
University of Nebraska - Lincoln
DigitalCommons@University of Nebraska - Lincoln
Theses, Dissertations, and Student Research from
Electrical & Computer Engineering Electrical & Computer Engineering, Department of

Summer 5-16-2018

Design of A Distributed Real-time E-Health Cyber
Ecosystem with Collective Actions: Diagnosis,
Dynamic Queueing, and Decision Making
Yanlin Zhou
University of Nebraska - Lincoln, yanlin.zhou@huskers.unl.edu

Follow this and additional works at: https://digitalcommons.unl.edu/elecengtheses

Part of the Biomedical Devices and Instrumentation Commons, Cardiovascular Diseases
Commons, Computational Engineering Commons, Computer Engineering Commons, Controls
and Control Theory Commons, Diagnosis Commons, Industrial Engineering Commons, Other
Electrical and Computer Engineering Commons, and the Risk Analysis Commons

This Article is brought to you for free and open access by the Electrical & Computer Engineering, Department of at DigitalCommons@University of
Nebraska - Lincoln. It has been accepted for inclusion in Theses, Dissertations, and Student Research from Electrical & Computer Engineering by an
authorized administrator of DigitalCommons@University of Nebraska - Lincoln.

Zhou, Yanlin, "Design of A Distributed Real-time E-Health Cyber Ecosystem with Collective Actions: Diagnosis, Dynamic Queueing,
and Decision Making" (2018). Theses, Dissertations, and Student Research from Electrical & Computer Engineering. 94.
https://digitalcommons.unl.edu/elecengtheses/94

https://digitalcommons.unl.edu?utm_source=digitalcommons.unl.edu%2Felecengtheses%2F94&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.unl.edu/elecengtheses?utm_source=digitalcommons.unl.edu%2Felecengtheses%2F94&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.unl.edu/elecengtheses?utm_source=digitalcommons.unl.edu%2Felecengtheses%2F94&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.unl.edu/electricalengineering?utm_source=digitalcommons.unl.edu%2Felecengtheses%2F94&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.unl.edu/elecengtheses?utm_source=digitalcommons.unl.edu%2Felecengtheses%2F94&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/235?utm_source=digitalcommons.unl.edu%2Felecengtheses%2F94&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/929?utm_source=digitalcommons.unl.edu%2Felecengtheses%2F94&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/929?utm_source=digitalcommons.unl.edu%2Felecengtheses%2F94&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/311?utm_source=digitalcommons.unl.edu%2Felecengtheses%2F94&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=digitalcommons.unl.edu%2Felecengtheses%2F94&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/269?utm_source=digitalcommons.unl.edu%2Felecengtheses%2F94&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/269?utm_source=digitalcommons.unl.edu%2Felecengtheses%2F94&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/945?utm_source=digitalcommons.unl.edu%2Felecengtheses%2F94&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/307?utm_source=digitalcommons.unl.edu%2Felecengtheses%2F94&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/278?utm_source=digitalcommons.unl.edu%2Felecengtheses%2F94&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/278?utm_source=digitalcommons.unl.edu%2Felecengtheses%2F94&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1199?utm_source=digitalcommons.unl.edu%2Felecengtheses%2F94&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.unl.edu/elecengtheses/94?utm_source=digitalcommons.unl.edu%2Felecengtheses%2F94&utm_medium=PDF&utm_campaign=PDFCoverPages


DESIGN OF A DISTRIBUTED REAL-TIME E-HEALTH CYBER ECOSYSTEM

WITH COLLECTIVE ACTIONS:

DIAGNOSIS, DYNAMIC QUEUEING, AND DECISION MAKING

by

Yanlin Zhou

A THESIS

Presented to the Faculty of

The Graduate College at the University of Nebraska

In Partial Fulfilment of Requirements

For the Degree of Master of Science

Major: Electrical Engineering

Under the Supervision of Professor Qing Hui

Lincoln, Nebraska

May, 2018



DESIGN OF A DISTRIBUTED REAL-TIME E-HEALTH CYBER ECOSYSTEM

WITH COLLECTIVE ACTIONS:

DIAGNOSIS, DYNAMIC QUEUEING, AND DECISION MAKING

Yanlin Zhou, M.S.

University of Nebraska, 2018

Adviser: Qing Hui

In this thesis, we develop a framework for E-health Cyber Ecosystems, and

look into different involved actors. The three interested parties in the ecosystem

including patients, doctors, and healthcare providers are discussed in 3 different

phases. In Phase 1, machine-learning based modeling and simulation analysis

is performed to remotely predict a patient’s risk level of having heart diseases

in real time. In Phase 2, an online dynamic queueing model is devised to pair

doctors with patients having high risk levels (diagnosed in Phase 1) to confirm

the risk, and provide help. In Phase 3, a decision making paradigm is proposed

to help regional healthcare providers to logistically rearrange regional medical

resources. Therefore, this thesis provides an end-to-end solution on: Health Risk

Identification, Risk Level Confirmation, and Regional Health Alert Level Decision

Support.
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Chapter 1

Introduction

The E-health system is receiving growing interest from healthcare ecosystem partic-

ipants as to its immense help in real-time life-critical issues, but a comprehensive

solution is yet to exist. This work develops a framework that emphasizes on

three most important parties of an E-health Cyber Ecosystem: patients, doctors, and

healthcare providers. This model coordinates three most important phases of

an ecosystem: health diagnosis, dynamic online queueing for risk confirmation,

and decision making on regional healthcare alert level and provides a complete

end-to-end solution.

The Phase 1 is described as Health Risk Identification which focuses on health

surveillance instantaneous awareness. The threshold problem of real-time disease

diagnosis is to assess the risk automatically with an accurate model. A machine

learning approach is adopted here to analyze a heart disease dataset provided by

University of California, Irvine and classify the risk level (from 0 to 4) of a patient

having heart disease. The model developed in this thesis reports an average of

10% increased prediction accuracy compared to other work. The identified risk

level information offers decision support for both Phase 2 and Phase 3.

As the risk level increases, the Phase 2 is named Risk Level Confirmation

provided by online doctors and caregivers in the health cyber ecosystem. Since the
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misclassified errors by machine-learning techniques do exist in the classification

model of Phase 1, vital parameters of patients with higher levels, for example

level 2 and 3, should be checked remotely by the online doctors/caregivers. Note

that a level 4 triggers an ambulance request immediately. Due to the nature of

unbalanced patient/physician ratio (>> 1), it is usually the case that a patient’s

data cannot be viewed immediately if his/her risk level outbreaks. To address

the challenge of providing an online queueing model and minimizing the waiting

time, a dynamic queueing model is proposed with three common arrival patterns

for online customer arrival rates: Poisson, Normal, and Multimodal distribution.

The model achieves satisfactory upper bound and steady server utilization rate for

all three cases.

The most imperative feature required by all healthcare providers is the Decision

Making Support guided by Regional Health Alert Level Analysis. It is usually

the case that the amount of medical resource supply such as: drugs, blood bags,

equipment or even doctors, does not match the regional need. The ultimate

decision made by a regional healthcare provider can be considered as a two-

alternative forced choice: either requests from or dispatches to other regions,

the medical resources. A novel collective decision making scheme using Spiking

Neural Network (SNN) is proposed here to analyze the overall regional health

alert level. In this model, each patient is considered as a single neuron in a

SNN, where the optimal match between alert levels and resources is described by

self-organized criticality behavior, while super-critical and sub-critical represents

unbalanced patient-to-resource ratios. Both analytically and experimentally, the

Boltzmann-Machine guided absorbing region provides a decision support for

healthcare providers.

Therefore, this thesis successfully addresses three important research objectives
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in E-health Cyber Ecosystem, including: Health Risk Identification, Risk Level

Confirmation, and Regional Health Alert Level Decision Support. Assumptions

and justifications will be made throughout this work due to the limited and

confidential datasets.
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Chapter 2

Background and Related Work

In the Introduction chapter, a framework comprises of three different phases is

introduced in a very general view. This chapter gives a detailed explanation

of: how the problem is defined; what are the related work; and how does this

thesis patch all the missing links. The technical details will be covered in later

corresponding chapters.

Cardiovascular disease (CVD) and the accompanying sequelae including angina,

arrhythmias, and heart failure have become the leading cause of death in United

States and the leading cause of death worldwide. In 2016, CVD is responsible for

approximately 800,000 death in United States [48]. It is only more heart breaking

to realize that one out of three deaths is caused by CVD, and about an average

of one person dies from CVD every 40 seconds. Currently, more than 90 million

Americans are diagnosed with CVD and their lives could be in danger if not

treated properly and timely.

This work provides an end-to-end solution to: monitor patients’ vital signs;

predict the risk of having heart disease remotely and automatically; queue with

doctors; reconfirm the high risk readings; and eventually provide decision support

for all involved parties in ecosystem – patients, doctors, and regional healthcare

providers.
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2.1 Health Risk Identification

Heart disease has been a major threat to public health for decades. It is shown in

the work of Eikendal et al. [21] as well as other reports [31, 23, 68, 46] that the most

imperative action needed to prevent the death from heat disease is to perform

the routine measurement on the vital signs, understand the warning sign and

symptoms of a heart disease, and assess the risk level of the patients. Although

there exits multiple companies that are currently working on wearable devices that

track the vital signs, very few work has been done in modeling and simulation

of online medical diagnosis to accurately describe the relationship between vital

signs and risk level, as well as the sophisticated follow up service provided by

doctors and healthcare providers.

The existing research methods focus largely on the relation between cardiovas-

cular risk factors and health condition in an extended time frame. For instance,

Fiorini et al [23] have proposed a personalized medical system that supports senior

residences presenting chronic disease with reminders, which applies cyber-physical

systems through a hybrid robot-cloud approach. Zhang et al [68] have focused

on user-centric assistive cloud and big data that gathers information of patients

and make these vital signs available for both users and physicians. Other work on

related topics have studied either on monitoring [31] or data collection [54]. There,

we have identified a gap in knowledge between the state-of-the-art research and

the actual need of a monitoring system, that is to make decisions accordingly to

analyze the severity of patients’ condition and initiate different actions such as pill

reminders, ambulance requests, etc.

While these mentioned researches are all interesting and insightful, the current

solutions only provide basic level of diagnosis, straight forward “If this, then
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that” (IFTTT) softwares, or models that focus on monitoring and data collection

mainly. However, in a E-health Cyber Ecosystem, models should make great use

of automation nature of cyber systems and run real-time diagnosis, physician

support and regional logistic management to surpass the traditional healthcare

system. Therefore, the goal of the model in Phase 1 is to accurately describe the

relationship between vital signs and risk level of having a heart disease, using

machine-learning techniques.

The work in Phase 1 would leverage the existing wearable vital sign collection

products (i.e. Cova necklace) to save the nursing costs as well as to provide a

preliminary medical decision support. In contrast to the existing straight forward

heart disease anomaly detection in boundary approaches [68], this work compares

several complex classifiers with machine-learning techniques, and in a degree

provides decision support for all the ecosystem participants: patients themselves,

doctors, caregivers, and healthcare providers. Note that, this risk level information

is also used by Phase 2 to arrange the patients’ priority in the queues and by Phase

3 to analyze the regional health alert level.

Technically, the goal of the Phase 1 in this thesis, to be specific, is to determine

the risk level of a patient having heart disease based on six machine learning

approaches – baseline classifier, Bayesian classifier, decision tree, nearest neighbor,

support vector machine, and neural network. A heart disease medical dataset,

collected from real patients, published by the University of California, Irvine is

used. However, this dataset contains 76 attributes and it is important to select the

most contributing attributes to speed up the diagnosis process and to improve the

accuracy. Therefore, both supervised (using information gain, which is a measure

of information) and non-supervised methods (using principal component analysis,

which is a dimension reduction technique) are used in attribute selection step.
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Since all the data are labeled with five risk levels, from 0 to 4, it is convenient to

evaluate the accuracy of the proposed techniques. Note that, although this thesis

only focuses on the automated heart disease diagnosis, this framework can always

be expanded and transferred to work on other deadly diseases that require routine

vital sign measurements, such as: Chronic Lower Respiratory Disease, Stroke,

Diabetes, Pneumonia and Kidney Disease [48].

2.2 Risk Level Confirmation

The machine-learning based model in Phase 1 gives accurate diagnosis of patients’

risk levels, but the performance is not perfectly accurate (i.e. accuracy < 100%).

Nevertheless, this work has achieved very high precision and recall rates compared

to other work, which will be discussed in a later chapter. Due to the classification

errors in this model, the vital parameters of patients who are identified with

high risk levels should be checked again online by trained caregivers or real

doctors. Note that this assumption would not result in massive amount of online

confirmation requests for doctors, since a large portion of patients usually carry

risk levels of 0 and 1.

The above described process is the Phase 2 of the whole thesis: online dynamic

queueing analysis. As explained earlier, the doctors/caregivers are one of three

most important parties in the E-health cyber ecosystems. It should be pointed

out that this differs a little from the conventional queueing models in hospitals

because this framework mainly deals with the interactions in cyber space. That

being said, the online queueing model here is used to assign a doctor to check

on patients’ real-time vital signs, and reconfirm the risk level. To eliminate the

ambiguity and for simplicity purpose, we call the distribution of reconfirmation
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requests to be: patient arrival distribution.

In this work, risk levels of 0 and 1 will not be sent to doctors, and only patients

that are diagnosed with risk levels of 2 and 3 would be queued with a doctor.

Further, we assume that a level 3 risk should receive the higher privilege in the

queueing model.

Due to the nature of the imbalanced ratio of patients/doctors, which is usually

(>> 1), and the highly dynamic process of the cyber arrival rate of confirmation

requests for an online doctor’s end, a dynamic queueing model is needed to

mitigate the problem and to ensure that each patient’s data will be checked on

time. Also, the extreme cases such as bulk arrival and zero request can happen so

a dynamic queueing model is needed to efficiently use the manpower of doctor

resource. To be specific, the utilization ratio, a term to express the stability of a

queue, is kept at a satisfactory level by adding or subtracting the number of online

doctors.

Studies [30, 65] have shown that scheduling systems can be described by models

of fluid dynamics, which opens a new approach to model states and processes

of e-health cyber ecosystems in a mathematical and physical sense, considering

sequences of processes as laminar, turbulent or chaotic flows. However, unlike a

traditional queueing model for a hospital that all the processes are well scheduled

(usually described by laminar sequences of processes), an online queueing model

is unpredictable (thus usually turbulent and chaotic). To author’s best knowledge,

there is no published work on this topic about using the idea of turbulent flow to

model a dynamic queueing system, and therefore, this work is the first of its kind.

Moreover, let’s go over some state-of-the-art queueing models. A multiserver

that randomly opens an extra server is proposed in the work of Brunell and Wit-

tevrongel [12]. A detailed analysis is given to illustrate the system performance
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with two servers instead of one in random periods. A simulation model for gener-

ating flow of passengers is developed in [39] by Artur and Tomasz. They described

this queueing process as an optimization problem that the required number of

stations is calculated based on the maximum customer queue size. However,

the different dynamics of passengers’ arrival distribution are not discussed thus

suggests the missing knowledge.

Therefore, the goal of the second phase is to close the gap among the state-

of-the-art planning schemes and bring the top down to the focus of a dynamic

queueing model describing the cyber queueing process. The expected performance

is to guarantee a reliable, punctual and efficient reconfirmation for high risk

patients through a robust management of doctors’ duty table, and later generalize

from the bottom up to apply the model to other processes as well.

2.3 Regional Health Alert Level Decision Support

The last party in this e-health cyber ecosystem framework is the healthcare

providers. Traditional healthcare providers can refer to the following individ-

uals: Hospitals, Nursing Homes, Home health agencies, Dialysis facilities, Inpa-

tient Rehabilitation Facilities, Hospice Agencies, etc. However, this work focuses

on a higher point of view and provide decision support for regional healthcare

organizations. The National Association of The Strategic Regional Healthcare

Organizations (SRHO) is an example of this regional healthcare providers on

which this framework studies.

Despite of the increasing emergence of these collaborative organizations, SRHO

and other big groups are currently only looking to achieve economies goals to

take role in population health initiatives. This is due to the lack of an E-health
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Cyber Ecosystem [53] that provides members with shared data, shared resource,

and regional status and needs. However, in the work of Plaza et al. as of January

2018, there is yet to exist a distributed decision support model in this field[53].

Let’s look at an example when this decision support will be needed. Say

we have a regional healthcare organization in Omaha, Nebraska and another

regional healthcare organization in Kansas City, Missouri. Assume that sadly

in this ecosystems, there are 50 patients diagnosed with high risk levels during

April in Omaha, and sadly for the same month the number is 700 for Kansas City.

However, assume that the medical resources in Kansas City in April cannot afford

to potentially treat such a large number of patients. Let’s also assume that both

regional healthcare organizations can provide the same amount in drugs, blood

bags, equipment and cardiologists in town that can only offer proper treatment for

up to 600 people. In this case, since the risk level of the whole Kansas City Region

is higher than Omaha Region, it is wise to dispatch the medical resources from

Omaha to Kansas City to prepare for the potential treatment need in May.

However, due to the lack of the description of E-health Cyber Ecosystem, as

well as the scarce attention in this field, the distributed decision math model is

currently non-existing. Therefore, the goal of the third phase in this thesis is

to provide an ultimate decision support for healthcare organizations to make a

two-alternative choice: either requests from or dispatches to other regions, the

medical resources. Note that this framework is a free-response model, so when

decisions are not given, it means that a neural decision is implied. This framework

should better prepare healthcare providers to succeed in population health care

delivery.
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2.4 Contributions in a Glance

With the above background introduction and literature review, here we list some

most important contributions of this thesis.

For Phase 1: Health Risk Identification via Machine Learning

1. Attribute selection using supervised (information gain and entropy) and

non-supervised methods (principal component analysis) for assessing the

heart risk;

2. A decision-making model for different level of risks and it is reported with

six different classifier models.

For Phase 2: Online Queueing for Risk Level Confirmation

1. A dynamic queueing model for E-health Cyber Ecosystem that changes the

number of servers automatically;

2. Identify the characteristic number that can be used to correlate the laminar

and turbulent flow processes;

3. Test Poisson, Normal, and Multimodal patient arrival distributions as inputs

to this model.

For Phase 3: Decision Making on Regional Healthcare Alert Level

1. To the best of the authors’ knowledge, this thesis is the first published work

on modeling decision-making processes with the SOC property;

2. A collective decision making model, i.e., EDM, is proposed to implement the

DDM methodology on EIF spiking neurons;
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3. A probability inference scheme on EIF sampling is proposed, which extends

an existing leaky integrate-and-fire sampling method;

4. Mean field analysis of the connectivity of EDM is given, which exhibits global

criticality;

5. A detailed analysis is given to reveal SOC behavior of the EDM model under

criticality conditions.
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Chapter 3

Health Risk Identification

Phase 1: Health Risk Identification via Machine Learning

3.1 Technical Overview

This project aims to provide modeling and simulation analysis to perform a routine

check on vital signs of patients and automatically make appropriate decisions.

More specifically, we envisage to model medical readings (such as blood pressure

and respiratory rate that can be directly retrieved by devices like Cova necklace,

while blood sugar can be measured with the help of a blood sugar measuring app)

in real time. Then, the model performs an analysis to assess the risk of a patient

having heart diseases using machine learning approach. The risk level information

will be prioritized in Phase 2 and physicians will be notified if necessary. Also,

a detailed analysis can be performed by cloud computing system and provide

decision support for Phase 3.

3.2 Technical Explanation

This chapter proposes a novel modeling and simulation environment to assess the

risk of a patient having heart diseases. This model comprises three parts, real-time
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data collection, both online and offline data analysis, and real-time risk level

prediction. The data collection is performed by routinely check on vital signs of

patients, which can be done by commercial products such as Cova necklace. Then,

the pre-recorded information (i.e., age, sex, smoke, etc.) are compared against a

pre-trained machine learning model. Finally, the current condition of the patient is

classified into 5 groups ranging from no-risk to high-risk.

As mentioned in a previous chapter, there are 2 contributions of this work, first

in attribute selection process and the second in comparing the different machine

learning approaches. In attribute selection step, both supervised (using information

gain, which is a measure of information) and non-supervised methods (using

principal component analysis, which is a dimensionality reduction technique)

are introduced to filter out the least contributing attributes for assessing the

presence of heart disease. Secondly, six different machine-learning techniques

– baseline classifier, Bayesian classifier, decision tree, nearest neighbor, support

vector machine, and neural network are compared. Overall, the developed model

achieved an average of 10% increased prediction accuracy compared to other work;

and the decision tree and support vector machine methods are the most accurate

ones.

Here we have the following assumption for data-collection step:

Assumption 1. The patients’ vital parameters can be collected remotely through non-

medical purpose devices (i.e., Apple Watch), Medical portable devices (i.e., Cova Necklace),

and Implantable medical devices (i.e., implantable cardioverter-defibrillator). All the data

are collected in real-time.
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3.2.1 Dataset

The Hungarian medical dataset provided by the University of California, Irvine

(available at the following link: http://archive.ics.uci.edu/ml/datasets/heart+Disease) is

used throughout Phase 1. This database contains 76 attributes and 294 patients’

real data in total, but all published experiments refer to using smaller subsets, i.e.,

around 14 in all publications [2].

The class dirtibution of Hungarian dataset is as follow:

1. Class 0→ 188

2. Class 1→ 37

3. Class 2→ 26

4. Class 3→ 28

5. Class 4→ 15

Here, we are more interested in the presence of chest pain type so we focusing

on predicting the attribute 9 in the dataset: chest pain type. The chest pain types

of the dataset are as follows:

1. Value 1: typical angina 11 instances

2. Value 2: atypical angina 106 instances

3. Value 3: non-angina pain 54 instances

4. Value 4: asymptomatic 123 instances

Note that the data is not very evenly distributed, and we will discuss how does

this affect our results in Section 3.3.
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In fact, Hungarian Dataset have attracted many data Mining researchers as

it is publicly available since 1990s. For example, Aha and Kibler [2] proposed

an instance-based algorithm and achieved 77% and 74.8% of accuracy with their

own modified models NTgrowth and C4.5 techniques. Detrano et al. [19] fully

examined the dataset and concluded that patients with chest pain and transitional

diseases are the higher risk subjects. Gennari et al. [25] developed a clustering

algorithm and achieved an higher accuracy of 78.9%. Edmonds [20] devised

structured distributed learning algorithm to make the prediction and compared

with the global evolutionary computation approach. Interestingly, performance of

the above work depends largely on the attribute selection, which encourages the

first step of machine-learning in Phase 1.

Recently, researchers have started to apply computational intelligence methods

to Hungarian dataset, including machine learning and statistical data mining

techniques [50]. Note that the following papers have all followed the rule of using

14 carefully picked attributes in the work of Aha [2]. These 14 attributes are: age,

sex, pain type, resting blood pressure, serum cholestoral, fasting blood sugar, rest-

ing electrocardiographic results, maximum heart rate achieved, exercise induced

angina, ST depression induced by exercise relative to rest, the slope of the peak

exercise ST segment, number of major vessels (0-3) colored by flourosopy, heart

rate level and diagnosis of heart disease (angiographic disease status). Interested

readers should refer to [2] for further information. Nahar et al. closely worked with

medical experts and developed judgment-based-feature selection process. They

proposed to used medical knowledge driven learning to achieve the good results.

Moreover, popular algorithms such as Naive Bayes, SMO, IBK, AdaBoostM1, J48,

PART have been applied on these 14 attributes. Dangi et al. [17] envisaged a range

for the expected statues of the heart disease ranging from 0 to 4 and provided
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different probability distribution for each. Other often used machine learning

techniques are KNN (kth Nearest Neighbors), Naive Bayes, logistic regression,

Neural network, SVM (Support Vector Machine), GBM (Generalized Boosted Re-

gression Model), LDA (Linear Discriminant Analysis), PCA (Principle Component

Analysis), Multinomial Regression, Random Forest, etc. The average accuracy of

the mentioned work are between 74% and 79%. In this work, we report the 10%

increased accuracy.

3.2.2 Preliminary analysis

The preliminary data pre-processing is performed to examine the complexity of the

data, as well as to determine which classifier works the best for this dataset. This

is needed because different machine learning algorithms have entirely different

performance on different datasets. In this step, five different classifiers are applied:

1. Baseline classifier that provides a baseline performance benchmark for other

classifiers. This method simply outputs the majority class.

2. Bayesian classifier is a probabilistic model that the classification of variables

are probabilistically related to each other.

3. Decision tree that assumes tree-structured branched decisions for classifica-

tion.

4. Nearest neighbor that compares the features of neighbors and predicts the

output.

5. Support vector machine that draws a separation line in hyperplane and

maximize the projection margin while minor outliers can be ignored.
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Note that these are commonly used classifiers, interested readers can refer to

popular massive open online courses such as the one provided by Google:

(https://developers.google.com/machine-learning/crash-course/ml-intro).

Note that, the 50%|50% rule is used where half of the dataset is used for training

and the other half for testing. The results are shown in Table 3.1, performed by

using WEKA - a machine learning software [26]. In fact, WEKA is used in a large

amount of publications [50]. It is clearly shown that the data is almost evenly

separated with 42.9% correctly classified patients in baseline benchmark. Also,

both decision tree and support vector machine techniques perform much better

than the rest, thus we keep using these two methods for the very next section.

Table 3.1: PRELIMINARY ANALYSIS

Classifier name Correctly
classified (%)

Incorrectly
classified (%) Precision (%) Recall (%)

Baseline classifier 42.9 57.1 18.4 42.9
Bayesian classifier 72.1 27.9 70.6 72.1
Decision tree 87.1 13.0 85.7 87.1
Nearest neighbor 64.6 35.4 70.0 64.6
Support Vector 81.0 19.0 77.4 81.0

3.2.3 Attribute selection

After the preliminary analysis, the very next step is similar to the publications

mentioned in Section 3.2.1. However, here we choose our own attributes instead

of using the commonly used 14 attributes as in [2]. The main two purposes of

this step is to: 1) Speed up the classification process; and 2) Remove the less

contributing attributes.

Since the author has no medical domain expertise or active collaborations with

cardiologists, here we use supervised and non-supervised attribute selection.
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3.2.3.1 Supervised

Here, the Information gain and Entropy [17] techniques are used, because we know

the output labels for each instance and can rank the importance. The output class

is provided as a part of the dataset and is divided into 5 categories: from 0 (no

risk) to 4 (high risk).

The the entropy of dataset is calculated by the mentioned technique using

Equation 3.1. We firstly remove two useless attributes: name and ID, and determine

how much of each of the rest attribute contributes to the classification.

The Entropy is given in Equation 3.1.

−
n

∑
i=1

P(xi) logb P(xi) (3.1)

where n is the number of total attributes, 74; P is the probability distribution of a

certain feature attribute that is calculated over all the n attributes.

The second technique is called the information gain which ranks the rest 74

attributes according to their importance while at classification. Thus we have the

following equation:

IGi = Ei
d − Ei

a (3.2)

where IG stands for information gain, Ed means Entropy of dataset and Ea means

entropy with attribute.

Here, we list out all top 20 attributes in Table 3.2 using information gain

technique.

Now let us look at the experiment with top ranked 5, 10, 20 attributes. We

keep using Decision tree and Support vector machine. The results are shown in

Table 3.3. Note that precision and recall are two common terms used in Machine
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Table 3.2: TOP 20 FEATURE ATTRIBUTES

Rank Attribute name Description
1 chol serum cholestoral in mg/dl
2 painexer provoked by exertion
3 relrest relieved after rest
4 thalach maximum heart rate achieved
5 thalrest resting heart rate
6 age age in years
7 tpeakbps peak exercise blood pressure (first of 2 parts)
8 thaltime time when ST* measure depression was noted

9 num
diagnosis of heart disease (angiographic status)
– Value 0: <50% diameter narrowing
– Value 1: >50% diameter narrowing

10 ekgday day of exercise ECG reading
11 thaldur duration of exercise test in minutes
12 exang exercise induced angina
13 cday day of cardiac cath
14 rldv5e height at peak exercise
15 tpeakbpd peak exercise blood pressure (second of 2 parts)
16 trestbps resting blood pressure (in mm Hg)

17 slope

the slope of the peak exercise ST* segment
– Value 1: upsloping,
– Value 2: flat,
– Value 3: downsloping

18 oldpeak ST* depression induced by exercise relative to rest
19 trestbpd resting blood pressure
20 rldv5 height at rest
*The ST segment represents the isoelectric period when the ventricles
are in between depolarization and repolarization.



21

Learning to evaluate the performance of the classification [56]. Precision is given

as: true positive/ (true positive+false positive) while recall is: true positive/(true

positive + false negative). A relation picture is given in Figure 3.1.

Interested reader may refer to [56] for further information. Here we give the

definition of Precision and Recall with regard to the theme. Precision measures

the fraction of classified heart disease instances that are correct, Recall measures

the fraction of actual heart disease instances which are correctly predicted.

Table 3.3: ENTROPY BASED PRELIMINARY CLASSIFICATION RESULTS

Decision tree (%) Support Vector Machine (%)
NO. of features PRECISION RECALL PRECISION RECALL
Top 5 86.2 88.1 84.5 85.0
Top 10 86.2 88.1 83.8 85.0
Top 20 86.3 87.8 78.3 80.6

As shown in Table 3.3, we only observe slight improvement for decision tree

when less attributes are selected. However, there are 6% and 5% increase in rate

for precision and recall, respectively, when the number of attributes is reduced

from 20 to 5.

3.2.3.2 Non-Supervised

Besides supervised approaches, we should also check non-supervised methods

since the labeled data may provide a bias for attribute selection. Therefore, we

should identify the top contributing attributes without revealing the output class.

Let us first start by dimensional reduction method to better analysis the corre-

lation between different input attributes. Here we consider a famous tool in model

reduction, principel component analysis (PCA) [51]. PCA is a statistical procedure

that uses an orthogonal transformation to convert a set of observations of possibly
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Figure 3.1: Definition of Precision and Recall [64]
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correlated variables into a set of values of linearly uncorrelated variables called

principal components.

The first step of performing PCA is to calculate the correlation matrix (or

covariance matrix), a matrix used to examine the dependence between multiple

variables at the same time. A portion of the correlation matrix is shown in

Figure 3.2, where the columns vs. rows represent attributes’ correlation with each

other and the diagonal is 1 (attribute to itself). Note that due to space constraints

here we only look at a portion of the whole graph. Nevertheless, this does not

affect our final conclusion in this section.

As we can clearly see, all non-diagonal elements in the correlation matrix are

small negative values. The possible correlation values are in [−1, +1], where −1

means no correlation at all and +1 means highly correlated. It is clearly seen that

all of the values in our correlation matrix are negative and thus weakly correlated.

This further suggests that the attributes are almost independent of each other.

Figure 3.2: Correlation Matrix

To further confirm that the attributes are almost independent to each other, we

perform the classification on the top 40 attributes selected by PCA. In this case, the
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dimension is reduced from 74 to 40. The listed 40 feature attributes are shown in

Figure 3.3, and the results of the new classification is shown in Table 3.4.

Figure 3.3: PCA Based Top 40 Attributes

Table 3.4: PCA BASED PRELIMINARY CLASSIFICATION RESULTS

Classifier name Correctly
Classified (%)

Incorrectly
Classified (%) Prec (%) Recall (%)

Baseline classifier 41.84 58.16 17.50 41.8
Bayesian classifier 50.61 49.32 55.40 50.70

Decision tree 51.02 48.98 49.90 51.00

Nearest neighbor 48.29 51.70 50.70 48.30

Support Vector 65.65 34.35 54.20 65.60

As illustrated in Table 3.4, the accuracy is very low for all techniques, with the

highest accuracy of 65.65% using SVM. Therefore, we have experimentally proved
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that the supervised methods are better approaches for this dataset.

3.2.4 Classifier Comparison with Cross Validation

With the above mentioned results, we have determined to use supervised ap-

proaches. Now we perform a rigorous training on the dataset. To be specific, the

cross validation is used.

Here we adopt 10-fold cross-validation. This is a trick that divides dataset

into 10 equal subsets, 9 of which are used for training and the rest part is used

for testing. Therefore, the training-testing ratio is 9 : 1. This step is iterated 10

times until all 10 portions are tested on and we get a a final averaged accuracy

rate. Note that, each iteration starts with no prior knowledge, and these 10 tests

are independent.

The results of 10-fold cross validation for all 5 supervised techniques are shown

in Table 3.5. Again, we observe that decision tree and support vector machine

achieve higher precision and recall rates. This further strengthen our conclusion in

Section 3.5 that decision tree and support vector machine are good techniques to

use with this dataset.

Table 3.5: CROSS VALIDATION ON HEART DISEASE DETECTION RESULTS

Classifier name Correctly
classified (%)

Incorrectly
classified (%) Prec (%) Recall (%)

Bayesian classifier 84.01 15.98 81.90 84.0
Decision tree 88.10 11.90 86.20 88.10

Nearest neighbor 82.99 17.07 82.50 83.00

Support Vector 85.00 14.97 83.80 85.00
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3.2.5 Neural networks

We discuss neural network here in a separate section because it is significantly

different from presented 5 classifiers. Here we feed the top 20 attributes retrieved

in Table 3.2 as input to the neural network with different layers and different

configurations. When constructing a neural network, the most important parame-

ters are number of hidden layers, number of neurons present in the hidden layer,

epochs and batch size. Note that epoch means the iteration times, and batch size

means the number of data points that are passed at a time to train the model.

Now let us start by using the default setup in WEKA, and modify each parame-

ter until the classification performance drops. The setup and parameters are shown

in Table 3.6. Also, the neurons are adjusted to use sigmoid activation fucntion for

smoothness.

Table 3.6: NEURAL NETWROK BASED CLASSIFICATION RESULTS

Layers Neurons Epoch Batch
Size

Correctly
Classified

Incorrectly
Classified

Prec
(%)

Recall
(%)

1 200 200 100 85.03(%) 14.97(%) 82.10 85.00

1 40 200 100 79.59(%) 20.41(%) 76.13 79.60

3 100-50-10 200 100 73.81(%) 26.19(%) 71.00 73.80

1 200 500 100 84.35(%) 15.64(%) 81.70 84.44

1 200 100 10 85.03(%) 14.97(%) 82.40 85.00

The default configuration and three-layer configurations are both presented

in Figure 3.4 and 3.5. Due to the complex structure and high dimensionality, the

training length are all at least greater than an hour. Further, the results are similar

to supervised methods.
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Figure 3.4: One Hidden Layer Neural Network Configuration

3.3 Results discussion

Here, we have concluded that the decision tree classifier achieves the best precision

and recall: 86.20% and 88.10%, respectively. Now we examine the confusion matrix

of the decision tree, aka, the matrix to represent the mis-classified results.

Table 3.7: CONFUSION MATRIX FOR DECISION TREE RESULTS

1 2 3 4 ← Classified as
0 10 0 1 1: typical angina
0 102 0 4 2: atypical angina
0 18 34 2 3: non-angina pain
0 0 0 123 4: asymptomatic

As shown in Table 3.7, we observe that typical angina (value 1) are misclassified

to either atypical angina (value 2) or asymptotic (value 4), which causes most of
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Figure 3.5: Three Hidden Layer Neural Network Configuration

our errors. Similarly, non-angina pain (Value 3) has poor prediction rate as well.

However, in other two categories, we have achieved almost perfect results.

Moreover, let us analyze the reason for mis-classification for typical angina

(Value 1) and non-angina (Value 3). We hypothesized that misclassification may be

resulted by the wild age group ranges. In the dataset, we see ages ranging from

28 to 66, and the misclassified 11 instances for Value 1 do not belong to a specific

age group: 30, 34, 35, 43, 43, 46, 47, 54, 55, 57 and 62. Similarly, the age group for

misclassified Value 3 vary between 36 to 60. This is left as a future extension of

our work to connect with real cardiologists to figure out the reason behind the

mis-classification.

Nevertheless, we examine the maximum heart rate to find out the reason for

mis-classification. We observe that the mis-classified instances have maximum
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heart rate range from 98 to 185 for Value 1, and from 120 to 188 for Value 3.

Therefore, we conclude that the mis-classified attributes does not confine to a

certain range in any attribute.

However, we observe that both Value 1 and Value 3 have significantly less

instances compared to almost perfectly predicted Value 2 and Value 4. This opens

up a potential solution for us to improve the accuracy, that is to increase the data

size and train with more instances. The ideal scenario would be having almost

equal number of all instances in the dataset.

3.4 Chapter Summary

In this chapter, we have developed a machine learning classifier model to analyze

the risk level of patients having heart disease. The data is assumed to be collectible

by wearable devices and we apply the well-known heart disease dataset from UCI.

One advantage of using the dataset is that the expected output label is known and

provided, so we can determine the precision and recall of our model easily. In fact,

we have proved that the attribute selection with supervised methods that make

use of the output labels are more accurate than the non-supervised approaches

that do not. In addition, PCA showed that attributes are almost independent to

each other. We report our final highest accuracy to be 88.1% with 10-fold cross

validation with decision tree, followed by 85.0% using Support Vector Machine.

However, due to the lack of the expertise in this area. Future work is needed to

find out the reason behind the misclassified classes. Also, we need more data to

train our model since current dataset is not evenly distributed, with almost 10 : 1

unbalanced ratio. This can be done by collecting data from real patients or create

synthetic data with the help of the cardiologists.
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Due to the existence of the mis-classified patients, especially Value 1 and Value

3, we need to ask online doctors and caregivers to look at patients’ data manually

in E-health Cyber Ecosystem. This step would help patients to confirm the risk

levels and enable online doctors/caregivers to provide medical suggestions. This

leads to Phase 2 in next chapter.
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Chapter 4

Risk Level Confirmation

Phase 2: Online Queueing for Risk Level Confirmation

4.1 Overview

Since there exists risk level prediction errors in Phase 1, in this chapter we queue

high risk patients with online doctors/caregivers to confirm the risk level and

provide remote care. Here we devise a queueing model that arranges the matching

between patients and online doctors/caregivers. Further, we analyze the model

behavior under different arrival distributions: Poisson, Normal and Multimodal

distributions. Poisson and Normal distributions are commonly considered in

most publications, and the reason for choosing Multimodal distribution will be

discussed in Section 4.3.4.

Among all the mentioned work in Chapter 2, only normal arrival distribution

and Poisson arrival distribution are considered. However, other than bulk arrival,

we can expect to see multiple peaks of arrival in a day. For example, assume that

patients’ risk level may arise during lunch time due to the digestion of sugary

food. Then it is possible to see multi-modal distribution for doctors’ end because a

cyber space serves the entire United States that spans over multiple time zones.
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As a result, this assumption would lead to multiple peak arrivals during the noon.

And most importantly, to reduce the wait time and increase the queueing

capacity, the idea of turbulence flow is used because it carries more energy than

that it laminar flows which is commonly used for well-scheduled systems.

4.2 Technical Details

With the queueing models mentioned above, we realized that a robust queueing

model is necessary before increasing the capacity handling by applying the turbu-

lent flow idea. To be specific, the characteristic numbers have to be determined that

represent the transition between laminar and turbulent flows as well as turbulent

and chaotic flows. Instead of applying Reynolds Number and Lambda 2 [36], two

major techniques used in fluid dynamic analysis, a flexible model is developed

based on the systems server utilization, and thus a reflection of systems chaotic

level.

In the literature review, many dynamic models were created by changing the

number of servers within a fixed time, based on patients flow. However, the service

rate has not been considered. For instance, different doctors can have different

speeds in recognizing risks, which results in different service rates as well. This

work explores server utilization as the optimization factor. This model does not

only focus on the standard measurement of how often do patients arrive into the

cyber queue and how quickly they are served, but also aims to develop a method

to simulate arrival time that covers three different distributions: Poisson, Normal

and Multimodal distributions.

This model is developed based on the publicly available online customer arrival

distribution dataset. We also test the model with simulated arrival distribution data
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and the model is ready for use for real-time data. Due to the data confidentiality, no

active collaboration has been established with medical institutions/organizations

for the time of writing this portion. However, the follow up work can be expected

from other PhD candidates in the lab.

Most importantly, it has been successfully identified that the server utility rate

can be used as an impacting correlation factor for the Lyapunov characteristic

number.

4.3 Material and Methods

4.3.1 General Framework

4.3.1.1 General MATLAB Framework

In this phase, the author have mainly developed the model with MATLAB and

Simulink software. The MATLAB project has been divided into 3 hierarchical

levels: 1) The basic class definitions that contain all the information of patients,

doctors, and caregivers 2) The middle level functions that reads or generates arrival

data and service data for use 3) Top layer script that accommodates the whole

queueing process and calls all subroutines such as public/secret key verification,

latency test, list online doctors, etc.

4.3.1.2 SIMULINK Flow Chart

SIMULINK is mainly used as a schematic and graphical representation for the

whole queueing process. As shown in Figure 4.1, the patient arrival distribution

data is read from the MATLAB function, and is stamped before going into the

queue switch. There are three discussed distributions: Poisson, Normal, and

Multimodal. Each arriving patients will be paired with either a doctor or a
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caregiver, based on his/her complexity of medical background. This is determined

by a switching algorithm. The switching algorithm is based on the historical

medical data of patients, such as history of having heart attack within last 3/6/12

months.

In this case, we assume that the doctors and caregivers provide two performance

levels of diagnosis reconfirmation, that the doctors will be mainly responsible for

patients with complex medical history, and caregivers should focus on reading

data of the patients with simple medical background. Also, if a caregiver cannot

make a confident decision about a patient, this data will be forwarded to a

doctor. This setup of doctors and caregivers is parallel with the current service

provider situation in most traditional hospitals, and represents two different service

qualities.

Moreover, the behavior of two servers: doctors and caregivers are very similar.

When patients are in the different cyber queues, the availability of online caregivers

and doctors will be checked by external MATLAB functions. The queueing block

has its own flags to check if the system is ready and if the doctors are online. The

flags are checked by external MATLAB functions and once done, the messages

will be sent to indicate success or failure. When doctors and caregivers are ready,

the multi-server queues of both doctors and caregivers start to operate properly. In

addtion, both queueing blocks have priority sub-queues to give priority for level

3 patients, since their risk of having a heart attack is higher. Therefore, priority

queues give higher priority to patients with Level 3 risk, and gives lower priority

to level 2 patients. Furthermore, a input switch is added before priority queue for

doctors’ end. This input switch takes both inputs from doctors’ general queue and

the output from caregivers. This feature enables caregivers to forward complex

data to doctors if s/he cannot confirm the risk level.
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Figure 4.1: A Queueing Model with SimEvent
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The server block for doctors and caregivers are similar as well, as they both

take in the patients’ data from priority queue and receive event-based network

disturbances. For instance, the network package drop, network latency, gateway

verification and other issues can lead to unexpected delays. These are modeled

as event-based entity generator feeding into the server. Each server is currently

considered as Markovian arrival rate and Markovian service rate: M/M/N, where

N is the number of servers. Also, each of their utilization rates can be checked

separately. In the end, all patients will take another time stamp when leaving the

check-in queue. By adding more timers, the patients’ total time in system, waiting

time and service time become available to us.

4.3.1.3 Simplified MATLAB Framework

After generating a complete MATLAB general model and SIMULINK model, the

actual dynamic behavior became urgent for author to examine. Therefore, another

simplified online model has been developed for validation purpose by removing all

unrelated subroutines, such as checking network connections. Then the updated

model objective becomes the following:

• Generate patients’ arrival time for the model;

• Change the number of servers dynamically to optimize the server utilization

rate;

• Can be used to apply to other disease models (i.e. Diabetes).

4.3.2 Flow Logic

The overall flow logic is therefore simplified, as shown in Figure 4.2. Since there are

no medical queueing data publicly available online and most researches assume
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Poisson arrival distribution [53], the simulated data is used here and will be

discussed in detail later. The simulated arrival data for all the patients with level 2

or level 3 risks are written into a csv file first. In csv file, each row represents a

patient and has information about the patient: age, gender, heart rate, risk level,

etc. These information are critical for doctors’ diagnosis. With different levels of

risk, the incoming patients will be lined up with respect to their priority. Also note

that, each patient has been classified with a binary variable into either complex or

simple medical background. This information can be updated each time after a

doctor or a caregiver finishes examining the patient’s record. Likewise, the priority

level is also a binary number to differentiate level 2 or level 3 risk.

Figure 4.2: A Flow Chart of the Simplified Logic

With the generated input file for MATLAB model, the arrival distribution data

is then fed into the server queues, once they become ready. For simplicity purpose,

here we assume that each server has a maximum capacity of 3 servers and the

queue size is not limited. Server 1 will calculate the time of patients spent in the

process and will assign an end service time value for each passenger. This value

will serve as the arrival time for next patient where the same process will occur.

This continues until the end of Station 3. To be specific, all of the patient arrival

data is fed into the station and it iterates for each patient based on arrival time.
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The logic for this model is that the current patient i cannot start their service time

until either server becomes available. In the case that there are n servers present,

the program will check if the patient n spaces ahead i− n has ended their service

time.

Once a patient starts the service, the patient is fed into the next server (if the

current server is full) or stays in the first place in the corresponding service queue

if all servers are full. The total time in the system is calculated from the difference

between the initial arrival time and the time they leave the system.

Remark 1. One advantage of this setup is that, patients do not need to commit to any

specific doctors/caregivers, and can be serviced if any doctor/caregiver becomes available.

Further, this model is dynamic because it adjusts the number of servers per

station based on the stability of the system. Here, the stability of a queue is

determined by server utilization which is defined in Equation: ρ = γ/µ, where ρ

is the server utilization, γ is the average patient arrival rate, and µ is the average

service rate. If ρ > 1, the average arrival rate is greater than the average service

rate and the system must adjust by adding a server. If ρ < 1, the service rate is

greater and the system can work less by removing a server since it is currently

stable. The model uses a WHILE loop to iterate for each patient in the dataset. At

the end of each loop, it checks for the value of ρ and adjust the number of servers

if needed.

Remark 2. This queueing model is dynamic because it adjusts the number of servers

based on the stability of the system. The server utilization rate is then our Lyapunov

Characteristic Number.
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4.3.3 Service Time Distribution

The service time for each patient is calculated by using distributions simulated

based on medical background and severity level by the program subroutines, which

greatly differ for each doctor or caregiver. Again, here we assume for Markovian

service rate, thus we have M/M/N queues. In some cases, a passengers’ data will

likely to cost more time for a doctor to read, if his/her medical background is

complex or severity level is high.

4.3.4 Arrival Simulation

As suggested in [47, 53, 67], researchers commonly focus on Poisson distributed

arrival rate, normal distributed arrival rate, or the modified versions whose centers

are slightly shifted. Here, we randomly pick an online customer queueing statistics

and compare both Poisson and normal distributions to mimic the function shape.

4.3.4.1 Arrival Data and Shape

Here, we start by looking at given datasets from Mic [45] and Sayarshad [63] both

of which have distributions with multiple peaks. Mic’s data is more intuitive as

shown in Figure 4.3, so it is our goal of simulation. It is assumed that the arrivals

are independent, therefore the distribution is exponential. In order to achieve the

shape of the given data, both Poisson distribution and normal distribution are

simulated to mimic the data.

In Figure 4.3, it is clear that multiple peaks can be identified. After applying

the histfit under statistic and machine learning toolbox, a corresponding normal

distribution of histogram is shown in Figure 4.4.

Although peaks and rush hours can be easily identified, the distribution func-
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Figure 4.3: The Histogram of Real Data [45]

tion is discrete, therefore lacks the capability of representing the continuous arrival

situations in real world. Also, in order to examine the potential of transferring

the well-scheduled laminar process to a more energy-carrying turbulent process, a

continuous system is needed for fluid dynamic analysis.

With multiple attempts using different lambda values in Poisson distribution, or

normal distribution with different means and variances, neither seems to capture

the muti-peak behavior thus lacks the indication for system to dynamically realize

the queueing load. Although the normal distribution cannot be used to generate

multiple peaks, and the Poisson distribution does not span over a lot of domain of

arrival time, they are still used to test the behavior of the online model.
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Figure 4.4: A Histfit for the Real Data

4.3.4.2 Multimodal Arrival Distribution

In order to have a multi-peak property of the arrival distribution, author has

adopted the Multimodal Gaussian function to generate the distribution with more

than two peaks, as shown in Figure 4.5.

In this simulation, the number of the patients is set to 100, the means of arrival

time (in minutes) are set to 10, 30, 50, and the variances for these three peaks

are 2, 3, 7, respectively. Therefore, the function generates random variables from

a mixture of 3 Gaussian distribution. Although not perfectly matching all the

spanning and height of the given distribution, the major peaks have been identified

and ready to be used for testing the system behavior.
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Figure 4.5: A Multimodal Distribution

4.3.4.3 Poisson Arrival Distribution

Since the range is very dense (within an hour), it would be a good course to

determine if a continuously busy period would drive our model unstable. The

distribution is given in Figure 4.8 and Figure 4.9. Note that the number of the

patients is set to 100 and the lambda value is set to 40.

4.3.4.4 Normal Arrival Distribution

The data of normal distribution is generated as well in Figure 4.10 and Figure 4.11.

Note that the number of the patients is set to 100, the mean of the distribution is

set to 40, and the standard deviation is set to 15.
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Figure 4.6: A Multimodal Distribution PDF

4.3.4.5 Scenario Analysis

With the simulated arrival distributions shown in previous part, we can see that

different scenarios can be achieved using different simulation algorithms. To test

the response of the model to various types of arrival data, the different arrival

distribution simulations were input into the model as different scenarios, aka,

simulations for the Multimodal, Poisson, and Normal distributions created in the

previous section. The datasets generated by each scenario will be used as inputs

into the program and compared to understand the system response. The results

does not only show how the system time for each patient changes with difference

arrival distributions, but also how the dynamic nature of the servers in the model
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Figure 4.7: A Multimodal Distribution Histogram

can impact the outputs.

4.4 Results and Discussion

4.4.1 Time Spent in System

The total time spent in system for all 100 patients are shown in Figure 4.12, 4.13,

4.14. There are occasional long time spent in system which are either because they

gave up their priority to high risk patients, or modeled as randomized uncertainty

due to network disturbance, i.e., network latency, package drop, etc. Due to

the dynamical increase and decrease of the server number, this model stays at a
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Figure 4.8: A Poisson Distribution PDF

satisfactory level of average time spent in system.

4.4.2 Number of Servers Per Passenger

Figure 4.15,4.16, 4.17 illustrate the number of servers as number of patient increases.

It is clearly shown that the number of servers reaches its maximum during times

where the arrival rate is dense which is mirrored in the Figures of Time Spent in

Queue. Note that each increase in number of servers are aligned with the increasing

trend of the number of arrivals. The total time in system does not become high

during the center, but the arrival density increases which causes the demand for

servers to be much higher. The increase in servers counters the increased arrival
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Figure 4.9: A Poisson Distribution Histogram

time at the center which is the reason for the total time in the system as shown

that does not change significantly. It is clear that this developed queueing model

is dynamic.

4.4.3 Server Utilization Per Passenger

In this work, the server utilization rate is identified as Lyapunov Characteristic

Number, as mentioned in previous sections. The Figure 4.18, 4.19, 4.20 illustrate

such ratios. The server utilization determines whether the number of servers needs

to be changed to meet the system demands. The volatility of the server utilization

ratios are all kept under 1 since the adjustment of number of servers is meant to
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Figure 4.10: A Normal Distribution PDF

keep it at that value. Note that this is for illustration purpose and this threshold

can always be changed. In the case when a server needs to take a break, the

decrease in number of server will be reflected to utilization ratio and thus notify

other standby servers to go online. The low utilization ratios at the beginning are

due to the fewer arrival numbers, but with more passengers, the system levels out.

4.4.4 Time Spent in Queue

The average time spent in queue are very low, shown in Figure 4.21, 4.22, 4.23. Also,

the mean waiting value of this model for Poisson distribution is 0.3576 minutes

with random network uncertainty values added. The average waiting time for



48

0 10 20 30 40 50 60 70 80

Time Ticks (Minutes)

0

5

10

15

20

25

N
um

be
r 

of
 P

at
ie

nt
s

Normal Distribution Histogram

Figure 4.11: A Normal Distribution Histogram

level 3 patients is 0.1031 minutes.

The mean waiting value of this model for Normal distribution is 0.2848 minutes

with random network uncertainty values added. The average waiting time for

level 3 patients is 0.0703 minutes.

The mean waiting value of this model for Multimodal distribution is 0.3140

minutes with random network uncertainty values added. The average waiting

time for level 3 patients is 0.0927 minutes.

Without validating the actual service rate of doctors, we can clearly see that

patients with level 3 risk spend far less time in queue, almost 1/3 of the time-in-

queue of patients with level 2.
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Figure 4.12: Time Spent in System Histogram – Poisson

4.4.5 End User Application

The results and discussions in previous section show very important and valuable

information for both doctors and patients. The dynamic nature of this queueing

system allows the doctors, caregivers and healthcare providers to use it as a

decision support system for efficient use of the human resources. Adjusting server

number by server utilization enables the healthcare provider to anticipate the

instability of the system before it gets too high as opposed to adjusting the servers

by maximum queue size. At the same time, the healthcare provider can cut down

on work hours or energy costs if the system is stable.
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Figure 4.13: Time Spent in System Histogram – Normal

4.5 Chapter Summary

In the Phase 2, both a detailed general model and a simplified model for the

online E-health queueing environment are developed. This model would better

help the healthcare providers to use medical human resources efficiently. We have

identified the characteristic number of the model, the server utilization, as the

index number of suggesting the stability of the servers. We have shown a dynamic

model that determines the optimal number of online doctors/caregivers at a given

time that works for different arrival distributions. This can greatly help healthcare

providers to recognize the patterns and optimize the duty shift to provide the

optimal service.
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Figure 4.18: Server Utilization – Poisson
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Figure 4.19: Server Utilization – Normal
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Figure 4.20: Server Utilization – MultiModal
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Figure 4.22: Time Spent in Queue Histogram – Normal
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Figure 4.23: Time Spent in Queue Histogram – MultiModal
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Chapter 5

Regional Health Alert Level Decision Support

Phase 3: Decision Making on Regional Healthcare Alert Level.

For the last two chapters, we have covered the expected behavior of two most

involved actors in an E-health Cyber Ecosystem, as well as the corresponding

frameworks for both parties. In this chapter, we look into an extremely important

but often neglected party in this ecosystem: the healthcare providers. Healthcare

providers can commonly infer the following involvers: Hospitals, Nursing Homes,

Home health agencies, Dialysis facilities, Inpatient Rehabilitation Facilities, Hospice

Agencies, etc.

Although decisions are needed for all the mentioned individual healthcare

providers, in this thesis, we mainly focus on a greater scale and develop a decision

making scheme for regional healthcare providers. As describe in Chapter 2, The

National Association of Strategic Regional Healthcare Organizations (SRHO) is

one of such examples that this decision making model supports.

In this chapter, a decision-making scheme is proposed to provide two alternative

choices suggestions for regional healthcare providers such as SRHO. There is no

given time frame for the model to make the choice, but as long as the thresholds

are reached, the corresponding choices will be prompted to healthcare providers.

Before covering the technical details, it should be noted that this model uses the
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property of the Spiking Neural Network. Just as how we consider the collective risk

level dynamics can alter the decision needed for the regional healthcare providers,

here we imagine that each patient wearing the vital sign measuring devices to

be a single neuron unit in the network. Therefore, the E-health Cyber Ecosystem

network will provide the risk level information of each patient in a distributed

manner and thus each patient’s risk level contributes to the process of suggesting a

decision for the regional healthcare providers. Intuitively, more patients with high

risk levels in the system should faster drive to a decision suggestion that medical

resources will be needed, and vice versa.

5.1 Technical Overview

This chapter proposes a novel collective decision-making scheme to solve the multi-

agent drift-diffusion model problem with the help of spiking neural networks. The

exponential integrate-and-fire (EIF) model is used here to capture the individual

dynamics of each agent in the system, and we name this new model the Self-

Organized Decision Making (SODM) model. Introduced by Fourcaud-Trocme et al.

[24], the nonlinear EIF model is experimentally verified to be able to accurately

capture the response properties. To be specific, the nonlinearity of the exponential

integrate-and-fire (EIF) model is incorporated here to replace the stochastic spiking

scheme in DDM proposed by [9].

We demonstrate analytically and experimentally that the gating variable for

instantaneous activation follows Boltzmann probability distribution, and the col-

lective system reaches meta-stable critical states under the Markov chain premise.

With mean field analysis, we derive the global criticality from local dynamics and

achieve a power-law distribution. It is also demonstrated that neural sampling
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and mean field branching can be derived with the Boltzmann distribution. This

suggests that critical behavior of SODM exhibits the convergent dynamics of Boltz-

mann distribution, and we conclude that the SODM model inherits the property

of self-organized criticality, i.e., the system will eventually evolve toward criticality.

The proposed SODM model, therefore, reaches a set of absorbing states; and the

corresponding global criticality follows power-law distribution, thus attaining the

SOC behavior and provides a decision support. Last but not least, the semistability

and consensus problem under semistable equilibrium state are discussed to further

present the stability analysis of the SODM model.

At this point, it should be more clear that each patient is considered as a single

neuron in a spiking neural network; and each neuron inherits the generalized EIF

property. With this in mind, a modified DDM is used here to share the EIF terms.

The reason for combining these will be clarified later. Then the collective behavior

of such a spiking neural network follows the SOC behavior and distributedly

achieve a decision, proved by convergence analysis. This decision suggests the

Regional Health Care Alert Level and help the regional healthcare providers to

better make the decisions.

5.2 Technical Explanation

Self-organized criticality (SOC), a groundbreaking achievement of statistical physics,

is receiving growing interest as to its application to neural firing and brain activity

[29]. Bak’s hypothesis [6] and recent studies [29, 61] all suggest that criticality is

evolutionarily chosen by human brains for optimal computational power and fast

response time, and that our brains are always balanced precariously at the critical

point.
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The critical dynamics emerge during the phase transition between randomness

(subcritical) and order (supercritical), which usually follow power-law distribution

or exhibit similar spatio-temporal properties [61]. A dynamic network system with

the SOC behavior has the potential to be scale free, spatially and/or temporally

[66], and thus can quickly switch between phases to acquire optimal computational

capability. This offers a possible approach to modeling a decision-making process.

The systems exhibiting SOC behavior are usually highly dimensional and

slowly driven, with nonlinear properties [6, 66]. To this end, Brochini et al. [11]

have discussed the phase transitions and SOC in stochastic spiking neural networks.

Also, Bogacz et al. [9] demonstrated that the standard drift-diffusion model (DDM)

can be used for stochastic spiking dynamics, and they relate DDM to a highly

interactive “pooled inhibition” model.

However, to the best of the authors’ knowledge, although the SOC has been

recognized as a fundamental property of neural systems [29], there has yet to be a

decision-making model capitalizing on the SOC property.

5.3 Preliminaries

The model in chapter 3 covers a lot of topics and perceived a overlapping property

of them, as shown in Figure 5.1. Each topic described in the circle, as well as the

methods of adjusting and incorporating the topics will be covered in this section.

5.3.1 Notation and Preliminaries

Here we use a classical directed graph representation, G = (V , E ,A), with a

nonempty finite number of nodes and edges. Specifically, V is the set of nodes, E is

the set of directed edges, and A = [aij] is an adjacency matrix with weights aij > 0
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if, 〈i, j〉 ∈ E , an edge from node i to node j. Note that the assumed graph is simple,

i.e., 〈i, i〉 /∈ E , ∀i, with no multiple edges going in the same direction between the

same pair of nodes and no self-loop. In this case, the diagonal elements of A are

zero. In addition, the Laplacian matrix of G is denoted by L.

5.3.2 Self-Organized Criticality

Self-organized criticality describes a self-tuned internal interactions that show

critical dynamics in complex systems [6]. The interacting node groups are called

active sites while the nodes that are less sensitive to the input are called inactive

sites. In the sand pile model, each agent has their own steep slope which represents

the membrane potential of the spiking neurons. When a certain threshold is hit and

the sand in that specific area is steep enough, i.e., Zlocal > Zcritical, the avalanches

will be triggered, which follows a power-law distribution of 1/ f noise. Plenz and

Beggs [8] observed a similar pattern of avalanches in the cortical neural electrical

activity, which was the first evidence that the brain functions at criticality.

For the spiking neural network sense, if an agent activates too many neighbor-

Figure 5.1: SODM model shows SOC property
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ing neurons (super-critical), it leads to the massive activation of the entire network,

while if too few neurons are activated (sub-critical), propagation dies out too fast

[9]. In this model, the local rigidity level is expressed by two terms: the firing

threshold of each agent, and the correlation between each two agents in the same

local active sites.

5.3.3 Boltzmann Machine

Boltzmann machine (BM) is a special type of stochastic recurrent neural network

based on non-stochastic Hopfield nets. In recent years, BM’s property of binary

output has been attracting more attention in both the theoretical neuroscience and

high dimensional parallel stochastic computation [1, 13].

Boltzmann machine is proven to be efficient for the models with connectivity

properly constrained. To be specific, machine learning and probability inference

are two major applications. In this paper, we apply neural sampling and show

that the probability function of the gating current variable for the activation term

follows the Boltzmann functions.

The global energy function of Boltzmann machine is defined as:

E = −∑
i<j

hijsisj −∑
i

bisi

, where E is the global energy, hij is the connection strength between Unit j and

Unit i, si ∈ {0, 1} is the state of Unit i, and bi is the bias of Unit i.

As for the Boltzmann distribution, the probability that the ith unit is on is

Pi=on =
1

1 + exp(−4Ei/T)
, (5.1)
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where T is the temperature of the system. The probability is calculated using only

the information on the energy difference from the initial state and the current

temperature.

In this framework, the term −4Ei/T is considered as a logistic activation

function, similar to [7, 60]. It has already been shown in [60] that some stochastic

neurons sample from a Boltzmann distribution. Ideally, after a long running period

and without further inputs, the probability of a global state will not be affected

by other terms, i.e., time constants and conductance values in the EIF model. At

this stage, the system is at its “thermal equilibrium”, and converges to a low

temperature distribution where the energy level hovers around a global minimum.

This feature presents behavior similar to SOC if we consider criticality as

the thermal equilibrium around which the energy level fluctuates. Also, the log

probabilities eventually become a linear term, which helps us to simplify the

exponential term in the EIF model. Further discussion will be given in later

sections.

Moreover, the neural sampling technique in the later section incorporates the

Boltzmann machine according to some local switching, with conditional probability

integrated. The multivariable Boltzmann joint distribution has the form [43]

Pm =
e−εm/kT

∑M
n=1 e−εn/kT

, (5.2)

where Pm stands for the probability of state m, εm is the energy at state m, k is a

constant, and M is the total number of the states.
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5.3.4 Drift-Diffusion Model (DDM)

The DDM has been applied to a Two-Alternative Forced-Choice (TAFC) task in an

extensive amount of work (see [9, 55] for instance). The fact that DDM integrates

the difference between two choices according to one or two thresholds makes it

possible to describe a decision making process in a spiking neural network.

In the pure DDM, the accumulation of the unbiased evidence has the form

dx = gdt + βdw, x(0) = 0, (5.3)

where dx represents the changes in difference over the time interval dt, g is the

increase in evidence supporting the correct choice each time, w is the independent,

identically distributed (i.i.d.) Wiener process, and β is the standard deviation.

The probability density P(x, t) is normally distributed with mean gt and standard

deviation β
√

t.

Since the second term in (5.3) is represented by a standard Wiener process

that describes the noise, it is common to consider dx in DDM to be the change in

membrane potential within a certain amount of time [41].

Here we consider a network system with N agents. Each agent relates the

DDM model to the nonstationary dynamics of the firing activity of an EIF spiking

neural model. While the forced-response protocol is usually considered, we follow

the free-response protocol, that each consecutive fires determine the range of the

time interval. The common assumption made for this equation usually considers

g > 0 to support the first choice, and g < 0 for the other [9]. The term g can either

be a constant for inactive nodes, or a function for active nodes that depends on

membrane potential.

While (5.3) only describes the dynamics of a single DDM system, we need extra
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terms to capture the impact from neighbors. We have the following stochastic

diffusion process with an initial condition x0:

dx = (α(x(t), t)(x(t)− x0) + g(x(t), t))dt + β(x(t), t)dw, (5.4)

where α(t) is a measurable gain function that models the external input to accelerate

the potential increment, and the linear drifting term g(t) represents the dynamic

drifting variable of the node itself. In this regime, we have transferred our model

to a Ornstein-Uhlenbeck (OU) process, which is known to be the solution to the

famous Fokker-Planck equation. Here, to further simplify the model, we may

eliminate the afterhyperpolarization, that is, let x0 = 0.

For the model proposed above, it is possible to receive the spike generations

with arbitrary shape, i.e., different spiking time intervals and different incremental

speed of membrane potential. With a properly defined activation function, which

will be discussed later, the behavior of each single stochastic diffusion process

can be bounded. Before further discussing the individual dynamics and their

boundedness properties, we need to look into the specific local dynamics by

applying the most commonly used neuron model.

5.3.5 Generalized Exponential Integrate-and-Fire Model

Exponential integrate-and-fire is a well developed biological neuron model in-

troduced by Fourcaud-Trocme et al. [24] as an extension of the standard leaky

integrate-and-fire model. As concluded in several studies [7, 60], EIF is a suitably

simple model for very large scale network simulations. For the generalized EIF

[60], arbitrary spike shapes are allowed; and gated currents usually reach a steady

state with the nonlinear voltage activation function.
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The EIF model holds a nonlinearity property consisting of a linear leakage term

combined with an exponential activation term, which follows simple RC circuit

dynamics before V, the membrane potential, reaches a fixed threshold VT. After

reaching the threshold, it can be considered that the neuron has fired; and its

membrane potential is then set to a resting voltage, VR, approximately −60 mV

[7, 60] or 0 mV [41] by different assumptions.

The dynamics of the membrane potential are given by

C
dV
dt

= −$L(V −VL) + $T∆T exp
(

V −VT

∆T

)
+ Iion. (5.5)

In this equation, C is the membrane capacitance; VT is the membrane potential

threshold; ∆T is the sharpness of action potential initiation, or slope factor; VL is

the leak reversal potential; $ is the conductance, and Iion is input current. While Iion

only represents synaptic current in Fourcaud’s model, here we have extended the

ionic current by summing up input current, Ineib, from neighbors with connectivity,

external noise current, Inoise, that integrates the i.i.d. Wiener process, and synaptic

input, Isyn, that incorporates the drifting term, serving as a bias. We have

Iion = Ineib + Inoise + Isyn

where the term Ineib takes identical form as leakage current in the first term of

(5.5), while

Isyn = $synΓ · (V −Vsyn)

represents the slow voltage activated current with a gating variable Γ(V, t). The

term

Γ∞(V) = lim
t→∞

Γ(V, t)
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can be used to describe the instantaneous activation.

Here, we alter the usually constant conductance, $, and change it to a function

of V and t. Multiplying dt to both sides of the (5.5), we now have

(5.6)CdV = −$L(V − VL)dt + $T∆T exp
(

V − VT

∆T

)
dt

+ $synΓ(V, t)(V − Vsyn)dt + $neib(V − Vnoise)dt + Inoisedt

It is clear that most terms in (5.6) have very similar forms to those in (5.4). As

most current terms do not need to be altered to fit in (5.4), the conductance term

can change over time and become a function. Functions $ and α are sometimes

interchangeable. However, the exponential term can be tricky to work around; and

we will talk about it in a later part.

Henceforth, for simplicity purposes, we refer to this EIF and DDM combined

model as the Self-Organized Decision Making (SODM) model.

5.4 Decision Making Dynamics

The commonly discussed decision-making process is an adaptive behavior that

makes use of a series of external input variables and then leads to an optimal or

sub-optimal choice of action over other competing alternatives.

We begin by discussing the optimal decision rule. There are two thresholds

zi in the DDM model, with the same magnitude but different signs to represent

different choices. In SODM, we consider this choice to be optimal if the threshold

of the correct choice is reached or sub-optimal, if our expectation value, E, ends

up with the same sign as the correct threshold but with smaller magnitude.

Now we start solving the OU process described in (5.4).
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Lemma 1. The solution of the collective decision-making system in (5.4) is given by

x = eα(t)
(

c +
∫ t

0
e−α(t−η)g(η)dη +

∫ t

0
e−α(t−η)β(η)dwη

)
(5.7)

where wη represents each individual Wiener process, which has a similar form as in [5],

with the updated expectation

E(x(t)) =
∫ t

0
e−α(t−η)g(s)ds. (5.8)

Proof. Let φ(t) be a fundamental solution matrix.

Also, let Y be

c +
∫ t

0
φ(η)−1g(η)dη +

∫ t

0
φ(η)−1β(η)dwη .

Then Y has the stochastic differential equation

dY = φ(t)−1(g(t)dt + β(t)dwt),

which implies

x = φ(t)Y

= φ(t)
(

c +
∫ t

0
φ(η)−1g(η)dη +

∫ t

0
φ(η)−1β(η)dwη

)
.

Furthermore, combining all of the above together, the straightforward conclusion

is (5.7).
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5.4.1 Behaviors

Here we consider a very special but popular network system.

Assumption 2. For a high dimensional dynamical network system with N agents de-

scribed by (5.4), each unit integrates an inward stimulus αi and receives signals Ineib

and noise βidwj
i from local j neighbors. The dynamics of wj follow Correlated Brownian

motions, with standard correlation col ∈ (−1, 1).

In [42], the authors proposed an Itô consensus stochastic differential equation

(S.D.E) formalized by N2-dimensional standard white noise, and expanded the

right-hand side terms in (5.3) to a matrix form with graph theory, i.e., α(t)Lx(t).

Different from their encoded gain function, we now assume that all of the state

information is available to others.

Assumption 3. For the considered network system with N agents, the state of each agent

is observable by others.

Extending (5.4), then we have the dynamic equation for each agent with neigh-

bors’ dynamics added

dxi =
( K

∑
j=1

α(xi(t), t)lij(yji − xi(t)) + g(xi(t), t)
)

dt + β(xi(t), t)dwi, (5.9)

where K is the total number of agents connecting the agent i, lij are elements in

the Laplacian matrix L, yji denotes the observed membrane potential of jth agent

by the ith agent.

In [16], Charalambos et al. have shown a method of solving optimization

problems under a reference probability measure by transferring continuous and
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discrete-time stochastic dynamic decision systems, via Girsanov’s measure trans-

formation. To this end, we have the following claim.

Proposition 1. The collective stochastic dynamic decision system with common team opti-

mality can be transformed to the equivalent static optimization problem with independent

distributed sequences. Under the reference probability space, states and observations are

independent Brownian motions.

Consider a series of d inputs, Xi(t) = [xi1(t), ..., xid(t)], for N agents, each of

which has two possible states

si =


1, if t ∈ (t− τre f , t],

0, otherwise.
(5.10)

In addition, Yi and wi are similarly defined. The firing during τre f is sometimes

called the absolute refractory period.

Such series of inputs can be modeled as a discrete decision making scheme,

upon which we have applied the free-response paradigm, with adaptive prescribed

time interval, τx, for each agent in the network system. Equation (5.9) then becomes

the following distributed protocol

dXi =
(

L · α(Xi(t), t) · (Yi(t)− Xi(t)) + g(t)
)

dt + β(Xi(t), t)dwi. (5.11)

5.4.2 Sampling with EIF

Recall from Proposition 1 that, since the Brownian motions are indpendent of all

other team decisions, it opens up the possibility for Markov-chain-related methods.

For efficiency and flexibility purposes, Markov chain Monte Carlo (MCMC) has
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been applied in sampling the spiking network of neurons [13].

In [60], Richardson has shown the equilibrium value of a slow-driven, voltage-

activated, current gating variable with the form

τΓ
dΓ
dt

= Γ∞ − Γ

, where τΓ(V) is an adaptive time constant characterized by different voltage values;

and Γ∞ is the equilibrium value. Then we have

Γ = Φ((VΓ −V) /∆Γ)

, where Φ is the sigmoid function that digests a membrane potential function into

a probability density function with range [0, 1].

Γ∞ =
1

1 + e−(V−VΓ)/∆Γ
. (5.12)

Here, the equilibrium term Γ∞ holds a very similar form to the Boltzmann proba-

bility distribution as in (5.1).

It is clear that (5.12) is a slowly varying function, which can be proved simply

by applying the definition. Now we can use the property of the slow varying

function to deal with the exponential term in (5.6). The Karamata representation

theorem is one of the most used properties of slow varying functions that transfer

a function into a general exponential form. In our case, Γ∞ is expressed as:

Γ∞ = exp
(
}(Γ) +

∫ Γ

B

ε(t)
t

dt
)

, for some B > 0, where }(Γ) is a bounded measurable function converging to a
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finite number, and ε(t) is a bounded measurable function converging to 0.

Here, since the exponential term is only a property of membrane potential

increment that adds to nonlinearity, the potential accumulation of each agent does

not affect collective network decisions as much during the firing period (t− τre f , t].

And for the absolute refractory period, the neuron model is guaranteed not to fire.

For such a piece wise continuous function, if we only consider the time interval

to be one firing, then the variable V can be bounded. Taking out the exponential

term in (5.6), we have

CdVe

$T(Ve, t)∆Tdt
= exp

(
Ve −VT

∆T

)
,

lim
t→tend

exp
(

Ve −VT

∆T

)
= lim

t→tend
exp(}(Ve))

= exp
(

Vend −VT

∆T

)
= C

= τΓ
dΓ
dt

+ Γ.

where tend is the end of the refractory time, Vend is the membrane potenial at the

end of the refractory period, and Ve is the membrane potential incremented by

exponential terms only. Since } converges to a finite number and ε(t) converges to

0, the limit of the exponential term converges to a constant C during the refractory

period.

It can be thought of as entering an absorbing state where its behavior at infinity

is very similar to the behavior of converging to infinity. Therefore, at the absolute

refractory period, we can safely ignore this exponential term in (5.6), and treat it

just as other linear terms.

For simulation, we have used the same parameters as the work done by Barranca
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et al. [7]. As shown in Fig. 5.2, this monotonically increasing activation function

has a sigmoidal general form, with an upper bound 1 and a lower bound 0. In

some cases, as mentioned above, we may set the initial condition to be 0 mV to

eliminate the afterhyperpolarization. For our simulation, we have removed such

constraints to show that the dynamics of the membrane potential can be bounded

by the activation function with arbitrary initial conditions. This is because a higher

threshold in the EIF model always requires higher voltage to be breached, and the

logistic activation function describes such positive correlation well enough.

In fact, very similar dynamics of the activation function have been capitalized in

the neural sampling framework [60, 13, 52]. Thus, our collective decision-making

model can be thought of as a network consisting of N agents (or neurons) sampling

from a probability distribution p using the stochastic dynamics carried from the

DDM.

Proposition 2. The firing activity of the generalized EIF model, which represents each

agent in a collective DDM network system, follows a Markov chain process.

With the information-coded signal from each DDM agent of the system, in

other words, the firing information within the time interval (t− τre f , t], the neu-

ral sampling follows conditional probability distribution, and most of time is a

Boltzmann distribution.

For each agent, we consider the collective behavior of connected nodes as an

accelerator/damper. For instance, if an agent is surrounded by nodes with higher

membrane potential, it receives more current than normal drifting, and vice versa.

p(si = 1|xi(t− 1)) =
xi(t− 1) + g(t) + ∑K

j=1 α(t)lij(yji − xi(t))

VT +
∑K

j=1 α(t)lji(yij − xj(t))

K

. (5.13)
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5.5 Collective Behavior

For most multi-agent dynamic network systems, it is common that new communi-

cation links can be established over two agents with no previous connection. In

the previous sections, we have assumed that the connection is known at each state.

Now we define the coupling and connection behavior among the agents in the

system.

5.5.1 Coupling and Connectivity

Assumption 4. For the system described in this paper, agent i forms at most K outward

links randomly at t = 0. When si = 1, Agent i tries to establish new connections with new

neighbors, for instance, connecting to Agent j with the coupling probability Pij depends on

the voltage difference. When successful, the equal number of previous connections are lost

according to a decoupling probability function Q. When si = 0, Agent i will not actively

modify its neighboring connections.

It is worth pointing out that both P and Q follow a sigmoid (or reverse sigmoid)

relation Φ (or 1−Φ). For function P , the greater the difference in membrane

potentials, the higher the probability. The situation is reversed for function Q.

Then we have the following equations

Pij =
xj − xi

VTi + VTj

K−Ki

K
,

Qij =

(
1−

xi − xj

VTi + VTj

)
Ki

K
,

where Ki is the number of current-established connections of node i. In the case

of probability values that are less than zero or greater than one, we simply set
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them to 0 and 1, respectively, for mean field analysis. The negative probability

is also provided in Fig. 5.4 . Different from the common equation for branching

probability, our process is not a tree like process; and the maximum connectivity is

defined by K. Therefore they are Markovian processes with respect to the number

of connected nodes.

5.5.2 Mean Field Analysis

In the mean field analysis, the individual drifting variable usually follows a

distribution with the average. In our case, we assume that the expanded term

follows the average distribution of gi/W, where W can be considered as the sum

of the total drift. Here gi is still a gain function representing the external input

exerted by neighbors. However, due to the free-response property, gi is essentially

a piece-wise continuous gain function representing synaptic strength.

Recalling the term “active site” described in Section 5.3.2, the local active site

for each agent can be thought of as the local field:

Fi = −
N

∑
j=1

ajigj/W

, where aji consists of the elements in an adjacency matrix, and the global field has

the average

F̄ =
N

∑
i=1

(Fi/K) /N

Therefore, with regard to a sequence of d numbers of inputs, the probability of

a single DDM having the on state si = 1, represented by a single generalized EIF
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neuron, has approximately the following probability with respect to the field.

pi(s) = S−1 exp
(
− γ

( N\K

∑
j=1
F̄Pij −

K

∑
j=1
FjQij +

d

∑
j=0

bj

))
, (5.14)

where S is some partition function, bi is the bias term that supports the correct

choice, γ is a thermodynamic beta in the Boltzmann factor with the form

γ = 1/(kBFi)

, and kB is a Boltzmann constant.

Putting aside the coupling strength, the mean activity of this network is mea-

sured as ∑N
i=1 si/N. However, for such a spiking neural model, it is not always

practical to have a normally distributed probability density function; and in fact,

most of these processes are stochastic with certain thresholds or even highly

constrained. That being said, we would have a stochastic Itô-based integral for

probability density for the local mean activity:

Hi =
∫ ∞

−∞
Φ(x)pi(s|x)dx

5.6 Convergence Analysis

There are two main evidences for systems presenting the SOC behavior [6, 66].

The first is the power-law distribution, and the second is the critical dynamics,

which we consider as converging to absorbing states in the SODM model. In this

section, we expand the results from Sections 5.4 and 5.5, and examine the global

convergence behavior of the collective SODM model. We then provide both pieces

of evidence to show the SODM system has the SOC behavior.
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5.6.1 Global Criticality from Local Dynamics

Recall that in SOC, active nodes trigger self-avalanches when a threshold is reached

and update the information of all connected active nodes. Also, nodes in nearby

inactive sites are communicated to establish more connections if needed.

Moreover, each active site has their own dynamics of reaching out to other

active or inactive sites. Inspired by Harris’s theory of branching processes [28], we

use a branching parameter σ that captures the subsequent activity of connectivity

triggering or dying out [10]. The local branching ratio and global branching ratio have

the form

σj(t) =
K

∑
i=1
Pij(t)

σ̃(t) =
1

N − 1

N

∑
j=1

σj(t),

respectively. As discussed in [28, 10], the system exhibits criticality at σ = 1, and is

subcritical (supercritical) for σ < 1 (σ > 1).

In our simulation, sub-critical dynamics are characterized by low potential and

rapidly decaying agents’ neuron firing distributions, while super-critical dynamics

are characterized by high potential and slowly decaying firing activities. Critical

dynamics are characterized by firing activity that follows power-law distributions.

As shown in Fig. 5.3, it can be easily recognized that the collective behaviors of

the firing density in the SODM model follow a power-law distribution, D(z) ∼ zΛ

with different cluster sizes, z, and scaling factors, Λ < 0, which is primary evidence

supporting the SOC behavior [66].



82

5.6.2 Absorbing States

Recalling the avalanches described in self-organized criticality, the system keeps

tuning itself to one of many meta-stable states, which commonly have lifespans

shorter than ground states and longer than excited states [6]. And without further

inputs, the distribution reaches meta-stability, a very special energy well that is

able to temporarily trap the system for a limited number of states.

This can be modeled as a Boltzmann distribution with a global energy level in

a simulated annealing system from any initial conditions. With the results from

(5.13) and (5.14), as well as the exponential property of the generalized EIF system,

the Lyapunov based semistability [34] can be achieved with great potential, but

due to the page restriction, this concept is not discussed in this paper. Nevertheless,

we are going to show that the system described in this paper converges to some

absorbing states.

In mean field theory, as discussed in [10], the absorbing state becomes unstable

when the probability of a node creating connection with neighbors is greater than

1/2. In our case, this can be thought of as the coupling probability P > Pcritical =

1/2.

Lemma 2. For finite number of total states, the usually unique absorbing state becomes a

small range containing a set of states in system presenting SOC nature. The attractor of

the system is a set of discrete states.

Proof. If a non-conserving system, such as the DDM-based SODM model described

in this paper, has shown a temporary stable configuration after the avalanches, then

the system is at least at a critical point. The critical and supercritical sessions are

usually slow driving [10]. So there must be a drift load and a diffusion dissipation
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fluctuating to keep all of the nodes in the system from either forming active sites

or staying completely quiescent.

Thus, if a system presents the thermodynamic behavior as a Boltzmann distribu-

tion with simulated annealing, there can exist an infinite number of infinitesimally

varied absorbing states around the thermodynamic limit. For a finite number of

states, this absorbing phase becomes a set of discrete states.

This obeys another property of SOC, that is, the dynamical system with a

critical point as an attractor, is able to keep itself at the critical point between two

phases which, in our case, are the active phase and the absorbing phase.

Proposition 3. Meta-stable states generally hold more energy than the ground states and

less energy than the excited states. Therefore, SOC is the process of the SODM model losing

global energy and falling into a certain set of absorbing states, regardless of guaranteed

stability.

Each agent in the SODM model is essentially a drift diffusion term taking input

variables from the EIF markup. It is clear that when the individual thresholds are

reached, agents will initiate the spike and send information-coded signals (current)

to connected nodes or nodes with great probability of establishing connectivity.

The excited states usually carry higher membrane potential than the incremental

states. Then the fired node resets its membrane potential to VR and enters a

refractory period. Therefore, the states during this absolute refractory period, τre f ,

can be considered as comparable meta-stable states that trap the dynamics of each

node for τre f . And since we have proved Lemma 2, the system self-organizes,

instead of fine-tuning, to a small region of absorbing criticality, or in another word,

metastability.



84

Since the system is slow varying at the absorbing state, the fundamental solution

is independent of t, that is, α(x(t), t)) = α(x). And (5.7) becomes

x = eα(t−τre f )c +
∫ t

t0

e−Lα(t−η)(g(η)dη + β(η)dwη). (5.15)

For the slow-varying, time-independent, absorbing states mentioned in Propo-

sition 3, it is natural to assume that the dimension of β is 1. Using the corollary in

[5],

φ(t) = exp
( ∫ t

(t0)
α(η)dη

)
.

Then we can further turn (5.7) to be

x(t) = exp
( ∫ t

(t0)
α(η)dη

)(
c +

∫ t

t0

exp
( ∫ s

t0

A(u)du
)
(g(η)dη + β(η)dwη)

)
. (5.16)

Note that, the convergence dynamics of these absorbing states show Boltzmann

distribution as well, i.e.,

Pi(Vx|si = 0) = e−xi/kBF̄/

(
N

∑
j=1

e−xj/kBF̄
)

.

As shown in Fig. 5.5, the branching pattern of the SODM model across multiple

fires follows the SOC behavior and eventually evolves to a certain set of absorbing

states, known as the recurrence sets. Also, these stationary distributions of network

states can be convergent from any initial state.

Therefore, without the presence of a proper controller, the system fine-tunes

itself and then converges to exponent

ū = lim
t→∞

(
(1/t)

t−1

∑
i=0

ln ∑(Ki · Pi)

)
,
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with ū = 0 suggests critical branching process.

5.7 Semistability

Since theoretical and experimental studies have demonstrated that critical systems

often optimize computational capability, it is promising to suggest that the system

with the SOC behavior is both robust and flexible enough to ensure homeostatic

stability.

In fact, due to the nature of absorbing states and criticality property, any initial

conditions of a spiking network decision-making system can converge and/or

fluctuate around a set of states, potentially semistability [34]. The convergence

property of such a model can be useful for fault pre-screening and is, in a way,

robust to quantified uncertainties.

Since SODM model has a continuum of equilibria, in this section we examine

the semistability potential of this stochastic model. Semistability is defined as the

property of a dynamical system whereby its trajactories converge to Lyapunov

stable equilibria that are not necessarily isolated [34]. Instead of using widely

adopted asymptotic stability, we use semistability here to properly capture the

SODM model with a continuum of equilibria. Semistability serves as a stronger

rigorous proof of the stability analysis of SODM in addition to the convergence

analysis done theoretically and experimentally.

Semistablity for deterministic dynamical systems was originally proposed by

the supervisor of this thesis work, Dr. Qing Hui, in 2007 on American Control

Conference [33] and in 2008 on IEEE Transactions on Automatic Control [34], and

have attracted a huge amount of attentions and citations. It describes a property

that the solutions of a dynamical system converge to Lyapunov stable quilibrium
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points based on system’s different initial conditions [34].

5.7.1 Lyapunov Theory for Semistability

Note that, semistability mentioned above is not merely asymptotic stability of a

set of equilibria [59]. In addition, semistability can be used to describe a trajectory

converging to its corresponding set of equilibria, without the commitment of

converging to any specific equilibrium point. Thus, semistability is a perfect

tool to describe the SODM model with a set of absorbing states. Also note that,

semistability and the stability of the set of equilibrium points are independent

notations [59].

Let us recall the Equation 5.9, which satisfies the following definition.

Definition 1. Consider the nonlinear stochastic dynamical systems of the form

dx(t) = f (x(t))dt + D(x(t))dw(t), x(0) = x0, t ∈ τ0 (5.17)

where for all t ∈ τ0, H is used here to represent Hilbert space, x(t) ∈ HD is a measurable

random system state vector for the Hilbert space (an extension of Euclidean space with

infinite dimensions), D is an open set with 0 ∈ D, w(t) is an independent standard Wiener

process (i.e., Brownian motion) defined on a probability space with the same dimension of

the first term in this dynamic system, we assume this number of dimension to be d from

now on, x(0) is independent of (w(t)− w(0)) , t ≥ 0, f : D→ Rn is continuous on D, D :

D → Rn×d is continuous on D, f−1(0) ∩D−1(0) , {x ∈ D : f (x) = 0 and D(x) = 0}

is nonempty, and τ0 ∈ [0, ∞] serves as the maximal interval of existence for the solution,

which in our case, the time between two consecutive fires.

Then a equilibrium point xe ∈ Rn of the system 5.17 has the property of
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f (xe) = 0 and D(xe) = 0. We name the set of equilibrium points of system 5.17 to

be S , {ω ∈ Ω : x(t, ω) = xe} = {xe ∈ D : f (xe) = 0 and D(xe) = 0}.

From now on, we are interested in Itô integrals in Equation 5.7. Here we go

over some other definitions that are necessary for the stability analysis.

Definition 2. ([49][Definition 7.7]). Let x(·) be a time-homogeneous Markov process in

HD and let V : D→ R. Then the infinitesimal generator L of x(t), t ≥ 0, with x(0) = x0

is defined as

LV(x0) , lim
t→0+

Ex0[V(x(t))]−V(x0)
t

, x0 ∈ D (5.18)

where Ex0 denotes the conditional expectation with respect to the probability measure Px0 .

Also, the probability measure means we need the definition of Lyapunov stable

in probability to be properly defined. Here, we are only interested in standard

Lyapunov stable in probability, and ignore the asymptotically stable in probability.

Definition 3. ([40]). The equilibrium solution x(t) ≡ xe is called Lyapunov stable in

probability if, for every ε > 0 and $ > 0, there exist δ = δ(ε, $) > 0 such that, for all x0

belong to the Borel sets (sets that can be formed using finite iteration of union, intersection

and complement operations), the probability measure

Px0

(
sup
t≥0
‖x(t)− xe‖> ε

)
≤ $

Here we can easily define the following assumption to apply the Lyapunov

stable in probability Theory.

Assumption 5. Assume that for every open subset Nε of the absorbing set G containing

x, there exists a different open subset Nδ of the absorbing set G containing x such that
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the probability measure Px0 has a upper bound of $ ≤ PBM, the probability defined by

Boltzmann Machine in Equation 5.2.

With this assumption made, we can easily achieve that

Px0

(
sup
t≥0
‖x(t)− xe‖> ε

)
≤ PBM ≤ 1

where ε is the afterhyperpolarization states’ values to which the superior is greater.

We can conclude that there exists an equilibrium point x ∈ G in SODM model is

Lyapunov Stable in Probability.

In the previous sections, it has been proved that there exists an absorbing set

through the Boltzmann Machine premises; and all trajectories of the initial condi-

tions in this subset U fluctuate around this set. Since there exists an equilibrium

point in SODM that all initial conditions converge to, this point is a Lyapunov

stable in probability equilibrium point and x ∈ U. From now on, we call this point

to be Absolute Self-Organized Criticality (ASOC) Point.

With some minor modifications, we have the updated Definition 4 to accomo-

date the Itô integrals used in this thesis. We simply get rid of the ε term and

replace δ with a class function ℵ. The proof can be referred to in [59].

Definition 4. ([59]). The equilibrium solution x(t) ≡ xe is called Lyapunov stable in

probability if and only if, for every $ > 0, there exists a class function ℵ(·) and a constant

c = c($) such that, for all x0 belong to the Borel sets, the probability measure then becomes

Px0 [sup t ≥ 0‖x(t)− xe‖> ℵ(‖x0 − xe‖)] ≤ $

Then, with these definitions, we are ready to develop a sufficient condition for

stochastic semistability.
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Theorem 1. ([59]). Consider the nonlinear stochastic dynamical system 1. Assume that

there exists a two-time continuously differentiable function V : Q → N, where Q is an

open neighborhood of R, such that

V′(x) f (x) +
1
2

trDT(x)V′′(x)D(x) < 0, x ∈ Q\N (5.19)

If every equilibrium point of dynamical system 1 is Lyapunov stable in probability, then 1

is stochastically semistable.

Example: Consider a simplified version of SODM model with the nonlin-

ear stochastic dynamic system given by following, where Laplacian matrix and

summation sign is expanded

dx1(t) =
(

α12(x2(t))− α21(x1(t)) + g(x1)
)

dt + v(x2(t)− x1(t))dw(t), (5.20)

dx2(t) =
(

α21(x1(t))− α12(x2(t)) + g(x2)
)

dt + v(x1(t)− x2(t))dw(t), (5.21)

where the unity coefficients scaling αij(·), {i = 1, j = 2. or i = 2, j = 1} are Lipschitz

continuous. Here, the measurable gain function is represented by the unity

coefficients scaling αij(·); the connectivity can be captured by the Laplacian matrix

to which two equations we have already separated; the drifting term gi is similarly

defined as in Equation 5.9; and the standard deviation term is represented by

v : v > 0 times the difference term, as (yji − xi) in Equation 5.9.

Equations 5.20 and 5.20 describe the collective dynamics of a simplified SODM

model with two agents exchanging information with each other. To be specific,
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the unity coefficients scaling αij(·) is 1 when two agents are connected, and this

term becomes 0 when two agents are disconnected [59]. Note that between two

consecutive fires, the communication topology is fixed.

To show that this example is stochastic semistable, we apply the Theorem 1 to

analyze the consensus behavior. Here, we follow the similar assumptions made

in [59]. First is that αij(xj)− αji(xi) = 0 if and only if xi = xj, i 6= j, and the second

as (xi − xj)[αij(xj)− αji(xi) + g(xi)] ≤ −v2(x1 − x2). The first assumption follows

the zeroth law of thermodynamics, that the information is not exchanged between

agents with equal energy. At this step, we do not consider drifting since we focus

more on the energy level over the piece-wise gain dynamics than the dynamic

drifting. The second assumption follows the second law of thermodynamics, that

the information flows from high energy instances to low energy instances, which is

capture by the denominator in Equation 5.13. In addition, the second assumption

ensures that the term αij(xj)− αji(xi) + g(xi) is bounded by the negative intensity of

the diffusion coefficient 1
2 trDT(x)D(x) [59]. Note that the energy for the ith term

is a balance between the energy level of i and its own dynamic drifting, which is

perfectly satisfied by the term g(t) in Equation 5.13.

Therefore, we convert the f (x) and D(x) to matrix forms.

f (x) =

α12(x2(t))− α21(x1(t))

α21(x1(t))− α12(x2(t))



D(x) =

v(x1 − x2)

v(x2 − x1)


Note that, the stochastic term D(t)dw now stands for probabilistic measure of

information flow variations between two agents.
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Now we are ready to find the Lyapunov function V(x1, x2) for the exam-

ple. Recall that f−1(0) ∩D−1(0) is nonempty, we let this intersection set be{
(x1, x2) ∈ R2 : x1 = x2 = Υ, Υ ∈ R

}
. Let us consider the Lyapunov function candi-

date V(x1, x2) = 1
2 (x1−Υ)2 + 1

2 (x2−Υ)2. Then the infinitesimal generator L defined

in Definition 2 follows the Equation 5.19:

LV(x1, x2) = (x1 − Υ)[α12(x2(t))− α21(x1(t)) + g(x1)]+ (5.22)

(x2 − Υ)[α21(x1(t))− α12(x2(t)) + g(x2)]+ (5.23)

1
2

[(v(x1 − x2))2 + (v(x2 − x1))2] (5.24)

= (x1)[α12(x2(t))− α21(x1(t)) + g(x1)]+ (5.25)

(x2)[α21(x1(t))− α12(x2(t)) + g(x2)] + (v(x1 − x2))2 (5.26)

= (x1 − x2)[α12(x2)− α21(x1) + g(x1)] + v2(x1 − x2) (5.27)

≤ 0 (5.28)

where (x1, x2) ∈ R2, which proves that x1 = x2 = Υ is Lyapunov stable in probabil-

ity.

Further, we infer that LV(x1, x2) is strictly less than 0 because when x1 6= x2,

LV(x1, x2) 6= 0. Henceforth, using the Theorem 1, we conclude that x1 = x2 = Υ is

stochastically semistable for all Υ ∈ R.

Remark 3. Each individual agent’s behavior in SODM model, with neighbors’ dynamics

added, described by dynamic equation 5.9 is stochastic semistable, because every equilibrium

point of SODM is Lyapunov stable in probability

Note that, a globally stochastic semistable equilibrium cannot be achieved here,

since trajectory subest U 6= D, the open set, at the moment of neuron firing.
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Nevertheless, we have rigorously proved that the SODM model makes decisions

properly with consensus analysis under the free-response paradigm. Again, the

free-response paradigm is useful since we only want to receive proper decision

support when indicated. With the current setup, the decision makers will get

neutral suggestions when neither thresholds for two choices are reached. This

is helpful in the healthcare scheme since the healthcare providers do not wish

to redistribute the medical resources too often and thus increase the cost. Our

decision making scheme is helpful to provide decision support only when needed.

However, this does not necessary mean that a decision will never be made. In

our example, we proved that the SODM model is stochastic semistable, which

guarantees that a decision support is offered to healthcare providers in E-health

Cyber Ecosystems.

5.8 Chapter Summary

In this chapter, a collective decision making model named SODM is proposed with

the integration of a specific type of spiking neurons, exponential integrate-and-fire.

Our method is based on the well-known two-alternative forced choice task solver –

drift-diffusion model. We recognize that DDM and EIF share very common terms

in their dynamic equations, and the exponential term in EIF can be ignored during

the absolute refractory period. We have derived the probability of each agent’s

firing based on a Markov chain conditional premise. Then the mean field theory is

used to approximate the global criticality from local dynamics.

With analytical reasoning, experimental simulation and theoretical proof, it

is found that the global branching ratio follows a power-law distribution; and

the SODM system eventually evolves to a set of absorbing states, which are two
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main evidences suggesting the self-organized criticality behavior. The activation

function follows the Boltzmann state probability, and the convergence dynamics of

absorbing states follow Boltzmann distribution. Then the detailed theoretical proof

is given to show that the SODM system also achieves semistability and arrives a

semistable equilibrium state for consensus problems.

It has been successfully shown that the SODM model is able to provide decision

supports for healthcare providers with collective spiking behavior of each patients

in a proper and timely manner.
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Figure 5.2: Voltage Activated Current Gating Variable
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Figure 5.3: Power-law Probability Distribution
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Figure 5.4: In this Figure, as the firing probability increases with the membrane
potential, σ converges to 1 with proper connectivity constraints. Cases with
different numbers of active and connected neighbors are shown in a network
system with N = 10.



97

Figure 5.5: In this figure, we remove the constraint that the cumulation of the
local branching ratio in each iteration caps at 1. It is clear that as the number of
connected neighbors increases, the network system enters the active/loading phase
first, and then evolves to the dissipation/absorbing phase. The system clearly
shows SOC dynamics, that is σ = 1 at both minimum and maximum connectivity.
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Chapter 6

Conclusion

In this thesis, a complete end-to-end solution for E-health Cyber Ecosystem is

proposed to deal with 3 phases. The Phase 1 mainly focuses on patients and is

named as Health Risk Identification. A model based on machine-learning analysis

is developed to monitor patients’ risk level of having heart disease. Overall, 88.1%

of prediction accuracy is reported, which is 10% higher than existing research work.

The Phase 2 focuses on doctors/caregivers and is named Risk Level Confirmation.

An online queueing model is developed to pair patients with doctors to reconfirm

the high risk levels. This step mitigates the errors generated in Phase 1. The Phase

3 focuses on regional healthcare providers and is named Regional Health Alert

Level Decision Support. A novel decision making paradigm is developed combing

fields from neuroscience, machine learning, and statistical physics. Overall, all

three phases achieve satisfactory results.

This thesis work has presented different methods with regard to different

phases in E-health Cyber Ecosystem to solve for many problems. With the success-

ful patching among all involved parties and different layers, we believe that further

efforts to study the interactive and collaborative behaviors will pay off richly.
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