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The desire for improved thermal management in power semiconductor device 

packaging is becoming increasingly important due to the progression towards 

implementing wide-bandgap semiconductor (WBG) materials, such as silicon carbide 

(SiC) and gallium nitride (GaN).  These semiconductor materials have the capability of 

operating at much higher voltages, temperatures, and frequencies compared to standard 

silicon-based devices.  However, utilizing this enhanced operating region will induce 

larger thermomechanical stress within the package structure as a consequence of 

operating at higher junction temperatures around 250-300 °C. To handle the higher and 

improved operating characteristics from the WBG semiconductors, the current package 

technology is modified by increasing heat flow through its layers.  This modification will 

improve reliability and operating lifetime of device packages in high power applications. 

The focus of this research was on enhancing the thermal performance of the direct 

bond copper (DBC) substrate in a standard package design by considering the 

implementation of polycrystalline diamond (PCD) films as a replacement for the 

commonly used DBC (AlN) substrates.  The use of these PCD films in a standard device 

package has been examined in detail using an emissivity-calibrated thermal (IR) imaging 



camera experiment that measures and compares the top surface temperature profiles of a 

commercial module package and two PCD films (Co-PCD and Cu-PCD).   

The results from this thermal experiment showed that both of the PCD films 

reached steady state considerably faster than the AlN substrate.  The accelerated top 

surface temperature profiles of the PCD films demonstrated a faster thermal transient 

response time, an increased heat flow, and lower thermal resistance that can potentially 

handle the high operating characteristics of WBG semiconductors.  In addition, the Co-

PCD film displayed a faster thermal transient response time compared to the Cu-PCD 

film.  The resulting thermal analysis on PCD films can be used to aid future research 

pertaining to dielectric breakdown strength tests, studying lateral heat flow, ways of 

interconnection into a device package, and mechanical behavior under thermomechanical 

stress within a package. 
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CHAPTER 1 

BACKGROUND 

1.1 Background of Power Modules 

A majority of power electronics today utilize power semiconductor devices to 

operate and control a variety of applications.  These devices behave as switches in a 

system to convert power from AC-to-DC (rectifier), DC-to-DC, DC-to-AC (inverter), or 

AC-to-AC, depending on the application.  Many applications use devices packaged as 

modules.  A power module is a physical containment structure that encloses single or 

multiple power semiconductor devices.  Besides protecting these devices from 

environmental conditions, power modules provide excellent thermal management, 

electrical isolation and interconnection, and mechanical support.  Maintaining these 

factors is the key for power semiconductor devices to achieve and maintain their full 

operational potential.  

One priority of research in power modules is focused on the package design and 

its characteristics related to thermal performance.  The thermal behavior of a package is 

of importance because it is the leading cause of device failures in power converter 

systems.  Specifically, proper thermal management for a power semiconductor device 

involves keeping its junction temperature below its designed maximum during its 

operation.  This is accomplished by removing heat dissipated from the device as quickly 

and efficiently as possible.   

The design of the module is based on the amount and type of power 

semiconductor devices/chips held within.  Due to the wide selection of power 

semiconductor devices (diodes, thyristors, metal-oxide-semiconductor field-effect 
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transistors (MOSFETs), bipolar junction transistors (BJTs), insulated-gate bipolar 

transistors (IGBTs), etc.), there is a large range of possible configurations, voltage and 

current ratings, and allowed power dissipation values.   

Most of the power semiconductor devices are fabricated using silicon.  Over the 

past 15 years, the use of silicon carbide (SiC) power devices has increased with 

improvements in some of the operating characteristics, as compared to silicon-based 

devices.  Another wide-bandgap semiconductor material being developed for power 

electronics applications is gallium nitride (GaN).  These materials have energy bandgaps 

in the range of 2-4 eV compared to the standard 1.12 eV (at room temperature) for 

silicon, as shown in Figure 1.1.  Larger energy bandgaps allow devices to operate in 

higher temperatures and under higher electric fields.  Listed in Table 1.1 are some of the 

advantages of wide bandgap semiconductors, specifically SiC, and their impact on power 

electronic converter systems (x symbol used in this table represents “times more than Si”) 

[1].   

 

 

 

 

 

 

Figure 1.1.  Energy bandgap comparison of SiC/GaN v. Si. 
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Table 1.1.  Important properties of SiC devices.  

Properties SiC Versus Si Performance of SiC Devices 
Impact on Power 

Circuit 

Breakdown Field (10x) 
Lower ON-State Voltage  

(2-3x) 

Higher Efficiency of 

Circuit 

Thinner Epitaxial Layers      

(10-20x) 

Faster Switching Speeds  

(100-1,000x)  
Compact Circuits 

Bandgap (3x) 
Lower Leakage Currents  

(up to 104x) 

Higher Acceptable 

Temperatures 

Higher Thermal Conductivity 

(3.3-4.5 W/m.K v. 1.5 W/m.K) 

Higher Chip Temperatures 

(250-300 °C v. 125 °C) 
Higher Pulsed Power 

Melting Point (2x) 
Higher-Temperature Operation 

(3x) 

Higher Continuous 

Current Densities 

 However, there is a lack of available package materials and designs to take full 

advantage of the potentially enhanced operating region for wide bandgap devices because 

the current technology is based on optimizing performance of silicon parts. 

1.2 Package Design of Power Modules  

The design of the package for power modules is essential in sustaining excellent 

thermal and electrical characteristics.  The standard package design used for silicon-based 

devices provides low thermal resistance, high electric field isolation, and minimal 

variations in the coefficient of thermal expansion (CTE) to minimize stress and strain 

between material layers. The standard module consists of four fundamental material 

regions:  the semiconductor die (device), the direct-bond copper (DBC) substrate, solder 

layers, and the baseplate (copper (Cu) or aluminum silicon carbide (AlSiC) metal matrix 

composite).  The exact construction of this package can be seen in Figure 1.2.    
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 As shown in Figure 1.2, the semiconductor die is attached directly to the DBC 

substrate by a thin solder layer.  This die acts as a heat source when the device is turned-

on and operational.  Typically this area is referred to as the “active area” of the package.  

The DBC substrate provides electrical isolation between the semiconductor die and 

baseplate while further providing moderate thermal conductivity.  It consists of a ceramic 

electrical insulator that is sandwiched between two pure Cu layers.  Generally the 

ceramic isolator in most packages is aluminum nitride (AlN). 

The baseplate is the final package material layer and consists of a metal that 

provides large heat dissipation in both the vertical and lateral directions while providing 

mechanical stability.  Further, the baseplate of the package is typically attached to a heat 

sink to further enhance the heat dissipation. 

 

 

 

silicon 

Copper

Dielectric

Solder

Copper Base plate

Heat Sink

Figure 1.2.  Power semiconductor device package structure [2]. 
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1.3 Failures of a Device Package 

 Modules often fail due to thermal/power cycling events.  This occurs during 

normal operating conditions when the temperature of the semiconductor die experiences 

enormous swings from their minimum to maximum values during short conduction 

pulses, as shown below in Figure 1.3.   

 

During heating and cooling of the device, these dissimilar materials expand and 

contract at different rates due to their respective CTEs.  This difference causes 

thermomechanical stress in the die attachment, DBC substrate, and baseplate of the 

power semiconductor device package.  Silicon carbide and gallium nitride devices that 

can potentially operate above 200 °C junction temperatures will induce larger 

thermomechanical stresses that cannot be tolerated using conventional module package 

technology.    

1.4 Enhancing Thermal Performance of DBC Substrate 

Solder, contact pads, and wirebond technology will continue to be used as an 

interconnection of material layers and microelectronics in modules for the foreseeable 

future.  The baseplate design already uses minimal material to maintain structural 

Figure 1.3.  Example of a thermal/power cycling event experienced by a device package [3]. 
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integrity of the package.  Therefore, thermal performance can be greatly enhanced by 

new material systems to replace the DBC while maintaining the current use of 

interconnection technology and baseplate designs.   

A standard DBC substrate consists of a ceramic (AlN) layer surrounded by 

bonded copper layers on its top and bottom surfaces, as seen in Figure 1.4.   

     

Improvement in the DBC substrate involves considering different material 

choices for the ceramic layers.  This is the primary focus of this thesis.  Specifically, it 

focuses on changing the ceramic layer to a material that has exceptional thermal behavior 

while keeping similar or better electrical breakdown properties, such as AlN.  This work 

investigates polycrystalline diamond (PCD) as a replacement for AlN.  Polycrystalline 

diamond is fabricated using a carbon dioxide (CO2) laser to induce carbon deposition 

from an acetylene flame [5].  This type of material possesses great toughness, long 

durability, high dielectric breakdown strength, and according to [6], it has the highest 

thermal conductivity available for any engineering material.    

  

Figure 1.4.  Standard DBC substrate used in a device package. 
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CHAPTER 2 

EXPERIMENTAL PACKAGE DESIGNS  

2.1 Introduction 

 This chapter introduces relevant layers of two module package designs that will 

be compared for their thermal management qualities.  The first package design originates 

from a Powerex IGBT module (CM1800HC-34N).  This package was deconstructed from 

its original form to ensure an adequate comparison with the other design.  The second 

package design consists of PCD films that were fabricated by a combustion flame 

chemical vapor deposition (CVD) process.  These films are compared to the DBC 

substrate of the module package referenced above.  Then in the final section, a direct 

comparison will be made between the two experimental package designs based on their 

respective theoretical advantages and disadvantages towards improvement of thermal 

management.   

2.2 Powerex IGBTMOD Module 

Powerex is a power semiconductor manufacturer.  They manufacturer a variety of 

products related to IGBTs, HVIGBTS, intelligent power modules, rectifiers, thyristors, 

custom power modules and assemblies.  The particular module chosen for this research 

was the Single IGBTMOD™ HVIGBT Module, shown in Figure 2.1.  This module 

operates at a maximum of 1800 A/1700 V and is primarily utilized in converter 

applications.  It encloses multiple IGBT’s each with an anti-parallel diode.  The IGBT 

module was modified in order to directly compare it with the diamond insulating layer.  
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2.2.1 Deconstruction Procedure  

The deconstruction procedure of the IGBT power module began by removing the 

black plastic cover.  Figure 2.2 shows the top view of the uncovered power module.  

  

 After removal of the black plastic cover and associated plastic border, the silicone 

gel that surrounds the entire interior of the power module was removed by using xylene.  

Figure 2.3 demonstrates the power module removed from the silicone gel.    

Figure 2.2.  Top view of uncovered power module. 

Figure 2.1.  Single IGBTMOD HVIGBT Power Module [1]. 
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Figure 2.3.  Top view of power module without silicone gel. 

 

 Next, a Dremel circular saw and miter saw (both with diamond-impregnated 

blades) were used to cut through portions of the power module.  Portions of the baseplate 

and DBC were obtained for thermal performance testing of the Powerex package, as 

shown in Figure 2.4.   

 

2.2.2 Structure and Layout of Powerex Package 

 This Powerex package consists of a top layer tinned with solder, a DBC substrate, 

an interconnecting solder layer, and a baseplate.  As the tinned solder layer is miniscule 

compared to the other layers, it can be ignored in further analysis.  Therefore, the DBC 

Figure 2.4.  Conversion from unused package set (left) to single device package (right). 
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substrate, interconnecting solder layer, and baseplate of the package are of main concern.  

Figure 2.5 is a top and cross-sectional view of these layers within the package.   

 

 As shown in the Figure 2.5 above, this package’s DBC substrate was composed of 

Cu sintered to AlN.  The baseplate for this package was constructed of a metal matrix 

composite alloy known as aluminum silicon carbide metal matrix composite (AlSiC 

MMC).  Metal matrix composites are being utilized more in baseplates and in other 

regions of a power semiconductor device package due to their controlled variability in 

material properties.  Table 2.1 displays a few of these important material properties for 

AlSiC and other layers of the Powerex package. 

Table 2.1.  Material properties of layers in Powerex package.  

Parameter 

Copper 

(Cu) 

Aluminum Nitride 

(AlN) 

Solder 

(PbSn) 
AlSiC MMC 

Thermal Conductivity 

(W/mK) 
401 180 50 175 

Specific Heat Capacity 

(J/kgK) 
385 800 173 781 

Thermal Diffusivity  

(mm2/s) 
1.17*10-4 0.69*10-4 0.34*10-4 0.75*10-4 

CTE (ppm/K) 17.0 4.5 23.029.0 4.021.0 

Dielectric Strength 

(kV/mm) 
- 17 - - 

Density (kg/m3) 8933 3260 8600 3000 

 

Figure 2.5.  Top (left) and cross-sectional (right) view of Powerex package. 



12 

2.3 Polycrystalline Diamond Films 

 Research over the years has continued to expand to find ways for improving 

electronic packaging.  One of the topics with an insufficient amount of research is the 

inclusion of diamond into a package.  Diamond should be of interest because it possesses 

the highest thermal conductivity of any material available.  There are other quality 

material properties that diamond maintains, but none is as important as thermal 

conductivity for packaging. This property alone solves the demand for greater heat 

dissipation in electronic packaging.  For that reason, the implementation of diamonds into 

power semiconductor device packages needs further investigation.   

The specific type of diamond chosen for this research was PCD.  The Laser 

Assisted Nano Engineering Lab (LANE) at the University of Nebraska-Lincoln has 

fabricated two PCD films that can potentially replace the DBC substrate of the standard 

power semiconductor device packages.   

2.3.1 Fabrication of PCD Films  

 The fabrication processes for both PCD films were completed by depositing PCD 

films on bulk copper/carbon adaptive composite materials using combustion flame CVD 

[2].  First, the copper/carbon-fiber (CF) substrate was created by the densification 

technique shown in Figure 2.6.  This technique produces a substrate with tunable Cu and 

CF volume fractions.  The volume percentage of CF is an important factor in determining 

the CTE.  The higher the carbon content, the better match of CTEs between the substrate 

and the diamond film deposited. 
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 Once the substrate is formulated, PCD films are deposited on it using combustion 

flame CVD, as shown in Figure 2.7.  When using this approach, it is important to note 

that the substrate temperature, cooling system, and substrate distance from the inner 

flame are crucial parameters for controlling the diamond deposition rate and diamond 

quality.  In addition, the PCD film thickness is proportionally related to the length of the 

deposition times.  As the deposition time increases, the grain size and the film thickness 

increase. 

 
 Once the diamond films reach a desired thickness, they are peeled off of the 

composite substrate using a mechanical procedure, as shown in Figure 2.8.  Once this 

Figure 2.7.  Demonstration of the combustion flame CVD used on the PCD films [3]. 

Figure 2.6.  Densification technique used to create the copper/carbon-fiber substrates. 
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procedure is executed, the PCD films are ready to be tested as potential DBC substrate 

replacements.  The final product of the PCD films can be seen in Figure 2.9.  

2.3.2 Structure and Layout of PCD Films 

 The fabrication process developed by LANE generates two different PCD films.  

One of those PCD films is coated only on the top surface with cobalt (Co-PCD) while the 

other sample is coated on its top and bottom surface with copper (Cu-PCD).  A top and 

cross-sectional view of Co-PCD and Cu-PCD films with each of their dimensions is 

shown in Figures 2.10 and 2.11, respectively.   

Figure 2.8.  Mechanical procedure for removal of PCD films from composite surface. 

Figure 2.9.  Images of PCD Films (Left: Co-PCD, Right: Cu-PCD). 
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 This smaller size for the PCD films as the DBC substrate is achievable due to the 

much improved material properties that PCD possesses as the new ceramic material.  As 

stated early, diamond has one of the highest measured thermal conductivities of any 

known material.  Generally, this value varies between 1000 to 2000 W/m*K depending 

on the deposition process and grain boundary effects in its fabrication [4].  

Another significant material property of diamond is the dielectric breakdown 

strength.  The dielectric breakdown strength measures the ability of an insulator to 

withstand a certain maximum breakdown voltage (electric field) without allowing itself 

to become electrically conductive.  For PCD this value ranges from 10 kV/mm to 0.6-1 

MV/mm.  According to [4], this wide range for the dielectric breakdown strength is due 

to the Poole-Frenkel effect (ordinarily between 10-100 kV/mm).  These two material 

properties, along with the others, are a major reason why PCD is being explored as a 

Figure 2.10.  Top (left) and cross-sectional (right) views of Co-PCD film. 

Figure 2.11.  Top (left) and cross-sectional (right) views of Cu-PCD film. 
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replacement material in power semiconductor device packages.  Table 2.2 lists all of 

these important material properties for both PCD films.  The implementation of these 

films as the DBC substrate has the potential to enhance the thermal, electrical, and 

mechanical performance for electronic packaging.   

Table 2.2.  Material properties of PCD films.  
 

 

Parameter 
Polycrystalline Diamond 

(PCD) 

Copper 

(Cu) 

Cobalt 

(Co) 

Thermal Conductivity 

(W/mK) 
1540 401 99.2 

Specific Heat Capacity 

(J/kgK) 
520 385 421 

Thermal Diffusivity (m2/s) 0.846*10-3 1.17*10-4 2.66*10-5 

CTE (ppm/K) 1.0 17.0 12.0 

Dielectric Strength 

(kV/mm) 
10 - 100,000 - - 

Density (kg/m3) 3500 8933 8862 

2.4 Potential Problems with PCD Films 

 With the experimental package designs introduced in the previous sections, 

further analysis was conducted on the PCD films for their respective advantages and 

potential problems if implemented as a replacement of the DBC substrate in the IGBT 

package.  For a comparison between the two package designs, the solder and baseplate 

layers of the IGBT module will be excluded from the final results.  Thus, only the 

electrically insulating substrate of the IGBT module will be directly compared with the 

PCD films.   

 There are still potential problem areas when using a material like PCD in a power 

semiconductor device package.  For instance, one of the primary reasons PCD has limited 
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usage in electronic packaging is due to its extremely high cost.  Roughly, PCD substrates 

cost about $10 per cubic millimeter.  That price point is considerably higher than the 

process to manufacture AIN substrates.  According to [5], the cost factor for PCD is three 

times greater than conventional AlN substrates.  Consequently, most companies will 

select the lower-priced option for the capacity to mass produce components.   

Another major concern with PCD substrates lies with their mechanical reliability 

when embedded into a package.  Polycrystalline diamond possesses a CTE of 1.0 ppm/K, 

considerably lower than other materials typically used in power device packaging.  The 

CTE mismatch between these different material layers can cause failures.  As simulation 

results demonstrated in [6], a polycrystalline diamond system exhibited poor mechanical 

reliability in terms of high thermal stress and low safety factor (<1) in solder and 

top/bottom copper metallization layers, when benchmarked against an AlN system.  The 

safety factor corresponds to the ratio of allowable stress to actual stress; thus, having a 

safety factor of less than 1 indicates a likely failure.   

However, this outcome can be managed by paying close attention to the thickness 

of the PCD compared to the other layers in the substrate.  As shown in Figure 2.12, the 

maximum thermal stress is reduced when the PCD’s thickness is greater than the 

thickness of the other layers within the substrate.  Therefore, it is crucial to find an 

appropriate balance of thicknesses between PCD and the other layers.  For example, an 

acceptable assumption is a thickness ratio of 2:1 for polycrystalline diamond to copper 

layer thickness. 
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 The final complication of using PCD films as the substitute for the DBC substrate 

is the attachment of the PCD films to the power semiconductor device and baseplate.  

The PCD fabrication process typically leaves behind rough top and bottom surfaces on 

the PCD films.  As a result, these films are difficult to connect to other layers in a 

package.  Additionally, the use of solder as an interconnection layer cannot be directly 

applied to PCD films.  So an additional layer has to be applied on the polycrystalline 

diamond surface (very thin layer) in order to smooth the surface.  This layer is usually a 

material that possesses a high thermal conductivity.  Its purpose is to fill in the cracks on 

the PCD surface and increase the effective contact surface area.   

  

Figure 2.12.  Thermal stress graphs of PCD and other material layers v. thickness of layers 

in a device package [6]. 
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CHAPTER 3 

HEAT TRANSFER ANALYSIS  

3.1  Introduction  

 Thermal management by a power semiconductor device package is an essential 

component in the reliability of power semiconductor devices used in high power 

applications.  Hence, this chapter’s focus is on the terminology, characteristics, and 

model representations of heat transfer through a power semiconductor device package. 

3.2 Characteristics of Heat Transfer  

 Heat transfer is the transference of heat from a place of high temperature to a 

place of low temperature.  This thermal transport of heat can only occur by three possible 

mechanisms:  conduction, convection, and radiation.  Conduction is the movement 

(diffusion) of heat through a solid due to a temperature difference.  While convection and 

radiation describe transmission of heat through fluid/air or electromagnetic radiation, 

respectively.  For the purpose of this research, convection and radiation can be neglected 

due to the consideration of heat transfer solely within the package.  As a result, heat 

conduction becomes the predominant heat transport mechanism for improvement of 

thermal management.  Heat conduction through any solid can further be described by its 

two response states:  steady-state and transient heat transfer. 

3.2.1 Steady-State Heat Transfer 

 Once a system is exposed to a temperature differential, a temperature profile will 

emerge due to the transference of heat.  At the beginning, this temperature profile 

changes with respect to distance and time.  Eventually, the system will reach a point 
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where the heat entering and leaving becomes balanced.  At this juncture, the temperature 

profile of the system stops changing; and the system has reached steady state.  An 

example of steady-state heat transfer through a power semiconductor device package is 

illustrated in Figure 3.1 with the assumption that heat flows primarily in only one 

direction (x), from top to bottom.     

 Steady-state heat transfer is an important component in the design process for 

determining the desired parameters, such as temperature, thermal resistance, and thermal 

capacitance, for each layer of a power semiconductor device package.  Together, these parameters 

characterize heat flow within the package along with establishing maximum limits that it can 

tolerate.  A general equation that relates some of these parameters to steady-state heat transfer can 

be seen in Equation 3.1.  This equation, derived from Fourier’s Law, relates the temperature 

difference between two surfaces, heat flux, length, and surface area.  In this equation, q represents 

the heat flux, k is the thermal conductivity, A is the surface area, 
𝑑𝑇

𝑑𝑥
 is the temperature gradient, TA 

and TB represent temperatures on opposing sides, and L is the length.   The negative sign in this 

equation is related to the direction of heat transfer.     

Figure 3.1.  1-D heat conduction through a power semiconductor device package (Tj: temperature of the 

device (junction temperature), Tdbc: temperature of top surface of DBC substrate, Tcase or Tc: temperature at 

bottom of package, Ta: ambient temperature). 
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 𝑞 =  −𝑘𝐴
𝑑𝑇

𝑑𝑥
=  

−𝑘𝐴(𝑇𝐴−𝑇𝐵)

𝐿
 (3.1) 

 Thermal resistance is the parameter to focus on due to its significant effect on 

thermal management.  This parameter essentially describes the resistance of a material to 

the flow of heat energy.  Maintaining quality thermal management in a package is 

accomplished by providing as low a thermal resistance for each layer as is possible.  

Depending on what is being calculated, there are different forms of thermal resistance 

that exist based on the layers of interest.  From Figure 3.1, the junction temperature can 

be determined from various points on the package, such as junction-to-ambient (Rj-a) and 

junction-to-case (Rj-c). 

There is a method for calculating thermal resistance along with a layer’s thermal 

capacitance.  Thermal capacitance is a function of the temperature rise associated with a 

given quantity of applied energy [1].  It measures the capability of a material to 

accumulate heat.  Both the thermal resistance and capacitance can be calculated based on 

the material properties and associated physical dimensions.  The approximation of these 

quantities can be seen in Equations 3.2 and 3.3.  In Equation 3.2, the thermal resistance is 

derived from Fourier’s Law of heat conduction equation.  While in Equation 3.3, thermal 

capacitance depends on heat dissipation and the temperature increase during a specified 

time period (t).  Based on these equations, the selection of material and dimensions for 

the package plays a critical role in successful thermal management.   

 𝑅𝑡ℎ𝑒𝑟𝑚𝑎𝑙  =  
𝑇𝐴  −  𝑇𝐵

𝑞
=  

𝐿

𝑘𝐴
   (3.2) 

 𝐶𝑡ℎ𝑒𝑟𝑚𝑎𝑙  =  
𝑞𝑡

 𝑇𝐴−𝑇𝐵
   (3.3) 
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3.2.2 Transient Heat Transfer 

 Studying the transient effects of heat transfer is also imperative.  Represented in 

Equation 3.4 and 3.5 are the respective time constant (i) and the temperature profile of 

an equivalent thermal RC network (TAB(t)), due to thermal resistance and capacitance for 

all material layers of a package (i layers).  In Equation 3.4, Ri and Ci are the thermal 

resistance and capacitance of a defined layer.  In Equation 3.5, power dissipation is 

represented as PD, period of time as t, and TA(t) and TB(t) are the transient temperatures of 

the opposing sides. 

 𝑖 = 𝑅𝑖𝐶𝑖  (3.4) 

 𝑇𝐴𝐵(𝑡) = (𝑇𝐴(𝑡) − 𝑇𝐵(𝑡)) =  𝑅𝑖𝑃𝐷(1 − 𝑒(−𝑡/𝑖))  (3.5) 

 A parameter often used to represent the transient behavior of a power 

semiconductor device and its package is determined by calculating the transient thermal 

impedance (Zth(j-x)).  Transient thermal impedance is the thermal analog to a driving point 

impedance for electrical circuits.  The thermal impedance depends upon the thermal 

resistance and heat capacity of the materials in the system under study.  The thermal 

impedance measures the time evolution of temperature from the location of the heat 

source (semiconductor die) to an external point on the case surface (at the interface where 

a heat sink would be attached).  An equation for Zth(j-x) is shown in Equation 3.6, where 

Tj,peak is the maximum junction temperature allowed; and Tx is any temperature spot 

selected on the package below the junction temperature.   

 𝑍𝑡ℎ(𝑗−𝑥) =  
𝛥𝑇𝑚𝑎𝑥

𝑃𝐷
=  

(𝑇𝑗,𝑝𝑒𝑎𝑘 − 𝑇𝑥)

𝑃𝐷
  (3.6) 
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 This Zth(j-x) parameter can be visualized in a transient thermal impedance curve, as 

seen in Figure 3.2.  These graphs typically have numerous curves related to the different 

heat power pulse levels that are input.  Generally, the y-axis for these types of graphs 

displays the Zth(j-x) values while the x-axis displays the time duration of a rectangular 

pulse of input power (heat).  Therefore, based on the amount of power dissipated (PD) 

and the desired location on the package to determine the associated Zth(j-x) and Tx, a 

calculation of the peak junction temperature (Tj,peak) can be determined for any period of 

time, as seen in Equation 3.7.     

 𝑇𝑗,𝑝𝑒𝑎𝑘 = 𝑍𝑡ℎ(𝑗−𝑥)𝑃𝐷 + 𝑇𝑥 (3.7) 

3.3 Equivalent Thermal Resistor-Capacitor (RC) Circuits  

 To model the thermal behavior in one dimension, the Ri and Ci of a package can 

be configured as an electrical circuit.  Figure 3.3 demonstrates the similarities between 

variables of the electrical domain (voltage, current) to the thermal domain (temperature, 

heat).   

Figure 3.2.  Example of transient thermal impedance curve experienced by a device package [2]. 
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 There are two different methods for modeling thermal behavior as an electrical 

circuit.  Equivalent thermal RC circuits are represented as either a Foster or a Cauer 

network topology.  Each of these thermal topologies has its own associated set of 

advantages and disadvantages.  The Foster model consists of an electrical circuit that 

shows only the behavioral characteristics of a package design.  Each layer of the package 

in this model is represented by parallel combination of thermal resistances (Ri) and 

capacitances (Ci), where i represents each material layer of a package.  A schematic of 

the Foster-equivalent RC thermal network is depicted in Figure 3.4.  The use of a fourth 

order network is typical for the power semiconductor industry. 

Figure 3.3.  Fundamental relationships in electrical and thermal domains. 
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 To calculate the RC elements of this thermal network, a curve fitting approach is 

applied to the experimental thermal impedance data that results in a sum of exponential 

terms [3].  The equation for this 4th order impedance is given in Equation 3.8, and is a 

least squares fit to experimental data.  In this equation, Zth(j-c) is the transient thermal 

impedance for the junction-to-case region (standard region utilized), n is the number of 

package layers, and Ri  and i  are the thermal resistance and corresponding time constant 

of each layer.  Figure 3.5 displays this approach by displaying different experimental 

Zth(j-c) curves based on collection of Ri and Ci values.   

The Foster RC components do not correlate directly with the physical parameters 

of a package’s materials or geometry.  As a result, the physical interpretation of where the 

heat flows and the time evolution of heat propagation through the package are not 

available.  

 

 𝑍𝑡ℎ(𝑗−𝑐)(𝑡) =  ∑ 𝑅𝑖[1 − 𝑒(−𝑡/𝑖)]𝑛
𝑖=1   (3.8) 

Figure 3.4.  Foster-equivalent RC thermal network. 
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 For this reason, a different model (topology) is desired. The Cauer topology more 

closely fits the geometric distribution of materials in a typical package.  In this model, the 

RC elements are assigned for each material layer of the package.  Hence, the entire 

package structure can be geometrically represented by the electrical circuit as shown in 

Figure 3.6. 

  

 The calculation of the thermal resistance and capacitance for each layer in the 

Cauer thermal network can be obtained in Equations 3.9 and 3.10 respectively.  In 

Equation 3.9, the thermal resistance is defined by the layer thickness (di), the effective 

cross-sectional surface area (Ahi), and the thermal conductivity (ki) of each layer.  

Figure 3.5:  Different transient thermal impedance curves based on Ri and Ci values [4]. 

Figure 3.6:  Cauer RC thermal network. 
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Computation of an effective cross-sectional surface area can be done using FEA analysis.  

Approximations can also be derived to avoid the complexity of FEA analysis.   

A first-order approximation can be used for heat spreading through each layer 

based on an estimated spreading angle of 45° from a vertical center axis (originating at 

the heat source) for conductors and 0° for insulators.  With this approximation, adequate 

results are obtainable and the complicated FEA analysis can be avoided.  In addition, 

thermal conductivity is not a constant parameter and fluctuates in materials based on 

temperature.  Generally, the temperature range experienced by a power semiconductor 

device package ranges from 25-400 °C.   This temperature span creates little variation of 

thermal conductivities in the materials of a package structure [5].  Therefore, the thermal 

conductivities for each material can be assumed constant.   

 𝑅𝑖 =  
𝑑𝑖

𝑘𝑖𝐴ℎ𝑖
  (3.9) 

 𝐶𝑖 =  𝑐𝑖𝑖
𝑉ℎ𝑖  (3.10) 

 In Equation 3.10, the thermal capacitance is calculated based on the specific heat 

capacity (ci), the mass density (pi), and its effective volume (Vhi) for each layer.  The 

effective volume is a component of the effective cross-sectional surface area (Ahi) 

multiplied by the layer thickness (di).  Similarly with thermal conductivity, the specific 

heat capacity and density are assumed constant even with temperature changes within the 

package. 

Furthermore, the use of the Cauer model allows a heat sink to be attached to a 

power semiconductor device package for calculation purposes as well.  If a heatsink were 

attached to a power semiconductor device package, the thermal resistance can be 

obtained based on convective heat transfer.  Equation 3.11 represents this thermal 
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resistance based on thermal exchange between heat sink and surrounding environment 

(air).  Typically, this is a nonlinear resistance because the convection heat transfer is a 

combination of natural and forced convection, which are nonlinear functions of 

temperature difference [3].  Therefore, the heat sink’s thermal resistance is denoted by its 

surface area exposed to air (Ahi) and the convective heat transfer coefficient (h). 

 𝑅ℎ𝑠 =  
1

ℎ𝐴ℎ𝑖
   (3.11) 

No matter which thermal network is chosen, the thermal behavior of a power 

semiconductor device package allows for calculation of the junction temperature (Tj) and 

other temperatures in various material layers (Tdbc, Tsol, Tbp, and Tc).  Where Tsol is the 

temperature at the top of the solder layer and Tbp is the temperature at the top of the 

baseplate. 
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CHAPTER 4 

EXPERIMENTAL SETUP FOR THERMAL MEASUREMENTS 

4.1 Introduction 

An experiment was executed to verify that the use of PCD films as a replacement 

for the DBC substrate in power semiconductor device packages would improve thermal 

performance.  This experiment involved using a hot plate as the heat source and two 

different temperature measurement devices to accurately capture and record the time 

evolution of the top surface temperatures of the Powerex package and the PCD films as 

they increased above room temperature to the steady-state temperature of the hot plate. 

The temperature measurement devices used in the experiment were a thermal (infrared 

(IR) imaging) camera and a thermocouple.  Each of these provides a different approach to 

measuring the temperature of a surface over time, and each has its own experimental 

setup and procedures that will be described thoroughly in the following sections.   

4.2 Experimental Setup and Procedure 

The basis of this experiment is to apply a uniform heat source to both package 

material systems and compare the heat conduction properties.  A comparison was made 

of the distinct temperature profiles of the top surface for both systems.  The heat source 

selected is a Thermo Scientific™ Super-Nuova™ Multi-Position Digital Stirring Hot Plate 

(Model SP135935) which provides the necessary temperature range to accommodate the 

testing requirements.  This hot plate was used to apply heat to the bottom surface of the 

test parts.   
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Some of the specifications for the hot plate are provided in Table 4.1.  There are 

two issues that arise with this hot plate:  the inaccuracy in the temperature across its 

surface and fluctuation of the temperature.  The accuracy of the hot plate can be ± 10 °C 

off from the digital setting established by the user at any one spot on the hot plate.  

Therefore, the temperature of the hot plate varies at different locations across the surface.  

Additionally, the hot plate fluctuates at ±2 °C periodically throughout a trial.   

Table 4.1.  Heating specifications for the Thermo Scientific hot plate [1]. 

Features Measurements 

Temperature Range 1 °C – 370 °C (34 °F – 698 °F) 

Heat-Up Time to Within 5 °C of Maximum Temperature 

(Unloaded Top Plate) 
8 Minutes 

Accuracy of Temperature Display v. Actual Average 

Temperature of a 2 in. Diameter at Center of Top Plate 

 

± 10.0 °C 

Temperature Stability at Center of Top Plate Surface ± 2.0 °C 

Figure 4.1 shows the hot plate and corresponding experimental test pieces (center 

of photo).  The hot plate was turned on and set to the appropriate temperature.  When the 

hot plate stabilized at the set temperature, the test pieces were placed on the hot plate 

surface using pliers or tweezers.  Placement of the test pieces on the same location of the 

hot plate surface helped to mitigate variations from one test to another, as seen in Figure 

4.2.  The experiments were performed in a room with minimal air flow.  The surfaces of 

all of the test parts were as smooth and polished as possible to accommodate good 

surface contact between the test parts and the hot plate.   
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After placement of the test piece, a temperature measurement device was used to 

monitor the change in temperature of the top surface until a steady-state temperature was 

reached.   

For the experimental procedure, the specific hot plate temperatures selected for 

each of the package designs are provided in Table 4.2.  The reason different temperatures 

were used is that the test pieces were significantly different in size and density.  

Figure 4.1.  Hot plate and test pieces used for the heating experiment. 

Figure 4.2.  Placement of DBC test piece (left) and the PCD test pieces (right, inside circle). 
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Table 4.2.  Hot plate temperatures used for package designs. 

Package Designs Temperature Setting 

Powerex 150 °C and 200 °C 

Co-PCD 75 °C and 100 °C 

Cu-PCD 75 °C and 100 °C 

4.3 Measurement of the Top Surface Temperature Profile  

Once a test piece was placed on the hot plate, a thermal camera and 

thermocouples were used together to determine the temperature profiles of these material 

systems.  The absolute temperature reading from the camera required calibration of its 

settings.  The thermocouples helped to ensure values of the temperature were known.   

4.3.1 Thermal (IR) Imaging Camera Measurement 

4.3.1.1 Background 

 A thermal imaging camera measures the temperature of a surface by reading the 

amount of infrared radiation that is emitted from an object.  The general temperature 

measurement using this type of camera calculates the apparent temperature (Tobj) of an 

object based on three incoming radiation power terms:  emission from the object (Wobj), 

reflected emission from ambient sources (Wrefl), and emission from the atmosphere 

(Watm).  Based on the emissivity () and the transmittance () for each of these terms, a 

thermal imaging camera can calculate the approximate apparent temperature of a surface.  

A schematic representation of this measurement formula is shown in Figure 4.3. 

Thermal imaging cameras of the type used, possess a wide temperature range, low 

thermal sensitivity, high temperature resolution, and fast frame rate capability, all of 

which made it very useful in this application.  In particular, the fast frame rate and low 
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thermal sensitivity were essential for measuring the temperature of the smaller PCD 

films.  The camera selected for this experiment was the FLIR E60 which has the ability to 

take both thermal (IR) images and videos.  In addition, the FLIR E60 was integrated with 

FLIR software for enhanced analysis of the collected temperature data.  The full list of 

specifications for the FLIR E60 camera are provided in Table 4.3. 

Table 4.3.  Specifications for FLIR E60 thermal (IR) imaging camera [3]. 

Features Measurements 

Temperature Range -20 °C to 650 °C (-4 °F to 1202 °F) 

Thermal Sensitivity (Noise 

Equivalent Temperature 

Difference (NETD)) 

<0.05 at 30 °C 

Measurement Accuracy ±2 °C or ±2% of reading 

Spectral Range 7.5 to 13 µm 

Frame Rate 60 Hz 

4.3.1.2 Experimental Setup and Camera Settings 

 The experimental setup of the hot plate and the thermal imaging camera is shown 

in Figure 4.4.  The camera captured the full transient temperature profile of the DBC and 

Figure 4.3.  Schematic representation of measurement formula (1 = surroundings,  

2 = object, 3 = atmosphere, 4 = camera) [2]. 
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PCD test pieces by recording a video.  In order to obtain accurate temperature readings, 

several parameters and settings were considered.  For instance, the height, angle, and 

focus of the camera with respect to the hot plate all have an effect on the output 

temperature.  Specifically, the height and angle should be far enough away from the hot 

plate to avoid hot plate radiation while the object of interest should be in focus to create a 

clear thermal image.  For a proper temperature measurement, the desired height should be 

at least six inches away from the hot plate; and the angle, with respect to horizontal, 

should be around 45°.  

 
The camera’s settings of atmospheric temperature (Tatm), reflective temperature 

(Trefl), and emissivity () are critical.  As mentioned earlier, each of these parameter 

settings directly impacts the resulting measurement used by the camera to calculate the 

Figure 4.4.  Thermal (IR) imaging camera experimental setup. 
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apparent temperature.  Atmospheric temperature represents the temperature of the 

surrounding atmosphere.  This setting was determined by using an AcuRite® Digital 

Indoor Thermometer (Model 00307W) to capture the exact room temperature between 

the camera and the target object.  The reflective temperature compensates for the 

radiation that is reflected from the target object.  This setting becomes crucial if the target 

object has a low emissivity and appears to be reflective, like most metals.  The reflective 

temperature was measured by the reflector method, as shown in Figure 4.5.  In this 

figure, there is a picture of the experimental setup on the left and a thermal image of the 

aluminum foil on the right.  This method consists of placing a sheet of crumpled 

aluminum foil in front of the target.  Aluminum has an immensely low emissivity of 0.02 

and is extremely reflective, making it the most effective material to measure reflective 

temperature.  The emissivity of the FLIR E60 camera was set to 1.00, and the distance 

away from the object was set to 0 ft.  The average temperature over a large area of the 

aluminum foil was measured to determine an average reflective temperature.   
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The final camera setting of importance is emissivity.  Emissivity is the measure of 

how much radiation is emitted from an object compared to that from a perfect blackbody 

of the same temperature.  The value of emissivity ranges from 0 to 1 with a low 

emissivity setting corresponding to highly reflective materials, such as most metals, and a 

high emissivity setting corresponding to low reflective materials.  This setting is critical 

due to the camera’s inability to detect emissivity of objects to calculate the true 

temperature.  These cameras can only calculate the “apparent temperature” of objects, 

which means that this temperature is computed as a function of both temperature and 

emissivity [4].   

In addition, there is a different value of emissivity for every material.  Therefore, 

when measuring an object’s temperature with multiple materials, the emissivity will be 

different for each material in the image.  This correlates to the Powerex test piece that 

resulted in approximately four emissivity values that were needed for the correct 

Figure 4.5.  Reflector method for measuring of the reflective temperature setting. 
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temperature to be computed at each layer.  The PCD films consisted of a PCD substrate 

coated with either cobalt or copper.  The thickness of these coated layers was relatively 

small, in the nanometer range.  For this reason, the coated layers were neglected. The 

emissivity of PCD is relatively unknown, with very few studies published.  Generally, the 

emissivity of diamond is related to its quality and fabrication process.  As a result, PCD 

maintains a high emissivity value in most cases.  According to [5-8], the ranges of 

emissivity for materials used in the Powerex piece and PCD are shown in Table 4.4. 

Table 4.4.  Emissivity values for Powerex package and PCD films. 

Experimental Package Designs Material Layers Emissivity 

Powerex piece Cu 0.77−0.87 

 AlN 0.86−0.96 

 AlSiC MMC 0.83−0.96 

   

PCD Films PCD 0.63, 0.85−0.95 

Emissivities are sensitive to temperature variations and, thus, time during the 

transient measurements. Therefore, an approach was used to determine the behavior of 

emissivity vs. time.  This approach utilized small thermocouples to properly measure the 

true temperature of the surface.  This true temperature value was then used to calibrate 

the emissivity values to correctly portray the temperature profiles measured by the FLIR 

E60.   

4.3.1.3 Experimental Procedure 

 The atmospheric temperature, reflective temperature, and emissivity values for 

the camera were set to the desired values, as shown in Table 4.5. The atmospheric and 

reflective temperatures were determined by experimentation with the hot plate 

temperature.  The emissivity was set to the default value of 0.95 for the Powerex part, 
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while several emissivity values were used for the PCD films due to the small size of the 

PCD films compared to the thermocouples.  The size of these thermocouple sensors can 

negatively impact the true temperature measurement of the PCD films and cause 

inaccuracies in the readings.  Additionally, PCD has a high emissivity value that will 

generate small temperature variations when recorded by the camera.  Once the emissivity 

value is above 0.85, the measured temperature marginally changes if the emissivity is 

increased further.  Under these circumstances, the PCD films were only represented by a 

range of emissivity values, represented earlier in Table 4.4.  

Table 4.5.  FLIR E60 camera parameter settings used in heating experiment for both package designs. 

Camera Settings Powerex Package PCD Films 

Hot Plate Temperature 150 °C 200 °C 75 °C 100 °C 

Emissivity 0.95 0.95 0.63, 0.850.95 0.63, 0.850.95 

Reflective Temperature 76.0 °F 76.0 °F 76.0 °F 76.0 °F 

Distance from Camera 0.5 ft 0.5 ft 0.5 ft 0.5 ft 

Atmospheric Temperature 95.3 °F 108.7 °F 84.0 °F 87.5 °F 

The Powerex part was tested at hot plate temperatures of 150 °C and 200 °C, 

whereas the PCD films were measured at lower temperatures of 75 °C and 100 °C.  The 

placement of the each package design on the hot plate and spot targets can be seen in 

Figure 4.6, as a thermal image from the FLIR E60.  For the Powerex part, four pieces of 

similar design were tested at the stated hot plate temperatures of 150 °C and 200 °C for 

30 minutes and 25 minutes, respectively.  At the end of each trial, the results from the 

four module test parts were averaged together to get an appropriate representation of the 

top surface temperature over time.  For the PCD films, one of each design (Co-PCD and 

Cu-PCD) was tested at two different hot plate temperatures for 2-minute cycles each.  
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Multiple trials were then executed for each package design to prove consistency with 

their temperature profiles.  Data analysis from the multiple trials for each package design 

were analyzed and modified by utilizing FLIR Tools software.  Individual trials were 

then averaged together to get a precise temperature profile for each package design.  The 

top surface temperature profile for the Powerex part can be seen below in Figure 4.7. 

 

Figure 4.6.  Thermal (IR) images of Powerex part (left) and PCD films (right). 

 

Figure 4.7.  Thermal camera measurement of apparent top surface temperature profile of Powerex parts 

at hot plate temperatures of 150 °C and 200 °C. 
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4.3.2 Thermocouple Measurements 

 A digital thermometer, Model HH-23 Microprocessor Thermometer (Model LSI-

120-821), was used to convert the voltage of each thermocouple to its equivalent 

temperature. The thermocouple selected for this work was a Type K (chromel-alumel).  

Table 4.6 shows the specifications for the digital thermometer using a Type K 

thermocouple.    

Table 4.6.  Specifications for digital thermometer with Type K thermocouple [9]. 

Features Measurements 

Temperature Range -200 °C to 1372 °C (-328 °F to 2502 °F) 

Temperature Resolution 0.1/1 °C or °F 

Overall Accuracy ±(0.1% rdg + 0.6 °C /1.0 °F) 

 Each test part was connected to a thermocouple by Teflon™ tape as seen in Figure 

4.8.  Heating experiments were done as before with the thermal imaging camera to 

measure the temperature profile of the top surface.   

 

Figure 4.8.  Interconnection of thermocouple sensor and 

top surface of Powerex package using Teflon tape. 
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 The results from the thermocouple experiments on the Powerex parts are shown in 

Figure 4.9.  These results were obtained by recording the initial rise time of the true 

surface temperature for the first 3 minutes every 10 seconds.  After 3 minutes, the 

temperature data was recorded every 30 seconds.  Multiple trials were completed and 

averaged together to create the true temperature profile for both hot plate temperatures of 

150 °C and 200 °C.  This temperature profile was then compared with the apparent 

temperature profile taken by the thermal imaging camera to approximate the emissivity 

values as they change with time. 

 

4.3.3 Emissivity Calibration of Thermal (IR) Imaging Camera 

 The FLIR E60 camera has the capability of integrating with the FLIR Tools 

software for in-depth analysis on thermal (IR) images and videos.  This software was 

utilized to analyze videos of the apparent temperature profile from the camera and change 

the emissivity values accordingly.  The emissivity values were adjusted at each data point 

taken from the thermocouple experiments until the apparent temperature, from Figure 

Figure 4.9.  Digital thermometer measurement of true temperature profile of Powerex parts. 
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4.7, matched the true temperature of the top surface.  Table 4.7 displays the new 

emissivity values as they change with time (temperature) for the two hot plate 

temperatures.  Note that the emissivity becomes constant after 3 minutes (small 

temperature changes arise).  A plot of the data in Table 4.7 is provided in Figure 4.10. 

Table 4.7.  Adjusted emissivity values for thermal (IR) imaging camera over entire transient period. 

Time (s) HP-200C Emissivity HP-150C Emissivity 

0 0.95 0.95 

1 0.74 0.82 

2 0.61 0.61 

3 0.52 0.52 

4 0.45 0.44 

5 0.40 0.38 

6 0.36 0.36 

7 0.33 0.32 

8 0.30 0.31 

9 0.28 0.28 

10 0.26 0.26 

20 0.22 0.20 

30 0.19 0.19 

40 0.18 0.18 

50 0.18 0.17 

60 0.17 0.16 

70 0.17 0.16 

80 0.17 0.16 

90 0.16 0.16 

100 0.16 0.16 

110 0.16 0.16 

120 0.16 0.15 

130 0.16 0.15 

140 0.16 0.15 

150 0.16 0.15 

160 0.16 0.15 

170 0.16 0.15 

180 0.16 0.15 
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 Knowing the emissivity changed as a function of time (temperature), the image 

data (Powerex parts) was recalibrated and plotted in Figures 4.11 and 4.12 for hot plate 

temperatures of 150 °C and 200 °C, respectively. Also shown in Figure 4.11 and Figure 

4.12 are the outputs from the thermocouple measurements and the uncalibrated images 

(emissivity set to default value of 0.95).  This emissivity-calibrated temperature profile 

now accurately represents the top surface temperature of the Powerex package over its 

entire transient period.   

Figure 4.10.  Top surface material behavior of emissivity v. time. 
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Figure 4.11.  Comparison of top surface temperature profiles at hot plate 

temperature of 150 °C. 

Figure 4.12. Comparison of top surface temperature profiles at hot plate 

temperature of 200 °C. 
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CHAPTER 5 

MODELING OF POWEREX PACKAGE 

5.1 Introduction 

 The calibrated transient temperature behaviors of the Powerex package include 

the large thermal RC time constants of both the baseplate and solder layers.  Hence, an 

appropriate equivalent thermal circuit was needed to correctly describe the effects of the 

baseplate and solder regions.  Modification of the equivalent circuit could then be done to 

remove the baseplate and solder layers, leaving only the DBC section of the package for 

direct comparison to the PCD films.   

5.2 Construction of Cauer-Equivalent RC Circuit 

 The modeling of the DBC layers commenced by creating a Foster-Equivalent RC 

circuit that reflected the transient behavior of the emissivity calibrated top surface 

temperature.  This approach accurately computed the time constants required to 

characterize this temperature profile.   From this circuit, a topology conversion was made 

from the Foster-equivalent RC circuit to a Cauer-equivalent RC circuit.  The 

transformation between circuit topologies is necessary in order for the each material layer 

of the Powerex package to be physically represented by electrical components.   

5.2.1 Foster-Equivalent RC Circuit 

The creation of the Foster circuit begins by computing the necessary thermal 

resistors and capacitors based on applying an exponential fourth order fit using the Curve 

Fitting Tool in MATLAB.  The equation implemented is shown in Equation 5.1, where 

Tdbc(t) is the temperature profile at the top surface of the Powerex package, n is the 



50 

Figure 5.1.  Fourth order exponential fit of transient surface temperature of 

Powerex package for a hot plate at 150 °C. 

number of layers in the package, Ri  is the thermal resistance for the ith layer, i  is the time 

constant for the ith layer, and t is the time duration of the experiment.  This Curve Fitting 

Tool approximates eight coefficients (Ri and i) that best embody the temperature profile 

of the top surface.  Figure 5.1 and Figure 5.2 show the corresponding results for the 

fourth order exponential fits of the temperature data for each hot plate temperature. 

𝑇𝑑𝑏𝑐(𝑡) = ∑ 𝑅𝑡ℎ,𝑖( 1 − 𝑒
−

𝑡

𝑖  )𝑛
𝑖=1        (5.1) 

 

Figure 5.2.  Fourth order exponential fit of transient surface temperature of 

Powerex package for a hot plate at 200 °C. 
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 The eight coefficients for each temperature experiment are given below in Table 

5.1.  An electrical circuit representation of the fourth order Foster-Equivalent RC model 

is shown below in Figure 5.3. The two boundary conditions in this circuit are Qhp and 

Treference which represent the heat dissipation and top copper layer temperature, 

respectively. 

Table 5.1.  Circuit parameters from fourth order exponential fit of the Foster RC circuit. 

Circuit Parameters Powerex Parts (HP-150C) Powerex Parts (HP-200C) 

Resistors (K/W)   

R1 93.25 89.84 

R2 72.08 145.4 

R3 82.46 52.73 

R4 49.77 90.99 

   

Time Constants (s)   

1 57.76 0.00111 

2 12.97 35.6 

3 0.0007281 7.406 

4 274.2 203.8 

   

Capacitors (J/K)   

C1 0.61941 1.23553e-05 

C2 0.17994 0.24484 

C3 8.82973e-06 0.14045 

C4 5.50934 2.23981 

 

 

Figure 5.3.  Electrical schematic of Foster-equivalent RC model. 
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5.2.2 Conversion from Foster to Cauer RC Circuit 

 The Foster-network is converted to a Cauer topology as described in [1] from 

pages 59-63 in Appendix A.  The new thermal resistances and capacitances for the Cauer 

network are displayed in Table 5.2.  The corresponding circuit is shown in Figure 5.4.  

Once more Qhp and Treference represent heat dissipation and the top surface copper layer 

temperature respectively while Tambient serves as the room temperature (73 °F or 23 °C).  

This fourth order ladder network more closely represents the physical system of package 

materials in the Powerex package.   

Table 5.2.  Circuit components for Cauer RC circuit. 

Circuit Parameters Powerex Parts (HP-150C) Powerex parts (HP-200C) 

Resistors (K/W)   

R1(CE) 82.4707 89.8654 

R2(CE) 118.2863 125.1081 

R3(CE) 69.6306 108.4042 

R4(CE) 27.1725 55.5823 

   

Capacitors (J/K)   

C1(CE) 8.8292e-06 1.2354e-05 

C2(CE) 0.1360 0.08926 

C3(CE) 0.7563 0.2456 

4(CE) 8.9231 3.2516 

 

      

Figure 5.4.  Electrical schematic of Cauer RC circuit. 
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5.3 Modification of Cauer RC Circuit 

 The Cauer circuit developed produced thermal resistors and capacitors that 

represent the material layers of the Powerex package.  This circuit does not account for 

lateral heat spreading, constriction, and edge effects.  In addition, the part from the 

Powerex package is asymmetric due to the way in which the test piece was acquired from 

the full module.  Figure 5.5 shows the structure used in the testing and shows an area 

where the lateral effects, listed above, influence the thermal behavior from a purely one-

dimensional description.  In this figure, the arrows in the hot plate represent heat energy 

into the test piece.   

 

Figure 5.5.  Schematic representation of thermal experiment with Powerex piece (Temperatures represented 

as function of time, Tdbc(t): top surface temperature profile of Powerex package, Tbp(t): temperature profile 

at top of baseplate, Tsol(t): temperature profile at top of solder layer, and Tcase(t): temperature profile at 

bottom of Powerex package). 

For a more direct comparison of performance to the PCD pieces, the DBC section 

of the Powerex piece must be isolated in the model (and associated test data).  A similar 

Cauer thermal network, created from calculated parameters based on material properties 
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and geometries, is developed. This calculated network can provide insight into removal 

of the baseplate and solder sections, leaving only the DBC section.   

5.3.1 Calculated Cauer RC Circuit 

Each layer of the Powerex package was measured to ascertain its corresponding 

dimensions of length, width, and height.  Typically, heat is generated from a small area 

(power semiconductor device) and spreads outward to the other layers that are 

dimensionally larger.  In these experiments, however, the baseplate was heated first and 

was nearly the same size (surface area) as the other layers, thus the effect of heat 

spreading can be ignored.   

The material properties, as given in Table 2.1, were used along with the geometric 

values to calculate the thermal resistance of each layer. The solder layer thickness was 

hard to determine without significantly better microscopy than was used.  For this reason, 

it was challenging to distinguish a value of thermal resistance.  A similar issue was 

related to the exact baseplate (MMC) and solder (PbSn) composition percentages, thus 

allowing only a range of thermal resistances to be estimated.  Table 5.3 displays the 

resultant thermal resistance ranges for the solder layer and the baseplate. 

Table 5.3.  Variation of material properties for baseplate and solder layer. 

Material Solder (PbSn) Baseplate (AlSiC MMC) 

Thermal Conductivity (W/m.K) 35  66 120  205 

Thickness (µm) 50  100 5000 

Surface Area (m2) 2.55e-04 3.145e-04 

   

Thermal Resistance (K/W) 0.00297  0.0112 0.0776  0.133 
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For the purpose of the calculated Cauer network, the baseplate’s thermal 

conductivity and the solder’s thermal conductivity and thickness were approximated 

within their ranges based on the standard values used in other references.  From [2-3], a 

baseplate thermal conductivity of 175 W/m*K and solder thermal conductivity of 50 

W/m*K and thickness of 100 µm was selected.  With all the parameters determined, 

Equation 3.9 was used to calculate the thermal resistance for each layer.  Table 5.4 shows 

all the thermal resistance values for this particular circuit.  The calculated Cauer RC 

circuit is topologically identical to the Cauer circuit shown in Figure 5.4.   

Table 5.4.  Thermal resistances of calculated Cauer RC circuit.  

Thermal Resistances Calculated Value (K/W) 

R1(CC) 0.09085 

R2(CC) 0.00784 

R3(CC) 0.01383 

R4(CC) 0.00489 

5.3.2 Comparison between Measured and Calculated Cauer RC Thermal 

Networks 

Further analysis comparing the measured and calculated elements of the thermal 

networks demonstrated that additional modifications were necessary.  Table 5.5 displays 

the steady state simulation results for the experimental and calculated networks.  The 

corresponding circuit utilized is depicted in Figure 5.6.  Each of the circuit components 

were implemented into the simulation from values listed in Table 5.2 and 5.4 for 

experimental and calculated networks, respectively.  The boundary conditions of Qhp and 

Treference for each network were estimated to get the desired temperature at the top surface 

(Tdbc) to match the results from the thermal experiment and to match the known hot plate 

temperature. 



56 

Table 5.5.  Initial steady state comparison of both Cauer circuits (CE and CC). 

 

Measurements HP-150C Analysis HP-200C Analysis 

 Exp. (CE) Calc. (CC) Exp. (CE) Calc. (CC) 

S.S Temperatures (°F)     

Tcase 302.27 302.32 (150 °C) 392.27  392.04 (200 °C) 

Tbp 300.90 298.45 388.66 381.74 

Tsol 298.93 298.12 383.63 380.85 

Tdbc 297.77 297.53 379.27 379.28 

Treference 297.32 297.32 377.04 378.73 

Tambient 73.0 73.0 73.0 73.0 

     

Temperature Drops (°F)     

Tdrop,bp 1.37 3.87 3.61 10.3 

Tdrop,sol 1.97 0.33 5.03 0.89 

Tdrop,aln 1.16 0.59 4.36 1.57 

Tdrop,cu 0.45 0.21 2.23 0.55 

 

 

Figure 5.6.  Initial electrical schematic for steady state analysis. 

 

5.3.3 Modifications to Cauer-Equivalent RC Circuit 

The discrepancies between the results of the experimental and calculated 

temperature values from Table 5.5 indicated that refinement of the model was necessary 

to account for neglected constriction of the heat flow from the baseplate into the DBC 

region and edge effects.  All calculations in this section were executed in temperature 

units of Kelvin (K), then converted to Fahrenheit (°F) shown in the following tables.   
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5.3.3.1 Addition of Constriction Resistance (Rc1) 

An additional resistance was added at the baseplate node to account for the 

narrowing of the heat flow path from the baseplate into the solder and DBC layers.  This 

additional resistance is shown as Rc1 in Figure 5.7.  Its value was determined by matching 

the temperature drop (Tdrop,bp(CC)), given in Table 5.5, associated with the hot plate 

temperature (Tcase(CC)) to the baseplate temperature (Tbp(CC)).  This resulted in an increase 

in both the boundary conditions as shown in Figure 5.7. 

 
 

Figure 5.7.  Electrical schematic (Steady State) of experimental thermal network with constriction 

resistance, Rc1. 

5.3.3.2 Addition of Edge Effect Resistance (Re1) 

Once the constriction resistance was obtained, an edge-effect resistance for other 

layers was computed.  A modification to R2(CE)  in the network was done by adding a 

parallel resistance thus reducing the equivalent resistance between nodes.  This additional 

resistance was determined by the circuit schematic shown in Figure 5.8. With the 

expected temperature drop of the solder layer known (Tdrop,sol(CC)), Equations 5.2-5.5 were  

used in sequential order to compute the resistance value for Re1. 
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Figure 5.8.  Thermal network (Steady State) with implementation of edge-effects through addition of Re1 

into the network. 

 

𝑇𝑠𝑜𝑙,𝑛𝑒𝑤 =  𝑇𝑏𝑝,𝑛𝑒𝑤(𝐶𝐸) − 𝑇𝑑𝑟𝑜𝑝,𝑠𝑜𝑙(𝐶𝐶)      (5.2) 

 

𝑄2−4 = 𝑄ℎ𝑝,𝑛𝑒𝑤 − 𝑄𝑐1 =  𝑄ℎ𝑝,𝑛𝑒𝑤 − 
𝑇𝑏𝑝,𝑛𝑒𝑤(𝐶𝐸)− 𝑇𝑎𝑚𝑏𝑖𝑒𝑛𝑡

𝑅𝑐1
             (5.3) 

𝑅𝑒𝑞2 =  
𝑇𝑑𝑟𝑜𝑝,𝑠𝑜𝑙(𝐶𝐶)

𝑄2−4
               (5.4) 

𝑅𝑒1 =  
𝑅2(𝐶𝐸)𝑅𝑒𝑞2

𝑅2(𝐶𝐸)−𝑅𝑒𝑞2
                          (5.5) 

5.3.3.3 Results of Rc1 and Re1 Modifications 

 Figure 5.9 displays the configuration of the modified circuit with their 

corresponding boundary conditions.  Some final small adjustments to other circuit 

components were made for a better fit to the temperature data. 
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Figure 5.9.  Schematic of modified Cauer RC circuit. 

 

Table 5.6 displays the steady state simulation results using the network of Figure 

5.9.  Furthermore, the updated circuit components that generated these accurate 

temperatures are provided in Table 5.7.  In comparison to Table 5.2, the thermal 

capacitances of C3(CE) and C4(CE) were increased along with R4(CE) being reduced to match 

the top surface temperature from the thermal experiment (Tdbc). 

Table 5.6.  Final steady state simulation with implementation of Rc1 and Re1. 

Measurements HP-150C Analysis  HP-200C Analysis 

 Mod Exp. (CE) Calc. (CC) Mod Exp. (CE) Calc. (CC) 

S.S Temperatures (°F)     

Tcase 302.2 302.32 (150 °C) 391.65 392.04 (200 °C) 

Tbp 298.33 298.45 381.35 381.74 

Tsol 297.99 298.12 380.42 380.85 

Tdbc 297.61 297.53 379.26 379.28 

Treference 297.56 297.32 378.99 378.73 

Tambient 73.0 73.0 73.0 73.0 

     

Temperature Drops (°F)     

Tdrop,bp 3.87 3.87 10.3 10.3 

Tdrop,sol 0.34 0.33 0.93 0.89 

Tdrop,aln 0.38 0.59 1.16 1.57 

Tdrop,cu 0.05 0.21 0.27 0.55 
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Table 5.7.  Circuit components for the modified Cauer circuit. 

Circuit Parameters Powerex Parts (HP-150C)  Powerex Parts (HP-200C) 

Thermal Resistances (K/W)   

R1(CE) 82.4707 89.8654 

R2(CE) 118.2863 125.1081 

R3(CE) 69.6306 108.4042 

R4(CE) 8.75 25.0 

Rc1 5430 2965 

Re1 130 280 

   

Thermal Capacitances (J/K)   

C1(CE) 8.8292e-06 1.2354e-05 

C2(CE) 0.1360 0.08926 

C3(CE) 5.00 1.75 

C4(CE) 6.35 1.85 

 

Using the circuit of Figure 5.9 as a description of the Powerex test piece, Figures 

5.10 and 5.11 show the de-convolved internal transient temperature profiles of each 

material node at the two hot plate temperatures from the experimental results. 

 
Figure 5.10.  Temperature profiles for each material layer in Powerex package at hot plate temperature of 

150 °C (HP-150C). 
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Figure 5.11.  Temperature profiles for each material layer in Powerex package at hot plate temperature of 

200 °C (HP-200C) 

 

A comparison between the emissivity-calibrated thermal imaging camera and 

modified Cauer RC circuit results for the top surface temperature profile (Tdbc) are 

provided in Figure 5.12.  The thermal experimentation and Cauer RC circuit were 

equivalent in behavior for both hot plate temperatures.  This outcome validated that this 

circuit precisely models the thermal behavior taking place within the Powerex package.  

With the modified Cauer-network established, some of the layers in this circuit were 

removed for a comparison between the Powerex and PCD test pieces.   
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Figure 5.12. Comparison between EM-calibrated camera and Cauer RC model temperature profiles (Tdbc) 

for Powerex piece. 

 

5.4 DBC Cauer RC Circuit 

 The baseplate and solder layers of the Powerex test piece can be removed from 

the developed Cauer RC circuit and thus the effects on the heat flow can be 

correspondingly removed.  This leaves just the DBC section in the circuit (diagram 

shown in Figure 5.13) for a direct comparison to the PCD test pieces.   

 
Figure 5.13.  Demonstrating theoretical thermal experiment with DBC substrate (Tdbc,new(t): new top surface 

temperature profile representing DBC substrate as function of time and Tcase,new(t): new bottom temperature 

profile of DBC substrate as function of time). 
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The reduced circuit model is provided in Figure 5.14 with new temperature labels 

for each layer.  The thermal resistor and capacitor values for the AlN and copper layers 

remain unchanged and were shown previously in Table 5.7.  In addition, the heat 

dissipation (Qhp,new) for this new circuit was decreased to a lower value in order to 

maintain the exact hot plate temperature at the bottom of the DBC substrate.  The other 

boundary condition concerning the reference temperature (Treference,new) was increased due 

to the expected additional influx of heat.  Simulation results for the top surface 

temperature profiles for the DBC-only circuit, at the two hot plate test temperatures, are 

displayed in Figure 5.15.     

 
 

Figure 5.14.  Electrical schematic of DBC-only Cauer RC circuit. 
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Figure 5.15.  DBC-only Cauer RC circuit new temperature profiles. 
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CHAPTER 6 

RESULTS AND DISCUSSION 

6.1 Calibration of Emissivity for Co-PCD and Cu-PCD Films 

 Two types of metal contacts were deposited on the PCD samples.  One type of 

sample consisted of a layer of cobalt on one surface of the PCD (Co-PCD).  The other 

type sample was fabricated by depositing copper on both the upper and lower surfaces of 

the PCD (Cu-PCD).  Data was shown for a hot plate temperature of 75 ºC, though similar 

results were obtained with experiments using a hot plate temperature of 100 oC.    

The results from the heating experiments for both Co-PCD and Cu-PCD films at 

different emissivity values for the temperature setting of 75 °C were provided in Figures 

6.1 and 6.2, respectively.  The temperature profiles measured at the center of these 

samples were created by averaging the profiles of 7 and 9 different trial runs for Co-PCD 

and Cu-PCD, respectively.  The range of emissivity used for the temperature profiles in 

the figures were between 0.85-0.95, with the value of 0.63 determined invalid due it 

generating a steady state temperature above the hot plate temperature.  From examining 

these figures, the steady state temperature increased as the emissivity was decreased.  In 

addition, changing the emissivity had no effect on the speed at which the top surface 

reached a steady state temperature.   
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Figure 6.1.  HP-75C Co-PCD films top surface temperature profiles at differing emissivities. 

 

    

Figure 6.2.  HP-75C Cu-PCD film top surface temperature profiles at differing emissivities. 

 

Due to the unknown emissivity of polycrystalline diamond, the steady state 

temperature and temperature differential between the final temperature and the hot plate 

for both PCD films has no definite value.  The specified temperature ranges of these two 

parameters are depicted in Table 6.1 and 6.2 for each PCD film.  The temperature 

differential assumes that the hot plate remains constant (no fluctuations) at 75 °C 
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throughout each trial.  From the experiment, the Co-PCD film settled at a lower 

temperature compared to Cu-PCD film for almost every emissivity.  The resulting steady 

state temperatures have a variation between emissivity values (0.85-0.95) of 3.74 °C and 

3.96 °C for the Co-PCD and Cu-PCD films, respectively.  This temperature span for both 

PCD films was relatively small.  Therefore, an accurate representation of the top surface 

temperature profile was obtainable utilizing one of the emissivity values.  Selecting an 

emissivity in this range can approximate a temperature on the surface of polycrystalline 

diamond at any point in time with minimal error.   

The temperature differential across these films ranged from 9.70-13.45 °C for Co-

PCD and 9.52-13.49 °C for Cu-PCD.  Evaluating the temperature drop at each emissivity, 

the Co-PCD film had a slightly less temperature difference (0.04-0.05 °C) across its 

thickness compared to the Cu-PCD film.  This correlated to the Co-PCD film having a 

lower thermal resistance compared to Cu-PCD film.  This may indicate that the cobalt 

coated polycrystalline diamond might have a better surface adhesion than copper on 

PCD.   

Table 6.1.  Experimental results of Co-PCD film. 

Emissivity Steady State Temperature (°C) Temperature Differential (°C) 

0.95 61.55 13.45 

0.93 62.24 12.76 

0.91 62.96 12.04 

0.89 63.71 11.29 

0.87 64.49 10.51 

0.85 65.30 9.70 
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Table 6.2.  Experimental results of Cu-PCD film. 

Emissivity Steady State Temperature (°C) Temperature Differential (°C) 

0.95 61.51 13.49 

0.93 62.20 12.80 

0.91 62.92 12.08 

0.89 63.67 11.33 

0.87 64.44 10.56 

0.85 65.48 9.52 

 

 With the Co-PCD sample having a lower thermal resistance than Cu-PCD, the 

Co-PCD film’s top surface should reach a steady state temperature in a shorter time.  

Figure 6.3 demonstrated this with a comparison of the top surface temperature profiles 

between the Co-PCD and Cu-PCD samples.  The temperature data in this figure was 

normalized so that the emissivity value has no impact on the results.  The data indicated 

that the Co-PCD sample is about three times faster with respect to the temperature rise 

than the Cu-PCD sample.  Approximately, the Co-PCD sample reached steady state at 

5.41 seconds and the Cu-PCD sample arrived at 14.52 seconds. 
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Figure 6.3.  Normalized top surface temperature profiles of PCD samples.  

 

In general, copper’s thermal conductivity is three times greater than cobalt.  

Despite this large disparity in thermal conductivity, the cobalt-PCD sample still 

possessed an overall lower thermal resistance.  As a result, this outcome correlated to 

cobalt’s interconnections qualities with polycrystalline diamond outperforming copper’s 

superior material properties.   

6.2 AlN Substrate (DBC) of Powerex Sample Compared to the PCD Samples 

 The DBC section of the Powerex test samples were analyzed based on the two hot 

plate temperatures of 150 °C and 200 °C.  Figure 6.4 displayed their respective 

normalized top surface temperature profiles measured at the center of the AlN substrate 

(DBC).  Both of the temperature profiles were related to the simulation results utilizing 

the modified Cauer RC circuit previously described in chapter 5.  The time responses 

depicted in Figure 6.4 indicated that the AlN substrate reached steady state (99% of final 

value) at approximately 17.5 minutes and 13.0 minutes for hot plate temperatures of 150 
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°C and 200 °C, respectively.  The difference in these response times corresponded to an 

increase in heat dissipation from the raised hot plate temperature. 

 

Figure 6.4.  Normalized temperature profiles of DBC section of Powerex samples.  

 

 A comparison between the standard DBC section of the Powerex samples and the 

Co-PCD and Cu-PCD samples is provided in Figure 6.5.  Noticeably, both PCD samples 

approached steady state considerably faster than the DBC (AlN).  If implemented into the 

standard power semiconductor device package replacing the AlN substrate, the PCD 

films would possibly improve the transient heat flow by a factor of 50 to 150 times (Cu-

PCD and Co-PCD, respectively). 
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Figure 6.5.  Normalized temperature profiles of samples over a 15-second time interval. 

 

 A different view of the comparable performance of the samples is represented in 

Figure 6.6.  The transient temperature response of the DBC section was renormalized to a 

standard scale of 0 to 0.2.  This range was selected because at 0.2 of the steady state 

value, the DBC section reached the equivalent hot plate temperature utilized in the PCD 

experiments (75 °C).  The AlN substrate reached 75 °C at 17.75 seconds for the hot plate 

at 200 °C and 30.50 seconds for hot plate at 150 °C (not fully shown in Figure 6.6).   
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Figure 6.6.  Renormalized temperature profile of the DBC section compared to the two types of PCD 

samples.  

 

Considering all these factors, both the Co-PCD and Cu-PCD samples possessed 

much improved thermal characteristics compared to the DBC section of a standard power 

semiconductor device package.  
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CHAPTER 7 

CONCLUSION AND OUTLOOK 

 

New materials (polycrystalline diamond, PCD) that could serve as the layer for 

electrical isolation while improving heat flow from the semiconductor to the case, in 

power semiconductor packages, was compared to the existing package technology of the 

direct-bond copper (DBC) substrate consisting of sintered copper onto AlN dielectric.  

The PCD materials offer the opportunity to operate wide bandgap (WBG) 

semiconductors at higher breakdown voltages and at higher junction temperatures than 

achievable using silicon.     

Heat flow measurements were performed using an emissivity-calibrated thermal (IR) 

imaging camera.  Samples from a commercially available power module were used and 

compared to the PCD samples.  Results from the commercial module had to be de-

convolved to exclude the effects of the baseplate and solder layers that were not present 

in the PCD samples.  The final comparison showed that the PCD material was clearly 

superior in thermal performance as compared to the commercial package materials 

(DBC).  Two types of PCD samples were tested.  One sample was coated with cobalt 

(Co-PCD) on its top surface only and the other was coated with copper (Cu-PCD) on its 

top and bottom surfaces.  The final comparative results are repeated in Figure 7.1 (same 

as Figure 6.6).  These results indicate the great promise that PCD has to improve power 

device packaging. 

 



75 

 

Figure 7.1.  Penultimate results comparing the relative temperature rise of the top surface of samples 

heated from below at constant temperature. 

Deeper analysis between the two types of PCD samples revealed that the Co-PCD 

film has a thermal transient response time three times faster than the Cu-PCD film.  This 

likely indicates that the adhesion between polycrystalline diamond and cobalt is better 

than with copper.  Therefore, the Co-PCD film is potentially a better option, though more 

tests are needed to confirm the adhesion qualities and more importantly, whether the 

metal-PCD interface can withstand the rigors of thermal cycling seen in commercial 

electronic packages.    

Other areas of interest for future research would be performing dielectric breakdown 

strength tests, studying lateral heat flow, ways of interconnection into a standard package 

structure, and examining mechanical behavior exhibited under thermomechanical stress 

within a package.  The lateral heat flow through and across the PCD samples requires 

further study.  Examining lateral heat flow to determine if heat is spreading evenly across 

these materials or if hot spots develop in certain areas.  Another research thrust would be 
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determining the interface and connectivity among the PCD films with a theoretical 

baseplate and power semiconductor device.  These connections are crucial for smooth 

transition of heat flow between the different layers.  If there is air gaps in between these 

layers the heat transfer is slowed down drastically.  The current technology uses solder or 

contact pads as an interconnection material for the baseplate and device, however, these 

methods may not work with polycrystalline diamond due to its rough and rigid surface.  

The stress and strain that occurs, as captured by the material system of CTE’s, should 

also be examined in terms of entirely new materials for other package layers to enhance 

the overall performance and reliability of the PCD layer in addition to the entire package.   
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