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Convenient catalytic methodologies that can facilitate the formation of C-C bonds 

are undoubtedly of great interest in synthetic organic chemistry.  Recent reports in 

literature have showcased hybrid catalytic methods that couple Ni-redox catalysis and 

photocatalysis to enable C-H activation of tetrahydrofuran (THF) and subsequent cross-

coupling with aryl halides in appreciable yields and under relatively mild reaction 

conditions.1-2  However, these studies used expensive, heavy metal-containing 

photocatalysts and both report difficulty obtaining low-specificity across their scopes of 

aryl-halides.  The following report will shed light on a class of photo-excitable small 

organic molecules that – in conjunction with a catalytic Ni-redox cycle – can be used to 

catalyze C-C cross-coupling reactions between THF and aryl chlorides, bromides, and 

iodides with yields comparable to the aforementioned reports.  After screening several 

organic molecules with suspected photoactivity and optimization of the reaction 

conditions, several benzophenone derivatives were found to catalyze the cross-coupling 

reaction in yields up to 97%.  Mechanistic investigations suggest that this reaction 

proceeds through a tandem catalytic pathway that involves a photocatalyzed hydrogen 

atom transfer/proton-coupled electron transfer (HAT/PCET) process and a Ni-mediated 

oxidative addition/reductive elimination cross-coupling process.
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Chapter 1 Introduction 

1.1 Cross-Coupling and Recent Photocatalytic Strategies 

Given the vast applications of synthesized organic molecules, C-C bond forming 

methodologies are continually being discovered and refined.  C-C cross-coupling 

reactions mediated by transition metal redox catalysis have become convention in organic 

synthesis.  A few famous examples include the palladium catalyzed Suzuki-Miyaura, 

Heck, and Sonogashira reactions.  These reactions exploit the oxidative nature of aryl 

halide and aryl boronic acid bonds, and active C-H bonds like those found in alkenes and 

terminal alkynes to create a variety C-C bonded products.   

However, the C-H bonds used as coupling targets in the Heck and Sonogashira 

reactions are sp2 and sp hybridized, respectively.  For cost mitigation and convenience, 

C-H activation methodologies that can utilize more stable C(sp3)–H bonds as coupling 

targets have been a recent area of development in organic synthesis.  These approaches 

involve specific reaction conditions that weaken a stable C-H bond in an inexpensive 

chemical feedstock so that it may subsequently be used in C-C bond formation. 

Many of these methodologies typically use heavy metals such as ruthenium3-4, 

rhodium5-6, and palladium7-8 to initiate bond activation.  For a synthesis-heavy industry 

such as pharmaceutical manufacture, this drives up operating costs and often results in 

contamination of medicinal products.9-10  Palladium contamination of pharmaceuticals is 

especially common.11  This is concerning because even trace amounts of heavy metals 

present a toxicity risk.  While there are similar methodologies that use lighter metals like 

cobalt, nickel, and copper, they typically involve the use of stoichiometric oxidants to 

help push the reaction forward, which presents environmental and safety concerns. 
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Numerous photocatalytic methods have been shown to enable several C-C12-13, C-

O14, and C-N15 forming reactions through C-H activation under relatively mild reaction 

conditions.16  Several examples in literature have also shown reaction methodologies that 

merge photocatalysis with transition-metal catalysis using redox cycles of palladium17-19, 

nickel20-21, copper22-25, gold26-27, and cobalt28.  By utilizing photo-induced electronic 

excited states in a catalytic fashion, access to unique reactive intermediates can often be 

obtained in the absence of harsh reaction conditions such as high temperatures or 

stoichiometric equivalents of strong oxidants or reductants.  Merging photocatalysis with 

traditional transition-metal catalysis makes available a variety of different possibilities for 

light-powered synthetic approaches. 

Recent efforts by the Molander and Doyle groups have showcased photocatalytic 

methodologies coupled with nickel-redox catalysis that can efficiently catalyze cross-

coupling between substrates with C(sp3)–H bonds such as those contained within ethers, 

amides, and derivatives of toluene with aryl halides using iridium-centered photocatalysts 

Ir[dF(CF3)ppy]2bpy]PF6 and Ir[dF(CF3)ppy]2dtbbpy]PF6.
1-2  Interestingly, both groups 

report very different mechanisms despite their iridium catalysts having seemingly similar 

photophysical properties.  The Doyle group proposes a mechanistic pathway that involves 

photoredox (Scheme 2), and the Molander group proposes a mechanistic pathway that 

involves only photocatalytic energy transfer (EnT) (Scheme 3). 

The mechanism proposed by the Doyle group starts with a Ni(0) source, which 

undergoes oxidative addition by an aryl chloride to form a Ni(II) complex that can be 

oxidized by the excited state Ir(III) complex to form a Ni(III) complex and an Ir(II) 

complex.  The Ni(III) complex is purported to undergo homolytic Ni-Cl bond cleavage 
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upon absorption of light, forming a Ni(II) complex as well as a chlorine radical that 

activates the C-H bond of THF by abstracting a hydrogen atom and subsequently forming 

H-Cl as a byproduct.  The THF radical can add to the Ni(II) complex to form a Ni(III) 

complex with the aryl group that can subsequently undergo reductive elimination to form 

the cross-coupled product as well as a Ni(I) complex.  To complete both the 

photocatalytic and Ni redox cycles, the Ir(II) complex reduces the remaining Ni(I) 

complex back to the original Ni(0) complex. 

 

  
Scheme 1. Mechanistic pathway for photocatalytic C(sp2)-C(sp3) cross-coupling 

proposed by the Doyle group.2 (Reprinted (adapted) with permission from (J Am Chem 

Soc 2016, 138 (39), 12719-12722). Copyright (2016) American Chemical Society). 

 

Conversely, the Molander group starts with a Ni(II) source, which presumably 

undergoes a series of reductions by the photocatalyst until it reaches Ni(0) so that the aryl 
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bromide can oxidatively add to the complex to form a Ni(II) complex.  The oxidative 

addition complex is purported to undergo triplet-triplet energy transfer (EnT) by the 

excited state photocatalyst.  They propose that this excited state oxidative addition 

complex proceeds to create and coordinate to the THF radical by two potential 

possibilities: 1) by subsequent homolytic Ni-Br bond cleavage that forms a bromine 

radical that activates the C-H bond of THF by abstracting a hydrogen atom and 

subsequently forming H-Br as a byproduct (part B of Scheme 3), or 2) by concerted 

addition of THF to the complex and formation of H-Br as a byproduct (part C of Scheme 

3).  Either pathway leads to a Ni(II) complex that can undergo reductive elimination to 

form the cross-coupled product and complete the Ni redox cycle by regenerating Ni(0).   

 



9 

 

 

 
Scheme 2. Mechanistic pathway for photocatalytic C(sp2)-C(sp3) cross-coupling 

proposed by the Molander group.1  (J Am Chem Soc 2016, 138 (39), 12715-12718). 

Copyright (2016) American Chemical Society). 

 

These methods are noteworthy because they use cheap and abundant nickel to 

mediate cross-coupling.  However, one important and practical limitation of these 

methodologies is that they use photocatalysts that contain iridium at their centers.  While 

these catalysts provide easy access to useful excited states, they – as well as their 

synthetic precursors – carry a hefty price tag since metals like iridium exist in low natural 

abundances and often require extensive mining processes to obtain. 
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1.2 Organic Dyes in Photocatalysis 

A number of published studies have demonstrated the viability of small organic 

molecules that contain chromophores capable of producing similarly useful excited states 

at a fraction of the cost of heavy metal-centered photocatalysts.  One specific class of 

organic compounds that have found promising value in photoredox applications are those 

with donor-acceptor (D-A) properties.  In their excited states, these organic molecules 

mimic the type of charge transfer process that occurs in the excited state of metal 

complexes like Ru(bpy)3
2+, which is often touted as the prototypical photoredox catalyst 

for organic synthesis.  One popular example is Acr+-Mes, which has an excited state 

oxidation potential of +1.88 V that is surprisingly high enough to oxidize water.29  Our 

group has recently published an account showcasing a variety of carbazole-substituted 

dicyanobenzenes that possess varying photoredox properties in their excited states.30 

Another class of organic molecules with interesting photochemical properties are diaryl 

ketones such as benzophenone, which has been long known to be able to provoke 

hydrogen atom transfer processes photochemically.31  The success of this photoinduced 

bond homolysis by diaryl ketones is due to the (n,π*) electronic transition that occurs 

during photoexcitation.  The triplet (n,π*) excited state opens many avenues for 

photocatalytic processes such as proton-coupled electron transfer (PCET), hydrogen atom 

transfer (HAT), and single-electron transfer (SET).32-33   

 

1.3 Goal of Current Study and Preliminary Design Plan 

The current study aims to develop a similar C(sp2)-C(sp3) cross-coupling 

methodology to those reported by Doyle and Molander that can utilize a small organic 



11 

 

 

molecule in place of an iridium-centered complex as the photocatalyst.  This would be an 

attempt to reduce the overall cost of this transformation by adapting the properties of an 

inexpensive organic photocatalyst to the method.  In choosing a suitable molecule to 

function as the photocatalyst in this type of system, there are two main mechanistic 

barriers to overcome: 1) creation of a THF radical, and 2) propagation of a catalytic redox 

cycle of nickel. 

One point of initial interest was the organic co-catalyst, bis-4-

methoxybenzophenone (b4MeOBP), that was used in the Molander group’s study.  The 

benzophenone-derived co-catalyst was thought to aid in the reaction by creating carbon-

centered THF radicals through HAT.  We also looked to a recent study in our group that 

found a group of substituted benzophenones that were successful in generating 

phthalimide-N-oxyl (PINO) radicals from N-hydroxyphthalimide (NHPI) through proton-

coupled electron transfer in the presence of visible light.32  The bond dissociation energy 

(BDE) of the O–H bond in NHPI is 88 kcal/mol and the BDE of the C–H bond in THF is 

92 kcal/mol.  With this in mind, we thought that this class of catalysts may be able to 

directly abstract a hydrogen atom from THF to form the THF radical that could be used 

in a nickel-mediated cross-coupling with an aryl halide.  After HAT, the photocatalyst 

would exist as a carbon-centered alpha-hydroxy radical.  Electrochemical measurements 

of E1/2(M/M-) for b4CzBP (-1.68 V vs SCE), b4DPABP (-1.77 V vs SCE), and 4DMABP 

(-2.16 V vs SCE) – which correspond to the reduction potentials of their associated ketyl 

radical anions – indicate that subsequent deprotonation of the alpha-hydroxy radical 

formed from these substituted-benzophenones could produce a photocatalyst species 
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reductive enough to reduce Ni(II) to Ni(I), and Ni(I) to Ni(0) via a series of single 

electron transfer processes.32 
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Chapter 2 Reaction Design, Proposed Mechanism, Reaction Optimization, and 

Substrate Scope of C(sp2)-C(sp3) Cross-Coupling 

2.1 Initial Investigation and Proposed Mechanism 

We began our investigation by first screening a variety of photoactive organic 

donor-acceptor fluorophores (Figure 1) against Ir[dF(CF3)ppy]2dtbbpy]PF6 as a control.  

The reaction conditions published by the Molander group were used, as they used a 

bench-stable nickel (ii) source, Ni(NO3)2∙6H2O. 

 

Figure 1. Structures of preliminary photocatalyst screening. 

Out of the organic photocatalyst candidates initially screened, only b4CzBP and 

Ir[dF(CF3)ppy]2dtbbpy]PF6 produced products.  The appearance of a new spot with the 

same Rf value upon thin-layer chromatography analysis of both crude reaction mixtures 

indicated that 4-bis-carbazolebenzophenone (b4CzBP) could be a viable alternative to 



14 

 

 

Ir[dF(CF3)ppy]2dtbbpy]PF6 as a photocatalyst.  Formation of the desired product for both 

reactions was verified via 1H NMR (Figures X and X).  Yields of 57% and 64% for the 

reactions with b4CzBP and Ir[dF(CF3)ppy]2dtbbpy]PF6, respectively, were determined 

using 1H NMR and 2,4,6-trimethoxybenzonitrile as an internal standard.  Isolated yields 

of 50% and 67% were obtained for the reactions with b4CzBP and 

Ir[dF(CF3)ppy]2dtbbpy]PF6, respectively, via column chromatography (Figures X and X).   

A plausible mechanism for the success of b4CzBP in this reaction has been 

proposed in Scheme 2.  The photocatalytic cycle begins with the photocatalyst absorbing 

a photon and accessing a triplet excited state through intersystem crossing (ISC), where it 

can abstract a hydrogen atom from THF, forming a THF radical and an alpha-hydroxy 

radical.  In the presence of base, the alpha-hydroxy radical can be deprotonated to form a 

ketyl radical anion, which can be subsequently oxidized by Ni(II) or Ni(I) to regenerate 

the ground state photocatalyst and complete the photocatalytic cycle.  At the beginning of 

the nickel redox cycle, Ni(II) can be reduced to Ni(I), and subsequently to Ni(0) (E1/2 

(NiI/Ni0) = −1.17 V vs SCE)2 via single electron reduction by the ketyl radical anion 

(E1/2(M/M−) = -1.69 V vs SCE).32  Once Ni(0) is present, the aryl halide can oxidatively 

add to it, forming a Ni(II) complex to which the THF radical formed in the photocatalytic 

cycle can add, forming a Ni(III) complex.  Finally, this Ni(III) complex can undergo 

reductive elimination to form the desired C(sp3)-C(sp2) coupled product and Ni(I), which 

can be reduced by the ketyl radical anion to form Ni(0) to complete the Ni-redox cycle. 
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Scheme 2. Proposed reaction mechanism for the dual-catalytic cross-coupling reaction. 
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2.2 Results and Discussion 

2.2.1 Control Experiments 

A set of control reactions indicated that b4CzBP, light, base, and nickel are all 

necessary requirements for the reaction to proceed efficiently (Table 1). 

Table 1. Control reactions showcasing necessary reaction components[a] 

 
 

Entry Control %Yield[b] 

1 none 57% 

2 No photocatalyst 0% 

3 No light 0% 

4 No Nickel or Ligand 0% 

5 No Ligand Trace 

6 No Base 13% 

[a] Reaction scale: 4-bromobenzonitrile (0.12 mmol). 

[b] Determined by 1H NMR with 2,4,6-

trimethoxybenzonitrile as the internal standard. 
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2.2.2 Optimization of Nickel Catalyst 

Upon setting up a batch of parallel reactions to test repeatability, a wide 

variability in yields that correlated with the reaction solution color was observed (Table 

2).  This large deviance was confirmed to be a result of the formation of the bis-ligated 

nickel complex, which is detrimental to the cross-coupling reaction for two reasons.  

First, it should be noted that the mono-ligated complex would provide the most 

conducive conditions for catalysis to occur since multiple ligand exchanges are expected 

to take place during the oxidative addition/reductive elimination steps of the catalytic 

nickel redox cycle.  The bis-ligated complex would be expected to hinder nickel’s ability 

to partake in catalysis due to its increased stability and steric bulk. Second, since the bis-

ligated complex is less soluble in THF, its precipitation from the reaction mixture 

decreases the amount of nickel available for catalysis. 

At first, the plan was to prepare the mono-ligated nickel complex by heating a 1:1 

ratio solution of Ni(NO3)2∙6H2O and dtbbpy in THF, as the Molander group did in their 

study.1  The resulting solution is blue in color (Figure 2). However, as this solution cools 

to room temperature and sits undisturbed for an additional 30 minutes, purple crystals 

begin to precipitate (Figure 2b).  Single-crystal X-ray diffraction experiments (Figure X) 

confirmed that these purple crystals were indeed the bis-ligated nickel complex. 

It was found that the preparation of the nickel complex in situ with a 2:3 molar 

ratio of [dtbbpy]:[Ni(NO3)2∙6H2O] produced the best cross-coupling yields (Table 3).  

Additionally, the mono-ligated complex was successfully isolated from a nickel/ligand 

solution containing 1.5 eq Ni(NO3)2∙6H2O (Figure 2a) and subsequently characterized via 

single-crystal x-ray diffraction (Figure X). Adding this purified complex to the reaction 
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vessel as a solid in an equimolar concentration to the photocatalyst ensured cross-

coupling yield consistency (Table 4). 

 

 

Table 2. Yield variations dependent on reaction solution color[a]  

 

Entry Solution Color %Yield[b] 

1 Cloudy white 20% 

2 Cloudy green 38% 

3 Cloudy blue 41% 

4 Clear blue 57% 

5 Clear blue 62% 

6 Cloudy pink 18% 

7 Cloudy pink 14% 

8 Cloudy pink 19% 

[a] Reaction scale: 4-bromobenzonitrile (0.12 mmol). 

[b] Determined by 1H NMR with 2,4,6-

trimethoxybenzonitrile as the internal standard. 
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Figure 2. Solution color dependence on molar ratio of [dtbbpy]:[Ni(NO3)2∙6H2O].  

a) Crystal photos of the mono-ligated complex prepared from the 2:3 solution. 

b) Crystal photos of the bis-ligated complex that precipitated from the 1:1 solution. 

 

 

 

 

 



20 

 

 

Table 3. Reaction yield dependence on molar ratio of [dtbbpy]:[Ni(NO3)2∙6H2O][a] 

 

Entry dtbbpy Ni(NO3)2∙6H2O %Yield[b] 

1 0 mol% 4.8 mol% Trace 

2 4.8 mol% 7.2 mol% 61% 

3 4.8 mol% 4.8 mol% 31% 

4 7.2 mol% 4.8 mol% 33% 

[a] Reaction scale: 4-bromobenzonitrile (0.12 mmol).  

[b] Determined by 1H NMR with 2,4,6-trimethoxybenzonitrile as the 

internal standard. Yields shown are averages of two trials per entry. 
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Table 4. Improvement in reaction yield consistency using synthesized nickel 

complex 

 

Entry  %Yield[b] 

1  45% 

2  55% 

3  57% 

4  40% 

5  43% 

6  49% 

7  51% 

Average  49%[c] 

[a] Reaction scale: 4-bromobenzonitrile (0.12 

mmol). [b] Determined by 1H NMR with 2,4,6-

trimethoxybenzonitrile as the internal standard.  

[c] Standard deviation = ±6% 

To further optimize the reaction yields, a variety of light sources were screened 

(Table 5): purple LED strips, blue LED strips, a non-UV white LED bulb, and a compact 

fluorescent lamp (CFL) bulb.  The white CFL bulb, purple LEDs, blue LEDs, and non-

UV white LED bulb were found to produce yields of 46% ±6%,78% ±10%, 0%, and 0%, 

respectively.  The emission spectra of the light sources used and the UV-Vis absorption 

spectra for b4CzBP and dibenzosuberenone (DBS) are shown in Figure 3.  
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2.2.3 Light Source Screening 

Table 5. Reaction yield improvement with higher energy photons. 

 

Light Source  %Yield[b] (n=3) 

CFL  46% ± 6% 

Purple LEDs  78% ± 10% 

Blue LEDs  0% 

UV-free LED bulb  0% 

[a] Reaction scale: 4-bromobenzonitrile (0.12 mmol). 

[b] Determined by 1H NMR with 2,4,6-

trimethoxybenzonitrile as the internal standard. 

 

 

Figure 3. Emission spectra for blue LEDs, purple LEDs, and white CFL bulb 
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2.2.4 Optimization of Base 

We were pleased to observe a massive increase in reaction yield when increasing 

the strength of the base (Table 6).  This stark difference in reaction yield makes sense, 

since we propose that the base is directly involved in the catalytic cycle rather than 

simply serving to neutralize the resulting H-X.  Considering the reversibility of the proton 

transfer step, too weak of a base could certainly hinder the success of the reaction 

(Scheme 3). 

Considering the results of the light source screening, the base optimization 

experiments were run with purple LEDs and with a CFL.  Interestingly, the yields after 

optimizing the base choice were observed to be slightly higher with a CFL light source as 

opposed to the purple LEDs. 
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Table 6. Strong dependence of reaction yield on base choice[a] 

 

Base %Yield (CFL)[b] 
%Yield (purple 

LEDs)[b] 

Na2CO3 94% 92% 

K2CO3 90% 87% 

K2HPO4 35% 33% 

K3PO4 91% 88% 

[a] Reaction scale: 4-bromobenzonitrile (0.12 mmol). 

[b] Determined by 1H NMR with 2,4,6-trimethoxybenzonitrile as the internal 

standard. 

 

 

 

 

    

Scheme 3. Proposed HAT/PCET photocatalytic pathway with direct base involvement.  

 

 

After selecting Na2CO3 as the optimum base, a set of reactions were run to screen 

the effect of base loading on the reaction (Table 7).  Base loadings below 2 eq were found 
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to hinder reaction yields, and base loadings above 2 eq were found to not have any 

significant effect on yield. 

 

Table 7. Screening of base loading[a] 

 

Na2CO3 Loading %Yield[b] 

0.5 eq 23% 

1 eq 39% 

2 eq 94% 

4 eq 93% 

[a] Reaction scale: 4-bromobenzonitrile (0.12 mmol). 

[b] Determined by 1H NMR with 2,4,6-

trimethoxybenzonitrile as the internal standard. 

 

 

 

 

 

 

 

 

 

2.2.5 Optimization of Photocatalyst 
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In an effort to uncover any other types of organic ketones might find success in 

our optimized system, a second photocatalyst screening was run to evaluate other types of 

benzophenone derivatives (Table 7).  During the course of our investigation, reports were 

published of 4-MeO-4’-CF3 BP and b4ClBP performing a very similar reaction to the one 

presented in this study.34-35  As such, they were also included in this screening study for 

comparative analysis.  Yields upward of 90% were observed for DBS and b4CzBP and 

yields upward of 70% were observed for 4-MeO-4-CF3 BP and b4ClBP.  An appreciable 

yield of 62% was observed for 4-benzoylpyridine, and a yield of 35% was observed for 

b4MeOBP – the ketone used as a co-catalyst to Ir[dF(CF3)ppy]2bpy]PF6 in the study done 

by the Molander group.1 
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Table 7. Screening of benzophenone-derived photocatalysts with CFL or purple 

LEDs as light sources[a] 

 

Photocatalyst %Yield[b] (CFL) 
%Yield[b] 

(purple LEDs) 

b4CzBP 97% 95% 

DBS 94% 91% 

4-MeO-4-CF3 BP 71% n/a 

b4ClBP 70% n/a 

4-benzoylpyridine 62% 59% 

b4MeOBP 35% 33% 

Benzophenone 12% 9% 

Acridone 0% 0% 

Xanthone 0% 0% 

9-fluorenone 0% 0% 

[a] Reaction scale: 4-bromobenzonitrile (0.12 mmol). 

[b] Determined by 1H NMR with 2,4,6-trimethoxybenzonitrile as the 

internal standard. 
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2.2.6 Nickel Ligand Screening 

The study by Shen et al reported to have increased success with (m-Me)bpy 

compared to dtbbpy as the nickel ligand.34  This prompted a screening of three other 

variants of the bipyridine ligand (Table 8).  However, dtbbpy remained the best choice to 

ligate nickel our reaction system. 

 

Table 8. Screening of Nickel Ligand[a] 

 

Entry Ligand Structure %Yield[b] 

1 dtbbpy 

 

94% 

2 (m-Me)bpy 
 

34% 

3 (o-Me)bpy 

 

19% 

4 bpy 
 

9% 

[a] Reaction scale: 4-bromobenzonitrile (0.12 mmol). 

[b] Determined by 1H NMR with 2,4,6-trimethoxybenzonitrile as 

the internal standard. 
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2.2.7 Scope of Aryl Halides 

Next, we sought to test the substrate scope of aryl-halides (Table 9).  In general, 

aryl bromides produced the best yield results, while aryl chlorides produced moderate 

yields.  Conversely, aryl iodides produced the poorest yields.  The reaction of 4-

bromobenzonitrile was found to attain a yield of 94% in just 48 hours of reaction time, as 

well as an 84% yield in 90 hours of reaction time under an air atmosphere (Table 10). 

 In an attempt to raise the yields of aryl chlorides and aryl iodides, a screening of 

tetrabutylammonium halide (TBA-X) additives at various concentrations was conducted 

(Tables 11-14).  Adding TBA-Br drastically improved the yield of the reaction of 4-

chlorobenzonitrile and THF, but had little effect on the yield with 4-iodobenzonitrile as a 

substrate (Figure 4).  Adding TBA-Br to the reaction with 4-bromobenzonitrile decreased 

the yield from 97% without the additive, to 35% with it.  Also, adding TBA-I decreased 

the yields for all 4-halonitrile substrates (Figure 5).  The optimum loading of TBA-Br to 

increase the yield of the reaction using 4-chlorobenzonitrile was found to be 0.5 eq, 

increasing the yield from 59% without TBA-Br, to 94% with the additive.  A dependence 

on TBA-Br loading and the yield of coupled product was elucidated for 4-

chlorobenzonitrile.  Increasing the TBA-Br loading to past 0.5 equivalents to 1 equivalent 

still increased yield of coupled product to 85%, but TBA-Br was observed to be 

supersaturated in THF at this loading, which may be the reason why the yield is higher 

with a 0.5 eq loading. 

In the case of aryl iodides, the reductive elimination step may be where the 

reaction fails.  This presumption is based on the observation of the reaction color of the 

aryl iodide reactions changing from a clear blue to orange after about 24 hours of 



30 

 

 

exposure to the light source.  This is also considering that the oxidative addition complex 

– which forms readily with Ni(cod)2 and 4-iodobenzonitrile – is orange in color.  This 

hypothesis is further supported by the fact that the reaction solution with 4-

bromobenzonitrile – which typically appears a faint yellow after 72 hours of reaction 

time under the standard conditions – also changes from clear blue to orange after 24 

hours of exposure to the light source in the presence of the TBA-I additive (Figure 6) 

 

Table 9. Substrate Scope of Aryl Halides[a] 

 
[a] Reaction scale: 4-bromobenzonitrile (0.12 mmol). Yields determined by 1H NMR 

with 2,4,6-trimethoxybenzonitrile as the internal standard. 

 

Table 10. 48 hour time point and air atmosphere reaction with 4-bromobenzonitrilea] 
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Entry Substrate X t (hrs) %Yield[b] 

1 Br 72 97% 

2 Br 48 94% 

3[c] Br 90 84% 

[a] Reaction scale: 4-bromobenzonitrile (0.12 

mmol). 

[b] Determined by 1H NMR with 2,4,6-

trimethoxybenzonitrile as the internal standard. 

[c] Reaction run under air atmosphere. 

 

 

 

 

 

 

 

 

 

 

 

 

Table 11. Screening of tetrabutylammonium-halide additives (1 eq)[a] 
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Entry Additive Substrate X %Yield[b] 

1 TBA-Br Br 42% 

2 TBA-Br Cl 85% 

3 TBA-Br I 11% 

4 TBA-I Br trace 

5 TBA-I Cl trace 

6 TBA-I I trace 

[a] Reaction scale: 4-bromobenzonitrile (0.12 mmol). 

[b] Determined by 1H NMR with 2,4,6-

trimethoxybenzonitrile as the internal standard. 

 

 

 

 

 

 

 

 

 

 

Table 12. Screening of tetrabutylammonium-halide additives (0.5 eq)[a] 
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Entry Additive Substrate X %Yield[b] 

1 TBA-Br Br 35% 

2 TBA-Br Cl 94% 

3 TBA-Br I trace 

4 TBA-I Br trace 

5 TBA-I Cl trace 

6 TBA-I I trace 

[a] Reaction scale: 4-bromobenzonitrile (0.12 

mmol). 

[b] Determined by 1H NMR with 2,4,6-

trimethoxybenzonitrile as the internal standard. 

 

 

 

 

 

 

 

 

 

Table 13. Screening of tetrabutylammonium-halide additives (0.25 eq)[a] 
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Entry Additive Substrate X %Yield[b] 

1 TBA-Br Br 37% 

2 TBA-Br Cl 75% 

3 TBA-Br I trace 

4 TBA-I Br trace 

5 TBA-I Cl trace 

6 TBA-I I trace 

[a] Reaction scale: 4-bromobenzonitrile (0.12 

mmol). 

[b] Determined by 1H NMR with 2,4,6-

trimethoxybenzonitrile as the internal standard. 

 

 

 

 

 

 

 

 

 

Table 14. Screening of tetrabutylammonium-halide additives (0.1 eq)[a] 
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Entry Additive 
Substrate 

X 
%Yield[b] 

1 TBA-Br Br 33% 

2 TBA-Br Cl 50% 

3 TBA-Br I trace 

4 TBA-I Br trace 

5 TBA-I Cl trace 

6 TBA-I I trace 

[a] Reaction scale: 4-bromobenzonitrile (0.12 

mmol). 

[b] Determined by 1H NMR with 2,4,6-

trimethoxybenzonitrile as the internal standard. 
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Figure 4. Effect of tetrabutylammonium-bromide loading (0.1 eq, 0.25 eq, 0.5 eq, and 1 

eq) on yield with substrates 4-iodobenzonitrile, 4-chlorobenzonitrile, and 4-

bromobenzonitrile (0.12 mmol scale). %Yield determined by 1H NMR with 2,4,6-

trimethoxybenzonitrile as the internal standard. 
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Figure 5. Effect of tetrabutylammonium-iodide loading (0.1 eq, 0.25 eq, 0.5 eq, and 1 eq) 

on yield with substrates 4-iodobenzonitrile, 4-chlorobenzonitrile, and 4-

bromobenzonitrile (0.12 mmol scale). %Yield determined by 1H NMR with 2,4,6-

trimethoxybenzonitrile as the internal standard. 
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Figure 6. Reaction mixtures of 4-bromobenzonitrile (vial 1), 4-iodobenzonitrile (vial 3), 

and 4-bromobenzonitrile with 0.5 eq of TBA-I added (vial 7).  For each pair, the left 

photo is at t = 0 hours and the right photo is at t = 72 hours. 
 

 

2.2.8 Reaction Kinetics and Mechanistic Insights 

The reaction with 4-bromobenzonitrile was run at different time points to 

showcase the yield progress over time with the two highest performing ketone 

photocatalysts in our study, b4CzBP and DBS (Figure 7).  With b4CzBP, a moderate yield 

of 87% was observed after only 36 hours of light exposure (CFL), and nearly quantitative 

yields were observed after 60 hours of light exposure (CFL).  With DBS, a moderate 

yield of 75% was observed after only 36 hours of light exposure (CFL), and a yield of  

85% was observed after 60 hours of light exposure (CFL).  Using purple LEDs as a light 

source, the yields were slightly lower for both photocatalysts. 

To evaluate our hypothesis of a Ni(0) intermediate being involved in the reaction 

mechanism, a Ni(0) source –  Ni(cod)2 – was used in lieu of a Ni(II) source.  As was 

observed for the Ni(II) conditions, the reaction reached near quantitative yields after 60 

hours of light exposure (CFL). 
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Figure 7. Kinetics data for reactions using b4CzBP or DBS as the photocatalyst, CFL or 

purple LEDs as the light source, and Ni(ii) or Ni(0) as the nickel source. Reaction scale: 

4-bromobenzonitrile (0.12 mmol). Yields determined by 1H NMR with 2,4,6-

trimethoxybenzonitrile as the internal standard. 
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2.3 Experimental 

2.3.1 General reagents, instrumentation, and experimental procedures 

 All chemical feedstocks used for catalytic reactions were purchased from 

commercial sources and used without further purification.  1H NMR spectroscopy was 

performed on a 300 MHz or 400 MHz Bruker FT-NMR spectrometer.  Fluorescence 

spectroscopy was performed on a Shimadzu RF-5301PC spectrofluorophotometer.  

UV/Vis spectroscopy was performed on a Shimazdu UV-2501PC UV-Vis recording 

spectrophotometer. 

General procedure for photocatalytic reaction setup 

 A 3 mL screw-top vial was charged with a stir-bar, aryl halide (0.12 mmol, 1 eq), 

Na2CO3 (2 eq, 0.24 mmol, X mg), b4CzBP (4.8 mol%, 5.8 μmol, 1.1 mg), and 

Ni(NO3)2dtbbpy (4.8 mol %, 5.8 μmol, 1.5 mg).  The vial was then fitted with a septum 

cap and evacuated and purged with argon three times.  Under an argon atmosphere, 2.3 

mL of freshly distilled THF was added to the reaction vial.  The reaction vial was then 

sonicated for 15 seconds to thoroughly dissolve the contents, and subsequently placed 

approximately 1 cm from a 26W CFL fixed over a magnetic stirrer.  A fan was fitted 

above the reaction mixture to keep the temperature of the reaction at room temperature.  

The reaction was stirred for 36 – 72 hours.  For purification of the product, THF was 

removed with rotary evaporation and the resulting residue dissolved in a minimal amount 

of DCM.  One equivalent of internal standard 2,4,6-trimethoxybenzonitrile was then 

added to the solution and yields were determined by 1H NMR integration of the aromatic 
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hydrogens on the internal standard at 6.02 ppm (s, 2H) to the benzylic proton on the 

associated product that appears around 4.9 ppm (t, 1H). 

 

2.3.2 Synthesis of Photocatalysts 

bis(4-carbazol-9-ylphenyl)methanone (b4CzBP) 

The synthesis of b4CzBP was based on a method previously reported in 

literature.36  In a two-neck round bottom flask, carbazole (2 eq, 18.6 mmol, 3.1078 g) and 

potassium tert-butoxide (3 eq, 27.9 mmol, 3.1248g) were dissolved in 50 mL of 

anhydrous DMF under an argon atmosphere.  An 25 mL solution of bis(4-fluoro-

phenyl)methanone (1 eq, 9.3 mmol, 2.0274 g) in DMF was prepared separately and 

added dropwise to the two-neck round bottom flask under an argon atmosphere.  The 

reaction mixture was refluxed for 10 hours, brought down to room temperature, and 

slowly poured into 100 mL of ice water.  The resulting yellow precipitate was filtered off, 

rinsed with ethanol, and dried under vacuum.  The solid was then dissolved in DCM, and 

extracted with an aqueous solution of LiCl (5%) three times to remove residual DMF.  

The DCM layer was dried over MgSO4 and filtered through a cotton plug.  The DCM 

was removed by rotary evaporation, which yielded 3.5623 g (74% yield) of a light yellow 

solid. 

 

 

(4-Methoxyphenyl)[4-(trifluoromethyl)phenyl]methanone (4-MeO-4’-CF3 BP) 

 The synthesis of 4-MeO-4’-CF3 BP was based on a method previously reported in 

literature.34  A two-neck, 50 mL round bottom flask was charged with a stir-bar and Mg 

turnings (16.1 mmol, 0.3907 g) was oven dried for 30 minutes.  The flask was evacuated 



41 

 

 

and back-filled with argon three times.  Then, under flow of argon, 4-

bromobenzotrifluoride (1 eq, 10.7 mmol, 1.5 mL) was added dropwise to the flask, 

followed by 25 mL of freshly distilled THF.  The flask was sonicated for 10 minutes to 

help initiate the reaction.  Bubbles were seen forming at the surface of the Mg turnings.  

This solution was stirred at room temperature for 4 hours under argon flow, and was 

subsequently added dropwise to a solution of 4-methoxybenzaldehyde (1.4 eq, 15.1 

mmol, 1.3 mL) in THF (10 mL) that was chilled to -78°C in a dry-ice/acetone bath.  The 

reaction was stirred for 8 hours, during which it was allowed to warm up to room 

temperature.  The reaction was subsequently quenched with aqueous HCl (2 M) and 

extracted three times with ethyl acetate.  The ethyl acetate layer was washed with brine, 

dried over MgSO4, and the solvent removed by rotary evaporation.  The resulting residue 

was diluted with DCM (10 mL) and added to a mixture of pyridinium chlorochromate (2 

eq, 13 mmol, 2.808 g) and silica gel (3.745 g) in DCM (10 mL).  The reaction was stirred 

and monitored by TLC until completion.  The reaction mixture was filtered through a 

silica plug, resulting in a light-yellow solution.  The solvent was removed by rotary 

evaporation, and the resulting off-white solid was recrystallized from a 1:1 mixture of 

DCM and hexanes, which yielded 2.1 g (70 % yield) of a crystalline, off-white solid. 

2.3.3 Synthesis of Ni(NO3)2dtbby 

Ni(NO3)2·6H2O (1.5 eq, 500.1 mg, 2.7 mmol) was added to a two-necked round 

bottom flask with a stir bar.  The flask was evacuated and backfilled with argon three 

times and left under argon flow.  Freshly distilled THF (50 mL) was added to the flask 

and the temperature was increased to 50 °C.  Then, 4,4′-Di-tert-butyl-2,2′-dipyridyl (1 eq, 
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488.9 mg, 1.8 mmol) was added to a separate round bottom flask, which was 

subsequently evacuated and backfilled with argon three times.  Under argon flow, THF 

(100 mL) was added to the flask containing 4,4′-Di-tert-butyl-2,2′-dipyridyl and the 

solution was drawn up in a syringe and added dropwise to the flask containing 

Ni(NO3)2·6H2O and the mixture was left to stir at 50 °C for 30 minutes.  The solvent was 

then removed by rotary evaporation, leaving behind a blue residue that was recrystallized 

via slow mixing of THF and hexanes.  To the residue was added diethyl ether (50 mL) 

and the solution was heated to reflux until the residue dissolved, after which the solution 

was left to cool to room temperature to induce the formation of a light-blue, crystalline 

powder.  The nickel complex is sufficiently pure to be used in catalytic reactions at this 

point. 

For single crystal x-ray diffraction analysis, 30 mg of the complex was re-

dissolved in a minimal amount of THF (~0.5 mL) and placed in a screw top vial.  Hexane 

(1.5 mL) was slowly layered on top of the THF layer and the vial was left undisturbed for 

about three days and translucent-blue plate crystals were harvested from the bottom and 

walls of the vial. 

 

 

2.4 Conclusions and Future Direction 

A photochemical methodology for the coupling of aryl halides (bromides, 

chlorides, and iodides) and THF using a class of benzophenone-derived organic 

molecules as photocatalysts has been elucidated.  These ketones are either commercially 

available or easily prepared from widely available starting materials.  The reaction 

pathway is different than what has been previously reported using iridium-centered 
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photocatalysts2 1, and appears to proceed through a HAT/SET photocatalytic cycle which 

is coupled to the catalytic nickel redox cycle that mediates C-C bond formation.  The 

method produces the desired cross-coupled product in yields up to 97% for aryl 

bromides, and features an option for yield improvement of up to 94% for aryl chlorides 

using 0.5 eq TBA-Br as an additive.  The strong utility of our methodology is further 

highlighted by reaction times ranging from 36-72 hours and conditions that allow the 

reaction to be run at room temperature without the use of expensive heavy metals or 

strong oxidants or reductants. 

However, there are still some limitations that can be expanded upon.  Aryl iodides 

perform poorly as substrates in this reaction.  The performance of aryl chlorides was 

drastically improved in the presence of TBA-Br.  While the yields from aryl iodides did 

not seem to respond to TBA-Br, perhaps a more in-depth screening of halide additives 

could improve upon their performance.  The substrate scope could also be expanded to 

further assess the viability of this method in natural product synthesis.   

 

 

 

 

 

 

 

 

Appendix A 
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Figure 8. 1H NMR spectrum of crude reaction mixture using b4CzBP showing 

integration ratios between product proton and internal standard protons.  Internal 

standard=2,4,6-trimethoxybenzonitrile. 
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Figure 9. 1H NMR spectrum of crude reaction mixture using 

Ir[dF(CF3)ppy]2dtbbpy]PF6 showing integration ratios between product proton and 

internal standard protons. 
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Figure 10. 1H NMR spectrum of product isolated from reaction using b4CzBP as the 

photocatalyst. 

 

 

Photocat = 
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Figure 11. 1H NMR spectrum of product isolated from reaction using 

Ir[dF(CF3)ppy]2dtbbpy]PF6 as the photocatalyst. 

 

 

Figure 12. Single-crystal XRD characterization of Ni(NO3)(dtbbpy)2 [left] and 

Ni(NO3)2(dtbbpy) [right]. 

 

Photocat = 
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Figure 13. 1H NMR of b4CzBP. 

 

 

Figure 14. 1H NMR of 4-MeO-4’-CF3 BP 
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