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APPROXIMATION VIA DEGREE REDUCTION OF NONLINEARITIES WITH

APPLICATIONS TO TURBULENT FLOWS, FLAME FRONTS, AND

MAGNETOHYDRODYNAMICS

Matthew Enlow, Ph.D.

University of Nebraska, 2024

Adviser: Adam Larios

We perform an analytical and computational investigation on the eectiveness of a

locally bounded truncation function, which we call a calming function, when applied

to the nonlinear terms of several dissipative partial dierential equations. In partic-

ular, the 3D Navier-Stokes equations of incompressible uid ow, the 2D Kuramoto-

Sivashinsky equations of laminar ame fronts, and the 2D MHD-Boussinesq equations

of magnetohydrodynamics. Each of these equations have open questions about the

global existence and uniqueness of their solutions. These calming functions eec-

tively reduce the algebraic degree of select nonlinear terms, thus one can verify global

wellposedness for these “calmed systems”. More specically, in this work we show

analytically in this work that the solutions to the calmed systems are globally well-

posed, have higher-order regularity, and converge to solutions of the original models

on short-time intervals as an introduced parameter in the calmed system tends to

0. We obtain additional results in the case of the 3D Calmed Navier-Stokes equa-

tions: when applying calming to the nonlinear term written in its rotational form,

we nd that the dynamical system generated by the calmed NSE in the rotational

form possesses both an energy identity and a global attractor. Moreover, for calmed

Navier-Stokes written either in its advective form or rotational form, we show that

strong solutions to the calmed equations converge to strong solutions of the NSE



without assuming their existence, providing a new proof of the short-time existence

of strong solutions to the 3D Navier-Stokes equations.
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Chapter 1

Introduction

1.1 Motivation

A major obstacle in the mathematical analysis and computational modeling of uid

dynamics is the rapid intensication of small length scales. This is due to the advective

nonlinear term in the governing equations for turbulent uids, the 3D Navier-Stokes

equations. Many approaches have focused on mitigating this growth by introducing

stronger diusion, or by mollifying or ltering the nonlinear term. These strategies

essentially involve some form of smoothing. But is smoothing the only method to

control the Navier-Stokes equations? Derivatives can also grow via another mech-

anism: multiplication, which can lead to the generation of smaller length scales1.

In this work, we introduce a novel modication to the incompressible Navier-Stokes

equations (NSE), and other dissipative partial dierential equations, that tempers

the eect of the algebraic multiplication without introducing a smoothing operator.

Specically, we limit the advective velocity by smoothly truncating it, a process we

call “algebraic calming” or simply “calming,” since it eectively reduces the algebraic

degree of the nonlinearity.

1For example, consider g(x) = sin(x)+cos(x). It is straightforward to show that ∥ dn

dxn
g∥L∞ =

√
2

for all n ∈ N, but ∥ d
dxg

n∥L∞ ≥ n, and hence d
dxg

n grows without bound as n → ∞.
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Calming has several advantages over smoothing; namely:

• There is no need to modify the boundary conditions, the system is globally well-

posed, in both 2D and 3D, with standard homogeneous Dirichlet (i.e., “no-slip”)

or periodic boundary conditions.

• The calmed system is of the same derivative order as the original system, as

there are no modications to the derivatives introduced.

• The “calming” modication is an entirely local operation, which may be more

ecient than, e.g., mollication or ltering in computational settings, especially

in the setting of parallel processing. (There is also no auxilliary equation to

handle, such as in the case of the k − ϵ or k − ω models.)

In Chapter 3 we prove that the calmed NSE are globally well-posed in 3D with

no-slip (i.e., physical) boundary conditions, and that their solutions converge, as the

calming parameter ϵ → 0+, to strong solutions of the Navier-Stokes equations on the

time interval of existence and uniqueness of the latter. In addition to this, we show

that there is no need to assume the existence of strong solutions to the Navier-Stokes

equations a priori. In particular, via calming, we provide a new independent proof

of the existence of strong solutions to the 3D Navier-Stokes equations. These same

results also hold for the “calmed rotational Navier-Stokes equations” (calmed rNSE)

in which the nonlinearity is rst written as ω × u and then calming is applied. For

calmed rNSE we prove that under an additional assumption on the calming function,

the resulting system satises exactly the same energy equality as for strong solutions

to the NSE, in addition to enjoying the aforementioned properties of the calmed NSE.

We then use this energy equality to prove that the calmed rNSE has a compact global
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attractor.

We obtain similar results in Chapter 4 for a velocity-vorticity formulation of the

NSE with calming applied to the vortex stretching term, and furthermore we obtain an

energy inequality for this calmed system. In Chapter 5 we study the MHD-Boussinesq

system with a calmed Ohmic heating term, a multi-physics model for turbulent uids

with dynamic temperature and magnetic eld. Despite the Ohmic heating term

providing a destabilizing eect to the dynamics of the temperature, once the calming

mechanism is applied one is able to prove global wellposedness for strong solutions,

in addition to being able to demonstrate the short-time convergence of the calmed

system to the original system. In Chapter 6 we examine the 2D Kuramoto-Sivashinsky

equations (KSE), another equation whose global well-posedness is unknown and which

acts as a model for ame fronts and other reaction-diusion systems. We were able

to show that calmed KSE is in fact globally well-posed for weak solutions and showed

the convergence of solutions of this calmed system to solutions of KSE on short time

intervals. Moreover, we provided computational results displaying the similarities in

the dynamics between the two systems and supplied quantitative evidence that the

convergence rates obtained section 3.4 were sharp. We then extended our results to

work for a calmed version of scalar-valued KSE.

1.2 Main Results

1.2.1 The calmed Navier-Stokes Equations

We begin by dening what we mean by weak and strong solutions.

Denition 1.2.1 (Weak solution). Let T > 0, u0 ∈ H and let f ∈ L2(0, T ;V ′). We

say that u is a weak solution to calmed NSE (3.1.4) or calmed rNSE (3.1.5) on the
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interval [0, T ] if u satises equation (3.2.1a) for all v ∈ V in the sense of L2((0, T ))

with u ∈ C([0, T ];H) and ∂tu ∈ L2(0, T ;V ′). Furthermore, we require (3.2.1b) to be

satised in the sense of C([0, T ];H).

Denition 1.2.2 (Strong solution). Let T > 0, u0 ∈ V , and let f ∈ L2(0, T ;H). We

say that u is a strong solution to calmed NSE (3.1.4) or calmed rNSE (3.1.5) on the

interval [0, T ] if u is a weak solution and also u ∈ C([0, T ];V )∩L2(0, T ;H2∩V ) with

time derivative ∂tu ∈ L2(0, T ;H) and initial data satised in the sense of C([0, T ];V ).

We now state our results on the global well-posedness of solutions to calmed

Navier-Stokes and calmed rotational Navier-Stokes.

Theorem 1.2.3 (Global existence of weak solutions to calmed systems). Let u0 ∈ H,

T > 0, and let f ∈ L2(0, T ;V ′) be given. Suppose, for ϵ > 0, ζϵ is a calming function

which satises conditions 1, 2, and 3 of Denition 2.1.1. Then weak solutions to

calmed NSE or calmed rNSE (3.2.1) exist on [0, T ].

Theorem 1.2.4 (First-order regularity of calmed systems). Let T > 0. Suppose that

u0 ∈ V and that f ∈ L2(0, T ;H). Consider a weak solution u to calmed NSE or

calmed rNSE (3.2.1) on the interval [0, T ]. Then u ∈ C([0, T ];V ) ∩ L2(0, T ;H2 ∩ V )

and ∂tu ∈ L2(0, T ;H).

Theorem 1.2.5 (Global well-posedness of strong solutions to calmed systems). Let

T > 0, u0,∈ V , and let f ∈ L2(0, T ;H). Suppose ζϵ is a calming function which

satises conditions 1, 2, and 3 of Denition 2.1.1. Then there exists a strong solution

u ∈ C([0, T ];V ) ∩ L2(0, T ;H2 ∩ V ) to calmed NSE (3.1.4) and calmed rNSE (3.1.5)

which depends continuously on its initial data and is unique in the class of weak

solutions.
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For our calmed systems we also have the convergence of (3.1.4) (resp. (3.1.5)) to

(3.1.1) (resp. (3.1.3)) on short time intervals.

Theorem 1.2.6 (Convergence). Let T > 0, and let ζϵ be a calming function satisfying

conditions 1, 2, and 3 of Denition 2.1.1, where β ≥ 1 is the minimal value for which

3 holds. Suppose

u ∈ C([0, T ];V ) ∩ L2β(0, T ;H2 ∩ V ) (1.2.1)

is a strong solution to the 3D Navier-Stokes equation written either in its velocity

form (3.1.1) or rotational form (3.1.3) with initial data u0 ∈ V and forcing term

f ∈ L2(0, T ;H). Suppose uϵ ∈ C([0, T ];V ) ∩ L2(0, T ;H2 ∩ V ) is a solution to the 3D

calmed NSE (3.1.4) (resp. 3D calmed rNSE (3.1.5)) with the same initial data u0

and forcing term f . Then

∥u− uϵ∥L∞V ≤ Kϵα, (1.2.2)

where K > 0 is a constant depending only on Ω, ν, β, ∥u∥L∞V , ∥△u∥L2 , T, and α, β

are determined by the choice of ζϵ and are as given by condition 3 of Denition 2.1.1.

In section 3.5 we show that in fact, strong solutions to the calmed systems are

Cauchy with respect to the calming parameter ϵ > 0 and that the limit point obtained

from this sequence is itself a strong solution to 3D Navier-Stokes.

Theorem 1.2.7 (Existence of Strong Solutions to Navier-Stokes). For each ϵ > 0,

let ζϵ be a calming function satisfying conditions 1, 2, and 3 of Denition 2.1.1 and

let uϵ be a strong solution to calmed NSE (3.1.4) or calmed rNSE (3.1.5) with initial

data u0 ∈ V and forcing term f ∈ L∞(0,∞;L2). Suppose T > 0 is the maximal time
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for which

sup
ϵ>0

sup
0≤t≤T

∥∇uϵ(t)∥L2 ≤
√
2 ∥∇u0∥L2

is valid. Then,

1. The sequence {uϵ}ϵ>0 is Cauchy in L∞H ∩ L2V .

2. The limit point of the sequence, u, is a strong solution to the 3D Navier-Stokes

equations (3.1.1) or (3.1.3) on the interval [0, T ].

While calmed NSE and calmed rNSE share the same properties of global well-

posedness, we can see a key distinction between the two in the next theorem when ζϵ

is assumed to be pointwise parallel.

Theorem 1.2.8 (Energy identity for weak solutions of calmed rNSE (3.1.5)). Let

ν > 0, ϵ > 0, u0 ∈ H, and f ∈ L2(0, T ;V ′) be given. Suppose ζϵ satises conditions

1, 2, 3, and 4 of Denition 2.1.1. Let uϵ be a weak solution to calmed rNSE (3.1.5).

Then uϵ the satises the energy equalities

1

2

d

dt
∥uϵ∥2L2 + ν ∥∇uϵ∥2L2 = ⟨f ,uϵ⟩ . (1.2.3)

and

∥uϵ(t)∥2L2 + 2ν

 t

0

∥∇uϵ(s)∥2L2 ds = ∥u0∥2L2 + 2

 t

0

⟨f(s),uϵ(s)⟩ ds. (1.2.4)

Remark 1.2.9. Combining Theorems 1.2.6 and 1.2.8, one can easily show that strong

solutions to the Navier-Stokes equations enjoy an energy equality, by passing to a

limit as ϵ → 0 in (1.2.4). Hence, our approach can be seen as an alternate proof of

this well-known fact.
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From these energy identities we deduce the existence of a global attractor, under

the assumption that f is time-independent.

Theorem 1.2.10 (Existence of a global attractor). Let ζϵ be a calming function which

satises conditions 1, 2, 3, and 4 of Denition 2.1.1. If u0 ∈ H and f ∈ H then the

dynamical system on H generated by calmed rNSE (3.1.5) has a global attractor A

on H.

Remark 1.2.11. All of the above results hold, mutatis mutandis, in the case of periodic

boundary conditions, after suitable modication imposing a mean-free condition.

1.2.2 The calmed Navier-Stokes Equations in Velocity-Vorticity Formu-

lation

Denition 1.2.12. for T > 0, we say (u,w) is a weak solution to (4.1.3) if

u,w ∈ C(0, T ;H) ∩ L2(0, T ;V ),

∂tu ∈ L2(0, T ;V −1),

∂tw ∈ L
4

3 (0, T ;V −1),

if u satises equations (4.1.4a) for all v1 ∈ V in the sense of L2(0, T ) and w satises

equations (4.1.4b) for all v2 ∈ V in the sense of L4(0, T ).

Denition 1.2.13. for T > 0, we say (u,w) is a strong solution to (4.1.3) if (u,w)

is a weak solution and, additionally,

u ∈ C(0, T ;V ) ∩ L2(0, T ;V 2),

w ∈ C(0, T ;H) ∩ L2(0, T ;V ),

∂tu ∈ L2(0, T ;H),
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∂tw ∈ L2(0, T ;V ).

if u satises equations (4.1.4a) for all v1 ∈ H in the sense of L2(0, T ) and w satises

equations (4.1.4b) for all v2 ∈ V in the sense of L2(0, T ), and if (4.1.4c) is satised

in the sense of C([0, T ]; V )× C([0, T ];H).

Theorem 1.2.14. Let ζϵ be a calming function as dened in 2.1.1 and let T > 0.

For initial data (u0,w0) ∈ H ×H, time T > 0, and forcing term f ∈ L2(0, T ;V −1),

solutions to (4.1.3) exist on the interval [0, T ].

Theorem 1.2.15. For initial data (u0,w0) ∈ V ×H, time T > 0, and forcing term

f ∈ L2(0, T ;H), there exists a strong solution (u,w) to (4.1.4) on the interval [0, T ].

Furthermore, the solution (u,w) is unique.

Theorem 1.2.16. For (u0,w0) ∈ V ×H, f ∈ L2(0, T ;H), let (u,ω) be a strong solu-

tion to VVNSE (4.1.1) on [0, T ] for T > 0 prior to some maximal time of existence,

under the assumption that

 T

0

∥ω∥2β
L2β ∥△u∥2L2 < ∞. (1.2.5)

Suppose (uϵ,wϵ) is a strong solution to cVV (4.1.3). Then uϵ → u in C([0, T ];V )

and wϵ → ω in C([0, T ];H) as ϵ → 0.

Theorem 1.2.17. For strong solutions (u,w) with initial data (u,w0) ∈ V × H,

t ≥ 0 and zero forcing term, u satises the energy equalities

d

dt
∥u∥2L2 + 2ν ∥∇u∥2L2 = ∥u∥2L2 , (1.2.6)
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and

∥u(t)∥2L2 + 2ν

 t

0

∥∇u∥2L2 ds = ∥u0∥2L2 (1.2.7)

and w satises the energy inequality

∥w(t)∥L2 ≤ ∥w0∥L2 +


t

2ν

 1

2

∥ζϵ∥L∞


∥u0∥2L2 − ∥u(t)∥2L2

 1

2 . (1.2.8)

1.2.3 The MHD-Boussinesq Equations with Calmed Ohmic Heating term

We state in this section our major theorems and the outline of the remaining of this

paper.

Our rst major result is the global existence of a unique regular solution to Sys-

tem 5.1.1.

Theorem 1.2.18 (Global well-posedness of the 2D MHD-Boussinesq System with

calmed Ohmic heating). For s ≥ 2, given arbitrary time T > 0, and initial conditions

u0, b0 ∈ Hs ∩ V , θ0 ∈ Hs, there exists a unique solution (u, b, θ) to System 5.1.1,

where

u, b ∈ C([0, T ];Hs ∩ V ) ∩ L2((0, T );Hs+1 ∩ V )

with

∂tu, ∂tb ∈ L2(0, T ;V ′),

and

θ ∈ C([0, T ];Hs) ∩ L2((0, T );Hs+1)

with

∂tθ ∈ L2(0, T ;H−1)
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In order to obtain the error estimates of the solution to System 5.1.1 compared

to that of System 5.1.2, we need the following local-in-time well-posedness results of

the original system.

Theorem 1.2.19 (Short-time existence of the regular solution to the original

MHD-Boussinesq System with Ohmic heating.). For s ≥ 2, U0, B0 ∈ Hs ∩ V and

Θ0 ∈ Hs, there exists a unique solution (U,B,Θ) to System 5.1.2, with

U,B ∈ L∞([0, T1);H
s ∩ V ) ∩ L2((0, T1);H

s+1 ∩ V ),

and

Θ ∈ L∞([0, T1);H
s) ∩ L2((0, T1);H

s+1),

where T1 depends on g, ν, µ, κ,α and initial data.

The next theorem concerns the convergence of the solution to System 5.1.1 with

calmed Ohmic heating to that of the original Boussinesq-MHD system without the

calming mechanism (5.1.2), on the time-interval of existence of solutions of the latter.

Theorem 1.2.20 (Error analysis and convergence of the solution of (5.1.1) to that

of (5.1.2)). For s ≥ 2, let (U,B,Θ) be the solution to System (5.1.2) satisfying the

conditions of Theorem 1.2.19 for T1 > 0 with initial data U0, B0 ∈ Hs ∩ V , Θ0 ∈ Hs.

Assume that ζϵ is a calming function which is Lipschitz and satises (2) and (2.1.1),

and let (u, b, θ) be the solution to (5.1.1) satisfying the conditions of Theorem 1.2.19

for T2 > 0 with initial data

u0 = U0, b0 = B0, θ0 = Θ0.
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Select T ∈ (0,min{T1, T2}). Then we have for all t ∈ [0, T ] that

|U(t)− u(t)|2 + |B(t)− b(t)|2 + ∥Θ(t)− θ(t)∥2L2 ≤ c1ϵ
2γ ,

 T

0

∥U(t)− u(t)∥2H2 + ∥B(t)− b(t)∥2H2 + ∥Θ(t)− θ(t)∥2H1 dt ≤ c2ϵ
2γ ,

where the constants c1 and c2 depend on g, ν, µ, κ,α, ∥△U∥L2 , ∥△B∥L2 , ∥∇Θ∥L2, and

T . In particular,

|U(t)− u(t)|+ |B(t)− b(t)|+ ∥Θ(t)− θ(t)∥L2 → 0 as ϵ → 0+.

Remark 1.2.21. Note that all of the results in Section 1.2.3 also hold easily mutatis

mutandis for the so-called “two-and-a -half dimensional” case, that is the case where

x = (x1, x2) is still two-dimensional, but the the outputs are three-dimensional, i.e.,

u = u(x, t) = (u1(x, t), u2(x, t), u3(x, t))

and

b = b(x, t) = (b1(x, t), b2(x, t), b3(x, t)).

This is because the only role dimenionality plays in our analysis is in Sobolev es-

timates, which depend only on the input dimension. For the sake of simplicty, we

present only the 2D case.

1.2.4 The calmed Kuramoto-Sivashinsky Equations

Denition 1.2.22. Let u0 ∈ L2(T2) and let T > 0. We say that u is a weak

solution to calmed KSE (6.1.3) on the interval [0, T ] if u ∈ L2([0, T ];H2(T2)) ∩

C([0, T ];L2(T2)), ∂tu ∈ L2(0, T ;H−2(T2)), and u satises (6.1.3a) in the sense of
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L2(0, T ;H−2(T2)) and satises (6.1.3b) in the sense of C([0, T ];L2(T2)).

Theorem 1.2.23 (Global Well-Posedness). Let u0 ∈ L2(T2), let T > 0 and x ϵ > 0.

Suppose ζϵ is a calming function which satises Conditions 1 and 2 of Denition 2.1.1.

Then weak solutions to (6.1.3) on [0, T ] exist, are unique, and depend continuously

on the initial data in L∞(0, T ;L2(T2)) ∩ L2(0, T ;H2(T2)).

Theorem 1.2.24 (Regularity). Suppose that ζϵ is is calming function which satises

Conditions 1, and 2 of 2.1.1. Let m ∈ {1, 2}, and suppose that u is a weak solution

to (6.1.3) on [0, T ] for some T > 0. If u0 ∈ Hm(T), then u ∈ L∞(0, T ;Hm(T2)) ∩

L2(0, T ;Hm+2(T)).

Theorem 1.2.25 (Convergence). Given u0 ∈ L2(T), let

u ∈ C([0, T ];L2(T)) ∩ L2(0, T ;H2(T)). (1.2.9)

be the corresponding weak solution of (6.1.2) with maximal time of existence and

uniqueness T ∗ > 0 and with T ∈ (0, T ∗). Suppose ζϵ satises Conditions 1 and 2 of

Denition 2.1.1. Furthermore, suppose ζϵ satises Condition 3, so that (2.1.1) holds

for some xed C,α > 0 and any β ∈ (0, 3]. Let uϵ be the corresponding weak solution

of (6.1.3) with calming function ζϵ and initial data u0. Then for any ϵ > 0, it holds

that

∥uϵ − u∥L∞(0,T ;L2) ≤ Kϵα,

∥uϵ − u∥L2(0,T ;H2) ≤ K ′ϵα,

where K,K ′ > 0 depend on T , β, and various norms of u, but not on ϵ or α.
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Denition 1.2.26. Let ϕ0 ∈ L2(T2) and let T > 0. We say that ϕ is a weak

solution to (6.1.4) on the interval [0, T ] if ϕ ∈ L2([0, T ];H2(T2)) ∩ C([0, T ];L2(T2)),

∂tϕ ∈ L2(0, T ;H−2(T2)), and ϕ satises (6.1.4a) in the sense of L2(0, T ;H−2(T2)) and

satises (6.1.4b) in the sense of C([0, T ];L2(T2)).

Theorem 1.2.27 (Global Well-posedness in scalar form). Let initial data ϕ0 ∈ L2(T2)

be given, and let T > 0, ϵ > 0 be xed. Suppose ζϵ is a calming function which satises

Conditions 1 and 2 of Denition 2.1.1. Then weak solutions to (6.1.4) on [0, T ]

exist, are unique, and depend continuously on the initial data in L∞(0, T ;L2(T2)) ∩

L2(0, T ;H2(T2)).

Theorem 1.2.28 (Convergence in scalar form). Choose ϕ0 ∈ L2(T) and let ϕ be the

corresponding weak solution of the scalar KSE (6.1.1) with maximal time of existence

T ∗. We assume that ϕ is in the natural energy space: for T < T ∗,

ϕ ∈ C([0, T ];L2(T)) ∩ L2(0, T ;H2(T)). (1.2.10)

Suppose ζϵ satises 1, 2, and 3 of Denition 2.1.1, so that there exists C, α > 0,

and β ∈

0, 3

2


for which (2.1.1) holds. and let ϕϵ be the corresponding weak solution

of the scalar calmed KSE (6.1.4) with calming function ζϵ and with initial data ϕ0.

Consider the convergence of ϕϵ to ϕ on the interval [0, T ]. The dierence ϕϵ − ϕ

satises

∥ϕϵ − ϕ∥L∞(0,T ;L2) ≤ Kϵα,

∥ϕϵ − ϕ∥L2(0,T ;H2) ≤ K ′ϵα,

where K,K ′ > 0 depend on T , β, and various norms of ϕ, but not on ϵ or α.
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Chapter 2

Preliminaries

In this chapter, we dene the function spaces that we will be working in and the

notation used throughout. We will also introduce the inequalities that will be used

in each chapter along with any theorems or lemmas that will be used. Throughout

this work, we use the notation ∂t = ∂
∂t

and ∂i =
∂
∂xi

to represent the partial time

derivative and the partial derivative in the direction of xi, respectively. Additionally,

we use C to represent a constant which may change from line to line.

For chapters 6, 4, and 5, we work in the space of functions which are periodic on

the boundary. For chapter 3, we work in the space of functions dened on bounded

domains Ω ⊆ R
3 with no-slip conditions (zero boundary data).

2.1 Calming Functions

Here we explain the exact requirements for ζϵ to be a calming function.

Denition 2.1.1. We say ζϵ : Rn → R
n is a calming function if the following three

conditions hold:

1. ζϵ is Lipschitz continuous with Lipschitz constant 1.

2. For ϵ > 0 xed, ζϵ is bounded.
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3. There exists C > 0, α > 0 and β ≥ 1 such that for any x ∈ R
3,

|ζϵ(x)− x| ≤ Cϵα |x|β (2.1.1)

In some instances we may impose a fourth constraint on ζϵ:

4. For any ϵ > 0 and for each x ∈ R
3 there exists λϵ(x) ∈ R such that ζϵ(x) =

λϵ(x)x. That is, ζϵ(x) is parallel to x.

Remark 2.1.2. The lower bound on β is necessary to satisfy condition 2 and inequality

(2.1.1) of ζϵ. Using the triangle inequality and (2.1.1), we may write

|x| ≤ Cϵα |x|β + ∥ζϵ∥L∞ ,

which, when |x| is suciently large, fails to be valid for β < 1.

Any function which satises Conditions 1, 2, and 3 of Denition 2.1.1 is a calming

function. To make things concrete, we consider several forms of calming functions;

namely,

ζϵ(x) =






ζϵ
1(x) :=

x

1+ϵ|x|
, or

ζϵ
2(x) :=

x

1+ϵ2|x|2
, or

ζϵ
3(x) :=

1
ϵ
arctan(ϵx), or

ζϵ
4(x) := qϵ(|x|) x

|x|
,

(2.1.2)

where the arctangent in ζϵ
3 acts component-wise;

arctan

(z1, z2, z3)

T

= (arctan(z1), arctan(z2), arctan(z3))

T ,
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and for ζϵ
4, we dene ζϵ

4(0) = 0, and

qϵ(r) =






r, 0 ≤ r < 1
ϵ
,

− ϵ
2


r − 2

ϵ

2
+ 3

2ϵ
, 1

ϵ
≤ r < 2

ϵ
,

3
2ϵ
, r ≥ 2

ϵ
.

(2.1.3)

Note that ζϵ(x) → x for all x ∈ Ω (i.e., pointwise) as ϵ → 0+, and ζϵ
i ∈ C1 for

i = 1, . . . , 4.

We indicate in the next proposition the extent to which our examples of a calming

function (stated in (2.1.2)) satisfy the conditions of Denition 2.1.1.

Proposition 2.1.3. Consider ζϵ
i as described in (2.1.2).

For i = 1, 2, 4, ζϵ
i satises Conditions 1-4 of Denition 2.1.1. For i = 3, ζϵ

i

satises Conditions 1, 2, and 3 of Denition 2.1.1. In particular, the following explicit

bounds hold for ϵ > 0.

1. For ζϵ
1,

∥ζϵ
1∥L∞ =

1

ϵ
and |ζϵ

1(x)− x| ≤ ϵ |x|2 .

2. For ζϵ
2,

∥ζϵ
2∥L∞ =

1

2ϵ
and |ζϵ

2(x)− x| ≤ ϵ2 |x|3 .

3. For ζϵ
3,

∥ζϵ
3∥L∞ =

√
nπ

2ϵ
and |ζϵ

3(x)− x| ≤ ϵ2 |x|3 .

4. For ζϵ
4,

∥ζϵ
4∥L∞ =

3

2ϵ
and |ζϵ

4(x)− x| ≤ ϵ |x|2 .
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Furthermore, we can determine

Lemma 2.1.4. Suppose that Ω ⊆ R
n is a bounded domain or Ω ≡ T

n. Suppose that

ζϵ satises Conditions 1 and 2 of 2.1.1. Then the following statements hold.

(i) Given 1 ≤ p ≤ ∞, if u ∈ Lp(Ω) then ζϵ(u) ∈ Lp(Ω) and ζϵ is Lipschitz in

Lp(Ω) with Lipschitz constant 1.

(ii) Fix u,w ∈ L2(0, T ;L2(Ω)) and T > 0, let

Iu,w : L2(0, T ;H1(Ω)) → R be the map

Iu,w(ϕ) =

 T

0

((ζϵ(u) ·∇)ϕ,w) dt. (2.1.4)

Then Iu,w is a bounded linear operator.

Proof. (i). The result follows immediately from the denition of the Lp norm and

from Condition 1 of Denition 2.1.1.

(ii). Let ζϵj (u) denote the j-th component of ζϵ(u).

For ϕ ∈ L2(0, T ;H1(T2)), we estimate

|Iu,w(ϕ)| ≤
n

j=1

 T

0

ζϵj (u)∂jϕ,w
 dt

≤
2

j=1

 T

0

ζϵj (u)

L∞

∥∂jϕ∥L2 ∥w∥L2 dt

≤ ∥ζϵ∥L∞

 T

0

∥ϕ∥H1 ∥w∥L2 dt

≤ ∥ζϵ∥L∞ ∥w∥L2(0,T ;L2) ∥ϕ∥L2(0,T ;H1)

by the Cauchy-Schwarz inequality. This concludes the proof.
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2.2 No-Slip Boundary Conditions

Here we lay out the standard notation that will be used in Chapter 3. We assume

that Ω ⊂ R
3 is a bounded, open, connected set with C2 boundary. Furthermore, we

assume Ω is convex, so that there exists c1, c2 > 0 for which

c1 ∥Au∥L2 ≤ ∥u∥H2 ≤ c2 ∥Au∥L2 , (2.2.1)

where A is dened in (2.2.2) (see, e.g., [24, 41]). Let C∞
c (Ω) denote the space of

smooth, compactly supported test functions from Ω to R
3, and let H1

0 (Ω) ≡ H1
0

denote the closure of C∞
c (Ω) in H1(Ω). More specically, we have

H1
0 = {u ∈ H1(Ω) : u|∂Ω = 0}

We set

V = {ϕ ∈ C∞
c (Ω) : ∇ · ϕ = 0} ,

and let H and V be the closure of V in L2(Ω) and H1(Ω), respectively.

We also denote the (real) L2 inner-product and Hm Sobolev norm by

(u,v) :=

3

i=1



Ω

ui(x)vi(x) dx, ∥u∥Hm :=






|α|≤m

∥Dαu∥2L2





1

2

,

where α = (α1,α2,α3) and Dαu = ∂α1

1 ∂α2

2 ∂α3

3 u. For brevity, we will use the notation

L2(Ω) ≡ L2 and Hm(Ω) ≡ Hm throughout.

We denote by Lp(0, T ;X) the space of Bochner integrable functions from [0, T ] to
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X with norm given by

∥u∥Lp(0,T ;X) ≡ ∥u∥LpX :=

 T

0

∥u∥pX
1/p

.

Let Pσ : L2(Ω) → H be the Leray-Helmholtz orthogonal projection of L2(Ω) onto

H. Dene the Stokes operator A : D(A) ⊂ H → H as

A := −Pσ△ (2.2.2)

with domain D(A) := H2(Ω) ∩ V . The operator A is known to be positive-denite,

self-adjoint, and with compact inverse A−1 in H. From the Hilbert-Schmidt Theorem

we obtain a sequence of eigenfunctions {wj}
∞
j=1 of A

−1, which are also eigenfunctions

of A, with corresponding eigenvalues {λj}
∞
j=1 such that {wj}

∞
j=1 is an orthonormal

basis of H and the sequence {λj}
∞
j=1 is positive, monotone increasing, and tend toward

innity, so that Awj = λjwj with 0 < λ1 ≤ λ2 ≤ λ3 ≤ . . . and limj→∞ λj = +∞. For

further discussion see, e.g., [20, 90, 105]. For all u ∈ V , we dene the norm on V by

⟨Au,u⟩ = ∥A1/2u∥L2 = ∥∇u∥2L2 .

Denote by Pm the projection onto the rst m eigenfunctions of A,

Pmu =

m

j=1

ujwj . (2.2.3)

This yields the following estimate: for u ∈ Hs(Ω), s > 0,

∥(I − Pm)u∥2L2 ≤ λ−s
m ∥u∥2Hs . (2.2.4)
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For u ∈ C∞
c (Ω) and v ∈ V , we dene the nonlinear term B(u,v) by

B(u,v) := Pσ ((u ·∇)v) . (2.2.5)

The term B(·, ·) can be extended continuously to a bounded bilinear operator

B : H1
0 × V → V ′. Similarly, we can dene a trilinear operator b : H1

0 × V × V → R

by

b(u,v,w) := ⟨B(u,v),w⟩ (2.2.6)

for all u ∈ H1
0 and v,w ∈ V .

Remark 2.2.1. In Chapter 3, for System (3.1.3) we also consider the nonlinear term

dened by

B(u,v) := Pσ ((∇× v)× u) . (2.2.7)

We use the same symbol for both expressions as there is no quantitative dierence in

the analysis between (2.2.5) and (2.2.7) with regards to the global wellposedness and

convergence of Systems (3.1.1) and (3.1.3).

Remark 2.2.2. In Chapter 5, we use the notation B for the nonlinear term to avoid

any confusion with the magnetic eld B in System (5.1.2).

2.3 Periodic Boundary Conditions

We denote the 2-dimensional and 3-dimensional torus as T2 := R
2/(2πZ)2 = [0, 2π)2

and T
3 := R

3/(2πZ)3 = [0, 2π)3, respectively. For n ∈ {2, 3}, u : Tn → R
n satises

u(x+2πej) = u(x) for j = 1, . . . , n, where ej is the j-th unit basis vector of Rn. We
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denote the set of real vector-valued L2 functions on T
n by

L2(Tn) :=


u : Tn → R

n

 u(x) =


k∈Zn

ûke
ik·x, ûk = û−k, and



k∈Zn

|ûk|
2∞



(with the usual convention of equivalence up to sets of measure zero). We also denote

the (real) L2 inner-product and Hs Sobolev norm, s ∈ R, by

(u,v) :=

n

i=1



Tn

ui(x)vi(x) dx, ∥u∥Hs :=




k∈Zn

(1 + |k|)2s |ûk|
2

1/2

,

and the corresponding space Hs(Tn) =

u ∈ L2(Tn)

 ∥u∥Hs < ∞

. In this setting,

we have

V =


ϕ ∈ C∞

c (Tn) :



Tn

ϕ dx = 0, ∇ · ϕ = 0


,

and we denote H and V as the closures of V in L2(Tn) and H1(Tn), respectively. In

Chapter 4 we will use the notation V k ≡ V ∩Hk
0 (T

3) and V −k ≡ [V ∩Hk
0 (T

3)]′, and

we will set V 0 = H.

The denition for the mappings Pσ, A, B(·, ·), and b(·, ·, ·) are identical in this

setting as in the no-slip boundary case, except with Ω ≡ T
n. However, we remark that

on T
n we have the commutativity property −Pσ△ = −△Pσ. Thus, for all u ∈ D(A)

Au = −Pσ△u = −△Pσu = −△u

We now turn our attention to the operators that will be used in Chapter 6.

The space L2(Tn) has an orthogonal basis of eigenfunctions of the Laplacian op-
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erator −△ given by


eik·xej : k ∈ Z

n, j = 1, . . . , n


with corresponding eigenvalues

|k|2 : k ∈ Z

n

. Form ∈ N, we denote Pm : L2(Tn) →

L2(Tn) to be the projection onto nitely many eigenfunctions of the operator −△:

Pmu =


k∈Zn

|k|≤m

ûke
ik·x.

Denote Qm := I − Pm. For these projections we have the following estimates: given

any u ∈ Hs(T), s > 0,

∥(−△)sPmu∥L2 ≤ ms ∥Pmu∥L2 (2.3.1)

∥Qmu∥L2 ≤ 1

ms
∥u∥Hs . (2.3.2)

2.4 Inequalities

Here, we list several of the inequalities that are used throughout this body of work.

We rst state Poincaré’s inequality for functions which are zero on the boundary

of Ω ⊆ R
n (or, equivalently, mean-free on T

n):

∥u∥2L2 ≤ λ−1
1 ∥∇u∥2L2 for all u ∈ V, (2.4.1)

∥∇u∥2L2 ≤ λ−1
1 ∥Au∥2L2 for all u ∈ D(A). (2.4.2)

We also frequently use Agmon’s inequality on bounded domains: for s1 < 1 < s2,
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and for θ ∈ (0, 1) such that θs1 + (1− θ)s2 = 1,

∥u∥L∞ ≤ C∥u∥θHs1∥u∥1−θ
Hs2 , (2.4.3)

and the Gagliardo-Nirenberg-Sobolev interpolation inequality (see, e.g., [103, p.

11]) in R
n for 1 ≤ p, q < ∞,

∥u∥Lp ≤ C ∥u∥θLq ∥Dαu∥1−θ

L2 ,
1

p
=

θ

q
+ (1− θ)


1

2
− |α|

n


. (2.4.4)

Also, in Chapter 6, we repeatedly apply the following interpolation inequality:

Using integration by parts, the Cauchy-Schwarz inequality, and Young’s inequality,

we obtain, for any δ > 0, the estimate

∥∇u∥2L2 ≤
1

2δ
∥u∥2L2 +

δ

2
∥△u∥2L2 . (2.4.5)

The remaining inequalities are used in Chapter 5 and are valid on T
2:

A special case of (2.4.4) in 2D is Ladyzhenskaya’s inequality: for all u ∈ V ,

∥u∥2L4 ≤ c∥u∥L2 |u|, (2.4.6)

Moreover, we have the following inequalities and identities that are valid for func-

tions on T
n:

Lemma 2.4.1. For all u,v,w ∈ V , it holds (in two-or-three-dimensions) that

⟨B(u,v),w⟩V ′ = −⟨B(u,w),v⟩V ′ , (2.4.7a)

⟨B(u,v),v⟩V ′ = 0. (2.4.7b)
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Also (in two-dimensions only), for all u,v, and w in the largest spaces H, V , or

D(A), for which the right-hand sides of the inequalities below are nite,

| ⟨B(u,v),w⟩V ′ | ≤ C ∥u∥1/2L2 ∥u∥1/2H1 ∥v∥H1 ∥w∥1/2L2 ∥w∥1/2H1 (2.4.8a)

| ⟨B(u,v),w⟩V ′ | ≤ C ∥u∥1/2L2 ∥u∥1/2H1 ∥v∥1/2H1 ∥Av∥1/2L2 ∥w∥L2 , (2.4.8b)

| ⟨B(u,v),w⟩V ′ | ≤ C ∥u∥1/2L2 ∥Au∥1/2L2 ∥v∥H1 ∥w∥L2 . (2.4.8c)

Moreover, due to the periodic boundary conditions, it holds (in two-dimensions) that

⟨B(w,w), Aw⟩ = 0, w ∈ D(A), (2.4.9)

and the following Jacobi identity holds

⟨B(u, w), Aw⟩+ ⟨B(w, u), Aw⟩+ ⟨B(w,w), Au⟩ = 0. (2.4.10)

2.5 Theorems and Lemmas

Here we provide a list of the theorems and lemmas used in each chapter.

We rst state the following uniform Grönwall’s inequality, proved in [47] (see also

[31] and the references therein)

Lemma 2.5.1. Suppose that Y (t) is a locally integrable and absolutely continuous

function that satises the following:

dY

dt
+ α(t)Y ≤ β(t), a.e. on (0,∞),
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such that

lim inf
t→∞

 t+τ

t

α(s) ds ≥ γ, lim sup
t→∞

 t+τ

t

α−(s) ds < ∞,

and

lim
t→∞

 t+τ

t

β+(s) ds = 0,

for xed τ > 0, and γ > 0, where α− = max{−α, 0} and β+ = max{β, 0}. Then,

Y (t) → 0 at an exponential rate as t → ∞.

We also make repeated use of the Lions-Magenes lemma (see, e.g., [65] or [105,

Ch. 3, Lemma 1.2]), which states:

Lemma 2.5.2. Let V,H, V ′ be three Hilbert spaces such that

V ⊆ H ≡ H ′ ⊆ V ′

with each inclusion being a continuous embedding. If a function u belongs to

L2(0, T ;V ) and its derivative ∂tu belongs to L2(0, T ;V ′), then u is almost everywhere

equal to a funciton continuous from [0, T ] into H and the equality

1

2

d

dt
∥u∥2L2 = ⟨∂tu,u⟩

holds in the scalar distribution on (0, T ).

Similarly, we use the Aubin-Lions (also called Aubin-Lions-Simon) Compactness

Lemma throughout this work to show the convergence of our Galerkin approximations

(see [95, Corollary 4, pg. 85]):
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Lemma 2.5.3. Suppose X ⊆ B ⊆ Y with X compactly embedded in B. Let F be

bounded in L∞(0, T ;X) and let ∂tF be bounded in Lr(0, T ;Y ) for r > 1. Then F is

relatively compact in C([0, T ];B).

To recover the pressure term found in Systems (3.1.4) and (3.1.5) in Chapter 3,

we will use a result of de Rham, which states for f ∈ C∞
c (Ω),

f = ∇p for some p ∈ C∞
c (Ω) if and only if ⟨f ,v⟩ = 0 for all v ∈ V . (2.5.1)

See, e.g., [105, 108].

To obtain convergence of the calmed systems in each chapter we require the use

of the following abstract bootstrapping principle (see, e.g., [103, p. 20]):

Lemma 2.5.4. Let T > 0. Assume that two statements C(t) and H(t) with t ∈ [0, T ]

satisfy the following conditions:

(a) If H(t) holds for some t ∈ [0, T ], then C(t) holds for the same t;

(b) If C(t) holds for some t0 ∈ [0, T ], then H(t) holds for t in a neighborhood of t0;

(c) If C(t) holds for tm ∈ [0, T ] and tm → t, then C(t) holds;

(d) H(t) holds for at least one t1 ∈ [0, T ].

Then C(t) holds for all t ∈ [0, T ].
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Chapter 3

The 3D Navier-Stokes Equations

3.1 Introduction

The three-dimensional (3D) incompressible constant-density Navier-Stokes equations

(NSE) are given by






∂tu+ (u ·∇)u+∇p = ν△u+ f in Ω× (0, T ),

∇ · u = 0 in Ω× (0, T ),

u

∂Ω

= 0 on ∂Ω× (0, T )

u(x, 0) = u0(x) in Ω,

(3.1.1a)

(3.1.1b)

(3.1.1c)

(3.1.1d)

Here, u : Ω × [0, T ] → R
3 is the uid velocity, p : Ω × [0, T ] → R is the (kinematic)

pressure, and f : Ω× [0, T ] → R
3 is a body force. The domain Ω ⊂ R

3 is a bounded,

open, connected set with C2 boundary.

Note that, using the vector identity

(u ·∇)u = (∇× u)× u+ 1
2
∇|u|2, (3.1.2)
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one may formally rewrite (3.1.1) in the following equivalent rotational form (rNSE),






∂tu+ ω × u+∇π = ν△u+ f in Ω× (0, T ),

∇ · u = 0, in Ω× (0, T ),

u

∂Ω

= 0 on ∂Ω× (0, T ),

u(x, 0) = u0(x) in Ω,

(3.1.3a)

(3.1.3b)

(3.1.3c)

(3.1.3d)

where we have denoted the vorticity by ω := ∇ × u and the Bernoulli pressure (or

“dynamic pressure”) as π := p+ 1
2
|u|2. The term ω×u is sometimes called the Lamb

vector.

We use a bounded smooth truncation function — that we call a “calming func-

tion” when used in this context — that approximates the identity as the “calming

parameter” ϵ → 0+. We propose a calming-function approach to the 3D NSE. In par-

ticular, we propose two modications of the Navier-Stokes system. The rst is based

on the form (3.1.1). Continuing the same approach we employed in [28], we introduce

the following system that we call the calmed Navier-Stokes equations (calmed NSE).






∂tu+ (ζϵ(u) ·∇)u+∇p = ν△u+ f in Ω× (0, T ),

∇ · u = 0 in Ω× (0, T ),

u

∂Ω

= 0 on ∂Ω× (0, T )

u(x, 0) = u0(x) in Ω,

(3.1.4a)

(3.1.4b)

(3.1.4c)

(3.1.4d)

One can see (3.1.4) as a modication of (3.1.1) in the spirit of Leray (see, e.g.,

[8, 10, 16, 17, 32, 43, 46, 64, 111] and many others), except that our modication

does not mollify the nonlinearity but is instead a local truncation of the advective

velocity.
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While we show in the present work that the calming modication of (3.1.4) allows

for a proof of global well-posedness and other desirable properties, it is clear that

such a modication would have a dierent energy balance than that of Navier-Stokes,

as the nonlinear term does not vanish in standard energy calculations. Therefore, we

also consider a related modication of the rotational form (3.1.3) which locally limits

the strength of the rotational term. Namely, we propose the following system, which

we call the calmed rotational Navier-Stokes equations (calmed rNSE).






∂tu+ (∇× u)× ζϵ(u) +∇π = ν△u+ f in Ω× (0, T ),

∇ · u = 0 in Ω× (0, T ),

u

∂Ω

= 0 on ∂Ω× (0, T )

u(x, 0) = u0(x) in Ω.

(3.1.5a)

(3.1.5b)

(3.1.5c)

(3.1.5d)

Due to the presence of the calming function, one cannot rewrite calmed NSE as

calmed rNSE using (3.1.2) as we do for NSE and rNSE. Thus, while they are both

modications of the Navier-Stokes equations which are similar, we treat them as

dierent systems. However, system (3.1.5) is an interesting object to study in its own

right. Thanks to the well-known geometric identity for the cross product,

(A×B) ·B = 0, (3.1.6)

one discovers exceptional features of System (3.1.5) when ζϵ is suitably chosen.

Namely, when ζϵ(x) can be expressed as a scalar multiple of x pointwise we deduce

that (3.1.5) possesses both an energy identity (Theorem 1.2.3) and its dynamical

system has a global attractor (Theorem 1.2.10).

Remark 3.1.1. Applying a bounded truncation operator to the nonlinear term in 3D
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Navier Stokes was also considered by Yoshida and Giga [113] and by the authors of

[12] in the study of the globally modied Navier-Stokes Equations (GMNSE) (see

also, [11, 13, 25, 50, 51, 72, 92, 114, 115]). In those works, the following system was

studied.






∂tu+min

1, N∥∇u∥−1

L2


(u ·∇)u+∇p = ν△u+ f in Ω× (0, T ),

∇ · u = 0 in Ω× (0, T ),

u

∂Ω

= 0 on ∂Ω× (0, T )

u(x, 0) = u0(x) in Ω,

For GMNSE, solutions converge to a solution of 3D Navier-Stokes as parameter N

tends to innity. This system is similar to calmed NSE (3.1.4) in that it bounds

the nonlinear term as the velocity u gets large in a certain sense. However, our

modication has several advantages over GMNSE. Namely, that the calming func-

tions in the present work are dened pointwise and only bound the solution u in

regions where |u(x, t)| is greater than approximately ϵ−1, whereas the modication in

GMNSE aects the solution globally. Also, whenever ∥∇u∥L2 → ∞, the nonlinearity

in GMNSE vanishes entirely, but for calmed NSE this would only cause the large

values of |u(x, t)| to be truncated locally. Moreover, our calming parameter depends

on u while the GM function depends on ∇u, hence the manner in which we control

the nonlinearity is dierent. In a future work, we will examine dierences between

these two systems computationally.

3.2 Existence of Weak Solutions for Calmed NSE

The proofs of existence, uniqueness, convergence, etc. are essentially identical for

both equations (3.1.4) and (3.1.5). (The only phenomenological dierence examined
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in this paper is the rotational form (3.1.5) has an energy identity, but for (3.1.4),

this is unknown.) Therefore, we adopt a unied abstract notation which allows us to

handle both equations simultaneously.

For either (3.1.4) or (3.1.5), the weak formulation can be written as follows: Given

u0 ∈ L2(0, T ;H) and f ∈ L2(0, T ;V ′), nd u ∈ L2(0, T ;V ) which satises

⟨∂tu,v⟩+ ⟨νAu,v⟩+ ⟨B(ζϵ(u),u),v⟩ = ⟨f ,v⟩ for all v ∈ V, (3.2.1a)

u(x, 0) = u0(x), (3.2.1b)

where the Stokes operator A is dened by (2.2.2) and the nonlinear term B(·, ·)

is dened in either advective (2.2.5) or rotational form (2.2.7). We note that the

uniqueness of weak solutions is an open problem, similar to the situation regarding

3D Navier-Stokes. However, unlike the 3D Navier-Stokes case, we are able to prove

the global existence of strong solutions.

We will prove the existence of solutions to (3.2.1) via Galerkin approximation.

For u0 ∈ H, the system





∂tum = −νAum − PmB(ζϵ(um),um) + Pmf ,

um(0,x) = Pmu0(x)

(3.2.2a)

(3.2.2b)

is locally Lipschitz in Pm(H) provided that ζϵ is Lipschitz (see [28], Lemma 3.2). So

for each m ∈ N, there is some Tm > 0 for which a unique solution to (3.2.2) exists.
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3.2.1 Proof of Theorem 1.2.3

Let um be a solution to (3.2.2) on some maximum interval of existence [0, Tm] with

Tm > 0. Taking the inner product of (3.2.2) with um, we obtain

1

2

d

dt
∥um∥2L2 + ν ∥∇um∥2L2 = − (PmB(ζϵ(um),um),um) + ⟨Pmf ,um⟩

= − (B(ζϵ(um),um),um) + (f ,um) .

Now, using Hölder’s Inequality and Young’s Inequality,

1

2

d

dt
∥um∥2L2 + ν ∥∇um∥2L2

≤ ∥ζϵ∥L∞ ∥∇um∥L2 ∥um∥L2 + ∥f∥V ′ ∥∇um∥L2

≤ ν

2
∥∇um∥2L2 + Cν ∥ζϵ∥2L∞ ∥um∥2L2 + Cν ∥f∥2V ′ .

Rearranging terms yields the inequality

d

dt
∥um∥2L2 + ν ∥∇um∥2L2 ≤ Cν ∥ζϵ∥2L∞ ∥um∥2L2 + Cν ∥f∥2V ′ . (3.2.3)

Dropping the term ν ∥∇um∥2L2 from the left-hand side of the inequality and applying

Grönwall’s inequality yields

∥um(t)∥2L2 ≤ eCν∥ζ
ϵ∥2L∞ t ∥um(0)∥2L2 +

 t

0

e−Cν∥ζ
ϵ∥2L∞ (s−t) ∥f∥2V ′ ds (3.2.4)

≤ eCν∥ζ
ϵ∥2L∞Tm


∥u0∥2L2 + ∥f∥2L2V ′


.

In fact, we can apply a standard bootstrapping argument to obtain that given any

T > 0, (3.2.4) remains valid if Tm ≡ T for all m ∈ N. Thus um is bounded in

L∞(0, T ;L2(T2)) independently of m. Integrating (3.2.3) in time t on the interval
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[0, T ], one obtains

∥um(T )∥2L2 − ∥um(0)∥2L2 + ν

 T

0

∥∇um∥2L2 dt

≤ Cν∥f∥2L2V ′ + Cν ∥ζϵ∥2L∞

 T

0

∥um∥2L2 dt

≤ Cν∥f∥2L2V ′ + Cν ∥ζϵ∥2L∞ TeCν∥ζ
ϵ∥2L∞T


∥u0∥2L2 + ∥f∥2L2V ′


.

Rearranging this inequality and applying (3.2.4) then yields, for a.e. t ∈ [0, T ],

∥um∥2L2V ≤ Cν


1 + ∥ζϵ∥2L∞ TeCν∥ζ

ϵ∥2L∞T
 

∥u0∥2L2 + ∥f∥2L2V ′


(3.2.5)

Therefore um is bounded in L2(0, T ;V ) independently of m.

Now we check that ∂tum is bounded in L2(0, T ;V ′) independently of m. Let

w ∈ V with ∥∇w∥L2 = 1. Taking the action of ∂tu on w yields

|⟨∂tum,w⟩| ≤ ν |⟨Aum,w⟩|+ |(PmB(ζϵ(um),um),w)|+ |(Pmf ,w)|

= ν |(∇um,∇w)|+ |(B(ζϵ(um),um), Pmw)|+ |(f , Pmw)| .

Note that

ν |(∇um,∇w)| ≤ ν ∥∇um∥L2 ∥∇w∥L2 = ν ∥∇um∥L2 ,

and

|(B(ζϵ(um),um), Pmw)| ≤ C ∥ζϵ∥L∞ ∥∇um∥L2 ∥∇w∥L2 = C ∥ζϵ∥L∞ ∥∇um∥L2 ,
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and also

|(f , Pmw)| ≤ ∥f∥V ′ ∥w∥V ≤ ∥f∥V ′ .

From this we deduce that

∥∂tum∥L2V ′ ≤ Cν,ϵ (∥um∥L2V + ∥f∥L2V ′ ) , (3.2.6)

hence ∂tum is bounded in L2(0, T ;V ′) independently of m.

By the Banach-Alaoglu Theorem and the above bounds, there exists

u ∈ L∞(0, T ;H) ∩ L2(0, T ;V ) and a subsequence (relabeled as um) such that

um
∗
⇀ u weak-∗ in L∞(0, T ;H), (3.2.7)

um ⇀ u weakly in L2(0, T ;V ), (3.2.8)

∂tum ⇀ ∂tu weakly in L2(0, T ;V ′). (3.2.9)

Moreover, using the Aubin-Lions lemma one obtains another subsequence (still la-

belled as um) such that

um → u strongly in L2(0, T ;H). (3.2.10)

Now we wish to show that passing to the limit in (3.2.2) yields (3.2.1a). Let

w ∈ V , and set vm = u − um. We will show that u is a solution to (3.2.1a) by

showing that

⟨∂tu,w⟩+ ν (∇u,∇w) + b(ζϵ(u),u,w) + ⟨f ,w⟩

− (∂tum,w)− ν (∇um,w)− b (ζϵ(um),um, Pmw)− (Pmf ,w)
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tends to 0 as m → ∞. This expression can be rewritten as follows.

⟨∂tvm,w⟩+ ν (∇vm,∇w) + b(ζϵ(u),vm,w)

+ (b(ζϵ(u),um,w)− b(ζϵ(um),um,w))

+ b(ζϵ(um),um, (I − Pm)w) + ⟨(I − Pm)f ,w⟩ .

Note that from (3.2.8) and (3.2.9),

lim
m→∞

 T

0

⟨∂tvm,w⟩+ ν (∇vm,∇w) dt = 0

and

lim
m→∞

 T

0

b(ζϵ(u),vm,w)dt = 0

by Lemma 2.1.4 and (3.2.8). Now, using the Lipschitz property of ζϵ, Hölder’s in-

equality, and the Gagliardo-Nirenberg-Sobolev inequality, we bound the fourth and

fth term as follows:

 T

0

b(ζϵ(u),um,w)− b(ζϵ(um),um,w)dt

≤
 T

0

∥vm∥L3 ∥∇um∥L2 ∥w∥L6 dt

≤ C

 T

0

∥vm∥
1

2

L2 ∥∇vm∥
1

2

L2 ∥∇um∥L2 ∥∇w∥L2 dt

≤ C ∥∇w∥L2 ∥vm∥
1

2

L2L2∥∇vm∥
1

2

L2L2∥∇um∥L2L2 .

Therefore, since ∥∇um∥L2L2 and ∥∇vm∥L2L2 are bounded and vm → 0 strongly,

lim
m→∞

 T

0

(b(ζϵ(u),um,w)− b(ζϵ(um),um,w)) dt = 0
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as a consequence of (3.2.10). Finally, by (2.2.4) we obtain

lim
m→∞


 T

0

b(ζϵ(um),um, (I − Pm)w)dt



≤ lim
m→∞

∥ζϵ∥L∞ sup
m∈N

∥um∥L2V


λ−1/2
m ∥w∥H1



= 0

and

lim
m→∞

 T

0

⟨(I − Pm)f ,w⟩ dt = 0.

Thus we deduce that a subsequence of solutions um of (3.2.2) converges to a

solution u of (3.1.4). It remains to be shown that u is continuous in time and satises

the initial data. It is an immediate consequence of the Aubin-Lions Compactness

Theorem (see, e.g., [90, Corollary 7.3]) that u ∈ C([0, T ];L2). To show that the

initial data is satised, one carries out the procedure performed in, e.g., [28, 105].

Remark 3.2.1. It is not known if weak solutions are unique for calmed NSE or calmed

rNSE. Indeed, if u1 and u2 are weak solutions with same initial data u0, one can

write the dierence equation (3.3.4) and obtain the energy equation (3.3.5) as we do

in the case of strong solutions. However, for weak solutions it does not seem possible

to attain an upper bound for the term b(ζϵ(u2)− ζϵ(u1),u2, ũ) using the techniques

seen in this paper.

3.3 Strong Solutions

In this section we prove the rst - and second - order regularity of weak solutions to

the calmed NSE (3.2.1) for the purpose of showing that strong solutions are unique.
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To this end, we will apply the Aubin-Lions Compactness Theorem [90, Corollary 7.3].

3.3.1 Proof of Theorem 1.2.4

Here, we work formally, but the results can be made rigorous using the Galerkin pro-

cedure as in the proofs of the previous theorem. Suppose u0 ∈ V and f ∈ L2(0, T ;H)

for some T > 0. Taking the action of (3.2.1) with Au and then using the Lions-

Magenes Lemma, Young’s inequality, and Hölder’s inequality yields

1

2

d

dt
∥∇u∥2L2 + ν ∥Au∥2L2 = b(ζϵ(u),u, Au)− (f , Au)

≤ ∥ζϵ∥L∞ ∥∇u∥L2 ∥Au∥L2 + ∥f∥L2 ∥Au∥L2

≤ Cν ∥ζϵ∥2L∞ ∥∇u∥2L2 + Cν ∥f∥2L2 +
ν

2
∥Au∥2L2

Rearranging these terms yields the inequality

d

dt
∥∇u∥2L2 + ν ∥Au∥2L2 ≤ Cν ∥ζϵ∥2L∞ ∥∇u∥2L2 + Cν ∥f∥2L2 . (3.3.1)

We now remove the viscosity term and apply Grönwall’s inequality to obtain for a.e.

t ∈ [0, T ],

∥∇u(t)∥2L2 ≤ eCν∥ζ
ϵ∥2L∞ t ∥∇u0∥2L2 + Cν

 t

0

e−Cν∥ζ
ϵ∥2L∞ (s−t) ∥f(s)∥2L2 ds. (3.3.2)

Thus u ∈ L∞(0, T ;V ) whenever u0 ∈ V and f ∈ L2(0, T ;H). Returning to (3.3.1),

we integrate in time to obtain

ν

 T

0

∥Au∥2L2 dt ≤ ∥∇u0∥2L2 + Cν

 T

0

∥ζϵ∥2L∞ ∥∇u∥2L2 + ∥f∥2L2 dt. (3.3.3)
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From estimates (3.3.2) and (3.3.3) we deduce that u ∈ L2(0, T ;H2 ∩ V ). It remains

to be shown that ∂tu ∈ L2(0, T ;H). This follows immediately from the calculation

below:

 T

0

∥∂tu∥2L2 dt =

 T

0

∥νAu+ B(ζϵ(u),u) + f∥2L2 dt

≤ C

 T

0

ν ∥Au∥2L2 + ∥ζϵ∥2L∞ ∥∇u∥2L2 + ∥f∥2L2 dt

< ∞.

Therefore ∂tu ∈ L2(0, T ;H). By the Aubin-Lions Compactness Theorem, we con-

clude that u ∈ C([0, T ];V ).

We now proceed in showing the global existence and uniqueness of strong solutions.

With the existence of such solutions already known from prior results, this theorem

focuses on uniqueness and continuous dependence on initial data.

3.3.2 Proof of Theorem 1.2.5

From Theorems 1.2.3, 1.2.4, and from (2.5.1), we deduce the existence of strong

solutions to calmed NSE (3.1.4) and calmed rNSE (3.1.5) satisfying the hypotheses of

Denition 1.2.2. Suppose u1 and u2 are strong solutions with respective initial data

u1
0,u

2
0 ∈ V and forcing term f ∈ L2(0, T ;H). Let ũ = u1 − u2 and ũ0 = u1

0 − u2
0.

When we take the dierence of the two equations we obtain

∂ũ

∂t
− ν△ũ = B(ζϵ(u2)− ζϵ(u1),u2)− B(ζϵ(u1), ũ). (3.3.4)
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We now take the inner-product with ũ, which yields

1

2

d

dt
∥ũ∥2L2 + ν ∥∇ũ∥2L2 (3.3.5)

= b(ζϵ(u2)− ζϵ(u1),u2, ũ)− b(ζϵ(u1), ũ, ũ).

For the rst term, using Hölder’s inequality, the Gagliardo-Nirenberg-Sobolev in-

equality, condition 1 of Denition 2.1.1, and Poincarè’s inequality, one obtains

|b(ζϵ(u2)− ζϵ(u1),u2, ũ)|

≤ ∥ũ∥L3 ∥∇u2∥L6 ∥ũ∥L2

≤ C ∥ũ∥
3

2

L2 ∥∇ũ∥
1

2

L2 ∥△u2∥L2

≤ Cν ∥△u2∥
4

3

L2 ∥ũ∥2L2 +
ν

4
∥∇ũ∥2L2 .

While for the second term, one obtains

|b(ζϵ(u1), ũ, ũ)| ≤ Cν ∥ζϵ∥2L∞ ∥ũ∥2L2 +
ν

4
∥∇ũ∥2L2 .

Inserting these bounds into estimate (3.3.5) then yields

d

dt
∥ũ∥2L2 + ν ∥∇ũ∥2L2 ≤ Cν


∥ζϵ∥2L∞ + ∥△u2∥

4

3

L2


∥ũ∥2L2 . (3.3.6)

Since u2 is a strong solution to calmed NSE (3.1.4) we have the containment u2 ∈

L2(0, T ;H2 ∩ V ), hence

A(T ) := Cν

 T

0


∥ζϵ∥2L∞ + ∥△u2∥

4

3

L2


dt < ∞.
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Using Grönwall’s inequality, it follows that,

∥ũ(t)∥2L2 ≤ eA(T ) ∥ũ0∥2L2 . (3.3.7)

We conclude that strong solutions to (3.1.4) are unique and depend continuously on

initial data.

3.4 Convergence to strong solutions of the Navier-Stokes

equations

In this section we prove that strong solutions uϵ to calmed NSE will converge to a

strong solution u to NSE on suciently small time intervals when ζϵ is known to

satisfy condition 3 for some minimal value β ≥ 1.

3.4.1 Proof of Theorem 1.2.6

Set wϵ = u−uϵ. We then take the action of the dierence of (3.1.1) and (3.1.4) with

Awϵ and use the Lions-Magenes Lemma to obtain

1

2

d

dt
∥∇wϵ∥2L2 + ν ∥Awϵ∥2L2 = N, (3.4.1)

where the nonlinearity N is rewritten as

N = b(ζϵ(u)− u,u, Awϵ)− b(ζϵ(u),wϵ, Awϵ)

− b(ζϵ(u)− ζϵ(uϵ),u, Awϵ) + b(ζϵ(u)− ζϵ(uϵ),wϵ, Awϵ)

= N1 +N2 +N3 +N4.

For N1, we use condition 3 of Denition 2.1.1, Agmon’s inequality, and Young’s
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inequality to obtain

|N1| ≤


Ω

|ζϵ(u)− u| |∇u| |Awϵ| dx (3.4.2)

≤ Cϵα


Ω

|u|β |∇u| |Awϵ| dx

≤ Cϵα ∥u∥βL∞ ∥∇u∥L2 ∥Awϵ∥L2

≤ Cϵα∥u∥L∞V ∥△u∥βL2 ∥Awϵ∥L2

≤ Cν∥u∥2L∞V ∥△u∥2βL2 ϵ
2α +

ν

8
∥Awϵ∥2L2 .

For the remaining terms, we use a combination of Agmon’s inequality, Poincare’s

inequality, Hölder’s inequality, the Gagliardo-Nirenberg-Sobolev inequality, and

Young’s inequality. For N2, we obtain

|N2| ≤


Ω

|u| |∇wϵ| |Awϵ| dx (3.4.3)

≤ ∥u∥L∞ ∥∇wϵ∥L2 ∥Awϵ∥L2

≤ C ∥△u∥L2 ∥∇wϵ∥L2 ∥Awϵ∥L2

≤ Cν ∥△u∥2L2 ∥∇wϵ∥2L2 +
ν

8
∥Awϵ∥2L2 ,

where we use the additional fact that |ζϵ(u)| ≤ |u|, which follows from conditions 1

and 3 of Denition 2.1.1. For N3,

|N3| ≤


Ω

|wϵ| |∇u| |Awϵ| dx (3.4.4)

≤ ∥∇u∥L3 ∥wϵ∥L6 ∥Awϵ∥L2

≤ C ∥∇u∥
1

2

L2 ∥△u∥
1

2

L2 ∥∇wϵ∥L2 ∥Awϵ∥L2

≤ Cν∥u∥L∞V ∥△u∥L2 ∥∇wϵ∥2L2 +
ν

8
∥Awϵ∥2L2
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and for N4, using inequality (2.2.1) we deduce

|N4| ≤


Ω

|wϵ| |∇wϵ| |Awϵ| dx (3.4.5)

≤ ∥wϵ∥L6 ∥∇wϵ∥L3 ∥Awϵ∥L2

≤ ∥∇wϵ∥
3

2

L2 ∥wϵ∥
1

2

H2 ∥Awϵ∥L2

≤ C ∥∇wϵ∥
3

2

L2 ∥Awϵ∥
3

2

L2

≤ Cν ∥∇wϵ∥6L2 +
ν

8
∥Awϵ∥2L2 .

We now make the ansatz

∥∇wϵ∥L2 < 1, (3.4.6)

which holds at the initial time by assumption and therefore for a short time since

u,uϵ ∈ C([0, T ];V ). We want to show that this leads to an even tighter bound. To

this end, we apply (3.4.6) to estimate (3.4.5), then insert the bounds (3.4.2), (3.4.3),

(3.4.4), and (3.4.5) into estimate (3.4.1) which yields

d

dt
∥∇wϵ∥2L2 + ν ∥Awϵ∥2L2 (3.4.7)

≤ Cν∥u∥2L∞V ∥△u∥2βL2 ϵ
2α + Cν


∥△u∥2L2 + ∥u∥L∞V ∥△u∥L2 + 1


∥∇wϵ∥2L2 .

By (1.2.1) we deduce that the rst term and the factor preceding ∥∇wϵ∥2L2 in (3.4.7)

are integrable in time. Since ∥∇wϵ(0)∥L2 = 0, we can use Grönwall’s inequality to

obtain, for all t ∈ [0, T ],

∥∇wϵ(t)∥L2 ≤ Kϵα, (3.4.8)
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where K > 0 is a constant depending on Ω, ν, β, ∥u∥L∞V , ∥△u∥L2 , and T . By taking

ϵ > 0 suciently small, it follows that

∥∇wϵ(t)∥L2 <
1

2

for all t ∈ [0, T ]. After applying a standard bootstrapping argument (see, e.g., [28]),

we conclude that inequality (3.4.8) is valid for all t ∈ [0, T ].

3.5 Existence of Strong Solutions to 3D Navier-Stokes

To prove Theorem 1.2.7, we begin with a lemma establishing higher-order bounds

that are independent of the calming parameter. We assume a uniform-in-time bound

on f , namely f ∈ L∞((0,∞);L2). This hypothesis could likely be weakened, but

simplicity of presentation, we do not pursue this here.

Lemma 3.5.1. Let ν > 0. Suppose, for each ϵ > 0, uϵ is a strong solution to calmed

NSE (3.1.4) or calmed rNSE (3.1.5) with initial data u0 ∈ V and f ∈ L∞((0,∞);L2).

On the interval [0, T0], where

T0 :=


∥∇u0∥2L2 +M 2

−2 − 1
4
∥∇u0∥−4

L2

Cν

(3.5.1)

and M := ∥f∥
1

3

L∞((0,∞);L2), the following inequalities are valid:

sup
ϵ>0

sup
t∈[0,T0]

∥∇uϵ(t)∥2L2 ≤ 2 ∥∇u0∥2L2 (3.5.2)

and

sup
ϵ>0


ν

 T0

0

∥Auϵ∥2L2


≤ ∥∇u0∥2L2 + CνT0


2 ∥∇u0∥2L2 +M 2

3
, (3.5.3)
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where Cν is a positive constant that depends on the domain Ω and ν and may change

from line to line.

Proof. Following similar steps as before in showing higher-order regularity, we take

the action of (3.1.5) on Auϵ, integrate by parts, and apply the Lions-Magenes Lemma,

to obtain

1

2

d

dt
∥∇uϵ∥2L2 + ν ∥Auϵ∥2L2 = b(uϵ,uϵ, Auϵ) + (f , Auϵ)

Now we use the Gagliardo-Nirenberg-Sobolev inequality, the Cauchy-Schwarz inequal-

ity, (2.2.1), and Young’s inequality, which yields

1

2

d

dt
∥∇uϵ∥2L2 + ν ∥Auϵ∥2L2

≤ ∥∇uϵ∥L3 ∥uϵ∥L6 ∥Au∥L2 + ∥f∥L2 ∥Auϵ∥L2

≤ C ∥∇uϵ∥
3

2

L2 ∥uϵ∥
1

2

H2 ∥Auϵ∥L2 + ∥f∥L2 ∥Auϵ∥L2

≤ C ∥∇uϵ∥
3

2

L2 ∥Auϵ∥
3

2

L2 + ∥f∥L2 ∥Auϵ∥L2

≤ Cν ∥∇uϵ∥6L2 + Cν ∥f∥2L2 +
ν

2
∥Auϵ∥2L2

≤ Cν ∥∇uϵ∥6L2 + CνM
6 +

ν

2
∥Auϵ∥2L2

≤ Cν


∥∇uϵ∥2L2 +M 2

3
+

ν

2
∥Auϵ∥2L2 .

We now rewrite this inequality as

d

dt
∥∇uϵ∥2L2 + ν ∥Auϵ∥2L2 ≤ Cν


∥∇uϵ∥2L2 +M 2

3
(3.5.4)

which, after making the substitution η = ∥∇uϵ∥2L2 +M 2 and removing the diusive
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terms, becomes

d

dt
η ≤ Cνη

3.

From this inequality we derive, for all t ∈ [0, T0],

η(t) ≤

η(0)−2 − CνT0

− 1

2

or

∥∇uϵ∥2L2 +M 2 ≤


∥∇u0∥2L2 +M 2
−2 − CνT0

− 1

2

= 2 ∥∇u0∥2L2 (3.5.5)

for T0 as in (3.5.1), thus proving (3.5.2). We now return to estimate (3.5.4), integrate

in time on the interval [0, T0], and apply estimate (3.5.5) to obtain

ν

 T0

0

∥Auϵ∥2L2 dt

≤ ∥∇u0∥2L2 + Cν

 T0

0


∥∇uϵ∥2L2 +M 2

3
dt

≤ ∥∇u0∥2L2 + CνT0


2 ∥∇u0∥2L2 +M 2

3
.

This proves (3.5.3).

Our lemma guarantees that for nonzero initial data u0 ∈ V and forcing term

f ∈ L∞(0,∞;L2), there exists a positive time T0 for which, given any ϵ > 0, uϵ is

bounded in L∞(0, T0;V ) ∩ L2(0, T0;H
2 ∩ V ). We now, proceed to show that, on the

time interval [0, T0], {u
ϵ}ϵ>0 is Cauchy.
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3.5.1 Proof of Theorem 1.2.7

Let uϵ and uδ be strong solutions to calmed NSE (3.1.4) or calmed rNSE (3.1.5) with

initial data u0 ∈ V and with respective calming parameters ϵ > 0 and δ > 0. From

the results of Lemma 3.5.1 we ascertain the existence of a maximal time T > 0 for

which

sup
ϵ>0

sup
t∈[0,T ]

∥∇uϵ(t)∥2L2 ≤ 2 ∥∇u0∥2L2 . (3.5.6)

From Lemma 3.5.1 we ascertain that T ≥ 1
4
∥∇u0∥−4

L2 > 0. Set ũ = uϵ − uδ. The

system for ũ can be written as

∂tũ+ νAũ

= −B(ζδ(uδ), ũ)− B(ũ,uϵ) + B(ζδ(uδ)− uδ,uϵ) + B(uϵ − ζϵ(uϵ),uϵ)

We then take the inner product with ũ to obtain

1

2

d

dt
∥ũ∥2L2 + ν ∥∇ũ∥2L2 ≤



Ω

|∇ũ|
ζδ(uδ)

 |ũ| dx

+



Ω

|ũ|2 |∇uϵ| dx

+



Ω

|∇uϵ|
ζδ(uδ)− uδ

 |ũ| dx

+



Ω

|∇uϵ| |ζϵ(uϵ)− uϵ| |ũ| dx.

Now, applying condition 3 of ζϵ yields

1

2

d

dt
∥ũ∥2L2 + ν ∥∇ũ∥2L2 ≤



Ω

|∇ũ|
uδ

 |ũ| dx+



Ω

|ũ|2 |∇uϵ| dx

+Cδα


Ω

|∇uϵ|
uδ

β |ũ| dx+ Cϵα


Ω

|∇uϵ| |uϵ|β |ũ| dx.
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Using Hölder’s inequality, Agmon’s inequality, Poincaré’s inequality, (2.2.1), and

Young’s inequality, for the rst term we obtain



Ω

|∇ũ|
ζδ(uδ)

 |ũ| dx ≤ ∥∇ũ∥L2

uδ

L∞

∥ũ∥L2 (3.5.7)

≤ C ∥∇ũ∥L2

uδ

H2 ∥ũ∥L2

≤ C ∥∇ũ∥L2

Auδ

L2 ∥ũ∥L2

≤ Cν

Auδ
2

L2 ∥ũ∥2L2 +
ν

8
∥∇ũ∥2L2 .

and similarly for the second term, using also (3.5.2),



Ω

|ũ|2 |∇uϵ| dx ≤ ∥ũ∥L3 ∥∇uϵ∥L2 ∥ũ∥L6 (3.5.8)

≤ C ∥ũ∥
1

2

L2 ∥∇u0∥L2 ∥∇ũ∥
3

2

L2

≤ Cν ∥∇u0∥4L2 ∥ũ∥2L2 +
ν

8
∥∇ũ∥2L2

Using the same inequalities for the third term, we deduce that

Cδα


Ω

|∇uϵ|
uδ

β |ũ| dx ≤ Cδα ∥∇uϵ∥L6

uδ
β

L2β ∥ũ∥L3

≤ Cδα ∥uϵ∥H2

uδ
β

L2β ∥ũ∥
1

2

L2 ∥∇ũ∥
1

2

L2

≤ Cδα ∥Auϵ∥L2

uδ
β

L2β ∥ũ∥
1

2

L2 ∥∇ũ∥
1

2

L2 .

For β ∈ [1, 3], from the Gagliardo-Nirenberg-Sobolev inequality and (3.5.6) we have

uδ
β

L2β ≤ Cβ ∥∇u0∥βL2 .
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We insert this bound into estimate (3.5.7) and apply Young’s inequality to obtain

Cδα


Ω

|∇uϵ|
uδ

β |ũ| dx (3.5.9)

≤ Cβ,νδ
2α ∥∇u0∥2βL2 ∥Auϵ∥2L2 + Cν ∥ũ∥2L2 +

ν

8
∥∇ũ∥2L2 .

We follow the same procedure for the nal term:

Cϵα


Ω

|∇uϵ| |uϵ|β |ũ| dx (3.5.10)

≤ Cβ,νϵ
2α ∥∇u0∥2βL2 ∥Auϵ∥2L2 + Cν ∥ũ∥2L2 +

ν

8
∥∇ũ∥2L2 .

Invoking (3.5.7), (3.5.8), (3.5.9), and (3.5.10) yields the upper bound

d

dt
∥ũ∥2L2 + ∥∇ũ∥2L2 (3.5.11)

≤ Cν

Auδ
2

L2 + ∥∇u0∥4L2 + 1

∥ũ∥2L2 + Cβ,ν ∥∇u0∥2βL2 ∥Auϵ∥2L2


δ2α + ϵ2α



≤ K1 ∥ũ∥2L2 +K2


δ2α + ϵ2α


,

where K1 and K2 depend on ν, β, T and ∥∇u0∥L2 , but not ϵ or δ, and are determined

by Lemma 3.5.1. Now, we apply Grönwall’s inequality to obtain, for all t ∈ [0, T ],

∥ũ(t)∥L2 ≤ K3


δ2α + ϵ2α


, (3.5.12)

where

K3 =
K2

K1


eK1T − 1

 
δ2α + ϵ2α


.

Therefore we see that lim
δ,ϵ→0

uϵ − uδ

L2 = 0, hence {uϵ}ϵ>0 is Cauchy in L∞H with

respect to the calming parameter. If instead we integrate (3.5.11) on [0, T ], we can
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derive the upper bound

ν

 T

0

∥∇ũ∥2L2 dt ≤ K1

 T

0

∥ũ∥2L2 dt+K2T

δ2α + ϵ2α


(3.5.13)

≤ K1T∥ũ∥L∞L2 +K2T

δ2α + ϵ2α


,

hence {uϵ}ϵ>0 is also Cauchy in L2V . Therefore, there exists u ∈ L∞H ∩ L2V for

which

uϵ → u strongly in u ∈ L∞H ∩ L2V (3.5.14)

as ϵ → 0. We now show that this limit point u is in fact a solution to 3D rNSE (3.1.3).

First note that, owing to Lemma 3.5.1, the equivalence (2.2.1), the Banach-Alaoglu

Theorem, and the usual uniqueness of limits, it follows that

u ∈ L∞V ∩ L2(H2 ∩ V ). (3.5.15)

Set u∗ = uϵ − u, and take the action of (3.1.3) against an arbitrary test function

w ∈ C1
c ([0, T );V ) and integrate by parts in time (noting that w


t=T

= 0),

−
 T

0

⟨uϵ, ∂tw⟩ dt+ ν

 T

0

(∇uϵ,∇w) dt+

 T

0

b(ζϵ(uϵ),uϵ,w) dt

= ⟨u0,w(0)⟩+
 T

0

⟨f ,w⟩ dt.

Thanks to (3.5.14), the rst two terms converge to their Navier-Stokes analogues. For

the nonlinear term, we estimate


 T

0

b(ζϵ(uϵ),uϵ,w) dt−
 T

0

b(u,u,w) dt


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≤
 T

0

|b(ζϵ(uϵ)− uϵ,uϵ,w)| dt+

 T

0

|b(u∗,uϵ,w)| dt+

 T

0

|b(u,u∗,w)| dt

≤
 T

0


Cϵα ∥uϵ∥β

L2β ∥∇uϵ∥L3 ∥w∥L6

+ ∥u∗∥L3 ∥∇uϵ∥L2 ∥w∥L6 + ∥u∥L3 ∥∇u∗∥L2 ∥w∥L6


dt

≤
 T

0


Cβϵ

α ∥∇u0∥βL2 ∥∇uϵ∥
1

2

L2 ∥Auϵ∥
1

2

L2 ∥∇w∥L2

+ ∥u∗∥
1

2

L2 ∥∇u∗∥
1

2

L2 ∥∇uϵ∥L2 ∥∇w∥L2

+

 T

0

∥u∥
1

2

L2 ∥∇u∥
1

2

L2 ∥∇u∗∥L2 ∥∇w∥L2


dt

≤ Cβϵ
α ∥∇u0∥βL2 ∥Auϵ∥L2L2∥w∥L2V

+ C∥u∗∥
1

2

L∞L2∥u∗∥
1

2

L∞V ∥∇u0∥L2

 T

0

∥∇w∥L2 dt

+ ∥u∥
1

2

L∞L2∥u∥
1

2

L∞V ∥u∗∥L∞L2

 T

0

∥∇w∥L2 dt,

where the three terms vanish as ϵ → 0+ as a consequence of (3.5.3) and (3.5.14).

Hence, sending ϵ → 0+, and choosing w ∈ C∞
c ((0, T ), V ) we obtain

∂tu+ νAu+ B(u,u) = f (3.5.16)

holding in the distributional sense in time with values in V , i.e., in the sense of

D′((0, T ), V ′). But then, as in, e.g., [105], Chapter 3, Lemma 1.1, since the other

terms in (3.5.16) are in L2H, it holds that ∂tu ∈ L2H, and moreover, (3.5.16) holds

in the sense of ∂tu ∈ L2H. A standard argument (see, e.g., [20, 105]) shows that the

initial data is satised in the sense of C([0, T ];V ). That is, u is a strong solution to

the Navier-Stokes equations.
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3.6 An Energy Equality for Weak Solutions

In this section we focus only on the calmed rotational Navier-Stokes equations (3.1.5).

We also assume that ζϵ satises condition (4) of Denition 2.1.1, so that

((∇× u)× ζϵ(u)) · u = 0 in the L2-sense thanks to (3.1.6).

3.6.1 Proof of Theorem 1.2.8

Suppose f ∈ L2(0, T ;V ′). Let u be a weak solution to calmed rNSE as in Denition

3.2.1, with the nonlinearity given by B(u,v) = Pσ ((∇× v)× u). Taking the action

of the equation in V ′ with u and using the Lions-Magenes Lemma1 and the fact that

∂tu ∈ L2(0, T ;V ′), we obtain

1

2

d

dt
∥u∥2L2 + ν ∥∇u∥2L2 = ⟨f ,u⟩ .

Integrating in time and using the fact that u ∈ C([0, T ];H), we nd that, for any

t > 0,

∥u(t)∥2L2 + 2ν

 t

0

∥∇u(s)∥2L2 ds = ∥u0∥2L2 + 2

 t

0

⟨f(s),u(s)⟩ ds.

Therefore equations (1.2.3) and (1.2.4) are valid, proving Theorem 1.2.8.

Remark 3.6.1. Let us briey compare system (3.1.5) with the 3D NSE. For the 3D

NSE, it was shown in [7, 70] that weak solutions are non-unique, but it is currently a

major open problem to show whether weak solutions that satisfy the energy inequality

(called Leray-Hopf solutions) are unique. In contrast, weak solutions of (3.1.5) are

1As is well-known, the Lions-Magenes Lemma is not known to apply in the setting of weak
solutions to the 3D NSE, since for those solutions, it is only known that ∂tu ∈ L4/3(0, T ;V ′),
preventing a proof of an energy equality for weak solutions of the 3D NSE. This seems to be an
important distinction of system (3.1.5) from the 3D NSE.
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not known to be unique, but we have just shown that they satisfy not only an energy

inequality, but an energy equality. Hence, (3.1.5) is an example of a system which is

very similar to the 3D NSE (especially given the convergence in Theorem 1.2.6), where

an energy equality is known for weak solutions but for which a proof of uniqueness

of weak solutions remains elusive.

Remark 3.6.2. It may be worth studying analogues of so-called “suitable weak solu-

tions,” proposed for the 3D NSE in [26], for which a local energy inequality holds.

This would be especially interesting for system (3.1.5) under assumption (4) in Def-

inition 2.1.1 due to the point-wise vanishing of the nonlinear term. However, we

postpone this study to a future work.

3.7 A Global Attractor

From the existence of the energy identity (1.2.3) we are able to prove the existence of

a global attractor for the dynamical system generated by solutions of calmed rNSE

(3.1.5).

3.7.1 Proof of Theorem 1.2.10

Consider again the calmed rotational Navier-Stokes equations (3.1.5), under condi-

tions 1, 2, 3, and 4 of Denition 2.1.1. Take f ∈ H to be time-independent, and for

a given R > 0, let BR = {u ∈ H : ∥u∥L2 ≤ R}. Now choose u0 ∈ BR. On the right

hand side of (1.2.3), we use Hölder’s, Poincaré’s, and Young’s inequalities to obtain

|(f ,u)| ≤ 1

2νλ1

∥f∥2L2 +
ν

2
∥∇u∥2L2
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We insert the second estimate into the rst and rearrange the terms, which yield

d

dt
∥u∥2L2 + ν ∥∇u∥2L2 ≤

1

νλ1

∥f∥2L2 . (3.7.1)

We apply Poincaré’s inequality once more,

d

dt
∥u∥2L2 + νλ1 ∥u∥2L2 ≤

1

νλ1

∥f∥2L2 ,

then we apply Grönwall’s inequality:

∥u(t)∥2L2 ≤ e−νλ1t ∥u0∥2L2 +
1

νλ1


1− e−νλ1t


∥f∥2L2

≤ e−νλ1tR2 +
1

νλ1


1− e−νλ1t


∥f∥2L2

We now set

t0 =
1

νλ1

ln(1 + R2),

so that

max

e−νλ1t, e−νλ1tR2


< 1

for all t ≥ t0. Then we obtain

∥u(t)∥2L2 < ρ0 (3.7.2)

for all t ≥ t0, where ρ0 = 1 + 1
νλ1

∥f∥2L2 .

If instead we integrate (3.7.1) on the interval2 [t − 1, t] for some t ≥ t0 + 1, we

2Here, the “1” in “t−1” has dimensions of time. Instead, one could consider the interval [t−τ, t],
where τ = 1

νλ1

, but we use a unit interval to simplify the presentation.
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obtain

∥u(t)∥2L2 + ν

 t

t−1

∥∇u∥2L2 ≤ ∥u(t− 1)∥2L2 +
1

νλ1

∥f∥2L2 ,

from which we deduce, by (3.7.2),

 t

t−1

∥∇u∥2L2 ds ≤ ρ1, (3.7.3)

where ρ1 =
1
ν
ρ0 +

1
ν2λ1

∥f∥2L2 . Now, we take the action of (3.1.5a) with −△u, and use

the Lions-Magenes Lemma to obtain

1

2

d

dt
∥∇u∥2L2 + ν ∥△u∥2L2

= ((∇× u)× ζϵ(u),△u)− (f ,△u)

≤ Cν ∥ζϵ∥L∞ ∥∇u∥2L2 + Cν ∥f∥2L2 +
ν

2
∥△u∥2L2

We then rearrange the inequality above which yields

d

dt
∥∇u∥2L2 + ν ∥△u∥2L2 ≤ Cν ∥ζϵ∥L∞ ∥∇u∥2L2 + Cν ∥f∥2L2 . (3.7.4)

Now, select s and t such that t > t0 + 1 and t − 1 < s < t. We remove the viscous

term from the left-hand side, then integrate (3.7.4) on the interval [s, t] and apply

(3.7.3) to obtain

∥∇u(t)∥2L2 ≤ ∥∇u(s)∥2L2 + Cν ∥f∥2L2 + Cν ∥ζϵ∥L∞ ρ1. (3.7.5)

Integrating once more in s on the interval [t− 1, t] and again using (3.7.3), it follows



55

that, for t > t0 + 1,

∥∇u(t)∥2L2 ≤ ρ2, (3.7.6)

where ρ2 = ρ1 +Cν ∥f∥2L2 +Cν ∥ζϵ∥L∞ ρ1. From this inequality we deduce that Bρ2 =

{u ∈ H : ∥u∥L2 ≤ ρ2} is bounded in V . Since V is compactly embedded in H, we

deduce that Bρ2 is a compact absorbing set in H. Applying Theorem 10.5 of [90], we

conclude that there exists a global attractor in H.

Remark 3.7.1. Observe that the upper bounds in (3.7.4), (3.7.5), (3.7.6) each depend

on ∥ζϵ∥L∞ . Therefore these upper bounds do not remain valid as ϵ → 0+, since

lim
ϵ→0+

∥ζϵ∥L∞ = ∞.

3.8 Conclusions

We proposed two modications of the 3D Navier-Stokes equations: one involved a

modication to the advective velocity term of Navier-Stokes (with kinematic pres-

sure), which we refer to as ‘calmed Navier-Stokes,’ and the other involves a modi-

cation to the Lamb vector of Navier-Stokes (with Bernoulli pressure), which we term

‘calmed rotational Navier-Stokes.’ We have successfully demonstrated the existence

of weak solutions for both of these calmed systems, although the question of whether

these solutions are unique remains open. Furthermore, we have established the global

well-posedness for strong solutions in both cases. Moreover, we demonstrate that

calmed strong solutions do converge to strong solutions of the Navier-Stokes equa-

tions on suciently small time intervals, provided suitable conditions on the calming

function and suitable regularity of the solution to Navier-Stokes.

In the context of the calmed rotational Navier-Stokes Equations (for suitable calm-
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ing functions), we also establish the existence of an energy identity and the presence

of a compact global attractor within the function space H.
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Chapter 4

The 3D Navier-Stokes Equations in Velocity-Vorticity

formulation

4.1 Introduction

The velocity-vorticity model of the 3D Navier-Stokes Equations is






∂tu− ν△u+ ω × u+∇p = f ,

∂tω − ν△ω + u ·∇ω − ω ·∇u = ∇× f .

∇ · u = 0, u(0) = u0, ω(0) = ω0,

(4.1.1a)

(4.1.1b)

(4.1.1c)

where u and ω are coupled by the relation ∇ × ω = −△u. There is a large body

of research on the analysis of the Navier-Stokes equations in its velocity-vorticity

formulation (4.1.1) and its utility in numerical implementation, (see, e.g., [63, 69, 74,

82–84, 88, 109, 110]. In this formulation, one can see that for suciently smooth

solutions with zero forcing the velocity u enjoys the energy equality

∥u∥2L2 + 2ν

 T

0

∥∇u∥2L2 = ∥u0∥2L2 (4.1.2)
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thus its kinetic energy ∥u∥2L2 dissipates over time. However, the vorticity stretching

term ω ·∇u present in the governing equations for ω is capable of generating details at

arbitrarily ne length-scales, making this system intractable. We propose applying

a calming function to (4.1.1) to obtain the following system, the calmed Velocity-

Vorticity equations (calmed VV),






∂tu− ν△u+w × u+∇p = f ,

∂tw − ν△w + u ·∇w − ζϵ(w) ·∇u = ∇× f ,

∇ · u = 0, u(0) = u0, w(0) = w0

(4.1.3a)

(4.1.3b)

(4.1.3c)

The weak formulation of (4.1.3) is as follows: nd u,w which satisfy






∂tu+ νAu+ Pσ (w × u) = Pσf ,

∂tw + νAw + B(u,w)− B(ζϵ(w),u) = Pσ (∇× f) .

u(0) = u0, w(0) = w0

(4.1.4a)

(4.1.4b)

(4.1.4c)

where equality holds in the functional sense.

4.2 Existence of weak solutions

4.2.1 Proof of Theorem 1.2.14

Take the inner product of (4.1.4a) with u and (4.1.4b) with w, then add the equations

to obtain

1

2

d

dt


∥u∥2L2 + ∥w∥2L2


+ ν


∥∇u∥2L2 + ∥∇w∥2L2


(4.2.1)

= (ζϵ(w) ·∇u,w) + (f ,u) + (∇× f ,w)
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= (ζϵ(w) ·∇u,w) + (f ,u) + (f ,∇×w)

≤ ∥ζϵ(w)∥L∞ ∥∇u∥L2 ∥w∥L2 + ∥f∥L2 ∥u∥L2 + ∥f∥L2 ∥∇×w∥L2

≤ ∥ζϵ∥L∞ ∥∇u∥L2 ∥w∥L2 + ∥f∥L2 ∥u∥L2 + C ∥f∥L2 ∥∇w∥L2

where (w × u,u) = 0 by orthogonality and (u ·∇w,w) = 0 by symmetry. Now,

using Young’s inequality, we have

1

2

d

dt


∥u∥2L2 + ∥w∥2L2


+ ν


∥∇u∥2L2 + ∥∇w∥2L2


(4.2.2)

≤ 1

2ν
∥ζϵ∥2L∞ ∥w∥2L2 +

ν

2
∥∇u∥2L2 +

1

2
∥f∥2L2 +

1

2
∥u∥2L2 +

C

ν1/2
∥f∥2L2 +

ν

2
∥∇w∥2L2 .

We can now rewrite the inequality as

d

dt


∥u∥2L2 + ∥w∥2L2


+ ν


∥∇u∥2L2 + ∥∇w∥2L2


(4.2.3)

≤

1

ν
∥ζϵ∥2L∞ + 1


∥u∥2L2 + ∥w∥2L2


+ Cν ∥f∥2L2 .

We rst remove the diusive term from the equation and apply Grönwall’s inequality,

which yields

∥u(t)∥2L2 + ∥w(t)∥2L2 ≤ e(
1

ν
∥ζϵ∥2L∞+1)T 

∥u0∥2L2 + ∥w0∥2L2 + Cν∥f∥2L2L2


. (4.2.4)

Therefore u,w ∈ L∞(0, T ;H). Set Kν,ϵ =
1
ν
∥ζϵ∥2L∞ + 1. Now, we integrate (4.2.3) in

time on the interval [0, T ], then apply estimate (4.2.4) to obtain

ν

 T

0

∥∇u∥2L2 + ∥∇w∥2L2 dt (4.2.5)

≤

∥u0∥2L2 + ∥w0∥2L2


+Kν,ϵ

 T

0

∥u(t)∥2L2 + ∥w(t)∥2L2 dt+ Cν∥f∥2L2L2
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≤

∥u0∥2L2 + ∥w0∥2L2


+Kν,ϵTe

Kν,ϵT

∥u0∥2L2 + ∥w0∥2L2 + Cν∥f∥2L2L2


+ Cν∥f∥2L2L2 .

Therefore we have u,w ∈ L2(0, T ;V ).

It remains to be shown that ∂tu ∈ L2(0, T ;V −1) and ∂tw ∈ L
4

3 (0, T ;V −1), which

we will do in two steps. First, since

∂tu = ν△u−w × u+ f ,

and since it is already known that ν△u, f ∈ L2(0, T ;V −1), one only needs to verify

that w× u ∈ L2(0, T ;V −1). In fact, we are able to obtain an even better result. For

ϕ ∈ L4/3(0, T ;V ), applying Hölder’s inequality, a Gagliardo-Nirenberg inequality, and

Poincarè’s inequality,

 T

0

|⟨w × u,ϕ⟩| dt (4.2.6)

≤
 T

0

∥w∥L2 ∥u∥L3 ∥ϕ∥L6 dt

≤ C

 T

0

∥w∥L2 ∥u∥1/2L2 ∥∇u∥1/2L2 ∥∇ϕ∥L2 dt

≤ C∥w∥L∞L2∥u∥1/2L∞L2∥u∥1/2L2V ∥ϕ∥L4/3V ,

where the integrability of this upper bound is deduced from (4.2.4) and (4.2.5). Thus

∂tu ∈ L2(0, T ;V −1)1.

Now, for

∂tw = ν△w − u ·∇w + ζϵ(w) ·∇u+∇× f ,

we have again that ν△u,∇ × f ∈ L2(0, T ;V −1), hence we need only check the non-

linear terms. In fact, for the calmed term we are able to show that ζϵ(w) · ∇u ∈
1In this case, the regularity of ∂tu is limited by the diusive term ν△u.
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L2(0, T ;H):

 T

0

|⟨ζϵ(w) ·∇u,ϕ⟩| dt

≤
 T

0

∥ζϵ∥L∞ ∥∇u∥L2 ∥ϕ∥L2

≤ ∥ζϵ∥L∞ ∥u∥L2V ∥ϕ∥L2L2 .

However, it is the presence of the term u · ∇w that limits the regularity of ∂tw, as

we see below: For ϕ ∈ L4(0, T ;V ),

 T

0

|⟨u ·∇w,ϕ⟩| dt (4.2.7)

≤
 T

0

∥u∥L3 ∥∇w∥L2 ∥ϕ∥L6 dt

≤ C

 T

0

∥u∥1/2L2 ∥∇u∥1/2L2 ∥∇w∥L2 ∥∇ϕ∥L2 dt

≤ C∥u∥1/2L∞L2∥u∥1/2L2V ∥w∥L2V ∥ϕ∥L4V .

So u ·∇w ∈ L4/3(0, T ;V −1), therefore ∂tw ∈ L4/3(0, T ;V −1).

Thus we have demonstrated the existence of weak solutions.

4.3 Global wellposedness of strong solutions

The presence of the nonlinear term u · ∇w in the vorticity equation destroys any

chance of showing non-uniqueness for weak solutions, similar to what is seen in the

case of 3D Navier-Stokes. However, one can obtain the inclusion ∂tw ∈ L2(0, T ;V −1)

provided u has higher regularity. Indeed, (4.2.7) implies that u ∈ L∞(0, T ;V ) is

sucient.

Lemma 4.3.1. Let (u,w) be a weak solution to (4.1.3) with initial data (u0,w0) ∈
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V ×H and forcing term f ∈ L2(0, T ;H). Then

u ∈ C(0, T ;V ) ∩ L2(0, T ;V 2), (4.3.1)

∂tu ∈ L2(0, T ;H), (4.3.2)

∂tw ∈ L2(0, T ;V −1). (4.3.3)

Proof. First we take the inner product of (4.1.4a) with −△u,

1

2

d

dt
∥∇u∥2L2 + ν ∥△u∥2L2 = (Pσ (w × u) ,△u)− (f ,△u) , (4.3.4)

then we apply Hölder’s inequality, Gagliardo-Nirenberg inequality, Poincarè’s inequal-

ity, and Young’s inequality, which yields

1

2

d

dt
∥∇u∥2L2 + ν ∥△u∥2L2 (4.3.5)

≤ ∥w∥L3 ∥u∥L6 ∥△u∥L2 + ∥f∥L2 ∥△u∥L2

≤ C ∥w∥
1

2

L2 ∥∇w∥
1

2

L2 ∥∇u∥L2 ∥△u∥L2 + ∥f∥L2 ∥△u∥L2

≤ C

∥w∥2L2 + ∥∇w∥2L2


∥∇u∥2L2 +

ν

2
∥△u∥2L2 + C ∥f∥2L2

Now, we apply the results of (4.3.5) to (4.3.4) and rearrange terms to obtain

d

dt
∥∇u∥2L2 + ν ∥△u∥2L2 ≤ C


∥w∥2L2 + ∥∇w∥2L2


∥∇u∥2L2 + C ∥f∥2L2 , (4.3.6)

which, by Grönwall’s inequality, implies that u ∈ L∞(0, T ;V ) ∩ L2(0, T ;V 2). We

now provide estimates on ∂tu, where it is again only contingent on estimates of the

nonlinear term w × u. For ϕ ∈ L2(0, T ;H), using Agmon’s Inequality, Poincarè’s



63

inequality, and Hölder’s inequality we obtain

 T

0

|⟨Pσ (w × u) ,ϕ⟩| dt

≤
 T

0

∥w∥L2 ∥u∥L∞ ∥ϕ∥L2 dt

≤ C∥w∥L∞L2

 T

0

∥△u∥L2 ∥ϕ∥L2 dt

≤ C∥w∥L∞L2∥△u∥L2L2∥ϕ∥L2L2 .

Therefore ∂tu ∈ L2(0, T ;H). For ∂tw, we follow a similar process as above. Given

ϕ ∈ L2(0, T ;V ), we obtain the bounds

 T

0

|⟨u ·∇w,ϕ⟩| dt (4.3.7)

≤
 T

0

∥u∥L3 ∥∇w∥L2 ∥ϕ∥L6 dt

≤ C∥u∥
1

2

L∞L2∥u∥
1

2

L∞V ∥w∥L2V ∥ϕ∥L2V .

and

 T

0

|⟨ζϵ(w) ·∇u,ϕ⟩| dt (4.3.8)

≤
 T

0

∥ζϵ∥L∞ ∥∇u∥L2 ∥ϕ∥L2 dt

≤ C ∥ζϵ∥L∞ ∥u∥L2V ∥ϕ∥L2V .

From (4.3.7) and (4.3.8) we deduce that ∂tw ∈ L2(0, T ;V −1), thus completing the

proof of our lemma.

Using the results of the lemma and the rst part of Theorem (1.2.14), we now pro-

ceed in showing that solutions are unique when (u0,w0) ∈ V ×H and f ∈ L2(0, T ;H).
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4.3.1 Proof of Theorem 1.2.15

Suppose (u1,w1) and (u2,w2) are solutions to (4.1.4) on the interval [0, T ]. Write

ũ = u1 − u2, ũ0 = u1(0)− u2(0),

w̃ = w1 −w2, w̃0 = w1(0)−w2(0),

The associated system for ũ and w̃ can then be written as






∂tũ− ν△ũ = −w2 × ũ− w̃ × u1,

∂tw̃ − ν△w̃ = ζϵ(w2) ·∇ũ− ũ ·∇w2 − u1 ·∇w̃

+ (ζϵ(w1)− ζϵ(w2)) ·∇u1,

ũ(0) = ũ0, w̃(0) = w̃0.

(4.3.9a)

(4.3.9b)

(4.3.9c)

Now we take the inner product of (4.3.9a) with −△ũ and (4.3.9b) with w̃:

1

2

d

dt


∥∇ũ∥2L2 + ∥w̃∥2L2


+ ν


∥△ũ∥2L2 + ∥∇w̃∥2L2


(4.3.10)

= (w2 × ũ,△ũ) + (w̃ × u1,△ũ) + (ζϵ(w2) ·∇ũ, w̃)− (ũ ·∇w2, w̃)

− (u1 ·∇w̃, w̃) + ((ζϵ(w1)− ζϵ(w2)) ·∇u1, w̃) .

For the rst two terms, we use Hölder’s inequality, Agmon’s inequality and Poincarè’s

inequality:

|(w2 × ũ,△ũ)|+ |(w̃ × u1,△ũ)| (4.3.11)

≤ ∥w2∥L3 ∥ũ∥L6 ∥△ũ∥L2 + ∥w̃∥L2 ∥u1∥L∞ ∥△ũ∥L2
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≤ C ∥w2∥
1

2

L2 ∥∇w2∥
1

2

L2 ∥∇ũ∥L2 ∥△ũ∥L2 + C ∥w̃∥L2 ∥△u1∥L2 ∥△ũ∥L2

≤ Cν


∥w2∥2L2 + ∥∇w2∥2L2


∥∇ũ∥2L2 + Cν ∥△u1∥2L2 ∥w̃∥2L2 +

ν

4
∥△ũ∥2L2 .

Similarly, for the next three terms,

|(ζϵ(w2) ·∇ũ, w̃)|+ |(ũ ·∇w2, w̃)|+ |(u1 ·∇w̃, w̃)| (4.3.12)

≤ ∥ζϵ∥L∞ ∥∇ũ∥L2 ∥w̃∥L2 + ∥ũ∥L∞ ∥∇w2∥L2 ∥w̃∥L2 + ∥u1∥L∞ ∥∇w̃∥L2 ∥w̃∥L2

≤ ∥ζϵ∥L∞ ∥∇ũ∥L2 ∥w̃∥L2 + C ∥△ũ∥L2 ∥∇w2∥L2 ∥w̃∥L2 + C ∥△u1∥L2 ∥∇w̃∥L2 ∥w̃∥L2

≤ 1

2
∥ζϵ∥2L∞ ∥∇ũ∥2L2 + Cν


1 + ∥∇w2∥2L2 + ∥△u1∥2L2


∥w̃∥2L2

+
ν

4


∥△ũ∥2L2 + ∥∇w̃∥2L2


.

For the nal term, we will make use of the fact that the calming function ζϵ is

Lipschitz, then apply the same inequalities as before to obtain

|((ζϵ(w1)− ζϵ(w2)) ·∇u1, w̃)| (4.3.13)

≤ ∥ζϵ(w1)− ζϵ(w2)∥L3 ∥∇u1∥L2 ∥w̃∥L6

≤ ∥w̃∥L3 ∥∇u1∥L2 ∥w̃∥L6

≤ C ∥w̃∥1/2L2 ∥∇u1∥L2 ∥∇w̃∥3/2L2

≤ Cν∥u1∥4L∞V ∥w̃∥2L2 +
ν

4
∥∇w̃∥2L2 .

With each term suitably bounded, we now insert (4.3.11), (4.3.12), (4.3.13) into

(4.3.10), which yields

d

dt


∥∇ũ∥2L2 + ∥w̃∥2L2


+ ν


∥△ũ∥2L2 + ∥∇w̃∥2L2



≤ ∥ζϵ∥2L∞ ∥∇ũ∥2L2 + Cν


1 + ∥∇w2∥2L2 + ∥△u1∥2L2 + ∥u1∥4L∞V


∥w̃∥2L2 .
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Set K2 = max{∥ζϵ∥2L∞ , Cν


1 + ∥∇w2∥2L2 + ∥△u1∥2L2 + ∥u1∥4L∞V


}. By Grönwall’s

inequality,

∥∇ũ(t)∥2L2 + ∥w̃(t)∥2L2 ≤ eK2T

∥∇ũ0∥2L2 + ∥w̃0∥2L2


. (4.3.14)

Therefore we conclude that solutions to (4.1.4) are unique and depend continuously

on initial data.

4.4 Convergence to strong solutions of the Velocity-Vorticity

Navier-Stokes equations

4.4.1 Proof of Theorem 1.2.16

Set ũ = u− uϵ and w̃ = ω −wϵ. For clarity of the argument, we will obtain bounds

for ũ and w̃ separately. First, we rewrite the dierence equation for ũ to obtain

∂tũ− νPσ△ũ = w̃ × ũ− w̃ × u− ω × ũ. (4.4.1)

We then take the inner product with −Pσ△ũ and integrate by parts to obtain

1

2

d

dt
∥∇ũ∥2L2 + ∥△ũ∥2L2 (4.4.2)

≤ |(∇w̃ × ũ,∇ũ)|+ |(w̃ × u,−Pσ△ũ)|+ |(ω × ũ,−Pσ△ũ)| ,

noting that the term (w̃ ×∇ũ,∇ũ) vanishes due to orthogonality. For these three

terms, from applying Holder’s inequality, Gagliardo-Nirenberg-Sobolev inequalities,

Agmon’s inequality, and Young’s inequality we deduce that

|(∇w̃ × ũ,∇ũ)| ≤ ∥∇w̃∥L2 ∥ũ∥L6 ∥∇ũ∥L3 (4.4.3)
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≤ C ∥∇w̃∥L2 ∥∇ũ∥
3

2

L2 ∥△ũ∥
1

2

L2

≤ C ∥∇ũ∥6L2 +
ν

10
∥△ũ∥2L2 +

ν

12
∥∇w̃∥2L2

and

|(w̃ × u, Pσ△ũ)| ≤ ∥u∥L∞ ∥w̃∥L2 ∥△ũ∥L2 (4.4.4)

≤ C ∥u∥
1

2

L2 ∥△u∥
1

2

L2 ∥w̃∥L2 ∥△ũ∥L2

≤ C

∥u∥2L2 + ∥△u∥2L2


∥w̃∥2L2 +

ν

10
∥△ũ∥2L2

and also

|(ω × ũ,−Pσ△ũ)| ≤ ∥ω∥L3 ∥ũ∥L6 ∥△ũ∥L2 (4.4.5)

≤ C ∥ω∥
1

2

L2 ∥∇ω∥
1

2

L2 ∥∇ũ∥L2 ∥△ũ∥L2

≤ C

∥ω∥2L2 + ∥∇ω∥2L2


∥∇ũ∥2L2 +

ν

10
∥△ũ∥2L2 ,

which yields the inequality

1

2

d

dt
∥∇ũ∥2L2 + ∥△ũ∥2L2 (4.4.6)

≤ C ∥∇ũ∥6L2 + C

∥u∥2L2 + ∥△u∥2L2 +


∥w̃∥2L2

+ C

∥ω∥2L2 + ∥∇ω∥2L2


∥∇ũ∥2L2 +

3ν

10
∥△ũ∥2L2 +

ν

12
∥∇w̃∥2L2 .

We now apply similar methods to the dierence equation for w̃, which will involve

more terms due to the presence of the calming function ζϵ:

∂tw̃ − νPσ△w̃ = ((ω − ζϵ(ω)) ·∇)u+ ((ζϵ(wϵ)− ζϵ(ω)) ·∇) ũ (4.4.7)

+ (ζϵ(ω) ·∇) ũ+ ((ζϵ(ω)− ζϵ(wϵ)) ·∇)u
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+ (ũ ·∇) w̃ − (u ·∇) w̃ − (ũ ·∇)ω.

Now, we take the inner product of (4.4.7) with w̃, which yields

1

2

d

dt
∥w̃∥2L2 + ν ∥∇w̃∥2L2 (4.4.8)

≤


T3

|ω − ζϵ(ω)| |∇u| |w̃| dx+



T3

|ζϵ(wϵ)− ζϵ(ω)| |∇ũ| |w̃| dx

+



T3

|ζϵ(ω)| |∇ũ| |w̃| dx+



T3

|ζϵ(ω)− ζϵ(wϵ)| |∇u| |w̃| dx

+



T3

|ũ| |∇ω| |w̃| dx,

noting that ((ũ ·∇) w̃, w̃) = 0 and ((u ·∇) w̃, w̃) = 0 due to (2.4.7b). We handle

the rst term using the convergence property of ζϵ and using the aforementioned

inequalities,



T3

|ω − ζϵ(ω)| |∇u| |w̃| dx (4.4.9)

≤ Cϵα


T3

|ω|β |∇u| |w̃| dx

≤ Cϵα ∥ω∥β
L2β ∥∇u∥L6 ∥w̃∥L3

≤ Cϵα ∥ω∥β
L2β ∥△u∥L2 ∥w̃∥

1

2

L2 ∥∇w̃∥
1

2

L2

≤ Cϵ2α ∥ω∥2β
L2β ∥△u∥2L2 + ∥w̃∥2L2 +

ν

12
∥∇w̃∥2L2

The remaining four terms can be handled using the Lipschitz property of ζϵ along

with applying the same inequalities used to bound (4.4.2). From this we obtain

1

2

d

dt
∥w̃∥2L2 + ν ∥∇w̃∥2L2 (4.4.10)

≤ C ∥w̃∥6L2 + Cϵ2α ∥ω∥2β
L2β ∥△u∥2L2 + C


1 + ∥△u∥

4

3

L2


∥w̃∥2L2
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+
5ν

12
∥∇w̃∥2L2 +

2ν

10
∥△ũ∥2L2 + C ∥∇ω∥2L2 ∥∇ũ∥2L2 .

We now seek to combine inequalities (4.4.6) and (4.4.10). First, to deal with the

terms ∥∇ũ∥6L2 and ∥w̃∥6L2 we will apply the ansatz

∥∇ũ∥L2 + ∥w̃∥L2 < 1 (4.4.11)

so that ∥∇ũ∥6L2 < ∥∇ũ∥2L2 and ∥w̃∥6L2 < ∥w̃∥2L2 . We will show that this assump-

tion leads to an even tighter bound. From adding (4.4.6) and (4.4.10) together and

applying (4.4.11), we obtain

1

2

d

dt


∥∇ũ∥2L2 + ∥w̃∥2L2


+ ν


∥△ũ∥2L2 + ∥∇w̃∥2L2


(4.4.12)

≤ A(T )

∥∇ũ∥2L2 + ∥w̃∥2L2


+

ν

2


∥△ũ∥2L2 + ∥∇w̃∥2L2


+ Cϵ2α ∥ω∥2β

L2β ∥△u∥2L2 ,

where

A(T ) = C

1 + ∥△u∥

4

3

L2 + ∥ω∥2L2 + ∥∇ω∥2L2


. (4.4.13)

The integrability of A(T ) and of Cϵ2α ∥ω∥2β
L2β ∥△u∥2L2 is given by the assumptions on

our solution (u,ω) to 3D NSE. Therefore, removing the viscous terms and applying

Grönwalls inequality to (4.4.12) on [0, T ] will yield

∥∇ũ∥2L2 + ∥w̃∥2L2 ≤ B(T )ϵ2α, (4.4.14)

where

B(T ) = CeTA(T )

 T

0

∥ω∥2β
L2β ∥△u∥2L2 dt. (4.4.15)
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By (1.2.5) we deduce that B(T ) < ∞. From choosing ϵ > 0 suciently small, it

follows that

∥ũ∥L2 + ∥w̃∥L2 <
1

2
.

We then apply a boostrapping argument to deduce that, in fact, (4.4.14) is valid for

all t ∈ [0, T ]. Therefore we conclude that uϵ converges to u in L∞(0, T ;V ) and wϵ

converges to ω in L∞(0, T ;H).

4.5 Energy identities

4.5.1 Proof of Theorem 1.2.17

Let (u,w) be strong solutions to (4.1.3) with initial data (u,w0). We take the inner

product of the velocity equation (4.1.3a) with u and apply the Lions-Magenes lemma,

which yields

1

2

d

dt
∥u∥2L2 + ν ∥∇u∥2L2 = 0,

then integrate in time rearrange the terms to obtain

∥u(t)∥L2 + 2ν

 t

0

∥∇u∥2L2 ds = ∥u0∥2L2 ,

thus equalities (1.2.6) and (1.2.7) are shown to be valid for all t ∈ [0, T ]. Now, we

take the inner product of (4.1.3b) with w and apply the Lions-Magenes lemma

1

2

d

dt
∥w∥2L2 + ν ∥∇w∥2L2 = − (ζϵ(w) ·∇u,w) .
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Next, we will apply the chain rule to write 1
2

d
dt
∥w∥2L2 = ∥w∥L2

d
dt
∥w∥L2 , then apply

Hölder’s inequality

∥w∥L2

d

dt
∥w∥L2 + ν ∥∇w∥2L2 ≤ ∥ζϵ∥L∞ ∥∇u∥L2 ∥w∥L2 .

Then we remove the diusive term from the inequality and divide by ∥w∥L2 :

d

dt
∥w∥L2 ≤ ∥ζϵ∥L∞ ∥∇u∥L2

We now integrate in time and apply the Cauchy-Schwarz inequality and the energy

equality (1.2.7) to verify (1.2.8):

∥w(t)∥L2 − ∥w0∥L2

≤
 t

0

∥ζϵ∥L∞ ∥∇u∥L2 ds

≤ t
1

2 ∥ζϵ∥L∞

 t

0

∥∇u∥2L2 ds

 1

2

.

=


t

2ν

 1

2

∥ζϵ∥L∞


∥u0∥2L2 − ∥u(t)∥2L2

 1

2 .

This concludes the proof.

4.6 Conclusion

We posed a modication to the Navier-Stokes equations for which we then showed the

global well-posedness of strong solutions and the short-time convergence of calmed

solutions to a strong solution of the original Navier-Stokes equation. This modi-

cation is quite similar to the systems introduced in Chapter 3 while still retaining

the algebraic symmetries in some of its nonlinear components that arise from the
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divergence-free condition. By exploiting these symmetries and using pointwise paral-

lel calming functions we are able to an energy identity and an energy inequality for the

velocity and vorticity, respectively, in the calmed system. It remains open whether

weak solutions to calmed Velocity-Vorticity Navier-Stokes are unique, or whether the

system possesses a global attractor.



Chapter 5

Calmed Ohmic Heating for the MHD-Boussinesq equations

5.1 Introduction

Turbulent uids that involve multi-physical processes, such as magnetic eects and/or

heat conduction are a fascinating and challenging area of research. One way to under-

stand such uids is by studying the magnetohydrodynamic (MHD) partial dierential

equations with an additional thermal equation coupled to the original system [57].

Such equations have been considered in many works, often under the name “MHD-

Boussinesq” (MHD-B) equations [5, 14, 66–68, 86, 107, 112], but the heating eect

of the electrical current (so-called “Ohmic heating” or “Joule heating”) is neglected,

save for in a small number of papers [15, 39, 71, 85, 94, 100, 101]. Therefore, we

are interested in the case of the MHD-Boussinesq system with Ohmic heating (MHD-

BΩ). We note that even in the two-dimensional case, global well-posedness for this

system is a completely open problem. Thus, in the present work, we consider the 2D

MHD-Boussinesq system with a modied Ohmic heating term. We prove that our

modied system is globally well-posed, and also that, at least before any potential

blow-up time of the original system, solutions of our modied system converge to

solutions of the MHD-BΩ system.

The diculty with the MHD-BΩ system is that the Ohmic heating term is already
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quadratic and non-negative, destroying any chance of closing energy estimates, or of

nding any conserved quantity. Moreover, there is no natural scaling to the equation.

Indeed, the Ohmic term |∇ × b|2 scales exactly like the well-known Hall term ∇ ×

((∇×b)×b) of the Hall-MHD system, for which global well-posedness is also a highly

challenging open problem in 2D1. Indeed, the MHD-BΩ system appears to be even

more challenging than the Hall-MHD system: the Hall term vanishes in L2-energy

estimates allowing for a conserved quantity, but no analogous situation is known to

hold for the Ohmic term.

The above diculties with the Ohmic term mean that standard modications,

such as adding hyper diusion, ltering the advective term, etc., have little chance

of allowing for a proof of global well-posedness, since these techniques merely control

the growth of gradients (i.e., the growth of small scales). What is needed is some

way to control the Ricatti-like2 nature of the system. Note that similar issues arise

in controlling the vorticity in the 3D Navier-Stokes equations (NSE), and controlling

the solution in the 2D Kuramoto-Sivashinsky equation (KSE). Hence, we employ a

technique that we call “algebraic calming,” developed in [28] in the context of the 2D

KSE. However, rather than apply the calming function to the advective term, as is

done in [28], the innovation of the present work is to apply the calming function to

the Ohmic term. We describe this in detail below.

Consider the domain T
2 the two-dimensional periodic space R

2/Z2 = [0, 1]2. For

T > 0, the 2D MHD-Boussinesq system with full uid viscosity ν > 0, magnetic

1Technically, the Hall-MHD system only makes sense in so-called “two-and-a -half dimensional”
(2.5D) case, where the spatial inputs are 2D, but the output dimension is 3D. Global well-posedness
for the 2.5D Hall-MHD is the open problem which we are referring to here.

2Recall that the Ricatti-type equation dy
dt = y1+ϵ blows up in nite time for any ϵ > 0 and

positive initial data.



75

resistivity µ > 0, and thermal diusion κ > 0 over T2 × [0, T ), is given by






∂tu− ν∆u+ (u ·∇)u+∇p = (b ·∇)b+ gθe⃗2,

∂tb− µ∆b+ (u ·∇)b = (b ·∇)u,

∂tθ − κ∆θ + (u ·∇)θ = αµζϵ(|∇× b|)|∇× b|,

∇ · u = 0 = ∇ · b,

(5.1.1)

where the constant g > 0 has unit of force, and is proportional to the constant of

gravitational acceleration. We denote x = (x1, x2), and e⃗2 to be the unit vector in the

x2 direction, i.e., e⃗2 = (0, 1)T . Here and henceforth, u = u(x, t) = (u1(x, t), u2(x, t))

is the unknown velocity eld of a viscous incompressible uid, with divergence-free

initial data u(x, 0) = u0; b = b(x, t) = (b1(x, t), b2(x, t)) is the unknown magnetic eld,

with divergence-free initial data b(x, 0) = b0; and the scalar p = p(x, t) represents the

unknown pressure, while θ = θ(x, t) can be thought of as the unknown temperature

uctuation, with initial value θ0 = θ(x, 0).

With the same parameters, we now give below the original two-dimensional

Boussinesq-MHD equations with Ohmic heating eect but without the calming mech-

anism. 




∂tu− ν∆U + (U ·∇)U +∇P = (B ·∇)B + gΘe⃗2,

∂tb− µ∆B + (U ·∇)B = (B ·∇)U,

∂tθ − κ∆Θ+ (U · B)Θ = αµ|∇× B|2,

∇ · U = 0 = ∇ · B,

(5.1.2)

This paper is organized as follows. In Section 5.2, we provide all a priori estimates

for the global existence and uniqueness of System (5.1.1), as well as the proof of the

higher-order regularity of the solution.; while in Section 5.3, we show the convergence

of the soluton to System (5.1.1) to that of System (5.1.2).
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5.2 Proof of Global Existence and Regularity Results

In this section, we provide the a priori estimates in order to obtain the global well-

posedness of the solution to system 5.1.1, as well as the higher-order regularity of

the solution. Note that the solution can be constructed rigorously by approximations

with Galerkin ODEs, following the approach in [57] and the reference therein. For our

energy estimates we largely omit the Galerkin notation, though we explicitly show the

convergence of the Ohmic term in the Galerkin approximation to its corresponding

term in System 5.1.1.

5.2.1 Existence of Solutions to System (5.1.1)

We prove Theorem 1.2.18 using Galerkin approximation methods. Let Qn denote the

Galerkin projection onto the rst n eigenmodes of the Laplacian operator −△, and let

Pn = PσQn denote the projection onto the rst n eigenmodes of the Stokes operator

A. We will use (un, bn, θn) to denote a solution to the Galerkin system, written below

in functional form:






d

dt
un + νAun + PnB(u

n, un) = PnB(b
n, bn) + gPσθ

ne⃗2,

d

dt
bn + µAbn + PnB(u

n, bn) = PnB(b
n, un),

d

dt
θn − κ△θn +QnB(u

n, θn) = αµQn (ζ
ϵ(|∇× bn|)|∇× bn|) ,

un(0) = Pn(u0), bn(0) = Pn(b0), θn(0) = Qn(θ0).

(5.2.1)

In this system, the time evolution equations un and bn are both nite-dimensional

ODEs on Pn(H) and the time evolution of θn is a nite-dimensional ODE on

Qn(L
2(T)). Moreover, each time derivative is given by a locally Lipschitz function

(see, e.g., [28, 29]), hence the short-time existence and uniqueness of the solution
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(un, bn, θn) is known up to a maximum time interval of existence [0, Tn). To deduce

the global existence of solutions for 5.1.1, we work to obtain bounds on un, bn, and

θn that are independent of n. In the arguments that follow, we write un ≡ u, bn ≡ b,

and θn ≡ θ and omit any projection operators for notational simplicity.

Remark 5.2.1. Since this Galerkin system is dened using two projection operators,

one needs to careful. In particular, one may question whether the evolution equation

for un(t) denes a system on Pn(H) due to the presence of the term gPσθ
ne⃗2 with

θn ∈ Qn(L
2(T)). In our system, by dening the Stokes projection operator as Pn =

PσQn we guarantee that un(t) remains in Pn(H).

5.2.1.1 L2-estimates of Theorem 1.2.18

Multiply the three equations in 5.2.1 by u, b, θ, respectively, integrate by parts over

T
2, and add, so that we obtain

1

2

d

dt


∥u∥2L2 + ∥b∥2L2 + ∥θ∥2L2


+ ν∥∇u∥2L2 + µ∥∇b∥2L2 + κ∥∇θ∥2L2

=



T2

gθe⃗2 · u dx+



T2

αµζϵ(|∇× b|)|∇× b|θ dx

≤ g

2
∥u∥2L2 +

g

2
∥θ∥2L2 +

µ

2
∥∇b∥2L2 +

µα2M 2
ϵ

2
∥θ∥2L2 ,

where we used (2.4.9), (2.4.10), the divergence-free condition, Young’ inequality, and

the boundedness of ζϵ. Then, integrating in time from 0 to T > 0, and by Grönwall

inequality, we get for all t ∈ [0, T ],

∥u(t)∥2L2 + ∥b(t)∥2L2 + ∥θ(t)∥2L2 (5.2.2)

+ ν

 T

0

∥∇u(t)∥2L2 dt+ µ

 T

0

∥∇b(t)∥2L2 dt+ κ

 T

0

∥∇θ(t)∥2L2 dt

≤ K1,
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where K1 is a constant that depends on the initial data, as well as ν, µ, κ,α, ϵ, and

T , and does not depend on n.

Thus, the existence part of Theorem 1.2.18 is proved.

5.2.1.2 H1-estimates of Theorem 1.2.18

Multiply the three equations in 5.2.1 by Au,Ab,−∆θ, respectively, integrate by parts

over T2, and add, so that we obtain

1

2

d

dt


∥∇u∥2L2 + ∥∇b∥2L2 + ∥∇θ∥2L2


+ ν∥∆u∥2L2 + µ∥∆b∥2L2 + κ∥∆θ∥2L2

= −


T2

(b ·∇)b ·∆u dx+



T2

(u ·∇)b ·∆b dx−


T2

(b ·∇)u ·∆b dx

− g



T2

θe⃗2 ·∆u dx+



T2

(u ·∇)θ∆θ dx

− αµ



T2

ζϵ(|∇× b|)|∇× b|∆θ dx.

Next, we estimate the six terms on the right side of the above equations. First, by

(2.4.10), the sum of the rst three terms is simplied, and thence estimated as

−


T2

(b ·∇)b ·∆u dx+



T2

(u ·∇)b ·∆b dx−


T2

(b ·∇)u ·∆b dx

= 2



T2

(u ·∇)b ·∆b dx ≤ C∥u∥L4∥∇b∥L4∥∆b∥L2

≤ C∥u∥1/2L2 (∥u∥L2 + ∥∇u∥L2)1/2∥∇b∥1/2L2 ∥∆b∥3/2L2

≤ C∥∇b∥2L2 + C∥∇u∥2L2∥∇b∥2L2 +
µ

4
∥∆b∥2L2 ,

where we used (2.4.6), Young’s inequality, and the L2-bounds obtained in (5.2.2).

Regarding the fourth term, we integrate by parts, apply Young’s inequality, and get

−g



T2

θe⃗2 ·∆u dx ≤ g

2
∥∇θ∥2L2 +

g

2
∥∇u∥2L2 .
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The fth term is estimated similarly to that of the rst three, and we have



T2

(u ·∇)θ∆θ dx ≤


T2

|u||∇θ||∆θ| dx ≤ C∥u∥L4∥∇θ∥L4∥∆θ∥L2

≤ C∥u∥1/2L2 (∥u∥L2 + ∥∇u∥L2)1/2∥∇θ∥1/2L2 ∥∆θ∥3/2L2

≤ C∥∇θ∥2L2 + C∥∇u∥2L2∥∇θ∥2L2 +
κ

4
∥∆θ∥2L2 ,

where we also used the L2-bounds of u obtained in (5.2.2).

As for the last term, by the boundedness of ζϵ, and Young’s inequality, we get

−αµ



T2

ζϵ(|∇× b|)|∇× b|∆θ dx ≤ α2µ2M 2
ϵ

κ
∥∇b∥2L2 +

κ

4
∥∆θ∥2L2 .

Therefore, by combining all the above estimates, after some rearrangement and sim-

plication, we obtain

d

dt


∥∇u∥2L2 + ∥∇b∥2L2 + ∥∇θ∥2L2


+ ν∥∆u∥2L2 + µ∥∆b∥2L2 + κ∥∆θ∥2L2

≤ g

2
∥∇u∥2L2 +

g

2
∥∇θ∥2L2 +

α2µ2M 2
ϵ

κ
∥∇b∥2L2

+ C∥∇u∥2L2


∥∇b∥2L2 + ∥∇θ∥2L2


.

Observing the L2-integrability in time of ∥∇u∥L2 from (5.2.2), and by the Grönwall

inequality, we integrate the above inequality in time from 0 to T , T > 0, and get

∥∇u(T )∥2L2 + ∥∇b(T )∥2L2 + ∥∇θ(T )∥2L2 (5.2.3)

+ ν

 T

0

∥∆u(t)∥2L2 dt+ µ

 T

0

∥∆b(t)∥2L2 dt+ κ

 T

0

∥∆θ(t)∥2L2 dt

≤ K2,

where the constant K2 depends on those relevant parameters, as well as on T and K1
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in (5.2.2), and is independent of n.

5.2.1.3 Estimates on time derivatives for Theorem 1.2.18

In order to make valid the convergence arguments used in Section 5.3 we require

u, b ∈ C([0, T ];V ) and θ ∈ C([0, T ];L2), for which we need ∂tu, ∂tb ∈ L2(0, T ;L2)

and θ ∈ L2(0, T ;H−1). We will show this by selecting arbitrary test functions ϕ ∈

L2(0, T ;H) and ψ ∈ L2(0, T ;H1) and applying the estimates obtained in Sections

5.2.1.1 and 5.2.1.2. Note that by estimate (5.2.3) and Agmon’s inequality (2.4.3), we

have u and b bounded above by K2 in L2(0, T ;L∞) ∩ L∞(0, T ;V ).

First we take the action of ∂tu on ϕ, from which we obtain


 T

0

⟨∂tu,ϕ⟩ dt
 =


 T

0

⟨ν△u− (u ·∇)u+ (b ·∇)b+ gθe⃗2,ϕ⟩ dt


≤ ν

 T

0

|(△u,ϕ)| dt+

 T

0

|((u ·∇)u,ϕ)| dt

+

 T

0

|((b ·∇)b,ϕ)| dt+ g

 T

0

|(θe⃗2,ϕ)| dt

≤ ν

 T

0

∥△u∥L2 ∥ϕ∥L2 dt+

 T

0

∥u∥L∞ ∥∇u∥L2 ∥ϕ∥L2 dt

+

 T

0

∥b∥L∞ ∥∇b∥L2 ∥ϕ∥L2 dt+ g

 T

0

∥θ∥L2 ∥ϕ∥L2 dt

≤ C

K2 + 2K2

2 +K1

  T

0

∥ϕ∥2L2 dt

using Hölder’s inequality, Cauchy-Schwarz inequality, and using the aforementioned

estimates. We then take the action of ∂tb on ϕ and, mutatis mutandis, we obtain


 T

0

⟨∂tb,ϕ⟩ dt
 ≤ C


µK2 + 2K2

2

  T

0

∥ϕ∥2L2 dt.
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For ∂tθ, we take the action on ψ and see that


 T

0

⟨∂tθ,ψ⟩ dt
 (5.2.4)

=


 T

0

⟨κ△θ − u ·∇θ + αµζϵ(|∇× b|) |∇× b| ,ψ⟩ dt


≤
 T

0

κ ∥∇θ∥L2 ∥∇ψ∥L2 dt+

 T

0

∥u∥L∞ ∥∇θ∥L2 ∥ψ∥L2 dt

+ αµ

 T

0

∥ζϵ∥L∞ ∥∇b∥L2 ∥ψ∥L2 dt

≤ C

K1 +K2

2 + αK1 ∥ζϵ∥L∞

  T

0

∥ψ∥2H1 dt.

By the Aubin-Lions Theorem we deduce that

u, b ∈ C([0, T ];V )

and

θ ∈ C([0, T ];L2).

Thus we have the shown (formally) the existence of a solution (u, b, θ) in the appro-

priate space.

5.2.2 Convergence of the Galerkin System (5.2.1) to the calmed System

(5.1.1)

We now use the previous estimates to justify that our solution to the Galerkin system,

now being referred to as (un, bn, θn), converges to a solution of System (5.1.1). From

the estimates here, here, here, here, and here, and from applying Banach-Alaoglu and

Aubin-Lions, we know there exists a subsequence of (un, bn, θn), which we will not
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relabel, and a limit point (u, b, θ), such that

un ⇀ u weakly in L2(0, T ;H2 ∩ V ), (5.2.5)

bn ⇀ b weakly in L2(0, T ;H2 ∩ V ),

θn ⇀ θ weakly in L2(0, T ;H1),

∂tu
n ⇀ ∂tu weakly in L2(0, T ;H),

∂tb
n ⇀ ∂tb weakly in L2(0, T ;H),

∂tθ
n ⇀ ∂tθ weakly in L2(0, T ;H−1),

un → u strongly in C([0, T ];V ),

bn → b strongly in C([0, T ];V ),

θn → θ strongly in C([0, T ];L2).

Now we show that, as n → ∞, the Galerkin System (5.2.1) converges to System

(5.1.1). For brevity we will only show convergence for the calmed Ohmic heating

term, though we refer the reader to, e.g., [60] for handling the remaining terms. First

we write the term as

αµζϵ(|∇× bn|) |∇× bn| (5.2.6)

= αµζϵ(|∇× bn|) (|∇× bn|− |∇× b|)

+ αµ (ζϵ(|∇× bn|)− ζϵ(|∇× b|)) |∇× bn|

+ αµζϵ(|∇× b|) |∇× b| .
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We now take the action of (5.2.6) on ψ ∈ L2(0, T ;H1) and integrate in time. For the

rst term, we obtain

 T

0

|⟨αµζϵ(|∇× bn|) (|∇× bn|− |∇× b|) ,ψ⟩| dt (5.2.7)

≤
 T

0

αµ ∥ζϵ∥L∞ ∥∇bn −∇b∥L2 ∥ψ∥L2 dt

≤ αµ ∥ζϵ∥L∞

 T

0

∥∇bn −∇b∥2L2 dt

 1

2
 T

0

∥ψ∥2L2 dt

 1

2

.

For the second term, similar techniques yield

 T

0

|⟨αµ (ζϵ(|∇× bn|)− ζϵ(|∇× b|)) |∇× bn| ,ψ⟩| dt (5.2.8)

≤ αµC ∥ζϵ∥
1

2

L∞

 T

0

∥∇bn −∇b∥
1

2

L2 ∥∇bn∥
1

2

L2 ∥△bn∥
1

2

L2 ∥ψ∥H1 dt

≤ αµC ∥ζϵ∥
1

2

L∞ ∥∇bn∥L∞L2

 T

0

∥∇bn −∇b∥
1

2

L2 ∥△bn∥
1

2

L2 ∥ψ∥H1 dt

≤ αµC ∥ζϵ∥
1

2

L∞ ∥∇bn∥L∞L2

 T

0

∥∇bn −∇b∥2L2 dt

 1

4

×

 T

0

∥△bn∥2L2 dt

 1

4
 T

0

∥ψ∥2H1 dt

 1

2

.

We observe that each of these terms converge to 0 as n → ∞ due to 5.2.5, hence

αµζϵ(|∇× bn|) |∇× bn| converges to αµζϵ(|∇× b|) |∇× b|. We conclude that solu-

tions to System (5.1.1) exist on [0, T ].

5.2.3 Higher-order Regularity of Solutions

We prove the higher-order regularity of the solution to System 5.1.1 in two steps,

similar to [58]. First, we obtain the H2-regularity of u and b; then, we use the bounds

on the H2-norm of u and b to prove the higher-order regularity of θ. The main reason
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is to overcome the diculty of dierentiating the absolute value of ∇× b.

To begin, we multiply the relevant equations in System 5.1.1 by ∆2u, ∆2b, ∆θ,

respectively, integrate by parts over T2, add, and get

1

2

d

dt


∥∆u∥2L2 + ∥∆b∥2L2 + ∥∇θ∥2L2



+ ν∥∇∆u∥2L2 + µ∥∇∆b∥2L2 + κ∥∆θ∥2L2

= g



T2

θe⃗2 ·∆
2u dx−



T2

(u ·∇)u ·∆2u dx+



T2

(b ·∇)b ·∆2u dx

+



T2

(b ·∇)u ·∆2b dx−


T2

(u ·∇)b ·∆2b dx−


T2

(u ·∇)θ∆θ dx

+ αµ



T2

ζϵ(|∇× b|)|∇× b|∆θ dx.

Then, we estimate the seven terms on the right side of the above equation. For the

rst term, integrating by parts twice and applying Young’s inequality, we have

g



T2

θe⃗2 ·∆
2u dx ≤ g

2
∥∆u∥2L2 +

g

2
∥∆θ∥2L2 .

The estimates of the remaining ve terms are similar, so for the sake of brevity,

we provide only the key steps without further clarication. Specically, the second

term is estimated as follows,

−


T2

(u ·∇)u ·∆2u dx ≤


T2

|∇u|2|∇∆u| dx+



T2

|u||∇∇u||∇∆u| dx

≤ C∥∇u∥2L4∥∇∆u∥L2

+ C∥u∥L4∥∇∇u∥L4∥∇∆u∥L2

≤ C∥∇u∥L2∥∆u∥L2∥∇∆u∥L2

+ C∥u∥1/2L2 (∥u∥L2 + ∥∇u∥L2)1/2∥∆u∥1/2L2 ∥∇∆u∥3/2L2

≤ C∥∆u∥2L2 +
ν

4
∥∇∆u∥2L2 ,
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where we used the bounds on ∥u∥L2 and ∥∇u∥L2 in (5.2.2) and (5.2.3), as well as

(2.4.6) and Young’s inequality.

As for the third term, we proceed similarly, and obtain



T2

(b ·∇)b ·∆2u dx ≤


T2

|∇b|2|∇∆u| dx+



T2

|b||∇∇b||∇∆u| dx

≤ C∥∇b∥2L4∥∇∆u∥L2 + C∥b∥L4∥∇∇b∥L4∥∇∆u∥L2

≤ C∥∇b∥L2∥∆b∥L2∥∇∆u∥L2

+ C∥b∥1/2L2 (∥b∥L2 + ∥∇b∥L2)1/2∥∆b∥1/2L2 ∥∇∆b∥1/2L2 ∥∇∆u∥L2

≤ C∥∆b∥2L2 +
ν

8
∥∇∆u∥2L2 +

µ

8
∥∇∆b∥2L2 ,

where we used bounds on both L2- and H1-norms of b obtained in (5.2.2) and (5.2.3).

Regarding the fourth term, analogously by the bounds quoted above, we have



T2

(b ·∇)u ·∆2b dx ≤


T2

|∇b||∇u||∇∆b| dx+



T2

|b||∇∇u||∇∆b| dx

≤ C∥∇u∥L4∥∇b∥L4∥∇∆b∥L2

+ C∥b∥L4∥∇∇u∥L4∥∇∆b∥L2

≤ C∥∇u∥1/2L2 ∥∇b∥1/2L2 ∥∆u∥1/2L2 ∥∆b∥1/2L2 ∥∇∆b∥L2

+ C∥b∥1/2L2 ∥∇b∥1/2L2 ∥∆u∥1/2L2 ∥∇∆u∥1/2L2 ∥∇∆b∥L2

≤ C∥∆u∥2L2 + C∥∆b∥2L2 +
ν

8
∥∇∆u∥2L2 +

µ

8
∥∇∆b∥2L2 ,

where Young’s inequality and (2.4.6) are also used.

Analogously, for the fth term, we have

−


T2

(u ·∇)b ·∆2b dx ≤ C∥∆u∥2L2 + C∥∆b∥2L2 +
µ

8
∥∇∆b∥2L2 .
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Next, we estimate the sixth term as

−


T2

(u ·∇)θ∆θ dx ≤ C∥u∥L4∥∇θ∥1/2L2 ∥∆θ∥3/2L2

≤ C∥∇θ∥2L2 +
κ

8
∥∆θ∥2L2 ,

where we used the boundedness of |u| in (5.2.3).

Finally, to estimate the last term, we take advantage of the boundedness of |ζϵ|,

and obtain

αµ



T2

ζϵ(|∇× b|)|∇× b|∆θ dx ≤ αµMϵ∥∇× b∥L2∥∆θ∥L2

≤ Cα2µ2M 2
ϵ ∥∆b∥2L2 +

κ

8
∥∆θ∥2L2 .

Now, combining all the above estimates, rearranging and simplifying some terms,

we obtain

d

dt


∥∆u∥2L2 + ∥∆b∥2L2 + ∥∇θ∥2L2



+ ν∥∇∆u∥2L2 + µ∥∇∆b∥2L2 + κ∥∆θ∥2L2

≤ C̄

∥∆u∥2L2 + ∥∆b∥2L2 + ∥∇θ∥2L2


,

where the constant C̄ depends on g, ν, µ, κ,Mϵ,α,λ1, as well as K1 and K2 (specif-

ically, the L2-integrability of ∆b in time). Therefore, integrate the above inequality

in time on [0, T ], and by Grönwall inequality, we have

∥∆u(T )∥2L2 + ∥∆b(T )∥2L2 + ∥∇θ(T )∥2L2 (5.2.9)

+ ν

 T

0

∥∇∆u(t)∥2L2 dt+ µ

 T

0

∥∇∆b(t)∥2L2 dt+ κ

 T

0

∥∆θ(t)∥2L2 dt
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≤ K3,

where the constant K3 depends on all the aforementioned parameters and on K1 and

K2.

Next, we prove the H2-regularity of θ. Proceeding similarly, we multiply the

relevant equations in System 5.1.1 by ∆2u, ∆2b, ∆2θ, respectively, integrate by parts

over T2, add, and get

1

2

d

dt


∥∆u∥2L2 + ∥∆b∥2L2 + ∥∆θ∥2L2



+ ν∥∇∆u∥2L2 + µ∥∇∆b∥2L2 + κ∥∇∆θ∥2L2

= g



T2

θe⃗2 ·∆
2u dx−



T2

(u ·∇)u ·∆2u dx+



T2

(b ·∇)b ·∆2u dx

+



T2

(b ·∇)u ·∆2b dx−


T2

(u ·∇)b ·∆2b dx−


T2

(u ·∇)θ∆2θ dx

+ αµ



T2

ζϵ(|∇× b|)|∇× b|∆2θ dx.

Then, we estimate the seven terms on the right side of the above equations. Note

that estimates on the rst term are identical as above. We continue to estimate the

second term as

−


T2

(u ·∇)u ·∆2u dx ≤


T2

|∇u|2|∇∆u| dx+



T2

|u||∇∇u||∇∆u| dx

≤ C∥∇u∥2L4∥∇∆u∥L2

+ C∥u∥L∞∥∇∇u∥L2∥∇∆u∥L2

≤ C∥∆u∥2L2 +
ν

4
∥∇∆u∥2L2 ,

where we used the bounds on ∥u∥L2 , ∥∇u∥L2 , and ∥∆u∥L2 , in (5.2.2), (5.2.3), and
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(5.2.9), respectively, as well as (2.4.3) and (2.4.6) and Young’s inequality.

For the third term, we estimate similarly as



T2

(b ·∇)b ·∆2u dx ≤


T2

|∇b|2|∇∆u| dx+



T2

|b||∇∇b||∇∆u| dx

≤ C∥∇b∥2L4∥∇∆u∥L2 + C∥b∥L∞∥∇∇b∥L2∥∇∆u∥L2

≤ C∥∆b∥2L2 +
ν

8
∥∇∆u∥2L2 .

As for the fourth term, we have



T2

(b ·∇)u ·∆2b dx ≤


T2

|∇b||∇u||∇∆b| dx+



T2

|b||∇∇u||∇∆b| dx

≤ C∥∇b∥L4∥∇u∥L4∥∇∆b∥L2

+ C∥b∥L∞∥∇∇u∥L2∥∇∆b∥L2

≤ C∥∆u∥2L2 + C∥∆b∥2L2 +
µ

4
∥∇∆b∥2L2 ,

As for the fth term, we apply and obtain

−


T2

(u ·∇)b∆2b dx ≤


T2

|∇u||∇b||∇∆b| dx+



T2

|u||∇∇b||∇∆b| dx

≤ C∥∇u∥L4∥∇b∥L4∥∇∆b∥L2

+ C∥u∥L∞∥∇∇b∥L2∥∇∆b∥L2

≤ C∥∆u∥2L2 + C∥∆b∥2L2 +
µ

8
∥∇∆b∥2L2 ,

while estimates of the sixth term is done analogously to that of the fth one as

−


T2

(u ·∇)θ∆2θ dx ≤


T2

|∇u||∇θ||∇∆θ| dx+



T2

|u||∇∇θ||∇∆θ| dx

≤ C∥∇u∥L4∥∇θ∥L4∥∇∆θ∥L2
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+ C∥u∥L∞∥∇∇θ∥L2∥∇∆θ∥L2

≤ C∥∆u∥2L2 + C∥∆θ∥2L2 +
κ

8
∥∇∆θ∥2L2 ,

where we used the boundedness of ∥∇u∥L2 and ∥∇θ∥L2 in (5.2.3).

As regarding the last term, we integrate by parts rst, then take advantage of the

boundedness of |ζϵ| and |∇ζϵ|, and obtain

αµ



T2

ζϵ(|∇× b|)|∇× b|∆2θ dx

≤ αµMϵ



T2

∇|∇× b|
|∇∆θ| dx

+ αµ



T2

|∇ζϵ(|∇× b|)|
∇|∇× b|

|∇× b||∇∆θ| dx

of which the rst term is bounded by

Cα2µ2M 2
ϵ ∥∆b∥2L2 +

κ

8
∥∇∆θ∥2L2

due to Cauchy-Schwarz inequality and Problem 5.10.17 of [30]; and the second term

is bounded by

CαµMϵ∥∇b∥L4∥∇∇b∥L4∥∇∆θ∥L2

≤ CαµMϵ∥∆b∥L2∥∇∆b∥1/2L2 ∥∇∆θ∥L2

≤ Cα4µ2M 4
ϵ ∥∆b∥2L2 +

µ

8
∥∇∆b∥2L2 +

κ

8
∥∇∆θ∥2L2 .

Now, combining all the above estimates, rearranging and simplifying some terms,

we obtain

d

dt


∥∆u∥2L2 + ∥∆b∥2L2 + ∥∆θ∥2L2


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+ ν∥∇∆u∥2L2 + µ∥∇∆b∥2L2 + κ∥∇∆θ∥2L2

≤ C∗

∥∆u∥2L2 + ∥∆b∥2L2 + ∥∆θ∥2L2


,

where the constant C∗ depends on g, ν, µ, κ,Mϵ,α, as well as K1, K2, and K3. Finally,

integrate the above inequality in time from 0 to ∀T > 0, and by Grönwall inequality,

we get

∥∆u(T )∥2L2 + ∥∆b(T )∥2L2 + ∥∆θ(T )∥2L2 (5.2.10)

+ ν

 T

0

∥∇∆u(t)∥2L2 dt+ µ

 T

0

∥∇∆b(t)∥2L2 dt+ κ

 T

0

∥∇∆θ(t)∥2L2 dt

≤ K4,

where the constant K4 depends on all the aforementioned parameters and on K1, K2,

and K3.

Remark 5.2.2. The constants K1, K2, K3, and K4 all depend on the parameter Mϵ =

∥ζϵ∥L∞ stated in (2), which tends toward innity as ϵ → 0+. Therefore these estimates

do not hold as ϵ → 0+.

5.2.4 Proof of Uniqueness

Following the well-known weak-strong uniqueness argument for the Navier-Stokes

equations, it suces to show that the strong solution is unique. Note that due to

the Ohmic heating eect in System 5.1.1, one needs to work with at least H2 initial

condition and regularity of the solution. To begin, we assume there are two distinct

solutions (un, bn, θn, pn), n = 1, 2, to System 5.1.1, in the sense of Theorem 1.2.18,

with the same initial data u1(0) = u2(0), b1(0) = b2(0), θ1(0) = θ2(0). Subtract the

corresponding equations satised by the two solutions, and denote the dierences by
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ũ = u1 − u2, b̃ = b1 − b2, θ̃ = θ1 − θ2, and p̃ = p1 − p2, and we obtain the system for

ũ, b̃, θ̃, and p̃ as






∂ũ

∂t
− ν∆ũ+ (u1 ·∇)ũ+ (ũ ·∇)u2 +∇p̃

= (b1 ·∇)b̃+ (b̃ ·∇)b2 + gθ̃e⃗2,

∂b̃

∂t
− µ∆b̃+ (u1 ·∇)b̃+ (ũ ·∇)b2 = (b1 ·∇)ũ+ (b̃ ·∇)u2,

∂θ̃

∂t
− κ∆θ̃ + (u1 ·∇)θ̃ + (ũ ·∇)θ2

= αµ

ζϵ(|∇× b1|)|∇× b1|− ζϵ(|∇× b2|)|∇× b2|


,

∇ · ũ = 0 = ∇ · b̃,

ũ(0) = b̃(0) = 0, θ̃(0) = 0.

(5.2.11)

Then, multiply ũ, b̃, θ̃ to the relevant equations in System 5.2.11, respectively, inte-

grate by parts over T2, and add, so that we obtain

1

2

d

dt


∥ũ∥2L2 + ∥b̃∥2L2 + ∥θ̃∥2L2


+ ν∥∇ũ∥2L2 + µ∥∇b̃∥2L2 + κ∥∇θ̃∥2L2

= g



T2

θ̃e⃗2 · ũ dx−


T2

(ũ ·∇)u2 · ũ dx+



T2

(b̃ ·∇)b2 · ũ dx

−


T2

(ũ ·∇)b2 · b̃ dx+



T2

(b̃ ·∇)u2 · b̃ dx−


T2

(ũ ·∇)θ2θ̃ dx

+ αµ



T2


ζϵ(|∇× b1|)|∇× b1|− ζϵ(|∇× b2|)|∇× b2|


θ̃ dx,

where we used the divergence-free condition ∇ · ũ = 0 = ∇ · b̃.

Next, we estimate the seven terms on the right side of the above equation. By

Cauchy-Schwarz inequality, the rst term is estimated as

g



T2

θ̃e⃗2 · ũ dx ≤ g

2
∥ũ∥2L2 +

g

2
∥θ̃∥2L2 .
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For the second term, by the H1-boundedness obtained in (5.2.3), we have

−


T2

(ũ ·∇)u2 · ũ dx ≤ C∥∇u2∥L2∥ũ∥2L4 ≤ C∥ũ∥L2(∥ũ∥L2 + ∥∇ũ∥L2)

≤ C∥ũ∥2L2 +
ν

8
∥∇ũ∥2L2 .

The third through the sixth terms are estimated similarly, so we get, for the third

one,



T2

(b̃ ·∇)b2 · ũ dx ≤ C∥∇b2∥L2∥b̃∥L4∥ũ∥L4

≤ C∥b̃∥1/2L2 (∥b̃∥L2 + ∥∇b̃∥L2)1/2∥ũ∥1/2L2 (∥ũ∥L2 + ∥∇ũ∥L2)1/2

≤ C∥b̃∥L2(∥b̃∥L2 + ∥∇b̃∥L2) + C∥ũ∥L2(∥ũ∥L2 + ∥∇ũ∥L2)

≤ C∥ũ∥2L2 + C∥b̃∥2L2 +
ν

8
∥∇ũ∥2L2 +

µ

8
∥∇b̃∥2L2

where we used both (5.2.2) and (5.2.3); and for the fourth one, we also have

−


T2

(ũ ·∇)b2 · b̃ dx ≤ C∥ũ∥2L2 + C∥b̃∥2L2 +
ν

8
∥∇ũ∥2L2 +

µ

8
∥∇b̃∥2L2 ;

while for the fth term, we take advantage of the H1-bounds of u2 in (5.2.3), and

obtain an upper bound as



T2

(b̃ ·∇)u2 · b̃ dx ≤ C∥b̃∥2L2 +
µ

8
∥∇b̃∥2L2 ;

as for the sixth term, we proceed similarly and get

−


T2

(ũ ·∇)θ2θ̃ dx ≤ C∥ũ∥2L2 + C∥θ̃∥2L2 +
ν

8
∥∇ũ∥2L2 +

κ

4
∥∇θ̃∥2L2

Now, it remains to estimate the last term that involves the Ohmic heating. We start
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by bounding the magnitude of the rst factor inside the integrand. Thanks to the

global Lipschitz condition on ζϵ, we have

ζϵ(|∇× b1|)|∇× b1|− ζϵ(|∇× b2|)|∇× b2|


≤
ζϵ(|∇× b1|)|∇× b1|− ζϵ(|∇× b1|)|∇× b2|



+
ζϵ(|∇× b1|)|∇× b2|− ζϵ(|∇× b2|)|∇× b2|



=
ζϵ(|∇× b1|)|∇× b̃|

+
ζϵ(|∇× b1|)− ζϵ(|∇× b2|)

|∇× b2|

≤ Mϵ|∇× b̃|+ Lϵ|∇× b̃||∇× b2|.

Thus, inserting the above estimates to the last term, we obtain

αµ



T2


ζϵ(|∇× b1|)|∇× b1|− ζϵ(|∇× b2|)|∇× b2|


θ̃ dx,

≤ αµMϵ



T2

|∇× b̃||θ̃| dx+ αµLϵ



T2

|∇× b2||∇× b̃||θ̃| dx

≤ C∥θ̃∥2L2 +
µ

16
∥∇b̃∥2L2 + C∥∇b2∥L4∥∇b̃∥L2∥θ̃∥L4

≤ C∥θ̃∥2L2 +
µ

16
∥∇b̃∥2L2 + C∥∇b̃∥L2∥θ̃∥1/2L2 ∥∇θ̃∥1/2L2

≤ ∥θ̃∥2L2 +
µ

8
∥∇b̃∥2L2 +

κ

4
∥∇θ̃∥2L2 ,

where in the penultimate step we used the H2-bounds obtained in (5.2.10).

Therefore, by collecting all the above estimates, and after some simplication and

rearrangement, we nally get

d

dt


∥ũ∥2L2 + ∥b̃∥2L2 + ∥θ̃∥2L2


+ ν∥∇ũ∥2L2 + µ∥∇b̃∥2L2 + κ∥∇θ̃∥2L2

≤ C̃

∥ũ∥2L2 + ∥b̃∥2L2 + ∥θ̃∥2L2


,

where C̃ depends on g, ν, µ, κ,α,Mϵ, Lϵ, as well as Km,m = 1, 2, 3, 4. Now, integrate
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the above inequality in time from 0 to ∀T > 0, and by the Grönwall inequality and the

initial condition ũ(0) = b̃(0) = 0 and θ̃(0) = 0, we conclude that ũ(T ) = 0, b̃(T ) = 0,

and θ̃(T ) = 0, i.e., u1 = u2, b1 = b2, and θ1 = θ2. Hence, the global well-posedness

of the 2D MHD-Boussinesq system with Ohmic heating, i.e., system (5.1.1), is now

proved.

5.3 Proof of the Convergence Theorem 1.2.20

In this section, we show that on the common time-interval of existence, the dierence

between the solution of System 5.1.1 and that of System 5.1.2, is in the order of ϵ;

and in particular, such error approaches to 0 as ϵ goes to 0+.
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5.3.1 Proof of Theorem 1.2.20

Set ũ = U − u, b̃ = B − b, θ̃ = Θ − θ, and p̃ = P − p. We take the dierence of

equations (5.1.2) and (5.1.1) to obtain the system






∂ũ

∂t
− ν△ũ+∇p̃ = (ũ ·∇) ũ− (ũ ·∇)U − (U ·∇) ũ

+ (B ·∇) b̃−

b̃ ·∇


b̃+


b̃ ·∇


B + gθ̃e⃗2,

∂b̃

∂t
− µ∆b̃ = (B ·∇) ũ−


b̃ ·∇


ũ+


b̃ ·∇


U

+ (ũ ·∇) b̃− (ũ ·∇)B − (U ·∇) b̃,

∂θ̃

∂t
− κ△θ̃ = (ũ ·∇) θ̃ − (ũ ·∇)Θ− (U ·∇) θ̃

+ αµ (|∇× B|− ζϵ (|∇× B|)) |∇× B|

− αµ (ζϵ (|∇× B|)− ζϵ (|∇× b|)) (|∇× B|− |∇× b|)

+ αµ (|∇× B|− |∇× b|) ζϵ (|∇× B|)

+ αµ (ζϵ (|∇× B|)− ζϵ (|∇× b|)) |∇× B|

∇ · ũ = 0 = ∇ · b̃,

ũ(0) = b̃(0) = 0, θ̃(0) = 0.

(5.3.1)

First we will remark that since (U,B,Θ) satisfy the conditions of Theorem 1.2.19,

there exists M > 0 such that for all t ∈ [0, T ],

∥U∥H2 + ∥B∥H2 + ∥Θ∥H1 ≤ M, (5.3.2)

hence we can bound these terms above by a constant C when needed.

To show the convergence of the system, we make the ansatz

∥ũ∥H1 +
b̃

H1

+ ∥θ̃∥L2 < 1, (5.3.3)
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and use a bootstrapping argument to show that this leads to an even tighter bound,

thus closing the argument. To this end, we take the inner product of the rst two

equations in System 5.3.1 with ũ and b̃ respectively, integrate by parts, and remove

any terms that are eliminated using identities (2.4.7a) and (2.4.7b), which yields

1

2

d

dt


∥ũ∥2L2 + ∥b̃∥2L2


+ ν∥∇ũ∥2L2 + µ∥∇b̃∥2L2 (5.3.4)

= − ((ũ ·∇)U, ũ) +


b̃ ·∇

B, ũ


+


b̃ ·∇

U, b̃



−

(ũ ·∇)B, b̃


+

gθ̃e⃗2, ũ


.

We now take the inner product of the system with

−△ũ,−△b̃, θ̃


, integrate by

parts, and invoke (2.4.9) and (2.4.10) where appropriate:

1

2

d

dt


∥∇ũ∥2L2 + ∥∇b̃∥2L2 + ∥θ̃∥2L2


+ ν∥△ũ∥2L2 + µ∥△b̃∥2L2 + κ∥∇θ̃∥2L2 (5.3.5)

= ((ũ ·∇)U,△ũ) + ((U ·∇) ũ,△ũ)−

(B ·∇) b̃,△ũ


−


b̃ ·∇


B,△ũ



−

gθ̃e⃗2,△ũ


−


(B ·∇) ũ,△b̃


−


b̃ ·∇


U,△b̃


− 2


(ũ ·∇) b̃,△b̃



+

(ũ ·∇)B,△b̃


+

(U ·∇) b̃,△b̃


+

(ũ ·∇)Θ, θ̃


+N1 +N2 +N3 +N4,

where

N1 = αµ



T

||∇× B|− ζϵ (|∇× B|)| |∇× B| θ̃dx, (5.3.6)

N2 = αµ



T

(ζϵ (|∇× B|)− ζϵ (|∇× b|)) (|∇× B|− |∇× b|) θ̃dx,

N3 = αµ



T

(|∇× B|− |∇× b|) ζϵ(|∇× B|)θ̃dx,

N4 = αµ



T

(ζϵ(|∇× B|)− ζϵ(|∇× b|)) |∇× B| θ̃dx.
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We now combine (5.3.4) and (5.3.5) to obtain the equation

1

2

d

dt


∥ũ∥2H1 +

b̃

2

H1
+ ∥θ̃∥2L2


+ ν ∥∇ũ∥2H1 + µ

∇b̃

2

H1
+ κ∥∇θ̃∥2L2 (5.3.7)

= − ((ũ ·∇)U, ũ) +


b̃ ·∇

B, ũ


+


b̃ ·∇

U, b̃


−


(ũ ·∇)B, b̃



+

gθ̃e⃗2, ũ


+ ((ũ ·∇)U,△ũ) + ((U ·∇) ũ,△ũ)−


(B ·∇) b̃,△ũ



−


b̃ ·∇

B,△ũ


−


gθ̃e⃗2,△ũ


−


(B ·∇) ũ,△b̃


−


b̃ ·∇


U,△b̃



− 2

(ũ ·∇) b̃,△b̃


+

(ũ ·∇)B,△b̃


+

(U ·∇) b̃,△b̃


+

(ũ ·∇)Θ, θ̃



+N1 +N2 +N3 +N4.

The rst twelve terms can be bounded above using Hölder’s inequality, Agmon’s

Inequality, Young’s inequality, and (5.3.2). For the sake of brevity, we show this only

for the rst term:

|((ũ ·∇)U, ũ)| ≤ ∥ũ∥L∞ ∥∇U∥L2 ∥ũ∥L2 (5.3.8)

≤ C ∥ũ∥1/2L2 ∥ũ∥1/2H2 ∥∇U∥L2 ∥ũ∥L2

≤ C ∥∇U∥4L2 ∥ũ∥2L2 +
ν

22
∥ũ∥H2

≤ C̃ ∥ũ∥2L2 +
ν

22
∥ũ∥2H2 .

The next four terms can be bounded using the aforementioned inequalities and Ansatz

(5.3.3):

2


(ũ ·∇) b̃,△b̃

 ≤ 2 ∥ũ∥L∞

∇b̃

L2

△b̃

L2

(5.3.9)

≤ C ∥ũ∥1/2L2 ∥ũ∥1/2H2

∇b̃

L2

△b̃

L2

≤ C ∥ũ∥1/2L2 ∥ũ∥1/2H2

△b̃

L2
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≤ C ∥ũ∥2L2 +
ν

22
∥ũ∥2H2 +

µ

18

△b̃

2

L2
,

noting that (5.3.3) was used to obtain the bound
∇b̃


L2

< 1.

We now focus on upper bounds for each Ni: For N1, using Inequalities (2.1.1) and

(2.4.4) we obtain

|N1| = αµ




T

||∇× B|− ζϵ (|∇× B|)| |∇× B| θ̃dx

 (5.3.10)

≤ Cϵγ


T

|∇B|β+1
θ̃
 dx

≤ Cϵγ ∥∇B∥β+1
L2β+2 ∥θ̃∥L2

≤ Cϵγ∥∇B∥L2∥△B∥βL2∥θ̃∥L2

≤ Cϵ2γ∥∇B∥2L2∥△B∥2βL2 + ∥θ̃∥2L2 .

Since B ∈ L∞(0, T ;H2 ∩ V ), the rst term is integrable for any β ≥ 0. For N2, using

the Lipschitz property of ζϵ, the reverse triangle inequality, (5.3.3), and (2.4.6) we

obtain

|N2| = αµ




T

(ζϵ (|∇× B|)− ζϵ (|∇× b|)) (|∇× B|− |∇× b|) θ̃dx

 (5.3.11)

≤ C



T

∇b̃

2 θ̃

 dx

≤ C||∇b̃||2L4 ||θ̃||L2

≤ C||∇b̃||L2 ||△b̃||L2 ||θ̃||L2

≤ C||△b̃||L2 ||θ̃||L2

≤ C||θ̃||2L2 +
µ

18
||△b̃||2L2 .



99

For N3, similar methods yield

|N3| =




T

αµ (|∇× B|− |∇× b|) ζϵ(|∇× B|)θ̃dx

 (5.3.12)

≤ C ∥∇B∥L4 ||∇b̃||L2 ||θ̃||L4

≤ C ∥△B∥L2 ||∇b̃||L2 ||∇θ̃||L2

≤ C ∥△B∥2L2 ||∇b̃||2L2 +
κ

4
||∇θ̃||2L2

and N4 can be bounded in the exact same manner as N3.

Finally, we can bound the left hand side of (5.3.7) using the estimates in (5.3.8),

(5.3.9), (5.3.10), (5.3.11), (5.3.12), then rearrange the terms to obtain

d

dt


∥ũ∥2H1 +

b̃

2

H1
+ ∥θ̃∥2L2


+ ν ∥∇ũ∥2H1 + µ

∇b̃

2

H1
+ κ∥∇θ̃∥2L2 (5.3.13)

≤ C̃


∥ũ∥2H1 +

b̃

2

H1
+ ∥θ̃∥2L2


+ Cϵ2γ∥∇B∥2L2∥△B∥2βL2 .

Using Grönwall’s Inequality (2.5.1) and the fact that ũ(0) = b̃(0) = 0, θ̃(0) = 0, from

(5.3.13) we deduce that

∥ũ∥2H1 +
b̃

2

H1
+ ∥θ̃∥2L2 ≤ A(T )eC̃T ϵ2γ (5.3.14)

where

A(T ) = C

 T

0

∥∇B∥2L2∥△B∥2βL2dt

and C̃ is a constant depending on ∥U∥H2 , ∥B∥H2 , ∥Θ∥H1 , g, ν, µ, and κ, but does

not depend on ϵ. From (5.3.2) it follows that A(T ) < ∞. Moreover, since A(T ) is



100

independent of ϵ we may choose ϵ > 0 small enough so that

∥ũ∥2H1 +
b̃

2

H1
+ ∥θ̃∥2L2 <

1

2
,

thus completing the bootstrapping argument, so that in fact (5.3.14) holds for all

t ∈ [0, T ].

Now, we integrate (5.3.13) on the interval [0, T ], apply (5.3.14), and drop any

unnecessary terms from the left hand side:

 T

0

ν ∥∇ũ∥2H1 + µ
∇b̃


2

H1
+ κ∥∇θ̃∥2L2 dt ≤ C̃A(T )eC̃T ϵ2γ + A(T )ϵ2γ . (5.3.15)

From (5.3.14) and (5.3.15) we conclude that u, b converge to U,B, respectively, in

L∞(0, T ;H1 ∩ V ) ∩ L2(0, T ;H2 ∩ V ) and that θ converges to Θ in L∞(0, T ;L2) ∩

L2(0, T ;H1). This completes the proof of convergence.
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Chapter 6

The 2D Kuramoto-Sivashinsky Equations

6.1 Introduction

The Kuramoto-Sivashinsky equation (KSE) is a captivating model for ame fronts,

crystal growth, and many other phenomena. It is both satisfying and frustrating.

In one space dimension, the model acts as a fantastic toy model: it has highly non-

trivial chaotic dynamics while still being amenable to a wide range of analytical tools.

However, in higher dimensions, it has so far resisted nearly every analytical attack

due to its lack of any known conserved quantity, and the basic question of global

well-posedness of solutions remains open, even in two dimensions. Moreover, the

nonlinearity of the system has many similarities with the nonlinearity of the Navier-

Stokes equations (NSE), making investigation of the KSE even more intriguing.

How does one proceed in the face of such diculty? In the case of the NSE, at

least one approach has been fruitful since at least the work of Smagorinsky in 1963

[99], where a modication of the Navier–Stokes system was proposed, resulting in a

system which is both globally well-posed [56], and less computationally demanding to

simulate. Since then, hundreds of so-called “turbulence models” have arisen (see, e.g.,

[27, 91] for a survey), which typically modify the equations in some way. It is therefore
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natural to ask whether such an approach might work for the 2D KSE.1 However, one

quickly realizes that approaches which work for the NSE are unlikely to work for

the KSE. Indeed, for the NSE, the problem is the growth of large gradients; more

specically, the problem is the development of large vorticity, ω := ∇× u (see, e.g.,

[3]). This is due to the cubic nature of the vorticity equation: d
dt
∥ω∥2L2 ∼ (ω ·∇u,ω).

Hence, in order to handle the NSE, one typically attempts to control the gradient of

the solution, for example, by strengthening the viscosity or weakening the nonlinear

term, since the nonlinear term cascades energy from large scales to small scales,

intensifying the gradient. That is, the NSE are appeased by controlling the small

scales. On the other hand, for the KSE, the problem is the growth of large scales.

This is due to the cubic nature of the energy equation: d
dt
∥u∥2L2 ∼ (u · ∇u,u). In

the 1D case (and in the NSE case), this latter term vanishes, but not in the 2D KSE

case. Moreover, controlling the small scales is not a major problem, as the KSE has a

fourth-order diusion term, strongly curbing the growth of gradients. Therefore, the

problem for the KSE appears to be the exact opposite of the problem for the NSE.

That is, the KSE is appeased by controlling the large scales. Hence, the standard

approaches that work for the NSE are unlikely to be of use for the KSE (see [52] for

investigations of this notion in the 1D case), and new approaches for handling the

KSE are required. The purpose of the present work is to propose and investigate one

such approach.

In [62] the authors study a modication of the 2D KSE that they call the “reduced

KSE” (r-KSE) with an adjustment made to the linear term in one component. This

system admits a maximum principle, allowing for a proof of globally well-posedness.

Moreover, simulations in [62] indicate that the dynamics of the r-KSE are arguably

1Since the KSE governs the evolution of a surface, its natural space dimension is two. Moreover,
it is not clear that the 3D case for the KSE is fundamentally more dicult than the 2D case, due
to the already strong dissipation. Hence, we focus on the 2D case.
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qualitatively similar to KSE. However, r-KSE suers from the drawback that there is

no clear way to see solutions of the r-KSE converge to solutions of the KSE, as any

introduction of a “turning” parameter interpolating between the r-KSE and the KSE

would immediately violate the maximum principle. In contrast, the model introduced

in this present paper allows for such a parameter ϵ > 0, which we call the “calming

parameter.” In particular, by adjusting the nonlinear term in the (6.1.2), we create

a globally well-posed PDE that approximates solutions to the 2D KSE to arbitrary

precision, at least on the time interval of existence and uniqueness of solutions to the

KSE. Perhaps surprisingly, our construction does not require the use of a maximum

principle, nor does it add articial viscosity to the system.

The N -dimensional Kuramoto-Sivashinsky equation (KSE) is given in scalar form

by

∂tϕ+ 1
2
|∇ϕ|2 +△ϕ+△2ϕ = 0. (6.1.1)

with periodic boundary conditions on a domain [0, L]N . By setting u = ∇ϕ in (6.1.1),

one formally2 obtains the vector formulation of KSE:

∂tu+ (u ·∇)u+△u+△2u = 0, (6.1.2)

These equations were originally proposed in the 1970’s by Kuramoto and Tsuzuki

in the studies of crystal growth [54, 55] as well as by Sivashinsky in the study of ame-

front instabilities [96] (see also [97]). It has since found many other applications in

the sciences, such as describing the ow of uid down inclined planes [98], and has

2 We do not claim that ∇ϕ is a unique solution to (6.1.2) when ϕ is a solution to (6.1.1). We only
observe that one can formally obtain the set of equations (6.1.2) by taking the gradient of equation
(6.1.1). In particular, it may be the case that there exist solutions to (6.1.2) that are not gradients
of solutions to (6.1.1), or of any other function.
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shown to be a generic feature of many physical phenomena involving bifurcations [76].

Many results on the 1D equation have been obtained since its origination, and

the equation has been shown to be rich with interesting dynamics. It is globally well-

posed [79, 102], solutions continue to exhibit chaotic dynamics at large times (see,

e.g., [18, 44, 75, 80, 87]), and a large body of work has been published on quantitative

results pertaining to the global attractor (see, e.g., [18, 19, 21, 22, 34, 35, 37, 38,

40, 44, 45, 52, 81, 90, 102, 104]). There are far fewer results on the KSE in the 2D

case. Global well-posedness for suciently small initial data was rst shown in [93]

on a domain [0, 2π]× [0, 2πϵ] with ϵ > 0 suciently small. This result was improved

upon in [78] by showing global existence on a domain [0, L1]× [0, L2] with L2 ≤ CLq
1

for some particular q. Later works continued to improve on the sharpness of this

bound (see, e.g., [4, 53, 73, 77] and references therein). Other works employ control

of the domain size as a means to control the instability in Fourier modes. It was

shown in [1] that for small enough domains (on which no growing Fourier modes are

present in the linear terms), global existence holds when the initial data is suciently

small in a certain Wiener algebra. This result was then extended in [2] to domains

in which there is one linearly growing mode in each direction. Further studies have

investigated modied equations [23, 33, 42, 62, 77, 106] or have looked at the equations

with dierent boundary conditions [36, 61, 89]. For other results on the case N > 1,

see also [6, 9, 59]. The intent of the present work is to propose a modication of the

2D KSE in vector form which is globally well-posed for any size of domain or initial

data. To do this, we make use of what we call an algebraic calming function or simply

a calming function3 which constrains the advective velocity of the solution.

3Such a function is simply a bounded smooth truncation function, but we call it a “calming”
function due to the way it is used in the nonlinearity to suppress the algebraic growth of the nonlinear
term. We do not call it a “regularization,” since we reserve this term for techniques which smooth
the equations by modifying derivative operators.
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We propose the following modication of system (6.1.2).

∂tu+ (ζϵ(u) ·∇)u+△u+△2u = 0, (6.1.3a)

u(x, 0) = u0(x), (6.1.3b)

with L-periodic4 boundary conditions on the 2-dimensional periodic torus T
2 :=

R
2/(LZ)2 = [0, L]2 for some L > 0. We call ϵ > 0 the calming parameter, and

ζϵ the calming function. We require that ζϵ satises the conditions described in 2.1.1.

Remark 6.1.1. During the preparation of this manuscript, we became aware of a body

of work (see, e.g., [11–13, 25, 50, 51, 72, 92, 114, 115] and the references therein) which

has a supercial similarity to our approach in the context of the 3D incompressible

Navier-Stokes equations. Namely, the authors of [12] investigate the following system

(which was essentially rst proposed in [113]), which they call the “globally modied

Navier-Stokes equations” (GMNSE).

∂tu+min

1, N∥∇u∥−1

L2


(u ·∇)u+∇p = ν△u, ∇ · u = 0.

Here, N > 0 can be thought of as corresponding to our parameter 1/ϵ. Formally

setting N = ∞ yields the standard Navier-Stokes equations. The present work has

several major dierences from those works, and from the global modication (GM)

approach in general. In particular: (i) The calming function is dened pointwise.

Hence it only has a strong eect on the nonlinearity in regions of high velocity, not

globally, which we see as a signicant advantage over the GM approach; (ii) The

calming function is based on u, not on ∇u, hence the technique is philosophically

4Note: One could easily consider rectangular non-square periodic domains, say R
2/((L1Z) ×

(L2Z)) as well with slight modication of the techniques we use here. For the sake of keeping the
discussion focused, we do not pursue such matters here.
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dierent: we aim to control large speeds locally, not to decrease the total eect of the

nonlinearity when large gradients appear, as in GM; (iii) To the best of our knowledge,

this is the rst time any such approach (including GM, calming, α-models, Leray-

type smoothing by convolution, ltering, etc.) has been applied to the 2D KSE to

obtain global well-posedness. We expect that GM can be easily adapted to the 2D

KSE setting but that the performance in accurately capturing solutions is worse than

calming until N ∼ 1/ϵ is very large.

Remark 6.1.2. We see no major diculty in extending our work to the case of physical

boundary conditions, i.e., u

∂Ω

= △u

∂Ω

= 0. However, for the sake of simplicity, we

only consider periodic boundary conditions in the present work.

Section 6.2 contains a proof of global well-posedness, which is mostly standard

Galerkin methods, but with some subtle dierences due to the non-polynomial form

of the nonlinearity. Section 6.3 contains a proof of higher-order (but not arbitrary

order) regularity of solutions. Section 6.4 contains a proof of convergence of solutions

of the calmed equation to solutions to the original KSE as the calming parameter

ϵ → 0. The proof here is not so straight-forward due to issues with commutator

terms involving the calming function. As we will see, these issues are circumvented

by taking advantage of structural properties of the calming function, and then using

a boot-strapping argument in time. In addition, our techniques yield an explicit

convergence rate. In Section 6.5 we extend our ideas to the scalar form of the KSE.

In particular, we consider a modication to system (6.1.1),

∂tϕ+ 1
2
ζϵ(∇ϕ) ·∇ϕ+△ϕ+△2ϕ = 0, (6.1.4a)

ϕ(x, 0) = ϕ0(x). (6.1.4b)

Other formulations are of course possible. For example, one could consider a nonlin-
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earity of the form 1
2
ζϵ(|∇ϕ|2), or 1

2
ζϵ(|∇ϕ|δ)|∇ϕ|2−δ (0 < δ < 2), or

1

2
|∇ϕ|2

1+ϵ2|ϕ|2
, or many

other possibilities. However, in the present work, we choose to focus only on the form

in (6.1.4), as the advective nature of the nonlinearity seems perhaps closest in spirit

to the nature of the original equation.

Section 6.6 exhibits results from simulations and provides computational evidence

that the convergence rates we obtained in Section 6.4 are sharp (at least, in terms of

convergence order). Concluding remarks are in Section 6.7.

6.2 Global Well-Posedness for Calmed KSE

In this section we show the existence and uniqueness of our calmed KSE system. We

begin with formulating our Galerkin scheme.

Using the projection operator Pm, dene the nite-dimensional space Hm :=

Pm(L
2(T2)). Consider the following initial value problem obtained via Galerkin ap-

proximation: Given u0 ∈ L2(T2), nd u ∈ Hm which satises

∂tu+ Pm ((ζϵ(u) ·∇)u) +△u+△2u = 0, (6.2.1a)

u(x, 0) = Pmu0(x). (6.2.1b)

Lemma 6.2.1. If ζϵ satises 1 of Denition 2.1.1, then the map F : Hm → Hm

dened by

F (u) = −Pm ((ζϵ(u) ·∇)u)−△u−△2u

is locally Lipschitz on Hm. As a consequence, solutions to (6.2.1) exist and are unique

in C1([0, T ], Hm) for some T > 0.

Proof. Fix u ∈ Hm and let v ∈ Hm be arbitrary. Rewrite the dierence F (u)−F (v)
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as

F (u)− F (v) = −△ (u− v)−△2 (u− v)− Pm (((ζϵ(u)− ζϵ(v)) ·∇)u)

− Pm ((ζϵ(v) ·∇) (u− v)) .

From Condition 1 of Denition 2.1.1, Estimate (2.3.1), and Agmon’s inequality, it

follows that

∥F (u)− F (v)∥L2

≤ ∥△ (u− v)∥L2 +
△2 (u− v)


L2

+ ∥((ζϵ(u)− ζϵ(v)) ·∇)u∥L2 + ∥(ζϵ(v) ·∇) (u− v)∥L2

≤

m+m2


∥u− v∥L2 + ∥∇u∥L∞ ∥ζϵ(u)− ζϵ(v)∥L2

+ ∥ζϵ(v)∥L∞ ∥∇ (u− v)∥L2

≤

m+m2


∥u− v∥L2 + ∥u∥H3 ∥u− v∥L2 +m

1

2 ∥ζϵ∥L∞ ∥u− v∥L2 .

Since u is a nite linear combination of eigenfunctions of −△, ∥u∥H3 < ∞. Thus F

is locally Lipschitz at u ∈ Hm. Existence and uniqueness of solutions to (6.2.1) in

C1([0, T ], Hm) therefore follows as a consequence of the Picard-Lindelöf Theorem.

Due to the presence of the calming function ζϵ, the Galerkin system here is not

necessarily quadratic such as in the case of the 2D Navier-Stokes equations or the

2D Kuramoto-Sivashinsky equations. Thus we give a fully rigorous proof of well-

posedness here.

Proof of Theorem 1.2.23. We will show that a solution exists using Galerkin approx-

imation. Given u0 ∈ L2(T2), suppose um ∈ C([0, Tm];Hm) is a solution to (6.2.1) on

the interval [0, Tm] for some Tm > 0 with initial data um
0 = Pmu0. We take the inner
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product of (6.2.1) with um to obtain

1

2

d

dt
∥um∥2L2 + ∥△um∥2L2 = − (△um,um)− ((ζϵ (um) ·∇)um,um)

We estimate the rst term by − (△um,um) ≤ 1
4
∥△um∥2L2+∥um∥2L2 . For the nonlinear

term, we estimate

| (ζϵ (um) ·∇)um,um) | ≤ ∥ζϵ(um)∥L∞ ∥∇um∥L2 ∥um∥L2

≤ ∥ζϵ∥L∞ ∥um∥
1

2

L2 ∥△um∥
1

2

L2 ∥um∥L2

≤ 3

4
∥ζϵ∥

4

3

L∞ ∥um∥2L2 +
1

4
∥△um∥2L2

Combining the above estimates and denoting Kϵ :=
3
2
∥ζϵ∥

4

3

L∞ + 2, we obtain

d

dt
∥um∥2L2 + ∥△um∥2L2 ≤ Kϵ ∥um∥2L2 . (6.2.2)

After dropping the second term of (6.2.2), Grönwall’s inequality yields for all t ∈

[0, Tm],

∥um(t)∥2L2 ≤ eKϵt ∥um(0)∥2L2 ≤ eKϵTm ∥u0∥2L2 . (6.2.3)

Since um ∈ C([0, Tm],T
2), via a bootstrapping argument, it holds that for any T > 0

and any t ∈ [0, T ],

∥um(t)∥2L2 ≤ eKϵt ∥u0∥2L2 ≤ eKϵT ∥u0∥2L2 . (6.2.4)
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Next, we integrate (6.2.2) on [0, T ] and apply Estimate (6.2.4):

∥um(T )∥2L2 +
1

2

 T

0

∥△um(s)∥2L2 ds (6.2.5)

≤
 T

0

Kϵ ∥um(s)∥2L2 ds+ ∥um(0)∥2L2

≤
 T

0

Kϵe
Kϵs ∥u0∥2L2 ds+ ∥u0∥2L2

= eKϵT ∥u0∥2L2 .

Hence, for all T > 0,

{um}∞m=1 is bounded in L∞([0, T ];L2) ∩ L2([0, T ];H2). (6.2.6)

To bound the time derivative, we estimate

∥∂tum∥H−2 ≤
△2um


H−2 + ∥△um∥H−2 + sup

ϕ∈H2

∥ϕ∥H2=1

|⟨Pm ((ζϵ(um) ·∇)um) ,ϕ⟩|

≤ C1 ∥um∥H2 + C2 ∥um∥L2 + sup
ϕ∈H2

∥ϕ∥H2=1

|⟨ζϵ(um) ·∇)um, Pm (ϕ)⟩|

≤ C ∥um∥H2 + C ∥um∥L2 + sup
ϕ∈H2

∥ϕ∥H2=1

∥ζϵ(um)∥L∞ ∥um∥H1 ∥ϕ∥L2

≤ C ∥um∥H2 + C ∥um∥L2 + ∥ζϵ∥L∞ ∥um∥H1 .

Hence, {∂tu
m}∞m=1 is bounded in L2(0, T ;H−2(T2)). By the Banach-Alaoglu Theorem,

there exists u ∈ L2(0, T ;H2(T2)) ∩ L∞(0, T ;L2(T2)) and a subsequence (which we

will still label as um) such that

um ⇀∗ u weak-* in L∞(0, T ;L2(T2)), (6.2.7)
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um ⇀ u weakly in L2(0, T ;H2(T2)), (6.2.8)

∂tu
m ⇀ ∂tu weakly in L2(0, T ;H−2(T2)). (6.2.9)

Moreover, by the Aubin-Lions Lemma we may pass to another subsequence, relabeled

to be um, such that

um → u strongly in C(0, T ;L2(T2)). (6.2.10)

Now we can show that u is a weak solution to (6.1.3). Given w ∈ L2(0, T ;H2(T2)),

we compute

(⟨∂tu,w⟩+ ((ζϵ(u) ·∇)u,w) + (△u,w) + (△u,△w))

− (⟨∂tum,w⟩+ (Pm ((ζϵ(um) ·∇)um) ,w) + (△um,w) + (△um,△w))

= ⟨∂t (u− um) ,w⟩+ (△ (u− um) ,w) + (△ (u− um) ,△w)

+ ((ζϵ(u) ·∇)u,w)− (Pm ((ζϵ(um) ·∇)um) ,w)

= ⟨∂t (u− um) ,w⟩+ (△ (u− um) ,w) + (△ (u− um) ,△w)

+ ((ζϵ(u) ·∇)u,w)− ((ζϵ(um) ·∇)um,w) + (Qm ((ζϵ(um) ·∇)um) ,w)

= ⟨∂t (u− um) ,w⟩+ (△ (u− um) ,w) + (△ (u− um) ,△w)

+ (((ζϵ(u)− ζϵ(um)) ·∇)um,w) + ((ζϵ(u) ·∇) (u− um) ,w)

+ (((ζϵ(um) ·∇)um) , Qmw) .

:=

6

k=1

Ik.

Integrate
6

k=1 Ik in time for t ∈ [0, T ]. We observe that I1, I2, and I3 all vanish

as m → ∞ by (6.2.7), (6.2.8), and (6.2.9). Using Condition 1 of Denition 2.1.1,
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Agmon’s inequality, Ladyzhenskaya’s inequality, and Hölder’s inequality, we obtain

 T

0

I4dt ≤
 T

0

∥ζϵ(u)− ζϵ(um)∥L2 ∥∇um∥L2 ∥w∥L∞ dt (6.2.11)

≤ C

 T

0

∥u− um∥L2 ∥um∥
1

2

L2 ∥△um∥
1

2

L2 ∥w∥
1

2

L2 ∥w∥
1

2

H2 dt

≤ C∥u− um∥
1

2

L∞(0,T ;L2)∥um∥
1

2

L∞(0,T ;L2)

×

 T

0

∥u− um∥
1

2

L2 ∥△um∥
1

2

L2 ∥w∥H2 dt

≤ C∥u− um∥
1

2

L∞(0,T ;L2)∥um∥
1

2

L∞(0,T ;L2)

× ∥△um∥
1

2

L2(0,T ;L2)∥w∥L2(0,T ;H2)∥u− um∥
1

2

L2(0,T ;L2),

which is bounded due to (6.2.4), (6.2.8), and (6.2.10).

For I5,

 T

0

I5dt = Iu,w(u− um) (6.2.12)

for Iu,w as dened in (2.1.4), which convergences due to Lemma 2.1.4. Finally, using

Hölder’s inequality, Condition 2 of Denition 2.1.1, and (2.3.2),

 T

0

I6dt ≤
 T

0

∥ζϵ(um)∥L∞ ∥∇um∥L2 ∥Qmw∥L2 dt (6.2.13)

≤ ∥ζϵ∥L∞

 T

0

∥∇um∥2L2 dt

 1

2
 T

0

∥Qmw∥2L2 dt

 1

2

≤ ∥ζϵ∥L∞

 T

0

∥∇um∥2L2 dt

 1

2
 T

0

1

m4
∥w∥2H2 dt

 1

2

≤ ∥ζϵ∥L∞ ∥um∥L2(0,T ;H2)∥w∥L2(0,T ;H2)

1

m2
,

which converges to zero by (6.2.6).
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Invoking (6.2.8), (6.2.9), (6.2.10), (6.2.11), (6.2.12), and (6.2.13),

lim
m→∞

 T

0


6

k=1

Ik


dt = 0.

Therefore solutions to the ODE system (6.2.1) converge to a solution of the PDE

system (6.1.3). Thus u is indeed a solution to (6.1.3).

Now we show that the solution u satises u(0) = u0 in the sense of C([0, T ], L2).

Applying Lemma 1.1 from Chapter 3 of [105, p. 250], for all v ∈ H2(T2), it follows

that

⟨∂tu,v⟩ =
d

dt
(u,v) = − (△u,v)− (△u,△v)− (ζϵ(u) ·∇u,v) (6.2.14)

in the scalar distribution sense on [0, T ]. Now, suppose that ψ ∈ C1([0, T ]) and

satises ψ(0) = 1, ψ(T ) = 0. We then integrate (6.2.14) in time with ψ and apply

integration by parts to obtain

 T

0

(u,v)ψ′(t)dt =−
 T

0

(△u,v)ψ(t)dt−
 T

0

(△u,△v)ψ(t)dt (6.2.15)

−
 T

0

(ζϵ(u) ·∇u,v)ψ(t)dt+ (u(0),v) .

On the other hand, if we take the inner product of (6.2.1) with v then integrate in

time with ψ we obtain

 T

0

(um,v)ψ′(t)dt =−
 T

0

(△um,v)ψ(t)dt−
 T

0

(△um,△v)ψ(t)dt

−
 T

0

(Pm (ζϵ(um) ·∇um) ,v)ψ(t)dt+ (um
0 ,v) .
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Passing to the limit as m → ∞ then yields

 T

0

(u,v)ψ′(t)dt =−
 T

0

(△u,v)ψ(t)dt−
 T

0

(△u,△v)ψ(t)dt (6.2.16)

−
 T

0

(ζϵ(u) ·∇u,v)ψ(t)dt+ (u0,v) .

By then comparing (6.2.15) and (6.2.16), we obtain (u(0)− u0,v) = 0 for all v ∈

H2(T2). Since H2(T2) is dense in L2(T2), it follows that (u(0)− u0,v) = 0 for all

v ∈ L2(T2). Thus u satises u(0) = u0. Next, we show that weak solutions are

unique. Set w = u−v, where u and v are both weak solutions of calmed KSE (6.1.3)

on the interval [0, T ] with u0 = v0. After taking the dierence of the two equations,

we then take the action of the dierence equation with w, which yields

1

2

d

dt
∥w∥2L2 + ∥△w∥2L2 (6.2.17)

= − (△w,w)− ((ζϵ (u) ·∇)u,w) + ((ζϵ (v) ·∇)v,w)

= − (△w,w) + (((ζϵ (v)− ζϵ (u)) ·∇)u,w)− ((ζϵ (v) ·∇)w,w)

= J1 + J2 + J3,

where we have used the Lions-Magene Lemma to write ⟨∂tw,w⟩ = 1
2

d
dt
∥w∥2L2 . Then,

J1 ≤
1

2
∥w∥2L2 +

1

2
∥△w∥2L2 .

Also,

J2 := (((ζϵ (v)− ζϵ (u)) ·∇)u,w)

≤ ∥ζϵ(v)− ζϵ(u)∥L4 ∥∇u∥L2 ∥w∥L4

≤ C ∥∇u∥L2 ∥w∥2L4
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≤ C ∥∇u∥L2 ∥w∥L2 ∥∇w∥L2

≤ C ∥∇u∥L2 ∥w∥
3

2

L2 ∥△w∥
1

2

L2

≤ C ∥∇u∥
4

3

L2 ∥w∥2L2 +
1

4
∥△w∥2L2

by Agmon’s inequality, Ladyzhenskaya’s inequality, and Lemma 2.1.4. Finally,

J3 := − ((ζϵ (v) ·∇)w,w)

≤ ∥ζϵ(v)∥L∞ ∥∇w∥L2 ∥w∥L2

≤

∥ζϵ∥L∞ ∥w∥

3

2

L2


∥△w∥

1

2

L2



≤ 3

4
∥ζϵ∥

4

3

L∞ ∥w∥2L2 +
1

4
∥△w∥2L2

using Young’s inequality and (2.4.5). From the above estimates, we obtain

d

dt
∥w(t)∥2L2 ≤


1 + C ∥∇u∥

4

3

L2 +
3

2
∥ζϵ∥

4

3

L∞


∥w(t)∥2L2 .

Writing K1(t) = 1 + C ∥∇u∥
4

3

L2 +
3
2
∥ζϵ∥

4

3

L∞ , we observe that K(t) is integrable on

[0, T ]. Thus we conclude, recalling that w = u− v,

∥u(t)− v(t)∥2L2 ≤ ∥u0 − v0∥2L2 exp

 T

0

K1(t)dt


. (6.2.18)

Therefore solutions to (6.1.3) are unique. If we now integrate (6.2.17) on the

interval [0, T ] and apply estimate (6.2.18), we obtain

 T

0

∥△u(t)−△v(t)∥2L2 dt ≤ K2 ∥u0 − v0∥2L2 (6.2.19)

For some constant K2 depending on T , ∥∇u∥L2 , and ∥ζϵ∥L∞ . From estimates (6.2.18)
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and (6.2.19) we conclude that solutions depend continuously on the initial data in

L∞(0, T ;L2(T2)) ∩ L2(0, T ;H2(T2)).

6.3 Higher-Order Regularity of Solutions

In this section, we only work formally, but the results can be made rigorous by using,

e.g., the Galerkin method. We will show that the regularity of a weak solution u to

6.1.3 is dependent on the regularity of the calming function ζϵ and the initial data

u0.

Remark 6.3.1. It seems likely that higher-order regularity (m > 2) also holds, but we

do not pursue such matters here.

Proof of Theorem 1.2.24. We rst show the case m = 1. We take the (formal) inner

product of (6.1.3) with −△u and integrate by parts to obtain

(∂tu,−△u)− ((ζϵ(u) ·∇)u,△u)− (△u,△u)−

△2u,△u


= 0

which we will rewrite as

1

2

d

dt
∥∇u∥2L2 + ∥∇△u∥2L2 = (((ζϵ(u) ·∇)u) ,△u)− (∇u,∇△u)

= ((ζϵ(u) ·∇)u,△u)− (∇u,∇△u) .

Thus, we obtain

1

2

d

dt
∥∇u∥2L2 + ∥∇△u∥2L2

≤ ∥ζϵ(u)∥L∞ ∥∇u∥L2 ∥△u∥L2 + ∥∇u∥L2 ∥∇△u∥L2

≤ ∥ζϵ∥L∞ ∥∇u∥
3

2

L2 ∥∇△u∥
1

2

L2 + ∥∇u∥L2 ∥∇△u∥L2
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≤

3

4
∥ζϵ∥

4

3

L∞ +
1

2


∥∇u∥2L2 +

3

4
∥∇△u∥2L2 .

This estimate can then be rewritten as

d

dt
∥∇u∥2L2 +

1

2
∥∇△u∥2L2 ≤


3

2
∥ζϵ∥

4

3

L∞ + 1


∥∇u∥2L2 . (6.3.1)

Then, by Grönwall’s inequality,

∥∇u(t)∥2L2 ≤ ∥∇u0∥2L2 exp


3

2
t ∥ζϵ∥

4

3

L∞ + t


(6.3.2)

≤ ∥∇u0∥2L2 exp


3

2
T ∥ζϵ∥

4

3

L∞ + T



Now, after integrating (6.3.1) on the interval [0, T ] and applying Estimate (6.3.2), it

follows that

 T

0

∥∇△u(τ)∥2L2 dτ ≤ 2 ∥∇u0∥2L2 exp


3

2
T ∥ζϵ∥

4

3

L∞ + T


. (6.3.3)

Thus, u ∈ L2(0, T ;H3(T2)) ∩ L∞(0, T ;H1(T)) whenever u0 ∈ H1(T2).

The case m = 2 proceeds in a similar way. We take the inner product with △2u

to obtain

1

2

d

dt
∥△u∥2L2 +

△2u
2

L2 (6.3.4)

≤
△u,△2u

+
(ζϵ(u) ·∇)u,△2u



≤ 1

2
∥△u∥2L2 +

1

2

△2u
2

L2 + ∥ζϵ(u)∥L4 ∥∇u∥L4

△2u

L2

≤ 1

2
∥△u∥2L2 +

1

2

△2u
2

L2 + C ∥u∥2L4 ∥∇u∥2L4 +
1

4

△2u
2

L2

≤ 1

2
∥△u∥2L2 +

3

4

△2u
2

L2 + C ∥u∥L2 ∥∇u∥2L2 ∥△u∥L2
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≤

1

2
+ C ∥u∥2L2


∥△u∥2L2 +

3

4

△2u
2

L2 .

Similar to the case m = 1, this estimate reveals that u ∈ L∞(0, T ;H2(T2)) ∩

L2(0, T ;H4(T2)) whenever u0 ∈ H2(T2).

6.4 Convergence to Kuramoto-Sivashinsky Solutions

It is known that, for any initial data u0 ∈ L2(T2), solutions to 2D KSE exist and

are unique in C([0, T ];L2(T))∩L2(0, T ;H2(T)) for some (possibly only small) T > 0

(see, e.g., [6, 33]). In this section we show that as ϵ → 0, solutions uϵ of the calmed

KSE (6.1.3) converge to solutions u of KSE (6.1.2) prior to its potential blowup time.

For this result, it seems necessary that our calming function ζϵ satises Condition 3

of Denition 2.1.1. Indeed, if one wants to show that (ζϵ(uϵ) ·∇)uϵ → (u ·∇)u in

some sense as ϵ → 0, then one expects that at least ζϵ(x) → x as ϵ → 0. We do

not nd this imposition to be restrictive, as our example choices for ζϵ satisfy this

condition, as seen in Proposition 2.1.3.

Proof of Theorem 1.2.25. Set

wϵ := uϵ − u

and take the dierence between (6.1.3) and (6.1.2) to obtain

∂tw
ϵ +∆wϵ +∆

2wϵ = −(ζϵ(uϵ) ·∇)uϵ + (u ·∇)u.

Testing each side by wϵ we obtain, after integration by parts,

1

2

d

dt
∥wϵ∥2L2 + ∥∆wϵ∥2L2 = ∥∇wϵ∥2L2 +N, (6.4.1)
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where N is given by

N := −


T

((ζϵ(uϵ) ·∇)uϵ − (u ·∇)u) ·wϵ dx.

By inequality (2.4.5),

∥∇wϵ∥2L2 ≤ ∥wϵ∥L2 ∥∆wϵ∥L2 ≤ 1

2
∥∆wϵ∥2L2 +

1

2
∥wϵ∥2L2 . (6.4.2)

Inserting 6.4.2 in 6.4.1 yields

d

dt
∥wϵ∥2L2 + ∥∆wϵ∥2L2 ≤ ∥wϵ∥2L2 + 2N. (6.4.3)

N can be written as

N = −


T

((ζϵ(uϵ)− ζϵ(u)) ·∇)wϵ ·wϵ dx−


T

(ζϵ(u) ·∇)wϵ ·wϵ dx

−


T

((ζϵ(uϵ)− ζϵ(u)) ·∇)u ·wϵ dx−


T

((ζϵ(u)− u) ·∇)u ·wϵ dx.

Using the Lipschitz property of ζϵ and (2.1.1), we see that N is bounded by

|N | ≤


T

|ζϵ(uϵ)− ζϵ(u)| |∇wϵ| |wϵ| dx+



T

|ζϵ(u)| |∇wϵ| |wϵ| dx

+



T

|ζϵ(uϵ)− ζϵ(u)| |∇u| |wϵ| dx+



T

|ζϵ(u)− u| |∇u| |wϵ| dx.

≤


T

|wϵ|2 |∇wϵ| dx+



T

|u| |∇wϵ| |wϵ| dx

+



T

|wϵ|2 |∇u| dx+ Cϵα


T

|u|β |∇u| |wϵ| dx.

= N1 +N2 +N3 +N4.

These terms can be bounded as follows. By Hölder’s inequality, Ladyzhenskaya’s
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inequality, (2.4.5), and Young’s inequality,

N1 ≤ ∥wϵ∥2L4∥∇wϵ∥L2 ≤ C ∥wϵ∥L2 ∥∇wϵ∥2L2 (6.4.4)

≤ C ∥wϵ∥2L2 ∥∆wϵ∥L2 ≤ 1

16
∥∆wϵ∥2L2 + C ∥wϵ∥4L2 .

N2 ≤ ∥u∥L2 ∥wϵ∥L4∥∇wϵ∥L4 (6.4.5)

≤ C ∥u∥L2 ∥wϵ∥
1

2

L2 ∥∇wϵ∥L2 ∥∆wϵ∥
1

2

L2

≤ C ∥u∥L2 ∥wϵ∥L2∥∆wϵ∥L2

≤ 1

16
∥∆wϵ∥2L2 + C ∥u∥2L2 ∥wϵ∥2L2 .

N3 ≤ ∥∇u∥L2 ∥wϵ∥2L4 ≤ C ∥u∥
1

2

L2 ∥∆u∥
1

2

L2 ∥wϵ∥L2 ∥∇wϵ∥L2 (6.4.6)

≤ C ∥u∥
1

2

L2 ∥∆u∥
1

2

L2 ∥wϵ∥
3

2

L2 ∥∆wϵ∥
1

2

L2

≤ 1

16
∥∆wϵ∥2L2 + C ∥u∥

2

3

L2 ∥∆u∥
2

3

L2 ∥wϵ∥2L2 .

By Hölder’s inequality, Ladyzhenskaya’s inequality, and (2.4.5),

N4 ≤ Cϵα ∥wϵ∥L2 ∥u∥βL∞ ∥∇u∥L2 (6.4.7)

≤ Cϵα ∥wϵ∥L2 ∥u∥
β

2

L2 ∥u∥
β

2

H2 ∥u∥
1

2

L2 ∥△u∥
1

2

L2

≤ Cϵα ∥wϵ∥L2 ∥u∥
β

2

L2


∥u∥

β

2

L2 + ∥△u∥
β

2

L2


∥u∥

1

2

L2 ∥△u∥
1

2

L2

=


Cϵα ∥u∥β+

1

2

L2 ∥△u∥
1

2

L2 + Cϵα ∥u∥
β

2
+ 1

2

L2 ∥△u∥
β

2
+ 1

2

L2


∥wϵ∥L2

We now insert the bounds for N in (6.4.1):
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d

dt
∥wϵ∥2L2 + ∥△wϵ∥2L2 ≤ ∥wϵ∥2L2 + 2N (6.4.8)

≤ 6

16
∥△wϵ∥2L2 + C ∥wϵ∥4L2

+

1 + C ∥u∥2L2 + C ∥u∥

2

3

L2 ∥△u∥
2

3

L2


∥wϵ∥2L2

+C


ϵα ∥u∥β+

1

2

L2 ∥△u∥
1

2

L2 + ϵα ∥u∥
β

2
+ 1

2

L2 ∥△u∥
β

2
+ 1

2

L2


∥wϵ∥L2

Due to the presence of the term ∥wϵ∥4L2 , we cannot apply Grönwall’s inequality

directly. However, since ∥wϵ∥L2 is supposed to be small, this term is not a “bad” term

and is even smaller than ∥wϵ∥2L2 . We just need to apply a bootstrapping argument,

as stated in Lemma 2.5.4. Denote by H(t) with t ∈ [0, T ] the statement that

∥wϵ(t)∥L2 ≤ 1

and by C(t) the statement that

∥wϵ(t)∥L2 ≤ eA(T )B(T ) ϵα ≤ 1
2
,

where A(t) and B(t) are dened as in (6.4.11) and (6.4.12) below and ϵ is taken to

be suciently small such that

eA(T )B(T ) ϵα ≤ 1
2
.

Clearly, C(t) is a stronger statement than H(t), and thus (b) of Lemma 2.5.4 holds.

When the solutions are regular enough, then ∥wϵ(t)∥L2 is continuous in time. Indeed,

this regularity is given by Condition 1.2.9 and Denition 1.2.22 and thus (c) of Lemma
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2.5.4 holds. For t = 0, ∥wϵ(t)∥L2 is zero and thus (d) of Lemma 2.5.4 holds. In order

to apply Lemma 2.5.4, it remains to verify (a). That is, if H(t) holds for some

t ∈ [0, T ], namely

∥wϵ(t)∥L2 ≤ 1,

then C(t) holds at the same t, namely

∥wϵ(t)∥L2 ≤ eA(T )B(T ) ϵα < 1
2
.

We assume that, for some t ∈ [0, T ],

∥wϵ(t)∥L2 ≤ 1 (6.4.9)

and then show that (6.4.9) leads to a desired smaller bound at this same t. Now we

replace ∥wϵ∥4L2 by ∥wϵ∥2L2 in (6.4.8) and eliminate ∥wϵ∥L2 from each term to obtain

d

dt
∥wϵ∥L2 ≤ C


1 + ∥u∥2L2 + ∥u∥

2

3

L2 ∥△u∥
2

3

L2


∥wϵ∥L2

+ Cϵα

∥u∥β+

1

2

L2 ∥△u∥
1

2

L2 + ∥u∥
β

2
+ 1

2

L2 ∥△u∥
β

2
+ 1

2

L2


,

in which we also use the fact that d
dt
∥wϵ∥2L2 = 2 ∥wϵ∥L2

d
dt
∥wϵ∥L2 .

Due to the regularity assumption on u in 1.2.9, the terms

1 + ∥u∥2L2 + ∥u∥

2

3

L2 ∥△u∥
2

3

L2


and ∥u∥β+

1

2

L2 ∥△u∥
1

2

L2 are integrable for β ≥ 0. Further-

more, for β ≤ 3, β

2
+ 1

2
≤ 2 and thus ∥u∥

β

2
+ 1

2

L2 ∥△u∥
β

2
+ 1

2

L2 is integrable. It then follows

from Grönwall’s inequality that

∥wϵ(t)∥L2 ≤ eA(t)∥wϵ(0)∥L2 + eA(t)B(t) ϵα ≤ eA(T )B(T ) ϵα, (6.4.10)
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where we have used the fact that the initial dierence wϵ(0) = 0 and have written

A(t) := C

 t

0


1 + ∥u∥2L2 + ∥u∥

2

3

L2 ∥△u∥
2

3

L2


ds, (6.4.11)

B(t) := C

 t

0


∥u∥β+

1

2

L2 ∥△u∥
1

2

L2 + ∥u∥
β

2
+ 1

2

L2 ∥△u∥
β

2
+ 1

2

L2


ds. (6.4.12)

By taking ϵ suciently small, from (6.4.10) we deduce that any

t ∈ [0, T ] which satises

∥wϵ(t)∥L2 < 1.

must also satisfy

∥wϵ(t)∥L2 ≤ eA(T )B(T ) ϵα < 1
2
.

Thus the bootstrapping argument holds, and we conclude as claimed that for all

t ≤ T ,

∥wϵ(t)∥L2 ≤ K1ϵ
α (6.4.13)

where K1 = eA(T )B(T ) depends on T , u, and β. In particular, uϵ → u

in L∞(0, T ;L2(T2)) as ϵ → 0+. Next, integrate (6.4.8) for all t ∈ [0, T ] (again replacing

∥wϵ∥4L2 by ∥wϵ∥2L2) to obtain

10

16

 T

0

∥△wϵ∥2L2 dt

≤ C

 T

0


1 + ∥u∥2L2 + ∥u∥

2

3

L2 ∥△u∥
2

3

L2


∥wϵ∥2L2 dt

+ Cϵα
 T

0


∥u∥β+

1

2

L2 ∥△u∥
1

2

L2 + ∥u∥
β

2
+ 1

2

L2 ∥△u∥
β

2
+ 1

2

L2


∥wϵ∥L2 dt

In which we are again using the fact that wϵ(0) = 0. Applying (6.4.11), (6.4.12), and
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(6.4.13) then yields

 T

0

∥△wϵ∥2L2 dt ≤
16

10
A(T )K2

1ϵ
2α +

16

10
B(T )K1ϵ

2α. (6.4.14)

For K2 =
16
10
A(T )K2

1 +
16
10
B(T )K1 (again only depending on T , ∥u∥L∞(0,T ;L2),

∥u∥L2(0,T ;H2), and β), we obtain

∥△wϵ∥L2(0,T ;L2) ≤ K
1

2

2 ϵ
α. (6.4.15)

Using an interpolation inequality, we obtain

∥wϵ∥L2(0,T ;H2) ≤ C∥wϵ∥L2(0,T ;L2) + C∥△wϵ∥L2(0,T ;L2) (6.4.16)

≤ CT
1

2∥wϵ∥L∞(0,T ;L2) + C∥△wϵ∥L2(0,T ;L2)

≤ C

T

1

2K1 +K
1

2

2


ϵα

as claimed. In particular, uϵ → u in L2(0, T ;H2(T2)) as ϵ → 0+.

Corollary 6.4.1. Consider the calming functions ζϵ as described in (2.1.2). Let

u,uϵ be as in the statement of Theorem 1.2.25 with the same initial data, where uϵ is

determined by ζϵ
i, i = 1, 2, or 3. Then for T < T ∗, there exists K ′

i > 0 independent

of ϵ such that

1. for ζϵ = ζϵ
1,

∥uϵ − u∥L∞(0,T ;L2) ≤ K ′
1ϵ, (6.4.17)
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2. for ζϵ = ζϵ
2,

∥uϵ − u∥L∞(0,T ;L2) ≤ K ′
2ϵ

2, (6.4.18)

3. for ζϵ = ζϵ
3,

∥uϵ − u∥L∞(0,T ;L2) ≤ K ′
3ϵ

2. (6.4.19)

Proof. The proof follows immediately from Theorem 1.2.25 and Proposition 2.1.3.

6.5 The Scalar Form

Here we investigate the scalar formulation (6.1.4). The analysis is similar to the

analysis of (6.1.3), so we only briey present formal energy estimates. For the sake

of brevity, we work formally rather than rigorously. However, the proof below can

be made rigorous, e.g., via the use of Galerkin methods as in the proof of Theorem

1.2.23.

Proof of Theorem 1.2.27. Take a (formal) inner product of (6.1.4a) with ϕ and inte-

grate by parts to obtain

1

2

d

dt
∥ϕ∥2L2 + ∥△ϕ∥2L2 = − (△ϕ,ϕ)−


1
2
ζϵ (∇ϕ) ·∇ϕ,ϕ


. (6.5.1)

Using (2.4.5) and

1
2
ζϵ (∇ϕ) ·∇ϕ,ϕ

 ≤ 1

2
∥ζϵ∥L∞ ∥∇ϕ∥L2 ∥ϕ∥L2

≤ C ∥ζϵ∥
4

3

L∞ ∥ϕ∥2L2 +
1

4
∥△ϕ∥2L2 ,
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we obtain from (6.5.1) that

d

dt
∥ϕ∥2L2 + ∥△ϕ∥2L2 ≤


2 + C ∥ζϵ∥

4

3

L∞


∥ϕ∥2L2 . (6.5.2)

Hence from Grönwall’s inequality, dropping the second term in (6.5.2), we obtain

∥ϕ(t)∥2L2 ≤ eKϵT ∥ϕ0∥2L2 , (6.5.3)

where Kϵ =

2 + C ∥ζϵ∥

4

3

L∞


. Hence ϕ ∈ L∞(0, T ;L2(T2)). Next, we integrate (6.5.2)

in time on the interval [0, T ] and drop any unnecessary terms:

 T

0

1

2
∥△ϕ∥2L2 ≤

 T

0

Kϵ ∥ϕ(t)∥2L2 dt+ ∥ϕ0∥2L2 (6.5.4)

≤
 T

0

Kϵe
KϵT ∥ϕ0∥2L2 dt+ ∥ϕ0∥2L2

=

KϵTe

KϵT + 1

∥ϕ0∥2L2 .

Therefore ϕ ∈ L∞(0, T ;L2(T2)) ∩ L2(0, T ;H2(T2)). Now we obtain estimates on ∂tϕ:

For any ψ ∈ L2(0, T ;H2(T2)),

|⟨∂tϕ,ψ⟩| =

 T

0

∂tϕψdt

 (6.5.5)

=


 T

0


1

2
ζϵ (∇ϕ) ·∇ϕ


ψdt+

 T

0

(△ϕ)ψdt+

 T

0

(△ϕ)△ψdt



≤ 1

2

 T

0

|ζϵ (∇ϕ)| |∇ϕ| |ψ| dt+

 T

0

|△ϕ| |ψ| dt+

 T

0

|△ϕ| |△ψ| dt

≤ 1

2
∥ζϵ∥L∞ ∥∇ϕ∥L2(0,T ;L2)∥ψ∥L2(0,T ;L2)

+ ∥△ϕ∥L2(0,T ;L2)∥ψ∥L2(0,T ;L2) + ∥△ϕ∥L2(0,T ;L2)∥△ψ∥L2(0,T ;L2)

≤

1

2
∥ζϵ∥L∞ ∥ϕ∥L2(0,T ;H2) + 2∥ϕ∥L2(0,T ;H2)


∥ψ∥L2(0,T ;H2).
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It follows from Estimate (6.5.4) that ∥∂tϕ∥L2(0,T ;H−2) < ∞, hence

∂tϕ ∈ L2(0, T ;H−2(T2)). From this we deduce that a solution ϕ to (6.1.4) exists, with

ϕ ∈ C(0, T ;L2(T2)) ∩ L2(0, T ;H2(T2)).

Now, let ϕ and ψ be two solutions to (6.1.4) with ϕ(0) = ψ(0) = ϕ0. Let δ = ϕ− ψ.

Then δ satises the equation

∂tδ +△2δ = −△δ + ζϵ(∇ψ) ·∇ψ − ζϵ(∇ϕ) ·∇ϕ (6.5.6)

with δ(0) = 0. We can then rewrite the nonlinear term as

ζϵ(∇ψ) ·∇ψ − ζϵ(∇ϕ) ·∇ϕ = (ζϵ(∇ψ)− ζϵ(∇ϕ)) ·∇ψ − ζϵ(∇ϕ) ·∇δ. (6.5.7)

We now insert (6.5.7) into (6.5.6) and apply integration by parts to obtain

1

2

d

dt
∥δ∥2L2 + ∥△δ∥2L2 (6.5.8)

≤ |(△δ, δ)|+ |((ζϵ(∇ψ)− ζϵ(∇ϕ)) ·∇ψ, δ)|+ |(ζϵ(∇ϕ) ·∇δ, δ)| .

In the second term, we use Condition 1 of 2.1.1, Hölder’s, Ladyzhenskaya’s, and

Young’s inequality to obtain

|((ζϵ(∇ψ)− ζϵ(∇ϕ)) ·∇ψ, δ)| ≤ ∥ζϵ(∇ψ)− ζϵ(∇ϕ)∥L4 ∥∇ψ∥L2 ∥δ∥L4 (6.5.9)

≤ ∥∇ψ∥L2 ∥δ∥L4 ∥∇δ∥L4

≤ C ∥∇ψ∥L2 ∥δ∥
1

2

L2 ∥∇δ∥L2 ∥△δ∥
1

2

L2

≤ C ∥∇ψ∥L2 ∥δ∥L2 ∥△δ∥L2
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≤ C ∥∇ψ∥2L2 ∥δ∥2L2 +
1

4
∥△δ∥2L2

In the third term, we apply Condition 2 of 2.1.1, use Young’s inequality, and use

interpolation inequalities to obtain

|(ζϵ(∇ϕ) ·∇δ, δ)| ≤ ∥ζϵ∥L∞ ∥∇δ∥L2 ∥δ∥L2 (6.5.10)

≤ ∥ζϵ∥L∞ ∥δ∥
3

2

L2 ∥△δ∥
1

2

L2

≤ C ∥ζϵ∥
4

3

L∞ ∥δ∥2L2 +
1

4
∥△δ∥2L2 .

After inserting (6.5.9) and (6.5.10) into (6.5.8) and rearranging the terms, the in-

equality becomes

d

dt
∥δ∥2L2 + ∥△δ∥2L2 ≤ C


1 + ∥∇ψ∥2L2 + ∥ζϵ∥

4

3

L∞


∥δ∥2L2 . (6.5.11)

Then applying Grönwall’s inequality, we obtain

∥ϕ(t)− ψ(t)∥2L2 ≤ e
K1(T ) ∥ϕ0 − ψ0∥2L2 , (6.5.12)

where K1(T ) =
 T

0
1 + ∥∇ψ(t)∥2L2 + ∥ζϵ∥

4

3

L∞ dt. Since ψ ∈ L2(0, T ;H2(T2)), and ζϵ is

bounded, K1(T ) < ∞. So ϕ(t) = ψ(t) for all t ∈ [0, T ], hence solutions to (6.1.4) are

unique. Now, we integrate (6.5.11) on the interval [0, T ] and apply (6.5.12), which

yields

 T

0

∥△ϕ(t)−△ψ(t)∥2L2 dt ≤ K2 ∥ϕ0 − ψ0∥2L2 (6.5.13)

for some K2 which depends on T , ∥∇ψ(t)∥L2 , and ∥ζϵ∥L∞ . From estimates (6.5.12)

and (6.5.13) we conclude that solutions depend continuously on the initial data in
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L∞(0, T ;L2(T2)) ∩ L2(0, T ;H2(T2)).

Here, we will show the convergences of solutions to (6.1.4) to that of (6.1.1) as

ϵ → 0+. This proof has only minor variations from the proof of Theorem 1.2.25.

Proof of Theorem 1.2.28. We set δϵ = ϕ− ϕϵ take the dierence between (6.1.1) and

(6.1.4a), and take the inner product with δϵ. to obtain

d

dt
∥δϵ∥2L2 + ∥△δϵ∥2L2 ≤ ∥δϵ∥2L2 +N1 +N2 +N3 +N4, (6.5.14)

where

N1 = |((ζϵ(∇ϕϵ)− ζϵ(∇ϕ)) ·∇δϵ, δϵ)| ≤ C ∥δϵ∥6L2 +
3

4
∥△δϵ∥2L2 ,

N2 = |((ζϵ(∇ϕϵ)− ζϵ(∇ϕ)) ·∇ϕ, δϵ)| ≤ C ∥ϕ∥
2

5

L2 ∥△ϕ∥
6

5

L2 ∥δϵ∥2L2 +
1

8
∥△δϵ∥2L2 ,

N3 = |(ζϵ(∇ϕ) ·∇δϵ, δϵ)| ≤ C ∥ϕ∥
1

4

L2 ∥△ϕ∥
3

4

L2 ∥δϵ∥2L2 +
1

16
∥△δϵ∥2L2 ,

and

N4 = |((ζϵ(∇ϕ)−∇ϕ) ·∇ϕ, δϵ)|

≤ Cϵα


T2

|∇ϕ|β+1 |δϵ| dx

≤ Cϵα ∥∇ϕ∥β+1
L2β+2 ∥δϵ∥L2 .

Applying the Sobolev inequality, we deduce that

∥∇ϕ∥β+1
L2β+2 ≤ C ∥∇ϕ∥L2 ∥∇ϕ∥βH1 ≤ C ∥ϕ∥

1

2

L2 ∥ϕ∥β+
1

2

H2 .
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Inserting our bounds for each Ni into (6.5.14) and rearranging then yields

d

dt
∥δϵ∥2L2 +

1

16
∥△δϵ∥2L2 ≤ C ∥δϵ∥6L2 + ∥δϵ∥2L2 + Cϵα ∥ϕ∥

1

2

L2 ∥ϕ∥β+
1

2

H2 ∥δϵ∥L2 (6.5.15)

+ C

∥ϕ∥

2

5

L2 ∥△ϕ∥
6

5

L2 + ∥ϕ∥
1

4

L2 ∥△ϕ∥
3

4

L2


∥δϵ∥2L2 .

Now we apply the ansatz

∥δϵ∥L2 < 1

to obtain the bound

∥δϵ∥6L2 ≤ ∥δϵ∥2L2 .

We apply this estimate to (6.5.15) and eliminate ∥δϵ∥L2 from each term to obtain

d

dt
∥δϵ∥L2 ≤ C ∥ϕ∥

1

2

L2 ∥ϕ∥β+
1

2

H2 ϵα (6.5.16)

+ C

1 + ∥ϕ∥

2

5

L2 ∥△ϕ∥
6

5

L2 + ∥ϕ∥
1

4

L2 ∥△ϕ∥
3

4

L2


∥δϵ∥L2 .

The term

1 + ∥ϕ∥
2

5

L2 ∥△ϕ∥
6

5

L2 + ∥ϕ∥
1

4

L2 ∥△ϕ∥
3

4

L2

is always integrable and the term

∥ϕ∥
1

2

L2 ∥ϕ∥β+
1

2

H2

is integrable for β ∈ [1, 3
2
]. It now follows from Grönwall’s inequality that

∥δϵ(t)∥L2 ≤ eA(t) ∥δϵ(0)∥L2 + eA(t)B(t)ϵα ≤ eA(T )B(T )ϵα, (6.5.17)



131

using the fact that δϵ(0) = 0, and with

A(t) = C

 t

0

1 + ∥ϕ∥
2

5

L2 ∥△ϕ∥
6

5

L2 + ∥ϕ∥
1

4

L2 ∥△ϕ∥
3

4

L2 ds,

B(t) = C

 t

0

∥ϕ∥
1

2

L2 ∥ϕ∥β+
1

2

H2 ds.

By taking ϵ suciently small, we have for all 0 ≤ t ≤ T

∥δϵ(t)∥L2 < 1.

It follows from a bootstrapping argument that

∥δϵ(t)∥L∞(0,T ;L2) ≤ eA(T )B(T )ϵα. (6.5.18)

Now we integrate (6.5.15) on [0, T ], again using that ∥δϵ∥6L2 ≤ ∥δϵ∥2L2 , and apply to

obtain

 T

0

∥△δϵ∥2L2 dt ≤ CϵαB(T )eA(T )B(T )ϵα + A(T )

eA(T )B(T )ϵα

2
(6.5.19)

≤ K(T )2ϵ2α,

where

K(T )2 = CB(T )2eA(T ) + A(T )B(T )eA(T ).

Therefore we obtain

∥δϵ∥L2(0,T ;H2) ≤

TeA(T )B(T ) +K(T )


ϵα. (6.5.20)
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6.6 Computational Results

In this section, we examine the calmed Kuramoto-Sivashinsky equations computa-

tionally via several simulations, where the calming function ζϵ = ζϵ
i is described in

(2.1.2). We include snapshots of the evolution of solutions for the dierent choices

of ζϵ in Figure 6.1, and for dierent choices of ϵ in Figure 6.2 (we show results for

ζϵ
3 only for the sake of brevity; ζϵ

1 and ζϵ
2 yielded qualitatively similar results). The

former illustrates the dierent eects of the choice of ζϵ on the dynamics, while the

latter indicates the uniform convergence of uϵ to u.

In addition, we examine convergence rates in L∞(0, T ;L2), L∞(0, T ;L∞), and

L2(0, T ;H2) for ζϵ
1 (Figure 6.3), ζϵ

2 (Figure 6.4), and ζϵ
3 (Figure 6.5) with initial

data (6.6.2) as ϵ → 0+ (for simplicity, we set T = 1, since with all our initial data,

solutions to KSE appear to be quite stable on [0, 1]). We nd that the powers on

the L∞(0, T ;L2) and L2(0, T ;H2) convergence rates in Corollary 6.4.1 appear to be

sharp.

Finally, in Figures 6.6, 6.7, and 6.8 we check the robustness of the convergence

with respect to larger initial data (6.6.3) for ζϵ
1, ζ

ϵ
2, and ζϵ

3. In comparing initial

data (6.6.2) with (6.6.3), we nd very little qualitative variation in the error rates,

indicating that changes in initial data will only marginally change the error between

solutions to KSE and solutions to calmed KSE for ϵ > 0 suciently small.

6.6.1 Numerical Methods

All computations were done in Matlab (R2021a) using pseudo-spectral methods with

the standard 2/3′s dealiasing for the nonlinear term. To evolve the system, we used

a well-known modication of the Runge-Kutta-4 time-stepping scheme adapted to

handle the linear terms implicitly via an integrating factor to handle the nonlinear
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terms implicitly (see, e.g., [49]) with time step ∆t ≈ 4.2943× 10−4 chosen to respect

the maximum advective CFL condition in Figures 6.1, 6.2, 6.3, 6.4, and 6.5, with

later gures having a rescaled time step ∆t = 1.0736 × 10−4. Our simulations for

KSE and cKSE were resolved5 with a spatial mesh of 1282. All computations were

done using the nondimensionalized calmed Kuramoto-Sivashinsky equations,

∂tu+ (ζϵ(u) ·∇)u+ λ△u+△2u = 0, (6.6.1a)

u(x, 0) = u0(x), (6.6.1b)

over the periodic domain Ω = [−π, π)2 for λ > 0.

Throughout this section, a type 1, type 2, or type 3 solution is a solution to calmed

KSE with calming function ζϵ
1, ζ

ϵ
2, or ζ

ϵ
3 respectively.

6.6.2 Simulations

Here, we take initial conditions to be

u0(x, y) =


cos(x+ y) + cos(x)

cos(x+ y) + cos(y)


(6.6.2)

and all color plots seen below are plots of the magnitude |u| = |(u, v)| =
√
u2 + v2.

In all plots of solutions, the horizontal axis corresponds to the y-axis and the vertical

axis corresponds to the x-axis.

Our choice for initial data u0 was motivated by the choice of scalar initial data

5Note: For the Kuramoto-Sivashinsky equations (calmed or otherwise), even in fairly chaotic
regimes, one often does not need especially high resolution, due to the strong hyperdiusion term.
Moreover, so long as the solution is well-resolved, which we take to mean that the energy spectrum
at the modes higher than the 2/3’s dealiasing cut-o is at or below machine precision (roughly 2.22×
10−16), increasing the resolution only increases round-o error, due to the additional computations
being performed. Hence, to minimize roundo error, we purposely chose the fairly low resolution of
1282, although our higher-resolution tests, not reported here, produced qualitatively similar results.
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found in [48], [62], and [59]; namely,

ϕ0(x, y) = sin(x+ y) + sin(x) + sin(y).

Hence, we set u0 = ∇ϕ0.

(a) Type 1 (b) Type 2 (c) Type 3 (d) KSE

Figure 6.1: Solutions to calmed KSE of each type compared with a solution to KSE
at time t = 2, with ϵ = 0.1, λ = 4.1, and u0 given by (6.6.2).

Though some dierences can be seen among the images above, one can see that

each type of calmed KSE solution approximates the overall behavior of a KSE solu-

tion. One can also observe that the accuracy of the approximation varies by type.
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(a) ϵ1 = 0.1 (b) ϵ2 = 0.01 (c) ϵ3 = 0.001 (d) KSE

Figure 6.2: Column 6.2d is a solution to KSE (6.1.2) for t = 1, . . . , 5, whereas
columns 6.2a, 6.2b, and 6.2c are type 3 solutions to calmed KSE (6.1.3) on the same
time interval with ϵ ∈ {0.1, 0.01, 0.001}. In this gure, λ = 4.1 is xed and initial
data u0 is given in (6.6.2). Viewing the pictures from left to right, we can see that
uϵ → u as ϵ → 0.
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In Figure 6.2 we focus only on type 3 approximations to better illustrate how well

calmed KSE solutions can approximate KSE solutions over time for various choices

of ϵ. Indeed, when viewed from left to right we can observe the convergence of our

calmed KSE solutions to the original KSE solution.

In accordance with Corollary 6.4.1 we see that solutions to calmed KSE corre-

sponding to calming function ζϵ
1 yield a linear convergence rate whereas solutions to

calmed KSE corresponding to calming functions ζϵ
2 or ζ

ϵ
3 yield quadratic convergence

rates.

For additional testing, we choose initial data with higher oscillation and higher

magnitude,

u0(x, y) =


4 (cos(x+ y) + sin(3x))

4 (cos(x+ y) + cos(4y))


, (6.6.3)

Figure 6.3: Estimates of u − uϵ vs. ϵ in norms ∥ · ∥L∞(0,T ;L2), ∥ · ∥L∞(0,T ;L∞), and
∥ · ∥L2(0,T ;H2), at time T = 1 with uϵ a type 1 solution and with initial data given by
(6.6.2). These estimates show a linear convergence rate.



137

Figure 6.4: Estimates of u − uϵ vs. ϵ in norms ∥ · ∥L∞(0,T ;L2), ∥ · ∥L∞(0,T ;L∞), and
∥ · ∥L2(0,T ;H2), at time T = 1 with uϵ a type 2 solution and with initial data given by
(6.6.2). These estimates show a quadratic convergence rate. Note: for ϵ ≲ 10−9, the
error in our simulations was exactly 0, hence it does not appear in this log-log plot.

Figure 6.5: Estimates of u − uϵ vs. ϵ in norms ∥ · ∥L∞(0,T ;L2), ∥ · ∥L∞(0,T ;L∞), and
∥ · ∥L2(0,T ;H2), at time T = 1 with uϵ a type 3 solution and with initial data given by
(6.6.2). These estimates show a quadratic convergence rate.
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Figure 6.6: Estimates of u − uϵ vs. ϵ in norms ∥ · ∥L∞(0,T ;L2), ∥ · ∥L∞(0,T ;L∞), and
∥ · ∥L2(0,T ;H2), at time T = 1 with uϵ a type 1 solution and with initial data given by
(6.6.3). These estimates show a linear convergence rate.

and examine the convergence rates for each solution type. For each convergence test,

we have the xed parameters N = 128, T = 1, and λ = 4.1.
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Figure 6.7: Estimates of u − uϵ vs. ϵ in norms ∥ · ∥L∞(0,T ;L2), ∥ · ∥L∞(0,T ;L∞), and
∥ · ∥L2(0,T ;H2), at time T = 1 with uϵ a type 2 solution and with initial data given by
(6.6.3). These estimates show a quadratic convergence rate. Note: for ϵ ≲ 10−9, the
error in our simulations was exactly 0, hence it does not appear in this log-log plot.

Figure 6.8: Estimates of u− uϵ vs. ϵ in norms
∥ ·∥L∞(0,T ;L2), ∥ ·∥L∞(0,T ;L∞), and ∥ ·∥L2(0,T ;H2), at time T = 1 with uϵ a type 3 solution
and with initial data given by (6.6.3). These estimates show a quadratic convergence.
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We observe that even with larger choice of initial data, Figures 6.6, 6.7, and 6.8

remain qualitatively similar to Figures 6.3, 6.4, and 6.5. This computational result is

again in accordance with Corollary 6.4.1.

6.7 Conclusions

We introduced new modications of the 2D Kuramoto-Sivashinsky equation, in both

scalar and vector forms, with a “calming-parameter” ϵ > 0 that we call the “calmed

Kuramoto-Sivashinsky equation,” and proved that associated PDEs are globally well-

posed in the sense of Hadamard. Moreover, we proved that, under suitable conditions

on the calming function ζϵ, that (on the time interval of existence and uniqueness

of solutions to the KSE) the solutions of the calmed equation converge to solutions

of the KSE as ϵ → 0+ at a certain algebraic rate. Moreover, our computational

simulations indicate that this rate is sharp. To the best of our knowledge, this is the

rst globally well-posed PDE model whose solutions approximate solutions to the 2D

Kuramoto-Sivashinsky equation with arbitrary precision, at least before the potential

blow-up time of the latter.

In addition, we note that this “calming” technique can be applied to a wide

variety of other equations, which we will investigate in several forthcoming works.

In particular, in [29], we consider applications of calming to the 3D Navier-Stokes

equations.
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[40] Z. Grujić. Spatial analyticity on the global attractor for the Kuramoto–

Sivashinsky equation. J. Dynam. Dierential Equations, 12(1):217–228, 2000.

[41] J.-L. Guermond and A. Salgado. A note on the Stokes operator and its powers.

J Appl Math Comput, 36:241–250, 2011.

[42] S. F. Guo Boling. The global attractors for the periodic initial value problem of

generalized Kuramoto–Sivashinsky type equations in multi-dimensions. Journal

of Partial Dierential Equations, 6(3):217–236, 1993.

[43] M. W. Hecht, D. D. Holm, M. R. Petersen, and B. A. Wingate. The LANS-α

and Leray turbulence parameterizations in primitive equation ocean modeling.

J. Phys. A, 41(34):344009, 23, 2008.

[44] J. M. Hyman and B. Nicolaenko. The Kuramoto–Sivashinsky equation: a bridge

between PDEs and dynamical systems. Phys. D, 18(1-3):113–126, 1986. Solitons

and coherent structures (Santa Barbara, Calif., 1985).

[45] J. S. Il’yashenko. Global analysis of the phase portrait for the Kuramoto–

Sivashinsky equation. J. Dynam. Dierential Equations, 4(4):585–615, 1992.

[46] A. A. Ilyin, E. M. Lunasin, and E. S. Titi. A modied-Leray-α subgrid scale

model of turbulence. Nonlinearity, 19(4):879–897, 2006.

[47] D. A. Jones and E. S. Titi. Determining nite volume elements for the 2D

Navier–Stokes equations. Phys. D, 60(1-4):165–174, 1992. Experimental math-

ematics: computational issues in nonlinear science (Los Alamos, NM, 1991).

[48] A. Kalogirou, E. E. Keaveny, and D. T. Papageorgiou. An in-depth numer-

ical study of the two-dimensional Kuramoto–Sivashinsky equation. Proc. A.,

471(2179):20140932, 20, 2015.



147

[49] A.-K. Kassam and L. N. Trefethen. Fourth-order time-stepping for sti PDEs.

SIAM J. Sci. Comput., 26(4):1214–1233, 2005.

[50] P. E. Kloeden, J. A. Langa, and J. Real. Pullback V -attractors of the 3-

dimensional globally modied Navier–Stokes equations. Commun. Pure Appl.

Anal., 6(4):937–955, 2007.
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