
University of Nebraska - Lincoln University of Nebraska - Lincoln

DigitalCommons@University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln

Department of Mathematics: Dissertations,
Theses, and Student Research Mathematics, Department of

7-2020

Optimal Allocation of Two Resources in Annual Plants Optimal Allocation of Two Resources in Annual Plants

David McMorris
University of Nebraska - Lincoln, david.mcmorris@huskers.unl.edu

Follow this and additional works at: https://digitalcommons.unl.edu/mathstudent

 Part of the Biology Commons, Control Theory Commons, Mathematics Commons, Numerical Analysis

and Computation Commons, Ordinary Differential Equations and Applied Dynamics Commons, and the

Plant Biology Commons

McMorris, David, "Optimal Allocation of Two Resources in Annual Plants" (2020). Department of
Mathematics: Dissertations, Theses, and Student Research. 102.
https://digitalcommons.unl.edu/mathstudent/102

This Thesis is brought to you for free and open access by the Mathematics, Department of at
DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Department of
Mathematics: Dissertations, Theses, and Student Research by an authorized administrator of
DigitalCommons@University of Nebraska - Lincoln.

https://digitalcommons.unl.edu/
https://digitalcommons.unl.edu/mathstudent
https://digitalcommons.unl.edu/mathstudent
https://digitalcommons.unl.edu/mathematics
https://digitalcommons.unl.edu/mathstudent?utm_source=digitalcommons.unl.edu%2Fmathstudent%2F102&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/41?utm_source=digitalcommons.unl.edu%2Fmathstudent%2F102&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/116?utm_source=digitalcommons.unl.edu%2Fmathstudent%2F102&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/174?utm_source=digitalcommons.unl.edu%2Fmathstudent%2F102&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/119?utm_source=digitalcommons.unl.edu%2Fmathstudent%2F102&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/119?utm_source=digitalcommons.unl.edu%2Fmathstudent%2F102&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/121?utm_source=digitalcommons.unl.edu%2Fmathstudent%2F102&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/106?utm_source=digitalcommons.unl.edu%2Fmathstudent%2F102&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.unl.edu/mathstudent/102?utm_source=digitalcommons.unl.edu%2Fmathstudent%2F102&utm_medium=PDF&utm_campaign=PDFCoverPages

OPTIMAL ALLOCATION OF TWO RESOURCES IN ANNUAL PLANTS

by

David McMorris

A DISSERTATION

Presented to the Faculty of

The Graduate College at the University of Nebraska

In Partial Fulfillment of Requirements

For the Degree of Doctor of Philosophy

Major: Mathematics

Under the Supervision of Professor Glenn Ledder

Lincoln, Nebraska

August, 2020

OPTIMAL ALLOCATION OF TWO RESOURCES IN ANNUAL PLANTS

David McMorris, Ph.D.

University of Nebraska, 2020

Advisor: Glenn Ledder

The fitness of an annual plant can be thought of as how much fruit is produced by

the end of its growing season. Under the assumption that annual plants grow to

maximize fitness, we can use techniques from optimal control theory to understand

this process. We introduce two models for resource allocation in annual plants which

extend classical work by Iwasa and Roughgarden to a case where both carbohydrates

and mineral nutrients are allocated to shoots, roots, and fruits in annual plants. In

each case, we use optimal control theory to determine the optimal resource allocation

strategy for the plant throughout its growing season as well as develop numerical

schemes to implement the models in MATLAB. Our results suggest that what is

optimal for an individual plant is highly dependent on initial conditions, and optimal

growth has the effect of driving a wide range of initial conditions toward common

configurations of biomass by the end of a growing season.

iii

ACKNOWLEDGMENTS

I would like to start by thanking my advisor, Glenn Ledder, for your years of teaching

and guidance, from the applied mathematics course you taught my first year of grad-

uate school to the completion of my dissertation. You’ve challenged me to approach

problems more as a modeler and less as a mathematician, and helped me become a

more self-sufficient researcher than I would have believed possible six years ago. I am

immensely grateful for the time and energy you have invested in advising me over the

years and in particular during these last months of quarantined dissertation writing.

I would also like to thank the rest of my committee, Clay Cressler, Huijing Du,

and Richard Rebarber, for the time spent reviewing my work, as well as everything

you have done to make this possible. Clay, our discussions about plant biology have

been an invaluable resource in making sense of the models, and it’s been great working

with another Hope College alum.

To the rest of the UNL Math Department, I am particularly grateful for the strong

sense of community we have here, and for everything you all do to make this a place

I will dearly miss. I would like to thank Nathan Wakefield and Allan Donsig for

your contributions for my development as an educator, and the breadth of teaching

experiences I have had at UNL as a result. I would also like to thank all my professors

for helping me develop as a mathematician. Thank you also to Marilyn Johnson and

the rest of the office staff.

Thank you to my fellow graduate students, and especially those in my cohort, for

taking this journey with me from the beginning. To my officemates over the years,

Andrew Connner, Mohsen Gheibi, and Ash DeClerk, thank you for all the laughs,

good conversations, and for letting me take over the whiteboard so often.

Special thanks to my undergraduate advisor at Hope College, Brian Yurk, for first

iv

introducing me to mathematical biology and research in mathematics, and encourag-

ing me to pursue a doctorate.

I would like to thank my parents, Marc and Jan, for encouraging my interest in

math and science from a young age, and for always being there for me throughout

my years of education. Thank you also to my siblings, Katie, John, and Paul, as well

as the rest of my support system of family and friends.

To my wife, Marla Williams, you are amazing, and I am so grateful for all your

love and support these past few years. You have believed in me when I didn’t think

I could reach this point, and have been a constant source of encouragement through

what have been some of the most difficult years of my life. I have been especially

thankful for your presence during quarantine these last several months as we finished

our dissertations together, and am excited to see where life takes us next.

v

Table of Contents

1 Introduction 1

1.1 Background Material . 3

1.1.1 Optimal Control Theory . 3

1.1.2 Iwasa and Roughgarden . 7

2 First Model: Carbon-Only Fruits 10

2.1 Introduction . 10

2.2 A Description of the Model . 11

2.2.1 Model Setup . 11

2.2.2 The PCSU . 14

2.2.2.1 PCSU Identities . 16

2.2.3 Optimal Control Problem . 17

2.2.4 Necessary Conditions . 18

2.3 Four-Phase Structure . 22

2.3.1 Final Interval - Reproductive Growth 23

2.3.2 Penultimate Interval - Mixed Vegetative/Reproductive Growth 26

2.3.3 Balanced Growth - Mixed Vegetative Growth 32

2.3.4 Initial Phase - Shoot or Root Growth 33

2.4 Phase Dynamics and Transitions . 34

2.4.1 Initial Phase: Shoot-Only Growth 34

vi

2.4.2 Initial Phase: Root-Only Growth 35

2.4.3 Balanced Growth - Shoot/Root Growth 36

2.4.4 Penultimate Interval - Shoot/Fruit Growth 39

2.4.5 Final Interval - Fruit-Only Growth 41

2.4.6 Initial Phase to Balanced Growth Transition 42

2.4.7 Balanced Growth to Penultimate Interval Transition 44

2.4.8 Penultimate Interval to Final Interval Transition 52

2.5 Numerical Scheme . 54

2.5.1 Penultimate Interval . 55

2.5.2 Locating the Start of the Penultimate Interval 56

2.5.3 Fruits - Penultimate Interval 57

2.5.4 Final Interval . 58

2.5.5 Balanced Growth . 58

2.5.6 Locating the Start of Balanced Growth 59

2.5.7 Initial Phase . 61

2.5.7.1 Shoot-Only Growth 61

2.5.7.2 Root-Only Growth 61

2.6 Numerical Results . 61

2.6.1 Initial Shoot Growth . 62

2.6.2 Initial Root Growth . 63

2.6.3 Balanced Growth First - Type S 65

2.6.4 Balanced Growth First - Type R 66

2.6.5 Final Fruits Value Contours 67

2.6.6 900 Fruit Contour . 68

2.7 Discussion . 73

vii

3 Second Model - Carbon/Nitrogen Fruits 76

3.1 Introduction . 76

3.2 A Description of the Model . 77

3.2.1 Model Setup . 77

3.2.2 Optimal Control Problem . 78

3.2.3 Necessary Conditions . 79

3.3 Four-Phase Structure . 82

3.3.1 Final Interval . 83

3.4 Phase Dynamics and Transition . 84

3.4.1 Initial Phase: Shoot-Only Growth 85

3.4.2 Initial Phase: Root-Only Growth 86

3.4.3 Balanced Growth - Shoot/Root Growth 87

3.4.4 Penultimate Interval - Root/Fruit Growth 89

3.4.5 Final Interval - Fruit-Only Growth 90

3.4.6 Initial Phase to Balanced Growth Transition 91

3.4.7 Penultimate Interval to Final Interval Transition 92

3.5 Numerical Scheme . 93

3.5.1 Locating the Penultimate Interval - Final Interval Boundary . 94

3.5.2 Penultimate Interval . 95

3.5.3 Locating the Start of the Penultimate Interval 96

3.5.4 Fruits - Penultimate Interval 98

3.5.5 Final Interval . 98

3.5.6 Balanced Growth . 98

3.5.7 Locating the Start of Balanced Growth 99

3.5.8 Initial Phase . 99

3.6 Numerical Results . 99

viii

3.6.1 Initial Shoot Growth . 100

3.6.2 Initial Root Growth . 100

3.6.3 Balanced Growth First - Type S 102

3.6.4 Balanced Growth First - Type R 103

3.6.5 Final Fruits Value Contours 104

3.6.6 600 Fruit Contour . 106

3.7 Discussion . 110

3.7.1 Future Directions . 112

A Necessary Conditions 113

A.1 n States, 2 Controls, Interval [0, T] 113

A.2 n States, 3 Controls, Interval [0, T] 119

B Supplemental Arguments and Derivations 125

B.1 First Model Growth Stage Argument 125

B.2 First Model Differential Equations Derivation 128

B.3 Second Model Differential Equations Derivation 129

C MATLAB Scripts 132

C.1 First Model Numerical Scheme MATLAB Script 132

C.2 Second Model Numerical Scheme MATLAB Script 163

Bibliography 197

1

CHAPTER 1

INTRODUCTION

Plant life history theory is generally concerned with the survival and reproductive

strategies plants employ throughout their life cycle, as well as how these processes

influence population dynamics. The question of how plants allocate resources, e.g. C,

N, P, and in some models, biomass, and what drives these allocation rules, is central to

this pursuit. There are several schools of thought which seek to provide a framework

for understanding these allocation patterns. One school of thought is that allocation

rules should ultimately be the result of natural selection, and therefore resource al-

location should optimize fitness in some sense (see [5,14]). Another framework views

biomass allocation as following certain allometric scaling relationships (see [3,9]), and

yet another views allocation not through the lens of an individual organism or specific

genome, but rather from a game-theoretical perspective in which allocation rules are

driven by competition, and follow an evolutionary stable strategy (see [2]). For a

more complete review of allocation theory, we refer the reader to Ledder et al. [7] or

Poorter et al. [13].

In this dissertation, we take the viewpoint that resource allocation, in annual

plants specifically, should serve to optimize overall fitness. It’s important to note

that, while patterns of growth consistent with optimal allocation have been observed

to some extent (see e.g. [9]), even if this is not universally true it is still important

2

to have a theory of optimal growth for comparison with observed behavior. Whereas

previous work has focused primarily on optimal allocation of a single resource, be it

carbon or biomass, and ignore the role of mineral nutrients, our work seeks to develop

a theory that acknowledges the importance of both carbon and mineral nutrients.

This is in line with the functional equilibrium hypothesis, which states that optimal

growth occurs when resources are allocated in such a way that no single resource is

any more limiting than any other (see [1, 12,15]).

This work is primarily an extension of classical work by Iwasa and Roughgarden

[5], who considered a model in which photosynthate (C) was allocated to shoots,

roots, and fruits, with the objective of optimizing fruit yield. Their work, which we

review in Section 1.1.2, uses optimal control theory to determine that fruit yield is

maximized by a three-phase growth path, characterized by an initial phase of shoot-

only or root-only growth, a period of ‘balanced growth’ during which shoots and

roots grow simultaneously, and ultimately a period of fruit-only growth at the end

of the growing season. We don’t assume the reader has any particular knowledge

of optimal control theory. In Section 1.1.1 we outline some of the basic theory, and

throughout this dissertation we introduce any additional control theoretical results

as they become relevant.

We present two models which extend the work of Iwasa and Roughgarden to a

case which incorporates the role of mineral nutrients directly into the model. In

particular, we model the allocation of carbon and nitrogen in an annual plant with

the objective of optimizing fruit yield, and use optimal control theory to determine

the optimal allocation strategies. The first model, discussed in Chapter 2, considers a

case where, although we incorporate a second resource, fruits remain carbon-only as

in [5]. This simplification allows us to obtain mathematical results which we use to

guide the analysis of our second model in Chapter 3, which removes this simplification

3

and incorporates nitrogen into the fruits as well. We find, among other things, that

this addition results in four, rather than three, phases of growth. This additional

phase consists of a period of mixed vegetative/reproductive growth, during which

the fruits and either the shoots or roots grow simultaneously, depending on the C:N

ratios in each organ. Furthermore, our results indicate that what is optimal for one

plant may not be optimal for another, and optimal growth is largely dependent on

initial conditions. Additionally, our results suggest that the presence of this range

of optimal strategies may have the ability to eliminate a high degree of variation in

a population, thus driving the population toward common sizes and optimal yields.

The question remains, however, as to whether plants actually have this degree of

strategic plasticity.

This dissertation is structured from here on in four parts. In Chapter 1, we

present background material on optimal control theory and the work conducted by

Iwasa and Roughgarden in [5]. In Chapters 2 and 3, we present our work with the

two models we have just described for optimal allocation of two resources in annual

plants. Appendix A contains control theoretical results we derive for the specific types

of control problems we encounter herein. Appendix B contains mathematical details

which we deemed necessary to include, but not enlightening to the reader. Lastly,

Appendix C contains the MATLAB code used to simulate each model.

1.1 Background Material

1.1.1 Optimal Control Theory

We will give a concise overview of basic optimal control theory and the Pontryagin

Maximum Principle, and refer the reader to [8] for a more thorough discussion of the

theory and application to problems in biology. In some sense, the simplest problem

4

in optimal control theory is of the form

max
u

∫ t1

t0

f(t, x, u) dt

subject to: x′(t) = g(t, x, u)

x(t0) = x0.

(1.1)

Here we call x(t) the state, and u(t) the control, and the goal is to find the pair

that maximizes the functional, subject to the given constraints. This is typically

accomplished with the aid of a set of necessary conditions, which an optimal pair

(x, u) must satisfy. Note that, whereas x must satisfy a differential equation, and is

thus continuous, we make no such assumption about u. We do, however, assume that

f and g are continuously differentiable in each argument, so that the control is, at

minimum, piecewise continuous. We will omit the technical details, and instead opt

for an overview of the procedure for solving these types of problems.

The solution process begins with forming a Hamiltonian, given by

H(t, x, u, λ) = f(t, x, u) + λ(t)g(t, x, u), (1.2)

where λ(t) is a piecewise differentiable function, referred to as either the adjoint or

costate. For an optimal pair (x∗, u∗), the adjoint must satisfy

λ′(t) = −∂H
∂x

(t, x∗, u∗, λ), λ(t1) = 0. (1.3)

The necessary condition that the optimal control must satisfy is given by

∂H

∂u
(t, x∗, u∗, λ) = 0. (1.4)

5

It may be helpful to think of optimal control problems as infinite-dimensional analogs

of constrained optimization problems from multivariable calculus, where the adjoint

plays a similar role to that of the Lagrange multiplier. This process is formalized in

Pontryagin’s Maximum Principle [11], a version of which appears in [8, Theorem 1.2]

for the optimal control problem (1.1).

Theorem 1.1 (Pontryagin’s Maximum Principle). If u∗ and x∗ are optimal for prob-

lem (1.1), then there exists a piecewise differentiable adjoint variable λ(t) such that

H(t, x∗(t), u(t), λ(t)) ≤ H(t, x∗(t), u∗(t), λ(t))

for all controls u at each time t, where the Hamiltonian H is

H = f(t, x(t), u(t)) + λ(t)g(t, x(t), u(t)),

and

λ′(t) = −∂H(t, x∗(t), u∗(t), λ(t))

∂x

λ(t1) = 0.

It is worth mentioning one additional class of optimal control problems, involving

problems with several states and several bounded controls. Here, and throughout the

dissertation, we will use the notation ~x(t) = 〈x1(t), x2(t), . . . , xn(t)〉 to represent the

function ~x : R→ Rn and ~g(t, ~x, ~u) = 〈g1(t, ~x, ~u), g2(t, ~x, ~u), . . . , gn(t, ~x, ~u)〉 to represent

the function ~g : R× Rn × Rm → Rn. Of particular importance to us are problems of

6

the form

max
~u

∫ t1

t0

f(t, ~x, ~u) dt

subject to: ~x ′(t) = ~g(t, ~x, ~u), ~x(t0) = ~x0

ak ≤ uk ≤ bk.

(1.5)

Here we form a Hamiltonian with n adjoints, one for each of the states:

H(t, ~x, ~u,~λ) = f(t, ~x, ~u) + ~λ(t) · ~g(t, ~x, ~u), (1.6)

and (1.3) is replaced with the following:

λ′i(t) = −∂H
∂xi

(t, ~x ∗, ~u ∗, ~λ), λi(t1) = 0 for i = 1, . . . , n. (1.7)

Rather than (1.4), the necessary conditions for optimal controls for (1.5) state that

the following must hold at (~x ∗, ~u ∗).


uk = ak, if ∂H

∂uk
< 0

ak ≤ uk ≤ bk, if ∂H
∂uk

= 0

uk = bk, if ∂H
∂uk

> 0

(1.8)

The types of control problems which arise from the modeling in this dissertation

are an extension of the class of problems given by (1.5), with additional constraints

on the controls. We will discuss how the necessary conditions change in these cases as

they are introduced, as well as work through the derivation of the necessary conditions

in Appendix A.

7

1.1.2 Iwasa and Roughgarden

The work presented in this dissertation primarily serves as an extension of a classical

work by Iwasa and Roughgarden [5], in which they model optimal allocation of pho-

tosynthate (carbohydrates) in a plant composed of shoots (S(t)), roots (R(t)), and

fruits (F (t)). They assumed that shoots and roots work together to produce photo-

synthate, some fraction of which is allocated to each of the three organs, with the

objective of maximizing fruit production by the end of the growing season, assumed

to be of fixed length T .

Let g(S,R) be the rate of photosynthate production, and controls u0(t), u1(t), and

u2(t) be the fractions of photosynthate allocated to fruits, shoots, and roots at time

t, respectively. The model they used is given by

dS

dt
= u1(t)g(S,R), S(0) = S0 (1.9)

dR

dt
= u2(t)g(S,R), R(0) = R0 (1.10)

dF

dt
= u0(t)g(S,R), F (0) = 0 (1.11)

with the optimality condition

max
~u

F (T) = max
~u

∫ T

0

dF

dt
dt = max

~u

∫ T

0

u0(t)g(S,R) dt. (1.12)

In order to make the model biologically realistic, they also required the controls to

be bounded in [0, 1] and sum to one.

In line with what we discussed in Section 1.1.1, Iwasa and Roughgarden solved

this optimal control problem by means of Pontryagin’s Maximum Principle, and the

8

use of the Hamiltonian

H = u0(t)g(S,R) + λ1(t)u1(t)g(S,R) + λ2(t)u2(t)g(S,R) (1.13)

where the adjoints λ1 and λ2 satisfy

dλ1

dt
= −u0(t)gS(S,R)− λ1(t)u1(t)gS(S,R)− λ2(t)u2(t)gS(S,R), λ1(T) = 0

dλ2

dt
= −u0(t)gR(S,R)− λ1(t)u1(t)gR(S,R)− λ2(t)u2(t)gR(S,R), λ2(T) = 0.

Iwasa and Roughgarden found that the optimal strategy for a plant, under their

model, was to allocate carbohydrates to the organ with the greatest ability to con-

tribute to the final fruit yield, that is, the organ with the highest marginal value.

They were able to associate the marginal values of shoots and roots with the ad-

joints λ1(t) and λ2(t). This means that at time t, the value of λ1(t) is the amount of

additional units of fruits that will be present at time T , given a unit investment of

carbohydrates into the shoots at time t, and likewise for λ2(t) and the roots. Further-

more, the marginal value of fruits is always 1, because a unit of carbohydrate invested

in the fruits cannot be compounded for increased fruit production. Note that this

strategy corresponds to maximizing the Hamiltonian (1.13) pointwise, which is to be

expected from Pontryagin’s Maximum Principle.

This rule for allocation results in a three-phase optimal growth path, an example

of which is shown in Figure 1.1. The plant first addresses any deficiency in either

shoots or roots and converges to a phase during which growing both shoots and roots

together is optimal. Iwasa and Roughgarden termed this phase of mixed growth

‘balanced growth.’ Following balanced growth, there is a phase during which only

the fruits grow, which begins when both the marginal values of shoots and roots drop

9

0

50

100

150

200

250

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Fraction of Growing Season

0

0.5

1

Figure 1.1: Typical three-phase growth pattern from Iwasa and Roughgarden’s model.
The top plot contains shoots, root, and fruits in units of carbon and the bottom plot
contains the (dimensionless) controls.

below that of fruits, i.e. both λ1(t) and λ2(t) drop below 1.

In Figure 1.1, we can see an example of this three-phase pattern of growth. Note

that here the x-axis represents the fraction of the growing season rather than the

actual growing time. The plant begins with a short period of root-only growth,

followed by a period of balanced growth, and lastly a period of fruit-only growth

at the end of the season. Furthermore, note that during balanced growth we see a

gradual increase in allocation to shoots and corresponding decrease in allocation to

roots, reflecting the fact that in this simulation g was chosen so that the amount of

shoots was the limiting factor in photosynthesis. So, while the plant initial invested

in roots to make up for the deficiency, during balanced growth it transitioned toward

investing more in shoots to avoid photosynthesis limitation.

10

CHAPTER 2

FIRST MODEL: CARBON-ONLY FRUITS

2.1 Introduction

The first model for resource allocation in annual plants we will discuss extends the

work of Iwasa and Roughgarden [5] to a scenario where the growth of the roots and

shoots relies on two resources, rather than only one. For the sake of convenience,

we will use the terms ‘carbon’ and ‘nitrogen’ to refer to more complicated classes of

carbohydrates and mineral nutrients. As a simplifying assumption, we assume that

fruits are only reliant on carbon for growth.

This assumption makes the mathematical analysis more feasible, and aligns bio-

logically with plants that encase small seeds in large carbon-rich fruits. While this

may match our colloquial definition of fruits, e.g. watermelons, it is not an accurate

representation of many types of annual plants for which the term ‘fruits’ refers to

seeds, nuts, etc., and for which nitrogen content is not negligible. In Chapter 3 we

will discuss a second model which extends our first model to a case where the nitrogen

content in fruits is accounted for.

In this chapter, we will begin with a description of the model and the optimal

control framework in Section 2.2. Next, we will go through the mathematical results

we have obtained. These are split into two sections - Section 2.3 which outlines

11

the four-phase structure of the optimal solution, and Section 2.4 which discusses the

dynamics within each phase as well as results about how the plant transitions from

one phase to the next. In Section 2.5 we will present the numerical scheme used to

simulate the model in MATLAB, followed by a description of our numerical results

in Section 2.6 and ultimately a discussion in Section 2.7.

2.2 A Description of the Model

In this section we will introduce the first model for resource allocation in annual

plants as well as the optimal control framework we used for determining the optimal

growth trajectory for maximal fruit growth. We will begin by introducing relevant

notation and conceptualizations, followed by the model equations.

2.2.1 Model Setup

We consider an annual plant with three organs - shoots, roots, and fruits. Shoots

consist of all above-ground vegetative biomass and roots all below-ground vegetative

biomass. Fruits refer to any reproductive biomass, be it in the form of colloquial

‘fruits’, nuts, seeds, etc. Biomass of each organ is measured in units of ‘carbon’ where

we used ‘carbon’ as a catch-all term for carbohydrates produced by the shoots. The

functions S(t), R(t), and F (t) give the biomass of shoots, roots, and fruits, respec-

tively, at time t throughout a fixed growing season [0, T]. We assume that the plant

relies on two resources, which for simplicity we refer to as ‘carbon’ and ‘nitrogen,’

though as previously mentioned we use these terms loosely to refer to more compli-

cated classes of carbohydrates and soil nutrients. We assume that carbon is fixed

by the shoots at a rate of C(S) and nitrogen is absorbed by the roots at a rate of

N(R). Note that this is choice we made to simplify the model, as in reality the rate of

12

carbon fixation depends on both shoots and roots via transpiration. Throughout the

growing season, fractions of carbon u1C(t), u2C(t), and u0C(t) are allocated to shoots,

roots, and fruits, respectively at time t, and because this model focuses on the case

in which fruits are nitrogen-deficient, we also have fractions of nitrogen u1N(t) and

u2N(t), which are allocated to the shoots and roots, respectively, at time t. The

resources pass through a synthesizing unit (SU) in each organ, where they are con-

verted into biomass. Since we assume that fruits are carbon-only we assume perfect

conversion from resources to biomass. For the shoots and roots, we use Kooijman’s

parallel complementary synthesizing unit (PCSU) function from [6], employing the

same simplification seen in [7, Appendix A], given by

g(A,B) =
A2B + AB2

A2 + AB +B2
(2.1)

to provide the rate of tissue production when resources are provided at rates A and

B. As the tissue is measured in units of carbon, we need conversion factors νS and νR

which give the fixed stoichiometric C:N ratios in the shoots and roots, respectively.

We specify initial conditions S(0) = S0, R(0) = R0, and F (0) = 0 which leads to the

following model:

dS

dt
= g(u1CC, νSu1NN), S(0) = S0 (2.2)

dR

dt
= g(u2CC, νRu2NN), R(0) = R0 (2.3)

dF

dt
= u0CC, F (0) = 0 (2.4)

Note that we suppress the arguments in most functions for convenience. This model

is shown schematically in Figure 2.1,

Because the functions u0C , u1C , u2C , u1N , and u2N represent fractions of carbon

13

Shoot SU

Fruit SU

Root SU

C(S), N(R)
u0CC

u1C
C,
u1N

N

u
2CC, u

2NN

g(u2CC, νRu2NN)

u0CC

g(u1CC, νSu1NN)
Shoot Tissue

Fruit Tissue

Root Tissue

Figure 2.1: Model Schematic

and nitrogen, respectively, we impose several restrictions. First, we require that each

function be piecewise continuous and bounded between 0 and 1. Furthermore, as we

assume full utilization of each resource, we assume that

u0C + u1C + u2C = 1 = u1N + u2N (2.5)

at all times t ∈ [0, T]. Additionally, to be biologically realistic, we assume that the

plant’s capacity to ‘collect’ resources increases continuously with biomass, meaning

that we require both C and N to be continuously differentiable, and

dC

dS
> 0 and

dN

dR
> 0. (2.6)

We also assume that the plant experiences possibly diminishing returns with increased

biomass, meaning that

d2C

dS2
≤ 0 and

d2N

dR2
≤ 0.

14

2.2.2 The PCSU

Before we introduce the optimal control framework we will use for determining the

optimal resource allocation strategy, there are several important features of the PCSU

that merit discussion. As introduced in (2.1), for resource fluxes A and B, the PCSU

function

g(A,B) =
A2B + AB2

A2 + AB +B2
, ((2.1) revisited)

gives the rate of tissue production. Note that when both resources are received by

the SU at the same rate, we have

g(A,A) =
A3 + A3

A2 + A2 + A2
=

2A3

3A2
=

2

3
A, (2.7)

in which case we observe that the output rate is 2/3rds the input rate. We call this

the efficiency of the SU. Furthermore, note that when only one resource is present,

the tissue production rate is zero as g(A, 0) = 0 = g(0, B) for non-zero A and B,

respectively. Additionally, this is still true when neither resource is present. Indeed,

using the polar transformations A = r cos(θ) and B = r sin(θ) we see

lim
(A,B)→(0,0)

g(A,B) = lim
r→0

r3 cos2(θ) sin(θ) + r3 cos(θ) sin2(θ)

r2 + r2 cos(θ) sin(θ)

= lim
r→0

r
cos2(θ) sin(θ) + cos(θ) sin2(θ)

1 + 1
2

sin(2θ)
(2.8)

= 0.

Because of this, we will take g to be the continuous extension of this function to the

origin such that g(0, 0) = 0.

15

Now, by changing variables to either zB = B
A

or zA = A
B

, we can rewrite g as

g(A,B) = AG(zB) = BG(zA), (2.9)

where

G(z) =
z(1 + z)

1 + z + z2
. (2.10)

The fact that we can represent the PCSU function in this manner will aid in our

analysis by restricting the nonlinearities present to a function of a single variable. By

the above discussion, we observe that although zB and zA may be undefined when

either A or B or both are zero, both AG(zB) and BG(zA) are zero when at least one

of A or B is zero. It is important to note, however, that

lim
(A,B)→(0,0)

G(zB) and lim
(A,B)→(0,0)

G(zA)

are both undefined without the additional factor of A or B, respectively. Additionally,

it will facilitate late analysis of the model to note that

G′(z) =
1 + 2z

(1 + z + z2)2
, (2.11)

and as before neither

lim
(A,B)→(0,0)

G′(zB) nor lim
(A,B)→(0,0)

G′(zA)

exists. However, a similar argument to (2.8) can be used to verify that both AG′(zB)

and BG′(zA) are zero when either A or B is zero. Furthermore, it is worth noting

16

that both G and G′ are bounded between 0 and 1 and that

G(0) = 0, G′(0) = 1, lim
z→∞

G(z) = 1, lim
z→∞

G′(z) = 0 (2.12)

2.2.2.1 PCSU Identities

There are two identities related to the PCSU function and its derivatives that will be

repeatedly cited in later analysis, and so bear mentioning here. We will start with

the following notation:

G2(z) = G′(1/z) =
z3(2 + z)

(1 + z + z2)2
. (2.13)

Employing this notation, we have the first identity.

Proposition 2.1.

G(z)− zG′(z) = G2(z). (2.14)

Proof. Using (2.10), (2.11), and (2.13) we have

G(z)− zG′(z) =
z(1 + z)

1 + z + z2
− z(1 + 2z)

(1 + z + z2)2

=
(z + z2)(1 + z + z2)− z − 2z2

1 + z + z2 + z + z2 + z3 + z2 + z3 + z4

=
z + z2 + z3 + z2 + z3 + z4 − z − 2z2

1 + 2z + 3z2 + 2z3 + z4

=
2z3 + z4

1 + 2z + 3z2 + 2z3 + z4

=
z3(2 + z)

(1 + z + z2)2

= G2(z).

17

The second useful identity is as follows.

Proposition 2.2.

G′2(z) = −zG′′(z). (2.15)

Proof. Differentiating (2.14) from Proposition 2.1, we have

G′2(z) =
d

dz
(G(z)− zG′(z)) = G′(z)− zG′′(z)−G′(z) = −zG′′(z).

2.2.3 Optimal Control Problem

In this section we will translate the original problem of finding the growth trajectory

to maximize fruit biomass at the end of the growing season to an optimal control

problem. Noting that

F (T) =

∫ T

0

dF

dt
dt+ F (0) =

∫ T

0

u0C(t)C(S) dt (2.16)

we can reframe our goal as maximizing the right hand side of (2.16). By imposing

the previously discussed constraints that the fractions of each resource, henceforth

referred to as the controls, be bounded in [0, 1] and fractions of the same resource sum

to unity, along with the differential equations for the biomass of each vegetative organ,

we can associate the optimal growth trajectory with the solution to the following

optimal control problem.

18

max
~u

∫ T

0

u0CC dt

subject to: uiC ≥ 0, ujN ≥ 0 for i = 0, 1, 2, j = 1, 2

u0C + u1C + u2C = 1 = u1N + u2N

dS

dt
= g(u1CC, νSu1NN), S(0) = S0

dR

dt
= g(u2CC, νRu2NN), R(0) = R0

(2.17)

Note that here we only require that the controls be non-negative, because implicit

in the combination of those constraints and the equality constraints we recover the

requirement that each control must also be less than one.

2.2.4 Necessary Conditions

We will solve the optimal control problem (2.17) using a set of necessary conditions

that must be satisfied by the solution. The presence of the two equality constraints

makes this problem non-standard, so we take the time to derive the necessary con-

ditions for this type of problem. This derivation is found in Appendix A. Since we

can essentially think of the carbon controls and the nitrogen controls separately, the

necessary conditions for (2.17) are a combination of the conditions for the two types

of problems discussed in Appendix A. We begin by forming a Hamiltonian with two

piecewise differentiable adjoints, λ1(t) and λ2(t):

H = u0CC + λ1g(u1CC, νSu1NN) + λ2g(u2CC, νRu2NN). (2.18)

19

The necessary conditions for optimality are as follows:



uiC = 0 if ∂H
∂uiC

< ∂H
∂ujC

, for all j 6= i

uiC = 1 if ∂H
∂uiC

> ∂H
∂ujC

, for all j 6= i

0 ≤ uiC ≤ 1 if ∂H
∂uiC

= ∂H
∂ujC

, for any j 6= i

uiN = 0, ujN = 1 if ∂H
∂uiN

< ∂H
∂ujN

0 ≤ u1N , u2N ≤ 1 if ∂H
∂u1N

= ∂H
∂u2N

(2.19)

What this essentially says is that all the carbon is being allocated to the organ such

that the partial derivative of the Hamiltonian with respect to that organ’s carbon

control is larger than the partial derivatives of the Hamiltonian with respect to the

other two carbon controls. Likewise for the nitrogen controls. Note also that by [8]

the Hamiltonian must be constant along the optimal trajectory because the optimal

control problem (2.17) is autonomous (t is not explicit in the integrand or any of the

constraints).

As we mentioned in Section 2.2.2, it’s possible to rewrite the synthesizing unit

function g via a change of variables. In particular, we can rewrite (2.2), (2.3), and

(2.4) via (2.9) and the substitutions

z1C =
u1CC

νSu1NN
(2.20)

z2C =
u2CC

νRu2NN
. (2.21)

20

This results in the following system

dS

dt
= νSu1NNG(z1C), S(0) = S0 (2.22)

dR

dt
= νRu2NNG(z2C), R(0) = R0 (2.23)

dF

dt
= u0CC, F (0) = 0 (2.24)

where G is given by (2.10). Therefore, the Hamiltonian can be rewritten as

H = u0CC + λ1νSu1NNG(z1C) + λ2νRu2NNG(z2C). (2.25)

Now, as we previously mentioned, we can essentially think of the carbon controls and

nitrogen controls separately. The above formulation provides an avenue for restricting

the appearance of the carbon controls to the argument of G by letting us write

g(Carbon Flux,Nitrogen Flux) = (Nitrogen Flux) ·G
(

Carbon Flux

Nitrogen Flux

)
.

When working directly with the nitrogen controls, it will be useful to do a similar

change of variables and write

g(Carbon Flux,Nitrogen Flux) = (Carbon Flux) ·G
(

Nitrogen Flux

Carbon Flux

)
.

With this in mind, we can make the substitutions

z1N =
νSu1NN

u1CC
(2.26)

z2N =
νRu2NN

u2CC
, (2.27)

21

and rewrite (2.2), (2.3), and (2.4) as

dS

dt
= u1CCG(z1N), S(0) = S0 (2.28)

dR

dt
= u2CCG(z2N), R(0) = R0 (2.29)

dF

dt
= u0CC, F (0) = 0. (2.30)

As before, the Hamiltonian can be rewritten as

H = u0CC + λ1u1CCG(z1N) + λ2u2CCG(z2N). (2.31)

Using (2.25) and (2.31), we can compute the following partial derivatives:

∂H

∂u0C

=
∂

∂u0C

u0CC = C (2.32)

∂H

∂u1C

=
∂

∂u1C

λ1νSu1NNG(z1C) = λ1νSu1NNG
′(z1C)

∂

∂u1C

z1C = λ1CG
′(z1C) (2.33)

∂H

∂u2C

=
∂

∂u2C

λ2νRu2NNG(z2C) = λ2νRu2NNG
′(z2C)

∂

∂u2C

z2C = λ2CG
′(z2C) (2.34)

∂H

∂u1N

=
∂

∂u1N

λ1u1CCG(z1N) = λ1u1CCG
′(z1N)

∂

∂u1N

z1N = λ1νSNG
′(z1N) (2.35)

∂H

∂u2N

=
∂

∂u2N

λ2u2CCG(z2N) = λ2u2CCG
′(z2N)

∂

∂u2N

z2N = λ2νRNG
′(z2N). (2.36)

It is important to recall that lim(A,B)→(0,0)G
′(A/B) is undefined, so these partial

derivatives are not necessarily defined in cases when several controls go to zero simul-

taneously. However, G′(z) is bounded between 0 and 1, so this bound is preserved in

the limit as well.

The last piece of the optimal control framework concerns the adjoints λ1 and λ2.

22

By the derivation of the necessary conditions in Appendix A, we have that

λ′1 = −∂H
∂S

, λ1(T) = 0 (2.37)

λ′2 = −∂H
∂R

, λ2(T) = 0. (2.38)

Making use of (2.25) and (2.31) we can express (2.37) and (2.38) as follows.

λ′1 = −∂H
∂S

= − ∂

∂S
[u0CC + λ1νSu1NNG(z1C) + λ2νRu2NNG(z2C)]

= −
[
u0CCS + λ1νSu1NNG

′(z1C)
∂z1C

∂S
+ λ2νRu2NNG

′(z2C)
∂z2C

∂S

]
= − [u0CCS + λ1u1CCSG

′(z1C) + λ2u2CCSG
′(z2C)]

= −CS [u0C + λ1u1CG
′(z1C) + λ2u2CG

′(z2C)] (2.39)

λ′2 = −∂H
∂R

= − ∂

∂R
[u0CC + λ1u1CCG(z1N) + λ2u2CCG(z2N)]

= −
[
λ1u1CCG

′(z1N)
∂z1N

∂R
+ λ2u2CCG

′(z2N)
∂z2N

∂R

]
= − [λ1νSu1NNRG

′(z1N) + λ2νRu2NNRG
′(z2N)]

= −NR [λ1νSu1NG
′(z1N) + λ2νRu2NG

′(z2N)] . (2.40)

2.3 Four-Phase Structure

In this section we will discuss the structure of the solution to (2.17). Generally

speaking, the solution exhibits a four-phase structure. First, the plant experiences an

initial phase of vegetative growth in which it addresses deficiencies in either shoots

23

or roots. Second, the plant undergoes a phase of balanced growth growth when

both the shoots and the roots are growing. Third, there is a phase of mixed vege-

tative/reproductive growth, during which the shoots continue to grow and the fruits

begin growing simultaneously. Lastly, the plant completes the growing season with a

period of reproductive growth, during which only the fruits are growing.

We will begin with the analysis of the four-phase structure of the optimal solution.

Because we know that the adjoints, λ1 and λ2, vanish at the end of the growing season,

we use that as the starting point for our analysis and proceed in reverse.

2.3.1 Final Interval - Reproductive Growth

We begin by showing that there exists a switching time after which all carbon is

allocated to fruit production. We will refer to the interval between the switching

time and T the final interval. Note that by (2.37) and (2.38), we have that λ1(T) =

0 = λ2(T). Furthermore, recall that G′ is bounded. Therefore, using the shorthand

C(S(T)) = C∗, we have by (2.32), (2.33), and (2.34) that

∂H

∂u0C

(T) = C∗ > 0 (2.41)

∂H

∂u1C

(T) = 0 (2.42)

∂H

∂u2C

(T) = 0. (2.43)

This implies that

∂H

∂u0C

(t) >
∂H

∂u1C

(T) and
∂H

∂u0C

(t) >
∂H

∂u2C

(T) (2.44)

at t = T . Therefore, by (2.19), we have that u0C(T) = 1 and u1C(T) = 0 = u2C(T).

That is, at the end of the growing season the plant is allocating all of the available

24

carbon to the fruits, which in turn means that only the fruits are growing at this

time.

Now, because both λ1 and λ2 are continuous, λ1(T) = 0 = λ2(T), and G′ is

bounded, there must be some ε > 0 such that for all t in [T − ε, T] we have that

(2.44) still holds. So, we have the existence of a (potentially small) interval of fruit-

only growth. Now, writing CS(S(T)) = C∗S, during this interval we have by (2.39)

that

λ′1 = −C∗S (2.45)

because here we have u0C = 1, u1C = 0 = u2C and G′ is bounded. Because λ1(T) = 0

this implies that during this interval

λ1(t) = C∗S · (T − t). (2.46)

Additionally, because during this interval we have a scenario where for i = 1, 2 either

only uiC is zero or both uiC and uiN are zero, we have by (2.39) that

λ′2 = 0. (2.47)

This is because either uiC alone is zero, in which case ziN →∞ and by (2.12) we have

that G′(ziN)→ 0, or in the case that both uiC and uiN are zero then uiNG
′(ziN) = 0

because G′ is bounded. In either case, we get (2.47). So, because λ2(T) = 0, we have

that the following holds throughout the interval:

λ2(t) = 0. (2.48)

25

Therefore, because G′ is bounded, we have by (2.36) that

∂H

∂u2N

= 0.

Since (2.35) is non-negative in this interval, it must be the case that

∂H

∂u2N

≤ ∂H

∂u1N

. (2.49)

If this inequality were strict, then by (2.19) we would have u1N = 1. In this case,

because u1C = 0, we have that z1N →∞, and so by (2.12) we have that G′(z1N)→ 0.

This, however, implies that

∂H

∂u1N

= 0 =
∂H

∂u2N

,

and so the inequality (2.49) cannot be strict, and both partial derivatives are zero in

this interval. In particular, G′(z1N) = 0, which means that z1N →∞ and so z1C = 0,

which by (2.12) implies that G′(z1C) = 1. In summary then, during this interval we

have

∂H

∂u0C

= C∗,
∂H

∂u1C

= λ1C
∗,

∂H

∂u2C

=
∂H

∂u1N

=
∂H

∂u2N

= 0. (2.50)

Now, since λ1 is decreasing by (2.45), we see from (2.50) that the partial derivatives

will maintain the same ordering as long as λ1 < 1. We define the switching point

t∗ to be the time when the plant switches to fruit-only growth. We can identify

the switching point as the time when λ1(t) = 1, and we can use (2.46) to define t∗

implicitly by the equation

C∗S · (T − t∗) = 1. (2.51)

26

By solving for t∗ in (2.51) we can obtain

t∗ = T − 1

C∗S
. (2.52)

In doing so, note that we have extended this period of fruit-only growth from the

interval [T − ε, T] to [t∗, T]. Note also that during the final interval we have by (2.18)

that

H = C,

and because the Hamiltonian must be constant along the optimal trajectory, we have

that

H = C∗ (2.53)

throughout the growing season.

2.3.2 Penultimate Interval - Mixed Vegetative/Reproductive Growth

We will now continue backwards to show that, prior to the final interval of fruit-only

growth, we have a period of mixed vegetative/reproductive growth, during which

both the shoots and fruits grow simultaneously. This interval will be referred to as

the penultimate interval. Recall that at the beginning of the final interval we have

that λ1 = 1, and so (2.50) becomes

∂H

∂u0C

=
∂H

∂u1C

= C,
∂H

∂u2C

=
∂H

∂u1N

=
∂H

∂u2N

= 0. (2.54)

In order to apply (2.19) we need to determine the ordering of the partial derivatives

of H in an interval immediately prior to t∗. We begin with the following inequality.

Lemma 2.3. ∂H
∂u2C

< ∂H
∂u0C

in an open interval immediately prior to t∗.

27

Proof. Because λ2(t∗) = 0, λ2 is continuous, and G′ is bounded, there exists ε > 0

such that for all t in (t∗ − ε, t∗) we have

λ2G
′(z2C)C < C,

that is

∂H

∂u2C

<
∂H

∂u0C

as desired.

Note that, regardless of where ∂H
∂u1C

falls in the order of partial derivatives, the

strict inequality in Lemma 2.3 means that there is no root growth during this period

of time immediately prior to t∗. Next, we will show that during this penultimate

interval we have ∂H
∂u1C

= ∂H
∂u0C

. We will prove this in two steps, the first of which

indicates the allocation to shoots at this point in the growing season is at least as

important to overall fitness as allocation to fruits.

Lemma 2.4. ∂H
∂u1C

≥ ∂H
∂u0C

in an open interval immediately prior to t∗.

Proof. Suppose to the contrary that for some ε > 0 we have for all t in (t∗ − ε, t∗)

that

∂H

∂u1C

<
∂H

∂u0C

.

By Lemma 2.3 we have that

∂H

∂u2C

<
∂H

∂u0C

as well, and so by (2.19) this means that u0C = 1 and u1C = 0 = u2C . As in the final

interval, this yields

∂H

∂u0C

= C,
∂H

∂u1C

= λ1C.

28

However, as λ1(t∗) = 1 and by (2.39) we have that λ′1 < 0, it must be the case that

λ1 > 1. This then means that

∂H

∂u1C

>
∂H

∂u0C

,

a contradiction. Therefore we have shown that during this interval we have

∂H

∂u1C

≥ ∂H

∂u0C

.

Lemma 2.5. ∂H
∂u1C

= ∂H
∂u0C

in an open interval immediately prior to t∗.

Proof. First, note that by Lemma 2.4 we have that

∂H

∂u1C

≥ ∂H

∂u0C

in an open interval immediately prior to t∗. Suppose now that the inequality is strict,

and that in fact we have

∂H

∂u1C

>
∂H

∂u0C

.

Now, combining this supposition with Lemma 2.3 gives us

∂H

∂u1C

>
∂H

∂u0C

>
∂H

∂u2C

,

which by (2.19) means that

u1C = 1, u0C = 0 = u2C .

29

This then gives us

z1N =
νSu1NN

C
,

which, for fixed C and N , is bounded between 0 and νSN
C

. Therefore, we have that

G′(z1N) 6= 0. Furthermore, recall that we know that λ2(t∗) = 0 and G′ is bounded.

This means that there is a (potentially smaller) open interval immediately prior to t∗

in which we have

λ1νSNG
′(z1N) > λ2νRNG

′(z2N),

or in terms of the Hamiltonian,

∂H

∂u1N

>
∂H

∂u2N

.

By (2.19), this means that u1N = 1 and u2N = 0 during this interval. With this

configuration of the controls, we have that N = N∗ is constant because R′ = 0 and

this interval reaches this final interval. So, we have that

z1C =
C

νSN∗
> 0.

This then means that G′(z1C) < 1, and so as λ1(t∗) = 1 and both z1C and λ1 are

continuous here there exists ε > 0 such that for all t in (t∗ − ε, t∗) we have

λ1G
′(z1C) < 1

that is

∂H

∂u1C

<
∂H

∂u0C

,

30

a contradiction. Therefore, we have

∂H

∂u1C

=
∂H

∂u0C

in an open interval immediately prior to t∗, as desired.

Putting together Lemmas 2.3 and 2.5, we get

∂H

∂u2C

<
∂H

∂u1C

=
∂H

∂u0C

. (2.55)

By (2.19), this means that u2C = 0 and by (2.32) and (2.33) we obtain

λ1G
′(z1C) = 1 (2.56)

during this interval. Lastly, we will verify that here u1N = 1 and u1C > 0, which in

turn will be used to show that this interval is indeed marked by simultaneous fruit

and shoot growth.

Lemma 2.6. u1N = 1 and u1C > 0 in an open interval immediately prior to t∗.

Proof. We will first show that u1N is non-zero. Recall that by (2.55) and (2.19), we

have that u2C = 0 in an open interval immediately prior to t∗. Suppose furthermore

that u1N = 0 during this interval as well. By (2.2) and (2.3), this means that both

S ′ = 0 and R′ = 0. As this interval is followed by a period of fruit-only growth,

in order to maximize the integral in (2.17) it must be the case that u0C = 1. We

therefore have

u0C = 1, u1C = 0 = u2C , u1N = 0, u2N = 1.

31

In particular, because here we are again in a case where u0C = 1, u1C = 0 = u2C , and

λ2(t∗) = 0 we again arrive at a situation where

∂H

∂u0C

= C,
∂H

∂u1C

= λ1C

following the same argument as in the justification for the existence of a final interval

of fruit-only growth. However, as we know that here λ1 > 1 we have that

∂H

∂u0C

<
∂H

∂u1C

,

which regardless of the relationship between ∂H
∂u2C

with the other two partial deriva-

tives contradicts the fact that u0C = 1. Hence, u1N > 0.

Now, because λ1 > 1 we know by (2.56) that z1C > 0 so that G′(z1C) < 1.

Because u1N > 0, this allows us to conclude that u1C > 0 as well without any concern

regarding ambiguous limiting behavior with G′(z1C) when one or both controls are

zero. This in turn implies that

∂H

∂u1N

= λ1νSNG
′(z1N) > 0.

Now, if u1N < 1 we would also have u2N > 0. Because u2C = 0, this would imply

that z2N →∞, and so by (2.12) we would have G′(z2N) = 0. This would then imply

that

∂H

∂u1N

>
∂H

∂u2N

,

which by (2.19) means that u1N = 1, a contradiction. Therefore, it must have been

the case that u1N = 1 in addition to u1C > 0 in an open interval immediately prior

to t∗, as desired.

32

At this point, note that we have only showed that

u1C > 0, u2C = 0, u1N = 1, u2N = 0.

Lastly then, as λ1 > 1 for this open interval before t∗, λ1(t∗) = 1, and λ1 is continuous,

we have that

1 = lim
t→t∗−

λ1 = lim
t→t∗−

1

G′(z1C)
=⇒ lim

t→t∗−
z1C = 0. (2.57)

As we have already verified that u1N = 1 this means that

lim
t→t∗−

u1C = 0, (2.58)

and so u1C is continuous at t∗. This also means that 0 < u1C < 1 during an open

interval immediately prior to t∗, so here u0C > 0. Therefore, we have established the

existence of a penultimate interval, during which

u0C , u1C > 0, u2C = 0, u1N = 1, u2N = 0,

that is fruits and shoots alone grow simultaneously.

2.3.3 Balanced Growth - Mixed Vegetative Growth

At this point, we have established the existence of a final interval during which only

the fruits are growing, and a period before this when both the shoots and fruits are

growing together. Continuing backwards, we have arrived at a juncture where there

are seemingly several potential options. Due to the fact that z2C is not defined during

the penultimate interval it is not possible to determine directly from the necessary

conditions (2.19) what exactly constitutes the stage immediately prior. We will,

33

however, rule out several possibilities and make an educated guess based on Iwasa

and Roughgarden’s work in [5].

Prior to this period of mixed shoot-fruit growth, there are several possibilities.

These are: fruit growth, root-fruit growth, root-shoot growth, root-shoot-fruit growth,

shoot growth, or root growth. Because we assume that fruits are only carbon-

dependent, we can eliminate the possibilities that this phase consists of fruit-only

growth, because such a phase can only be optimal if the shoots are done growing.

We can also rule out a phase of root-fruit growth because the only reason to grow

roots in this model is to increase shoot biomass and subsequent capacity for carbon

fixation. If the roots are not fully utilizing the available carbon, it would be better

for the shoots to utilize the excess than the fruits. We will show in Appendix B.1

that mixed root/shoot/fruit growth is also impossible here.

This then leaves the possibility that this phase consists of shoot-only or root-only

growth, or a combination of both. Now, we rule out root-only growth here because this

would result in a case where the plant is increasing the capacity for shoot production

without actively growing shoots. We also rule out shoot-only growth here because

if no further root growth is going to occur the shoots will be nitrogen-limited and

it would be better for the excess carbon to be directed to the fruits. Additionally,

Iwasa and Roughgarden [5] found in the single-resource case that ‘balanced growth,’

a phase of mixed root-shoot growth, was optimal, so we will assume that is the case

here as well.

2.3.4 Initial Phase - Shoot or Root Growth

It is not optimal to grow fruits in any capacity prior to the balanced growth phase

for arguments similar to those outlined above. Therefore, the initial phase of growth

consists of either shoot growth or root growth. Here the plant addresses deficiencies

34

present in either vegetative organ depending on the initial conditions. Note that this

is also the first stage that we see in the single-resource case described in [5].

2.4 Phase Dynamics and Transitions

In this section, we will present the basic equations governing the dynamics in each

phase of the solution to (2.19) as well as show that z1C is continuous between any two

consecutive phases with shoot growth, and z2C is continuous between any two consec-

utive phases with root growth. Note that this last statement only applies to the case

where the initial phase consists of root growth. To keep this section from being too

cluttered or disjoint, we will go through the dynamics for each phase in chronological

order and then go on to discuss the transitions between phases. We will also limit this

section to include only phase-specific versions of the differential equations for states

and adjoints, relevant algebraic constraints due to the necessary conditions, and any

additional equations used for understanding the transitions between phases. When

we discuss the numerical scheme, we will make use of several additional equations

which govern dynamics in various stages but are not relevant here. In what follows,

we will also make frequent use of the notation G2(x) = G′(1/x).

2.4.1 Initial Phase: Shoot-Only Growth

During shoot-only growth we have

u0C = 0, u1C = 1, u2C = 0, u1N = 1, u2N = 0 (2.59)

35

and only S, λ1, and λ2 are changing. The differential equations in time for these three

during this stage are given by

S ′ = νSNG (z1C) (2.60)

λ′1 = −λ1CSG
′ (z1C) (2.61)

λ′2 = −λ1NRνSG2 (z1C) (2.62)

where here

z1C =
C

νSN
. (2.63)

Note also that in this stage both N and NR are constant because R is constant. Fur-

thermore, because we know by (2.53) that H = C∗, we can rewrite the Hamiltonian

(2.25) during this phase as

C∗ = λ1νSNG(z1C) (2.64)

and so by solving (2.64) for λ1 and then making use of (2.14) we have two additional

expressions for λ1 during this phase:

λ1 =
C∗

νSNG(z1C)
(2.65)

λ1 =
C∗

νSNG2(z1C) + CG′(z1C)
. (2.66)

2.4.2 Initial Phase: Root-Only Growth

During root-only growth we have

u0C = 0, u1C = 0, u2C = 1, u1N = 0, u2N = 1 (2.67)

36

and only R, λ1, and λ2 are changing. The differential equations in time for these three

during this stage are given by

R′ = νRNG(z2C) (2.68)

λ′1 = −λ2CSG
′(z2C) (2.69)

λ′2 = −λ2NRνRG2 (z2C) (2.70)

where here

z2C =
C

νRN
. (2.71)

Note also that in this stage both C and CS are constant because S is constant. Fur-

thermore, because we know by (2.53) that H = C∗, we can rewrite the Hamiltonian

(2.25) during this phase as

C∗ = λ2νRNG(z2C) (2.72)

and so by solving (2.72) for λ2 and then making use of (2.14) we have two additional

expressions for λ2 during this phase:

λ2 =
C∗

νRNG(z2C)
(2.73)

λ2 =
C∗

νRNG2(z2C) + CG′(z2C)
. (2.74)

2.4.3 Balanced Growth - Shoot/Root Growth

During balanced growth we have

u0C = 0, 0 ≤ u1C ≤ 1, u2C = 1− u1C , 0 ≤ u1N ≤ 1, u2N = 1− u1N (2.75)

37

and so by (2.19) we have that

λ1G
′(z1C) = λ2G

′(z2C) > 1 (2.76)

and

λ1νSG2(z1C) = λ2νRG2(z2C). (2.77)

During this stage S,R, λ1, and λ2 are changing. The differential equations in time for

these four during this phase are given by

S ′ = νSu1NNG(z1C) (2.78)

R′ = νR(1− u1N)NG(z2C) (2.79)

λ′1 = −CSλ1G
′(z1C) = −CSλ2G

′(z2C) (2.80)

λ′2 = −NRλ1νSG2(z1C) = −NRλ2νRG2(z2C). (2.81)

Furthermore, again taking advantage of the fact that (2.53) gives us H = C∗, we

can rewrite the Hamiltonian (2.25) during this phase as

C∗ = λ1νSu1NNG(z1C) + λ2νRu2NNG(z2C). (2.82)

Rewriting this using (2.14) we get

C∗ = λ1νSu1NN [G2(z1C) + z1CG
′(z1C)] + λ2νRu2NN [G2(z2C) + z2CG

′(z2C)] .

38

Simplifying, and using (2.76) and (2.77) to write everything in terms of z1C , gives us

C∗ = λ1νSu1NN

[
G2(z1C) +

u1CC

νSu1NN
G′(z1C)

]
+ λ2νRu2NN

[
G2(z2C) +

u2CC

νRu2NN
G′(z2C)

]
= λ1νSu1NN

[
G2(z1C) +

u1CC

νSu1NN
G′(z1C)

]
+ λ1νSu2NN

[
G2(z1C) +

u2CC

νSu2NN
G′(z1C)

]
= λ1 [νSNG2(z1C)(u1N + u2N) + CG′(z1C)(u1C + u2C)]

= λ1 [νSNG2(z1C) + CG′(z1C)] . (2.83)

Solving for λ1 gives us

λ1 =
C∗

νSNG2(z1C) + CG′(z1C)
. (2.84)

Using (2.76) and (2.77) to rewrite (2.83) in terms of z2C instead leads to

C∗ = λ2 [νRNG2(z2C) + CG′(z2C)] , (2.85)

which upon solving for λ2 gives us

λ2 =
C∗

νRNG2(z2C) + CG′(z2C)
. (2.86)

Note that (2.84) and (2.86) are consistent with (2.66) during shoot-only growth, and

(2.74) during root-only growth. While we do not assume that either z1C or z2C

is continuous between phases (because the controls need not be), we will use this

consistency later to show continuity between the initial and balanced growth phases.

39

2.4.4 Penultimate Interval - Shoot/Fruit Growth

During the penultimate interval, we have

0 ≤ u0C ≤ 1, u1C = 1− u0C , u2C = 0, u1N = 1, u2N = 0 (2.87)

and so by (2.19) we have that

λ1G
′(z1C) = 1. ((2.56) revisited)

Note that here we have

z1C =
u1CC

νSN
. (2.88)

During this interval S, F, λ1, and λ2 are all changing. The differential equations in

time for these four during this stage are

S ′ = νSNG(z1C) (2.89)

F ′ = u0CC (2.90)

λ′1 = −CS (2.91)

λ′2 = −NRλ1νSG2(z1C) (2.92)

Furthermore, again taking advantage of the fact that (2.53) gives us H = C∗, we

can rewrite the Hamiltonian (2.25) during this phase as

C∗ = u0CC + λ1νSNG(z1C). (2.93)

40

Using (2.14) we get

C∗ = u0CC + λ1νSN
∗ [G2(z1C) + z1CG

′(z1C)]

= u0CC + λ1νSN

[
G2(z1C) +

u1CC

νSN
G′(z1C)

]
= u0CC + λ1νSNG2(z1C) + λ1G

′(z1C)u1CC

which by (2.56) becomes

C∗ = u0CC + u1CC + λ1νSNG2(z1C)

= C + λ1νSNG2(z1C). (2.94)

Now, at this point we can either solve for λ1 and obtain

λ1 =
C∗ − C

νSNG2(z1C)
, (2.95)

or we can use (2.56) to rewrite (2.94) as

C∗ = Cλ1G
′(z1C) + λ1νSNG2(z1C)

and solve to obtain the familiar expression

λ1 =
C∗

νSNG2(z1C) + CG′(z1C)
. (2.96)

As we commented earlier, the reappearance of (2.96) suggests that z1C may be con-

tinuous between the balanced growth phase. We will prove this later with the help

of (2.95).

Another important result in the penultimate interval which we prove here is that

41

z1C is monotonically decreasing throughout this phase. This will be especially impor-

tant because, as we will see in Section 2.5.3, it will be advantageous for us to think

of z1C , rather than t, as the integration variable for the numerical scheme during the

penultimate interval. In particular, we will see that numerically solving the differen-

tial equations for this phase in t requires integrating a singularity, whereas solving

the differential equations in z1C does not.

Lemma 2.7. z1C is monotonically decreasing during the penultimate interval.

Proof. Recall that during the penultimate interval we have the relationship

λ1G
′(z1C) = 1.

Differentiating both sides with respect to t yields

λ′1G
′(z1C) + λ1G

′′(z1C)
dz1C

dt
= 0.

Using the fact that λ′1 = −CS, we have

dz1C

dt
=
−λ′1G′(z1C)

λ1G′′(z1C)
=
CS [G′(z1C)]2

G′′(z1C)
= − CS (1 + 2z1C)2

6z1C (1 + z1C) (1 + z1C + z2
1C)

< 0. (2.97)

Therefore, z1C is monotonically decreasing throughout the penultimate interval.

2.4.5 Final Interval - Fruit-Only Growth

During the final interval of fruit-only growth we have

u0C = 1, u1C = 0, u2C = 0, u1N = 1, u2N = 0 (2.98)

42

and only F and λ1 are changing. The differential equations in time for these two

during this phase are

F ′ = C∗ (2.99)

λ′1 = −C∗S, (2.100)

Because λ1(T) = 0 we also have

λ1(t) = C∗S · (T − t). ((2.46) revisited)

Furthermore, recall that because λ2(T) = 0 and λ′2 = 0 during this phase we have that

λ2 = 0 throughout this interval. Now that we have established the main dynamics in

each phase, we will turn our attention to the transitions between phases. Again, we

will proceed in chronological order from the beginning.

2.4.6 Initial Phase to Balanced Growth Transition

We can use the fact that the states and adjoints are continuous at the boundary be-

tween the initial phase and the balanced growth phase to characterize this transition.

In particular, we will show that z1C is continuous at this transition when the first

stage consists of shoot-only growth and z2C is continuous at this transition when the

first stage consists of root-only growth. In the first case this will mean that the ratio

of the shoot carbon flux to shoot nitrogen flux is continuous across this boundary, and

in the second case the ratio of root carbon flux to root nitrogen flux is continuous.

Due to the symmetry between equations (2.84) and (2.66) and equations (2.86)

and (2.74) we will streamline the following argument by considering a ‘generalized’

43

versions of these equations:

λ =
C∗

νNG2(z) + CG′(z)
, (2.101)

where here (λ, ν, z) is either (λ1, νS, z1C) or (λ2, νR, z2C) depending on whether the

initial stage is shoot-only growth or root-only growth, respectively. We will call this

transition point t = t̃, let x = limt→t̃+ z, and note that limt→t̃− z = C
νN

. Now, taking

limits of (2.101) from both sides, we obtain

lim
t→t̃+

λ(t) = λ̃+ =
C∗

νNG2(x) + CG′(x)
(2.102)

lim
t→t̃−

λ(t) = λ̃− =
C∗

νNG2

(
C
νN

)
+ CG′

(
C
νN

) (2.103)

Note that while we don’t know the particular values of C and N at t = t̃, in what

follows it will only matter that they are the same in both (2.102) and (2.103). At

t = t̃ we have that λ̃− = λ̃+ and so

G2

(
C

νN

)
+

C

νN
G′
(
C

νN

)
= G2(x) +

C

νN
G′(x). (2.104)

Let

f(x) := G2(x) +
C

νN
G′(x). (2.105)

It is clear from (2.104) that x = C
νN

is a solution to

f(x) = G2

(
C

νN

)
+

C

νN
G′
(
C

νN

)
. (2.106)

44

Here we will show that this solution is unique. To this end we will consider f ′(x):

f ′(x) = G′2(x) +
C

νN
G′′(x)

= −xG′′(x) +
C

νN
G′′(x) by (2.15)

= G′′(x)

(
C

νN
− x
)
.

Note that because G′′(x) ≤ 0 for x ≥ 0, we have that

sgn (f ′(x)) = sgn

(
x− C

νN

)
for x ≥ 0. (2.107)

Now, as f is continuous and, by (2.107), we have that f is decreasing on
(
0, C

νN

)
and increasing on

(
C
νN
,∞
)
, it must be the case that the only solution to (2.106) is at

x = C
νN

. Therefore, we have that

lim
t→t̃+

z = lim
t→t̃−

z,

which verifies our claim that z1C is continuous at the transition from shoot-only

growth to balanced growth and z2C is continuous at the transition from root-only

growth to balanced growth.

2.4.7 Balanced Growth to Penultimate Interval Transition

As in Section 2.4.6, we can use the fact that the states and adjoints are continuous,

along with the various formulations for λ1, to show that z1C is continuous at the

boundary between the balanced growth and penultimate intervals. To simplify what

45

follows, we call this transition point t = t̂ and let

x = lim
t→t̂−

z1C , y = lim
t→t̂+

z1C .

We wish to show that x = y. Because λ1 must be continuous at t̂, we have in

particular that the following are true:

C∗ − C
νSNG2(y)

=
C∗

νSNG2(x) + CG′(x)
(2.108)

1

G′(y)
=

C∗

νSNG2(x) + CG′(x)
. (2.109)

Note that these come from equations (2.84), (2.95), and (2.56). It will be useful to

rewrite these equations as

C∗νSNG2(y) = (C∗ − C)(νSNG2(x) + CG′(x)) (2.110)

C∗G′(y) = νSNG2(x) + CG′(x). (2.111)

It is important to note that because both G2 and G′ are one-to-one, we have that

y is a function of x in both (2.110) and (2.111). It will also be useful to equate the

left-hand sides of (2.108) and (2.109) to obtain:

νSNG2(y)

C∗ − C
= G′(y). (2.112)

We will break the argument up into a sequence of lemmas.

Lemma 2.8. For any given values of C∗, C, νS, and N , equation (2.112) has only

one positive real solution.

46

Proof. Setting k = νSN
C∗−C , equation (2.112) gives us

kG2(y) = G′(y)

k
y3(2 + y)

(1 + y + y2)2
=

1 + 2y

(1 + y + y2)2

ky3 =
1 + 2y

2 + y
.

Note that since C∗ − C ≥ 0 we have that k > 0. For any positive choice of k it is a

simple matter to see that the graphs of

x = ky3 and x =
1 + 2y

2 + y

have only one positive intersection point.

Note that Lemma 2.8 tells us that G′(y)/G2(y) is invertible, and in particular

that there is only one admissible value of y (depending on C) which solves equations

(2.110) and (2.111). Next we will show that x = y is a solution to equations (2.110)

and (2.111).

Lemma 2.9. x = y is a solution to equations (2.110) and (2.111).

Proof. We will first show that x = y is a solution to (2.110). Evaluating (2.110) at

x = y:

47

C∗νSNG2(y) = (C∗ − C)(νSNG2(y) + CG′(y))

C∗νSNG2(y) = C∗νSNG2(y) + C∗CG′(y)− CνSNG2(y)− C2G′(y)

0 = C∗CG′(y)− CνSNG2(y)− C2G′(y)

νSNG2(y) = (C∗ − C)G′(y)

νSNG2(y)

C∗ − C
= G′(y)

This last equality is true by (2.112). We will next show that x = y is a solution to

(2.111). As before, evaluating the equation at x = y:

C∗G′(y) = νSNG2(y) + CG′(y)

(C∗ − C)G′(y) = νSNG2(y)

G′(y) =
νSNG2(y)

C∗ − C
.

Again, this last equality is (2.112). Therefore x = y is a solution to equations (2.110)

and (2.111).

We will eventually show that x = y is in fact the only solution to (2.110) and

(2.111), which by Lemma 2.8 is a single point depending on C. In doing so we will

use dy
dx

for both equations (2.110) and (2.111) as well the PCSU identity (2.15). We

proceed with finding dy
dx

for (2.110), and so as to avoid confusion we will refer y in

this equation as yA:

48

d

dx
C∗νSNG2(yA) =

d

dx
(C∗ − C)(νSNG2(x) + CG′(x))

C∗νSNG
′
2(yA)

dyA
dx

= (C∗ − C) (νSNG
′
2(x) + CG′′(x))

and so

dyA
dx

=
(C∗ − C) (νSNG

′
2(x) + CG′′(x))

C∗νSNG′2(yA)

=
(C∗ − C) (CG′′(x)− νSNxG′′(x))

C∗νSG′2(yA)

= −
(C∗ − C)νSNG

′′(x)
(
x− C

νSN

)
C∗νSG′2(yA)

=
(C∗ − C)NG′′(x)

C∗yAG′′(yA)

(
x− C

νSN

)
. (2.113)

Now,

G′′(x) =
d

dx

1 + 2x

(1 + x+ x2)2
= − 6x(1 + x)

(1 + x+ x2)3
≤ 0 for x ≥ 0

and so

(C∗ − C)NG′′(x)

C∗yAG′′(yA)
≥ 0 for x, yA ≥ 0.

In particular, this means that

sgn

(
dyA
dx

)
= sgn

(
x− C

νSN

)
. (2.114)

Next, we do the same thing for (2.111), here using yB to refer to y:

49

d

dx
C∗G′(yB) =

d

dx
(νSNG2(x) + CG′(x))

C∗G′′(yB)
dyB
dx

= νSNG
′
2(x) + CG′′(x)

and so

dyB
dx

=
νSNG

′
2(x) + CG′′(x)

C∗G′′(yB)

=
CG′′(x)− νSNxG′′(x)

C∗G′′(yB)

= −νSNG
′′(x)

C∗G′′(yB)

(
x− C

νSN

)
. (2.115)

As before,

νSNG
′′(x)

C∗G′′(yB)
≥ 0 for x, yB ≥ 0,

so in particular we have that

sgn

(
dyB
dx

)
= − sgn

(
x− C

νSN

)
(2.116)

which means that

sgn

(
dyA
dx

)
= − sgn

(
dyB
dx

)
. (2.117)

Additionally, note that both derivatives vanish at x = C
νSN

. Finally, we will show

that in fact the point x = y where y is the unique solution to (2.112) is the only

admissible solution to equations (2.110) and (2.111).

Lemma 2.10. x = y is the only admissible solution to equations (2.110) and (2.111).

Proof. By Lemma 2.9 we have that x = y solves equations (2.110) and (2.111).

50

Furthermore, as y = limt→t̂+ z1C we have that

y = lim
t→t̂+

u1CC

νSN

and as u1C ≤ 1 it must be the case that

y ≤ C

νSN
,

that is the y = x intersection point must be at or before the point where both dyA
dx

and dyB
dx

are zero. There are two possible cases to consider here: either

lim
t→t̂+

u1C(t) = 1 or lim
t→t̂+

u1C(t) < 1.

We will use the notation

û+
1C := lim

t→t̂+
u1C(t).

1. Case 1: û+
1C = 1

In this case the y = x intersection point happens at the point
(

C
νSN

, C
νSN

)
, where

dyA
dx

= 0 = dyB
dx

. We have from equations (2.114) and (2.116) that this x = C
νSN

is the unique global minimizer for yA and the unique global maximizer for yB,

meaning that there are no additional intersection points.

2. Case 2: û+
1C < 1

In this case the y = x intersection point occurs at the point
(
û+1CC

νSN
,
û+1CC

νSN

)
,

before x = C
νSN

where dyA
dx

= 0 = dyB
dx

. Now, we have from (2.114) and (2.116)

that yA strictly decreases until x = C
νSN

and then strictly increases after that

point, whereas yB strictly increases until x = C
νSN

and then strictly decreases

after that point, implying the existence of exactly one more intersection point at

51

some x > C
νSN

. Now, as we established in Lemma 2.8 there is only one solution

for y, namely y =
û+1CC

νSN
. Therefore, in this case there is another intersection

point (x, y) where x > y. Note that this is potentially admissibly because

x = lim
t→t̂−

z1C = lim
t→t̂−

u1CC

u1NνSN

which for admissible choices of the controls could be greater than
û+1CC

νSN
. As we

will see, however, this is impossible. By equation (2.56) we have that

λ1(t̂)G′(y) = 1

and as G′ is decreasing we have that for x > y that

G′(x) < G′(y),

which in turn means that

λ1(t̂)G′(x) < λ1(t̂)G′(y) = 1,

and in particular that

λ1(t̂)G′(x) < 1.

However, by equations (2.32) and (2.33), this means that at this point

dH

du1C

<
dH

du0C

.

which cannot happen during the balanced growth phase. Therefore this second

intersection point is not admissible.

52

In both cases we have shown that the only admissible intersection point for the

curves defined by equations (2.110) and (2.111) is at the single intersection point

where y = x.

Recalling that x = limt→t̂− z1C and y = limt→t̂+ z1C , we have shown that z1C

must be continuous at the boundary between the balanced growth phase and the

penultimate interval.

2.4.8 Penultimate Interval to Final Interval Transition

Note that in the final interval of fruit-only growth, neither z1C nor z2C is defined, so

we won’t be addressing continuity of either one here. We will, however, analyze the

controls at this transition and conclude that at this particular junction we actually

have continuity of the controls.

First, recall that in Section 2.3.2, we showed that limt→t∗− u1C(t) = 0. Because

during the penultimate interval u0C = 1 − u1C we have that limt→t∗− u0C(t) = 1

as well. Note also that during the penultimate interval we have from (2.87) that

u2C = 0, u1N = 1, and u2N = 0, and by (2.98) we have that all the controls maintain

their values in the final interval as well. Therefore, all the controls are continuous

at t = t∗, the boundary between the penultimate interval and the final interval of

fruit-only growth.

Next, we will prove the following lemma which shows that the transition to fruit-

only growth occurs rapidly at the end of the penultimate interval.

Lemma 2.11.

lim
t→t∗−

du1C

dt
(t) = −∞.

53

Proof. First, recall that by (2.57), z1C → 0+ as t→ t∗
−

. Also, by (2.97) we have that

dz1C

dt
∼ − CS

6z1C

, as z1C → 0,

which means that

lim
t→t∗−

dz1C

dt
= lim

z1C→0+
− CS

6z1C

= −∞. (2.118)

Furthermore, by (2.88) and the fact that here N = N∗, we have that

u1C =
νSz1CN

∗

C
. (2.119)

Differentiating (2.119) with respect to t,

du1C

dt
=
νSN

∗C dz1C
dt
− νSN∗z1CCS

dS
dt

C2

=
νSN

∗

C

dz1C

dt
−
(
νSN

∗

C

)2

CSG(z1C)

Now, using the fact that S and C are continuous, C∗ and C∗S are finite and non-zero,

G(0) = 0, and (2.118), we have that

lim
t→t∗−

du1C

dt
= lim

z1C→0+

νSN
∗

C

dz1C

dt
−
(
νSN

∗

C

)2

CSG(z1C)

=
νSN

∗

C∗
lim

z1C→0+

dz1C

dt
−
(
νSN

∗

C∗

)2

C∗S lim
z1C→0+

G(z1C)

= −∞.

54

2.5 Numerical Scheme

In this section, we will outline the numerical scheme we developed for solving the op-

timal control problem (2.17). Because the solution exhibits a multi-phase structure,

standard methods of solving optimal control problems, such as forward-backward

sweep or shooting [8] aren’t well-suited. Broadly speaking, our approach is to con-

struct a numerical scheme for solving the problem backward in time. There are two

primary components to the numerical scheme. In the first, we obtain the map

(S∗, R∗) 7→ (S,R, F, ~u, λ1, λ2). (2.120)

In the second component we use MATLAB’s built-in nonlinear equation solver fsolve

to find the map

(S0, R0) 7→ (S∗, R∗).

Ultimately, then, we obtain the map

(S0, R0) 7→ (S,R, F, ~u, λ1, λ2).

We will now direct out attention the numerical scheme for finding (2.120). We find

the solution in the penultimate interval, final interval, balanced growth phase, and

initial phase, respectively. During each phase, we use the fourth-order Runge-Kutta

method (RK4) to solve differential equations which govern the phase dynamics, and

use derived algebraic equations to update the controls. Taking this approach allows

us to avoid having to update the controls iteratively. We will use the fact that

the Hamiltonian is constant along the optimal trajectory, as well as the information

we have about transitions from Section 2.4, to find the boundaries between phases

55

and ultimately stitch the four phases together to form one complete solution. We

will discuss how the numerical scheme works without getting into the fine numerical

details. The actual MATLAB code is included in Appendix C.1.

2.5.1 Penultimate Interval

We begin implementing this stage by finding the end of the penultimate interval

(t∗) using equation (2.52). Now, as the dynamics during the penultimate interval

depend on z1C , we would ideally use (2.97) and (2.89) to solve for z1C and S simul-

taneously and use (2.119) to update the controls. However, recall that by the proof

of Lemma 2.11, in particular equation 2.118, z1C approaches a vertical tangent as

t → t∗
−

, which makes solving for z1C numerically difficult. Note, however, that by

the same reasoning we have that dt
dz1C

approaches 0 as z1C → 0+. So, to remedy this

numerical difficulty, we take advantage of this fact, along with the fact that z1C is

monotonically decreasing in time throughout the penultimate interval, to think of z1C

as our ‘time’ during the penultimate interval and derive differential equations for t, S,

and λ2 in terms of z1C . This, combined with the fact that during the penultimate

interval R is constant, λ1 is algebraically related to z1C via (2.56), and F depends

on the value of t̂, gives us everything we need to find the solution during this phase

numerically. Note that because z1C decreases as t increases, solving forward in z1C is

tantamount to solving backward in time.

To this end, note that by (2.97) we have that

dt

dz1C

=
G′′(z1C)

CS [G′(z1C)]2
, t(0) = t∗. (2.121)

56

Furthermore, using (2.121) we obtain

dλ2

dz1C

=
dλ2

dt

dt

dz1C

= −NRνSG
′ (1/z1C)G′′(z1C)

CS [G′(z1C)]3
, λ2(0) = 0 (2.122)

dS

dz1C

=
dS

dt

dt

dz1C

=
νSNG(z1C)G′′(z1C)

CS [G′(z1C)]2
, S(0) = S∗. (2.123)

We use RK4 to solve (2.121), (2.122), and (2.123) forward in z1C , and use (2.119)

to update u1C . Also, recall that λ1 = 1/G′(z1C), u0C = 1− u1C , and the other three

controls are constant by (2.87). Upon reordering by t, this gives us all of the states,

adjoints, and controls during the penultimate interval, with the exception of fruits,

which we will determine after we identify the correct transition point from balanced

growth to the penultimate interval (t̂).

We stop solving forward in z1C when u1C becomes unbounded, as this gives us

an upper bound on the value of z1C (lower bound for the value of t) for which the

transition from balanced growth to the penultimate interval can occur. Furthermore,

because during the balanced growth phase we have by (2.76) that λ2G
′(z2C) > 1, it

must be the case that λ2 ≥ 1 at the balanced growth-penultimate interval boundary

because G′ is bounded between 0 and 1. Finding where λ2 = 1 gives us a lower

bound on the value of z1C (upper bound for the value of t) for which the transition

from balanced growth to the penultimate interval can occur. This gives us an interval

[zmin
1C , zmax

1C] in which to search for t̂.

2.5.2 Locating the Start of the Penultimate Interval

This portion of the numerical scheme begins with the interval [zmin
1C , zmax

1C] identified

in Section 2.5.1. Since we know that the Hamiltonian must be constant along the

optimal trajectory, we use the balanced-growth specific formulation of H in terms of

57

λ2 and z2C , given by (2.85):

H = C∗ = λ2 [νRNG2(z2C) + CG′(z2C)] . ((2.85) revisited)

Starting with [zmin
1C , zmax

1C], we use a binary search to locate the smallest interval,

relative to current RK4 step size, which contains the point at which (2.85) is satisfied.

At this point we use a smaller RK4 step size, and use the same procedure discussed

in Section 2.5.1 to increase the resolution of the solution and repeat the binary search

until we find a point that satisfies (2.85) to within some specified tolerance. We call

this point t̂, and record the values of the states, adjoints, and controls.

One crucial feature on this binary search which we have not mentioned so far is

the fact that since z2C is not defined in the penultimate interval, we need to compute

its limit from balanced growth at every iteration in the binary search. This is made

possible by the fact we established in Section 2.4.7, that z1C is continuous at t̂.

Therefore, we can use equations (2.76) and (2.77) to obtain

G′(z2C)

G2(z2C)
=
νR
νS

G′(z1C)

G2(z1C)
. (2.124)

Using MATLAB’s built-in nonlinear equation solver fsolve, we use the known value

of z1C at a particular point in the penultimate interval to calculate what z2C would

be if the balanced growth phase ended at that point. This value of z2C is then used

to evaluate the right-hand side of (2.85) in the binary search.

2.5.3 Fruits - Penultimate Interval

Recall that in Section 2.5.1 we were unable to solve for F because we didn’t know the

value of t̂. This was resolved in Section 2.5.2, so at this point we use RK4 to solve

58

(2.90) forward in time during the penultimate interval. This completes the numerical

solution for the penultimate interval.

2.5.4 Final Interval

Before continuing backward in time we take advantage of the fact that, by the process

described in Section 2.5.3, we now know the value of F at the beginning of the final

interval. Here the controls are constant by (2.98), S,R, and λ2 are constant, and λ1 is

given by (2.46). Lastly, using the value of F (t∗) obtained as described in Section 2.5.3,

and the fact that F ′ is constant during the final interval by (2.99), we have that

F (t) = F (t∗) + C∗ · (t− t∗). (2.125)

Therefore, this portion of the numerical scheme consists only of defining the states,

adjoints, and controls as defined above between time t∗ and time T .

2.5.5 Balanced Growth

Upon locating t̂ as discussed in Section 2.5.2, we have the value of the states, adjoints,

z1C , and z2C at the end of the balanced growth stage. Recall that the controls need

not be continuous, so we do not immediately know their values at the end of balanced

growth. We can, however, start with the equations for z1C and z2C during balanced

growth

z1C =
u1CC

νSu1NN
(2.126)

z2C =
(1− u1C)C

νR(1− u1N)N
(2.127)

59

and solve for u1N and u1C :

u1N =
C
N
− νRz2C

νSz1C − νRz2C

(2.128)

u1C =
νSz1CNu1N

C
. (2.129)

We derive differential equations for z1C and z2C during this phase, and ultimately

use (2.128) and (2.129) to obtain the controls. The differential equations in time for

z1C and z2C are given below, and the derivation is included in Appendix B.2.

dz1C

dt
=
NRνSνRG(z2C)G2(z1C)− CSG′(z1C) [νSG2(z1C) + z2CνRG

′(z1C)]

G′′(z1C) [νSz1C − νRz2C]
(2.130)

dz2C

dt
=
NRνSG2(z1C) [G′(z2C)]2 − CS [G′(z1C)]2G′(z2C) +G′′(z1C)G′(z2C)dz1C

dt

G′(z1C)G′′(z2C)
.

(2.131)

Beginning at t̂, we use RK4 to simultaneously solve equations (2.78), (2.79), (2.80),

(2.81), (2.130), and (2.131) backward in time to obtain S,R, λ1, λ2, z1C , and z2C ,

respectively. We use (2.129) and (2.128) to eliminate u1C and u1N in (2.78) and

(2.79) so that these six differential equations are expressed exclusively in terms of

these six variables. We then use (2.129) and (2.128) to obtain u1C and u1N , as well as

the rest of the controls during this phase via (2.75). As with the penultimate interval,

we continue backward in time until one of the controls leaves the interval [0, 1]. This

gives us the earliest time for the transition point between the initial and balanced

growth phases.

2.5.6 Locating the Start of Balanced Growth

Here we will discuss the portion of the numerical scheme involved in finding time

t = t̄, the start of balanced growth. Recall that by Section 2.4.6, z1C is continuous

60

at the boundary between an initial phase of shoot growth and the balanced growth

phase, and z2C is continuous at the boundary between an initial phase of root growth

and the balanced growth phase. In either case, the transition must occur at a point

where

u1C − u1N = 0. (2.132)

This is because in the case where the initial phase consists of shoot growth we have

lim
t→t̄+

z1C = lim
t→t̄+

u1CC

νSu1NN
= lim

t→t̄

C

νSN
=⇒ lim

t→t̄+

u1C

u1N

= 1

and in the case where the initial phase consists of root growth we have

lim
t→t̄+

z1C = lim
t→t̄+

(1− u1C)C

νS(1− u1N)N
= lim

t→t̄

C

νSN
=⇒ lim

t→t̄+

(1− u1C)

(1− u1N)
= 1.

We use essentially the same procedure employed in Section 2.5.2 for refining the

transition point between the balanced growth and the penultimate intervals, with

the exception that finding t̄ doesn’t require computing the limits of any quantities

from the earlier phase, as we had to do with z2C at t̂. We use a binary search to

locate the smallest interval about which (2.132) is satisfied, and then use RK4 to

solve equations (2.78), (2.79), (2.80), (2.81), (2.130), and (2.131) backward in time

on a smaller integration mesh. We repeat this process until we have found a point at

which (2.132) is met to within some specified tolerance. We call this point t̄.

It is important to note that if no such point exists then the plant begins in the

balanced growth phase, in which case there are only three phases instead of four. If

there is such a point t̄, the next step in the numerical scheme is to determine whether

the initial phase consists of shoot growth or root growth. Using (2.65) and (2.73), we

61

compute the following at t̄:

∣∣∣∣λ1νSNG

(
C

νSN

)
− C∗

∣∣∣∣ and

∣∣∣∣λ2νRNG

(
C

νRN

)
− C∗

∣∣∣∣ .
If the first is smaller then the initial phase consists of shoot growth, and if the second

is smaller the initial phase consists of root growth.

2.5.7 Initial Phase

2.5.7.1 Shoot-Only Growth

In the case that the first phase consists of shoot-only growth, we use RK4 to solve

(2.60), (2.61), and (2.62) simultaneously backward in time until we reach t = 0. This

gives us S, λ1, and λ2, respectively. The controls are constant here and given by

(2.59), and R is a constant determined by it’s value at the end of the initial phase.

2.5.7.2 Root-Only Growth

In the case that the first phase consists of root-only growth, we use RK4 to solve

(2.68), (2.69), and (2.70) simultaneously backward in time until we reach t = 0. This

gives us R, λ1, and λ2, respectively. The controls are constant here and given by

(2.67), and S is a constant determined by it’s value at the end of the initial phase.

2.6 Numerical Results

In this section, we will present some of the primary results that are apparent from

the numerical simulations of the model. In particular, we will look at several ‘repre-

sentative’ simulation results that showcase some of the different strategies a plant can

employ to maximize fruit production, as well as some results which help us understand

62

the relationship between initial and terminal conditions. In all of the simulations we

will discuss, we have made the simplifying assumption that C(S) = S and N(R) = R,

and have chosen νR = 1, νS = 1/3, and T = 10. The choices of C and N ignore any

possibility of self-shading as the plant grows. We chose νR = 1 for convenience, and

chose νS = 1/3. Note that this results in νR
νS

= 3, which is likely a bit higher than data

suggests (see [4, 10]), but had the effect of exaggerating the lengths of the different

phases, resulting in easier-to-interpret plots. We chose T = 10 because in the case

that C(S) = S, we have by (2.52) that t∗ = 9, which again facilitated our interpreta-

tion of the numerical results. Furthermore, it can be shown that with these choices

of C and N , the length of the penultimate interval is fixed for given choices of the

stoichiometric ratios. We will begin with four examples of different optimal growth

strategies which all reach the same optimal value of fruits at time T .

2.6.1 Initial Shoot Growth

Here we chose terminal conditions S∗ = 223.20 and R∗ = 112.86. This results in

F (T) = 900, S0 = 17, and R0 = 84. In this simulation we see the full four-stage

structure of the solution. There is an initial phase of shoot growth, followed by a

period of balanced growth between shoots and roots, a penultimate interval of shoot

and fruit growth, and finally a period of fruit-only growth at the end of the growing

season. The states and controls are shown in Figure 2.2.

The lower two plots in Figure 2.2 show the carbon and nitrogen allocation strate-

gies for this plant. Of particular note, we see that following the initial period of shoot

growth, there is a short period during which u2C and u2N are increasing, signifying a

period of increasing root production. Shortly after time t = 2, we see that u2C and

u2N begin to decrease again, signifying that although it is still advantageous to be in-

vesting resources into roots, the plant ultimately needs to prioritize shoot production

63

0

150

300

0

500

1000

0

0.5

1

0 1 2 3 4 5 6 7 8 9 10

Time

0

0.5

1

Figure 2.2: States and controls illustrating initial shoot growth. From top to bottom:
Shoots and roots, fruits, carbon controls, nitrogen controls. Shoots, roots, and fruits
are given in units of carbon and the controls are dimensionless.

again to prepare for the penultimate interval of mixed shoot/fruit growth. During

the penultimate interval we see the plant gradually stop investing in shoots, before

switching to fruit-only production at time t = 9.

2.6.2 Initial Root Growth

Here we chose terminal conditions S∗ = 222.11 and R∗ = 111.55. This results in

F (T) = 900, S0 = 48.9, and R0 = 28.9. In this simulation we again see the four-stage

structure as in Figure 2.2, however here we see an initial phase of root growth instead

of the initial phase of shoot growth we saw previously. The initial conditions of the

two simulations are quite different, but the terminal conditions are nearly the same.

64

This, as we will discuss later, suggests that the model predicts that initial transients

tend to go away in the first stage of growth. The states and controls are shown in

Figure 2.3.

0

150

300

0

500

1000

0

0.5

1

0 1 2 3 4 5 6 7 8 9 10

Time

0

0.5

1

Figure 2.3: States and controls illustrating initial root growth. From top to bottom:
Shoots and roots, fruits, carbon controls, nitrogen controls. Shoots, roots, and fruits
are given in units of carbon and the controls are dimensionless.

The two graphs at the bottom of Figure 2.3 show a different allocation strategy

than appeared in the case of initial shoot growth in Figure 2.2. In particular, follow-

ing the initial period of root growth, we see a decline in both carbon and nitrogen

allocation to the roots throughout the entire balanced growth phase, and the steady

increase in allocation to shoots. Following the balanced growth phase we again see

a similar penultimate interval of mixed shoot-fruit growth before the final interval of

fruit growth beginning at t = 9.

65

2.6.3 Balanced Growth First - Type S

Here we chose terminal conditions S∗ = 222.71 and R∗ = 112.27. This results in

F (T) = 900, S0 = 30.3, and R0 = 59.74. The states and controls are shown in

Figure 2.4.

0

150

300

0

500

1000

0

0.5

1

0 1 2 3 4 5 6 7 8 9 10

Time

0

0.5

1

Figure 2.4: States and controls illustrating Type S initial balanced growth. From
top to bottom: Shoots and roots, fruits, carbon controls, nitrogen controls. Shoots,
roots, and fruits are given in units of carbon and the controls are dimensionless.

In this simulation, we see an example of a plant which starts in balance, and there-

fore forgoes the initial phase of shoot-only or root-only growth. That said, comparing

Figure 2.4 to Figure 2.2, we see a similar allocation strategy during balanced growth.

In particular, both show a gradual decrease in allocation to shoots followed by a

gradual increase in allocation to shoots throughout the balanced growth phase. This

66

behavior corresponds to initial conditions from which the plant begins in balanced

growth, but are more biased toward starting shoot-deficient than root-deficient. For

this reason, we refer to this type of initially balanced growth as ‘Type S.’

2.6.4 Balanced Growth First - Type R

Here we chose terminal conditions S∗ = 222.60 and R∗ = 112.14. This results in

F (T) = 900, S0 = 36.16, and R0 = 49.58. The states and controls are shown in

Figure 2.5.

0

150

300

0

500

1000

0

0.5

1

0 1 2 3 4 5 6 7 8 9 10

Time

0

0.5

1

Figure 2.5: States and controls illustrating Type R initial balanced growth. From
top to bottom: Shoots and roots, fruits, carbon controls, nitrogen controls. Shoots,
roots, and fruits are given in units of carbon and the controls are dimensionless.

Figure 2.5 provides us with another example of a plant that begins in balanced

growth, skipping over the initial phase. Unlike Figure 2.4, the balanced growth phase

67

in this simulation has a similar structure to the balanced growth phase in Figure 2.3,

where the plant had an initial phase of root growth. In both this simulation and the

one shown in Figure 2.3, we see that the balanced growth phase consists of steadily

increasing the allocation to shoots throughout the interval while simultaneously de-

creasing the allocation to roots. In this case the plant is initially more biased toward

being root-deficient than shoot-deficient. So, while the initial phase of root-only

growth is unnecessary, the early growth sees a greater investment in roots than in

shoots. For this reason we refer to this type of initially balanced growth as ‘Type R.’

2.6.5 Final Fruits Value Contours

In order to better understand the relationship between initial conditions and the

optimal final value of fruits, we looked for points in the (S0, R0)-plane for which the

final value of fruits was 700, 800, or 900. For a given value of S0, we used MATLAB’s

built-in nonlinear equation solver fsolve to find the appropriate value of R0 for which

the numerical scheme outlined in Section 2.5 would yield either 700, 800, or 900 for

F (T). We plotted the resulting contours in the initial condition plane as seen in

Figure 2.6.

There are several key features of this plot to notice. First is the wide range of

initial conditions for which a particular final value of fruits is optimal. Depending on

the allocation strategy, different plants may be able to reach the same level of fruit

yield even though they may start with very different initial conditions. Additionally,

we can see from Figure 2.6 how much more initial shoots or roots would be necessary

at a particular point along a contour to move the plant to a contour with a higher

fruit yield. Looking at the ends of the contours, it takes relatively little in the way

of additional initial structure to move from one contour to the next, whereas in the

middle of the contours we see that a larger increase in initial biomass is required to

68

0 10 20 30 40 50 60 70 80 90
0

20

40

60

80

100

120

Figure 2.6: Contours depicting which initial conditions correspond to final fruit values
of 700, 800, and 900. Shoots, roots, and fruits are given in units of carbon

move to the next contour. As we will see in the next section, these middle regions

contain initial conditions from which the plant begins in balance. Nearer to the

ends of the contours, where the concavity becomes more pronounced, we see that

for a plant to recover from an initial imbalance it must be more biased toward the

vegetative organ with the most biomass.

2.6.6 900 Fruit Contour

To get more of an understanding of the results we are seeing in Figure 2.6, we take a

closer look at the contour along which each initial condition results in F (T) = 900,

and in particular we considered 80 values of S0 between 7 and 88. We will begin by

identifying which of the four types of growth we identified in Sections 2.6.1, 2.6.2,

69

2.6.3 and 2.6.4 each initial condition corresponds too. The F (T) = 900 contour is

plotted again in Figure 2.7. The coloration indicates the initial phase of growth.

0 20 40 60 80 100
0

20

40

60

80

100

120

Roots

Balance

(Type R)

Balance

(Type S)

Shoots

Initial Phase

Figure 2.7: F (T) = 900 contour with coloration indicating the initial phase of growth.
Shoots, roots, and fruits are given in units of carbon

We next consider the terminal conditions (S∗, R∗) which each point along the

contour shown in Figure 2.7 corresponds to. In Figure 2.8, we see two different plots

of the terminal conditions corresponding to the points along the F (T) = 900 contour.

The plot on the left shows the terminal conditions following the same color scheme

used in Figure 2.7, and the plot on the right shows the frequency of points along

that line through the (S∗, R∗) plane. The frequency plot was generated using the

MATLAB function hist3 with 2.5× 2.5 bins in the (S∗, R∗) plane.

Note that the right-most plot in Figure 2.8 shows that the vast majority of terminal

70

195 200 205 210 215 220 225 230 235
80

85

90

95

100

105

110

115

120

125

Roots

Balance

(Type R)

Balance

(Type S)

Shoots

Initial Phase

195 200 205 210 215 220 225 230 235
80

85

90

95

100

105

110

115

120

125

0

5

10

15

20
Frequency

Figure 2.8: The plot on the left shows the terminal conditions corresponding to
initial conditions along the F (T) = 900 contour. The plot on the right shows the
corresponding frequency of points along the line on the left with points grouped into
2.5× 2.5 bins. Shoots, roots, and fruits are given in units of carbon.

conditions are concentrated in a small region of the (S∗, R∗)-plane, which suggests

that optimal growth for most of the points along the F (T) = 900 contour means

reaching a common final configuration of biomass. Additionally, looking at the left-

most plot in Figure 2.8 along the F (T) = 900 contour, the final amount of roots

varies linearly with the final value of shoots. Furthermore, looking at the coloration

on this plot, we see that plants which began with a phase of root-only growth required

less overall biomass to reach the F (T) = 900 contour than those which began with

shoot-only growth. The region of the terminal condition plane which corresponds to

plants which begin in balanced growth corresponds to a very small region where the

terminal conditions are most dense.

It is worth pointing out here that Figures 2.2, 2.4, 2.5, and 2.3 (in that order)

represent ‘snapshots’ along a spectrum of outcomes as we move left to right along the

F (T) = 900 contour in Figure 2.7. We can visualize this by overlaying each of the

plots of either shoots vs. time or roots vs. time for each of the initial conditions along

71

the F (T) = 900 contour, and using a color scale to indicate the progression along the

contour. This is shown in Figure 2.9, which shows S(t) and R(t) for each of the initial

conditions along the F (T) = 900 contour. As the initial conditions progress from left

to right along the contour, the color of the plots of S(t) and R(t) transition from blue

to red. That is, the solution curves based on the initial condition on the far left of

the contour are solid blue, and the solution curves based on the initial conditions on

the far right of the contour are solid red, and as the initial conditions progress from

left to right, the color of the corresponding solution curves gradually changes from

blue to red.

Figure 2.9: Progression of solutions curves of S(t) and R(t) along the F (T) = 900
contour. Going from blue to red corresponds to moving from left to right along the
contour. Shoots, roots, and fruits are given in units of carbon.

Notice that although there is a clear gradient from blue to red in the initial phases,

72

this transition is much sharper once the roots stop growing. This reinforces some of

what we have seen thus far. In particular, we see that plants that begin with an excess

of shoots compared to roots require less biomass overall to achieve the same outcome

in regard to fruits. We also see that, in the top plot, the plants which begin with the

least amount of initial shoots need to make up for it by producing the most shoots

by the end of the growing season to reach the optimal amount of fruits. Furthermore,

this figure reinforces the idea that the common final value of fruits we see along the

F (T) = 900 contour comes about by driving a wide range of initial conditions toward

a similar point by the end of balanced growth.

Figure 2.10: Progression of solution curves of u1C(t) (fraction of carbon allocated to
shoots) as the initial conditions (S0, R0) move along the F (T) = 900 contour. Going
from blue to red corresponds to moving from left to right along the contour.

To delve a little bit further into the different allocation strategies employed by

73

plants with initial conditions along the F (T) = 900 contour, we will look at how the

trajectory of carbon allocation to shoots (u1C) changes along this contour. We again

use a color gradient from blue to red to show how the u1C(t) solution curves changes

as the initial conditions progress from left to right along the contour in Figure 2.7.

These solutions are shown in Figure 2.10.

We see in Figure 2.10 a gradual transition from the initial stage consisting of shoot-

only growth to the initial stage consisting of root-only growth. Additionally, we again

see the difference in the level of variation between the early phases of growth and the

later phases of growth. There is a substantial amount of variation in the initial and

balanced growth phases, but relatively little in the penultimate interval. As we move

toward the region of the F (T) = 900 curve that consists of initial conditions which

have an excess of shoots we begin to see allocation of carbon to shoots decrease at the

beginning of the penultimate interval, but for the majority of initial conditions the

penultimate interval shows only minimal variation in the optimal allocation strategy.

2.7 Discussion

By incorporating nitrogen into the model, but keeping the fruits solely reliant on

carbon, we have essentially considered a case in which the C:N ratio in fruits is

infinite. While this isn’t biologically reasonable for most annual plants, it does provide

a mathematically approachable framework in which to begin to analyze the dynamics

of allocation of two resources in annual plants. It is worth noting, however, that if we

were to exchange the assumption that fruits are solely carbon with the assumption

that the fruits are solely nitrogen, we would expect the model to predict a reversal in

the roles of shoots and roots. The assumption that fruits are carbon-only, however,

seems a more natural extension of Iwasa and Roughgarden’s work in [5].

74

An obvious outcome of our model, not present in [5], is the penultimate interval,

during which the shoots and fruits grow together. Here the C:N ratio in fruits is

greater than the C:N ratios in either shoots or roots, and so we see a phase during

which shoot production is overall more important to eventual fruit yield, but an

increased capacity to assimilate nitrogen is not useful so any excess carbon is invested

in fruits. This observation will play a key role in Chapter 3 in how we approach our

extension of this model to the case where fruits require both resources.

The theoretical results obtained in Section 2.4 confer a degree of biological rele-

vance to the model that arguably adds credence to the model despite the narrow scope

imposed by the assumption that fruits are built solely from carbon. In particular,

we showed that z1C , z2C , and u0C are continuous between any two phases in which

they are defined and non-zero. Note that while z1C and z2C are dimensionless, they

are multiples of the ratio of carbon flux to nitrogen flux in both shoots in roots. So,

the fact that z1C and z2C are continuous at these junctions means that these ratios

are continuous in both the shoots and roots. This is somewhat striking, given that,

while these individual fluxes are continuous at the beginning of balanced growth, they

are markedly discontinuous at the end of balanced growth in Figures 2.2, 2.3, 2.4,

and 2.5. What this says is that, so long as either the shoots or roots is growing, the

amount of allocated carbon per unit of allocated nitrogen varies continuously, which

is reasonable to expect from biochemical processes. Furthermore, by equation 2.24,

the fact that u0C is continuous between the penultimate and final intervals means

that the rate of fruit growth is continuous between these phases.

The results presented in Section 2.6 provide several avenues for drawing more

general conclusions about the nature of plant growth that optimizes fruit yield. First,

we can see in Figures 2.2, 2.3, 2.4, and 2.5 that the allocation strategy is a balancing

act between preventing limitations due to nutrient deficiency and investing in the

75

organ which most directly contributes to increased fruit yield. This is evidenced by

the fact that the plant invests in the most deficient organ until it can efficiently invest

in both shoots and roots, which it is does in such a way that by the end of balanced

growth we see an increase in carbon flux to shoots. During the penultimate interval,

then, fruits are a better investment than roots, but fruits still benefit from increased

carbon flux. Therefore, we see a phase during which the plant still invests in shoots,

but gradually transitions to fruit-only growth by the beginning of the final interval.

Recall that Figures 2.2, 2.3, 2.4, and 2.5 represent ‘snapshots’ of optimal growth

along the F (T) = 900 contour represented in Figures 2.6 and 2.7. While the general

trends discussed above hold across the contour, there is a broad spectrum of optimal

strategies. What is striking here is the high level of variation in solutions with initial

conditions along the contour, and the fact that these initial transients are absent by

the end of balanced growth. In Figure 2.8, we see that most initial conditions along

the contour correspond to tightly clustered terminal conditions. In Figures 2.9 and

2.10, we again see the high degree of variation in the growth and resource allocation

strategies employed in the initial stages, and the relatively little variation in both

growth patterns and allocation strategies after the completion of balanced growth.

In some sense, then, we might think of optimal growth under this model as being an

equalizing agent that reduces initial variance in a population.

76

CHAPTER 3

SECOND MODEL - CARBON/NITROGEN FRUITS

3.1 Introduction

The second model for resource allocation in annual plants we will discuss is an exten-

sion of the first model, discussed in Chapter 2, to the case where the fruits require

both nitrogen and carbon. This is a particularly important addition because, as we

pointed out in Section 2.1, many annual plants do not pack seeds in large carbon-rich

fruits, so this extension allows the model to encompass a much broader class of plants.

This additional level of complexity makes the resulting optimal control problem

unwieldy, so after introducing the model in Section 3.2 we will use the results of our

first model to make an ansatz about the structure of the solution to this second model,

in a particular case regarding the ordering of C:N ratios between the three organs.

Letting νF be the C:N ratio in fruits, we will assume that νF < νS < νR (see [4, 10]).

This is based on the assumption that shoots and roots each need a higher proportion

of the imported resource, and fruits require more nitrogen per unit carbon than either

of the other two organs.

This chapter will follow the same structure as in Chapter 2. We will begin with

a description of the model and optimal control problem in Section 3.2, followed by

two sections on mathematical results, Sections 3.3 and 3.4. Next, we will go through

77

the numerical scheme for this model in Section 3.5, and discuss how it differs from

the first model. In Section 3.6 we will present numerical results based on simulations,

ending with a discussion in Section 3.7.

3.2 A Description of the Model

In this section we will describe our second model for resource allocation in annual

plants. This model is in many ways similar to the first model so we will frequently

reference Chapter 2 rather than reiterate details common to both models.

3.2.1 Model Setup

We consider an extension of the model discussed in Chapter 2 in which we replace the

assumption that fruits are carbon-only with the assumption that fruits require both

carbon and nitrogen. Furthermore, as with the shoots and roots, we use the parallel

complementary synthesizing unit function given by 2.10 to provide the rate of fruit

production given carbon and nitrogen fluxes to the fruits. This requires introducing

an additional control, u0N(t), the fraction of nitrogen allocated to the fruits at time

t, as well as the fixed C:N ratio in fruits, νF . Aside from these additions, this model

is otherwise identical to the model discussed in Chapter 2. The differential equations

for this model are

dS

dt
= g(u1CC, νSu1NN), S(0) = S0 (3.1)

dR

dt
= g(u2CC, νRu2NN), R(0) = R0 (3.2)

dF

dt
= g(u0CC, νFu0NN), F (0) = 0 (3.3)

and the model is shown schematically in Figure 3.1.

78

Shoot SU

Fruit SU

Root SU

C(S), N(R)
u0CC, u0NN

u1C
C,
u1N

N

u
2CC, u

2NN

g(u2CC, νRu2NN)

g(u0CC, νFu0NN)

g(u1CC, νSu1NN)
Shoot Tissue

Fruit Tissue

Root Tissue

Figure 3.1: Model Schematic

3.2.2 Optimal Control Problem

As with the first model, the goal here is to find the growth trajectory that maximizes

fruit biomass at time T . Following the same procedure employed in Section 2.2.3, we

obtain the following optimal control problem.

max
~u

∫ T

0

g(u0CC, νFu0NN) dt

subject to: uiC ≥ 0, uiN ≥ 0 for i = 0, 1, 2

u0C + u1C + u2C = 1 = u0N + u1N + u2N

dS

dt
= g(u1CC, νSu1NN), S(0) = S0

dR

dt
= g(u2CC, νRu2NN), R(0) = R0

(3.4)

Note that the only real difference in the formulations between (2.17) and (3.4) is that

the integrand is different and we have the addition of u0N in the algebraic constraints.

79

3.2.3 Necessary Conditions

As with the first model, we will use a set of necessary conditions to describe the

dynamics within each phase of the solution. Since the new model essentially consists

of two 3-control problems embedded in (3.4), we again rely on the derivation in

Appendix A to obtain the necessary conditions. We begin by forming a Hamiltonian

with two piecewise differentiable adjoints, λ1(t) and λ2(t):

H = g(u0CC, νFu0NN) + λ1g(u1CC, νSu1NN) + λ2g(u2CC, νRu2NN). (3.5)

The necessary conditions for optimality are as follows:



uiC = 0 if ∂H
∂uiC

< ∂H
∂ujC

, for all j 6= i

uiC = 1 if ∂H
∂uiC

> ∂H
∂ujC

, for all j 6= i

0 ≤ uiC ≤ 1 if ∂H
∂uiC

= ∂H
∂ujC

, for any j 6= i

uiN = 0 if ∂H
∂uiN

< ∂H
∂ujN

, for all j 6= i

uiN = 1 if ∂H
∂uiN

> ∂H
∂ujN

, for all j 6= i

0 ≤ uiN ≤ 1 if ∂H
∂uiN

= ∂H
∂ujN

, for any j 6= i

(3.6)

Note that these are essentially the same necessary conditions we saw in Section 2.2.4,

with the exception that since there are now three nitrogen controls, the necessary

conditions for the nitrogen controls take on the same form as those for the carbon

controls.

As in Section 2.2.4, we change variables to simplify the differential equations, and

80

ultimately the necessary conditions. We make the substitutions

z0C =
u0CC

νFu0NN
(3.7)

z1C =
u1CC

νSu1NN
(3.8)

z2C =
u2CC

νRu2NN
(3.9)

and use (2.9) to rewrite (3.1), (3.2), and (3.3) as

dS

dt
= νSu1NNG(z1C), S(0) = S0 (3.10)

dR

dt
= νRu2NNG(z2C), R(0) = R0 (3.11)

dF

dt
= νFu0NNG(z0C), F (0) = 0 (3.12)

Therefore, the Hamiltonian (3.5) can be rewritten as

H = νFu0NNG(z0C) + λ1νSu1NNG(z1C) + λ2νRu2NNG(z2C). (3.13)

Alternatively, we can make the substitutions

z0N =
νFu0NN

u0CC
(3.14)

z2N =
νRu2NN

u2CC
(3.15)

z1N =
νSu1NN

u1CC
(3.16)

81

and rewrite (3.1), (3.2), and (3.3) as

dS

dt
= u1CCG(z1N), S(0) = S0 (3.17)

dR

dt
= u2CCG(z2N), R(0) = R0 (3.18)

dF

dt
= u0CCG(z0N), F (0) = 0 (3.19)

The Hamiltonian can then be rewritten as

H = u0CCG(z0N) + λ1u1CCG(z1N) + λ2u2CCG(z2N). (3.20)

Using (3.13) and (3.20), we can compute the following partial derivatives:

∂H

∂u0C

=
∂

∂u0C

νFu0NNG(z0C) = νFu0NNG
′(z0C)

∂

∂u0C

z0C = CG′(z0C) (3.21)

∂H

∂u1C

=
∂

∂u1C

λ1νSu1NNG(z1C) = λ1νSu1NNG
′(z1C)

∂

∂u1C

z1C = λ1CG
′(z1C) (3.22)

∂H

∂u2C

=
∂

∂u2C

λ2νRu2NNG(z2C) = λ2νRu2NNG
′(z2C)

∂

∂u2C

z2C = λ2CG
′(z2C) (3.23)

∂H

∂u0N

=
∂

∂u0N

u0CCG(z0N) = u0CCG
′(z0N)

∂

∂u0N

z0N = νFNG
′(z0N) (3.24)

∂H

∂u1N

=
∂

∂u1N

λ1u1CCG(z1N) = λ1u1CCG
′(z1N)

∂

∂u1N

z1N = λ1νSNG
′(z1N) (3.25)

∂H

∂u2N

=
∂

∂u2N

λ2u2CCG(z2N) = λ2u2CCG
′(z2N)

∂

∂u2N

z2N = λ2νRNG
′(z2N). (3.26)

Lastly, recall that by Appendix A we have a characterization of the adjoints in

terms of the Hamiltonian:

λ′1 = −∂H
∂S

, λ1(T) = 0 (3.27)

λ′2 = −∂H
∂R

, λ2(T) = 0. (3.28)

82

Making use of (3.13) and (3.20), we can express (3.27) and (3.28) as follows.

λ′1 = −∂H
∂S

= − ∂

∂S
[νFu0NNG(z0C) + λ1νSu1NNG(z1C) + λ2νRu2NNG(z2C)]

= −
[
νFu0NNG

′(z0C)
∂z0C

∂S
+ λ1νSu1NNG

′(z1C)
∂z1C

∂S
+ λ2νRu2NNG

′(z2C)
∂z2C

∂S

]
= − [u0CCSG

′(z0C) + λ1u1CCSG
′(z1C) + λ2u2CCSG

′(z2C)]

= −CS [u0CG
′(z0C) + λ1u1CG

′(z1C) + λ2u2CG
′(z2C)] (3.29)

λ′2 = −∂H
∂R

= − ∂

∂R
[u0CCG(z0N) + λ1u1CCG(z1N) + λ2u2CCG(z2N)]

= −
[
u0CCG

′(z0N)
∂z0N

∂R
+ λ1u1CCG

′(z1N)
∂z1N

∂R
+ λ2u2CCG

′(z2N)
∂z2N

∂R

]
= − [νFu0NNRG

′(z0N) + λ1νSu1NNRG
′(z1N) + λ2νRu2NNRG

′(z2N)]

= −NR [νFu0NG
′(z0N) + λ1νSu1NG

′(z1N) + λ2νRu2NG
′(z2N)] (3.30)

3.3 Four-Phase Structure

The mathematical results for this model will be broadly split into two sections. In the

first section we will prove that, as with the first, simpler model, we again see a phase

of fruit-only growth at the end of the growing season. The second section of results

will concern results we have been able to obtain with the help of Ansatz 3.1 below.

We are going to focus specifically on the case where νF < νS < νR, which means

that roots require the most units of carbon per unit of nitrogen, and fruits require

the most nitrogen per unit of carbon. We expect, though do not prove here, that the

solution in this case consists of the same four-stage structure seen in the first model

83

(Section 2.3), with the exception that the penultimate interval consists of root/fruit

growth rather than shoot/fruit growth, because here nitrogen is more important to

fruit production than carbon. To make the problem tenable we make the following

ansatz:

Ansatz 3.1. When the C:N ratios are ordered νF < νS < νR, the optimal trajectory

consists of growth stages in the following order starting at either stage 0 or 1 depending

on whether the plant is initially balanced:

0. Initial Phase: shoot-only or root-only growth

1. Balanced Growth: mixed shoot/root growth

2. Penultimate Interval: mixed root/fruit growth

3. Final Interval: fruit-only growth.

3.3.1 Final Interval

In this section we will prove that, as with the first model, the solution to the the

optimal control problem (3.4) for this model includes a final interval of fruit-only

growth. First, note that by (3.27) and (3.28) we have that λ1(T) = 0 = λ2(T), and

since G is bounded we have by (3.22), (3.23), (3.25), and (3.26) that

∂H

∂u1C

(T) = 0 (3.31)

∂H

∂u2C

(T) = 0 (3.32)

∂H

∂u1N

(T) = 0 (3.33)

∂H

∂u2N

(T) = 0. (3.34)

84

Furthermore, because we assume that C∗ > 0 and N∗ > 0 and since G′ > 0 we

have at t = T that

∂H

∂u0C

(t) >
∂H

∂u1C

(T),
∂H

∂u2C

(T) (3.35)

∂H

∂u0N

(t) >
∂H

∂u1N

(T),
∂H

∂u2N

(T). (3.36)

By (3.6) then we have that u0C(T) = 1 = u0N(T), and therefore

∂H

∂u0C

(T) = C∗G′
(

C∗

νFN∗

)
(3.37)

∂H

∂u0N

(T) = νFN
∗G′
(
νFN

∗

C∗

)
. (3.38)

Now, because both λ1 and λ2 are continuous, and G′ is bounded between 0 and 1,

there exists an ε > 0 such that (3.35) and (3.36) still hold for all t in (T − ε, T]. By

(3.6) this means there exists an interval of fruit-only growth at the end of the growing

season.

Furthermore, by (3.13) and (3.20), we have that during this stage

H = νFN
∗G

(
C∗

νFN∗

)
= C∗G

(
νFN

∗

C∗

)
. (3.39)

As with the first model, the optimal control problem (3.4) for this model is au-

tonomous, and so the Hamiltonian is constant along the optimal trajectory. There-

fore, (3.39) must hold for all t ∈ [0, T].

3.4 Phase Dynamics and Transition

As we did in Section 2.4 for (2.17), we will again present the basic equations governing

the dynamics in each phase of the solution to (3.4) as assumed in Ansatz 3.1, as well

85

as show that z0C and z1C are continuous between any two phases in which they are

defined, and z2C is continuous between a phase of root-only growth and balanced

growth. It is still an open question whether z2C is necessarily continuous at the

boundary between balanced growth and the penultimate intervals, though numerical

evidence seems to suggest that this is the case. Recall that these quantities z0C , z1C ,

and z2C , represent the ratios carbon flux to nitrogen flux in units of carbon to the

fruits, shoots, and roots, respectively, and so their continuity means that the amount

of carbon allocated to an organ per unit of nitrogen varies continuously so long as

the organ is growing. The definitions are revisited below.

z0C =
u0CC

νFu0NN
((3.7) revisited)

z1C =
u1CC

νSu1NN
((3.8) revisited)

z2C =
u2CC

νRu2NN
((3.9) revisited)

As in Section 2.4, we will discuss the phases in chronological order before discussing

the transition in chronological order. We will begin with the initial stage of either

shoot or root growth.

3.4.1 Initial Phase: Shoot-Only Growth

During shoot-only growth we have

u0C = 0, u1C = 1, u2C = 0, u0N = 0, u1N = 1, u2N = 0 (3.40)

86

and only S, λ1, and λ2 are changing. The differential equations in time for these three

during this stage are given by

S ′ = νSNG (z1C) (3.41)

λ′1 = −λ1CSG
′ (z1C) (3.42)

λ′2 = −λ1NRνSG2 (z1C) (3.43)

where here

z1C =
C

νSN
. (3.44)

Note also that in this stage both N and NR are constant because R is constant.

Furthermore, because we know by (3.39) that H = C∗G
(
νFN

∗

C∗

)
we can rewrite the

Hamiltonian (3.13) during this phase as

C∗G

(
νFN

∗

C∗

)
= λ1νSNG(z1C) (3.45)

and so by solving (3.45) for λ1 and then making use of (2.14) we have two additional

expressions for λ1 during this phase:

λ1 =
C∗G

(
νFN

∗

C∗

)
νSNG(z1C)

(3.46)

λ1 =
C∗G

(
νFN

∗

C∗

)
νSNG2(z1C) + CG′(z1C)

. (3.47)

3.4.2 Initial Phase: Root-Only Growth

During root-only growth we have

u0C = 0, u1C = 0, u2C = 1, u0N = 0, u1N = 0, u2N = 1 (3.48)

87

and only R, λ1, and λ2 are changing. The differential equations in time for these three

during this stage are given by

R′ = νRNG(z2C) (3.49)

λ′1 = −λ2CSG
′(z2C) (3.50)

λ′2 = −λ2NRνRG2 (z2C) (3.51)

where here

z2C =
C

νRN
. (3.52)

Note also that in this stage both C and CS are constant because S is constant.

Furthermore, because we know by (3.39) that H = C∗G
(
νFN

∗

C∗

)
we can rewrite the

Hamiltonian (3.13) during this phase as

C∗G

(
νFN

∗

C∗

)
= λ2νRNG(z2C) (3.53)

and so by solving (3.53) for λ2 and then making use of (2.14) we have two additional

expressions for λ2 during this phase:

λ2 =
C∗G

(
νFN

∗

C∗

)
νRNG(z2C)

(3.54)

λ2 =
C∗G

(
νFN

∗

C∗

)
νRNG2(z2C) + CG′(z2C)

. (3.55)

3.4.3 Balanced Growth - Shoot/Root Growth

During balanced growth we have

u0C = 0, 0 ≤ u1C ≤ 1, u2C = 1−u1C , u0N = 0, 0 ≤ u1N ≤ 1, u2N = 1−u1N

(3.56)

88

and so by (3.6) we have that

λ1G
′(z1C) = λ2G

′(z2C) (3.57)

and

λ1νSG2(z1C) = λ2νRG2(z2C). (3.58)

During this stage S,R, λ1, and λ2 are changing. The differential equations in time for

these four during this phase are given by

S ′ = νSu1NNG(z1C) (3.59)

R′ = νR(1− u1N)NG(z2C) (3.60)

λ′1 = −CSλ1G
′(z1C) = −CSλ2G

′(z2C) (3.61)

λ′2 = −NRλ1νSG2(z1C) = −NRλ2νRG2(z2C). (3.62)

Furthermore, taking advantage of the fact that (3.39) gives us H = C∗G
(
νFN

∗

C∗

)
,

we can rewrite the Hamiltonian (3.13) during this phase as

C∗G

(
νFN

∗

C∗

)
= λ1νSu1NNG(z1C) + λ2νRu2NNG(z2C). (3.63)

Noting that as (3.63) and (2.82) only differ by a constant on the left-hand side, we

can use the same procedure outlined in Section 2.4.3 to obtain characterizations for

λ1 and λ2 during the balanced growth phase:

λ1 =
C∗G

(
νFN

∗

C∗

)
νSNG2(z1C) + CG′(z1C)

(3.64)

λ2 =
C∗G

(
νFN

∗

C∗

)
νRNG2(z2C) + CG′(z2C)

. (3.65)

89

3.4.4 Penultimate Interval - Root/Fruit Growth

During the penultimate interval we have

0 ≤ u0C ≤ 1, u1C = 0, u2C = 1−u0C , 0 ≤ u0N ≤ 1, u1N = 0, u2N = 1−u0N4

(3.66)

and so by (3.6) we have that

G′(z0C) = λ2G
′(z2C) (3.67)

and

νFG2(z0C) = λ2νRG2(z2C). (3.68)

During this interval R,F, λ1, and λ2 are all changing. The differential equations in

time for these four during this stage are

R′ = νR(1− u0N)NG(z2C) (3.69)

F ′ = νFu0NNG(z0C) (3.70)

λ′1 = −CSλ2G
′(z2C) = −CSG′(z0C) (3.71)

λ′2 = −NRλ2νRG2(z2C) = −NRνFG2(z0C) (3.72)

Furthermore, taking advantage of the fact that (3.39) gives us H = C∗G
(
νFN

∗

C∗

)
,

we can rewrite the Hamiltonian (3.13) during this phase as

C∗G

(
νFN

∗

C∗

)
= νFu0NNG(z0C) + λ2νRu2NNG(z2C). (3.73)

90

Again, by the procedure used in Section 2.4.3, we use (3.73) to obtain the following:

λ2 =
C∗G

(
νFN

∗

C∗

)
νRNG2(z2C) + CG′(z2C)

(3.74)

1 =
C∗G

(
νFN

∗

C∗

)
νFNG2(z0C) + CG′(z0C)

. (3.75)

3.4.5 Final Interval - Fruit-Only Growth

During the final interval of fruit-only growth we have

u0C = 1, u1C = 0, u2C = 0, u0N = 1, u1N = 1, u2N = 0 (3.76)

and F, λ1, and λ2 are changing. The differential equations in time for these three

during this phase are

F ′ = νFN
∗G(z0C) (3.77)

λ′1 = −C∗SG′(z0C) (3.78)

λ′2 = −N∗RνFG2(z0C) (3.79)

where here

z0C =
C∗

νFN∗
.

Because we also know that λ1(T) = 0 = λ2(T), we can solve for λ1 and λ2 during this

final interval:

λ1 = C∗SG
′
(

C∗

νFN∗

)
(T − t) (3.80)

λ2 = N∗RνFG2

(
C∗

νFN∗

)
(T − t). (3.81)

91

3.4.6 Initial Phase to Balanced Growth Transition

We will now turn our attention to discussing the transitions between the four phases

and, in a similar manner to what we did in Section 2.4, we will show that z0C and

z1C are continuous between any two phases in which they are defined, and z2C is

continuous between a phase of root-only growth and balanced growth. We will,

whenever possible, appeal to arguments made in previous sections to avoid repeating

work we’ve already done.

In the same manner discussed in Section 3.4.6, we see that (3.47) and (3.64) are

the same and (3.55) and (3.65) are the same. Therefore, we can again consider a

‘generalized’ versions of these equations:

λ =
C∗G

(
νFN

∗

C∗

)
νNG2(z) + CG′(z)

(3.82)

where here (λ, ν, z) is either (λ1, νS, z1C) or (λ2, νR, z2C) depending on whether the

initial stage is shoot-only growth or root-only growth, respectively. We will call this

transition point t = t̃, let x = limt→t̃+ z, and note that limt→t̃− z = C
νN

. Now, taking

limits of (3.82) from both sides, we obtain

lim
t→t̃+

λ(t) = λ̃+ =
C∗G

(
νFN

∗

C∗

)
νNG2(x) + CG′(x)

(3.83)

lim
t→t̃−

λ(t) = λ̃− =
C∗G

(
νFN

∗

C∗

)
νNG2

(
C
νN

)
+ CG′

(
C
νN

) (3.84)

As λ is necessarily continuous, we have that λ̃− = λ̃+, which gives us

G2

(
C

νN

)
+

C

νN
G′
(
C

νN

)
= G2(x) +

C

νN
G′(x). (3.85)

Note that this is exactly (2.104), and so the argument proceeds identically to that in

92

Section 2.4.6 and we arrive at the conclusion that z1C is continuous between an initial

phase of shoot-only growth and balanced growth, and z2C is continuous between an

initial phase of root-only growth and balanced growth. As it is still unknown whether

z2C is always continuous between the balanced growth and penultimate intervals, we

will proceed to the transition from the penultimate to final interval.

3.4.7 Penultimate Interval to Final Interval Transition

In this section, we will show that z0C is continuous at the boundary between the

penultimate and final intervals. This argument will proceed in a similar fashion to

the one previously used to show that either z1C or z2C is continuous between the initial

phase and the balanced growth phase. Recall that during the penultimate interval

we have

1 =
C∗G

(
νFN

∗

C∗

)
νFNG2(z0C) + CG′(z0C)

. (3.75 revisited)

Letting limt→t∗− z0C = z−0C , we have that as t→ t∗, (3.75) becomes

C∗

νFN∗
G

(
νFN

∗

C∗

)
= G2

(
z−0C
)

+
C∗

νFN∗
G′
(
z−0C
)
. (3.86)

Note that by (2.9) we can rewrite the left-hand side of (3.86) to obtain

G

(
C∗

νFN∗

)
= G2

(
z−0C
)

+
C∗

νFN∗
G′
(
z−0C
)
, (3.87)

which by (2.14) becomes

G2

(
C∗

νFN∗

)
+

C∗

νFN∗
G′
(

C∗

νFN∗

)
= G2

(
z−0C
)

+
C∗

νFN∗
G′
(
z−0C
)
. (3.88)

93

At this point we have again reached (2.104), and so the argument proceeds identically

to that in Section 2.4.6, and we arrive at the conclusion that z0C is continuous between

the penultimate and final intervals.

3.5 Numerical Scheme

The overall structure of the numerical scheme is similar to that discussed in Sec-

tion 2.5, in the sense that solving the control problem (3.4) numerically follows the

same two-step process. We first develop a numerical scheme for the map

(S∗, R∗) 7→ (S,R, F, ~u, λ1, λ2),

and then, in conjunction with MATLAB’s built-in nonlinear equation solver fsolve,

use it to obtain the map

(S0, R0) 7→ (S∗, R∗).

As before, we ultimately obtain the map

(S0, R0) 7→ (S,R, F, ~u, λ1, λ2).

In this section, as in Section 2.6, we will focus on the first map, that is solving

the problem backward in time for given (S∗, R∗). Additionally, we will again keep

the discussion detailed enough to convey how the phases are simulated and pieced

together, but general enough so as to avoid going into the fine details of the scheme.

The actual MATLAB code is included in Appendix C.2.

While the initial phase and balanced growth phase are nearly the same in both

models, the penultimate interval and final interval in the second model are much

94

different from the first. We will begin with locating t∗, the boundary between the

penultimate interval and the final interval, and then proceed along a similar trajectory

to that laid out in Section 2.5, constructing the solution to (3.4) during the penulti-

mate interval, final interval, balanced growth phase, and initial phase, respectively.

3.5.1 Locating the Penultimate Interval - Final Interval Boundary

Because ∂H
∂u0C

and ∂H
∂u0N

are the only partial derivatives ofH with respect to the controls

defined in the final interval, there is more involved in locating t∗ than there was with

the first model. We will, however, be able to use the fact that z0C is continuous at

this boundary to simplify the procedure for locating t∗. First, let limt→t∗− z2C = z−2C .

Now, because z0C is continuous at t = t∗, (3.67) and (3.68) become

G′
(

C∗

νFN∗

)
= λ2(t∗)G′(z−2C) (3.89)

νFG2

(
C∗

νFN∗

)
= λ2(t∗)νRG2(z−2C). (3.90)

Furthermore, because λ2 is continuous, we can rewrite (3.90) using (3.81) to get

νFG2

(
C∗

νFN∗

)
= N∗RνFG2

(
C∗

νFN∗

)
νRG2(z−2C)(T − t∗). (3.91)

Solving (3.91) for t∗ gives us

t∗ = T − 1

νRN∗RG2(z−2C)
. (3.92)

In order to use (3.92) we first need to calculate z−2C . To this end, we can use (3.89)

and (3.90) to obtain

νRG
′
(

C∗

νFN∗

)
νFG2

(
C∗

νFN∗

) =
G′(z−2C)

G2(z−2C)
. (3.93)

95

Now, by (2.11) and (2.13), we have that

G′(z)

G2(z)
=

1 + 2z

z3(2 + z)
,

which for z ≥ 0 is invertible by the proof of Lemma 2.8. This means we can use

(3.93) to solve for z−2C .

To numerically solve for t∗, then, we begin by using MATLAB’s built-in nonlinear

equation solver fsolve to solve (3.93) for z−2C . Next, we evaluate the right-hand side

of (3.92) to obtain t∗. At this point we know when the penultimate interval ends,

and we can proceed to the penultimate interval.

3.5.2 Penultimate Interval

Recall that in Section 2.5.1 we solved differential equations in z1C rather than t

because of a singularity in dz1C
dt

as t → t∗. In this model, due to the presence of

z0C , the penultimate interval is more similar to the balanced growth phase than to

the penultimate interval in the first model. So, for the penultimate interval in this

model, we will employ a strategy that more closely resembles that used in Section 2.5.5

(balanced growth) than the one used in Section 2.5.3 (penultimate interval).

Starting with equations for z0C and z2C during the penultimate interval

z0C =
u0CC

∗

νFu0NN
(3.94)

z2C =
(1− u0C)C∗

νR(1− u0N)N
(3.95)

96

we can solve for u0N and u0C :

u0N =
C∗

N
− νRz2C

νF z0C − νRz2C

(3.96)

u0C =
νF z0CNu0N

C∗
. (3.97)

As in Section 2.5.5, we derive differential equations for z0C and z2C and ultimately

use (3.96) and (3.97) to obtain the controls. The differential equations in time for

z0C and z2C are given below, the derivation is included in Appendix B.3.

dz2

dt
=

NRνR [G2(z2)]2G′(z2)G(z0)

G′′(z2) [z0G′(z0)G2(z2)− z2G′(z2)G2(z0)]
(3.98)

dz0

dt
=

G2(z0)

z0G′′(z0)G2(z2)

[
z2G

′′(z2)
dz2

dt
+NRνR [G2(z2)]2

]
(3.99)

We use RK4 to numerically solve (3.69), (3.71), (3.72), (3.98), and (3.99) back-

ward in time, using (3.96) and (3.97) to eliminate the controls from the differential

equations. The differential equations for z0C and z2C are initialized at t = t∗ using

the fact that z0C is constant during the final interval, and the value of z2C found in

the process of finding t∗, as discussed in Section 3.5.1. We initialize λ1 and λ2 at t∗

by evaluating (3.80) and (3.81), and use R∗ to initialize the differential equation for

R. Lastly, then, we use (3.96), (3.97), and (3.66) to update the controls. We continue

solving backward in time until the controls are no longer bounded in [0, 1]. This pro-

vides the earliest possible transition point between the balanced growth phase and

the penultimate interval.

3.5.3 Locating the Start of the Penultimate Interval

We use a very similar approach to finding t̂ to that we used in Section 2.5.2. Broadly

speaking, we use a binary search on the current RK4 integration mesh to find a small

97

interval about which a certain condition is met, simulate the penultimate interval

dynamics again on that interval with a finer mesh, and repeat the process until the

condition is met to a within a specified tolerance.

We begin with the largest possible interval containing the penultimate interval,

starting with the point at which the controls become unbounded and ending at t∗, and

use a binary search to identify a small interval about which the following condition

is satisfied:

H = C∗G

(
νFN

∗

C∗

)
= λ1 [νSNG2(z1C) + CG′(z1C)] . (3.100)

Note that (3.100) is derived from (3.64). Since z1C is not defined in the penultimate

interval we will need to calculate it as a left-hand limit coming from balanced growth.

Since we have not yet proven that z2C is continuous at this boundary, we will use

MATLAB’s built-in nonlinear equation solver fsolve to solve (3.57) and (3.58) si-

multaneously for z1C and z2C during balanced growth at every step in the binary

search. These equations are revisited below:

λ1G
′(z1C) = λ2G

′(z2C) ((3.57) revisited)

λ1νSG2(z1C) = λ2νRG2(z2C). ((3.58) revisited)

Once we have found a suitably small interval about which (3.100) is met, we use RK4

to simulate the penultimate interval dynamics on this interval with a finer mesh, and

repeat the process until we have found a point at which (3.100) is met to within some

tolerance. This gives us t̂, the start of the penultimate interval.

98

3.5.4 Fruits - Penultimate Interval

Now that we have t̂, we can solve (3.70) forward in time using RK4. This completes

the numerical solution to (3.4) during the penultimate interval.

3.5.5 Final Interval

As we did in Section 2.5.4, we next take advantage of the fact that, by the process

described in Section 3.5.4, we now know the value of F at the beginning of the final

interval. So, we simulate the dynamics in the final interval before continuing backward

to balanced growth. During the final interval the controls are constant by (3.76), S

and R are constant, and λ1 and λ2 is given by (3.80) and (3.81). Lastly, using the

value of F (t∗) obtained as described in Section 3.5.4 and the fact that F ′ is constant

during the final interval by (3.77), we have that

F (t) = F (t∗) + νFN
∗G

(
C∗

νFN∗

)
· (t− t∗). (3.101)

Therefore, as in Section 2.5.4, this portion of the numerical scheme consists only of

defining the states, adjoints, and controls, as defined above, between times t∗ and T .

3.5.6 Balanced Growth

Note that the only difference between the balanced growth phases of each model is

the value of the Hamiltonian constant. This, however, does not directly factor into

the solution to either optimal control problem (2.17) or (3.4) during balanced growth,

and so here we employ the same numerical scheme outlined in Section 2.5.5.

99

3.5.7 Locating the Start of Balanced Growth

Recall that, as with the first model, we have by Section 3.4.6 that z1C is continu-

ous between an initial phase of shoot-only growth and balanced growth, and z2C is

continuous between an initial phase of root-only growth and balanced growth. This

means that we can use the same procedure discussed in Section 2.5.6 to locate the

start of balanced growth, t̄. As in that section, we also note that it is possible that

the plant begins in balance and skips an interval of shoot-only or root-only growth.

The only key distinction between the numerical schemes at this point is in how

we determine whether the initial phase consists of shoot-only or root-only growth.

Because the Hamiltonian constant is different in this model, here we use (3.46) and

(3.54) and evaluate the following at t̄:

∣∣∣∣λ1νSNG

(
C

νSN

)
− C∗G

(
νFN

∗

C∗

)∣∣∣∣ and

∣∣∣∣λ2νRNG

(
C

νRN

)
− C∗G

(
νFN

∗

C∗

)∣∣∣∣ .
If the first is smaller then the initial phase consists of shoot growth, and if the second

is smaller the initial phase consists of root growth.

3.5.8 Initial Phase

As with the balanced growth phase, the dynamics in the initial phase are the same

in each model, so we use the same numerical scheme we discussed in Section 2.5.7.

3.6 Numerical Results

In this section we will present some of the main results which are apparent from

numerical simulations. We will structure this section in a similar manner to how

we structured Section 2.6. As in the numerical simulations conducted with the first

100

model, we again make the simplifying assumption that the plant does not experience

self shading as it grows, and so we choose C(S) = S and N(R) = R. We again

take T = 10 to be the length of the growing season, and pick stoichiometric ratios

νF = 1/9, νS = 1/3, and νR = 1. These ratios were chosen to respect the ordering

assumed in Ansatz 3.1, as well as to maintain consistency with the values of νS and

νR used in Section 2.6. As with the first model, we again see four types of optimal

growth patterns, examples of which are shown below for the case that F (T) = 600.

3.6.1 Initial Shoot Growth

Here we chose terminal conditions S∗ = 437.50 and R∗ = 1470.18. This results in

F (T) = 600, S0 = 43.02, and R0 = 497.01. The states and controls are shown in

Figure 3.2.

The simulation shown in Figure 3.2 exhibits all four stages of growth laid out in

Ansatz 3.1: there is an initial phase of shoot-only growth, followed by a phase of

balanced growth between shoots and roots, then a phase of mixed root/fruit growth,

and finally a phase of fruit-only growth. Looking at the last two plots of Figure 3.2 we

see the carbon and nitrogen allocations strategies employed. Note that following the

initial phase of shoot-only growth, we see a gradual decrease in allocation to shoots

and an increase of allocation to roots during the balanced growth phase. During

the penultimate interval, then, we see the plant reducing allocation to roots while

increasing allocation to fruits.

3.6.2 Initial Root Growth

Here we chose terminal conditions S∗ = 439.15 and R∗ = 1472.9. This results in

F (T) = 600, S0 = 287.08, and R0 = 74.49. The states and controls are shown in

Figure 3.3.

101

0

1000

2000

0

500

1000

0

0.5

1

0 1 2 3 4 5 6 7 8 9 10

Time

0

0.5

1

Figure 3.2: States and controls illustrating initial shoot growth. From top to bottom:
Shoots and roots, fruits, carbon controls, nitrogen controls. Shoots, roots, and fruits
are given in units of carbon and the controls are dimensionless.

The simulation shown in Figure 3.3 again shows all four stages of growth, though

in this case the initial phase of shoot growth is replaced with an initial phase of root

growth. Notice that, as with the first model, we see between Figures 3.2 and 3.3 two

simulations in which the terminal conditions are very close but the initial conditions

are quite different.

Looking at the last two plots in Figure 3.3, we can see the resource allocation

strategy. In particular, we see that during balanced growth the plant initially reduces

allocation to roots while increasing allocation to shoots. Around time t = 3.5 the

plant reverses this trend and begins to increase allocation to roots again. During the

penultimate interval the allocation strategy resembles that in Figure 3.2.

102

0

1000

2000

0

500

1000

0

0.5

1

0 1 2 3 4 5 6 7 8 9 10

Time

0

0.5

1

Figure 3.3: States and controls illustrating initial root growth. From top to bottom:
Shoots and roots, fruits, carbon controls, nitrogen controls. Shoots, roots, and fruits
are given in units of carbon and the controls are dimensionless.

3.6.3 Balanced Growth First - Type S

Here we chose terminal conditions S∗ = 438.31 and R∗ = 1471.53. This results in

F (T) = 600, S0 = 135.10, and R0 = 290.12. The states and controls are shown in

Figure 3.4.

In this case we see an example of a simulation in which the plant begins in bal-

ance. Comparing Figure 3.4 with Figure 3.2, however, we see that the plants use

similar allocation strategies during balanced growth in both simulations. In partic-

ular, balanced growth in each consists of a gradual decrease in allocation to shoots

while simultaneously increase allocation to roots. We call this allocation pattern

103

0

1000

2000

0

500

1000

0

0.5

1

0 1 2 3 4 5 6 7 8 9 10

Time

0

0.5

1

Figure 3.4: States and controls illustrating Type S initial balanced growth. From
top to bottom: Shoots and roots, fruits, carbon controls, nitrogen controls. Shoots,
roots, and fruits are given in units of carbon and the controls are dimensionless.

Type S because the balanced growth phase resembles that of a plant that begins with

shoot-only growth.

3.6.4 Balanced Growth First - Type R

Here we chose terminal conditions S∗ = 438.33 and R∗ = 1471.54. This results in

F (T) = 900, S0 = 164.4, and R0 = 239.89. The states and controls are shown in

Figure 3.5.

As in Figure 3.4, Figure 3.5 shows a simulation in which the plant begins in

balance. However, unlike the Type S simulation, we see in Figure 3.5 a balanced

growth phase that follows a similar allocation pattern to that seen in simulations

104

0

1000

2000

0

500

1000

0

0.5

1

0 1 2 3 4 5 6 7 8 9 10

Time

0

0.5

1

Figure 3.5: States and controls illustrating Type R initial balanced growth. From
top to bottom: Shoots and roots, fruits, carbon controls, nitrogen controls. Shoots,
roots, and fruits are given in units of carbon and the controls are dimensionless.

which begin with a phase of root-only growth. In particular, balanced growth in

each consists of initially decreasing allocation to roots while increasing allocation to

shoots, until some point about half-way through the balanced growth phase when this

trend reverses and allocation to roots increases again. Therefore, we call this type of

allocation pattern Type R.

3.6.5 Final Fruits Value Contours

As we did in Section 2.6.5, we again look for contours in the (S0, R0) plane which result

in the same value of fruits at time T . For a given value of S0, we used MATLAB’s

built-in nonlinear equation solver fsolve to find the correspond value of R0 for which

105

the numerical scheme we outline in Section 3.5 would yield values of 400, 500, or 600

for F (T). The resulting contours are shown in Figure 3.6.

0 50 100 150 200 250 300
0

100

200

300

400

500

600

700

800

Figure 3.6: Contours depicting which initial conditions correspond to final fruit values
of 400, 500, and 600. Shoots, roots, and fruits are given in units of carbon.

There are several key features to note about the contours in Figure 3.6. First, while

each contour has a region which is nearly linear in the middle, the concavity is more

pronounced at the ends, suggesting that plants which are strongly deficient in either

initial roots or shoots will require an abundance of the other to compensate. That

said, the contours become closer together near the ends, indicating that a small change

in initial conditions in these regions will have a large effect on overall performance. If

the plant begins in balance it takes a larger change in the initial conditions to move

to a higher-yield contour.

106

3.6.6 600 Fruit Contour

As we did in Section 2.6.6, we will take a closer look at one of the contours in

Figure 3.6. In particular, we will look at simulations with initial conditions along the

F (T) = 600 contour. These correspond to 280 initial conditions, with S0 between 15

and 300. As we did previously, we begin by identify which of the four types of growth

discussed in Sections 3.6.1, 3.6.2, 3.6.3 and 3.6.4 each initial condition corresponds

too. The F (T) = 600 contour is plotted again in Figure 3.7, and the coloration

indicates the initial phase of growth.

0 50 100 150 200 250 300
0

100

200

300

400

500

600

700

800

Roots

Balance

(Type R)

Balance

(Type S)

Shoots

Initial Phase

Figure 3.7: F (T) = 600 contour with coloration indicating the initial phase of growth.
Shoots, roots, and fruits are given in units of carbon.

Additionally, to see the relationship between initial and terminal conditions, we

plotted R∗ vs. S∗ two different ways along the F (T) = 600 contour. In the plot

107

on the left-hand side of Figure 3.8 we see the points in the (S∗, R∗) plane which

correspond to points in the (S0, R0) plane in Figure 3.7. The coloration here has the

same meaning as in Figure 3.7, indicating the initial phase of growth. The plot on

the right-hand side of Figure 3.8 shows the frequency of points in 1 × 1 bins in the

(S∗, R∗) plane. This plot was generated in MATLAB using hist3.

428 430 432 434 436 438 440
1456

1458

1460

1462

1464

1466

1468

1470

1472

1474

Roots

Balance

(Type R)

Balance

(Type S)

Shoots

Initial Phase

428 430 432 434 436 438 440
1456

1458

1460

1462

1464

1466

1468

1470

1472

1474

0

50

100

150

Frequency

Figure 3.8: The plot on the left shows the terminal conditions corresponding to
initial conditions along the F (T) = 600 contour. The plot on the right shows the
corresponding frequency of points along the line on the left with points grouped into
1× 1 bins. Shoots, roots, and fruits are given in units of carbon.

Note that in the left-hand plot in Figure 3.8 we see that plants which began

with shoot-only growth reached F (T) = 600 with less overall biomass at the end as

compared with plants which began with root-only growth. Furthermore, looking at

the right-hand plot, we see that, as with the first model, the wide array of initial

conditions represented by the F (T) = 600 contour result in tightly clustered terminal

conditions.

Another way we can see this distinction between the initial and terminal conditions

108

is in the progression of the plots of S(t) and R(t) as the initial conditions progress

along the F (T) = 600 contour. Note that we have already seen four plots of snapshots

along the F (T) = 600 contour in Figures 3.2, 3.3, 3.4, and 3.5. In Figure 3.9 we have

plotted the solution curves of S(t) and R(t) with initial conditions on the F (T) = 600

contour. The progression of solution curves from blue to red signifies the progression

of initial conditions from left to right along the F (T) = 600 contour, that is from the

low initial shoot/high initial root end to the low initial root/high initial shoot end.

Again, notice the how the initial transients tend to go away by the end of balanced

growth, when the shoots stop growing.

Figure 3.9: Progression of solutions curves of S(t) and R(t) along the F (T) = 600
contour. Going from blue to red corresponds to moving from left to right along the
contour. Shoots, roots, and fruits are given in units of carbon.

To illustrate this one more ‘level’ in, we can repeat the same process used to

109

plot Figure 3.9 with the solution curves to u2C(t) (the fraction of carbon allocated

to roots) along the F (T) = 600 contour. Again, the progression of solution curves

from blue to red signifies the progression of initial conditions from left to right along

the F (T) = 600 contour. These solution curves are shown in Figure 3.10. As with

Figure 3.9, note how the initial transients seem to be eliminated by the end of balanced

growth. That said, it is worth pointing out that whereas in the first model the choices

of C(S) = S and N(R) = R determines the points at which the last two phases begin,

this second model, with the same simplification, does not have this characteristic.

While it’s difficult to see in Figure 3.10, there is some small variation in when the

last two phases begin, which is too large to be due to numerical error.

Figure 3.10: Progression of solution curves of u2C(t) (fraction of carbon allocated to
roots) as the initial conditions (S0, R0) move along the F (T) = 600 contour. Going
from blue to red corresponds to moving from left to right along the contour.

110

3.7 Discussion

Recall that in Chapter 2 we introduced a model for resource allocation in annual

plants which served as an extension of Iwasa and Roughgarden’s work in [5] to a

two-resource model, in which the plant requires both carbon and nitrogen to grow.

We made the simplifying assumption, however, that fruits only require carbon. In

this chapter, we have extended our model from Chapter 2 to the more biologically

realistic case in which fruits require both carbon and nitrogen. We used insight gained

from the first model to form Ansatz 3.1 in regards to the structure of the optimal

growth trajectory for a plant with C:N ratios ordered by νF < νS < νR, and looked

for solutions which matched our Ansatz. Perhaps unsurprisingly, we have recovered

most of the results from our first model, providing weight to the general biological

conclusions we discussed in Section 2.7. In this section, we will review these analogous

results from this second model, as well as discuss the biological relevance, and outline

some questions for further inquiry.

In Section 3.4 we established continuity of z0C , z1C , and z2C between phases during

which they are defined, with the exception of z2C between the balanced growth phase

and penultimate interval. Numerical evidence suggests that z2C is continuous here,

but we have yet to verify this analytically. As we discussed in Section 2.7, this means

that, with the exception we mentioned above, whenever an organ is growing the

amount of carbon allocated to that organ per unit of nitrogen allocated to that organ

varies continuously in time.

In Section 3.6, particularly in Figures 3.2, 3.3, 3.4, and 3.5, we again see a spectrum

of strategies for optimal growth, as we saw in the first model, with the exception that

penultimate interval differs between the two models. We again observe allocation

strategies that suggest a balance between avoiding resource limitation, and investing

111

in either roots or fruits. The plant begins with addressing deficiencies in either shoots

or roots before entering a balanced growth phase. During balanced growth, we see

the same types of allocation patterns as in the first model, those being what we

termed Type S or Type R, depending on whether the plant initially emphasized

shoots or roots, respectively. Unlike the first model, however, which saw an increase

in allocation to shoots by the end of balanced growth, in this model we see an increase

in allocation to roots by the end of balanced growth. This reversal is due to the fact

that we have reordered the C:N ratios so that instead of νF = ∞ as in the first

model, here we have νF less than the other two C:N ratios. During the penultimate

interval, then, we see a gradual shift from primarily investing in roots to exclusively

investing in fruits, reflecting the fact that here fruit growth is more important that

shoot growth for overall fruit yield, but not so much as to preclude investment in

roots.

As with the first model, we see an equalizing effect that seems to eliminate initial

transients by the end of balanced growth. Looking at Figures 3.6 and 3.7, we again

see the wide range of initial conditions which result in F (T) = 600. Figure 3.8 shows

a similar tight clustering of the terminal conditions that we saw in the first model.

Looking at the particular strategies employed for plants with initial conditions along

the F (T) = 600 contour, in Figures 3.9 and 3.10, we again see a high degree of

variation in the strategies used in first half of the growing season, and only minimal

variation in the second half of the growing season. It is worth noting here that, while

the later stages appear primarily blue in both Figures 3.9 and 3.10, this is most likely

an artifact of which piece of the F (T) = 600 contour we examined. Figure 3.7 shows

that this region of the contour gets closer to S0 = 0 than it does R0 = 0, and so we see

more variation toward that extreme, resulting in more visible blue in the latter half

of the growing season in the plots S,R, and u2C . As we concluded for the first model,

112

these results suggest that optimal growth may drive a population toward common

sizes and optimal yields by means of variation in allocation strategy.

3.7.1 Future Directions

So far we have only looked for solutions which follow Ansatz 3.1, which while rea-

sonable based on our work with the first model, begs the question as to whether it

always holds true for the given ordering of C:N ratios, or whether there may be some

region of the (νS, νR, νF) parameter space for which it fails. Furthermore, it seems

likely that for some regions of this parameter space we may recover the structure of

the first model (presumably where νS < νR < νF), or the three-phase structure seen

by Iwasa and Roughgarden in [5].

A natural extension of this work would involve making the model more biologically

reasonable. In particular, we’ve assumed complete utilization of resources, when in

reality we should include the possibility of resource rejection at the synthesizing units

(see [7]). Furthermore, we have assumed that the carbon and nitrogen fluxes depend

only on shoots and roots, respectively, whereas the carbon flux in particular should

depend on both shoots and roots, because water is required for carbon capture.

At this point we have considered annual plants growing in isolation. It would be

interesting to expand our work to different classes of plants, for which fruit yield would

no longer be a complete measure of fitness. Here our objective function would need

to include a measure of survival likelihood, as well as reproductive fitness. Lastly, the

question remains as to whether the allocation trends we observe still exist when the

effects of competition and other community dynamics are considered.

113

APPENDIX A

Necessary Conditions

In this appendix we will derive the necessary conditions presented in (2.19) in Sec-

tion 2.2.4 and in (3.6) in Section 3.2.3. Note that because the carbon controls do not

directly depend on the nitrogen controls we can obtain the necessary conditions for

the first model by considering an n-state two-control problem and an n-state three-

control problem separately, and for the second model we have two separate n-state

three-control problems. In our particular situation n = 3, but we derive the condi-

tions in more generality because there is minimal complexity added to the derivation.

In all the following we consider f,~g to be continuously differentiable in all arguments

and ~u to be piecewise continuous. We begin with an n-state two-control problem in

Appendix A.1 followed by an n-state three-control problem in Appendix A.2

A.1 n States, 2 Controls, Interval [0, T]

We consider the optimal control problem give by (A.1), with the goal of deriving the

associated necessary conditions.

114

max
~u=〈u1,u2〉

∫ T

0

f(t, ~x(t), ~u(t)) dt

subject to: 0 ≤ u1(t) ≤ 1, 0 ≤ u2(t) ≤ 1 for t ∈ [0, T],

u1(t) + u2(t) = 1 for t ∈ [0, T]

~x ′(t) = ~g(t, ~x(t), ~u(t)), ~x(0) = ~x0

(A.1)

To this end, let U be the space of admissible controls, and define the functional

J : U → R by

J(~u) =

∫ T

0

f(t, ~x(t), ~u(t)) dt

=

∫ T

0

{
f(t, ~x(t), ~u(t)) + ~λ(t) · (~g(t, ~x(t), ~u(t))− ~x′(t))

}
dt

=

∫ T

0

{
f(t, ~x(t), ~u(t)) + ~λ(t) · ~g(t, ~x(t), ~u(t)) + ~λ ′(t) · ~x(t)

}
dt

+ ~λ(0) · ~x0 − ~λ(T) · ~x(t), (A.2)

where ~λ(t) is a piecewise differentiable function to be specified later, and the final

equality was obtained by integrating by parts. Note that by ~λ ′ we mean the function

whose nth component is the time derivative of the nth component of ~λ. We use

the same notation for ~x ′(t). Let ~u ∗, ~x ∗ be optimal, and for a piecewise continuous

variations h1, h2 and ε ∈ R define 〈uε1, uε2〉 ∈ U by uε1(t) = u∗1(t) + εh1(t) and uε2(t) =

u∗2(t)+εh2(t), and let ~x ε be the corresponding state. Note that admissibility requires

uε1 + uε2 = 1, so we have h1 = −h2. Because ~u ∗, ~x ∗ are optimal, we have

0 ≥ dJ(~u ε)

dε

∣∣∣
ε=0

= lim
ε→0

J(~u ε)− J(~u ∗)

ε
. (A.3)

115

We have inequality rather than equality above because the boundedness of the controls

makes it possible that optimality is only global rather than local, and the numerator

in the difference quotient is nonpositive because J(~u ∗) is maximal over admissible

controls. We differentiate (A.2) with respect to ε and note that conditions on the

functions involved in the integrand allow us to interchange the derivative and integral

via the Dominated Convergence Theorem. Suppressing the arguments from here on,

0 ≥
∫ T

0

∂

∂ε

(
f + ~λ · ~g + ~λ ′ · ~x ε

) ∣∣∣
ε=0

dt− ~λ(T) · ∂~x
ε(t)

∂ε

∣∣∣
ε=0

=

∫ T

0

{(
∇f +

n∑
i=1

λi∇gi + ~λ ′

)
· ∂~x

ε(t)

∂ε

∣∣∣
ε=0

+
(
fu1 + ~λ · ~gu1

)
h1 +

(
fu2 + ~λ · ~gu2

)
h2

}
dt

− ~λ(T) · ∂~x
ε(t)

∂ε

∣∣∣
ε=0

.

Note that here we are using ∇f to mean the vector of derivatives of f with respect

each component of ~x, and likewise for ∇gi. Choosing ~λ to satisfy

~λ ′(t) = −

(
∇f +

n∑
i=1

λi∇gi

)
, ~λ(T) = ~0,

the inequality reduces to

0 ≥
∫ T

0

{(
fu1 + ~λ · ~gu1

)
h1 +

(
fu2 + ~λ · ~gu2

)
h2

}
dt.

Using the fact that h1 = −h2, we obtain

0 ≥
∫ T

0

(
fu1 + ~λ · ~gu1 − fu2 − ~λ · ~gu2

)
h1 dt.

116

Next, we use this inequality to obtain necessary conditions for optimality. Let s be a

point of continuity for u∗1 and u∗2 such that 0 ≤ u∗1(s) < 1, and suppose for the sake

of contradiction that fu1 + ~λ · ~gu1 − fu2 − ~λ · ~gu2 > 0 at s. As ~λ is continuous, and

f and ~g are continuously differentiable, by the continuity of u∗1 and u∗2 at s we have

that fu1 + ~λ · ~gu1 − fu2 − ~λ · ~gu2 is continuous at s as well. Therefore we can find a

closed interval I about s such that u∗1 < 1 and fu1 + ~λ · ~gu1 − fu2 − ~λ · ~gu2 > 0 on I.

Let

M = max{u∗1(t) | t ∈ I} < 1,

and choose h1 and h2 to be

h1(t) = (1−M)χI(t), h2(t) = (M − 1)χI(t),

where χI is the characteristic function on I. Note that this gives us

uε1 = u∗1 + ε(1−M)χI , uε2 = u∗2 + ε(M − 1)χI .

As u∗1 ≤ M on I, then it must be the case that u∗2 ≥ 1 −M on I since u∗2 = 1 − u∗1.

This means that for all ε ∈ [0, 1] we have

0 ≤ uε1 ≤ 1, 0 ≤ uε2 ≤ 1,

117

and as the variations were chosen such that h1 +h2 = 0, we have that these variations

lead to admissible controls. We have then

0 ≥
∫ T

0

(
fu1 + ~λ · ~gu1 − fu2 − ~λ · ~gu2

)
h1 dt

=

∫
I

(
fu1 + ~λ · ~gu1 − fu2 − ~λ · ~gu2

)
(1−M) dt

> 0,

a contradiction. So, it must be the case that fu1 + ~λ · ~gu1 − fu2 − ~λ · ~gu2 ≤ 0. Note

that because the controls sum to one we have that 0 < u∗2 ≤ 1 implies 0 ≤ u∗1 < 1,

and so we actually have the following condition

0 ≤ u∗1 < 1 or 0 < u∗2 ≤ 1 =⇒ fu1 + ~λ · ~gu1 − fu2 − ~λ · ~gu2 ≤ 0.

Interchanging the roles of u1 and u2 in the argument above also gives us

0 < u∗1 ≤ 1 or 0 ≤ u∗2 < 1 =⇒ fu1 + ~λ · ~gu1 − fu2 − ~λ · ~gu2 ≥ 0.

So, together we have the that


0 ≤ u∗1 < 1 or 0 < u∗2 ≤ 1 =⇒ fu1 + ~λ · ~gu1 − fu2 − ~λ · ~gu2 ≤ 0

0 < u∗1 ≤ 1 or 0 ≤ u∗2 < 1 =⇒ fu1 + ~λ · ~gu1 − fu2 − ~λ · ~gu2 ≥ 0

(A.4)

Now, suppose that we are in the case where fu1 +~λ ·~gu1 − fu2 −~λ ·~gu2 < 0. By (A.4)

we can rule out the possibility that either u∗1 > 0 or u∗2 < 1 because either choice

would lead to a contradiction. Therefore, in this case we can conclude that u∗1 = 0

118

and u∗2 = 1. Similar arguments lead to the following conditions:


fu1 + ~λ · ~gu1 − fu2 − ~λ · ~gu2 < 0 =⇒ u∗1 = 0, u∗2 = 1

fu1 + ~λ · ~gu1 − fu2 − ~λ · ~gu2 > 0 =⇒ u∗1 = 1, u∗2 = 0

fu1 + ~λ · ~gu1 − fu2 − ~λ · ~gu2 = 0 =⇒ 0 < u∗1, u
∗
2 < 1.

(A.5)

We can convert this into conditions involving a Hamiltonian as follows. Define H by

H(t, x, ~u, λ) := f(t, x, ~u) + ~λ · ~g(t, x, ~u).

For distinct indicies i, j ∈ {1, 2}, rewriting (A.5) in terms of H yields the necessary

conditions 
∂H
∂ui

< ∂H
∂uj

=⇒ u∗i = 0, u∗j = 1

∂H
∂ui

= ∂H
∂uj

=⇒ 0 ≤ u∗i , u
∗
j ≤ 1.

(A.6)

We can also express the differential equations for ~x and ~λ in terms of the Hamiltonian

as 
x′i(t) = ∂H

∂λi
, xi(0) = xi0 for i = 1, . . . , n

λ′i(t) = − ∂H
∂xi
, λi(T) = 0 for i = 1, . . . , n.

(A.7)

Note that if we were to reduce the problem to one control by writing u2 = 1 −

u1 these conditions would become exactly the standard necessary conditions for a

problem with one bounded control and n states. Going through this derivation with

two controls, however, gives us a starting point to approach the analogous problem

with three controls.

119

A.2 n States, 3 Controls, Interval [0, T]

We now consider the following optimal control problem with n states and three con-

trols. We will again derive the necessary conditions, following a similar procedure

to that used in the simpler case with only two controls. The problem is stated as

follows.

max
~u=〈u1,u2,u3〉

∫ T

0

f(t, ~x(t), ~u(t)) dt

subject to: 0 ≤ u1(t) ≤ 1, 0 ≤ u2(t) ≤ 1, 0 ≤ u3(t) ≤ 1 for t ∈ [0, T],

u1(t) + u2(t) + u3(t) = 1 for t ∈ [0, T]

~x ′(t) = ~g(t, ~x(t), ~u(t)), ~x(0) = ~x0

(A.8)

The derivation of the necessary conditions is similar to the two-control case. We let U

be the space of admissible controls for (A.8) and define J : U → R by (A.2), restated

below.

J(~u) =

∫ T

0

{
f(t, ~x(t), ~u(t)) + ~λ(t) · ~g(t, ~x(t), ~u(t)) + ~λ ′(t) · ~x(t)

}
dt

+ ~λ(0) · ~x0 − ~λ(T) · ~x(t). ((A.2) revisited)

Suppose that ~u ∗, ~x ∗ are optimal, and let h1, h2, and h3 be piecewise continuous vari-

ations. Then for ε ∈ R we define ~u ε ∈ U by uεi (t) = u∗i (t) + εhi(t) for i = 1, 2, 3, and

let ~x ε be the corresponding state. Admissibility here requires that
∑3

i=1 u
ε
i = 1 so we

have that h3 = −(h1 + h2). By the optimality of ~u ∗, ~x ∗ we again get (A.3), restated

below:

0 ≥ dJ(~u ε)

dε

∣∣∣
ε=0

= lim
ε→0

J(~u ε)− J(~u ∗)

ε
. ((A.3) revisited)

120

We again differentiate (A.2), using the DCT to interchange the order of differentiation

and integration, this time arriving at

0 ≥
∫ T

0

∂

∂ε

(
f + ~λ · ~g + ~λ ′ · ~x ε

) ∣∣∣
ε=0

dt− ~λ(T) · ∂~x
ε(t)

∂ε

∣∣∣
ε=0

=

∫ T

0

{(
∇f +

n∑
i=1

λi∇gi + ~λ ′

)
· ∂~x

ε(t)

∂ε

∣∣∣
ε=0

+
(
fu1 + ~λ · ~gu1

)
h1

+
(
fu2 + ~λ · ~gu2

)
h2 +

(
fu3 + ~λ · ~gu3

)
h3

}
dt− ~λ(T) · ∂~x

ε(t)

∂ε

∣∣∣
ε=0

.

As before, we choose ~λ so that

~λ ′(t) = −

(
∇f +

n∑
i=1

λi∇gi

)
, ~λ(T) = ~0,

and so we arrive at the inequality

0 ≥
∫ T

0

{(
fu1 + ~λ · ~gu1

)
h1 +

(
fu2 + ~λ · ~gu2

)
h2 +

(
fu3 + ~λ · ~gu3

)
h3

}
dt. (A.9)

We will use this inequality to derive the necessary conditions for optimality. Due to

the similarity between the various cases we will only show one in detail. We begin by

using the substitution h3 = −(h1 + h2) to rewrite (A.9) as

0 ≥
∫ T

0

{(
fu1 + ~λ · ~gu1 − fu3 − ~λ · ~gu3

)
h1 +

(
fu2 + ~λ · ~gu2 − fu3 − ~λ · ~gu3

)
h2

}
dt.

(A.10)

Next, let s be a point of continuity for all controls so that 0 ≤ u∗1(s) < 1 and

0 < u∗3(s) ≤ 1. Note that because the controls sum to one this also means that

0 ≤ u∗2(s) < 1. Additionally, assume for the sake of contradiction that fu1 + ~λ · ~gu1 −

fu3 −~λ ·~gu3 > 0 at s. As ~λ is continuous, and f and ~g are continuously differentiable,

by the continuity of the controls we have that fu1 +~λ·~gu1−fu3−~λ·~gu3 is continuous at

121

s as well. Therefore, we can find a closed interval I about s such that u∗1 < 1, u∗3 > 0,

and fu1 + ~λ · ~gu1 − fu3 − ~λ · ~gu3 > 0 on I. Next, let

m = min

{
1−max{u∗1(t) | t ∈ I},min{u∗3(t) | t ∈ I}

}
.

and note that m > 0. Next, we choose variations to be

h1(t) = mχI(t), h2(t) ≡ 0, h3(t) = −mχI(t).

This gives us the controls

uε1(t) = u∗1(t) + εmχI(t), uε2(t) = u∗2(t), uε3(t) = u∗3(t)− εmχI(t).

Note that because
∑3

i=1 u
∗
i (t) = 1 and

∑3
i=1 hi(t) = 0 we have that

∑3
i u

ε
i (t) = 1 as

well. Furthermore, restricting our attention to t ∈ I and ε ∈ [0, 1], we have

0 ≤ uε1(t)

= u∗1(t) + εm

≤ u∗1(t) + ε(1−max{u∗1(t)})

≤ u∗1(t) + 1−max{u∗1(t)}

≤ 1.

122

As this bound also holds outside of I by assumption we have that 0 ≤ uε1 ≤ 1. Now,

for uε3, again restricting our attention to t ∈ I and ε ∈ [0, 1] we have

1 ≥ uε3(t)

= u∗3(t)− εmχI(t)

≥ u∗3(t)− εmin{u∗3(t)}

≥ u∗3(t)−min{u∗3(t)}

≥ 0.

Again, as this bound holds outside of I by assumption we have that 0 ≤ uε3 ≤ 1.

Therefore, the controls uε1, u
ε
2, and uε3 are admissible for all ε ∈ [0, 1]. We have then

0 ≥
∫ T

0

{(
fu1 + ~λ · ~gu1 − fu3 − ~λ · ~gu3

)
h1 +

(
fu2 + ~λ · ~gu2 − fu3 − ~λ · ~gu3

)
h2

}
dt

=

∫
I

(
fu1 + ~λ · ~gu1 − fu3 − ~λ · ~gu3

)
mdt

> 0,

a contradiction. Therefore it must be the case that fu1 + ~λ · ~gu1 − fu3 − ~λ · ~gu3 ≤ 0.

Now, by swapping the indicies 1 and 2 in the argument above we can reach the

additional conclusion that fu2+~λ·~gu2−fu3−~λ·~gu3 ≤ 0 for the same set of assumptions.

Note that this is because if we assume that 0 < u∗3 ≤ 1 then we can conclude both

0 ≤ u∗1 < 1 and 0 ≤ u∗2 < 1 regardless of which assumption is used for a particular

argument. Therefore, we have that if we are in the case that 0 ≤ u∗1 < 1, 0 ≤ u∗2 < 1,

and 0 < u∗3 ≤ 1 then we have that both fu1 + ~λ · ~gu1 − fu3 − ~λ · ~gu3 ≤ 0 and

fu2 + ~λ · ~gu2 − fu3 − ~λ · ~gu3 ≤ 0. We can permute the roles of u1, u2, and u3, or,

equivalently, repeat the argument above with the substitutions of h1 = −(h3 + h2) or

123

h2 = −(h3 + h1) into (A.9) to obtain the following.



0 ≤ u∗1, u
∗
2 < 1, 0 < u∗3 ≤ 1 =⇒


fu1 + ~λ · ~gu1 − fu3 − ~λ · ~gu3 ≤ 0

fu2 + ~λ · ~gu2 − fu3 − ~λ · ~gu3 ≤ 0

0 ≤ u∗1, u
∗
3 < 1, 0 < u∗2 ≤ 1 =⇒


fu1 + ~λ · ~gu1 − fu2 − ~λ · ~gu2 ≤ 0

fu3 + ~λ · ~gu3 − fu2 − ~λ · ~gu2 ≤ 0

0 ≤ u∗2, u
∗
3 < 1, 0 < u∗1 ≤ 1 =⇒


fu2 + ~λ · ~gu2 − fu1 − ~λ · ~gu1 ≤ 0

fu3 + ~λ · ~gu3 − fu1 − ~λ · ~gu1 ≤ 0

(A.11)

We will now work to develop implications going in the other direction. We will

illustrate this for a few cases and the remaining cases follow from permuting the

controls. First, consider the case that at a point t ∈ [0, T] we have fu1 + ~λ · ~gu1 −

fu3 − ~λ · ~gu3 < 0 and fu2 + ~λ · ~gu2 − fu3 − ~λ · ~gu3 < 0, and suppose for the sake of

contradiction that u∗3(t) < 1. Then it must be the case that at t either 0 < u∗1 ≤ 1

and 0 ≤ u∗2 < 1 or 0 ≤ u∗1 < 1 and 0 < u∗2 ≤ 1. Using (A.11) we see that the first

case implies that fu3 +~λ ·~gu3 − fu1 −~λ ·~gu1 ≤ 0 at t and the second case implies that

fu3 + ~λ · ~gu3 − fu2 − ~λ · ~gu2 ≤ 0 at t, both of which contradict our assumptions. So, it

must be the case that u∗3(t) = 1.

Next, consider the case that at a point t ∈ [0, T] we have fu1+~λ·~gu1−fu3−~λ·~gu3 < 0

and fu1 + ~λ · ~gu1 − fu2 − ~λ · ~gu2 < 0, and suppose for the sake of contradiction that

u∗1(t) > 0. Then it must be the case that at t we have 0 ≤ u∗2 < 1 and 0 ≤ u∗3 < 1.

Using (A.11) we see that this implies that fu2 + ~λ · ~gu2 − fu1 − ~λ · ~gu1 ≤ 0 and

fu3 + ~λ · ~gu3 − fu1 − ~λ · ~gu1 ≤ 0 at t, both of which contradict our assumptions here.

Therefore, it must be the case that u∗1(t) = 0. A similar argument can be used to

124

show that if fu2 + ~λ · ~gu2 − fu1 − ~λ · ~gu1 < 0 and fu2 + ~λ · ~gu2 − fu3 − ~λ · ~gu3 < 0 at a

point t ∈ [0, T] then it must be the case that u∗2(t) = 0.

By permuting the roles of the controls in the arguments above we can reach the

following conclusions. For distinct indicies i, j, k ∈ {1, 2, 3} we have that




fuj + ~λ · ~guj − fui − ~λ · ~gui < 0

fuk + ~λ · ~guk − fui − ~λ · ~gui < 0

=⇒ u∗i = 1


fui + ~λ · ~gui − fuj − ~λ · ~guj < 0

fui + ~λ · ~gui − fuk − ~λ · ~guk < 0

=⇒ u∗i = 0

(A.12)

Note that this also tells us that the only way for a control to take on a value other than

zero or one is for at least one of the inequalities in (A.12) to be an equality instead.

We can convert this into conditions involving a Hamiltonian as follows. Define H by

H(t, x, ~u, λ) := f(t, x, ~u) + ~λ · ~g(t, x, ~u).

Rewriting (A.12) in terms of H yields the necessary conditions



∂H
∂uj

< ∂H
∂ui

and ∂H
∂uk

< ∂H
∂ui

=⇒ u∗i = 1

∂H
∂ui

< ∂H
∂uj

and ∂H
∂ui

< ∂H
∂uk

=⇒ u∗i = 0

∂H
∂ui

= ∂H
∂uj

or ∂H
∂ui

= ∂H
∂uk

or ∂H
∂uj

= ∂H
∂uk

=⇒ 0 ≤ u∗i ≤ 1.

(A.13)

We can also express the differential equations for ~x and ~λ in terms of the Hamiltonian:


x′i(t) = ∂H

∂λi
, xi(0) = xi0 for i = 1, . . . , n

λ′i(t) = − ∂H
∂xi
, λi(T) = 0 for i = 1, . . . , n.

(A.14)

125

APPENDIX B

SUPPLEMENTAL ARGUMENTS AND DERIVATIONS

This appendix includes supplemental arguments and derivations omitted from the

main body of the text. In particular, Appendix B.1 includes an argument, referenced

in Section 2.3.3, for why the penultimate interval cannot be preceded by an interval

of mixed root/shoot/fruit growth. Appendix B.2 includes a derivation, referenced in

Section 2.5.5, for the differential equation for z1C and z2C during balanced growth for

the first model. Lastly, Appendix B.3 includes a derivation, referenced in Section 3.5.2

for the differential equations for z0C and z2C during the penultimate interval for the

second model.

B.1 First Model Growth Stage Argument

In this appendix we will show that an interval of mixed root/shoot/fruit growth

cannot precede the penultimate interval of shoot/fruit growth in the first model. To

this end, first note that if there were a phase of mixed growth between all three

organs, the necessary conditions (2.19) would dictate that we have

λ1G
′(z1C) = λ2G

′(z2C) = 1 (B.1)

λ1νSG2(z1C) = λ2νRG2(z2C). (B.2)

126

We can eliminate λ1 and λ2 from (B.1) and (B.2) to obtain

G′(z2C)

G2(z2C)
=
νR
νS

G′(z1C)

G2(z1C)
. (B.3)

Additionally, recalling that by (2.53) we have that H = C∗, and so we can rewrite

the Hamiltonian (2.25) during this phase as

C∗ = u0CC + λ1νSu1NNG(z1C) + λ2νRu2NNG(z2C). (B.4)

We can rewrite this using (2.14), and then use (B.1) and (B.2) as follows:

C∗ = u0CC + λ1νSu1NN

[
G2(z1C) +

u1CC

νSu1NN
G′(z1C)

]
+ λ2νRu2NN

[
G2(z2C) +

u2CC

νRu2NN
G′(z2C)

]
= λ2νRNG2(z2C)(u1N + u2N) + λ2CG

′(z2C)(u0C + u1C + u2C)

= λ2 [νRNG2(z2C) + CG′(z2C)] .

This then gives us

λ2 =
C∗

νRNG2(z2C) + CG′(z2C)
. (B.5)

Note that this is exactly equation (2.86) that we have during mixed root/shoot growth

as well. This means that the same argument we used in Section 2.4.7, to show

that z1C is continuous between balanced growth and the penultimate interval, ap-

plies here as well to show that z1C must be continuous between an interval of mixed

root/shoot/fruit growth and an interval of shoot/fruit growth.

Now, by (2.39) and (2.40) we have that λ′1 = −CS and λ′2 = −NRλ1νSG2(z1C)

during this root/shoot/fruit phase, as well as the penultimate interval. As CS is

assumed to be continuous, this means that λ1 is continuously differentiable during

127

these two intervals, which in turn means that z1C is continuously differentiable as well

because in both the root/shoot/fruit interval and the penultimate interval we have

that λ1G
′(z1C) = 1. Furthermore, this, along with the fact that NR is continuous,

means that λ2 is continuously differentiable here as well. In particular, we can say

that z1C , λ1, and λ2 are continuously differentiable at the transition point between

these two intervals, t̂.

Now, although z2C is not defined in the penultimate interval, we can use (B.3)

to define the left-hand limit of z2C at any point in the penultimate interval, as if

that point were, in fact, t̂. We will refer to this as z−2C , and note that because z1C is

continuously differentiable at t̂ we have by (B.3) that z−2C is as well, provided that z−2C

is neither zero nor infinite. Note, however, that if z−2C were either zero or infinite, then

it can be shown that (B.1) would no longer hold, so we can rule out that possibility.

Therefore, as both λ2 and z−2C are continuously differentiable at t̂, we are justified

in computing d
dz−2C

(
λ2G

′(z−2C)
)

at t̂. We have then

d

dz−2C

(
λ2G

′(z−2C)
)

=
d

dz−2C

C∗G′(z−2C)

νRN∗G2(z−2C) + CG′(z−2C)

=
νRN

∗C∗
[
G2(z−2C)G′′(z−2C)−G′(z−2C)G′2(z−2C)

]
+ dC

dz−2C
G′(z−2C)

(νRN∗G2(z−2C) + CG′(z−2C))2

=
νRN

∗C∗G′′(z−2C)
[
G2(z−2C) + z−2CG

′
2(z−2C)

]
+ dC

dz−2C
G′(z−2C)

(νRN∗G2(z−2C) + CG′(z−2C))2
. (B.6)

Now, for x ∈ (0,∞), we have that G2(x) > 0, G′(x) > 0, and G2(x) < 0, and so the

first term in the numerator of (B.6) is negative at t̂. Furthermore, we know that by

Lemma 2.7 that z1C is monotonically decreasing throughout the penultimate interval,

and so by (B.3) one can show that z−2C decreases as z1C decreases. This, along with

the fact that at t̂ we know that dC
dt
≥ 0 means that dC

dz−2C
≤ 0. Therefore, the numerator

of (B.6) must be negative at t̂, and so λ2G
′(z−2C) is decreasing at t̂. This however,

128

contradicts the fact that, by (B.1), the condition λ2G
′(z2C) = 1 must hold on an

interval with t̂ as an endpoint. Therefore, we can conclude that the penultimate

interval cannot be preceded by an interval of mixed root/shoot/fruit growth.

B.2 First Model Differential Equations Derivation

In this appendix we will derive equations (2.130) and (2.131), revisited below.

dz1C

dt
=
NRνSνRG(z2C)G2(z1C)− CSG′(z1C) [νSG2(z1C) + z2CνRG

′(z1C)]

G′′(z1C) [νSz1C − νRz2C]

((2.130) revisited)

dz2C

dt
=
NRνSG2(z1C) [G′(z2C)]2 − CS [G′(z1C)]2G′(z2C) +G′′(z1C)G′(z2C)dz1C

dt

G′(z1C)G′′(z2C)

((2.131) revisited)

In deriving these differential equations we will use the notation z1 = z1C and z2 = z2C

for simplicity. We begin by differentiating (2.76) and (2.77) with respect to t:

λ′1G
′(z1) + λ1G

′′(z1)
dz1

dt
= λ′2G

′(z2) + λ2G
′′(z2)

dz2

dt
(B.7)

λ′1νSG2(z1) + λ1νSG
′
2(z1)

dz1

dt
= λ′2νRG2(z2) + λ2νRG

′
2(z2)

dz2

dt
. (B.8)

Solving (B.7) for λ2G
′′(z2)dz2

dt
give us

λ2G
′′(z2)

dz2

dt
= λ′1G

′(z1) + λ1G
′′(z1)

dz1

dt
− λ′2G′(z2). (B.9)

Likewise, making the substitution G′2(z) = −zG′′(z) by means of (2.15), we can solve

for z2νRλ2G
′′(z2)dz2

dt
in (B.8) to get

z2νRλ2G
′′(z2)

dz2

dt
= λ′2νRG2(z2)− λ′1νSG2(z1) + z1λ1νSG

′′(z1)
dz1

dt
. (B.10)

129

Substituting (B.9) into (B.10) gives us

z2νR

[
λ′1G

′(z1) + λ1G
′′(z1)

dz1

dt
− λ′2G′(z2)

]
= λ′2νRG2(z2)− λ′1νSG2(z1) + z1λ1νSG

′′(z1)
dz1

dt
. (B.11)

Solving for dz1
dt

, making use of (2.14), gives us

dz1

dt
=
λ′1 [νSG2(z1) + z2νRG

′(z1)]− λ′2νRG(z2)

λ1G′′(z1) [νSz1 − νRz2]
. (B.12)

Lastly, then, we use the differential equations for λ1 and λ2 during balanced growth,

(2.80) and (2.81), to write both λ′1 and λ′2 in terms of λ1. Canceling the resulting

common factor of λ1 leaves us with

dz1

dt
=
NRνSνRG(z2)G2(z1)− CSG′(z1) [νSG2(z1) + z2νRG

′(z1)]

G′′(z1) [νSz1 − νRz2]
(B.13)

Similarly, we can use (2.80) and (2.81) along with (2.76) to simplify (B.9), which

upon canceling the common factors of λ1 gives us

dz2

dt
=
NRνSG2(z1) [G′(z2)]2 − CS [G′(z1)]2G′(z2) +G′′(z1)G′(z2)dz1

dt

G′(z1)G′′(z2)
. (B.14)

B.3 Second Model Differential Equations Derivation

In this appendix we will derive equations (3.98) and (3.99), revisited below.

dz2

dt
=

NRνR [G2(z2)]2G′(z2)G(z0)

G′′(z2) [z0G′(z0)G2(z2)− z2G′(z2)G2(z0)]
. ((3.98) revisited)

dz0

dt
=

G2(z0)

z0G′′(z0)G2(z2)

[
z2G

′′(z2)
dz2

dt
+NRνR [G2(z2)]2

]
((3.99) revisited)

130

For the sake of simplicity, we make the substitutions z0 = z0C and z2 = z2C . We

begin by differentiating (3.67) with respect to time, using (3.67) and (3.72) to rewrite

λ2 and λ′2, respectively.

G′′(z0)
dz0

dt
= λ′2G

′(z2) + λ2G
′′(z2)

dz2

dt

= −NRνRλ2G2(z2)G′(z2) + λ2G
′′(z2)

dz2

dt

=
G′(z0)

G′(z2)

[
G′′(z2)

dz2

dt
−NRνRG2(z2)G′(z2)

]
(B.15)

Next, differentiating (3.68) with respect to time and using (3.68) and (3.72) to rewrite

λ2 and λ′2, respectively.

νF
νR
G′2(z0)

dz0

dt
= λ′2G2(z2) + λ2G

′
2(z2)

dz2

dt

= λ2

[
G′2(z2)

dz2

dt
−NRνR [G2(z2)]2

]
=
νF
νR

G2(z0)

G2(z2)

[
G′2(z2)

dz2

dt
−NRνR [G2(z2)]2

]
(B.16)

Now, by using (2.15) we can rewrite (B.16) as

−z0G
′′(z0)

dz0

dt
=
G2(z0)

G2(z2)

[
−z2G

′′(z2)
dz2

dt
−NRνR [G2(z2)]2

]
=⇒ z0G

′′(z0)
dz0

dt
=
G2(z0)

G2(z2)

[
z2G

′′(z2)
dz2

dt
+NRνR [G2(z2)]2

]
. (B.17)

Equations (B.15) and (B.17) then give us a system of two equations that is linear

in dz0
dt

and dz2
dt

, so we can solve them to get the requisite differential equations. Noting

that both equations have a factor of G′′(z0)dz0
dt

on the left-hand side we can obtain

131

the following:

z0
G′(z0)

G′(z2)

[
G′′(z2)

dz2

dt
−NRνRG2(z2)G′(z2)

]
=
G2(z0)

G2(z2)

[
z2G

′′(z2)
dz2

dt
+NRνR [G2(z2)]2

]
.

After some algebraic simplification, making use of (2.14), we find

dz2

dt
=

NRνR [G2(z2)]2G′(z2)G(z0)

G′′(z2) [z0G′(z0)G2(z2)− z2G′(z2)G2(z0)]
. (B.18)

We can then substitute (B.18) into the following, simplified from (B.17):

dz0

dt
=

G2(z0)

z0G′′(z0)G2(z2)

[
z2G

′′(z2)
dz2

dt
+NRνR [G2(z2)]2

]
. (B.19)

132

APPENDIX C

MATLAB Scripts

This appendix includes the MATLAB scripts we used to implement the numerical

schemes for each model. Appendix C.1 includes the MATLAB script for the numerical

scheme for the first model, and Appendix C.2 includes the MATLAB script for the

second model.

C.1 First Model Numerical Scheme MATLAB Script

This appendix includes the MATLAB script for the numerical scheme we developed to

solve the optimal control problem (2.17) associated with the first model, as discussed

in Section 2.5. The function growthpath is the primary function for constructing the

optimal trajectory, and takes the terminal values of shoots and roots as arguments.

The primary parameters for growthpath are given in Table C.1. All functions called

by growthpath are included at the end of the script.

133

Parameter Value Meaning
nu_R 1 νR
beta 3 νR/νS
n 210 RK4 step size is 1/n
T 10 T

BGPI_tol 10−10 Tolerance for the balanced growth phase to
penultimate interval transition condition (2.85)

IBG_tol 10−10 Tolerance for the initial stage to balanced
growth phase transition condition (2.132)

Table C.1: Primary parameters for growthpath.

%Carbon -Only Fruits Optimal Control Problem

function [t, S, R, F, U, L] = growthpath(S_Final , R_Final)

%Terminal Conditions

p.S_Final = S_Final; %Final value of shoots

p.R_Final = R_Final; %Final value of roots

% Primary parameters

p.nu_R = 1; %C:N ratio in roots

beta = 3; %Ratio of C:N ratio in roots to C:N ratio in

shoots

p.n = 2^10; %Number of grid points per unit time

p.T = 10; %Length of growing season

p.BGPI_tol = 10^ -10; %Tolerance for BG-PI Hamiltonian

condition

p.IBG_tol = 10^ -10; %Tolerance for initial phase to BG

controls condition

134

% Secondary parameters

p.C_Final = C(p.S_Final); %Final rate of carbon fixation

p.N_Final = N(p.R_Final); %Final rate of nitrogen uptake

p.dCdS_Final = dCdS(p.S_Final); %Final rate of change of

carbon fixation rate wrt shoots

p.dNdR_Final = dNdR(p.R_Final); %Final rate of change of

nitrogen uptake rate wrt roots

p.nu_S = p.nu_R/beta; %C:N ratio in roots

p.t_star = p.T - 1/p.dCdS_Final; %Compute t_star

% Create structure w/ terminal conditions for PI solver

% Note that since we solve forward in z, terminal/

initial are in reference to z, not t

p.PI.args.step = 1; %Used to compute RK4 step size via

h = p.PI.args.step/p.n;

p.PI.args.z_start = 0; %Starting z1C value for the PI

solver

p.PI.args.z_end = 100; %End z1C for PI solver , 100 is

an arbitrary initial guess

p.PI.args.L2_init = 0; %PI initial condition for L2

p.PI.args.S_init = p.S_Final; %PI initial condition for

S

p.PI.args.t_init = p.t_star; %PI initial condition for

t

135

% Penultimate interval solver - first run

[tP , zP, SP, RP, UP , LP] = PI(p);

p.PI.BGPI_zwindow_begin_index = find(LP(2,:) <0.99,1,'

last'); %Find last index where L2 < 1

% BG-PI transition point finder - first run

[tP , zP, SP, RP, UP , LP , p] = BGPI_Find(tP , zP, SP, UP,

LP , p);

% Reorder by time - note that we don 't need to reorder R

b/c it is constant here

[~,tPsort] = sort(tP);

tP = tP(tPsort);

SP = SP(tPsort);

LP = LP(:,tPsort);

UP = UP(:,tPsort);

zP = zP(tPsort);

% Refine integration mesh and iterate until BG -PI

transition located to within p.BGPI_tol

while p.BGPI.H > p.BGPI_tol

[tP2 , zP2 , SP2 , RP2 , UP2 , LP2] = PI(p);

p.PI.BGPI_zwindow_begin_index = 1;

136

[tP2 , zP2 , SP2 , RP2 , UP2 , LP2 , p] = BGPI_Find(tP2 , zP2

, SP2 , UP2 , LP2 , p);

end

% Append value of variables at BG-PI transition point

tP = [p.PI.args.t_init , tP];

SP = [p.PI.args.S_init , SP];

RP = [p.R_Final RP];

LP = [[1/ g_prime(p.PI.args.z_start);p.PI.args.L2_init],

LP];

zP = [p.PI.args.z_start , zP];

UP = [[1-UP2(2,end); UP2(2,end); 0; 1; 0], UP];

clear SP2 RP2 LP2 UP2 tP2 zP2 %Clear unnecessary

variables

% Create struture w/ terminal conditions for balanced

growth solver

p.BG.args.step = 1;

p.BG.args.t_start = 0;

p.BG.args.t_end = tP(1);

p.BG.args.S_end = SP(1);

p.BG.args.R_end = p.R_Final;

p.BG.args.L1_end = LP(1,1);

p.BG.args.L2_end = LP(2,1);

137

p.BG.args.z1_end = zP(1);

[p.BG.args.z2_end ,~,~] = fsolve (@(Z)(ZLeft(Z,zP(1),p))

,1,optimoptions('fsolve ','MaxFunEvals ' ,10000,'Display

','off','OptimalityTolerance ',1e-20)); %Solve for z2C

using necessary conditions

% Solve for fruits during PI

FP = FruitsPI(tP , SP , UP(1,:));

% Final interval

[tF , SF, RF, FF, UF , LF] = final(FP(end), p);

% Balanced growth

[tB , zB, SB, RB, UB , LB] = BG(p);

% Find beginning of balanced growth

if(tB(1) < 2/p.n) %If U < 1 and t = 0 then there

is no intial phase

FB = zeros(1,length(tB));

t = [tB , tP , tF];

S = [SB , SP , SF];

R = [RB , RP , RF];

F = [FB , FP , FF];

L = [LB , LP , LF];

138

U = [UB , UP , UF];

else

[tB , zB, SB, RB, UB , LB , p] = CBG_Find(tB, zB, SB, RB ,

UB , LB, p); %Search for beginning of BG - first

run

CBG_ind = 0;

while p.CBG.Ucondition > p.IBG_tol %Refine

integration mesh and iterate until beginning of BG

found to within p.IBG_tol

[tB2 , zB2 , SB2 , RB2 , UB2 , LB2] = BG(p);

CBG_ind = 1;

[tB2 , zB2 , SB2 , RB2 , UB2 , LB2 , p] = CBG_Find(tB2 ,

zB2 , SB2 , RB2 , UB2 , LB2 , p);

end

if CBG_ind == 0 %Move on if no refinement is possible

SB2 = nan;

RB2 = nan;

LB2 = [nan;nan];

UB2 = [nan;nan;nan;nan;nan];

tB2 = nan;

zB2 = [nan;nan];

end

% Append value of variables at beginning of balanced

growth

139

SB = [SB2 , SB];

RB = [RB2 , RB];

LB = [LB2 , LB];

UB = [UB2 , UB];

tB = [tB2 , tB];

zB = [zB2 , zB];

FB = zeros(1,length(tB));

clear SB2 RB2 LB2 UB2 tB2 zB2 %Clear unnecessary

variables

% Compute conditions required for S-only or R-only

initial phase

[S_only_condition , R_only_condition] =

convergence_conditions(p);

% Initial phase

if S_only_condition < R_only_condition

[tC , SC, RC, FC, UC , LC] = shootonly(p);

elseif R_only_condition < S_only_condition

[tC , SC, RC, FC, UC , LC] = rootonly(p);

else

error('could not determind C-BG transition , both

shoot -only and root -only growth are possible ')

end

140

% Combine Vectors From 4 Stages

t = [tC , tB , tP, tF];

S = [SC , SB , SP, SF];

R = [RC , RB , RP, RF];

F = [FC , FB , FP, FF];

L = [LC , LB , LP, LF];

U = [UC , UB , UP, UF];

end

end

%%%

% Functions called in growthpath

% Growth stage functions

% Penultimate interval function

function [t, z, S, R, U, L] = PI(p)

%RK4 Parameters

h = p.PI.args.step/p.n; %Step size

h2 = h/2; %Half step size for RK4

h6 = h/6; %h/6 for RK4 update

%Initialize vectors for penultimate interval

z = p.PI.args.z_start:h:p.PI.args.z_end; %z1C

length_z = length(z);

141

S = p.PI.args.S_init*ones(1,length_z);

lambda_1 = 1./ g_prime(z);

lambda_2 = p.PI.args.L2_init*ones(1,length_z); %L1

given by necessary conditions

t = p.PI.args.t_init*ones(1,length_z);

%Solve forward in z1C via RK4

for j = 1:(length_z -1)

[k11 , k12 , k13] = PIRK4(S(j) , z(j) , p);

[k21 , k22 , k23] = PIRK4(S(j) + h2*k11 , z(j) + h2 , p);

[k31 , k32 , k33] = PIRK4(S(j) + h2*k21 , z(j) + h2 , p);

[k41 , k42 , k43] = PIRK4(S(j) + h*k31 , z(j) + h , p);

S(j+1) = S(j) + h6*(k11 + 2*(k21 + k31) + k41);

lambda_2(j+1) = lambda_2(j) + h6*(k12 + 2*(k22 + k32)

+ k42);

t(j+1) = t(j) + h6*(k13 + 2*(k23 + k33) + k43);

u1C = p.nu_S*p.N_Final*z(j+1)/C(S(j+1)); %Update

u1c

% Stop and truncate if controls are unbounded

if u1C > 1 || u1C < 0

if j == 1

142

warning('No PI - controls unbounded immediately ')

t = nan;

S = nan;

R = nan;

z = nan;

L = nan;

U = nan;

break

else

ind = j + 1;

t = t(1:ind);

S = S(1:ind);

R = p.R_Final*ones(1,ind);

z = z(1:ind);

L(1,:) = lambda_1 (1:ind);

L(2,:) = lambda_2 (1:ind);

u1C = p.nu_S*p.N_Final*z./C(S);

U(1,:) = 1 - u1C; %u0C

U(2,:) = u1C; %u1C

U(3,:) = zeros(1,ind); %u2C

U(4,:) = ones(1,ind); %u1N

U(5,:) = zeros(1,ind); %u2N

break

end

elseif j == length_z - 1

143

ind = j + 1;

t = t(1:ind);

S = S(1:ind);

R = p.R_Final*ones(1,ind);

z = z(1:ind);

L(1,:) = lambda_1 (1:ind);

L(2,:) = lambda_2 (1:ind);

u1C = p.nu_S*p.N_Final*z./C(S);

U(1,:) = 1 - u1C; %u0C

U(2,:) = u1C; %u1C

U(3,:) = zeros(1,ind); %u2C

U(4,:) = ones(1,ind); %u1N

U(5,:) = zeros(1,ind); %u2N

break

end

end

end

% BG-PI transition point finder

function [tP, zP , SP , RP, UP, LP , p] = BGPI_Find(t, z, S,

U, L, p)

left_index = p.PI.BGPI_zwindow_begin_index;

right_index = length(z);

[ZL ,~,~] = fsolve (@(Z)(ZLeft(Z,z(left_index),p)),1,

optimoptions('fsolve ','MaxFunEvals ' ,10000,'Display ','

144

off','OptimalityTolerance ',1e-20));

[ZR ,~,~] = fsolve (@(Z)(ZLeft(Z,z(right_index),p)),1,

optimoptions('fsolve ','MaxFunEvals ' ,10000,'Display ','

off','OptimalityTolerance ',1e-20));

HL = L(2, left_index) *(p.nu_R*p.N_Final*g_prime_recip(ZL

) + C(S(left_index))*g_prime(ZL));

HR = L(2, right_index) *(p.nu_R*p.N_Final*g_prime_recip(

ZR) + C(S(right_index))*g_prime(ZR));

HDiffsignL = sign(HL - p.C_Final);

HDiffsignR = sign(HR - p.C_Final);

if HDiffsignL*HDiffsignR > 0

warning('sgn(H - H*) same on both sides of potential

BG -PI transition point ')

stop = 1;

SP = nan;

RP = nan;

LP = nan;

UP = nan;

tP = nan;

zP = nan;

return

end

while abs(right_index - left_index) > 4

145

mid_index = floor ((right_index + left_index)/2);

[ZM ,~,~] = fsolve (@(Z)(ZLeft(Z,z(mid_index),p)),1,

optimoptions('fsolve ','MaxFunEvals ' ,10000,'Display '

,'off','OptimalityTolerance ',1e-20));

HM = L(2,mid_index) *(p.nu_R*p.N_Final*g_prime_recip(

ZM) + C(S(mid_index))*g_prime(ZM));

if sign(HM - p.C_Final) == HDiffsignR

right_index = mid_index;

else

left_index = mid_index;

end

end

U1NM = ((C(S(mid_index))./p.N_Final) - p.nu_R*ZM)./(p.

nu_S*z(mid_index) - p.nu_R*ZM);

U1CM = z(mid_index)*p.nu_S*U1NM*p.N_Final/C(S(mid_index)

);

if U1NM > 1 || U1NM < 0 || U1CM > 1 || U1CM < 0

warning('Conrols Not Bounded At Potential BG-PI

Boundary ')

end

% Update variables and arguments for PI solver

tP = t(1: left_index);

SP = S(1: left_index);

RP = p.R_Final*ones(1, left_index);

146

LP = L(:,1: left_index);

UP = U(:,1: left_index);

zP = z(1: left_index);

p.PI.args.step = p.PI.args.step /100; %Reduce step size

for next iteration

p.PI.args.z_start = z(left_index);

p.PI.args.z_end = z(right_index);

p.PI.args.L2_init = L(2, left_index);

p.PI.args.S_init = S(left_index);

p.PI.args.t_init = t(left_index);

p.BGPI.H = abs(HM - p.C_Final); %Hamiltonian

condition

end

% Fruits during the penultimate interval

function F = FruitsPI(t,S,u0C)

F = zeros(1,length(t));

hF = diff(t); %Account for non -uniform time stepping

hF6 = hF/6; %For RK4

% Solve forwared in time via RK4 , using midpoints for

half time -steps when necessary

for i = 1: length(t) -1

k1 = u0C(i)*C(S(i));

147

k2 = 0.5*(u0C(i) + u0C(i+1))*(C(0.5*(S(i) + S(i+1))));

k4 = u0C(i+1)*C(S(i+1));

F(i+1) = F(i) + hF6(i)*(k1 + 4*k2 + k4);

end

end

% Final interval function

function [t, S, R, F, U, L] = final(F_star ,p)

h = 1/p.n;

t = p.t_star:h:p.T;

length_t = length(t);

F = C(p.S_Final)*(t - p.t_star) + F_star;

S = p.S_Final*ones(1,length_t);

R = p.R_Final*ones(1,length_t);

L(1,:) = dCdS(p.S_Final)*(p.T-t);

L(2,:) = zeros(1,length_t);

U = zeros(5,length_t);

U(1,:) = ones(1,length_t);

U(4,:) = ones(1,length_t);

end

% Balanced growth function

function [t, Z, S, R, U, L] = BG(p)

%Parameters

h = p.BG.args.step/p.n; %Step size

148

h2 = h/2; %Half step size for RK4

h6 = h/6; %h/6 for RK4 update

% Verify that there is a balanced growth phase

u1N_hat = (C(p.BG.args.S_end) - (p.nu_R*N(p.BG.args.

R_end)*p.BG.args.z2_end))/(N(p.BG.args.R_end)*(p.nu_S

*p.BG.args.z1_end - p.nu_R*p.BG.args.z2_end));

%Compute u1N at the end of BG

u1C_hat = (p.nu_S*N(p.BG.args.R_end)*p.BG.args.z1_end*

u1N_hat)/C(p.BG.args.S_end); %Compute u1C at the end

of BG

if u1N_hat > 1 || u1N_hat < 0 || u1C_hat > 1 || u1C_hat

< 0 %Check that controls are bounded

S = p.BG.args.S_end;

R = p.BG.args.R_end;

L = [p.BG.args.L1_end; p.BG.args.L2_end];

U = [0; 1; 0; 1; 0];

t = p.BG.args.t_end;

Z = [p.BG.args.z1_end; p.BG.args.z2_end];

warning('No BG - controls unbounded immediately ')

return

end

%Initialize vectors for balanced growth

149

t = p.BG.args.t_start:h:p.BG.args.t_end;

length_t = length(t);

S = p.BG.args.S_end*ones(1,length_t);

R = p.BG.args.R_end*ones(1,length_t);

lambda_1 = p.BG.args.L1_end*ones(1,length_t);

lambda_2 = p.BG.args.L2_end*ones(1,length_t);

z1 = p.BG.args.z1_end*ones(1,length_t);

z2 = p.BG.args.z2_end*ones(1,length_t);

% Solve backwards using RK4

for i = 1:length_t -1

j = length_t + 1 - i;

[k11 , k12 , k13 , k14 , k15 , k16] = BGRK4(S(j) ,

R(j) , lambda_1(j) , z1(j)

, z2(j) , p);

[k21 , k22 , k23 , k24 , k25 , k26] = BGRK4(S(j) - h2*k11 ,

R(j) - h2*k12 , lambda_1(j) - h2*k13 , z1(j) - h2*k15

, z2(j) - h2*k16 , p);

[k31 , k32 , k33 , k34 , k35 , k36] = BGRK4(S(j) - h2*k21 ,

R(j) - h2*k22 , lambda_1(j) - h2*k23 , z1(j) - h2*k25

, z2(j) - h2*k26 , p);

[k41 , k42 , k43 , k44 , k45 , k46] = BGRK4(S(j) - h*k31 ,

R(j) - h*k32 , lambda_1(j) - h*k33 , z1(j) - h*k35

, z2(j) - h*k36 , p);

150

S(j-1) = S(j) - h6*(k11 + 2*(k21 + k31) + k41);

R(j-1) = R(j) - h6*(k12 + 2*(k22 + k32) + k42);

lambda_1(j-1) = lambda_1(j) - h6*(k13 + 2*(k23 + k33)

+ k43);

lambda_2(j-1) = lambda_2(j) - h6*(k14 + 2*(k24 + k34)

+ k44);

z1(j-1) = z1(j) - h6*(k15 + 2*(k25 + k35) + k45);

z2(j-1) = z2(j) - h6*(k16 + 2*(k26 + k36) + k46);

% Compute controls at current time step

u1N = (C(S(j-1)) - (p.nu_R*N(R(j-1)))*z2(j-1))/(N(R(j

-1))*(p.nu_S*z1(j-1) - p.nu_R*z2(j-1)));

u1C = (p.nu_S*N(R(j-1))*z1(j-1)*u1N)/C(S(j-1));

% Stop and update variables if controls become

unbounded or if t = 0 reached

if u1N > 1 || u1N < 0 || u1C > 1 || u1C < 0 || j==2

balgrowthindex = j-1;

u1N = (C(S(balgrowthindex:end)) - (p.nu_R*N(R(

balgrowthindex:end)).*z2(balgrowthindex:end)))./(

N(R(balgrowthindex:end)).*(p.nu_S*z1(

balgrowthindex:end) - p.nu_R*z2(balgrowthindex:

end)));

151

u1C = (p.nu_S*N(R(balgrowthindex:end)).*z1(

balgrowthindex:end).*u1N)./C(S(balgrowthindex:end

));

S = S(balgrowthindex:end);

R = R(balgrowthindex:end);

L(1,:) = lambda_1(balgrowthindex:end);

L(2,:) = lambda_2(balgrowthindex:end);

U(1,:) = zeros(1,length(S)); %u0C

U(2,:) = u1C; %u1C

U(3,:) = 1 - U(2,:); %u2C

U(4,:) = u1N; %u1N

U(5,:) = 1 - U(4,:); %u2N

Z(1,:) = z1(balgrowthindex:end);

Z(2,:) = z2(balgrowthindex:end);

t = t(balgrowthindex:end);

break

end

end

end

% Balanced Growth Constraints on Z - used for computing

left limit of z2C from BG

function X = ZLeft(Z2 ,Z1,p)

X = (g_prime(Z2)/g_prime_recip(Z2)) - (p.nu_R/p.nu_S)*(

g_prime(Z1)/g_prime_recip(Z1));

152

end

% Convergence stage to balanced growth phase transition

point finder

function [t, z, S, R, U, L, p] = CBG_Find(t, z, S, R, U, L

, p)

% Check to see if transition is between first two time

steps

if sign(U(2,1) - U(4,1))*sign(U(2,2) - U(4,2)) < 0

left_index = 1;

right_index = 2;

else %If not , do full binary search over entire BG

interval

left_index = 1;

right_index = length(t);

ULsign = sign(U(2, left_index) - U(4, left_index));

URsign = sign(U(2, right_index) - U(4, right_index));

if ULsign*URsign > 0

error('sgn(u1c - u1n) same on both sides of

potential C-BG transition point ')

end

while abs(right_index - left_index) > 4

mid_index = floor ((right_index + left_index)/2);

153

UMsign = sign(U(2,mid_index) - U(4,mid_index));

if UMsign == URsign

right_index = mid_index;

else

left_index = mid_index;

end

end

end

% Update variables and terminal conditions for next

refinement

p.BG.args.t_start = t(left_index);

S = S(right_index:end);

R = R(right_index:end);

L = L(:, right_index:end);

U = U(:, right_index:end);

t = t(right_index:end);

z = z(:, right_index:end);

p.BG.args.step = p.BG.args.step /1000;

p.BG.args.t_end = t(1);

p.BG.args.S_end = S(1);

p.BG.args.R_end = R(1);

p.BG.args.L1_end = L(1,1);

p.BG.args.L2_end = L(2,1);

p.BG.args.z1_end = z(1,1);

154

p.BG.args.z2_end = z(2,1);

p.CBG.Ucondition = abs(U(2,1) - U(4,1));

end

% Function to compute conditions for each type of initial

phase

function [S_only_condition , R_only_condition] =

convergence_conditions(p)

S_only_condition = abs(p.nu_S*p.BG.args.L1_end*N(p.BG.

args.R_end)*g(C(p.BG.args.S_end)/(p.nu_S*N(p.BG.args.

R_end))) - p.C_Final);

R_only_condition = abs(p.nu_R*p.BG.args.L2_end*N(p.BG.

args.R_end)*g(C(p.BG.args.S_end)/(p.nu_R*N(p.BG.args.

R_end))) - p.C_Final);

end

% Initial (convergence) stage

% Shoot -only growth

function [t, S, R, F, U, L] = shootonly(p)

h = 1/p.n;

h2 = h/2;

h6 = h/6;

% Define constants

p.S.N_end = N(p.BG.args.R_end); %Initial nitrogen

155

p.S.dNdR_end = dNdR(p.BG.args.R_end); %Initial nitrogen

derivative

%Initialize vectors for shoot -only growth

t = 0:h:p.BG.args.t_end;

length_t = length(t);

S = p.BG.args.S_end*ones(1,length_t);

R = p.BG.args.R_end*ones(1,length_t);

lambda_1 = p.BG.args.L1_end*ones(1,length_t);

lambda_2 = p.BG.args.L2_end*ones(1,length_t);

F = zeros(1,length_t);

% Solve backwards in time using RK4

for i = 1:length_t -1

j = length_t + 1 - i;

[k11 , k12 , k13] = ShootonlyRK4(S(j) ,

lambda_1(j) , p);

[k21 , k22 , k23] = ShootonlyRK4(S(j) - h2*k11 ,

lambda_1(j) - h2*k12 , p);

[k31 , k32 , k33] = ShootonlyRK4(S(j) - h2*k21 ,

lambda_1(j) - h2*k22 , p);

[k41 , k42 , k43] = ShootonlyRK4(S(j) - h*k31 ,

lambda_1(j) - h*k32 , p);

156

S(j-1) = S(j) - h6*(k11 + 2*(k21 + k31) + k41);

lambda_1(j-1) = lambda_1(j) - h6*(k12 + 2*(k22 + k32)

+ k42);

lambda_2(j-1) = lambda_2(j) - h6*(k13 + 2*(k23 + k33)

+ k43);

end

U = zeros(5,length_t);

U(2,:) = ones(1,length_t);

U(4,:) = ones(1,length_t);

L = [lambda_1; lambda_2];

end

% Root -only growth

function [t, S, R, F, U, L] = rootonly(p)

h = 1/p.n;

h2 = h/2;

h6 = h/6;

% Define constants

p.R.C_end = C(p.BG.args.S_end); %Initial carbon

p.R.dCdS_end = dCdS(p.BG.args.S_end); %Initial carbon

derivative

%Initialize vectors for root -only growth

t = 0:h:p.BG.args.t_end;

157

length_t = length(t);

S = p.BG.args.S_end*ones(1,length_t);

R = p.BG.args.R_end*ones(1,length_t);

lambda_1 = p.BG.args.L1_end*ones(1,length_t);

lambda_2 = p.BG.args.L2_end*ones(1,length_t);

F = zeros(1,length_t);

% Solve backwards in time using RK4

for i = 1:length_t -1

j = length_t + 1 - i;

[k11 , k12 , k13] = RootonlyRK4(R(j) , lambda_2

(j) , p);

[k21 , k22 , k23] = RootonlyRK4(R(j) - h2*k11 , lambda_2

(j) - h2*k13 , p);

[k31 , k32 , k33] = RootonlyRK4(R(j) - h2*k21 , lambda_2

(j) - h2*k23 , p);

[k41 , k42 , k43] = RootonlyRK4(R(j) - h*k31 , lambda_2

(j) - h*k33 , p);

R(j-1) = R(j) - h6*(k11 + 2*(k21 + k31) + k41);

lambda_1(j-1) = lambda_1(j) - h6*(k12 + 2*(k22 + k32)

+ k42);

lambda_2(j-1) = lambda_2(j) - h6*(k13 + 2*(k23 + k33)

+ k43);

158

end

U = zeros(5,length_t);

U(3,:) = ones(1,length_t);

U(5,:) = ones(1,length_t);

L = [lambda_1; lambda_2];

end

%%

% RK4 Functions

% Penultimate interval RK4 function

function [k1, k2 , k3] = PIRK4(S, z, p)

k1 = (p.nu_S*p.N_Final*g(z)*g_2prime(z))/(dCdS(S)*(

g_prime(z))^2); %S

k2 = -(p.dNdR_Final*p.nu_S*g_prime_recip(z)*g_2prime(z))

/(dCdS(S)*(g_prime(z))^3); %L2

k3 = (g_2prime(z))/(dCdS(S)*(g_prime(z))^2); %t

end

% Balanced growth RK4 function

function [k1, k2 , k3 , k4, k5, k6] = BGRK4(S, R, L1, z1, z2

, p)

u = ((C(S)/N(R)) - p.nu_R*z2)/(p.nu_S*z1 - p.nu_R*z2);

%u_1N

159

k1 = p.nu_S*u*N(R)*g(z1); %S

k2 = p.nu_R *(1 - u)*N(R)*g(z2); %R

k3 = -dCdS(S)*L1*g_prime(z1); %l1

k4 = -dNdR(R)*L1*p.nu_S*g_prime_recip(z1); %l2

k5 = (dNdR(R)*p.nu_S*p.nu_R*g(z2)*g_prime_recip(z1) -

dCdS(S)*g_prime(z1)*(p.nu_S*g_prime_recip(z1) + z2*p.

nu_R*g_prime(z1)))/(g_2prime(z1)*(p.nu_S*z1 - p.nu_R*

z2)); %z1C

k6 = (dNdR(R)*p.nu_S*g_prime_recip(z1)*(g_prime(z2))^2 -

dCdS(S)*(g_prime(z1))^2* g_prime(z2) + g_2prime(z1)*

g_prime(z2)*k5)/(g_prime(z1)*g_2prime(z2)); %z2C

end

% Shoots -only growth RK4 function

function [k1, k2 , k3] = ShootonlyRK4(S, L1 , p)

z = C(S)/(p.nu_S*p.S.N_end); %z1C

k1 = p.nu_S*p.S.N_end*g(z); %S

k2 = -dCdS(S)*L1*g_prime(z); %L1

k3 = -p.S.dNdR_end*p.nu_S*L1*g_prime_recip(z); %L2

end

% Root -only Growth RK4 Function

function [k1, k2 , k3] = RootonlyRK4(R, L2 , p)

z1C p.R.C_end /(p.nu_R*N(R)); %z2C

k1 = p.nu_R*N(R)*g(z); %R

160

k2 = -p.R.dCdS_end*L2*g_prime(z); %L1

k3 = -dNdR(R)*p.nu_R*L2*g_prime_recip(z); %L2

end

%%

% Model Functions - G/C/N and Derivatives

% Carbon functions

% Note: Modify both C and dCdS together

function Carbon = C(S) %Rate of carbon fixation for a

given amount of shoot biomass

a = 1; %Proportionality constant for carbon

production

Carbon = a*S; %Rate of carbon fixation is

proportional to shoot biomass in carbon

end

function Cs = dCdS(S) %Derivative of carbon wrt shoot

Cs = 1;

end

% Nitrogen functions

% Note: Modify both N and dNdR together

function Nitrogen = N(R) %Rate of nitrogen assimilation

for a given amount of root biomass

161

b = 1; %Proportionality constant

Nitrogen = b*R; %Rate of nitrogen assimilation is

proportional to root biomass in carbon

end

function Nr = dNdR(R) %Derivative of nitrogen wrt root

Nr = 1;

end

% G functions and derivatives

% G(z)

function G = g(z)

G = z.*(1+z)./(1+z+z.^2);

end

% G'(z)

function gprime = g_prime(z)

gprime = (1+2*z)./(1+z+z.^2) .^2;

end

% G''(z)

function g2prime = g_2prime(z)

g2prime = -(6*z*(z+1))./(z.^2 + z + 1).^3;

end

162

% G'(1/z)

function x = g_prime_recip(z)

x = ((z+2).*(z.^3))./(1+z+z.^2) .^2;

end

% d/dz(G'(1/z))

function x = g_prime_recip_prime(z)

x = (6*(z.^2) .*(z+1))./(1+z+z.^2) .^3;

end

163

C.2 Second Model Numerical Scheme MATLAB Script

This appendix includes the MATLAB script for the numerical scheme we developed

to solve the optimal control problem 3.4 associated with the first model, as discussed

in Section 3.5. The function growthpath is the primary function for constructing the

optimal trajectory, and takes the terminal values of shoots and roots as arguments.

The primary parameters for growthpath are given in Table C.2. All functions called

by growthpath are included at the end of the script.

Parameter Value Meaning
nu_F 1/9 νF
nu_S 1/3 νS
beta 3 νR/νS
n 210 RK4 step size is 1/n
T 10 T

BGPI_tol 10−10 Tolerance for the balanced growth phase to
penultimate interval transition condition (3.100)

IBG_tol 10−10 Tolerance for the initial stage to balanced
growth phase transition condition (2.132)

Table C.2: Primary parameters for growthpath.

%Carbon/Nitrogen Fruits Optimal Control Problem

function [t, S, R, F, U, L] = growthpath(S_Final , R_Final)

% Terminal Conditions

p.S_Final = S_Final; %Final value of shoots

p.R_Final = R_Final; %Final value of roots

%Primary Parameters

p.BGPI_tol = 10^ -10; %Tolerance for BG-PI Hamiltonian

condition

164

p.IBG_tol = 10^ -10; %Tolerance for initial phase to BG

controls condition

% C:N Ratios

p.nu_F = 1/9; %C:N ratio in fruits

p.nu_S = 1/3; %C:N ratio in shoots

p.beta = 3; %Ratio of C:N ratio in roots to C:N ratio

in shoots

p.n = 2^10; %Number of grid points per unit time

p.T = 10; %Length of growing season

% Secondary Parameters

p.nu_R = p.nu_S*p.beta; %C:N ratio in roots

p.C_Final = C(p.S_Final); %Final rate of carbon

fixation

p.N_Final = N(p.R_Final); %Final rate of nitrogen

uptake

p.dCdS_Final = dCdS(p.S_Final); %Final rate of change

of carbon fixation rate wrt shoots

p.dNdR_Final = dNdR(p.R_Final); %Final rate of change

of nitrogen uptake rate wrt roots

p.z0C_FI = p.C_Final /(p.nu_F*p.N_Final); %z0C in the

final interval

p.HamCon = p.nu_F*p.N_Final*g(p.z0C_FI); %Hamiltonian

constant

165

% Find t_star , the PI-FI transition point

[x.t_star ,x.c,x.z2C_PI_End ,x.exitflag ,x.output ,stop] =

t_star_finder(p); %Find t_star , save relevant

information in temporary structure

p.t_star_finder = x; %Add structure to p

clear x; %Clear redundant structure

if stop == 1

error('Problem w/ t_star_finder ')

end

% Compute/store L1(t*) and L2(t*)

p.L1_star = p.dCdS_Final*gp(p.z0C_FI)*(p.T - p.

t_star_finder.t_star);

p.L2_star = p.dNdR_Final*p.nu_F*g2(p.z0C_FI)*(p.T - p.

t_star_finder.t_star);

assert(p.L1_star > 0 & p.L2_star > 0, 'L1* and/or L2*

nonpositive '); %Check that L1* and L2* are

positive

% Create structure w/ terminal conditions for PI solver

p.PI.args.step = 1; %Used to compute RK4 step size via

h = p.PI.args.step/p.n;

p.PI.args.t_start = 0; %Starting time for the PI solver

166

p.PI.args.t_end = p.t_star_finder.t_star; %End time for

PI solver

p.PI.args.L1_end = p.L1_star; %PI terminal condition

for L1

p.PI.args.L2_end = p.L2_star; %PI terminal condition

for L2

p.PI.args.z0C_end = p.z0C_FI; %PI terminal condition

for Z0C

p.PI.args.z2C_end = p.t_star_finder.z2C_PI_End; %PI

terminal condition for Z2C

p.PI.args.R_end = p.R_Final; %PI terminal condition for

R

% Penultimate interval solver - first run

[tP , z0CP , z2CP , SP, RP, UP, LP , stop] = PI(p);

if stop == 1

error('Problem w/ PI Solver ')

end

% BG-PI transition point finder - first run

[tP , z0CP , z2CP , SP, RP, UP, LP , p,stop] = BGPI_Find(tP,

z0CP , z2CP , SP , RP, UP, LP, p);

if stop == 1

error('Problem w/ BGPI_Find ')

end

167

% Refine integration mesh and iterate until BG -PI

transition located to within p.BGPI_tol

while p.BGPI.H > p.BGPI_tol

[tP2 , z0CP2 , z2CP2 , SP2 , RP2 , UP2 , LP2 , stop] = PI(p);

[tP2 , z0CP2 , z2CP2 , SP2 , RP2 , UP2 , LP2 , p, stop] =

BGPI_Find(tP2 , z0CP2 , z2CP2 , SP2 , RP2 , UP2 , LP2 , p)

;

if stop == 1

error('Problem w/ BGPI_Find or PI When Trying to

Resolve BG-PI Boundary ')

end

end

clear SP2 RP2 LP2 UP2 tP2 z0CP2 z2CP2 %Clear unnecessary

variables

% Append value of variables at BG-PI transition point

SP = [p.S_Final , SP];

RP = [p.PI.args.R_end , RP];

LP = [[p.PI.args.L1_end; p.PI.args.L2_end], LP];

tP = [p.PI.args.t_end , tP];

z0CP = [p.PI.args.z0C_end , z0CP];

z2CP = [p.PI.args.z2C_end , z2CP];

168

u0N_PI_start = ((p.C_Final/N(p.PI.args.R_end)) - p.nu_R*

p.PI.args.z2C_end)/(p.nu_F*p.PI.args.z0C_end - p.nu_R

*p.PI.args.z2C_end); %u_0N

u0C_PI_start = (p.nu_F*N(p.PI.args.R_end)*p.PI.args.

z0C_end*u0N_PI_start)/p.C_Final;

UP = [[u0C_PI_start; 0; 1-u0C_PI_start; u0N_PI_start; 0;

1-u0N_PI_start], UP];

clear u0N_PI_start u0C_PI_start %Clear unnecessary

variables

[z_BGPI ,~,~] = fsolve (@(Z)(ZBGPI(Z,LP(1),LP(2),p))

,[1,1], optimoptions('fsolve ','MaxFunEvals ' ,10000,'

Display ','off','OptimalityTolerance ',1e-20)); %

Compute terminal values of z1C and z2C for BG using

necessary conditions

% Create struture w/ terminal conditions for balanced

growth solver

p.BG.args.step = 1;

p.BG.args.t_start = 0;

p.BG.args.t_end = tP(1);

p.BG.args.S_end = p.S_Final;

p.BG.args.R_end = RP(1);

p.BG.args.L1_end = LP(1,1);

p.BG.args.L2_end = LP(2,1);

169

p.BG.args.z1_end = z_BGPI (1);

p.BG.args.z2_end = z_BGPI (2);

% Solve for fruits during PI

FP = FruitsPI(tP , SP , RP, UP(1,:), UP(4,:), p);

% Final interval

[tF , SF, RF, FF, UF , LF] = final(FP(end), p);

% Balanced growth

[tB , zB, SB, RB, UB , LB] = BG(p);

% Find beginning of balanced growth

if(tB(1) < 2/p.n) %If U < 1 and t = 0 then there

is no intial phase

FB = zeros(1,length(tB));

t = [tB , tP , tF];

S = [SB , SP , SF];

R = [RB , RP , RF];

F = [FB , FP , FF];

L = [LB , LP , LF];

U = [UB , UP , UF];

else

170

[tB , zB, SB, RB, UB , LB , p] = CBG_Find(tB, zB, SB, RB ,

UB , LB, p); %Search for beginning of BG - first

run

CBG_ind = 0;

while p.CBG.Ucondition > p.IBG_tol %Refine

integration mesh and iterate until beginning of BG

found to within p.IBG_tol

[tB2 , zB2 , SB2 , RB2 , UB2 , LB2] = BG(p);

CBG_ind = 1;

[tB2 , zB2 , SB2 , RB2 , UB2 , LB2 , p] = CBG_Find(tB2 ,

zB2 , SB2 , RB2 , UB2 , LB2 , p);

end

if CBG_ind == 0 %Move on if no refinement is possible

SB2 = nan;

RB2 = nan;

LB2 = [nan;nan];

UB2 = [nan;nan;nan;nan;nan;nan];

tB2 = nan;

zB2 = [nan;nan];

end

% Append value of variables at beginning of balanced

growth

SB = [SB2 , SB];

RB = [RB2 , RB];

171

LB = [LB2 , LB];

UB = [UB2 , UB];

tB = [tB2 , tB];

zB = [zB2 , zB];

FB = zeros(1,length(tB));

clear SB2 RB2 LB2 UB2 tB2 zB2 %Clear unnecessary

variables

% Compute conditions required for S-only or R-only

initial phase

[S_only_condition , R_only_condition] =

convergence_conditions(p);

% Initial phase

if S_only_condition < R_only_condition

[tC , SC, RC, FC, UC , LC] = shootonly(p);

elseif R_only_condition < S_only_condition

[tC , SC, RC, FC, UC , LC] = rootonly(p);

else

error('could not determind C-BG transition , both

shoot -only and root -only growth are possible ')

end

% Combine Vectors From 4 Stages

t = [tC , tB , tP, tF];

172

S = [SC , SB , SP, SF];

R = [RC , RB , RP, RF];

F = [FC , FB , FP, FF];

L = [LC , LB , LP, LF];

U = [UC , UB , UP, UF];

end

end

%%%

% Functions called in growthpath

% Growth stage functions

% Function to locate t*

function [t_star ,c,z2C ,exitflag ,output ,stop] =

t_star_finder(p)

c = (p.nu_R*gp(p.z0C_FI))/(p.nu_F*g2(p.z0C_FI));

[z2C ,~,exitflag ,output] = fsolve (@(z)(gp(z)./g2(z)) - c

,1, optimoptions('fsolve ','MaxFunEvals ' ,10000,'Display

','off','OptimalityTolerance ',1e-20));

t_star = p.T - 1/(p.nu_R*p.dNdR_Final*g2(z2C));

% Check for errors

if exitflag <=0

warning('equation not solved ')

stop = 1;

173

elseif z2C < 0

warning('z2C_star < 0')

stop = 1;

elseif t_star > p.T

warning('t_star invalid: t_star > T')

stop = 1;

elseif t_star < 0

warning('t_star invalid: t_star < 0')

stop = 1;

else

stop = 0;

end

end

% Function to solve during PI

function [t, z0 , z2, S, R, U, L, stop] = PI(p)

h = p.PI.args.step/p.n; %Step size

h2 = h/2; %Half step size for RK4

h6 = h/6; %h/6 for RK4 update

stop = 0;

%Initialize vectors for penultimate interval

t = p.PI.args.t_start:h:p.PI.args.t_end;

length_t = length(t);

174

S = p.S_Final*ones(1,length_t);

R = p.PI.args.R_end*ones(1,length_t);

L1 = p.PI.args.L1_end*ones(1,length_t);

L2 = p.PI.args.L2_end*ones(1,length_t);

z0 = p.PI.args.z0C_end*ones(1,length_t);

z2 = p.PI.args.z2C_end*ones(1,length_t);

u0N = ones(1,length_t);

u0C = ones(1,length_t);

% RK4 Backwards in Time

for i = 1:length_t -1

j = length_t + 1 - i;

[k11 , k12 , k13 , k14 , k15 , u] = PIRK4(R(j) , z0

(j) , z2(j) , p);

[k21 , k22 , k23 , k24 , k25 , ~] = PIRK4(R(j) - h2*k11 , z0

(j) - h2*k15 , z2(j) - h2*k14 , p);

[k31 , k32 , k33 , k34 , k35 , ~] = PIRK4(R(j) - h2*k21 , z0

(j) - h2*k25 , z2(j) - h2*k24 , p);

[k41 , k42 , k43 , k44 , k45 , ~] = PIRK4(R(j) - h*k31 , z0

(j) - h*k35 , z2(j) - h*k34 , p);

% Update controls

u0N(j) = u;

u0C(j) = (p.nu_F*N(R(j))*z0(j)*u0N(j))/p.C_Final;

175

% Stop and truncate if controls are unbounded

if u0N(j) < 0 || u0N(j) > 1 || u0C(j) < 0 || u0C(j) >

1 || R(j) < 0 || j == 2

if i == 1

stop = 1;

warning('No PI - controls unbounded immediately ')

U = nan;

L = nan;

R = nan;

S = nan;

z2 = nan;

z0 = nan;

t = nan;

break

else

ind = j+1;

U(1,:) = u0C(ind:end);

U(3,:) = 1 - u0C(ind:end);

U(4,:) = u0N(ind:end);

U(6,:) = 1 - u0N(ind:end);

L(1,:) = L1(ind:end);

L(2,:) = L2(ind:end);

R = R(ind:end);

S = S(ind:end);

176

z2 = z2(ind:end);

z0 = z0(ind:end);

t = t(ind:end);

break

end

end

R(j-1) = R(j) - h6*(k11 + 2*(k21 + k31) + k41);

L1(j-1) = L1(j) - h6*(k12 + 2*(k22 + k32) + k42);

L2(j-1) = L2(j) - h6*(k13 + 2*(k23 + k33) + k43);

z2(j-1) = z2(j) - h6*(k14 + 2*(k24 + k34) + k44);

z0(j-1) = z0(j) - h6*(k15 + 2*(k25 + k35) + k45);

% Error check

if R(j-1) < 0

warning('PI: R < 0')

stop = 1;

elseif min(L1(j-1),L2(j-1)) < 0

warning('PI: L1 or L2 negative ')

stop = 1;

elseif min(z2(j-1),z0(j-1)) < 0

warning('PI: z0 or z2 negative ')

stop = 1;

end

end

177

end

% BG-PI transition point finder

function [tP, z0CP , z2CP , SP , RP, UP, LP, p,stop] =

BGPI_Find(t, z0C , z2C , S, R, U, L, p)

stop = 0; %Initialize stop

left_index = 1;

right_index = length(t);

[ZL ,~,~] = fsolve (@(Z)(ZBGPI(Z,L(1, left_index),L(2,

left_index),p)) ,[1,1], optimoptions('fsolve ','

MaxFunEvals ' ,10000,'Display ','off','

OptimalityTolerance ',1e-20));

[ZR ,~,~] = fsolve (@(Z)(ZBGPI(Z,L(1, right_index),L(2,

right_index),p)) ,[1,1], optimoptions('fsolve ','

MaxFunEvals ' ,10000,'Display ','off','

OptimalityTolerance ',1e-20));

HL = L(1, left_index)*(p.nu_S*N(R(left_index))*g2(ZL(1))

+ C(S(left_index))*gp(ZL(1)));

HR = L(1, right_index)*(p.nu_S*N(R(right_index))*g2(ZR(1)

) + C(S(right_index))*gp(ZR(1)));

HDiffsignL = sign(HL - p.HamCon);

HDiffsignR = sign(HR - p.HamCon);

if HDiffsignL*HDiffsignR > 0

178

warning('sgn(H - H*) same on both sides of potential

BG -PI transition point ')

stop = 1;

SP = nan;

RP = nan;

LP = nan;

UP = nan;

tP = nan;

z0CP = nan;

z2CP = nan;

return

end

while right_index - left_index > 4

mid_index = floor ((right_index + left_index)/2);

[ZM ,~,~] = fsolve (@(Z)(ZBGPI(Z,L(1,mid_index),L(2,

mid_index),p)) ,[1,1], optimoptions('fsolve ','

MaxFunEvals ' ,10000,'Display ','off','

OptimalityTolerance ',1e-20));

U1NM = (p.C_Final ./(N(R(mid_index))) - p.nu_R*ZM(2))

./(p.nu_S*ZM(1) - p.nu_R*ZM(2));

HM = L(1,mid_index)*(p.nu_S*N(R(mid_index))*g2(ZM(1))

+ C(S(mid_index))*gp(ZM(1)));

if sign(HM - p.HamCon) == HDiffsignR

right_index = mid_index;

179

else

left_index = mid_index;

end

end

U1CM = ZM(1)*p.nu_S*U1NM*N(R(mid_index))/p.C_Final;

if U1NM > 1 || U1NM < 0 || U1CM > 1 || U1CM < 0

warning('Conrols Not Bounded At Potential BG-PI

Boundary ')

stop = 1;

end

% Update variables and arguments for PI solver

tP = t(right_index:end);

SP = S(right_index:end);

RP = R(right_index:end);

LP = L(:, right_index:end);

UP = U(:, right_index:end);

z0CP = z0C(right_index:end);

z2CP = z2C(right_index:end);

p.PI.args.step = p.PI.args.step /1000; %Reduce step size

for next iteration

p.PI.args.t_start = t(left_index);

p.PI.args.t_end = t(right_index);

p.PI.args.L1_end = L(1, right_index);

180

p.PI.args.L2_end = L(2, right_index);

p.PI.args.z0C_end = (U(1, right_index)*p.C_Final)/(p.nu_F

*U(4, right_index)*N(R(right_index)));

p.PI.args.z2C_end = (U(3, right_index)*p.C_Final)/(p.nu_R

*U(6, right_index)*N(R(right_index)));

p.PI.args.R_end = R(right_index);

p.BGPI.H = abs(HM - p.HamCon); %Hamiltonian condition

end

% Fruits during the penultimate interval

function F = FruitsPI(t, S, R, u0C , u0N , p) %t,S,u0C

during the PI

F = zeros(1,length(t));

hFs = diff(t(1:2)); %First smaller time step

hF = 1/p.n;

hFs6 = hFs/6;

hF6 = hF/6;

% Solve forwared in time via RK4 , using midpoints for

half time -steps when necessary

for i = 1: length(t) -1

k1 = p.nu_F*u0N(i)*N(R(i))*g((u0C(i)*C(S(i)))/(p.nu_F*

u0N(i)*N(R(i))));

k2 = p.nu_F *0.5*(u0N(i) + u0N(i+1))*N(0.5*(R(i)+R(i+1)

))*g((0.5*(u0C(i) + u0C(i+1))*C(0.5*(S(i)+S(i+1))))

181

/(p.nu_F *0.5*(u0N(i) + u0N(i+1))*N(0.5*(R(i) + R(i

+1)))));

k4 = p.nu_F*u0N(i+1)*N(R(i+1))*g((u0C(i+1)*C(S(i+1)))

/(p.nu_F*u0N(i+1)*N(R(i+1))));

if i == 1

F(i+1) = F(i) + hFs6*(k1 + 4*k2 + k4);

else

F(i+1) = F(i) + hF6*(k1 + 4*k2 + k4);

end

end

end

% Final interval function

function [t, S, R, F, U, L] = final(F_star ,p)

h = 1/p.n;

t = p.t_star_finder.t_star:h:p.T;

length_t = length(t);

F = F_star + p.nu_F*p.N_Final*g(p.z0C_FI)*(t-p.

t_star_finder.t_star);

S = p.S_Final*ones(1,length_t);

R = p.R_Final*ones(1,length_t);

L(1,:) = p.dCdS_Final*gp(p.z0C_FI)*(p.T - t);

L(2,:) = p.dNdR_Final*p.nu_F*g2(p.z0C_FI)*(p.T-t);

U = zeros(6,length_t);

182

U(1,:) = ones(1,length_t);

U(4,:) = ones(1,length_t);

end

% Balanced growth function

function [t, Z, S, R, U, L] = BG(p)

%Parameters

h = p.BG.args.step/p.n; %Step size

h2 = h/2; %Half step size for RK4

h6 = h/6; %h/6 for RK4 update

% Verify that there is a balanced growth phase

u1N_hat = (C(p.BG.args.S_end) - (p.nu_R*N(p.BG.args.

R_end)*p.BG.args.z2_end))/(N(p.BG.args.R_end)*(p.nu_S

*p.BG.args.z1_end - p.nu_R*p.BG.args.z2_end));

%Compute u1N at the end of BG

u1C_hat = (p.nu_S*N(p.BG.args.R_end)*p.BG.args.z1_end*

u1N_hat)/C(p.BG.args.S_end); %Compute u1C at the end

of BG

if u1N_hat > 1 || u1N_hat < 0 || u1C_hat > 1 || u1C_hat

< 0 %Check that controls are bounded

S = p.BG.args.S_end;

R = p.BG.args.R_end;

L = [p.BG.args.L1_end; p.BG.args.L2_end];

183

U = [0; 1; 0; 0; 1; 0];

t = p.BG.args.t_end;

Z = [p.BG.args.z1_end; p.BG.args.z2_end];

warning('No BG - controls unbounded immediately ')

return

end

%Initialize vectors for balanced growth

t = p.BG.args.t_start:h:p.BG.args.t_end;

length_t = length(t); %length of t vector

S = p.BG.args.S_end*ones(1,length_t);

R = p.BG.args.R_end*ones(1,length_t);

lambda_1 = p.BG.args.L1_end*ones(1,length_t);

lambda_2 = p.BG.args.L2_end*ones(1,length_t);

z1 = p.BG.args.z1_end*ones(1,length_t);

z2 = p.BG.args.z2_end*ones(1,length_t);

% Solve backwards using RK4

for i = 1:length_t -1

j = length_t + 1 - i;

[k11 , k12 , k13 , k14 , k15 , k16] = BGRK4(S(j) ,

R(j) , lambda_1(j) , z1(j)

, z2(j) , p);

184

[k21 , k22 , k23 , k24 , k25 , k26] = BGRK4(S(j) - h2*k11 ,

R(j) - h2*k12 , lambda_1(j) - h2*k13 , z1(j) - h2*k15

, z2(j) - h2*k16 , p);

[k31 , k32 , k33 , k34 , k35 , k36] = BGRK4(S(j) - h2*k21 ,

R(j) - h2*k22 , lambda_1(j) - h2*k23 , z1(j) - h2*k25

, z2(j) - h2*k26 , p);

[k41 , k42 , k43 , k44 , k45 , k46] = BGRK4(S(j) - h*k31 ,

R(j) - h*k32 , lambda_1(j) - h*k33 , z1(j) - h*k35

, z2(j) - h*k36 , p);

S(j-1) = S(j) - h6*(k11 + 2*(k21 + k31) + k41);

R(j-1) = R(j) - h6*(k12 + 2*(k22 + k32) + k42);

lambda_1(j-1) = lambda_1(j) - h6*(k13 + 2*(k23 + k33)

+ k43);

lambda_2(j-1) = lambda_2(j) - h6*(k14 + 2*(k24 + k34)

+ k44);

z1(j-1) = z1(j) - h6*(k15 + 2*(k25 + k35) + k45);

z2(j-1) = z2(j) - h6*(k16 + 2*(k26 + k36) + k46);

% Compute controls at current time step

u1N = (C(S(j-1)) - (p.nu_R*N(R(j-1)))*z2(j-1))/(N(R(j

-1))*(p.nu_S*z1(j-1) - p.nu_R*z2(j-1))); %

Update u1N

u1C = (p.nu_S*N(R(j-1))*z1(j-1)*u1N)/C(S(j-1));

185

% Stop and update variables if controls become

unbounded or if t = 0 reached

if u1N > 1 || u1N < 0 || u1C > 1 || u1C < 0 || j==2

balgrowthindex = j-1;

u1N = (C(S(balgrowthindex:end)) - (p.nu_R*N(R(

balgrowthindex:end)).*z2(balgrowthindex:end)))./(

N(R(balgrowthindex:end)).*(p.nu_S*z1(

balgrowthindex:end) - p.nu_R*z2(balgrowthindex:

end)));

u1C = (p.nu_S*N(R(balgrowthindex:end)).*z1(

balgrowthindex:end).*u1N)./C(S(balgrowthindex:end

));

S = S(balgrowthindex:end);

R = R(balgrowthindex:end);

L(1,:) = lambda_1(balgrowthindex:end);

L(2,:) = lambda_2(balgrowthindex:end);

U(1,:) = zeros(1,length(S)); %u0C

U(2,:) = u1C; %u1C

U(3,:) = 1 - U(2,:); %u2C

U(4,:) = U(1,:); %u0N

U(5,:) = u1N; %u1N

U(6,:) = 1 - U(5,:); %u2N

Z(1,:) = z1(balgrowthindex:end);

Z(2,:) = z2(balgrowthindex:end);

t = t(balgrowthindex:end);

186

break

end

end

end

% Balanced Growth Constraints on Z - used for computing

left limits of z1C and z2C from BG

function X = ZBGPI(Z,L1 ,L2,p)

X(1) = L1*gp(Z(1)) - L2*gp(Z(2));

X(2) = L1*p.nu_S*g2(Z(1)) - L2*p.nu_R*g2(Z(2));

end

% Convergence stage to balanced growth phase transition

point finder

function [t, z, S, R, U, L, p] = CBG_Find(t, z, S, R, U, L

, p)

if sign(U(2,1) - U(5,1))*sign(U(2,2) - U(5,2)) < 0

left_index = 1;

right_index = 2;

else %If not , do full binary search over entire BG

interval

left_index = 1;

right_index = length(t);

ULsign = sign(U(2, left_index) - U(5, left_index));

URsign = sign(U(2, right_index) - U(5, right_index));

187

if ULsign*URsign > 0

error('sgn(u1c - u1n) same on both sides of

potential C-BG transition point ')

end

while abs(right_index - left_index) > 4

mid_index = floor ((right_index + left_index)/2);

UMsign = sign(U(2,mid_index) - U(5,mid_index));

if UMsign == URsign

right_index = mid_index;

else

left_index = mid_index;

end

end

end

% Update variables and terminal conditions for next

refinement

p.BG.args.t_start = t(left_index);

S = S(right_index:end);

R = R(right_index:end);

L = L(:, right_index:end);

U = U(:, right_index:end);

t = t(right_index:end);

188

z = z(:, right_index:end);

p.BG.args.step = p.BG.args.step /1000;

p.BG.args.t_end = t(1);

p.BG.args.S_end = S(1);

p.BG.args.R_end = R(1);

p.BG.args.L1_end = L(1,1);

p.BG.args.L2_end = L(2,1);

p.BG.args.z1_end = z(1,1);

p.BG.args.z2_end = z(2,1);

p.CBG.Ucondition = abs(U(2,1) - U(5,1));

end

% Function to compute conditions for each type of initial

phase

function [S_only_condition , R_only_condition] =

convergence_conditions(p)

S_only_condition = abs(p.nu_S*p.BG.args.L1_end*N(p.BG.

args.R_end)*g(C(p.BG.args.S_end)/(p.nu_S*N(p.BG.args.

R_end))) - p.nu_F*p.N_Final*g(p.z0C_FI));

R_only_condition = abs(p.nu_R*p.BG.args.L2_end*N(p.BG.

args.R_end)*g(C(p.BG.args.S_end)/(p.nu_R*N(p.BG.args.

R_end))) - p.nu_F*p.N_Final*g(p.z0C_FI));

end

% Initial (convergence) stage

189

% Shoot -only growth

function [t, S, R, F, U, L] = shootonly(p)

h = 1/p.n;

h2 = h/2;

h6 = h/6;

% Define constants

p.S.N_end = N(p.BG.args.R_end); %Initial nitrogen

p.S.dNdR_end = dNdR(p.BG.args.R_end); %Initial nitrogen

derivative

%Initialize vectors for shoot -only growth

t = 0:h:p.BG.args.t_end;

length_t = length(t); %length of t vector

S = p.BG.args.S_end*ones(1,length_t);

R = p.BG.args.R_end*ones(1,length_t);

lambda_1 = p.BG.args.L1_end*ones(1,length_t);

lambda_2 = p.BG.args.L2_end*ones(1,length_t);

F = zeros(1,length_t);

% Solve backwards in time using RK4

for i = 1:length_t -1

j = length_t + 1 - i;

190

[k11 , k12 , k13] = ShootonlyRK4(S(j) ,

lambda_1(j) , p);

[k21 , k22 , k23] = ShootonlyRK4(S(j) - h2*k11 ,

lambda_1(j) - h2*k12 , p);

[k31 , k32 , k33] = ShootonlyRK4(S(j) - h2*k21 ,

lambda_1(j) - h2*k22 , p);

[k41 , k42 , k43] = ShootonlyRK4(S(j) - h*k31 ,

lambda_1(j) - h*k32 , p);

S(j-1) = S(j) - h6*(k11 + 2*(k21 + k31) + k41);

lambda_1(j-1) = lambda_1(j) - h6*(k12 + 2*(k22 + k32)

+ k42);

lambda_2(j-1) = lambda_2(j) - h6*(k13 + 2*(k23 + k33)

+ k43);

end

U = zeros(6,length_t);

U(2,:) = ones(1,length_t);

U(5,:) = ones(1,length_t);

L = [lambda_1; lambda_2];

end

% Root -only growth

function [t, S, R, F, U, L] = rootonly(p)

h = 1/p.n;

h2 = h/2;

191

h6 = h/6;

% Define constants

p.R.C_end = C(p.BG.args.S_end); %Initial carbon

p.R.dCdS_end = dCdS(p.BG.args.S_end); %Initial carbon

derivative

%Initialize vectors for root -only growth

t = 0:h:p.BG.args.t_end;

length_t = length(t);

S = p.BG.args.S_end*ones(1,length_t);

R = p.BG.args.R_end*ones(1,length_t);

lambda_1 = p.BG.args.L1_end*ones(1,length_t);

lambda_2 = p.BG.args.L2_end*ones(1,length_t);

F = zeros(1,length_t);

% Solve backwards in time using RK4

for i = 1:length_t -1

j = length_t + 1 - i;

[k11 , k12 , k13] = RootonlyRK4(R(j) , lambda_2

(j) , p);

[k21 , k22 , k23] = RootonlyRK4(R(j) - h2*k11 , lambda_2

(j) - h2*k13 , p);

192

[k31 , k32 , k33] = RootonlyRK4(R(j) - h2*k21 , lambda_2

(j) - h2*k23 , p);

[k41 , k42 , k43] = RootonlyRK4(R(j) - h*k31 , lambda_2

(j) - h*k33 , p);

R(j-1) = R(j) - h6*(k11 + 2*(k21 + k31) + k41);

lambda_1(j-1) = lambda_1(j) - h6*(k12 + 2*(k22 + k32)

+ k42);

lambda_2(j-1) = lambda_2(j) - h6*(k13 + 2*(k23 + k33)

+ k43);

end

U = zeros(6,length_t);

U(3,:) = ones(1,length_t);

U(6,:) = ones(1,length_t);

L = [lambda_1; lambda_2];

end

%%

% RK4 Functions

% Penultimate Interval RK4 Function

function [k1, k2 , k3 , k4, k5, u] = PIRK4(R, z0, z2, p)

u = ((p.C_Final/N(R)) - p.nu_R*z2)/(p.nu_F*z0 - p.nu_R*

z2); %u_0N

193

k1 = p.nu_R *(1 - u)*N(R)*g(z2); %R

k2 = -p.dCdS_Final*gp(z0); %l1

k3 = -dNdR(R)*p.nu_F*g2(z0); %L2

k4 = ((dNdR(R)*p.nu_R*gp(z2)*(g2(z2))^2)*g(z0))/(gpp(z2)

*(z0*gp(z0)*g2(z2) - z2*gp(z2)*g2(z0))); %z2C

k5 = (g2(z0)/(z0*gpp(z0)*g2(z2)))*(z2*gpp(z2)*k4 + dNdR(

R)*p.nu_R*(g2(z2))^2); %z0C

end

% Balanced Growth RK4 Function

function [k1, k2 , k3 , k4, k5, k6] = BGRK4(S, R, L1, z1, z2

, p)

u = ((C(S)/N(R)) - p.nu_R*z2)/(p.nu_S*z1 - p.nu_R*z2);

%u_1N

k1 = p.nu_S*u*N(R)*g(z1); %S

k2 = p.nu_R *(1 - u)*N(R)*g(z2); %R

k3 = -dCdS(S)*L1*gp(z1); %l1

k4 = -dNdR(R)*L1*p.nu_S*g2(z1); %l2

k5 = (dNdR(R)*p.nu_S*p.nu_R*g(z2)*g2(z1) - dCdS(S)*gp(z1

)*(p.nu_S*g2(z1) + z2*p.nu_R*gp(z1)))/(gpp(z1)*(p.

nu_S*z1 - p.nu_R*z2)); %z1C

k6 = (dNdR(R)*p.nu_S*g2(z1)*(gp(z2))^2 - dCdS(S)*(gp(z1)

)^2*gp(z2) + gpp(z1)*gp(z2)*k5)/(gp(z1)*gpp(z2)); %

z2C

194

end

% Shoots -only growth RK4 function

function [k1, k2 , k3] = ShootonlyRK4(S, L1 , p)

z = C(S)/(p.nu_S*p.S.N_end); %z1C

k1 = p.nu_S*p.S.N_end*g(z); %S

k2 = -dCdS(S)*L1*gp(z); %L1

k3 = -p.S.dNdR_end*p.nu_S*L1*g2(z); %L2

end

% Root -only Growth RK4 Function

function [k1, k2 , k3] = RootonlyRK4(R, L2 , p)

z = p.R.C_end/(p.nu_R*N(R)); %z2C

k1 = p.nu_R*N(R)*g(z); %R

k2 = -p.R.dCdS_end*L2*gp(z); %L1

k3 = -dNdR(R)*p.nu_R*L2*g2(z); %L2

end

%%

% Model Functions - G/C/N and Derivatives

% Carbon functions

% Note: Modify both C and dCdS together

function Carbon = C(S) %Rate of carbon fixation for a

given amount of shoot biomass

195

a = 1; %Proportionality constant for carbon

production

Carbon = a*S; %Rate of carbon fixation is

proportional to shoot mass in carbon

end

function Cs = dCdS(S) %Derivative of carbon wrt shoot

Cs = 1;

end

% Nitrogen functions

% Note: Modify both N and dNdR together

function Nitrogen = N(R) %Rate of nitrogen assimilation

for a given amount of root biomass

b = 1; %Proportionality constant

Nitrogen = b*R; %Rate of nitrogen assimilation is

proportional to root mass in carbon

end

function Nr = dNdR(R) %Derivative of nitrogen wrt root

Nr = 1;

end

% G Functions and Derivatives

196

% G(z)

function x = g(z) % G(z)

x = z.*(1+z)./(1+z+z.^2);

end

% G'(z)

function x = gp(z) % G'(z)

x = (1+2*z)./(1+z+z.^2) .^2;

end

% G''(z)

function x = gpp(z) % G''(z)

x = -(6*z.*(1+z))./(1+z+z.^2) .^3;

end

% G_2(z) = G'(1/z)

function x = g2(z) % G_2(z) = G'(1/z)

x = ((z.^3) .*(2+z))./(1+z+z.^2) .^2;

end

% G_2 '(z)

function x = g2p(z) %G_2 '(z) = -zG ''(z)

x = -z.*gpp(z);

end

197

Bibliography

[1] Arnold J Bloom, F Stuart Chapin III, and Harold A Mooney, Resource limitation

in plants-an economic analogy, Annual review of Ecology and Systematics 16

(1985), no. 1, 363–392.

[2] Ray Dybzinski, Caroline Farrior, Adam Wolf, Peter B Reich, and Stephen W

Pacala, Evolutionarily stable strategy carbon allocation to foliage, wood, and

fine roots in trees competing for light and nitrogen: an analytically tractable,

individual-based model and quantitative comparisons to data, The American Nat-

uralist 177 (2011), no. 2, 153–166.

[3] Brian J Enquist and Karl J Niklas, Global allocation rules for patterns of biomass

partitioning in seed plants, Science 295 (2002), no. 5559, 1517–1520.

[4] Phyllis A Hicks, Distribution of carbon/nitrogen ratio in the various organs of

the wheat plant at different periods of its life history, New Phytologist 27 (1928),

no. 2, 108–116.

[5] Yoh Iwasa and Jonathan Roughgarden, Shoot/root balance of plants: optimal

growth of a system with many vegetative organs, Theoretical population biology

25 (1984), no. 1, 78–105.

[6] S.A.L.M. Kooijman, Dynamic energy budget theory for metabolic organisation,

Cambridge university press, 2010.

198

[7] Glenn Ledder, Sabrina E. Russo, Erik B. Muller, Angela Peace, and Roger M.

Nisbet, Local control of resource allocation is sufficient to model optimal dynam-

ics in syntrophic systems, Theoretical Ecology (2020).

[8] Suzanne Lenhart and John T Workman, Optimal control applied to biological

models, Chapman and Hall/CRC, 2007.

[9] MC McCarthy and BJ Enquist, Consistency between an allometric approach

and optimal partitioning theory in global patterns of plant biomass allocation,

Functional Ecology 21 (2007), no. 4, 713–720.

[10] V Minden and M Kleyer, Internal and external regulation of plant organ stoi-

chiometry, Plant Biology 16 (2014), no. 5, 897–907.

[11] Lev Semenovich Pontryagin, EF Mishchenko, VG Boltyanskii, and RV Gamkre-

lidze, The mathematical theory of optimal processes, (1962).

[12] Hendrik Poorter and Oscar Nagel, The role of biomass allocation in the growth

response of plants to different levels of light, co2, nutrients and water: a quanti-

tative review, Functional Plant Biology 27 (2000), no. 12, 1191–1191.

[13] Hendrik Poorter, Karl J Niklas, Peter B Reich, Jacek Oleksyn, Pieter Poot, and

Liesje Mommer, Biomass allocation to leaves, stems and roots: meta-analyses of

interspecific variation and environmental control, New Phytologist 193 (2012),

no. 1, 30–50.

[14] Kai Velten and Otto Richter, Optimal root/shoot-partitioning of carbohydrates

in plants, Bulletin of Mathematical Biology 57 (1995), no. 1, 99–107.

[15] Jacob Weiner, Allocation, plasticity and allometry in plants, Perspectives in

Plant Ecology, Evolution and Systematics 6 (2004), no. 4, 207–215.

	Optimal Allocation of Two Resources in Annual Plants
	

	Introduction
	Background Material
	Optimal Control Theory
	Iwasa and Roughgarden

	First Model: Carbon-Only Fruits
	Introduction
	A Description of the Model
	Model Setup
	The PCSU
	PCSU Identities

	Optimal Control Problem
	Necessary Conditions

	Four-Phase Structure
	Final Interval - Reproductive Growth
	Penultimate Interval - Mixed Vegetative/Reproductive Growth
	Balanced Growth - Mixed Vegetative Growth
	Initial Phase - Shoot or Root Growth

	Phase Dynamics and Transitions
	Initial Phase: Shoot-Only Growth
	Initial Phase: Root-Only Growth
	Balanced Growth - Shoot/Root Growth
	Penultimate Interval - Shoot/Fruit Growth
	Final Interval - Fruit-Only Growth
	Initial Phase to Balanced Growth Transition
	Balanced Growth to Penultimate Interval Transition
	Penultimate Interval to Final Interval Transition

	Numerical Scheme
	Penultimate Interval
	Locating the Start of the Penultimate Interval
	Fruits - Penultimate Interval
	Final Interval
	Balanced Growth
	Locating the Start of Balanced Growth
	Initial Phase
	Shoot-Only Growth
	Root-Only Growth

	Numerical Results
	Initial Shoot Growth
	Initial Root Growth
	Balanced Growth First - Type S
	Balanced Growth First - Type R
	Final Fruits Value Contours
	900 Fruit Contour

	Discussion

	Second Model - Carbon/Nitrogen Fruits
	Introduction
	A Description of the Model
	Model Setup
	Optimal Control Problem
	Necessary Conditions

	Four-Phase Structure
	Final Interval

	Phase Dynamics and Transition
	Initial Phase: Shoot-Only Growth
	Initial Phase: Root-Only Growth
	Balanced Growth - Shoot/Root Growth
	Penultimate Interval - Root/Fruit Growth
	Final Interval - Fruit-Only Growth
	Initial Phase to Balanced Growth Transition
	Penultimate Interval to Final Interval Transition

	Numerical Scheme
	Locating the Penultimate Interval - Final Interval Boundary
	Penultimate Interval
	Locating the Start of the Penultimate Interval
	Fruits - Penultimate Interval
	Final Interval
	Balanced Growth
	Locating the Start of Balanced Growth
	Initial Phase

	Numerical Results
	Initial Shoot Growth
	Initial Root Growth
	Balanced Growth First - Type S
	Balanced Growth First - Type R
	Final Fruits Value Contours
	600 Fruit Contour

	Discussion
	Future Directions

	Necessary Conditions
	n States, 2 Controls, Interval [0,T]
	n States, 3 Controls, Interval [0,T]

	Supplemental Arguments and Derivations
	First Model Growth Stage Argument
	First Model Differential Equations Derivation
	Second Model Differential Equations Derivation

	MATLAB Scripts
	First Model Numerical Scheme MATLAB Script
	Second Model Numerical Scheme MATLAB Script

	Bibliography

