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Methylammonium lead trihalide perovskite (MAPbX3, where MA is 

methylammonium, and X is a halide)-based solar cells have been extensively investigated 

recently, with a demonstrated and certified solar power conversion efficiency (PCE) 

exceeding 20%. To further boost the PCE beyond the Schockley–Queisser limit, tandem 

structured solar cells have been investigated based on integrating MAPbX3 and the lower 

bandgap solar cells. Although the best reported efficiency for this type of tandem cells is 

not close to the theoretically achievable value, mixed-halide perovskite MAPbBrxI3–x is 

still one of the most promising candidates as the wide-bandgap light absorber for the 

tandem application to match the bandgap of silicon, considering its continuously tunable 

bandgap from 1.6 eV to 2.3 eV with different bromide incorporation ratio. However, the 

application of the wide-bandgap lead mixed halide perovskite based solar cells has been 

reported to face several challenges including high intensity of defects, light instability, 

phase separation, etc. This thesis aims to provide the recent work during my master 

program involved in the understanding of (1) the characterization of the optoelectronic 

property of wide-bandgap organolead mixed halide perovskite (MAPbX3), (2) bandgap 

tunable control of the thin film fabrication process and film post-treatment, (3) device 

interface and charge transport layers that dramatically influence the efficiency in the 

MAPbX3 devices, (4) the stability of the MAPbX3 thin films.
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1 Introduction 

1.1 Background and motivation 

Wide bandgap organo-lead trihalide perovskites (WBOTP) has been an emerging 

research area since CH3NH3PbI3 was demonstrated to have an outstanding power 

conversion efficiency (up to 22.1%).1 The low cost, low temperature, all-solution spin 

coating fabrication method for organo-lead trihalide perovskites (OTP) thin films enables 

us to manipulate the formula of the OTP compounds, thus change the cation (X) species in 

the formulation ABX3, where A is the methylammonium (MA), B is lead (Pb), and X is 

halide (Cl, Br, I, or the mix of them).2-6 It has been shown that the bandgap of the 

perovskites could be tuned to be wider by changing iodide to bromide or chloride.7,8 This 

finding opened a significant potential of WBOTP to be light absorber in tandem device or 

even lighting and display devices.8 Fundamental studies of these wide bandgap perovskites 

are necessary to understand the influence of halide ions in the perovskite structure on the 

presenting bandgap, which is expected to be precisely tuned into 1.7-1.8 eV for the tandem 

solar cell applications.9 10,11  

Stable PCEs over 20% were successfully achieved by devices with bandgaps 

around 1.55 eV, however, when it came to MAPbI3-xBrx , whose bandgap is aimed to be 1.7 

eV-1.8 eV, inherent problems have been revealed. Firstly, Hoke et al. reported that there 

is a light soaking effect in MAPbI3-xBrx. Incident light induces a halide segregation within 

the perovskite.12 The formation of iodide-rich domains with a lower band gap results a sub-

gap absorption and a red shift of photoluminescence (PL), thus limits the achievable open 

circuit voltage for the device with WBOTPs. Furthermore, for this band-gap 

photoinstability has been one of the biggest challenges of applying MAPbI3-xBrx in tandem 
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devices. Inspired by his work, I did the photoinstability test to the WBOTP thin films with 

the optimum bandgap for tandem application with Si, which is 1.72 eV. These films were 

fabricated within a planar structure. In this thesis, I demonstrate that the photoinstability is 

directly related to the microstructure and crystal quality of the thin films. 

1.2 Experimental Methods 

1) Scanning Electron Microscope (SEM) 

The scanning electron microscope, also called SEM in this thesis, uses accelerated 

electrons to hit the sample surface. The energy that is carried by the incident electrons 

could be dissipated as various signals by the process of electron-sample surface integration, 

thus delivers the information of the morphology, chemical composition, crystal structure 

of the solid specimen. The signals that are collected by the SEM for producing image are 

called secondary electrons. There is another important signal generated at the same time 

when incident electrons interact with the sample, which is backscattered electrons, often 

used for analyzing the composition of the sample. The selected areas could range from 1 

cm to 1 micrometer, which are all able to be presented in a high resolution image with the 

conventional SEM techniques. SEM is a very useful technique for material’s morphology 

identification. 

2) X-ray Diffraction (XRD) 

Using X-rays to probe crystalline structure has a long history since 1895.  X-ray 

diffraction is still the most efficient and common technique for the study of crystal 

structures today. When monochromatic X-rays and a crystalline sample have constructive 

interference, a X-ray diffraction pattern is generated. According to the Bragg's Law, 

the constructive interference should satisfy the relationship of nλ=2d sin θ, which relates 
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the wavelength of incident X-rays λ to the diffraction angle θ and the lattice spacing d in a 

crystalline sample. By scanning the sample through a range of 2θ angles, all the possible 

diffraction X-rays are then detected, processed and counted, so that the crystal structure 

and d-spacing could be concluded by analyzing and indexing the peaks in the X-Ray 

Diffraction pattern.  

3) Photoluminescence (PL) 

Photoluminescence is the process that a material emits light after absorbing light. 

For semiconductors, there are various relaxation forms after photoexcitation. One of them 

is luminescence or light emitting. By observing the photoluminescence of a semiconductor, 

we can know the transition energy that is associated with an excited state, which is usually 

referred to as the bandgap information or the certain excited states (trap states) in the 

materials. 

4) Incident photon to electron conversion efficiency (IPCE) 

Incident photon to electron conversion efficiency (IPCE), also referred to External 

Quantum Efficiency (EQE), is the ratio of the amount of collected charge carriers to the 

amount of incident photons to the device at a certain wavelength.  The process of EQE 

measurement is conducted by illuminating a certain area of the sample device with a 

monochromatic light beam and recording the photocurrent generated by the area of the 

device. The entire IPCE spectrum as a function of wavelength could be obtained by 

changing the frequency of the incident light. 
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1.3  Thesis outline 

This thesis mainly focuses on enhancing WBOTP device 

performance by increasing the Voc and by stabilizing the photocurrent output. There are 

six chapters in this thesis:  

In Chapter 1, the research background, research motivation, and organization of 

this thesis are introduced. 

In Chapter 2, the studies I have done relating to the optoelectronic properties of 

MAPbX3 are introduced. The band structure characterizations including the shape and 

dispersion of the band edge, exciton binding energy, defects induced by phase separation, 

are demonstrated to be important for optimizing the photovoltaic device efficiency based 

on the WBOTPs.  

In Chapter 3, the fabrication methods of the WBOTPs thin films are introduced. 

The highly efficient solar cells require the active layer to be complete and uniform, which 

makes the fabrication of high quality WBOTPs thin film to be a challenging task. Similar 

to the fabrication methods of MAPbI3 thin films, the WBOPTs, which are achieved by 

mixing halide cations in the ABX3 formulation, could also be obtained by the one-step 

method and the interdiffusion method, which are commonly utilized in practice. 

Furthermore, I present our innovative interdiffusion method and post annealing process for 

fabricating high quality MAPbI3-xBrx films. Besides of the WBOTPs fabrication, the 

structure of the MAPbI3-xBrx-based solar cell also varies with individual benefits.  

In Chapter 4, the main charge transporting layers utilized in the WBOTP solar cells 

and their influence on device performance is addressed. Various hole transport materials 
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and electron transport materials are used in the same device configuration to compare the 

device performance. 

In Chapter 5, the stability of the WBOTPs is discussed. Since the wide bandgap of 

the OTPs is achieved by mixing halide ion in the perovskite structure, it is difficult for the 

alloy compounds to maintain a stable phase. It has been found that the WBOTPs with an 

ideal bandgap 1.72 eV is not stable after a certain time period illumination. I will introduce 

the related research and finding I have done in this chapter.  

In Chapter.6, the research effort in this thesis to improve WBOTPs solar cells is 

summarized. An outlook of this research is also briefly presented in the final chapter 
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2 The optoelectronic properties of MAPbX3 

2.1 Introduction to wide bandgap perovskites 

Referred to as the “dye” in dye sensitized solar cell (DSSC) and as the “light 

harvester” in both mesoporous scaffold structure and planar heterojunction structure solar 

cells, the optical properties of organolead trihalide perovskite (OTP) has been investigated 

intensively.13,2,4 The two crucial characteristics for high performance solar cells, strong 

optical absorption and efficient carrier transportation are both found in this organic-

inorganic hybrid semiconductor.5,6 However, the photo-generated species have been 

questioned for a long time.14 In this section, my related research on the electro-optical 

properties of OTP materials is introduced, including the dielectric constant, exciton binding 

energy, exciton dissociation mechanism. Most of the content in this chapter is extracted 

from my publication “Distinct exciton dissociation behavior of organolead trihalide 

perovskite and excitonic semiconductors studied in the same system”. 

2.1.1 Crystal Structure and Phase  

With the emerging of WBOTPs, the electro-optical properties of perovskite have 

been intensively studied, such as the phase transitions, piezoelectric effect,15 and exciton 

binding energy. These properties for a general mixed halide perovskite formula MAPbX3 

material were reported to have originated from the off-centering displacement of X atoms 

or a nonpolar rotation of [BX6] octahedra under the strain induced by the replacement of 

X atoms. In the mixed halide MAPbX3 perovskite structure, different X atoms have 

different atom radii (6.3288 and 5.6752 Å for X = I and Cl, respectively).16 Thus, the tilting 

and rotation of the BX6 polyhedra could occur when different halide ions get into the 

crystal structure, which directly adjust the bandgap of this material.16 The rotational motion 
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of the MA cations is illustrated in Figure 2.1.1 by ab initio molecular dynamics (CPMD) 

simulation with the experimental cell parameters.17,18 

 

Figure 2.1.1 (a) Cubic model and (b) tetragonal model structures. Highlighted are 

the employed simulation cells. 

MAPbI3 has been confirmed to undergo phase transitions from a tetragonal 

structure at room temperature to cubic symmetry phase at around 319-327 K.18,19 Similar 

temperature dependent phase transition for MAPbCl3 and MAPbBr3 has been reported as 

well.19,20 It has been revealed by 1H and 135C nuclear magnetic resonance spectra in 

methylammonium lead halide perovskites that for OTP materials, MAPbX3, the phase 

transition is caused by the methylammonium ion reorientation, and the phase sequences 

are:  

MAPbI3: orth.II (Pna21) to tet.I (I4/mcm) to Cubic (Pm-3m);  

MAPbBr3:  orth. II (Pna21) to tet.II (P4/mmm) to Cubic (Pm3m) to tet. I (I4/mcm);  

MAPbCl3: Orth. I (P2221) ) to tet. II (P4/mmm) to cubic (Pm-3m). 

2.1.2 Dielectric Constant 
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Dielectric is a property of materials that describes the energy that can be stored by 

the polarization of molecules.21 When studying this property, it is common to model a 

material as a capacitor and consider its ability to store charge. Thus, the dielectric constant 

can be measured as the ratio of the capacitance of a capacitor using that material as a 

dielectric, compared to a similar capacitor that has vacuum as its dielectric.22 The dielectric 

constant is also one essential parameter for OTPs for its photovoltaic effect. It represents 

the Coulomb interaction between dipoles.23,24 It is directly related to Coulomb's constant 

with the relationship 𝑘 = 1/4𝜋𝜀0 , where 𝑘  is Coulomb's constant and  𝜀0  is dielectric 

constant. The MA ion has a permanent electric dipole moment, which could experience an 

extremely rapid overall reorientation along C-N axis in a perovskite structure. This 

dynamic dipole moment orientation changing is expected to contribute to the dielectric 

properties of the substance.24 With a compositional engineering based on halide 

composition of thin films and single crystal, dielectric permittivity of MAPbX3 (X is Cl, 

Br, I or the mixture of them) have been experimentally measured with a wide frequency 

range by several methods, including optical absorption, magnetoabsorption25, impedance 

analyzer, and etc. However, due to the challenge of fabricating thick, uniform, pinhole-free 

thin films for mixed halide perovskite, prior work has focused on iodide perovskite. This 

prior work is outlined in the remainder of this section. 

A widely recognized value for the real part of static dielectric constant was given 

to be about 70 for bulk MAPbI3 by Lin et al. in 2014.23 This value was obtained by 

measuring the optical constants (refractive index n and extinction coefficients k) for all the 

layers in perovskite-based planar devices in a wide range of frequency ranges from (20 Hz-

https://en.wikipedia.org/wiki/Capacitance
https://en.wikipedia.org/wiki/Capacitor
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40 MHz).The results are shown in Figure 2.1.2, and the relative dielectric constant is given 

by the simple relation: 

 ε‘ = 𝑛2 − 𝑘2 , ε“ = 2𝑛𝑘 (1) 

 

Figure 2.1.2 (a) Optical constants of the CH3NH3PbI3: refractive index (n) and extinction 

coefficient (k), as determined by employing spectroscopic ellipsometry, near-normal 

incidence reflectance and total transmittance.  Three different spectral regions 

occur: λ > 800 nm with minimal absorption, 500 nm < λ < 800 nm with moderate 

absorption (comparable with the absorption of typical organic semiconductors) 

and λ < 500 nm with the very strong absorption characteristics from PbI2. b, Dielectric 

constants of CH3NH3PbI3, real and imaginary parts, in the optical (high) frequency 

regime as determined from n, k and low-frequency and static values from impedance 

analysis and CELIV, respectively. A high static dielectric constant of ∼70 is notable. The 

1/f behavior of the imaginary part of the dielectric constant is indicative of the ionic 

nature of this perovskite.23 

In my own experiments, I observed a similar relative dielectric constant value 

ranging from 50-100 at low frequencies. I obtained the relative dielectric constant of the 

MAPbI3 thin films with impedance spectroscopy, which measures the capacity with 
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frequency ranges 0.01 Hz to 1000 Hz. Surprisingly, the dielectric constant of MAPbI3 thi-

film was barely studied until recently, which might be due to the difficulty to form the pin-

hole free perovskite thin films. A recent study of dielectric response of MAPbI3 was 

executed on devices containing multiple layers including mesoporous or compact 

electrodes,[9] and thus did not measure the dielectric property of the perovskite layer itself 

exclusively. In this thesis, I applied a recently developed interdiffusion approach to form 

the continuous, leakage-free perovskite thin films.26 This pinhole-free 1um MAPbI3 film, 

whose surface and cross section scanning electron microscope images are shown in Figure 

2.1a and 2.1b, give us the opportunity to study the dielectric properties of this single layer 

material. The perovskite films were deposited on poly(3,4-

ethylenedioxythiophene):poly(4-styrenesulfonate)  PEDOT:PSS covered indium tin oxide 

(ITO) or bare ITO substrates, and were covered by gold electrodes with a simple device 

structure as shown in the inset of Figure 3c. The frequency dependent dielectric constant 

of the devices were measured in dark conditions at zero bias to avoid any poling effect. A 

large dielectric constant over 500 was observed on a low frequency of 20 Hz, which is 

lower than the dark dielectric constant of over 1000 reported by J. Bisquert.27 The 

discrepancy can be explained by the different device structure used because charge 

trapping and detrapping in the nanocrystalline TiO2 film can cause a huge dielectric 

response in the low frequency range. This also indicates the importance to differentiate the 

dielectric response from that of other layers using a single layer perovskite film. As we can 

see, the relative dielectric constant is about 32 at high frequencies, consistent with that 

measured by A. Poglitsch with a dispersive polarizing millimeter-wave interferometer.28 
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Such a large relative dielectric constant indicates that MAPbI3 is a non-excitonic material, 

as the Coulomb interaction between electron and hole pairs can be effectively screened.  

 

Figure 2.1 (a)(b) top view and cross section SEM images of the perovskite thin films 

prepared in interdiffusion method. (c) Frequency-dependent dielectric constant of the 

MAPbI3 film. The device structure of MAPbI3 film for dielectric constant measurement is 

shown in the inset. 

2.2 Exciton or free charge 

The concept of photogenerated species of OTP is hotly discussed topic. On the one 

hand, it is a common observation that an exciton absorption peak appears at the edge of 

optical absorption cut-off with an increasing bandgap.14,29,30 On the other hand, the large 

dielectric effect in OTP discussed above suggests the dielectric screening must be large to 

form exciton. The excitonic optical property indicates that OTP is possibly an excitonic 

material, then the exciton dissociation and charge collection might be one of the major 

reasons for energy loss. It follows that the exciton binding energy is significant for 

estimating the energy loss, and is also beneficial for the light emitting studies of WBOTPs.  
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2.2.1 Optical Absorption of WBOTPs 

The optical absorption of a photovoltaic semiconductor is essentially the process of 

elements transitioning between valence band (VB) states and conduction band (CB) states, 

which in particular materials, is also determined by density of states (DOS).31 Therefore, 

the optical absorption coefficient of a material is closely related to its electronic structure. 

OTPs are attractive photovoltaic materials because OTPs have strong optical absorption, 

which means the required thickness and the challenges in collecting photogenerated 

carriers could both be reduced. The relatively high exciton binding energy compared to 

those of III–V semiconductors with a similar bandgap (37–50 meV have been reported for 

iodide in the low-temperature phase16 and 35–75 meV for the mixed chloride at room 

temperature14), not only lowers the absorption threshold, but also increases the strength of 

the above-bandgap absorption that generates unbound electron–hole pairs.  

For OTP single crystals, the MAPbI3 and MAPbBr3’s exciton binding energy has 

been predicted respectively to be 45 meV and 70 meV at low temperature, indicating a 

Wannier-Mott type exciton. For the OTP polycrystalline thin film, by measuring the full 

width at half-maximum of the exciton absorption peaks,32 the exciton binding energy was 

estimated to be 80 meV for MAPbBr3 and 87 meV for MAPbBr3-xClx, both of which are 

larger than that of MAPbI3 (19~56 meV). Another reported method is using high magnetic 

fields inter-band magneto-absorption to obtain a spectroscopic measurement of the exciton 

binding energy, which is found to be only 16 meV at low temperatures.  

2.2.2 Exciton Dissociation Mechanism 

Excitons are the photogenerated electron-hole pairs, and can be classified into two 

types, Wannier exciton and Frenkel exciton. In Wannier excitons, the Coulomb interaction 
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of electron-hole pairs is small, thus results in a large electric field screening length. 

Wannier excitons have weak bonding energy of 0.01 eV, and can be easily separated.33,34 

Theoretically, the generated free charges are able to be extracted out under the built-in 

electric field in the p-n junction solar cells. However, most organic semiconductors have a 

relatively small dielectric constant, resulting a strong Coulomb interaction between the 

photogenerated electron-hole pairs, whose binding energy could reach between 0.1-1 eV.33 

This type of excitons are referred to as Frenkel excitons. The thermal activation at room 

temperature can no longer dissociate this type of excitons, such that an external electric 

field or the internal electric field induced by the band offset is needed to separate them. 

For MAPbX (X is Br or Cl or mixture of them), the exciton dissociation dynamics 

was studied by comparing the electric field dependent incident photon to charge carrier 

efficiency (IPCE) of MAPbX and the conventional excitonic semiconductors in the same 

device. The exciton generation and dissociation were studied extensively in organolead 

bromide and organolead bromide-chloride mixed halide perovskites, which might have a 

larger exciton binding energy due to a larger bandgap. To find out whether these large 

binding energy excitons can be dissociated and contribute to the photocurrent in Br and Cl 

based perovskite devices, we measured the wavelength dependent photocurrents of the 

corresponding devices by IPCE. Figure 2.2.1 shows the EQE curves of the devices based 

on the four types of perovskite thin films, with the device structure of 

ITO/PEODT:PSS/MAPbX3/PCBM/C60/BCP/Al. The EQE peaks are consistent with the 

exciton absorption peaks, demonstrating that the excitons generated in mixed halide 

perovskite could be efficiently dissociated despite the large exciton binding energy over 80 

meV. 13 
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Figure 2.2.1 (a) Normalized absorption of perovskite film fabricated from varied 

precursors, showing a blue shift with addition of Br and Cl. (b) EQE of devices built on 

the corresponding perovskite films       

Since MAPbBr3 has a larger bandgap than C60, its absorption and EQE spectrum 

band can be separated from that of C60, which allows for the study of the electric field 

dependent exciton dissociation behavior of these two materials in a single device. We 

expect to see a fundamental difference between excitonic materials and non-excitonic 

materials on the electric field dependent charge generation. For non-excitonic materials, 

free charges are generated upon light absorption, thus the electric field has no effect on 

charge generation yield; while for excitonic materials, the excitons with large binding 

energy need to be dissociated either by a large energy offset at the donor-acceptor interface 

or by a strong electric field that draws the electron and hole apart. The field-dependent 

dissociation rate, kD can be described quantitatively by the Onsager model.35-37  
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where 𝑘R is the bimolecular rate constant of the bound electron hole pair (e-h pair), 

𝑎 is the initial separation of the bound e-h pair at the interface, 𝑏 = 𝑒3𝐸/8𝜋𝜀0𝜀𝑟𝑘2𝑇2, 𝜀0 

is the dielectric permittivity of the vacuum, 𝜀𝑟 is the relative dielectric permittivity of the 

active layer, and EB is the e-h pair’s binding energy. According to the Onsager model, 

field-dependent dissociation rate cannot be predicted by materials’ intrinsic parameters, 

such as exciton binding energy or dielectric constant exclusively. In order to examine this 

dynamic property, we continued to test the external electric fields dependent EQE of 

MAPbBr3 devices with structures of ITO/PEDOT:PSS (30 nm)/MAPbBr3 (100 

nm)/PCBM/C60 (200 nm)/BCP (80 nm)/Al (100 nm) and ITO/PEDOT:PSS (30 

nm)/MAPbBr3 (100 nm)/spun ICTA/ evaporated ICTA (200 nm)/BCP (80 nm)/Al (100 

nm). Here there is a possibility that ICTA may decompose into PCBM or other fullerenes 

derivatives, however, the spun layer of ICTA maintained its composition on the perovskite 

thin film during the whole process. Since the LUMO level of ICTA is not lower than that 

of MAPbBr3 (Figure 2.2), the existence of ICTA excludes the situation that the inner 

electric field offered by the LUMO offset between MAPbBr3 and ICTA could assist the 

dissociation of photoinduced excitons.13 

 

Figure 2.2 Energy levels of MAPbI3, MAPbBr3, various fullerenes, and PBDTTT-CT 
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As shown in Figure 2.2.1a and b, the devices have a reasonably high EQE of around 

60% in MAPbBr3’s absorption spectral range at zero bias. While the EQE in the absorption 

band of 560 nm-750 nm, where only PCBM, C60 or ICTA absorbs, is close to zero. This 

indicates that the photoinduced charge transfer from PCBM, C60 or ICTA to MAPbBr3 is 

negligible, excluding the possibility that band offset exits at MAPbBr3/PCBM, or 

MAPbBr3/ICTA interface. With a gradually increasing external electric field up to 0.8×

105 𝑉/𝑐𝑚  (4 V applied on approximate 500 nm device), the EQE in the MAPbBr3 

absorption band remains unchanged during the whole process, but increases dramatically 

by 4 to 5 times in the PCBM, ICTA or C60  absorption band. We infer that the generated 

excitons in MAPbBr3 have obtained a nearly maximum dissociation efficiency even 

without an external electric field or an energy level offset at the heterogeneous interface. 

However, few excitons generated in PCBM, ICTA or C60 dissociated into free charges to 

contribute to the photocurrent unless a large reverse bias was applied. The reason is that 

the absorbed sunlight in the 560~750 nm wavelength range can yield photocurrent only 

from Frenkel exciton dissociation, since the bandgap of charger transfer excitons (CTEs) 

in fullerene of ≈2.3 eV is too larger.38,39 CTEs are formed by delocalized electrons transfer 

between the fullerene molecules, which is considered to be responsible to the photocurrent 

yield from fullerenes based Schottky junction device.40,41 This result verified the field 

independent exciton dissociation in MAPbBr3 and field dependent exciton dissociation in 

fullerenes, providing another piece of evidence for the non-excitonic nature of MAPbBr3 

despite having larger exciton binding energy than MAPbI3. 
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Figure 2.2.2 EQE spectra of the MAPbBr3 devices with different electron collection 

layers of a) PCBM and b) ICTA under the increasing reverse bias from 0 to −4 V; EQE 

signals between 560 and 700 nm are contributed by fullerenes 

It was observed that the excitons could achieve a maximum dissociation in 

MAPbX3 without any external field or a heterogeneous interface acting on it, while exciton 

dissociation in excitonic materials was strongly field dependent. The results indicate that 

OTP photovoltaic cells should be treated as traditional inorganic thin film photovoltaic 

devices, rather than organic or hybrid ones.  

To summarize, this chapter first presents the optical absorption for OTPs. Then 

introduced the excitonic absorption peak found in wide bandgap OTPs. The topic of the 

excitonic nature of this hybrid material subsequently is discussed by the individual studies 

of the dielectric measurement, ETL dependent open circuit voltage examine, and electric 

filed dependent IPCE measurement. Eventually, it could be concluded that even though 

MAPbBr3 or mixed halide perovskite have relatively large exciton binding energy in excess 

of 80 meV, they still should be treated as nonexcitonic semiconductors. 
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3 Bandgap tunable control of the thin film from fabrication 

process  

3.1 Motivation to study bandgap engineering in OTP thin film fabrication  

Organal-lead trihalide perovskites (OTP) have attracted intense research interest 

recently, not only because the outstanding high power conversion efficiency, but also 

because the tunable bandgap by mixing different ratio of halide (Cl/Br/I). This fantastic 

character enables versatile significant applications of perovskite materials in light emitting 

devices, lasers, photodetectors. Moreover, the tunable wide bandgap perovskites are also 

required in the photovoltaic application considering spectrum broadening with another 

bandgap matching light absorber.42 In this chapter, I will show that OPT compounds are 

very tolerant to stoichiometric adjustment of halide synthesis.  Recent studies on the wide 

bandgap perovskites also concerns the substitution of the organic component from 

methylammonium (MA) to formamidinium (FA), which allows more structural capability 

of different anions.  The bandgap tunability has been found to be the direct result of anion 

substitution in the perovskite structure, which predicts a potential of phase separation with 

the certain stimuli existence, which will be discussed later along with the stability of 

WBOTP. I will also introduce the low temperature fabrication method for wide bandgap 

perovskite thin films, which is a main contribution of this thesis. 

3.2  Bandgap Tuning 

3.2.1 The target bandgap for Si based tandem application 

It is well known that to exceed the Shockley-Queisser limit for the efficiency of 

solar cells, tandem devices with complementary absorption spectra are necessary to 

increase the absorption of sunlight over a wide range of wavelengths while minimizing 
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thermodynamic loss in individual cells. Crystalline-Si (c-Si) technology produces excellent 

single junction solar cells with conversion efficiencies of 24-25%, and have been 

commercialized extensively to produce panels at relatively low costs.9 To produce efficient 

tandem cell with c-Si, WBOPTs have two basic requirements: first it needs to be deposited 

inexpensively on c-Si, and second it must have a bandgap match with c-Si (1.12 eV) in a 

tandem cell, which needs to be tuned a bandgap of 1.72 eV to produce ~20 mA/cm2 short 

circuit current density (JSC) under air mass (AM) 1.5 spectrum, which can potentially 

produce high device efficiency above 30%.43 These requirements can be met by using the 

recently developed organometal trihalide perovskite materials. 

3.2.2 Bandgap engineering by exchanging halide ion in OTPs 

As mentioned before, one of the advantages of hybrid organometal trihalide 

perovskite (OTP) materials for photovoltaic application is its bandgap can be continuously 

tuned between 1.17 eV to 3.11 eV by manipulating the ABX3 components. The main topic 

of my work during my master program involved studying incorporating varied halide (Cl, 

Br and I). However, there are also some recent studies which show that changing organic 

ions might be another way to enlarge bandgap of OTPs or even substituting the organic 

ions (A from ABX3) with metal ions.5,7,11 Snaith et al. recently published work suggesting 

that Cs+ could be used instead of CH3NH3+, thereby potentially eliminating the issues of 

instability which commonly existing in the WBOPTs. However, prior to this finding, the 

bandgap of perovskite was tuned to be 1.72 eV by using lead iodine/bromine (PbI2/PbBr2) 

layers first spun on the indium tin oxide (ITO)/HTM substrate from dimethylformamide 

(DMF) solution, and then CH3NH3Br (MABr); CH3NH3I (MAI) blended precursor 

solution with different blend ratios were spun on the top of the first inorganic layer. 
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Perovskite’s bandgap can be linearly tuned by manipulating the MABr percent in the blend 

precursor solution. Figure 3.2.2 shows the absorption curves of perovskite films fabricated 

in this way, where we can see a continuous blue shift of the absorption cut-off with 

increased Br percent in precursor. 

 

Figure 3.2.2 optical absorption of films grown from varied MABr percent in the MABr: 

MAI blended precursor solution 

 In this chapter, I briefly introduced the methods that are used in the highly 

efficient wide bandgap solar cells. With this mixing halide method, the bandgap could be 

easily tuned with the similar fabrication routine that is utilized in making MAPbI3 thin films, 

which translates to a maintainable and low cost on procedure for industrial levels6. 
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4 Device interface and charge transport layers  

A good device does not only require the delicate control of the quality of each layer, 

but also needs comprehensive engineering of the device interface because it is indicative 

of the whole charge transport dynamics through the device. In the previous chapter, 

perovskite layer fabrication was discussed. Subsequently, the choice of the charge transport 

materials which are compatible with OTPs must be considered. Such material must be able 

to efficiently extract charges thereby reducing the recombination inside the absorber. This 

section summarizes the electron transport layer (ETL) and hole transport layer (HTL) 

materials that I have used in highly efficient WBOTP solar cells in my master program. 

Most of the content in this chapter is extracted from my publication “Stabilized Wide 

Bandgap MAPbBrxI3–x Perovskite by Enhanced Grain Size and Improved Crystallinity” 

4.1 Hole transporting layer 

Generally, HTL materials utilized in WBOTP devices can be small molecules, 

polymers and inorganics, as long as its highest occupied molecular orbital (HOMO) level  

matches to WBOTP`s HOMO. Spiro-OMeTAD is one of the most widely-used small 

molecule HTLs  in both mesoporous and planar perovskite solar cells, however, dopants 

have to be used to in Spiro-OMeTAD due to its low mobility. An improved conductivity 

is achieved by adding dopants in the Spiro-OMeTAD solution before spin coating, 

PEDOT:PSS is another widely used HTM in planner structured devices with a work 

function of 5.0 eV. However, the energy-level misalignment between PEDOT:PSS's work 

function (5.0 eV) and valence band of MAPbI3 (5.46 eV) is assigned to be responsible for 

the lower device VOC. It should be noted that the high work function of HTL does not 

guarantee the large device VOC as the small perovskite grains grown on the wetting HTL 
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lower the VOC through the stronger charge recombination at the grain boundaries as we 

discussed before in 3.3. This is because the energy level of HTL might not limit the Fermi 

energy splitting of the device under illumination.  

In my program, non-wetting HTLs including c-OTPD and PTAA was used to grow 

large aspect ratio perovskite grains. Figure 4.1a shows the I-V curve of an optimized 

MAPbBr0.8I2.2 cell with the device structured with  ITO/ PTAA/ MAPbBrxI3-x/ [6,6]-phenyl 

C61-butyric acid methyl ester (PCBM)/ C60/ 9-dimethyl-4,7-diphenyl-1,10-phenanthroline 

(BCP)/ Al, in which the device parameters can be derived as a Jsc of 15.8 mA/cm2, a Voc of 

1.21 V, a FF of 78%, and the PCE of 15.0%. The negligible hysteresis of the device 

indicates a low trap density of the active layer MAPbBr0.8I2.2 formed by the interdiffusion 

method.44 The selected hole transport layer PTAA is employed in this work, with the initial 

intention to lower the HOMO to -5.20 eV in order to reduce the energy loss.45,46  

Besides of this, we observe that PTAA thin film is hydrophobic to the precursor`s 

solvent DMF, which results a higher contacting angle between perovskite and the substrate. 

According to the solid nucleation mechanism, the Gibbs free energy barrier for nucleation 

(∆𝐺ℎ𝑒𝑡) could be determined by the contacting angle with the relationship: 

 ∆𝐺ℎ𝑒𝑡 = ∆𝐺ℎ𝑜𝑚(2 + 𝑐𝑜𝑠𝜃)(1 − 𝑐𝑜𝑠𝜃)2/4,  (3) 

where ∆𝐺ℎ𝑜𝑚  is homogeneous nucleation energy barrier.47 When 𝜃  approaches 

180°, ∆𝐺ℎ𝑒𝑡 gets maximum, suppressing the nucleation process and nuclei`s population, 

thus large grains could form from less density of nuclei distributed in a same device area.48  
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Figure 4.1 (a) J-V curves for optimized solar cells with various thickness of 

MAPbBr0.8I2.2; (b) Photocurrent measured for 20 min at the maximum power output point 

for the two devices corresponding to (a); (c)Schematic illustration of nucleation and 

growth of grains on wetting and non‐wetting hole transport layer surface and the 

corresponding cross‐section SEM images, for 328 nm thick MAPbBr0.8I2.2 thin film 

grown on a) PTAA, b) 361 nm thick thin film grown on PEDOT:PSS, c) 540 nm thick 

MAPbBr0.8I2.2  thin film grown on PTAA 
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4.2 Electron transporting layer  

Generally, ETL materials utilized in WBOTP devices could be inorganic and 

organic n-type semiconductors. TiO2 is one of widely used ETLs in both mesoporous 

scaffold architecture and compact architecture because it does not react with perovskite 

materials and its high electron mobility which could reduce the recombination in the device 

while working. However, TiO2 could be only produced under high temperature, which also 

requires to the transparent electrode substrate to be high temperature resistance. So indium 

tin oxide (ITO) must be substituted with fluorine-doped tin oxide (FTO), which adds the 

cost of the device. Another well-accepted ETL is fullerene derivatives, which could be 

spun on the top of perovskite layer in a solution under low temperature.16 This structure 

avoids using high temperature to fabricate the mesoporous TiO2 layer as the electron 

transport layer. It was also found that PCBM has an additional passivation effect on grain 

boundaries and surface of the perovskite layer because inserting PCBM was found to be 

responsible for the reduction of the total trap densities and elimination of the photocurrent 

hysteresis.17 Considering that the various energy level of fullerene derivatives would 

impact the electron transferring from MAPbI3-xBrx into them, it is studied different 

fullerene layers including PCBM, indene-C60 tri-adducts (ICTA) and indene-C60 bisadduct 

(ICBA) in the same MAPbI3-x.Brx device configuration. Figure 4.2(a-d) show the J-V 

curves of the devices using different fullerene derivative layers with increasing and 

decreasing bias. The photocurrents were measured at a rate of 0.06 V/min under AM 1.5 

illumination. It was found that both PCBM and ICTA can effectively passivate the 

MAPbI3-xBrx films, resulting a PCE larger than 12.0 %, JSC of 17.0-17.5 mA cm-2 and FF 

of 70.0%, while ICBA or no spun fullerene passivation overall yield a lower PCE with 
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smaller JSC, reduced FF and significantly decreased VOC. Nevertheless, it is noted that only 

PCBM passivated device shows no photocurrent hysteresis when changing the current 

sweep direction (Figure 4.2a), while ICTA sample, though shows the similar PCE, was 

observed hysteresis with lowered JSC and FF. The similar observation was also found in 

the ICBA and the no fullerene samples. The hysteresis observed here may come from the 

insufficient passivation on charge traps in perovskite films.16,17  

 

Figure 4.2  J–V curve of the MAPbI2.4Br0.6 devices with PCBM, ICTA, ICBA, and 

without fullerene derivative passivation, respectively. 

In this chapter, the hole transport materials and electron transport materials that 

could be employed in the inverted planar structure of perovskite solar cells were introduced 

with device performance data presentation. Except from the benefit of all-solution, low 

temperature process, we also found the usage of PCBM as ETL in perovskite solar cells 
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could suppress hysteresis. This does not only enhance our device performance, but also 

reveals a new direction on the passivation study of the OTPs.   
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5 Stability of the MAPbX3 thin films 

5.1 Challenges to apply WBOTPs in tandem devices 

 Intensive effort has been made to integrate WBOTPs into the tandem structure, 

however, the best reported efficiency of this type of tandem cell is still limited by the top 

cell`s stability. The mixed halide perovskite MAPbBrxI3-x was employed in this device as 

the wide bandgap light absorber to match the bandgap of silicon/CIGS, considering its 

continuously tunable bandgap from 1.6 eV to 2.3 eV with the increasing bromide 

incorporation ratio.49-51 However, the application of MAPbBrxI3-x based solar cells has been 

reported to confront with one big challenge of intrinsic photo-instability. The MAPbBrxI3-

x material was shown to be unstable under illumination in the devices with the mesoporous 

scaffold. A phase separated into two phases, one iodine rich phase and one iodine pure 

phase. 52,53 The low bandgap phase thus acts as charge trap, which was hypothesized to 

severely reduce device`s open circuit voltage and PCE.46,54-56 In this section, I will 

introduce a photoexcitation stable MAPbBr0.6I2.4 mixed halide perovskite, which has a 

optical bandgap of 1.72 eV. An increased grain size and an improved crystallinity have 

been identified to be responsible for the enhanced photostability of the MAPbBrxI3-x mixed 

halide perovskite. Most of the content in this chapter is extracted from my publication 

“Stabilized Wide Bandgap MAPbBrxI3–x Perovskite by Enhanced Grain Size and Improved 

Crystallinity” 

5.2 Microstructure of the thin film based on the wettability of the substrate 

According to the comparison of PTAA and PEDOT:PSS as the HTMs served in 

perovskite solar cell in Chapter 4, we found that the device built on PTAA has a very stable 

photocurrent output in a 30-min long period. To determine whether the larger grains and 
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better crystallinity of the films contribute to the high efficiency and the light stability, I did 

another comparison study on the thickness of the WBOTPs. The control for the substrate 

surface energy to the grain growth could only apply the restructuration to the near bottom 

area,57 so it is reasonable to speculate that a thicker polycrystalline film might loss the 

arranged crystallization. This hypothesis is confirmed by the cross-section SEM images. 

In Figure 5.2 (a) the clear and neat grain boundaries go thoroughly from bottom to the top 

in the 320 nm MAPbBr0.8I2.2  thin film. However for the 540 nm MAPbBr0.8I2.2  thin film 

(Figure 5.2 (b)), the randomly chosen cross-section areas are relative ordered in a 3-um 

scale, but contain numerous stacking little grains if looking into.   

 

Figure 5.2 Cross‐section SEM images, (a) for 328 nm MAPbBr0.8I2.2 thin film grown on  

PTAA, (b) for 540 nm MAPbBr0.8I2.2 thin film grown on PTAA 

 

5.3 The influence of WBOTPs microstructure on device performance 

After confirming that the microstructure is also determined by the thickness of 

perovskite thin film, I then built a series of cells based on the certain composition of 

MAPbBr0.8I2.2 with different thickness. The cells` J-V curves are shown in Figure 5.3a with 

an arrow to illustrate the thickness increasing trend, in which the device performance 

derogates with the thickness increasing. Considering the fact that the device structure and 

(a) (b)
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the perovskite composition are the same among this set of cells, we suspect that the worse 

device performance may come from the microstructure dependent photoexcitation phase 

separation in bromide and iodide mixed perovskite. The compositional phase separation 

existence in mixed halide perovskite was also observed by R. H. Friend`s group with a 

study showing that aging of the MAPbBrxI3-x can cause an automatic separation between 

I-rich region and Br-rich region.53 Then M. D. McGehee`s group also reported a similar 

phenomenon of phase separation in the mixed halide perovskite introduced by 

photoexcitation.52 In my study, the MAPbBrxI3-x with the bandgap of 1.72 eV contains 27.5% 

bromide, over the 25%,  which is the upper limitation of Br composition claimed in the 

previous work to stabilize MAPbBrxI3-x material under the light.50,52,53,58 However, these 

studies mostly focus on the MAPbBrxI3-x unfiltered into porous TiO2 scaffold, which 

apparently forms smaller sized grain, comparable to the misconstrue produced in the 540 

nm MAPbBrxI3-x thin film in this study. In this circumstance, we use the MAPbBr0.8I2.2  thin 

films with 320 nm and 530 nm as active layer to compare the misconstrues effect on the 

cell`s photostability. Figure 5.3b shows the photocurrent of these two types of cells at 

maximum power output point (MPOP)  lasting 33 mins. From the results, the cell with the 

better crystallinity MAPbBr0.8I2.2  thin film stays constant photocurrent output during the 

long-period test.  This result does not only give the steady PCE of the stable device, but 

also provide an important information that the planer MAPbBr0.8I2.2  thin film with a larger 

grain microstructure can stay stabilized during a 30-minute long period under AM 1.5G 

illumination. Contractively, the photocurrent curves of the cells with 540 nm and 480nm 

MAPbBr0.8I2.2  layer in Figure 5.3d drop dramatically at first, then are both prone to level 

off to a certain value around 6 mA/cm2 after 10 min exposure to light.  
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Figure 5.3 (a) Normalized optical absorption spectrum of various thickness of 

MAPbBr0.8I2.2; (b) J-V curves for optimized solar cells with various thickness of 

MAPbBr0.8I2.2 (c) EQE spectra before (square) and after (circle) AM 1.5 G illumination 

for 20 mins for the MAPbBr0.8I2.2 cells with 320 nm (orange) and 540 nm (black) 

MAPbBr0.8I2.2 film layers; (d) Photocurrent measured for 20 min at the maximum power 

output point for the three devices with different thickness 

5.4 Phase separation in mixed halide WBOTPs 

5.4.1 Phase separation observation in EQE measurement of the WBOTP device 

It is inferred from the EQE spectrum in Figure 5.3c that a new phase with a certain 

composition arises gradually after the 10-min exposure to light for the small grain-sized 

MAPbBr0.8I2.2. To find out what is the new phase, it is compared the EQE spectrum between 
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the light stable cells and the unstable cells under the circumstances of pre-illumination and 

post-illumination respectively, shown in Figure 5.3c. For the light stable device with 320 

nm MAPbBr0.8I2.2, little deviation in EQE profiles between pre illumination and post 

illumination is presented; while for the unstable device with 540 nm MAPbBr0.8I2.2, the 

EQE degradation is observed after the device was exposed to a similar time of period with 

to steady photocurrent output test, which agrees with the photocurrent drop in Figure 5.3d. 

One remarkable point in the unstable cell`s EQE profile (black curve) is that there is a 

protuberance at the tail of EQE (700nm to 720nm) emerging after the exposure to 

illumination, and the slope of EQE cutoff for post illumination also decreases from -0. 25 

nm-1 to -0.29 nm-1. This is anotehr piece of evidence that the active layer of the unstable 

device become phase separated with the formation of a new I- rich phase,59 which 

contributes the photocurrent output after 700 nm wavelength. In this set of data, the 

photocurrent decreases more at the short wavelength (350 nm- 550 nm) than the longer 

wavelength, which indicates the phase separation might occur at the surface to the incident 

light, where the PTAA and perovskite interface locates. PCBM on the other side of 

perovskite could passivate the grain boundaries44,60 which suppresses the halide ion 

movement among grains for small-range phase separation. Consequently, the new phase 

formation introduces traps that limits the photogenerated charge transport and collection. 

5.4.2 Phase separation observation in other measurements of the WBOTP thin 

films 

The studies above are based on the device performance evolution with the light 

exposure, which might be decided by the other plausible factors, including the charge 

recombination, charge diffusion length difference on the MAPbBr0.8I2.2 microstructure. To 
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increase the confidence of the conclusion, I investigated the light stability on the naked 

MAPbBr0.8I2.2 thin film. First, I took the X-ray diffraction measurement for the stable 

MAPbBr0.8I2.2  thin film (320nm), and unstable MAPbBr0.8I2.2 thin film (540nm). Figure 

5.4.2a compares the XRD pattern with normalized intensity for the stable MAPbBr0.8I2.2  

thin film sample pre-illumination (black) and post-illumination (red); And the same 

comparison for the unstable counterpart. Within the range of 2theta from 10 degree to 45 

degree, we can easily identify the characteristic peaks to cubic Pm-3m group (100), (110), 

(111), (200), (210) in order, inferring the bravais lattice has already transformed to cubic 

rather than tetragonal by introducing small amount of bromide.  

Comparing XRD pattern of the stable MAPbBr0.8I2.2 thin film and the unstable one 

before illumination, the peaks` position are identical, which agrees with our earlier claim 

that the composition does not change with the microstructure of MAPbBr0.8I2.2 

polycrystalline. However, there are more peaks showing up in the XRD pattern for the 

unstable MAPbBr0.8I2.2 than the stable one. Besides, the ratio of (100) peak intensity to 

other peaks intensity is also higher for the stable MAPbBr0.8I2.2. These results suggest that 

the stable MAPbBr0.8I2.2 polycrystalline thin film is better oriented than the unstable one, 

which confirms the microstructure difference between these two compositional identical 

thin films. The randomly oriented MAPbBr0.8I2.2 contains more incoherent and semi 

coherent grain boundaries, resulting more lattice strain, thus would enhance the halide 

migration to assist the phase segregation. By looking into the (200) peak pre and post 

illumination for the stable MAPbBr0.8I2.2 (Figure 5.4.2b) and the unstable MAPbBr0.8I2.2 

(Figure 5.4.2c), we clearly observed a peak breath for the unstable MAPbBr0.8I2.2 after 

exposure to 3-sun intensity 532nm laser beam for 20 mins. Gaussian fitting is applied to 
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the post-illumination peak (Figure 5.4.2d), from which we can see a small new born peak 

emerging at 2theta=28.5, where is the (200) peak position for 20% bromide perovskite 

MAPbBr0.6I2.4. This certain composition might be the lowest Gibbs free energy of the alloy, 

which drives this phase formed automatically with photoexcitation. To exclude the 

plausible fact that the peak splitting comes from the perovskite decomposition, we put our 

sample in the dark environment for 2 hours and find the peak splitting can be reversed 

which is consistent to the former results.52 The photostability of the MAPbBr0.8I2.2 is also 

supported by the time-evolved photoluminescence (PL) measurement on the naked 

perovskite shown in Figure 5.4.2e and 5.4.2f. During the 30-minute in-situ observation 

with 10-sec interval PL collection, it is clear that a lower bandgap phase gradually appears 

after around 10 mins in Figure 5.4.2e, which is the PL for the unstable MAPbBr0.8I2.2.  
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Figure 5.4.2 (a) XRD pattern for MAPbBr0.8I2.2 with different perovskite film thickness. 

b) The (200) XRD peak pre- (black) and post- (red) illumination for the stable 

MAPbBr0.8I2.2 thin film (340 nm). c) The (200) peak before (black) and after (red) 

exposure to illumination and after recovery (blue) in the dark for 2 hours for the 540 nm 

MAPbBr0.8I2.2 film; d) the Gaussian fitting (red) for (200) peak of the 540 nm 

MAPbBr0.8I2.film after illumination. e–f) PL spectra with an interval of 10 sec for e) the 

320 nm MAPbBr0.8I2.2 film, and f) the 540 nm MAPbBr0.8I2.2 film, measured during 

illumination of the films under one-sun-intensity 532 nm laser; 

To summary, the microstructure of MAPbBr0.8I2.2  is demonstrated to be crucial to 

achieve the stable wide bandgap perovskite solar cells.47 This explains why the previous 

large bandgap MAPbBrxI3-x built on mesoporous scaffold device could not be stable. This 

work further confirms the potential of planer MAPbBrxI3-x thin film in the tandem solar 

cell`s application. Further studies on the role of the grain boundary`s area and grain 

orientation in phase separation of mixed halide perovskites may contribute to a deeper 

understanding in this topic. 

  



35 

 

6 Summary and outlook 

To conclude, this thesis demonstrates that bromine-based perovskites exhibits a 

nonexcitonic nature based on the disparate results from the field dependent EQE of 

perovskite and excitonic semiconductors. It is further concluded that even though 

MAPbBr3 (or mixed halide perovskite) have relatively large exciton binding energy in 

excess of 80 meV, it should still be treated as a nonexcitonic semiconductor. The 

nonexcitonic nature of metal halide perovskites enables an efficient free charge generation, 

which explains the outstanding performance of perovskite solar cells. A high performance 

perovskite photovoltaic device with 1.72 eV bandgap was developed for Si/perovskite 

tandem solar cell by a low temperature solution process. Hybrid halide was used to enlarge 

the bandgap by controlling the incorporation of Br into perovskite to obtain 1.72 eV 

bandgap which was optimized to produce an efficient Si/perovskite tandem solar cell.. 

Solvent annealing was used to grow large grains, which significantly reduced charge 

recombination and improved device performance. PCBM passivation was found necessary 

to achieve the optimized device.  

The photostability of the wide-bandgap MAPbBr0.8I2.2 devices were demonstrated 

with a steady photo current output at the maximum power output point over 30 minutes 

under one sun illumination. Microstructure differences between the photo-stable and 

photo-unstable devices were presented by the cross-section SEM images of the 

MAPbBr0.6I2.4 active layer showing: the spatial homogeneous polycrystalline with large 

sized grains and the stacking layered polycrystalline with small sized grains, respectively. 

The PL and EQE spectral change, accompanied with XRD pattern comparison between the 

MAPbBr0.8I2.2 thin films with two different microstructures, indicate the enhanced 
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crystallinity and grain size are favorable to retain the homogeneous phase for the mixed 

halide perovskite during the photoexcitation, thus maintain a stable photocurrent output 

under the device working condition.  

In the previous four chapters, I systematically summarized my work concerning the 

WBOTPs in my Master program. Although some of the results answered the fundamental 

questions such as the excitonic properties of WBOTPs, the stabilities of WBOTPs, there 

are still numerous areas to be explored as future work: 

 First, there is still no exact phase diagram for the bromide and iodide mixed halide 

perovskite to direct people form phase stable alloys. This is challenging because WBOTPs 

are organo-inorganic hybrid materials which are difficult to identify the exact components. 

It is still to be determined if this material has a eutectic point.  

Second, in the planar structure, it is hard to form uniform pin hole free WBOTPs to 

guarantee a high yield of working device without current leakage, though fullerene 

derivatives might be better or cheaper option in this structure. 

Third, if we want to continue to enlarge the bandgap of mixed halide perovskite 

beyond 1.72 V, no effective fabrication process has been determined preserve the stability 

of the material under long term light exposure. This needs to be further studied in 

combination with exploring if a phase diagram of this alloy can be determined6. 
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