450s; there may also exist, at least in some strains, differences in their patterns of
inducibility of P450s and GSTs. Within the context of the Wisconsin strain, these differences may be con-
tributing to the fly lines increased susceptibility to oxidative stress.

� 2011 Elsevier Inc. All rights reserved.

1. Introduction

Researchers have suggested that alleles causing resistance to
some pesticides may be costly for an insect population and that,
if the pesticide were no longer applied, these costly alleles and
resistance would revert to low frequency [1–5]. Few studies have
detailed the exact nature of ‘‘costs for resistance’’ and their under-
lying molecular mechanisms [6,7].

Only a few studies have focused on compounds or environmen-
tal factors that confer a cost to resistance [6–17]. Such compounds
are termed negative cross-resistance toxins and the environmental
factors are termed ecological negative cross-resistance factors [17].
In negative cross-resistance, increased resistance to one compound
or environmental factor causes increased susceptibility to another

compound or environmental factor. In some or many cases, devel-
opment of negative cross-resistance toxins may not be economi-
cally viable for use in managing resistance that may occur to
pesticides that are currently on the market [17,18]. However,
understanding environmental parameters (e.g., plant varieties, abi-
otic stresses, or biological control agents) [6,7] that increase fitness
costs (i.e., ecological negative cross-resistance) may provide the ba-
sis for economically viable integrated pest management strategies
to minimize pesticide resistance in insect populations.

Successful strategies have been developed for minimizing cer-
tain forms of recessive resistance (e.g., refuges are used to mini-
mize resistance in insect populations to transgenic plants
expressing Bt), but such resistance management strategies do not
work for dominant resistance traits [18–20]. Metabolic pesticide
resistance is often a dominant trait [21,22]. This form of resistance
has typically been associated with over-transcription or over-
translation or both of detoxification enzymes, including glutathi-
one S transferases (GSTs), cytochrome P450 enzymes, and
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esterases. Some strains of dipteran species, including houseflies
and mosquitoes (Aedes aegypti, Anopeheles gambiae, and Anopheles
albimanus), appear to be resistant to DDT (dichloro-diphenyl-
trichloroethane), and other pesticides, through GST-catalyzed
reactions [23–35].

In addition to detoxifying pesticides, GSTs also allow organisms
to reduce oxidative stress, an important environmental challenge
faced by many organisms [36,37]. In fact, some plants use lipoxy-
genases to defend against herbivorous insects, presumably by
increasing the herbivore’s oxidative stress [38,39]. In Anopeheles
gambiae, GSTs associated with pesticide resistance also respond
to H2O2 [40,41], an oxidative stressor, suggesting the potential
for positive cross-resistance between metabolic pesticide resis-
tance and oxidative stress. Like GSTs, the metabolite trehalose is
an important protectant against oxidative and other environmen-
tal stresses in a diversity of organisms, including insects [42–50].

In contrast to GSTs and trehalose, some cytochrome P450 en-
zymes have been associated with increased cellular oxidative
stress [51] and are often down-regulated in response to oxidative
stressors [52,53]. In Drosophila melanogaster, metabolic resistance
to DDT has been associated with increased cytochrome P450
expression across a series of fly lines, including the strains known
as Wisconsin [54,55] and Oregon R [56]. In the Wisconsin strain,
three P450s (CYP6G1, CYP12D1, and CYP6A2) were induced by
DDT or in some cases constitutively over-transcribed (CYP12D1and
CYP6G1 proteins have also been shown to be over-translated), and
CYP6G1and CYP12D1 (as well as other genes) are thought to be
associated with the DDT-resistant phenotype [55,57–59].

Transgenic flies over-expressing CYP6G1 are more tolerant to
DDT than non-transgenic flies [57,60]. Additionally, tissue-directed
(midgut, Malpighian tubules, and fat body) over-expression of
eight P450s genes in separate fly lines produced DDT-resistant sur-
vivors only in the CYP6G1 and CYP12D1 strains [59]. Over-expres-
sion of CYP6A2 did not produce additional DDT-treatment
survivors [59]. CYP6A2 expressed in Escherichia coli did not metab-
olize DDT [61].

Over-transcribed CYP6G1 has been observed in many DDT-resis-
tant Drosophila strains from many parts of the world, with appar-
ently little or no cost to insect fitness [62,63]. Over-transcription
of CYP6G1 on its own, however, is associated with low-level DDT
resistance. Higher-level DDT resistance, as observed in the Wiscon-
sin strain, is associated with over-transcription of multiple P450s
[55,58]. It is not known whether resistance, beyond the low-level
CYP6G1-based resistance, has any costs. However, before we begin
to understand the ecological ‘‘costs’’ associated with resistance, we
first must understand the differences in how resistant and suscep-
tible strains respond to potential environmental challenges, such
as oxidative stress.

As over-expression of P450s has been associated with increased
susceptibility to oxidative stress, we analyzed the Half Lethal Con-
centration (LC50) and molecular responses of Wisconsin and the
DDT-susceptible strain Canton-S to dietary H2O2. Constitutive and
induced (in the presence of DDT and an oxidative stressor) GST
and P450 expression patterns in both Wisconsin and Canton-S were
analyzed. Additionally, we quantified trehalose levels of Wisconsin
and Canton-S males in the presence and absence of H2O2.

2. Material and methods

2.1. Strains

Four D. melanogaster lines were used: the DDT-susceptible
strains 91-C and Canton-S, and the DDT-resistant strains Wisconsin
and Hikone-R. The origins of these strains have previously been de-
scribed [54,55,58]. The 91-R strain was not tested because most of

its resistance is due to factors other than P450s [16,64]. The Dro-
sophila populations were cultured in a controlled chamber at
approximately 25 �C, 80% humidity, and 14 h of light per day.

2.2. Bioassays for DDT and H2O2 and correlations between LC50 values

The four strains of Drosophila were bioassayed with the follow-
ing concentrations of H2O2: 0 (water control), 5, 7.5, 10, 12.5, 15,
20, 25, and 30%. A 5% sucrose solution was included in all these
treatments. Twenty adult Drosophila (3 days old, 1:1 male:female
ratio) were anesthetized using CO2 and transferred into a 15 ml
scintillation vial. The vial opening was covered with a cotton ball
(lid), and then 5 ml of a H2O2 solution or the water control was
pipetted onto the cotton lid. Each vial also received a 5% sucrose
solution, which was a food source for the flies and which was ap-
plied in 5 ml to each cotton lid. Three replicate vials were used for
each concentration of H2O2. For the H2O2 treatments, the 5% su-
crose was combined with the H2O2 into one solution. After 30 h,
the number of dead flies was recorded, and the LC50 was calculated
using SAS (SAS Institute Inc., Cary, NC). The LC25s and LC50s of DDT
for the four fly lines were generated as previously described in
Festucci-Buselli et al. [58]. A regression analysis was performed
using the LC50s from the four fly strains to determine whether
DDT and oxidative stress resistance were correlated.

2.3. H2O2. and DDT treatments as well as sample preparation for qRT-
PCRs

Canton-S and Wisconsin showed the greatest inverse relation-
ship in resistance to DDT and H2O2, and we therefore used these
two strains to investigate GST constitutive expression as well as
GST expression after exposure to DDT and H2O2. Because the
P450 enzymes CYP6G1, CYP12D1, and CYP6A2 have all previously
been documented to be over-transcribed (and in the case of
CYP6G1 and CYP12D1 proteins over-translated) [55,58] in the Wis-
consin strain, we also investigated the expression of these tran-
scripts after exposure to DDT and H2O2.

Male and female flies that were 3 days old were prepared sepa-
rately for each fly strain. The fly strains were treated with the LC25s
of H2O2 (15.1% for Canton-S and 7.5% for Wisconsin) and a 5% su-
crose solution in 15 ml scintillation vials as described for the
H2O2 bioassay. For each fly strain, the control group was treated
with only a 5% sucrose solution and the experimental group was
treated with H2O2 + 5% sucrose for 30 h. The males and female flies
were then flash-frozen separately at �80 �C. These samples repre-
sented a single biological replicate for RNA extraction, which was
performed with the RNeasy mini-kit (Qiagen Inc., Valencia, CA).
Three separate biological replicates were used per treatment.

We also determined the effect of DDT on induction of all the
GSTs in the Drosophila genome and the three P450s (CYP12D1,
CYP6G1, and CYP6A2) in 3-day-old male and female flies. We used
the LC25 of DDT (0.15 lg for Canton-S and 34.68 lg for Wisconsin).
The DDT was coated on the inside surface of the 15 ml scintillation
vials, the Wisconsin and Canton-S flies were placed in separate vials
[54], and a 5% sucrose solution was added to the cotton lid. The
adults were exposed to their respective treatments for 24 h as de-
scribed by Brandt et al. [54] before being flash-frozen and stored at
�80 �C. The samples were prepared as described for H2O2 exposure
in the previous paragraph.

2.4. Primers

We designed 37 pairs of primers for all 37 GST genes found in
the Drosophila genome (Supplemental Table 1). Primers were de-
signed using the PCR NowTM program (http://pathogene.
swmed.edu/rt_primer/).
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2.5. Quantitative real time PCR (qRT-PCR)

For each biological replicate of each treatment, we performed
three technical replicates for the qRT-PCRs. For each biological rep-
licate, RNA was extracted from 16 3-day-old flies using the Qiagen
RNeasy kit (Qiagen, Valencia, CA) with the column DNase digestion
procedure. A minimum of three biological replicates was per-
formed for each experiment. cDNA was synthesized using 0.5 lg
of total RNA with the iScript cDNA kit from Bio-Rad (Hercules,
CA) in a 10 ll reaction volume. We used a 25-fold dilution for each
cDNA for the qRT-PCRs. qRT-PCRs were performed with the iQ
SYBR Green Supermix from Bio-Rad (Hercules, CA) on an iCycler
Thermal Cycler. The threshold cycle (CT) was calculated using iCy-
cler IQ software. The relative expression levels were calculated as
given in Pfaffl et al. [65], and the statistical analyses of the relative
gene expression level were performed using SAS (SAS Institute Inc.,
Cary, NC). Rp49 was used as the reference gene, and the transcrip-
tion of 37 GST and three P450 genes was analyzed.

2.6. Metabolomics and GC/MS procedure

Three-day-old male flies were prepared separately for Canton-S
and Wisconsin flies. For each fly strain, the control group was trea-
ted with only a 5% sucrose solution and the experimental group
was treated with the LC25-level of H2O2 for the given strain + 5% su-
crose for 30 h (in 15 ml scintillation vials). The flies were then
flash-frozen in liquid nitrogen and transferred separately to
�80 �C. Four biological replicates (15 flies per replicate) were
tested for trehalose levels.

For trehalose extraction, each sample was removed from the
freezer, and 200 ll of 100% ethanol was added to each 1.5 ml cen-
trifuge tube. The sample was ground for 3 min with a sterile plastic
pellet pestle. The samples were then placed into a heating block at
80 �C. After 10 min, 400 ll of a methanol/water (50:50 v/v) mix-
ture was added and placed on a vortex for 30 min at room temper-
ature. Once the extraction was complete, the tubes were
centrifuged at 13,000g for 10 min. The supernatant was transferred
to a new tube and dried using a rotary evaporator at 43 �C for 3 h.
The samples were derivatized with 20 ll of a O-Methylhydroxyl-
amine-HCl solution (20 mg/ml anhydrous pyridine) by heating to
60 �C for 30 min. Subsequently, 30 ll of MSTFA labeling reagent
was added to each tube and incubated at 60 �C for 1 h. Each sample
was allowed to cool to room temperature and was then transferred
to a glass autosampler vial.

The instruments used for GC–MS were the Pegasus 4D GCxGC-
TOFMS from Leco Corp. (St. Joseph, Michigan), an Agilent 6890 N
GC, and an Agilent 7683B Series autosampler. The first dimension
column was an HP-5MS phase, 30 m long, 0.250 mm I.D.,
0.25 lm film. The second dimension column was a DB-17 phase,
1 m long, 0.100 mm I.D., 0.10 lm film. Both columns were from
Agilent Technologies. A 3 ll injection was made for each sample
using helium as a carrier gas at a flow rate of 1 ml/min. The front
inlet split was set to 20 and the inlet temperature was 280 �C.
The temperature gradient was as follows: 50 �C for 0.20 min; ramp
10 �C/min to 250 �C and held for 10 min; and ramp 25 �C/min to
300 �C and held for 5 min. The second dimension temperature pro-
file was exactly the same only +20 �C. The transfer line between GC
and MS was set to 250 �C. The MS had a solvent delay of 150 s. Data
were collected from 30–1000 m/z with an acquisition rate of 100
spectra/s. The detector voltage was 1700, and electron energy
was -70 V. The ion source was set to 200 �C. All data were pro-
cessed using Leco ChromaTOF software (Version 3.32). Area and
height calculations were based on the 73 ion. Standard curves for
the trehalose metabolite were generated using an eqimolar mix-
ture of standards at five concentrations (0.5, 0.25, 0.05, 0.025,
0.005 lmol).

The method of analysis was by absolute quantification whereby
a standards curve was completed for trehalose where the area un-
der the curve was regressed to a known concentration of the
metabolite. Density was regressed on concentration to obtain the
linear coefficient. This was then used to convert observed densities
in the experimental data to quantities (l mol) of metabolites. The
quantified data were then analyzed by SAS using Proc Mixed.

3. Results

3.1. Significant difference in Canton-S and Wisconsin in respectively
LC50s and LT50s for DDT and H2O2

We observed an inverse linear correlation (r2 = 0.96) between
DDT resistance and H2O2 resistance (Fig. 1) in the fly strains Can-
ton-S, 91-C, Hikone-R, and Wisconsin. The 91-R strain was not in-
cluded, as the major form of resistance in this strain is not
metabolic [66]. The strain most susceptible to DDT, Canton-S, was
the most resistant to H2O2, while the strain most resistant to
DDT, Wisconsin, was the most susceptible to H2O2. Additionally,
the LC50s and 95% confidence intervals for Wisconsin and Canton-
S exposed to H2O2 did not overlap, and there was no overlap be-
tween the mortalities of Wisconsin and Canton-S in response to
H2O2 (Fig. 2), showing a significant difference between these two
strains (P < 0.05). Thus, as these two strains responded differently
to DDT and H2O2, they were used for further comparisons in terms
of transcription of GSTs and P450s.

3.2. Constitutive GST and P450 transcription in the Canton-S and
Wisconsin strains

Compared to the Canton-S adults, Wisconsin adults (males and
females collectively) constitutively under-transcribed ten GSTs
(P < 0.01; Table 1). Of these GSTs, female and male Wisconsin flies
shared only five genes that were constitutively under-transcribed
relative to same sexed Canton-S flies (Table 1). After a Bonferonni
correction, the number of under-transcribed GST genes dropped
to six in Wisconsin males and five in Wisconsin females. Thus, the
Wisconsin strain had generally lower expression of GSTs as com-
pared to their Canton-S counterparts. Compared to Canton-S adults,
Wisconsin adults constitutively over-transcribed only one P450,
CYP6A2 (Table 1).

3.3. Differential expression of GST and P450 transcripts by DDT in
Wisconsin and Canton-S adults

Multiple GSTs were responsive to LC25 DDT exposure in Wiscon-
sin adults (DDT resistant) but not in the Canton-S adults (DDT sus-
ceptible). Eight of the 37 GST genes were significantly over-
transcribed in DDT-treated vs. non-treated male Wisconsin flies
(P < 0.01; Table 2A). Nine of the 37 GST genes were significantly
over-transcribed in DDT-treated vs. non-treated female Wisconsin
flies (Table 2B). Compared to non-treated flies, DDT-treated Wis-
consin male and female flies shared four over-transcribed GSTs
(Table 2A and B). In Canton-S males and females, none of 37 GSTs
genes were differentially transcribed due to LC25 treatment with
DDT (Table 2A and B). Only CYP12D1 was over-transcribed in
DDT-treated vs. non-treated Wisconsin males; three P450 genes
(CYP6G1, CYP12D1, and CYP6A2) were over-transcribed in DDT-
treated vs. non-treated Wisconsin females (Table 2). In Canton-S
adults, the transcriptional levels of the three P450 genes did not
significantly change after DDT treatment (Table 2).
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3.4. Induction and repression of GST and P450 transcripts in the
presence of dietary H2O2 in Wisconsin and Canton-S adults

When exposed to an LT25 of H2O2, both the Wisconsin and
Canton-S flies responded by differentially expressing their GSTs.
However, in the Wisconsin adults, all the responsive GSTs were
over-transcribed in the presence of an LC25 treatment by H2O2

(P < 0.01; Table 3A and B). In Canton-S males, GST genes were both
over- and under-transcribed (P < 0.01; Table 3A and B). Addition-
ally, both Canton-S and Wisconsin under-transcribed CYP6A2 as a
result of LC25 H2O2 exposure (Table 3). However, CYP6A2 still had
higher transcription in Wisconsin as compared to Canton-S flies in
response to H2O2 treatment (Table 4).

3.5. Impact of dietary H2O2 on trehalose levels

Because there were few differences in how males and females
within a strain responded to H2O2 (based on our observations with
GST and P450 expression patterns), we arbitrarily choose males to
determine the impact of H2O2 on trehalose levels. Specifically, we
compared Canton-S and Wisconsin males for trehalose levels in
the absence and presence of LC25 H2O2 levels. Trehalose levels were
significantly decreased (P < 0.001) in H2O2-treated vs. nontreated

Wisconsin males; the integrated area of chromatographic peak cor-
responding to trehalose from the GC–MS data (see Material and
methods) was 5.93 � 107 ± 4.36 � 106 counts (mean ± SE) for the
treated males and 1.3 � 108 ± 1.3 � 107 counts for the non-treated
males, with four replications and 15 insects per replication. The
same significant decrease (P < 0.001) in trehalose was also ob-
served for H2O2-treated vs. nontreated Canton-S males; the inte-
grated area of trehalose peak (see Material and methods) was
6.71 � 107 ± 9.15 � 106 (mean ± SE) for the treated males and
1.67 � 108 counts ± 5.60 � 107 (mean ± SE) counts for the non-
treated males, with four replications and 15 insects per replication.

4. Discussion

The Drosophila strain that was most resistant to DDT (Wiscon-
sin) was also the most susceptible to the dietary oxidative stressor,
H2O2. The opposite was true for Canton-S, which was the most sus-
ceptible to DDT and the most resistant to dietary H2O2. These dif-
ferences were consistent with observed changes in the constitutive
and induced expression of enzymes (GSTs and cytochrome P450s)
associated with metabolic resistance to DDT and with resistance/
susceptibility to H2O2. Compared to Canton-S adults, Wisconsin
adults constitutively over-transcribed several cytochrome P450s
and constitutively under-transcribed >27% of the GST found in
the Drosophila genome genes. The Wisconsin strain was also far
more responsive than the Canton-S strain to DDT in terms of GST
transcript induction. In response to DDT treatment, GSTs were
over-transcribed in the Wisconsin strain but were unchanged in
the Canton-S strain.

Of the genes encoding the P450s and GSTs that responded to
DDT treatment in this study, GSTD1, CYP6G1, and CYP12D1 have
been previously implicated in coding for enzymes that directly
metabolize DDT or have at least been previously associated with
the DDT-resistant phenotype [54–60,67–69]. The P450 CYP6A2 is
over-transcribed in some DDT-resistant strains, although it is not
currently thought to have a direct role in resistance [55,70]. Tang
and Tu [67] also observed low-level DDT-ase activity in GSTD2
(they termed the gene GSTD21). Our results are consistent with
the concept that, in addition to having constitutive over-expression
of resistance traits, some resistant insects may up-regulate genes
associated with detoxification when exposed to a toxin

Fig. 1. Inverse relationship in four Drosophila melanogaster strains (Canton-S, 91-C, Hikone-R, and Wisconsin) between resistance to DDT (LC50) and resistance to dietary H2O2

(LC50) (r2 = 0.96). DDT bioassays were performed for 24 h and H2O2 bioassays were performed for 30 h [58]. The 95% CI error bars are given for both the DDT and H2O2 assays.

Fig. 2. Dose–response curves for the Drosophila melanogaster strains Canton-S and
Wisconsin using H2O2. The x-axis shows the dose of H2O2 in logarithm; the y-axis
shows mortality in probit.
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[54,55,58–60,71]. Whether this up-regulation contributes to resis-
tance, however, remains unclear.

Evidence exists that some of the GSTs that we observed to be
differentially expressed are involved in reducing oxidative stress.

Sawicki et al. [37] cloned Delta-class GSTs and one Epsilon-class
GSTs of Drosophila and transformed them into E. coli. They then
tested for the role that these proteins might have in reducing
oxidative stress by determining whether the GSTs accept

Table 1
Relative constitutive transcription levels for GST and P450 Drosophila melanogaster genes by male and female Wisconsin flies.

Gene name Wisconsin vs. Canton-S (Male) Wisconsin vs. Canton-S (Female)

Ratio DCTa (SE) P-value Ratio DCTa (SE) P-value

GSTD5d 0.12 3.04(0.56) ; <0.0001b 0.19 2.37(0.50) ; 0.0002b

CG6776 0.48 1.07(0.25) ; 0.0006b 0.32 1.66(0.32) ; <0.0001b

CG5224 0.33 1.60(0.22) ; <0.0001b NS
GSTE3 0.42 1.24(0.34) ; 0.0020 0.50 1.01(0.26) ; 0.0015
GSTD8d NS 0.35 1.52(0.46) ; 0.0047
GSTE1c 0.30 1.72(0.47) ; 0.0020 NS
CG9362 0.40 1.32(0.34) ; 0.0014b 0.40 1.31(0.29) ; 0.0003b

GSTD4d 0.29 1.80(0.45) ; 0.0010b 0.13 2.90(0.57) ; 0.0001b

GSTD6d 0.34 1.55(0.52) ; 0.0085 NS
GSTE7 0.48 1.07(0.25) ; 0.0007b NS
CG30000 0.67 0.58(0.19) ; 0.0092 NS
GSTD10c NS 0.45 1.16(0.32) ; 0.0024
GSTE10 NS 0.52 0.93(0.30) ; 0.0066
CG1702 NS 0.50 0.99(0.22) ; 0.0004b

CYP6A2 4.82 �2.27(0.71) " 0.0037b 4.53 �2.18(0.48) " 0.0001b

All other GSTs were not tested by Sawicki et al. [37] for 4-HNE substrate activities.
NS, Not significant.

a DCT is the extra number of PCR cycles needed for Wisconsin samples to reach the same level of amplification as Canton-S [88]. The positive DCT value means that
Wisconsin had a lower transcription level of the gene as compared to Canton-S as given in the ratio column. The negative sign associated with the DCT value indicated
Wisconsin over-transcribed P450 gene as compared to Canton-S. ; means under-transcribed and " means over-transcribed.

b Expression of these genes was significantly different even after a Bonferonni correction. For the 37 GSTs, the Bonferonni correction was P = 0.00143. For the three P450s,
the Bonferonni correction was P = 0.0167.

c GSTs known to accept 4-hydroxynonenal (4-HNE) as a substrate [37].
d GSTs reported not to accept 4-HNE as a substrate [37].

Table 2
Relative constitutive transcription levels for Drosophila melanogaster GST and P450 genes, in response to DDT treatment (LC25 DDT treatment for 24 h), in Wisconsin and Canton-S
males and females. QRT-PCR was used to determine expression levels of each transcript.

Gene name Wisconsin + DDT vs. Wisconsin Canton-S + DDT vs. Canton-S

Ratio DCTa (SE) P-value Ratio DCTa (SE) P-value

(A) Male
GSTE8 1.74 0.80(0.23) " �0.0035 NS
GSTE3 3.23 �1.69(0.34) " 0.0001b NS
GSTD2c 4.06 �2.02(0.48) " 0.0007b NS
GSTD1c 2.51 �1.33(0.33) " 0.0011b NS
CG6781 1.79 �0.84(0.27) " 0.0061 NS
GSTE9 1.84 �0.88(0.24) " 0.0021 NS
GSTE6 1.74 �0.80(0.25) " 0.0062 NS
GSTE5 2.17 �1.12(0.36) " 0.0066 NS
CYP12D1 8.75 �3.13(0.62) " 0.0002b NS

(B) Female
GSTE1 2.08 �1.06(0.33) " 0.0050 NS
CG1702 1.67 �0.74(0.22) " 0.0043 NS
CG16936 2.00 �1.00(0.28) " 0.0026 NS
GSTE3 4.11 �2.04(0.26) " <0.0001b NS
GSTD2c 2.48 �1.31(0.40) " 0.0045 NS
CG1681 1.83 �0.87(0.28) " 0.0073 NS
GSTE9 1.85 �0.89(0.27) " 0.0044 NS
GSTE5 2.57 �1.36(0.33) " 0.0008b NS
GSTD4d 4.56 �2.19(0.57) " 0.0014b NS
CYP6G1 2.87 �1.52(0.52) " 0.0065b NS
CYP12D1 9.19 �3.20(0.64) " 0.0001b NS
CYP6A2 6.28 �2.65(0.48) " <0.0001b NS

All other GSTs were not tested by Sawicki et al. [37] for 4-HNE substrate activities.
NS, Not significant.

a DCT was the extra number of PCR cycles between control group and DDT treated group [88]. p-value shows the level of significance. The negative sign associated with the
DCT value indicated induction of the GSTs or P450s in the presence of DDT. The positive DCT value means that Canton-S treated by DDT had a lower transcription level of the
gene as compared to Canton-S as given in the ratio column. ; means under-transcribed and " means over-transcribed.

b Expression of these genes was significantly different even after a Bonferonni correction. For the 37 GSTs, the Bonferonni correction was P = 0.00143. For the three P450s,
the Bonferonni correction was P = 0.0167.

c GSTs known to accept 4-hydroxynonenal (4-HNE) as a substrate [37].
d GSTs reported not to accept 4-HNE as a substrate [37].
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4-hydroxynonenal (4-HNE) as a substrate. Sawicki et al. [37] ob-
served that GSTD1, GSTD2, GSTD3, GSTD7, GSTD9, GSTD10, and
GSTE1 had 4-HNE conjugating activity, demonstrating their poten-
tial to reduce oxidative stress in Drosophila.

Sawicki et al. [37] also identified GSTs that lacked 4-HNE conju-
gating activity: GSTD4, GSTD5, GSTD6, and GSTD8. Additionally,
Sawicki et al. [37] assayed for glutathione peroxidase activity for
these GSTs. They observed that only GSTD1 (they termed it
DmGSTD1-1) showed glutathione peroxidase activity to the sub-
strate cumene hydroperoxide.

Interestingly, we observed differential expression in the pres-
ence of H2O2 for GSTs known to have 4-HNE conjugating activity

(e.g., GSTD1, GSTD2, GSTD3, GSTD9, and GSTE1; see Table 3) and
for GSTs lacking this activity (e.g., GSTD4, GSTD5, GSTD6, and
GSTD8; see Table 3). It is not known whether GSTD4, GSTD5, GSTD6,
and GSTD8 may have some other function in oxidative stress or
whether they are simply induced as part of a general response to
the oxidative stressor, H2O2. It also remains to be determined
whether those GSTs not tested by Sawicki et al. [37] have the abil-
ity to play any direct role in the response of Drosophila to oxidative
stressors.

Wisconsin’s lower constitutive transcription of multiple GSTs
and over-expression of P450s, as compared to Canton-S, are
consistent with its relative susceptibility to H2O2. Wisconsin

Table 3
Differential expression of Drosophila melanogaster GST and P450 genes in response to H2O2 treatment (LC25 H2O2 treatment for 30 h) in Wisconsin and Canton-S males and females.
QRT-PCR was used to determine expression levels of each transcript.

Gene name Wisconsin + H2O2 vs. Wisconsin Canton-S + H2O2 vs. Canton-S

Ratio DCTa (SE) P-value Ratio DCTa (SE) P-value

A (Male)
GSTD5d 9.99 �3.32(0.48) " <0.0001b 4.56 �2.19(0.48) " 0.0003b

GSTD6d 5.24 �2.39(0.38) " <0.0001b 2.25 �1.17(0.38) " 0.0078
GSTD2c 10.27 �3.36(0.73) " 0.0003b 5.74 �2.52(0.73) " 0.0032
CG6776 2.58 �1.37(0.43) " 0.0053 NS
GSTD4d NS 4.23 �2.08(0.53) " 0.0012b

GSTE1c NS 0.05 4.38(0.76) ; <0.0001b

GSTE4 NS 0.52 0.93(0.31) ; 0.0077
CG9363 NS 0.43 1.21(0.33) ; 0.0020
GSTE10 NS 0.28 1.82(0.52) ; 0.0029
Gfzf NS 0.47 1.08(0.36) ; 0.0083
CYP6A2 0.50 0.99(0.35) ; 0.0121b NS

B (Female)
GSTD5d 10.34 �3.37(0.72) " 0.0003b 15.56 �3.96(0.72) " <0.0001b

GSTD4d 3.92 �1.97(0.43) " 0.0003b 4.06 �2.02(0.43) " 0.0002b

GSTD3c 2.87 �1.52(0.35) " 0.0006b NS
GSTD2c 9.51 �3.25(0.47) " <0.0001b 10.34 –3.37(0.47) " <0.0001b

GSTD6d NS 3.12 �1.64(0.50) " 0.0046
GSTD8d 2.25 �1.17(0.36) " 0.0054 NS
GSTD9c 2.04 �1.03(0.34) " 0.0073 NS
GSTE9 1.89 �0.92(0.27) " 0.0039 NS
CYP6A2 0.49 1.04(0.40) ; 0.0185 0.83 0.27(0.40) ; <0.0001b

All other GSTs were not tested by Sawicki et al. [37] for 4-HNE substrate activities.
NS, Not significant.

a DCT was the extra number of PCR cycles between control group and H2O2 treated group [88]. P-value shows the level of significance. The negative sign associated with the
DCT value indicated induction of the GSTs in the presence of H2O2. The positive DCT value means under-transcription of the GSTs or P450s in the presence of H2O2. ; means
under-transcribed and " means over-transcribed.

b The transcripts for these genes were observed to still be significantly differentially expressed even after a Bonferonni correction. For the 37 GSTs, the Bonferonni
correction was P = 0.00143. For the three P450s, the Bonferonni correction was P = 0.0167.

c GSTs known to accept 4-hydroxynonenal (4-HNE) as a substrate [37].
d GSTs reported not to accept 4-HNE as a substrate [37].

Table 4
Transcription of Drosophila melanogaster GSTs and P450s, based on qRT-PCR analysis, in Wisconsin flies treated with H2O2 as compared to Canton-S flies treated with H2O2.

Gene name Wisconsin + H2O2 vs. Canton-S + H2O2 (Male) Wisconsin + H2O2 vs. Canton-S + H2O2 (Female)

Ratio DCTa (SE) P-value Ratio DCTa (SE) P-value

GSTD5c 0.26 1.94(0.48) ; 0.0009b 0.11 3.20(0.72) ; 0.0004b

GSTD4c 0.13 3.00(0.53) ; <0.0001b 0.19 2.39(0.43) ; <0.0001b

GSTE5 2.80 �1.49(0.49) " 0.0078 2.75 �1.46(0.36) " 0.0009b

CG9363 1.97 �0.98(0.33) " 0.0089 NS
GSTE6 NS 1.95 �0.97(0.32) " 0.0088
CYP6A2 5.74 �2.52(0.35) " <0.0001b 4.23 �2.08(0.40) " <0.0001b

All other GSTs were not tested by Sawicki et al. [37] for 4-HNE substrate activities.
NS, Not significant.

a DCT is the extra number of PCR cycles needed for Wisconsin treated with H2O2 samples to reach the same level of amplification of Canton-S treated with H2O2 [88]. The
positive DCT value means that Wisconsin treated with H2O2 had a lower transcription level of the gene as compared to Canton-S treated with H2O2 as given in the ratio
column. The negative sign associated with the DCT value indicated Wisconsin treated with H2O2 over-transcribed GST gene as compared to Canton-S treated with H2O2. The P-
value of < 0.01 was significant. ; means under-transcribed and " means over-transcribed.

b The transcripts for these genes were observed to still be significantly differentially expressed even after a Bonferonni correction. For the 37 GSTs, the Bonferonni
correction was P = 0.00143. For the three P450s, the Bonferonni correction was P = 0.0167.

c GSTs reported not to accept 4-HNE as a substrate [37].
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constitutively over-transcribed CYP6A2, and previous work with
northern and western blots has demonstrated that CYP6G1 and
CYP12D1 proteins are over-expressed in Wisconsin [58]. The con-
stitutive over-expression of any one or a combination of P450s
may contribute to the Wisconsin strain being more susceptible than
the Canton-S strain to H2O2 because at least some P450s generate
reactive oxygen species (ROS) as a by-product of catalysis [72–
75], thereby increasing cellular oxidative stress. Oxidative stress
is known to have negative impact on biological systems [76,77].
The greater susceptibility of the Wisconsin vs. Canton-S to H2O2

could also be due, in part, to Wisconsin’s overall lower constitutive
and H2O2-induced expression of GSTs. Indeed, GSTs play a key role
in the defense against the deleterious effects of oxidative stress
[78–81]. It is likely that a combination of over-expression of
P450s and under-expression GSTs strongly contributes to Wiscon-
sin’s greater susceptibility to H2O2.

Like GSTs, cellular trehalose levels have also been associated
with an organism’s ability to protect itself from oxidative stress
[47]. Trehalose can act as an antioxidant, and thus, is itself de-
stroyed by oxidative stress. This observation offers one potential
explanation for the lower trehalose levels observed in both Can-
ton-S and Wisconsin H2O2-treated males; both strains showed a
similar response in their reduction of trehalose levels. In addition,
trehalose is the major blood sugar in Drosophila and decreased
trehalose levels may therefore reflect increased carbohydrate
metabolism, possibly because of increased flux through the pen-
tose phosphate pathway (PPP). The PPP plays a key role in
eukaryotes of combating oxidative stress because it generates
NADPH [82,83], which is used to maintain levels of reduced glu-
tathione, a major cellular antioxidant. In fact, it has been shown
that oxidative stress increases flux through the pentose phos-
phate pathway [84,85]. We cannot, however, rule out the possi-
bility that other metabolic sinks of carbohydrates account for
the decrease in trehalose, including, but not limited to, increases
in the following: glycolysis, oxidative respiration, glycogen syn-
thesis, protein glycosylation/glycation, and polyol synthesis. It
also is possible that a combination of the processes mentioned
above leads to decreased trehalose in the presence of H2O2. Alter-
natively, it also is possible that combination of the processes
mentioned above leads to decreased trehalose in the presence
of H2O2.

Although we have only investigated one pair of DDT-resistant
and -susceptible strains, our results demonstrate that these two
strains respond differently to DDT and oxidative stress. Although
our results support the idea that P450 over-expression is associ-
ated with increased susceptibility to oxidative stress, further work
needs to be done to determine if there is a causal link. Additionally,
it remains to be determined whether this translates into a ‘‘cost’’
for resistance in the field for other insects that over-express
P450s, and if so, whether such ‘‘costs’’ can be exploited to reduce
P450-based metabolic resistance. For example, insects growing
on plant varieties expressing higher levels of lipoxygenases may
experience reduced fitness if they are metabolically resistant to
pesticides via P450 over-translation. Increased oxidative stress,
however, may select for GST over-expression, which may in turn
confer GST metabolic resistance.

It is not known if an environment with high levels of oxidative
stress would select, in insect populations, for metabolic resistance
to pesticides via GSTs. For example, one important form of oxida-
tive stress is UV-B light, which occurs in areas with intense sun-
light. Larvae of the mosquito Anopeheles gambiae are likely to
experience intense UV-B exposure in their natural environment
and tend to be resistant to pesticides via GSTs, which are in some
cases responsive to oxidative stress [40,41]. High levels of oxida-
tive stress could make the use of certain P450s in xenobiotic
metabolism a ‘‘costly’’ approach and would favor the use of consti-

tutive over-transcription of GSTs as opposed to constitutive over-
transcription of P450s.

Whether or not such differential expression of P450s and GSTs
causes any cost to the insects in the field, our results have revealed
that the genomes of both a DDT-resistant and a DDT-susceptible
Drosophila strain responded differently to LC25 DDT and H2O2 expo-
sure. These results suggest that the genomes of pesticide-resistant
and pesticide-susceptible insects may respond differently to envi-
ronmental stresses. Exploiting these differences may ultimately be
useful for minimizing pesticide resistance. For example, by better
understanding the mechanisms of resistance, we may be able to
use environmental negative cross-resistance, in which the environ-
ment can be altered to increase the costs of resistance (e.g., bio-
control agents that selectively kill resistant insects), to minimize
resistance in pest populations [86,87].

Appendix A. Supplementary data

Supplementary data associated with this article can be found, in
the online version, at doi:10.1016/j.pestbp.2011.01.009.
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