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ORIGINAL PAPER

Myenteric neurons of the ileum that express somatostatin 
are a target of prion neuroinvasion in an alimentary model 
of sheep scrapie
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Abstract Neuroinvasion of the enteric nervous system by
prions is an important step in dissemination to the brain, yet
very little is known about the basic process of enteric neuro-
invasion. Using an alimentary model of neonatal disease
transmission, neuroinvasion by scrapie prions in the ileum
of lambs was detected by immunohistochemical staining
for the disease-associated form of the prion protein, PrPSc.
Odds ratios (OR) were determined for the frequency of
PrPSc staining within enteric somata categorized by plexus
location (myenteric, submucosal) and neurochemical stain-
ing (PGP 9.5, neural nitric oxide synthase, somatostatin,
substance P, and vasoactive intestinal polypeptide). PrPSc

was observed in 4.48 § 4.26% of myenteric neurons and
2.57 § 1.82% of submucosal neurons in Wve lambs aged
208–226 days but not in a lamb aged 138 days. The relative
frequency of PrPSc within enteric somata was interdepen-
dent on plexus location and neurochemical type. Interest-
ingly, PrPSc was observed more frequently within
myenteric neurons than in submucosal neurons (PGP 9.5;
OR = 1.72, 95% conWdence interval = 1.21–2.44), and
was observed within the myenteric plexus approximately
4£ (2.16–6.94) more frequently in somatostatin neurons

than in the general neural population stained by PGP 9.5.
Nerve Wbers stained for somatostatin were present in the
mucosa and near PrPSc staining within Peyer’s patches. The
results suggest that somatostatin-expressing enteric neu-
rons, with Wber projections near Peyer’s patches, but with
somata present in greatest proportion within the myenteric
plexus, are an early target for neuroinvasion by scrapie prions
and could serve an important role in neural dissemination.

Keywords Prion · Scrapie · Enteric nervous system · 
Somatostatin · Peyer’s patches

Introduction

Prion diseases––or transmissible spongiform encephalopa-
thies (TSEs)––are a group of slowly progressive, fatal neu-
rologic diseases caused by unconventional agents called
prions [39]. Although some debate persists regarding the
exact nature of prions, disease is critically associated with
the conversion of cellular host prion protein (PrPc) to TSE-
associated isoforms (PrPTSE) [7, 38]. Natural prion disease
occurs in humans (Creutzfeldt–Jakob disease and others)
and in several types of animals signiWcant to agriculture
(scrapie of sheep and goats and bovine spongiform enceph-
alopathy of domestic cattle) and to wildlife management
(chronic wasting disease of deer and elk).

Disease transmission commonly occurs via the alimen-
tary tract but speciWc knowledge about how prions dissemi-
nate from the gut to the brain is incomplete (see reviews by
Mabbot and MacPherson [28] and by Beekes and McBride
[5]). Neuroinvasion occurs in the periphery and results in
dissemination to the brain via autonomic nerves; in particu-
lar, parasympathetic and sympathetic eVerent nerves pro-
jecting to the gut are thought to be common pathways.
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However, the gut is most extensively innervated by a third
division of the autonomic nervous system, the enteric ner-
vous system (see reviews by Brookes and Costa [6], and
Furness [15]). It is estimated in sheep that the small intes-
tine alone contains more than 30 million myenteric and
50 million submucosal neurons, a total population that
rivals that in the spinal cord [16].

The enteric nervous system is a functionally complete,
ganglionated nerve network that is organized into a myen-
teric plexus and a submucosal plexus, out of which all
layers of the gut wall are innervated. With some variation
amongst species, there is a division of labor such that most
neurons which control gut motility are located within the
myenteric plexus, and most neurons which control mucosal
blood Xow and secretion are located within the submucosal
plexus. Coordination is achieved through inter-plexus
enteric projections, extrinsic autonomic projections, and
viscerofugal projections from the enteric nervous system to
prevertebral ganglia.

The enteric nervous system includes many diVerent neu-
ron classes, which have been classiWed not only by plexus
location and region of the alimentary tract, but also by
somato-dendritic morphology, electrophysiology, neuro-
chemistry, Wber projection, and physiologic action on a
target tissue. Major functional classes of enteric neuron
include intrinsic primary aVerent neurons and several types
each of interneurons, smooth muscle motor neurons, secre-
tomotor neurons, and vasomotor neurons. Though not fully
characterized, even local gut immune function is modulated
by the enteric nervous system, in part through peptidergic
innervation of Peyer’s patches [50]. The enteric nervous
system is thus a complex neural system that is intimately
associated with all layers of the gut, including the mucosal
layer through which prions gain entry into the host, and
Peyer’s patches in which prion replication occurs early in
disease progression.

Given that extrinsic autonomic nerves synapse with
enteric neurons [15], that enteric neurons express PrPc [40]
and innervate all layers of the gut, and that scrapie-associ-
ated prion protein (PrPSc) is Wrst detected in sheep within
the enteric nervous system [3, 19, 46], it is hypothesized
that neuroinvasion of the enteric nervous system is impor-
tant for the dissemination of scrapie prions to the brain via
autonomic nerves.

Many observations suggest that neurons projecting into
sites of prion replication (Peyer’s patches) should be tar-
gets for invasion by prions [5, 28], but a more diverse
group of neurons (with projections into the mucosa or
around vessels) may be exposed immediately following
uptake of prions from the gut lumen [25]. The purpose of
this study was to identify enteric neural targets of scrapie
prions early in disease progression in a natural disease
model in lambs. The results demonstrate that following

neonatal alimentary disease transmission, frequency of
PrPSc detection within ileal enteric neurons is dispropor-
tionately greater for myenteric neurons expressing the
peptide transmitter, somatostatin. The identiWcation of
enteric neural targets of scrapie prions early in disease
progression contributes signiWcantly in understanding the
factors involved in peripheral neuroinvasion and neural
dissemination of prions.

Materials and methods

Oral inoculation model

All animal experiments were approved by the Washington
State University Institutional Animal Care and Use Com-
mittee. The study included seven Montadale or Montadal-
eXSuVolk lambs born to Montadale ewes. All lambs were
VRQ/VRQ (see “Genotyping” section below), and on the
day of birth were fed half a cotyledon from a placenta shed
previously from an unrelated ARQ/VRQ ewe clinically
aVected with scrapie and with staining for PrPSc in sections
of medulla at the level of the obex. Cotyledons were stored
at ¡20°C until used.

Peripheral prion replication in lambs was assessed ante-
mortem by third eyelid [31] or rectal [13, 18] biopsy
obtained at 4–6 months of age. Lambs were humanely
euthanized at about 7 months of age by intravenous injec-
tion of sodium pentobarbital (Fatal-Plus; Vortech Pharma-
ceuticals, Dearborn, MI). Tissues collected immediately
postmortem included medulla, thoracolumbar spinal cord,
celiacomesenteric ganglia, ileocecal lymph node, ileocecal
junction, and a 30 cm length of ileum ending within »3 cm
of the ileocecal junction. All tissues were Wxed by immer-
sion in 10% neutral-buVered formalin; the ileum was also
gently distended with formalin.

Genotyping

Approximately 100 ng DNA was used as a template for
ampliWcation of the open reading frame of PRNP using the
following primer pair: 5�-GGCATTTGATGCTGACACC-3�

and 5�-TACAGGGCTGCAGGTAGAC-3�, corresponding
to nucleotide positions 22234–22252 and 23106–23125 of
GenBank accession no. U67922. Reactions were performed
in a Wnal volume of 90 �L under the following conditions:
1£ Qiagen PCR buVer, 2.5 mM MgCl2 and 2.5 U Taq
polymerase (201225, TaqPCR Core kit; Qiagen, Valencia,
CA). AmpliWcation was performed under a temperature
regime of 95°C for 5 min, 62°C for 30 s, and 72°C for 59 s
for one cycle; 95°C for 30 s, 62°C for 30 s, and 72°C for
59 s for 30 cycles; and 95°C for 30 s, 62°C for 30 s and
72°C for 7 min for one cycle. AmpliWed products were
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sequenced by standard dideoxynucleotide analysis (Amplicon
Express, Pullman, WA) using primer pair 5�-CTGGGGTC
AAGGTGGTAGCC-3� and 5�-GGTGGTGACTGTGT-
GTT GCTTGA-3�, corresponding to nucleotide positions
22553–22573 and 22838–22860 of GenBank accession no.
U67922. Genotypes are reported as the deduced amino acid
sequences at codons 136 (alanine, A; valine, V), 154 (argi-
nine, R; histidine, H), and 171 (glutamine, Q; arginine, R)
of the diploid genotype.

PrPSc detection by ELISA

A commercial test developed for lymphoid tissue (Herd-
Chek Chronic Wasting Disease [CWD] Antigen Test kit;
IDEXX, Westbrook, Maine) was used for detection of
PrPSc in unWxed cotyledons as previously described [2].
This test is used for the postmortem detection of PrPSc in
white-tailed deer retropharyngeal lymph node tissue but is
also suitable for the detection of PrPSc in sheep cotyledons;
the kit utilizes a PrPSc ligand immobilized on the surface of
the CWD-antigen capture plate and monoclonal antibodies
that recognize the ovine PrP protein. BrieXy, 300 mg of
cotyledon was homogenized twice in a FastPrep instru-
ment (Qbiogene, Carlsbad, CA) for 30 s each at maximum
speed (6.5 m/s) in a disruption tube containing ceramic
beads and 0.9 mL of distilled, deionized water. The ELISA
was then conducted according to the manufacturer’s proto-
cols. Interpretation of samples analyzed by ELISA was
performed by comparing the A450 of the cotyledon samples
with that of negative- and positive-control samples sup-
plied with the kit (reference wavelength = 620 nm). Sam-
ples were considered positive if the mean A450 values were
greater than or equal to the cutoV value as calculated by
the test manufacturer.

Immunohistochemistry (IHC)

All formalin-Wxed tissues were placed in cassettes, incu-
bated for 60 min in 98% formic acid, washed extensively in
distilled water, and re-equilibrated in formalin for 24 h, prior
to paraYn embedding. Thin (3–5 �m) paraYn sections were
mounted on Superfrost Plus slides, air dried overnight, and
then baked at 57°C for 100 min. IHC staining was carried
out using a BenchMark automated processor (Ventana Med-
ical Systems, Tucson, AZ) with modiWcations to the tech-
nique previously described [31, 43]. Antigen retrieval was
achieved by 60–90 min heated incubation in CC1 buVer
(Ventana Medical Systems). Scrapie-associated prion pro-
tein (PrPSc) was detected using a cocktail of well-character-
ized monoclonal antibodies (F89/160.1.5 and F99/97.6.1;
Table 1) applied for 32 min at 37°C. Evaluation of PrPSc

dissemination was determined using Basic AEC Detection
Kit (760–020; Ventana Medical Systems). Slides were then
counterstained using Bluing Reagent and Hematoxylin kits
(Ventana Medical Systems) and coverslipped in aqueous
mounting media (S3025; Dako, Carpinteria, CA). In dual
Xuorescence labeling studies, an antibody directed toward a
neurochemical of interest (Table 1) was included in the
cocktail of anti-PrPSc primary antibodies. Relevant combi-
nations of Xuorescently-labeled secondary antibodies were
applied for 20 min at 37°C (Table 2). Fluorescently labeled
slides were coverslipped using Prolong Gold antifade
reagent (P36930; Molecular Probes, Eugene, OR).

Using these techniques, PrPSc staining could be detected
in the obex, lymph nodes, and ileum from a clinically
aVected ewe but not from an unexposed, clinically normal
ewe. IHC staining for all neural and glial marker antibodies
was dependent upon inclusion of the primary antibody and
an appropriate Xuorophore-conjugated secondary antibody.

Table 1 Primary antibodies

Target Name Species and 
isotype

Working dilution/
concentration

Source (reference)

PrPSc F89/160.1.5 Mouse IgG1 5 �g/mL Dr. Katherine O’Rourke, USDA-ARS, 
Pullman, WA [30, 31]

F99/97.6.1 Mouse IgG1 5 �g/mL Dr. Katherine O’Rourke, USDA-ARS, 
Pullman, WA [31]

Glial Wbrillary acid protein GFAP Rabbit IgG 1:400 Z0334; Dako, Carpinteria, CA [24, 45]

Elav protein (human neuronal 
protein, Hu)

Hu Mouse IgG2b 1:200 A-21271; Molecular Probes, Eugene, OR [8]

Neural nitric oxide synthase NOS Rabbit IgG 1:200 SA227; Biomol Research Laboratories, 
Plymouth Meeting, PA [29]

Protein gene product 9.5 PGP Rabbit IgG 1:200 Z5116; Dako

Somatostatin SOM Rabbit IgG 1:1,600 20067; ImmunoStar

Substance P SP Rat IgG2a 1:50 MAB356; Chemicon, Temecula, CA

Vasoactive intestinal polypeptide VIP Guinea pig IgG 1:800 T-5030 (GHC7161); Peninsula Laboratories [32]
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Microscopy

Slides were viewed and photographed using an Axio
Imager.M1 microscope (Carl Zeiss Microimaging, Thorn-
wood, NY) equipped with an LED illuminator for bright
Weld microscopy and an X-Cite 120 Fl Illuminating system
(EXFO Photonic Solutions, Mississauga, Ontario, Canada)
for epi-Xuorescence microscopy. Cy3 and Alexa Fluor 555
Xuorescence were observed using the Carl Zeiss Wlter set 00
(excites 530–585 nm, dichroic mirror 600, 615 nm long-
pass Wlter), and Alexa Fluor 488 Xuorescence was observed
using the Carl Zeiss Wlter set 38HE (excites 450–490 nm,
dichroic mirror 495, 500–550 nm band-pass Wlter). The
microscope was equipped with an AxioCam MRc5 digital
camera (Carl Zeiss Microimaging) connected to a computer
workstation running AxioVision 4.5 imaging software
(Carl Zeiss Microimaging). For presentation in Figs. 4 and
7, maximum intensity projections were produced from
sequentially scanned z-stack series (0.5–1 �m intervals)
using an LSM 510 META laser scanning microscope (Carl
Ziess Microimaging) equipped with 488 and 543 nm lasers
(pinholes set to 1 Airy unit).

Statistical methods

All analyses were performed using SAS for Windows (ver.
9.1.3, service pack 4; SAS Institute, Cary, NC). The data set
was categorized by animal, enteric plexus location (myen-
teric or submucosal) and by neurochemical type (PGP,
nNOS, SOM, SP, or VIP; abbreviations deWned in Table 1).
The total number of neurons (deWned by somata staining)
and the number of those colocalized with PrPSc were
recorded for each neurochemical type. The total association
of PrPSc colocalization in neurochemically-deWned (NOS+,
SOM+, SP+, or VIP+) somata compared to colocalization in
the total neural population (PGP+) was determined for each
animal by Fisher’s exact testing. The null hypothesis of ran-
dom detection of PrPSc amongst neurochemically-deWned
enteric neurons was assessed by conditional logistic regres-
sion using a generalized linear mixed model, the GLIMMIX
procedure (rel. June 2006; SAS Institute), and the Wxed eVects
of plexus location, neurochemical type, and the interaction

of these two eVects. The regression was conditioned
by including the random eVect of subjects (lambs) and
adjusted for overdispersion by including the random eVect of
residuals. Holm-adjusted P values (Padj) were produced
using the method of Bonferroni in logical step-down fashion
[23]. Odds ratios (ORs) and corresponding upper and lower
CLadjs are the exponentiation of the least squares means
parameter and CLadjs estimates, respectively. Least squares
means parameter and Holm-adjusted 95% conWdence limit
(CLadj) estimates were produced for two “families” of post-
hoc comparisons of interest; family-wise error rate, � = 0.05.

Results

Alimentary transmission and staging disease progression

Cotyledons randomly selected from the pool of cotyledons
used for alimentary inoculation had PrPSc staining by IHC
and a PrPSc ELISA titer between 1:64 and 1:256. Ewes giv-
ing birth to the lambs were not a likely source of PrPSc since
PrPSc staining was neither detected by IHC in antemortem
peripheral lymphoid tissues (third eyelid and rectal mucosa)
and postmortem obex, nor by IHC and western blot in shed
cotyledons randomly sampled at the birth of these lambs.

Tissues from a lamb euthanized before 2 weeks of age due
to an unrelated illness were not collected. In the remaining six
lambs, PrPSc was detected antemortem in rectal mucosa-asso-
ciated lymphoid tissue between 124–219 days of age, and in
ileal Peyer’s patches and ileocecal lymph node collected post-
mortem between 138–226 days of age (Fig. 1b, d, f; scrapie-
negative control tissues shown in Fig. 1a, c, e). PrPSc was not
detected in the central nervous system (medulla and interme-
diolateral column of T8–L3 spinal cord segments) or celia-
comesenteric ganglia (138–226 days of age), except in one
lamb (226 days of age) in which sparse punctate staining in
celiacomesenteric ganglia appeared to be located mostly in
satellite cells (Fig. 2a–d). PrPSc was detected in the enteric
nervous system of the ileum in Wve lambs aged 208–226 days,
but not in a lamb aged 138 days (examples shown in Fig. 3).
The appearance of PrPSc staining within enteric somata
was generally punctate (Fig. 3d–f, Fig. 4a–c) but sometimes

Table 2 Secondary antibodies used in Xuorescence IHC

Target visualized Antibody Source

PrPSc, Hu Cy3 AYniPure donkey anti-mouse IgG 715-165-150; Jackson ImmunoResearch Laboratories, 
West Grove, PA

SP Cy3 AYniPure donkey anti-rat IgG 712-165-150; Jackson ImmunoResearch Laboratories

PrPSc Alexa Fluor 488 goat anti-mouse IgG A-11029; Molecular Probes, Eugene, OR

GFAP, NOS, PGP, SOM Alexa Fluor 488 goat anti-rabbit IgG A-11034; Molecular Probes, Eugene, OR

VIP Alexa Fluor 488 goat anti-guinea pig IgG A-11073; Molecular Probes, Eugene, OR
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globular when near cell margins. PrPSc was also occasionally
observed within enteric glia (Fig. 4d–f).

Frequency of PrPSc detection within deWned populations 
of enteric neurons

The occurrence of PrPSc in PGP+ somata was tallied for a
total of 10,841 myenteric neurons and 19,495 submucosal
neurons. The frequency of PrPSc detection in PGP+ somata
ranged from 1.21 to 11.67% (mean and standard deviation:
4.48 § 4.26%) in myenteric neurons, and from 1.01 to
5.68% (2.57 § 1.82%) in submucosal neurons (n = 5
lambs). Frequencies of PrPSc detection in enteric neurons
deWned by plexus location and neurochemical type are
shown for each lamb in Fig. 5. The pattern of PrPSc detec-
tion frequency amongst eight enteric neural subgroups rela-
tive to that in PGP+ somata varied between lambs except
for a consistently increased detection frequency in SOM+

neurons of the myenteric plexus (Breslow–Day test for
homogeneity: Chi-square = 1.7067, P = 0.7895).

The signiWcance and strength of the association of PrPSc

detection frequency with subpopulations of enteric neurons
was measured by odds ratio estimates for somata deWned by
plexus location and neurochemical type and analyzed by
conditional logistic regression. The odds of PrPSc detection
were signiWcantly dependent upon plexus location
(F = 4.66, P = 0.0376), neurochemical type (F = 20.59,
P < 0.0001), and the interaction of these main eVects
(F = 6.66, P = 0.0004). The detailed post-hoc analyses of
this Wnding are summarized below and in Fig. 6.

PrPSc was detected more frequently in the myenteric
plexus versus the submucosal plexus (Fig. 6a) for the gen-
eral population of neurons (PGP; 1.72, 1.21–2.44) and for
the subpopulation of SOM+ neurons (3.92, 2.09–7.35). Rel-
ative to local PGP+ neural populations, the frequency of
PrPSc detection was signiWcantly increased for only SOM+

neurons in the myenteric plexus (3.87, 2.16–6.94; Fig. 6b)
and in the submucosal plexus (1.70, 1.02–2.82; Fig. 6c).
SigniWcantly lower frequencies of detection were associated
with SP+ neurons in the myenteric plexus (0.21, 0.05–0.87;

Fig. 1 PrPSc staining (red) was 
not observed in various lym-
phoid tissues from a scrapie-
negative control ewe (a, c, e) but 
was readily detected in lym-
phoid tissues from a lamb orally 
inoculated with scrapie prions at 
birth (b, d, f). Lymphoid tissues 
shown are from: a, b rectal 
mucosa-associated lymphoid 
tissue (RMALT); c, d ileal 
Peyer’s patch; e, f ileocecal 
lymph node. Bars 100 �m
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Fig. 2 Detection of PrPSc stain-
ing (red) in the celiacomesenter-
ic ganglia from a lamb aged 
226 days following oral inocula-
tion with scrapie prions at birth. 
a PrPSc detected in a satellite 
cell. The box depicts the region 
shown at higher magniWcation in 
b. c PrPSc at the margin of this 
ganglion cell may also be locat-
ed in a satellite cell in which 
only a part of the nucleus is pres-
ent in this section. The box de-
picts the region shown at higher 
magniWcation in d. Bars 50 �m 
(a, c), 5 �m (b, d)

Fig. 3 Examples of PrPSc staining (red) detected in the ileum of two
lambs orally inoculated with scrapie prions at birth. a–c In a lamb aged
138 days, PrPSc staining is present within a Peyer’s patch follicle (lower
half of image) but not within adjacent submucosal neurons (arrow-
heads denote ganglion limits). d–f PrPSc staining in two submucosal
neurons (arrows) of a lamb aged 216 days. PrPSc staining was also

present in a Peyer’s patch follicle located out of frame above this gan-
glion. The background (green) column is included to provide tissue
contrast. PrPSc staining remains red in the merged column of this single
labeling experiment, whereas autoXuorescence appears bright yellow.
Images are maximum intensity projections from 6 �m z-stacks. Bars
20 �m
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Fig. 6b) and VIP+ neurons in the submucosal plexus (0.23,
0.07–0.76; Fig. 6c).

SOM+ nerve Wbers in the ileum

SOM+ nerve Wbers were frequently observed projecting
between mucosal epithelium and Peyer’s patches with

PrPSc staining (Fig. 7). Similar to a previous description
[49], staining for SOM was also occasionally observed in
“open-type” epithelial cells of the ileal mucosa (not shown).

Discussion

The process of neuroinvasion of the enteric nervous sys-
tem by prions was studied in the ileum of sheep, the Wrst
peripheral region in which neuroinvasion occurs in natu-
rally acquired disease [3, 12, 47]. We determined that the
relative frequency of PrPSc staining, used as a surrogate
marker [1, 26] for scrapie prions within enteric neurons, is
dependent upon that neuron’s plexus location and neuro-
chemical type. In particular, SOM+ myenteric neurons
were identiWed as a consistent target for neuroinvasion
early in disease progression. From the evidence, we pos-
tulate that a signiWcant subgroup of SOM+ neurons inner-
vate compartments of Peyer’s patches where eYcient
neuroinvasion is thought to occur, and represent an
eYcient pathway for neural dissemination within the
small intestine. We expect that prion invasion of neurons
that do not convert PrPc into PrPSc that is readily detect-
able by immunohistochemistry [4], should they exist
within the enteric nervous system, would be underrepre-
sented in the present study.

Fig. 5 Frequency of detecting PrPSc staining within subpopulations of
enteric neuron in the ileum of lambs early in disease progression fol-
lowing oral inoculation with scrapie prions at birth. Note the consistent
increase in the frequency of PrPSc detection within myenteric plexus
SOM+ neurons as compared to that in the general myenteric neuron
population (-PGP-). Each bar color represents data from a lamb (lambs
1–5) at approximately 7 months of age. Frequency of PrPSc detection
is given as the percent (%, vertical axis) within each type of neuron per
lamb. Abbreviations are deWned in Table 1. Arrows indicate the direc-
tion of signiWcant diVerences (Fischer’s exact test; P < 0.05)

Fig. 4 Initial detection of PrPSc staining (red) in the enteric nervous
system of the ileum from a lamb aged 216 days following oral inocu-
lation with scrapie prions at birth. a–c PrPSc detected within (arrow),
and outside of (arrowheads), PGP+ enteric neurons (green). d–f PrPSc

detected within (arrows) GFAP+ enteric glia (green). Images are max-
imum intensity projections from 2.5 �m (a–c) and 1.5 �m (d–f) confo-
cal z-stacks. Abbreviations deWned in Table 1 
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SOM+ enteric neurons are targets of peripheral 
neuroinvasion by scrapie prions

There is consensus that transport of prions across gut epi-
thelium and exposure of mucosal nerve Wbers are processes
relevant to peripheral neuroinvasion and neural dissemina-
tion [5, 26, 28, 36, 47]. Considering that the greatest pro-
portion of mucosa-projecting neurons typically occurs in
the submucosal plexus of large mammalian species [44], it

is surprising that PrPSc detection early in disease was most
frequent in neurons located in the myenteric plexus
(Fig. 6a, PGP), and was relatively infrequent in a major
type of submucosal neuron (Fig. 6c, VIP). Further, PrPSc

detection in SOM+ neurons of the myenteric plexus was
very consistent and occurred at nearly 4£ greater frequency
(Fig. 6b).

SOM+ enteric neurons of the small intestine generally
belong to one of two classes that diVer in function and pro-
jection: secretomotor neurons that project to the mucosal
layer, and descending interneurons that synapse with other
enteric neurons [6]. Determining the projections of SOM+

enteric nerve Wbers in sheep is thus particularly germane to
locating a compartment in which eYcient neuroinvasion
occurs. Given the present data, it is conceivable that SOM+

neurons targeted by scrapie prions are distributed in great-
est proportion within myenteric ganglia but which, never-
theless, project to mucosal compartments in which eYcient
neuroinvasion occurs early in disease progression.

Implications of SOM+ secretomotor neurons targeted 
by prions

JeVrey et al. [25] observed, soon after the injection of infec-
tious material into the lumen of the small intestine of
lambs, that PrPSc staining was widespread within mucosal
villi. Mucosal villi are highly innervated by enteric neurons,
including Wbers of secretomotor neurons, which travel close
to the epithelium to aVect its function [21, 22, 41]. Fibers of
numerous mucosa-projecting neurons, especially secreto-
motor neurons, are thus potentially exposed upon mucosal
transportation of prion and prior to replication of prion
within Peyer’s patches.

In sheep, mucosal nerve Wbers include those that express
VIP, SP, NOS [8, 27, 51], and also SOM (Fig. 7). Further-
more, the secretomotor action of VIP, SP, and SOM is typi-
cally preserved within large mammalian species [44].
Therefore, it is not surprising that PrPSc was detected in
each of these neurochemical types of submucosal neuron
early in disease progression following alimentary transmis-
sion in sheep. That PrPSc was detected as much as 4£ more
frequently in SOM+ neurons, however, may indicate that
eYcient enteric neuroinvasion occurs in a mucosal com-
partment uniquely innervated by SOM+ neurons. Evidence
implicates such a compartment is associated with Peyer’s
patches.

Neuroinvasion occurring via nerve Wber projections to
Peyer’s patches is consistent with the typical detection of
PrPSc Wrst within Peyer’s patches and then nearby ganglia,
and with close associations between Wbers and PrPSc-laden
cells [3, 20]. Recent evidence in mice further demonstrates
that eYcient neuroinvasion following alimentary transmission
is dependent upon follicular dendritic cells [17], a cell type

Fig. 6 The relative frequency of detecting PrPSc staining within ileal
enteric neurons of lambs is interdependent on plexus location and neu-
rochemical type early in disease progression. a The frequency of PrPSc

detection was greater in the myenteric versus submucosal plexus for
the general (PGP) neural population and for the subpopulation of
SOM+ neurons. b, c SOM+ neurons were the only subpopulation stud-
ied that had an increased frequency of PrPSc detection in either plexus
(b myenteric, c submucosal), relative to that in the respective general
neural population. The diVerence between an odds ratio (OR) and 1
(dotted vertical lines) indicates the relative strength of the association
with the frequency of PrPSc detection. ORs signiWcantly greater or less
than 1 (depicted in red; Padj < 0.05) indicate associations with in-
creased or decreased frequency, respectively, of PrPSc detection. CLadj
Holm-adjusted conWdence limits, Padj Holm-adjusted P values, PrPSc

the number of neurons in which PrPSc was detected, MYP myenteric
plexus, SMP submucosal plexus, Total the total number of neurons
counted. See Table 1 for abbreviations of neurochemical types. y-axis
First column, x-axis log10 
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associated with nerve Wbers in the interfollicular zone and
dome of Peyer’s patches [11]. Although SOM+ Peyer’s
patch Wbers are yet to be conWrmed in mice [10, 48], these
have been observed in cats [14], and now also in sheep
(Fig. 7). It is thus conceivable that in sheep, eYcient neuro-
invasion near Peyer’s patches is dependent upon proximity
of SOM+ nerve Wbers to PrPSc-laden immune cells or
exosomes [35, 37].

Implications of SOM+ descending interneurons targeted 
by prions

A subgroup of descending myenteric interneurons of the
small intestine expresses SOM [6]. In the present study in
sheep, prion targeting of SOM+ descending interneurons
would imply neuroinvasion early in disease occurred within
ganglia, in contrast to that occurring outside of ganglia via
nerve Wbers. Nerve endings of extrinsic nerves are unlikely
to have been a signiWcant source of prion within enteric
ganglia since PrPSc was Wrst detected in enteric neurons.
Prions might alternatively enter ganglia from a non-neural

source, such as blood. However, if blood-borne prion were
relevant to enteric neuroinvasion early in disease, then it
would be reasonable to expect relatively higher frequency
PrPSc detection in vasomotor neurons.

Vasomotor neurons have not been extensively studied in
large mammalian species but probably include subgroups
of VIP+ and SP+ neurons [44, 51]. The relative frequency of
PrPSc detection in VIP+ and SP+ neurons, however, was not
increased in either plexus (Fig. 6b, c). Therefore, simple
prion entry from a non-neural source such as blood does not
likely account for the higher frequency of PrPSc detection
within SOM+ neurons. Regardless, detection of PrPSc in
SOM+ descending interneurons early in disease progression
has implications for neural dissemination.

SOM+ descending interneurons form a synaptic network
that may descend the length of the small intestine––from
duodenum to ileum, at least in guinea pigs [9, 33, 34, 42]. If
this also occurs in sheep, then prion dissemination through
SOM+ descending interneurons might account for the
observed oral spread of prion from the ileum to duodenum
[3, 47].

Fig. 7 Nerve Wbers stained for SOM in the mucosal layer of the ileum
from a lamb aged 208 days and orally inoculated with scrapie prions at
birth. a–c, d–f Two examples of SOM+ (green) nerve Wbers projecting
between the mucosal epithelium (EPI) and a Peyer’s patch (PP) with

PrPSc-staining (red). Note the relatively close association of SOM+

Wbers with PrPSc staining (boxes). Images are maximum intensity pro-
jections from 6 �m (a–c) and 2 �m (d–f) confocal z-stacks. SOM
somatostatin
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In summary, following neonatal alimentary transmission
in sheep, immunohistochemical detection of PrPSc (as a sur-
rogate marker for neuroinvasion by scrapie prions) in ileal
enteric neurons was interdependent on the neuron’s plexus
location and neurochemical type. SpeciWcally, SOM+ neu-
rons, especially those located in the myenteric plexus, were
found to be targets of neuroinvasion early in disease pro-
gression. These results are consistent with the hypothesis
that eYcient neuroinvasion occurs near Peyer’s patches in
compartments innervated by SOM+ neurons. In addition,
neuroinvasion of SOM+ enteric neurons early in disease
progression could explain the neural dissemination
observed within the small intestine of sheep with naturally
acquired disease.
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