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A trisection of a smooth 4-manifold is a decomposition into three simple pieces with

nice intersection properties. Work by Gay and Kirby shows that every smooth, con-

nected, orientable 4-manifold can be trisected. Natural problems in trisection theory

are to exhibit trisections of certain classes of 4-manifolds and to determine the mini-

mal trisection genus of a particular 4-manifold.

Let Σg denote the closed, connected, orientable surface of genus g. In this thesis,

we show that the direct product Σg × Σh has a ((2g + 1)(2h + 1) + 1; 2g + 2h)-

trisection, and that these parameters are minimal. We provide a description of the

trisection, and an algorithm to generate a corresponding trisection diagram given the

values of g and h. We then extend this construction to arbitrary closed, flat surface

bundles over surfaces with orientable fiber and orientable or non-orientable base. If

the fundamental group of such a bundle has rank 2 − χ + 2h, where h is the genus

of the fiber and χ is the Euler characteristic of the base, these trisections are again

minimal.
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CHAPTER 1

INTRODUCTION

Four-dimensional topology is the study of 4-manifolds, topological spaces that are

locally homeomorphic to R4. Since we exist in a 3-dimensional reality, finding ac-

cessible ways to visualize, describe, or work with these abstract 4-dimensional spaces

can be a challenge. This challenge is compounded by the fact that every finitely-

presented group is the fundamental group of some smooth, closed, oriented 4-manifold

(see [GS99, Chapter 1]), and even those 4-manifolds with trivial fundamental group

are not well-behaved. For example, four is the only dimension in which a smooth

n-dimensional manifold may be homeomorphic to Rn without being diffeomorphic to

Rn (see [GS99, Chapter 1]). A big question, then, is how 4-manifolds might best be

studied.

One avenue of approach that was recently introduced by Gay and Kirby [GK16] is

the theory of trisections, in which a closed, orientable, connected, smooth 4-manifold

is broken down into three pieces and all of the 4-dimensional data is encoded on

a 2-dimensional surface (see Section 2.4). The allure of trisection theory is that it

invokes 2- and 3-dimensional techniques based in Heegaard theory to study smooth

4-manifolds; the ubiquity of the trisection structure among smooth 4-manifolds, as

illustrated by the following theorem, gives the field its power. Although this theorem is

stated for closed 4-manifolds, it extends to relative trisections of compact 4-manifolds,
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wherein additional structure is imposed to account for the boundary of the 4-manifold

[GK16,CGPC18,CIMT19].

Theorem 1.1. [GK16] Every closed, orientable, connected, smooth 4-manifold ad-

mits a trisection, and any two trisections of the same 4-manifold are stably equivalent.

While the existence of trisections is certainly a useful fact, in practice it is of

greater use to know how to trisect a given 4-manifold and how to present a trisection

in an accessible way. A trisection diagram consists of the closed orientable surface that

sits at the core of a trisection, together with three systems of simple closed curves in

that surface. Each curve system describes how to attach a set of disks to a thickened

copy of the surface in order to reconstruct a 3-dimensional handlebody bounded by

the surface. The union of the three resulting handlebodies is called the spine of the

trisection, and there is a unique way to cap off a thickened spine with 4-dimensional

1-handlebodies to produce a closed, orientable 4-manifold [LP72]. Thus, a trisected

4-manifold can be completely described by a 2-dimensional trisection diagram.

As in the 3-dimensional context of Heegaard splittings, the genus of a trisection

is the genus of the central surface, and the trisection genus of a 4-manifold X is

the minimum genus of any trisection of X. 4-manifolds with trisection genus g have

been classified for 0 ≤ g ≤ 2 [GK16, MZ17], and conjecturally classified for g = 3

[Mei18]. Additionally, there are larger classes of 4-manifolds that have been explicitly

trisected, including 3-manifold bundles over S1 [Koe17], and 4-manifolds obtained

by spinning or twist-spinning a 3-manifold [Mei18]. Both of these constructions use

an appropriate choice of Heegaard diagram for the associated 3-manifold to obtain a

trisection diagram of the 4-manifold. In the relative case for manifolds with boundary,

disk bundles over S2 have been trisected and an algorithm for producing a relative

trisection diagram is known [CGPC18] (see Section 5.3).
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In Chapter 3, we add trivial surface bundles over surfaces to the list of closed 4-

manifolds for which trisections and their diagrams are known. The results presented

here mirror the Heegaard theoretic results that every Σg-bundle over S1 admits a

canonical Heegaard splitting of genus 2g + 1 (see [BR07]) and that these splittings

are minimal for trivial bundles [Sch93], as well as for some nontrivial bundles (see

Section 2.3):

Theorem 3.3. For g ≥ 0, let Σg denote the closed, connected, orientable surface of

genus g. Then the 4-manifold X = Σg×Σh admits a ((2g + 1)(2h+ 1) + 1; 2g + 2h)-

balanced trisection.

Diagrams for these trisections are discussed in Section 3.2 with an algorithm that

describes how to construct the trisection surface and the three curve systems. In

Section 3.3, we characterize the trisection genus of trivial surface bundles over surfaces

using an argument about π1(Σg × Σh):

Theorem 3.17. The trisection genus of Σg × Σh is (2g + 1)(2h+ 1) + 1.

Trivial surface bundles over surfaces are a special case of flat surface bundles over

surfaces (see Section 2.2). In Chapter 4, we generalize our results for trivial surface

bundles to flat surface bundles with orientable fiber. In order for these generalizations

to be independent of the orientability of the base surface, the parameters pertaining

to the base are now phrased in terms of Euler characteristic rather than genus:

Theorem 4.3. Let X be a closed, connected, orientable, smooth 4-manifold that

fibers as a flat Σh-bundle over S, where Σh is a closed, connected, orientable surface

of genus h and S is a closed, connected surface with Euler characteristic χ. Then X

admits a ((3− χ)(2h+ 1) + 1; 2− χ+ 2h)-balanced trisection.

For certain flat bundles, these trisections are again minimal:



4

Proposition 4.6. Let X be as in Theorem 4.3. If π1(X) has rank 2− χ + 2h, then

the trisection genus of X is (3− χ)(2h+ 1) + 1.

In Chapter 2, we give the relevant background needed for the proofs in Chapters

3 and 4. Chapter 3 has proofs of Theorems 3.3 and 3.17, and an algorithm that pro-

duces a minimal trisection diagram for the direct product of a given pair of surfaces.

Chapter 4 gives proofs of Theorem 4.3 and Proposition 4.6, along with an algorithm

to create a trisection diagram for a special case of a flat surface bundle over a sur-

face, given the bundle structure. In Chapter 5, we highlight some conjectures and

open questions based on these results. Finally, in Appendix A we present some new

trisection diagrams resulting from the algorithms in Sections 3.2 and 4.2.
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CHAPTER 2

BACKGROUND

This thesis assumes some foundational knowledge of low-dimensional topology, but

some of the basic facts we will use are covered in this chapter. See [Hat02, GS99] as

references. We begin with an overview of manifolds in Section 2.1, and narrow our

focus to fiber bundles in Section 2.2. We then introduce some relevant results from

3-manifold topology in Section 2.3 to lead into a discussion of trisection theory in

Section 2.4.

2.1 Compact manifolds

A (topological) n-manifold is a Hausdorff, second-countable, topological space M

such that every point in M has a neighborhood homeomorphic to an open subset

of Rn
+ = {(x1, . . . , xn) ∈ Rn | xn ≥ 0}. The boundary, ∂M , of M is the subset of M

consisting of all points which do not have a neighborhood homeomorphic to Rn. When

M is compact with empty boundary, we say M is a closed manifold. A chart is an

open subset U of M and a homeomorphism ϕ : U → ϕ(U) ⊆ Rn
+; an atlas on M is a

collection of charts that covers M . Given two overlapping charts (U,ϕ) and (V, ψ), the

transition function ϕ ◦ ψ−1 : ψ(U ∩ V )→ ϕ(U ∩ V ) describes how the local Euclidean

structures on U and V relate. A piecewise-linear (PL) atlas is an atlas for which every
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transition function is piecewise-linear; a smooth atlas is an atlas for which every

transition function is smooth. Recall that smooth means infinitely differentiable. We

say an n-manifold M is a PL manifold if a PL atlas for M exists; likewise, M is a

smooth manifold if there exists a smooth atlas for M . The 4-manifolds of interest in

this thesis are all smooth, which begs the question of distinctions between smooth,

PL, and topological manifolds. In general, every smooth manifold is a PL manifold,

so the question becomes: when does a manifold have a PL structure, and when is a

PL manifold smoothable? For 0 ≤ n ≤ 3, there is no distinction between these three

categories: every topological n-manifold for 0 ≤ n ≤ 3 has a smoothable PL structure

that is unique up to isomorphism. For 4 ≤ n ≤ 7, every PL manifold is smoothable,

but there are n-manifolds with no PL structure, and hence no smooth structure. For

n ≥ 8, there are topological n-manifolds with no PL structure and PL n-manifolds

with no smooth structure (see [GS99, Chapter 1], [Mil11]).

Remark 2.1. Unless otherwise specified, manifolds are assumed to be smooth, com-

pact, and orientable throughout this thesis.

A properly embedded submanifold N of a manifold M is a subset of M that is

itself a manifold with respect to the subspace topology, and that satisfies ∂N ⊆ ∂M .

We say two submanifolds Ni, i = 0, 1 are smoothly isotopic if there is a smooth map

f : N × I →M with f |N×{t} an embedding for all t ∈ I and f(N × {i}) = Ni; two

submanifolds with a common boundary are smoothly isotopic rel boundary if those

smooth maps fix the boundary pointwise. Equivalence of manifolds is considered up

to isotopy or diffeomorphism.

The nature of manifolds as spaces that are locally Euclidean makes them prime

candidates for study. Some key questions that arise involve classification—what man-

ifolds exist?—and methodology—what tools exist to study manifolds, particularly
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when those manifolds can not be immersed or embedded in 3-space? It is a well-

known fact that the circle, S1, is the only closed, connected 1-manifold. Furthermore,

any compact 1-manifold that is connected but not closed is homeomorphic to I, the

unit interval in R. Manifolds of dimension 2 are commonly called surfaces, and while

there is more nuance in the form a 2-manifold can take, the classification of surfaces

is still a well-known result. Any orientable, closed, connected surface is homeomor-

phic to an n-fold connect sum of tori, Σn = #nT 2, for some n ≥ 0, where Σ0 = #0T 2

is taken to be the 2-sphere, S2. Any non-orientable, closed, connected surface is

homeomorphic to a k-fold connect sum of real projective planes, Fk = #kRP2, for

some k ≥ 1. Replacing “closed” with “compact” expands this collection of surfaces

to include Σn,b and Fk,b, which denote the compact, connected surfaces obtained by

iteratively removing the interior of a disk from (the interior of) Σn,b−1 or Fk,b−1, re-

spectively, where Σn,0 = Σn and Fk,0 = Fk. Here, the numbers n and k count the

genus of the surface and b counts the number of boundary components, each of which

is homeomorphic to S1.

Remark 2.2. Throughout this thesis, we use Σn, Σn,b, and Fk to denote compact,

connected surfaces as described above.

Manifolds of dimension higher than two are more challenging to describe or clas-

sify. One approach for smooth manifolds involves handles and handle decompositions

(see [GS99, Chapter 4] for more detail, including a discussion of framing). Given

integers n ≥ k ≥ 0, an n-dimensional k-handle is a copy of Bk × Bn−k attached to

the boundary of an n-manifold M along ∂Bk × Bn−k ∼= Sk−1 × Bn−k by a smooth

embedding ρ : ∂Bk× ∂Bn−k → ∂M . To stay in the realm of orientable manifolds, we

require ρ to be orientation-preserving. The subset Bk × {0} is called the core of the

handle, and its boundary Sk−1 × {0} is the attaching sphere; the subset {0} × Bn−k
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is called the co-core, and its boundary {0} × Sn−k−1 is the belt sphere. In the case

where n = 3, the different types of handles are shown in Figure 2.1 with the cores,

co-cores, and attaching regions indicated.

B0 ×B3

core: B0 × {0}
co-core: {0} ×B3

att. region: ∅

B1 ×B2

core: B1 × {0}
co-core: {0} ×B2

att. reg.: S0 ×B2

B2 ×B1

core: B2 × {0}
co-core: {0} ×B2

att. reg.: S1 ×B1

B3 ×B0

core: B3 × {0}
co-core: {0} ×B0

att. reg.: S2 ×B0

Figure 2.1: From left to right, a 3-dimensional 0-handle, 1-handle, 2-handle, and
3-handle

When the attaching sphere of a k-handle meets the belt sphere of a (k − 1)-handle

transversely at a single point, we say the handles form a cancelling pair: attaching

these two handles amounts to taking a boundary connect sum with Bn, which does

not change the diffeomorphism-type of the manifold. Another type of handle move is

a handle slide, in which one k-handle is slid over another, where 0 < k < n. Formally,

consider two k-handles h1 and h2 attached to ∂M . A handle slide of h1 over h2 is

described by an isotopy that takes the attaching sphere A of h1 in ∂(M ∪ h2) and

pushes it through the belt sphere B of h2.

A handle decomposition of a smooth n-manifold M is a way of breaking down

M into handles. In particular, if M is compact, we express ∂M as a disjoint union

∂+M t ∂−M of compact submanifolds, and identify M with a manifold obtained from

I × ∂−M by attaching handles, so that ∂−M corresponds naturally to {0} × ∂−M .
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Note that any handle decomposition has a dual decomposition, which may be thought

of as “flipping” the original decomposition and replacing each k-handle with an

(n− k)-handle (see [GS99, Chapter 4]). Since attaching maps are defined up to

isotopy, we may assume that the handles in a handle decomposition are attached

in increasing order of index, where the index of a k-handle is defined to be k. Un-

der this assumption, a theorem of Cerf states that any two handle decompositions

for a compact pair (M,∂−M) are related by a sequence of handle slides, isotopies,

and the introduction or deletion of cancelling handle pairs [Cer70]. If M is con-

nected and compact but not closed, then ∂M is not empty, and we may assume

that a handle decomposition of M has no 0-handles (if ∂−M 6= ∅) or no n-handles

(if ∂+M 6= ∅). Conversely, if M is connected and closed, then ∂M = ∅, so the first

handle attachment is necessarily a 0-handle, and the last handle attachment is nec-

essarily an n-handle. Moreover, we may assume there is exactly one 0-handle in this

case, as the connectedness of M would have 1-handles cancelling any extra 0-handles;

the dual decomposition correspondingly grants that we may assume there is exactly

one n-handle when M is connected and closed. Whenever ∂−M is empty, we call M

with a given handle decomposition a handlebody.

Much of our work in this thesis concerns 3- and 4-dimensional handlebodies con-

sisting of a single 0-handle and some number of 1-handles, as described further in

Sections 2.3 and 2.4. However, we do make use of more general handle decomposi-

tions, and Section 3.3 relies on the relationship between a handle decomposition of a

manifold X and a presentation of π1(X). Specifically, given a manifold X with one

0-handle, each 1-handle determines a generator of π1(X), with relations given by the

attaching circle of each 2-handle.
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2.2 Fiber bundles

Because manifolds get more complicated as the dimension increases, a reasonable

question is how one might construct a new manifold from a manifold or manifolds of

smaller dimension. The method most relevant to this thesis is a fiber bundle, which

is locally a direct product of two manifolds.

Definition 2.3. A fiber bundle E has the form F → E
p−→ B, where p is a continuous

map from the total space, E, to the base space, B, and for each x ∈ B, the set p−1({x})

is homeomorphic to the fiber, F . Additionally, for each x ∈ B, there is a neighborhood

Vx of x and a homeomorphism qx : Vx × F → p−1(Vx) such that (p ◦ qx)(x′, y) = x′ for

all (x′, y) ∈ Vx × F . We say E is an F -bundle over B.

A section of a bundle F → E
p−→ B is a continuous map f : B → E satisfying

p(f(x)) = x for each x ∈ B. Given a subset A of B and a section f of an F -

bundle over B, we say f(A) is a section over A. We call an F -bundle over B trivial

when it is homeomorphic to the direct product B × F and p is projection onto the

first coordinate; otherwise, a nontrivial bundle structure carries some global twisting.

Every fiber bundle is locally trivial: if U1 and U2 are two open sets in B such that

p−1(Ui) ∼= Ui × F , then there is a map U1 ∩ U2 → Diff(F ) that determines how these

local trivializations are glued to obtain p−1(U1 ∪ U2). Applying this to an appropriate

open cover of B produces the full bundle structure, thus the diffeomorphism group

Diff(F ) of F is called the structure group of an F -bundle over B. Low-dimensional

examples of trivial bundles include the annulus A = S1 × I = I × S1, and the torus

T 2 = S1 × S1. Low-dimensional examples of nontrivial bundles include the Möbius

band, which is a twisted I-bundle over S1, and the Klein bottle, which is a twisted

S1-bundle over S1. These examples are shown in Figure 2.2 with the factor manifolds

marked in red and blue. It is worth noting that the roles of fiber and base may always



11

be swapped in trivial bundles, but it is not necessary for a nontrivial F -bundle over

B to also have the structure of a nontrivial B-bundle over F . Additionally, although

the nontrivial bundles shown in Figure 2.2 are non-orientable, orientable nontrivial

bundles exist and are prevalent in other dimensions.

Figure 2.2: Examples of 2-dimensional fiber bundles

The class of fiber bundles in which the fiber is a surface are called surface bundles,

and these have a special representation known as the monodromy representation,

which measures how the fiber transforms over a loop γ in the base (see [ST20]). In

particular, for any n-manifold B, a Σg-bundle over B determines a homomorphism

ϕ : π1(B)→ MCG(Σg), where MCG(Σg) is the mapping class group of Σg. That is,

MCG(Σg) = Diff(Σg)/Diff0(Σg) is the quotient of the diffeomorphism group of Σg

by diffeomorphisms isotopic to the identity, which gives the group of isotopy classes

of (orientation-preserving) diffeomorphisms of Σg; this group is finitely generated

by Dehn twists about curves in Σg (see [FM12, Chapter 4]). The homomorphism

ϕ is called the monodromy representation of the Σg-bundle, and when g ≥ 2, this

representation uniquely determines the bundle [EE67]. A surface bundle is called

flat if the induced monodromy representation lifts to a map ϕ̃ : π1(B)→ Diff(Σg);

conjecturally, every surface bundle is flat (see [MT19]). In this case, a homotopy class

of loops in the base space corresponds to a particular diffeomorphism of the fiber,
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rather than just an isotopy class of diffeomorphisms. We will use this in Section 4.2

to describe flat bundles more explicitly, as part of our constructions.

2.3 3-manifolds and Heegaard splittings

In this section, we take a closer look at 3-manifolds through the lens of Heegaard

theory. [Sch01] is a good resource for a more complete picture. By convention, we

refer to a 3-dimensional handlebody with a single 0-handle, g 1-handles, and no 2-

or 3-handles as a genus g 3-dimensional handlebody, or simply a genus g handlebody

when the dimension is clear from context. However, it will sometimes be useful to

use the dual handle decomposition to think of a genus g handlebody H as the result

of attaching g 2-handles and one 3-handle to {1} × ∂H ⊆ I × ∂H, where ∂H ∼= Σg.

A genus g Heegaard splitting of a closed, connected 3-manifold M is a decompo-

sition M = H1 ∪Σ H2, where H1 and H2 are genus g handlebodies with a common

boundary: the Heegaard surface Σ ∼= Σg. In essence, this is just a handle decompo-

sition of M , where H1 is the union of the 0- and 1-handles of M , H2 is the union

of the 2- and 3-handles of M , and Σ is the surface between them. As mentioned

previously, we can reconstruct Hi from I × Σ by attaching g 2-handles to {1} × Σ

and then capping off the resulting spherical boundary component with a 3-handle.

If we embed the attaching circles of the 2-handles for H1 and H2 into Σ to obtain a

system of 2g curves on the Heegaard surface, we may denote the curves corresponding

to H1 by α = (α1, . . . , αg), and the curves corresponding to H2 by β = (β1, . . . , βg).

Then (Σ;α,β) is called a Heegaard diagram for this splitting of M , and it is uniquely

determined up to handle slides within each curve set, isotopy of the curves within Σ,

and homeomorphism of Σ. Any genus g Heegaard splitting of a 3-manifold M may be

stabilized to a genus g+ 1 splitting by adding a cancelling pair of 1- and 2-handles to
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the handle decomposition defining the splitting. The effect on the diagram, beyond

increasing the genus of Σ by one, is to add a pair of curves αg+1 and βg+1 that meet

transversely at a single point and are disjoint from the pre-existing curves. Con-

versely, if such a pair of curves exist, they correspond to a cancelling pair of handles,

and the splitting may be destabilized (thus, reducing the genus by one) by eliminating

the handle pair. The corresponding destabilization within the diagram may be seen

as compressing Σ along one of these curves and omitting the other. We will not go

into much detail here, but there is a generalization of Heegaard splittings to compact

3-manifolds, wherein the two pieces of the splitting are compression bodies, or rela-

tive handlebodies, which may have nonempty negative boundary (in the sense of the

handle decompositions discussed in Section 2.1). In this case, the Heegaard surface

Σ is homeomorphic to ∂+Hi for i = 1, 2, and ∂M = ∂−H1 ∪ ∂−H2.

A classic result of 3-manifold topology is that every compact, connected, orientable

3-manifold admits a Heegaard splitting. Additionally, the Reidemeister-Singer The-

orem states that any two splittings of the same 3-manifold have a common stabiliza-

tion [Rei33, Sin33]. Thus, we have a reasonable 3-manifold invariant in the form of

the Heegaard genus, which is the minimum genus of a Heegaard splitting for a given

3-manifold M .

The utility of these existence and uniqueness results is enhanced by abundant

examples of Heegaard diagrams and constructions for splitting different types of 3-

manifolds. One method in particular that motivates the techniques used in Chapter

4 involves splitting surface bundles over the circle. Recognizing a Σg-bundle over S1

as the mapping torus of a function f : Σg → Σg, the monodromy representation of

the bundle takes the generator of π1(S1) to [f ] ∈ MCG(Σg). The canonical splitting

of such a bundle has genus 2g + 1, where the splitting surface is two copies of the

fiber joined by two tubes, the first of which connects the two fibers, while the second
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bumps the genus up by one. The S1 factor of the bundle roughly corresponds to a

loop in the Heegaard surface that starts in one copy of the fiber, crosses to the other

copy along one of the added tubes, and crosses back along the other tube. Following

that path around, the monodromy is applied and this affects the curve system that

describes the 2-handles for one of the handlebodies. Minimality of this construction

is addressed in part in [ST93, Rub05], as there are examples of Σg-bundles over S1

with Heegaard genus 2, for arbitrarily large g. However, in some cases these genus

2g + 1 splittings of Σg →M
p−→ S1 are minimal. In particular, if M ∼= S1 × Σg is a

trivial bundle, or if the monodromy of Σg →M
p−→ S1 is a sufficiently large power of

a pseudo-Anosov map, then the Heegaard genus of M is 2g + 1 (see [Sch93, Rub05],

and Section 5.1).

2.4 4-manifolds and trisections

4-manifolds fall into a sort of limbo between low-dimensional and high-dimensional

topology: many techniques and theorems that apply to n-manifolds for n ≥ 5 or

n ≤ 3 fail in dimension 4. For instance, for smooth n-manifolds X and Y , we say

Y is an exotic X if Y is homeomorphic but not diffeomorphic to X. For n 6= 4,

there is no notion of an exotic Rn; however, exotic R4’s exist [Gom83]. Even within

this dimension, where any finitely presented group is the fundamental group of some

smooth 4-manifold, the class of smooth simply-connected 4-manifolds is vast and not

well-understood. Various approaches to the study of 4-manifolds exist, but we will

focus on trisection theory, which is a natural 4-dimensional analogue of Heegaard the-

ory. Throughout this section and this thesis, we refer to 4-dimensional handlebodies

that consist of a single 0-handle and g 1-handles (but no 2-, 3-, or 4-handles) as 4-

dimensional 1-handlebodies of genus g; note that these handlebodies are diffeomorphic
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to \g(S1 ×B3).

In 2012, Gay and Kirby introduced trisections of smooth 4-manifolds as an ana-

logue of Heegaard splittings of 3-manifolds, and proved the following:

Theorem 1.1. [GK16] Every closed, orientable, connected, smooth 4-manifold ad-

mits a trisection, and any two trisections of the same 4-manifold are stably equivalent.

Unlike a Heegaard splitting that splits the manifold into two 3-dimensional han-

dlebodies with a common boundary, a trisection decomposes a 4-manifold into three 4-

dimensional 1-handlebodies; these handlebodies intersect only on their (3-dimensional)

boundaries, and the common intersection of all three together is a closed, orientable

surface. Similar to a Heegaard diagram for a 3-manifold, a trisection diagram is a

collection of curves in this surface, now with three systems of g curves when the sur-

face has genus g. In particular, each pair of curve systems is a Heegaard diagram for

a connect sum of S1 × S2’s. As in the 3-dimensional case, these curves are attach-

ing circles for 3-dimensional 2-handles, giving us the spine of the trisection, which

is the union of the boundaries of the 4-dimensional 1-handlebodies. By a theorem

of Laudenbach and Poénaru [LP72], there is a unique way to cap off this spine with

4-dimensional 1-handlebodies to obtain a closed 4-manifold, and hence, a trisection

diagram uniquely determines a closed 4-manifold up to diffeomorphism. Figure 2.3

shows a trisection diagram of the 4-torus, which is the Cartesian product of four

circles; this diagram was generated using the algorithm in Section 3.2. We proceed

with a formal definition, and some existing results.

Definition 2.4. [GK16] LetX be a closed, connected, orientable, smooth 4-manifold.

A (g; k1, k2, k3)-trisection of X is a quadruple (Σ;X1, X2, X3) satisfying the following

conditions:

• X = X1 ∪X2 ∪X3;
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Figure 2.3: A trisection diagram for T 4 = T 2 × T 2

• Xi is a 4-dimensional 1-handlebody of genus ki for i ∈ {1, 2, 3};

• Xi ∩Xj is a 3-dimensional handlebody of genus g for i 6= j; and

• Σ = X1 ∩X2 ∩X3 is a closed, orientable surface of genus g.

The genus of the trisection is the genus g of Σ. If k1 = k2 = k3, we call the trisection

balanced and refer to it as a (g; k1)-trisection of X; otherwise, it is unbalanced.

As with Heegaard splittings of 3-manifolds, there is a notion of trisection stabi-

lization that corresponds to taking a connect sum of a trisected manifold X with

S4. For {i, j, `} = {1, 2, 3}, this adds the neighborhood of a properly embedded,

boundary parallel arc in Xj ∩ X` to Xi and removes that neighborhood from each

of Xj and X`; the new trisection surface is taken to be the triple intersection of the

new 4-dimensional 1-handlebodies. Stabilization will not change kj or k`, but will

increase g and ki each by one, where again, Xi is the sector to which we added the

neighborhood of an arc. Theorem 1.1 states that any two trisections of the same
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4-manifold have a common stabilization [GK16]. Analogous to the Heegaard genus

of a 3-manifold, we say the trisection genus of a 4-manifold X is the minimum genus

over all trisections of X. Additionally, Gay and Kirby define a relative trisection of

a compact 4-manifold, in which context some results about existence and uniqueness

up to stabilization have again been shown [CGPC18,CIMT19].

Existing constructions of trisections and their diagrams are limited, but actively

growing. We remind the reader that 4-manifolds with trisection genus g have been

completely classified for 0 ≤ g ≤ 2 [GK16,MZ17], and conjecturally classified for g = 3

[Mei18]. Additionally, 3-manifold bundles over S1 have been trisected in [Koe17],

while 4-manifolds obtained by spinning and twist-spinning 3-manifolds have been

trisected in [Mei18]; these last two constructions each use a Heegaard diagram for the

associated 3-manifold to build a trisection diagram of the 4-manifold. In this thesis,

we trisect flat surface bundles over surfaces and present an algorithm to generate

a corresponding trisection diagram when both the base and the fiber are orientable

and the flat structure satisfies an additional hypothesis regarding fixed points. The

techniques used in trisecting these bundles are inspired by the canonical Heegaard

splitting of a Σg-bundle over S1 discussed in Section 2.3, and by the relative trisections

of disk bundles over S2 presented in [CGPC18].
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CHAPTER 3

TRISECTING TRIVIAL SURFACE BUNDLES OVER

SURFACES

In this chapter, we trisect direct products of closed, orientable surfaces. In particular,

fix g, h ≥ 0 and let X4 = Σg × Σh be the trivial Σh-bundle over Σg. Section 3.1

describes a decomposition of X into X = X1 ∪X2 ∪X3, and presents a proof that

this structure is a ((2g + 1)(2h+ 1) + 1; 2g + 2h)-trisection of X. In Section 3.2, we

state and prove an algorithm for producing a trisection diagram corresponding to this

trisection of X. Finally, we prove in Section 3.3 that this trisection is minimal and

the trisection genus of X is (2g + 1)(2h+ 1) + 1.

3.1 A trisection of X4 = Σg × Σh

Before describing the trisection of X, we first produce a particular decomposition of

our base surface, Σg, that we will use throughout this chapter.

Lemma 3.1. Σg admits a cell structure consisting of 4g + 2 vertices, 6g + 3 edges,

and three faces. In particular, we write Σg = B1 ∪B2 ∪B3, subject to the following:

• Each Bi is diffeomorphic to a closed 2-disk B2.
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(b) A disk decomposition of Σg = #gT 2.

Figure 3.1: Disk decompositions of base surfaces

• The pairwise intersections of these disks are Bα = B1 ∩B2, Bβ = B2 ∩B3, and

Bγ = B3 ∩B1; each is a pairwise disjoint collection of 2g + 1 edges and may be

enumerated as Bα = t2g+1
i=1 Bi

α, etc.

• The triple intersection B1 ∩B2 ∩B3 = ∂Bα = ∂Bβ = ∂Bγ is a disjoint union

of 4g + 2 vertices. We refer to this set as V .

Proof. The decomposition shown in Figure 3.1 suffices, with the connect sum taken

at an appropriate pair of vertices, as shown in Figure 3.2 for Σ2; iterating produces a

decomposition for Σg.

Remark 3.2. In the constructions that follow, we will always use the decomposition

demonstrated in Figure 3.1.

Let p be the bundle map Σh → X4 p−→ Σg, and let q1, q2, q3 ∈ Σh be distinct points

in the fiber surface Σh, with pairwise disjoint closed neighborhoods Ni := N(qi)

each diffeomorphic to B2. It is worth noting that each qi /∈ ∂Ni. Then for each

i = 1, 2, 3, we have that Bi × {qi} ⊆ p−1(Bi) is a section over Bi. Furthermore,

these sections are pairwise disjoint and have pairwise disjoint tubular neighborhoods



20

2 22 2

4 44 4

1 1

1 1

3 3

3 3

5

6

7

5

6

7

# ∼=

∼=
8

8

9 9

2 2
4 4

1

1

3

3

5

6

7

5

6

7

∼=

3

4

93 9 5 6 7

4

8 5 6 7 8 1

2
2

1

∼=
9

8

9

8

4

3

2

1

2

1

4

3

5
6

7

∼=

3 2

4 1

4

3

1

2

Figure 3.2: Forming a decomposition of a genus 2 surface by taking the connect sum
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νi := Bi ×Ni ⊆ p−1(Bi). With indices taken mod 3, define

Xi = p−1(Bi) \ νi ∪ νi+1 (3.1)

for i = 1, 2, 3.

Theorem 3.3. With X1, X2, X3 defined as in (3.1), let Σ := X1 ∩X2 ∩X3. Then

(Σ;X1, X2, X3) is a ((2g + 1)(2h+ 1) + 1; 2g + 2h)-balanced trisection of X = Σg × Σh.

Remark 3.4. Following Definition 2.4, proving Theorem 3.3 amounts to proving the

following four claims:

• X = X1 ∪X2 ∪X3.

• For each i = 1, 2, 3, we have Xi
∼= \2g+2h(S1 ×B3).

• For each pair 1 ≤ i 6= j ≤ 3, the intersection Xi ∩Xj = ∂Xi ∩ ∂Xj is diffeomor-

phic to \(2g+1)(2h+1)+1(S1 ×B2).

• Σ = ∂(Xi ∩Xj) ∼= Σ(2g+1)(2h+1)+1.

The last two points are primarily addressed by Lemmas 3.5 and 3.7; the remainder

of the proof of Theorem 3.3 is postponed for now.

Lemma 3.5. Let X1, X2, X3 be as in (3.1). For each pair 1 ≤ i 6= j ≤ 3, the inter-

section Xi ∩Xj is a 3-dimensional handlebody with genus (2g + 1)(2h+ 1) + 1. That

is, Xi ∩Xj
∼= \(2g+1)(2h+1)+1(S1 ×B2).

Proof. Let i = 1 and j = 2; the other cases follow by a change of indices, since for

any pair i 6= j, one is the successor of the other. Then Xi ∩Xj = X1 ∩X2 consists

of the following four pieces: (a) p−1(B1) \ ν1 ∩ p−1(B2) \ ν2, (b) ν2 ∩ p−1(B2) \ ν2,

(c) p−1(B1) \ ν1 ∩ ν3, and (d) ν2 ∩ ν3. We will describe each part in turn before
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looking at how their intersections determine the attaching maps that yield the union

of these four pieces.

(a) The first piece, p−1(B1) \ ν1 ∩ p−1(B2) \ ν2, consists of 2g + 1 pairwise disjoint

copies of a genus 2h+ 1 3-dimensional handlebody. Indeed, the definitions of p

and νi give us that

p−1(B1) \ ν1 ∩ p−1(B2) \ ν2 =
[
B1 ×

(
Σh \N1

)]
∩
[
B2 ×

(
Σh \N2

)]
,

which is easily recognized as

(B1 ∩B2)×
(

Σh \ (N1 tN2)
)
. (3.2)

The first factor here is equal to
(
t2g+1
i=1 Bi

α

)
by definition of Bα, while the second

factor is a copy of Σh,2. Hence, we have

p−1(B1) \ ν1 ∩ p−1(B2) \ ν2
∼= t2g+1 (I × Σh,2) .

Since the thickened compact surface I × Σh,b, for b ≥ 1, is a genus 2h+ b− 1

3-dimensional handlebody, we thus conclude that this first piece of X1 ∩X2 is

a pairwise disjoint collection of handlebodies, each with genus 2h+ 1:

p−1(B1) \ ν1 ∩ p−1(B2) \ ν2
∼= t2g+1\

2h+1(S1 ×B2).

(b) The second piece, ν2 ∩ p−1(B2) \ ν2, is a solid torus, depicted in Figure 3.3. The

definition of p and ν2 let us see that

ν2 ∩ p−1(B2) \ ν2 = (B2 ×N2) ∩
(
B2 ×

(
Σh \N2

))
= B2 × ∂N2. (3.3)
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∂N2

B2
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β
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α
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α × ∂N2
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Figure 3.3: On the left, we have the solid torus B2 × ∂N2. In the middle, we have
the boundary of B2 expressed as the union of tBi

α and tBj
β (up to reordering). On

the right, we see the collection of parallel annuli {Bi
α × ∂N2}2g+1

i=1 in ∂B2 × ∂N2.

Since both B2 and N2 are homeomorphic to a 2-disk, it follows that the direct

product B2 × ∂N2
∼= B2 × S1 is a solid torus.

Notice that the boundary of this solid torus is the torus ∂B2 × ∂N2, which can

be decomposed into 4g + 2 parallel annuli using the structure of ∂B2 (see Figure

3.3). In particular, since ∂B2 = (B1∩B2)∪(B2∩B3) =
(
t2g+1
i=1 Bi

α

)
∪
(
t2g+1
j=1 B

j
β

)
,

we can express this toroidal boundary as

∂B2 × ∂N2 =
(
t2g+1
i=1 (Bi

α × ∂N2)
)
∪
(
t2g+1
i=1 (Bi

β × ∂N2)
)
. (3.4)

(c) The third piece, p−1(B1) \ ν1 ∩ ν3, is a collection of 2g + 1 pairwise disjoint

3-balls, each of which will be considered as a 3-dimensional 1-handle I ×B2:

notice that

p−1(B1) \ ν1 ∩ ν3 =
(
B1 ×

(
Σh \N1

))
∩ (B3 ×N3) = (B1 ∩B3)×N3,

with the first equality coming from the definition of p and νi, and the second

equality a consequence of N3 being contained in Σh \N1. Recall from Lemma
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3.1 that we defined Bγ = t2g+1
i=1 Bi

γ as the intersection of B1 with B3. Hence,

p−1(B1) \ ν1 ∩ ν3 = Bγ ×N3 = t2g+1
i=1 (Bi

γ ×N3) ∼= t2g+1B
3 (3.5)

is the disjoint union of 2g + 1 3-balls, each with the inherent structure of I ×B2

in our product 4-manifold.

(d) The final piece, ν2 ∩ ν3, is empty by construction, since ν2 and ν3 were chosen

to be disjoint.

To see how these three nonempty pieces combine to form X1 ∩X2, we first consider

the intersection of the solid torus from (b) with the collection of handlebodies from

(a). Since
[
(B1 ∩B2)×

(
Σh \ (N1 tN2)

)]
∩ [B2 × ∂N2] = (B1 ∩ B2) × ∂N2, this

intersection is a pairwise disjoint collection of 2g+1 annuli. Moreover, recall from (3.4)

that these annuli are all parallel in ∂B2 × ∂N2, the boundary of the solid torus from

(b), as shown in Figure 3.3. We now observe that each component annulus Bi
α × ∂N2

of this collection is essential in the boundary of exactly one of the 2g+1 handlebodies

and disjoint from the rest. Each handlebody is the thickened twice-punctured surface

Bi
α ×

(
Σh \ (N1 tN2)

)
for some 1 ≤ i ≤ 2g + 1, and has the genus 2h+ 1 surface

Si =
[
∂Bi

α ×
(

Σh \ (N1 tN2)
)]
∪ [Bi

α × (∂N1 t ∂N2)] as its boundary. Since ∂Bi
α is

two discrete points, we have expressed the surface Si as the union of two copies of

Σh,2, with the boundary components of one connected to those of the other by the

annuli Bi
α × ∂N1 and Bi

α × ∂N2. Schematically, this looks like Figure 3.4 (in the

case where h = 3), with the annulus Bi
α × ∂N2 highlighted as the intersection of this

component handlebody with the solid torus B2 × ∂N2.

Consider the union of the handlebodies from (a) and the solid torus from (b) by

starting with the solid torus and attaching the handlebodies one by one. We see that
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Bi
α × ∂N2

∂Bi
α × Σh,2

Bi
α × ∂N1

Figure 3.4: One boundary component of p−1(B1) \ ν1 ∩ p−1(B2) \ ν2, with the essen-
tial annulus Bi

α × ∂N2 highlighted in red as the intersection with ν2 ∩ p−1(B2) \ ν2.

each successive attachment of a genus 2h+ 1 handlebody along the common annulus

depicted in Figure 3.4 will increase the genus (of the component containing the solid

torus) by 2h. Overall, we attach a total of 2g+ 1 handlebodies of genus 2h+ 1 to the

solid torus, which has genus 1. Alternatively, note that each attachment reduces both

the total genus and the number of connected components by 1; therefore, when we

begin with 2g + 2 connected components and a total genus of (2g + 1)(2h+ 1) + 1,

gluing until we have a single connected component will likewise reduce the total genus

by 2g + 1. From either perspective, the result is a genus (2g+ 1)(2h) + 1 handlebody.

We now need to attach the 2g + 1 3-balls from (c). This amounts to attaching

2g + 1 1-handles to the existing handlebody, as evidenced by the following three ob-

servations. First, that by (3.5), the collection of 3-balls can be described as Bγ ×N3,

which is contained in X1 and hence is equal to X1 ∩ (Bγ ×N3). Second, that the

genus (2g + 1)(2h) + 1 handlebody that was just constructed is X1 ∩ p−1(B2) \ ν2,

which can be rewritten as X1 ∩
(
B2 ×

(
Σh \N2

))
. Third, that intersecting these

yields t2g+1
i=1

(
(∂Bi

γ)×N3

)
, the attaching regions for 2g + 1 1-handles, as detailed

below: from our first observation and the fact that N3 is contained in Σh \N2, we get

[Bγ ×N3] ∩
[
X1 ∩

(
B2 ×

(
Σh \N2

))]
=
[
t2g+1
i=1 (Bi

γ ×N3)
]
∩
[
B2 ×

(
Σh \N2

)]
= t2g+1

i=1

((
∂Bi

γ

)
×N3

)
.
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Note that for each 1 ≤ i ≤ 2g + 1, the direct product ∂Bi
γ ×N3 is a pair of 2-disks

that function as the attaching regions for the 1-handle Bi
γ ×N3. Thus, the inter-

section X1 ∩X2 is diffeomorphic to \(2g+1)(2h+1)+1(S1 ×B2). As the Xi are defined

symmetrically, it is immediate that X1 ∩X3 and X2 ∩X3 also have this form.

Remark 3.6. The form of the triple intersection X1 ∩X2 ∩X3 follows from the

conditions that each Xi is a 4-dimensional 1-handlebody and each Xi ∩Xj is a 3-

dimensional handlebody. Nonetheless, the proof of Lemma 3.7 gives an explicit

description of the surface Σ = X1 ∩X2 ∩X3, and this description will be useful in

Section 3.2.

Lemma 3.7. Let X1, X2, X3 be as in (3.1), and define Σ := X1 ∩X2 ∩X3 as their

triple intersection. Then Σ ∼= Σ(2g+1)(2h+1)+1.

Notation. Throughout the proofs of both Lemma 3.7 and Theorem 3.3, we use Σh,3 to

denote the particular surface Σh \ (N1 tN2 tN3), namely, the genus h fiber surface

with three boundary components of the form ∂Ni.

Proof of Lemma 3.7. From (3.2), (3.3), (3.5) in the proof of Lemma 3.5, we have that

X1 ∩X2 = (B2 × ∂N2) ∪Bα×∂N2

(
Bα ×

(
Σh \ (N1 tN2)

))
∪V×N3 (Bγ ×N3) ;

permuting indices demonstrates that

X2 ∩X3 = (B3 × ∂N3) ∪Bβ×∂N3

(
Bβ ×

(
Σh \ (N2 tN3)

))
∪V×N1 (Bα ×N1) .

We will consider Σ, the triple intersection of X1, X2, X3 as the intersection of X1 ∩X2

and X2 ∩X3 using the above descriptions. To that end, we make several observations:

(i) ∂N2 ∩ ∂N3 is empty by construction, so (B2 × ∂N2) ∩ (B3 × ∂N3) = ∅.
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(ii) Bγ ⊆ B3 and ∂N3 ⊆ N3, so (B3 × ∂N3) ∩ (Bγ ×N3) = Bγ × ∂N3.

(iii) B3 ∩Bα = V , and ∂N3 is contained in Σh \ (N1 tN2), so their intersection

is ∂N3. Hence, the intersection of B3 × ∂N3 with Bα ×
(

Σh \ (N1 tN2)
)

is

V × ∂N3, which is contained in Bγ × ∂N3, from (ii).

(iv) Bβ ⊆ B2 and ∂N2 ⊆ Σh \ (N2 tN3), so (B2 × ∂N2) ∩
(
Bβ ×

(
Σh \ (N2 tN3)

))
is equal to Bβ × ∂N2.

(v) Bβ ∩Bγ = V and N3 ∩ Σh \ (N2 tN3) = ∂N3, so the intersection of Bγ ×N3

with Bβ ×
(

Σh \ (N2 tN3)
)

is V × ∂N3, again contained in (ii).

(vi) Bβ ∩Bα = V and
(

Σh \ (N1 tN2)
)
∩
(

Σh \ (N2 tN3)
)

= Σh,3. Thus, the in-

tersection of Bα ×
(

Σh \ (N1 tN2)
)

and Bβ ×
(

Σh \ (N2 tN3)
)

is V × Σh,3.

(vii) N1 ∩ ∂N2 is empty by construction, so (Bγ ×N3) ∩ (Bα ×N1) = ∅.

(viii) N1 ∩N3, too, is empty by construction, so (Bγ ×N3) ∩ (Bα ×N1) = ∅.

(ix) N1 ∩
(

Σh \ (N1 tN2)
)

= ∂N1, so Bα ×
(

Σh \ (N1 tN2)
)

and Bα ×N1 inter-

sect along Bα × ∂N1.

The union of these nine pieces is (X1 ∩X2) ∩ (X2 ∩X3); as three (i, vii, viii) are

empty and a fourth (ii) contains two others (iii, v), we are left with four relevant

nonempty pieces. In particular: the piece from (vi) is V × Σh,3 and can be recognized

as 4g + 2 copies of Σh,3, the fiber with three disks removed; the pieces from (ii), (iv),

and (ix) are Bγ × ∂N3, Bβ × ∂N2, and Bα × ∂N1, respectively, each of which is a

pairwise disjoint collection of 2g + 1 annuli.

We now see that there is a natural bijection between the boundary components

of V × Σh,3 and the collective boundary components of Bγ × ∂N3, Bβ × ∂N2, and
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Bα × ∂N1. Indeed, the former has boundary t3
i=1 tx∈V ({x} × ∂Ni), which is

(tx∈V ({x} × ∂N3)) t (tx∈V ({x} × ∂N2)) t (tx∈V ({x} × ∂N1)) .

But this is easily recognized as ∂(Bγ × ∂N3) t ∂(Bβ × ∂N2) t ∂(Bα × ∂N1). As these

annuli and copies of Σh,3 do not otherwise intersect, it follows that their union amounts

to identifying their boundaries. Thus, we have

Σ = [Bγ × ∂N3] ∪V×∂N3 [(Bβ × ∂N2) ∪V×∂N2 (V × Σh,3)] ∪V×∂N1 [Bα × ∂N1] . (3.6)

To see that this surface has genus (2g + 1)(2h+ 1) + 1, note that the copies of Σh,3

contribute a total genus of (4g + 2)(h) = (2g + 1)(2h), as each component has genus

h and there are |V | = 4g + 2 components. Attaching Bβ × ∂N2 = t2g+1
i=1 (Bi

β × ∂N2)

connects these surface components in pairs. This eliminates all boundary components

of the form {x} × ∂N2, for x ∈ V , reduces the number of connected components

to 2g + 1, and leaves the total genus as (2g + 1)(2h), where now each connected

component is homeomorphic to Σ2h,2.

Attaching Bγ × ∂N3 likewise connects the thrice-punctured fibers in pairs; we

claim this happens in such a way that the result is a connected surface of genus

(2g + 1)(2h) + 1 with 4g + 2 boundary components. This is evident from the initial

decomposition of the base surface, Σg, into B1 ∪B2 ∪B3. Recall that B3 has bound-

ary Bβ ∪Bγ homeomorphic to S1. Since each of Bβ and Bγ consists of 2g + 1 pairwise

disjoint edges, and Bβ ∩Bγ = V is a discrete set of 4g + 2 distinct points, it follows

that ∂B3 has the form shown in Figure 3.1 with edges alternating between Bβ and

Bγ. Thus, for each 1 ≤ i ≤ 2g, attaching the annulus Bi
γ × ∂N3 reduces the number

of connected components by one, eliminates two boundary components of the form
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{x} × ∂N3, and has no effect on the total genus.

There are now 2g+2 annuli remaining, along with a copy of Σ(2g+1)(2h),4g+4, where

exactly two of the latter’s boundary components have the form {x} × ∂N3. These

are eliminated by attaching the final component of Bγ × ∂N3, which increases the

total genus by 1. Similarly, attaching each component of Bα × ∂N1 will eliminate

two boundary components of the form {x} × ∂N1, and increase the genus by 1. In

the end, the surface is closed and connected, with genus (2g + 1)(2h) + 1 + (2g + 1).

Thus, we have established our claim that Σ ∼= Σ(2g+1)(2h+1)+1.

We now introduce one more useful lemma, before proceeding with the proof of

Theorem 3.3 as outlined in Remark 3.4.

Lemma 3.8. Let M and N be compact, n-dimensional submanifolds of an n-manifold

Y . If M ∩N is a nonempty (n− 1)-manifold, then M ∩N = ∂M ∩ ∂N .

Proof. Suppose M and N are compact, n-dimensional submanifolds of an n-manifold

Y , such that M ∩N is a nonempty (n− 1)-manifold. Furthermore, suppose for the

sake of contradiction that for some x ∈M ∩N , we have x /∈ ∂M . Then, there is an

open neighborhood U ∼= Rn of x in M such that U is also open in Y , so U ∩N contains

an n-ball. But U ∩N is contained in M ∩N , which contradicts our assumption that

this intersection is an (n− 1)-manifold. Therefore, x ∈ ∂M ∩ ∂N .

Proof of Theorem 3.3. We first show that X = X1∪X2∪X3. This is immediate from

the definition of each Xi, since

X1 ∪X2 ∪X3 =
[
p−1(B1) \ ν1 ∪ ν2

]
∪
[
p−1(B2) \ ν2 ∪ ν3

]
∪
[
p−1(B3) \ ν3 ∪ ν1

]
= ∪3

i=1p
−1(Bi) = p−1

(
∪3
i=1Bi

)
= p−1(Σg) = X.
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Having established that X is the union of the Xi, we will now show that Xi

is a 4-dimensional 1-handlebody with genus 2g + 2h, for each i = 1, 2, 3. With-

out loss of generality, let i = 1. By definition of p, the preimage of B1 under p is

p−1(B1) = B1 × Σh. Moreover, since ν1 = B1 ×N1 and both B1 and N1 are diffeo-

morphic to B2, it follows that

p−1(B1) \ ν1 = B1 ×
(

Σh \N1

)
∼= B2 × Σh,1

∼= \2h(S1 ×B3).

Thus, this piece of X1 is a 4-dimensional 1-handlebody with genus 2h. To this we

attach ν2, a 4-ball, along the 2g + 1 pairwise disjoint 3-balls that comprise the inter-

section of these sets, as demonstrated below. Since ν1 and ν2 are disjoint, we first

note that ν2 ∩
(
p−1(B1) \ ν1

)
= ν2 ∩ p−1(B1). From the definition of ν2 and p, we

recognize this second expression as (B2 ×N2) ∩ (B1 × Σh). As N2 is a disk contained

in Σh, and B1 ∩B2 = Bα is diffeomorphic to a disjoint union of 2g + 1 intervals, it

follows that

(B2 ×N2) ∩ (B1 × Σh) = (B1 ∩B2)×N2 = Bα ×N2
∼= t2g+1

i=1 B3.

Hence, attaching ν2 to p−1(B1) \ ν1 amounts to adding 2g 1-handles to \2h(S1 ×B3).

The result is thatX1
∼= \2g+2h(S1 ×B3) is a genus 2g + 2h 4-dimensional 1-handlebody.

An identical argument demonstrates the same for X2 and X3.

From Lemma 3.5, we know that the pairwise intersections Xi ∩Xj for each i 6= j

are each diffeomorphic to \(2g+1)(2h+1)+1(S1 ×B2). It follows from Lemma 3.8 that

X1 and X2 intersect only on their boundaries; by symmetry, the same holds for the

pair X1 and X3, and for the pair X2 and X3.

Similarly, Lemma 3.7 established that Σ is a closed, connected, orientable surface
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of genus (2g + 1)(2h+ 1) + 1; a second application of Lemma 3.8 yields the relation-

ship Σ = ∂(Xi ∩Xj) for each pair 1 ≤ i 6= j ≤ 3.

3.2 A diagram algorithm for trivial bundles

The simplest interesting example of the algorithm implementation is the trivial T 2-

bundle over S2, that is, the direct product S2 × T 2, where we have g = 0 and h = 1.

We will first motivate the curve algorithm with this example, then state and prove the

algorithm in general, and follow with the mirrored example of T 2 × S2, where g = 1

and h = 0. Additionally, we show that the trisection diagrams obtained in Examples

3.9 and 3.15 are equivalent.

As in Section 3.1, we let Σh,3 denote the particular surface Σh \ (N1 tN2 tN3),

namely, the genus h fiber surface with three boundary components of the form ∂Ni

for some 1 ≤ i ≤ 3. The proof of Lemma 3.7 gave a description of the trisection

surface Σ as the union of V × Σh,3, Bγ × ∂N3, Bβ × ∂N2, and Bα × ∂N1. Noting

that the 1-skeleton of the decomposition Σg = B1 ∪B2 ∪B3 of the base surface is

V ∪Bγ ∪Bβ ∪Bα, we can thus think of obtaining Σ from this 1-skeleton in the

following way. First, replace each vertex with a copy of Σh,3. Each edge will then be

replaced by a single annular component of (Bα × ∂N1) t (Bβ × ∂N2) t (Bγ × ∂N3).

A careful labeling of the vertices and edges in the 1-skeleton gives a natural bijection

with this collection of punctured fibers and annuli that corresponds to how these

pieces are glued to obtain Σ.

Example 3.9. First note that with g = 0 and h = 1, our trisection surface Σ has

genus (2g + 1)(2h+ 1) + 1 = 4. We begin with a disk decomposition of the base, S2,

and extract the 1-skeleton, as seen in Figure 3.5.
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B3

B1

B2

B1
γ

B1
β

B1
α

B1
α B1

β B1
γ

V

Figure 3.5: At left, the base sphere as the union of three 2-disks; at right, the 1-
skeleton of this decomposition.

We then obtain Σ from this graph as shown in Figure 3.6, recognizing our trisection

surface as Σ = (V × Σ1,3) ∪ (B1
α × ∂N1) ∪ (B1

β × ∂N2) ∪ (B1
γ × ∂N3).

∂N1 ∂N2 ∂N3

B1
α × ∂N1

B1
β × ∂N2

B1
γ × ∂N3

V × Σ1,3 Σ

Figure 3.6: Constructing Σ from the 1-skeleton of the base disk decomposition.

To add our first curve system, we let α = (α1, α2, α3, α4) denote a complete

system of curves in Σ that describes the 3-dimensional handlebody X1 ∩X2, de-

scribed as follows. We start by choosing arcs ω1
α and ω2

α in Σ1,3 such that these

arcs are disjoint, simple, properly embedded with endpoints in ∂N1, and such that
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Σ1,3 \ (ω1
α t ω2

α) is a pair of pants. Additionally, we let Ωα denote ω1
α t ω2

α, and

choose a simple properly embedded arc Cα in Σ1,3 \ Ωα that has endpoints c1
α in

∂N1 \ ∂Ωα and c2
α in ∂N2. Ωα and Cα can be seen in Figure 3.7a. Our first curve,

α1, will be {b1
γ} × ∂N3, where b1

γ denotes the midpoint of the edge B1
γ (see Fig-

ure 3.7b). For the curves α2 and α3, we set α2 = (∂B1
α × ω1

α) ∪ (B1
α × ∂ω1

α) and

α3 = (∂B1
α × ω2

α) ∪ (B1
α × ∂ω2

α). These curves are shown in Figure 3.7c, and will be

described in more detail in the proof of the algorithm later on. To place our final α

curve, we define α4 = (∂B1
α × Cα) ∪ (B1

α × {c1
α}) ∪ (B1

β × {c2
α}), as shown in Figure

3.7d.

ω
1

α

ω
2

α

c
2
α

Cα

c
1
α

(a)

α1

(b)

α2

α3

(c)

α4

(d)

Figure 3.7: Placing the α curves on Σ, a trisection surface for S2 × T 2.

Our remaining curve sets are obtained in a similar fashion, with β describing

X2 ∩X3 and γ describing X3 ∩X1. We end up with the trisection diagram shown in

Figure 3.8.

We are now ready to introduce the curve algorithm in full generality, given our

trisection surface Σ = (V × Σh,3) ∪ (Bα × ∂N1) ∪ (Bβ × ∂N2) ∪ (Bγ × ∂N3).

Notation. For each δ ∈ {α, β, γ} and each 1 ≤ i ≤ 2g + 1, let biδ denote the midpoint

of the edge Bi
δ in Σg.
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Figure 3.8: A trisection diagram for S2 × T 2.

Remark 3.10. The final steps of this algorithm involve a permutation of indices.

We remind the reader that the permutation (αβγ)(123) on the set {α, β, γ, 1, 2, 3} is

the bijection α 7→ β 7→ γ 7→ α, 1 7→ 2 7→ 3 7→ 1 that cyclically permutes each of the

subsets {α, β, γ} and {1, 2, 3}. Thus, a second iteration of this permutation is the

map α 7→ γ 7→ β 7→ α, 1 7→ 3 7→ 2 7→ 1.

Curve Algorithm. 1. Choose Ωα = t2h
i=1ω

i
α to be a pairwise disjoint collection of

simple properly embedded arcs in Σh,3 with endpoints in ∂N1 such that Σh,3 \ Ωα

is a pair of pants. Note that any such collection for Σh,3 must contain at least

2h arcs, so Ωα is minimal.

2. Choose Cα, a simple properly embedded arc in Σh,3 \ Ωα such that Cα has end-

points c1
α in ∂N1 \ ∂Ωα and c2

α in ∂N2.

3. For each 1 ≤ i ≤ 2g + 1, define αi = {biγ} × ∂N3.

4. For each 1 ≤ j ≤ 2h and each 1 ≤ i ≤ 2g + 1, define

α(2g+1)j+i = (∂Bi
α × ωjα) ∪ (Bi

α × ∂ωjα).
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5. Define α(2g+1)(2h+1)+1 = (V × Cα) ∪ (Bα × {c1
α}) ∪ (Bβ × {c2

α}).

6. Repeat steps 1-5 with labels and indices permuted according to the permutation

(αβγ)(123) to define Ωβ, Cβ, and β = (β1, . . . , β(2g+1)(2h+1)+1).

7. Repeat steps 1-5 with a second application of the permutation (αβγ)(123) to

define Ωγ, Cγ, and γ = (γ1, . . . , γ(2g+1)(2h+1)+1).

Together with Σ, these α, β, γ curves form our trisection diagram.

Proposition 3.11. For each 1 ≤ i ≤ (2g + 1)(2h+ 1) + 1 and δ ∈ {α, β, γ}, the curve

δi defined by this algorithm is an essential simple closed curve in Σ.

Proof. Recall that we may express the surface Σ as

Σ = (V × Σh,3) ∪ (Bα × ∂N1) ∪ (Bβ × ∂N2) ∪ (Bγ × ∂N3).

For each 1 ≤ i ≤ 2g + 1, the curve αi = {biγ} × ∂N3 is boundary parallel in the

annulus Bi
γ × ∂N3, and this annulus is essential in Σ by construction. Similarly, βi

and γi are core circles of the essential annuli Bi
α × ∂N1 and Bi

β × ∂N2, respectively.

Thus, each of these curves is itself essential in Σ.

For each 1 ≤ j ≤ 2h and each 1 ≤ i ≤ 2g + 1, note that ∂Bi
α is a set of two distinct

points in Σg, and ∂ωjα is a set of two distinct points in ∂N1 ⊆ Σh,3. Hence, ∂Bi
α × ωjα

is a pair of disjoint arcs in ∂Bα × Σh,3, and Bi
α × ∂ωjα is a pair of disjoint arcs in

Bα × ∂N1; the union of these four arcs is defined to be α(2g+1)j+i. As each of these

four arcs is simple by design, and the intersection of ∂Bi
α × ωjα and Bi

α × ∂ωjα is the

four point set ∂Bi
α × ∂ωjα, it follows that α(2g+1)j+i is a simple closed curve in Σ.

Furthermore, ωjα is essential in Σh,3 because Ωα is minimal with respect to Σh,3 \ Ωα

being a pair of pants. The essentiality of α(2g+1)j+i in Σ follows, since we can find

a loop in Σh,3 meeting ωjα, and hence α(2g+1)j+i, exactly once. Likewise, for each
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1 ≤ j ≤ 2h and 1 ≤ i ≤ 2g + 1, the curves β(2g+1)j+i and γ(2g+1)j+i are essential simple

closed curves in Σ.

Finally, we consider the curve α(2g+1)(2h+1)+1 = (V ×Cα)∪(Bα×{c1
α})∪(Bβ×{c2

α}).

Recall that V is a set of 4g + 2 distinct points (bounding each of Bα, Bβ, and Bγ),

and that Bα ∪Bβ = ∂B2 in Σg, with Bα = t2g+1
i=1 Bi

α and Bβ = t2g+1
i=1 Bi

β. Enumerate

V = {pi}4g+2
i=1 so that up to reordering (of Bα, Bβ, and V ), we have

∂Bi
α = {p2i−1, p2i}, ∂Bi

β = {p2i, p2i+1}, and Bi
α ∩B

j
β =

{
p2i if i = j
p2i−1 if j = i− 1
∅ otherwise

,

with indices taken mod 2g + 1. In other words, we may think of the boundary of B2

as the loop B1
αB

1
βB

2
αB

2
β · · ·B2g+1

α B2g+1
β . Moreover, it is now evident that the path

(B1
α × {c1

α})
⋃

(p2,c1α)

({p2} × Cα)
⋃

(p2,c2α)

(B1
β × {c2

α})
⋃

(p3,c2α)

({p3} × Cα) ∪ · · ·

· · · ∪ (B2g+1
β × {c2

α})
⋃

(p1,c2α)

({p1} × Cα)
⋃

(p1,c1α)

(B1
α × {c1

α})

is a simple closed curve in Σ, but this is exactly α(2g+1)(2h+1)+1. A schematic of this

path is shown in Figure 3.9.

α(2g+1)(2h+1)+1

Cα

B
2
g
+
1

α

B
2g

+
1

β

B
1
α B1

β

B 2
α

B 2
β

{p
2g } × {c 2

α }

{p
1 } ×
{c 2α }

{p
2g+

1 } ×
{c 1
α } {p 4

} ×
{c
1
α
}

Figure 3.9: A schematic representation of the annulus ∂B2 × Cα, which contains the
curve α(2g+1)(2h+1)+1.

To see that this curve is essential in Σ, note that it intersects the loop β1 =
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{b1
α} × ∂N1 exactly once, at the point {b1

α} × {c1
α}. A similar argument establishes

that β(2g+1)(2h+1)+1 and γ(2g+1)(2h+1)+1 also are essential simple closed curves in Σ.

Remark 3.12. The set of curves defined in step 4 of the curve algorithm may at

first seem cluttered as we simultaneously define (2h)(2g + 1) curves. For a better

understanding, we consider the effect of fixing each of our parameters i and j.

If we first fix i, say at i = 1, and look at the set {α(2g+1)j+1 | 1 ≤ j ≤ 2h},

the algorithm defines this to be the set {(∂B1
α × ωjα) ∪ (B1

α × ∂ωjα) | 1 ≤ j ≤ 2h}.

Equivalently, this is the set ({p1} × Ωα) ∪ ({p2} × Ωα) ∪ (B1
α × ∂Ωα), using the

enumeration of V = ∂Bα described in the proof of Proposition 3.11. In this set, we

have 2h curves that each cross the annulus Bi
α× ∂N1 exactly twice; in fact, this is all

of the α curves that have this property. Remembering how Σ can be obtained from

the 1-skeleton of our base surface, these 2h curves in Σ all correspond to the same

unique edge (B1
α) in that graph.

When we instead fix j, say at j = 1, we have the set {α2g+1+i | 1 ≤ i ≤ 2g + 1},

which the algorithm defines as the set {(∂Bi
α × ω1

α) ∪ (Bi
α × ∂ω1

α) | 1 ≤ i ≤ 2g + 1}.

Alternatively, we may view this as the set (V × ω1
α) ∪ (Bα × ∂ω1

α), a collection of

2g + 1 curves that each correspond to a different edge in the 1-skeleton of Σg, but

which all share a copy of the arc ω1
α in Σh,3. Thus, in some sense, fixing j gives us a

single curve that is repeated along every edge in Bα.

Lemma 3.13. The curve system α (respectively β,γ) bounds a complete collection

of disks in the 3-dimensional handlebody X1 ∩X2 (respectively X2 ∩X3, X3 ∩X1).

Proof. Recall that from (3.2), (3.3), (3.5), we have

X1 ∩X2 =
(
Bα ×

(
Σh \ (N1 tN2)

))
∪ (B2 × ∂N2) ∪ (Bγ ×N3).



38

For 1 ≤ i ≤ 2g+ 1, the curve αi = {biγ}× ∂N3 bounds the disk {biγ}×N3, which is a

co-core of the 1-handle Bγ ×N3 of X1 ∩X2. Moreover, from the proof of Lemma 3.5,

we can see that compressing X1 ∩X2 along the curves {αi | 1 ≤ i ≤ 2g + 1} yields a

genus (2g + 1)(2h) + 1 handlebody, which we will call H.

Now, for 1 ≤ j ≤ 2h and 1 ≤ i ≤ 2g + 1, the curve α(2g+1)j+i = (∂Bi
α × ωjα) ∪

(Bi
α × ∂ωjα) bounds the disk Bi

α × ωjα, which is contained in Bα ×
(

Σh \ (N1 tN2)
)

.

Furthermore, since Σh,3 \ Ωα is a pair of pants, fixing i ∈ {1, . . . , 2g + 1} and com-

pressing H along the curves {α(2g+1)j+i | 1 ≤ j ≤ 2h} = ∂(Bi
α × Ωα) will reduce the

genus of H by 2h. Compressing H along all such curves thus yields a solid torus,

which we will call T .

Finally, the curve α(2g+1)(2h+1)+1 = (V ×Cα)∪(Bα×{c1
α})∪(Bβ×{c2

α}) bounds the

disk (B2×{c2
α})∪(Bα×Cα) as a subset of (B2×∂N2)∪

(
Bα ×

(
Σh \ (N1 tN2)

))
; this

disk is apparent in Figure 3.9. Since α(2g+1)(2h+1)+1 is essential in ∂T by construction,

compressing T along α(2g+1)(2h+1)+1 yields a 3-ball. Hence, α is a defining set of

curves for X1 ∩ X2. Similar arguments show that β defines X2 ∩ X3, and γ defines

X3 ∩X1.

Corollary 3.14. (Σ;α,β,γ) is a trisection diagram for X = Σg × Σh.

Example 3.15. We now trisect T 2 × S2, using the decomposition of T 2 given in

Figure 3.1. The 1-skeleton of this decomposition is a trivalent graph on six vertices,

giving us the genus 4 trisection surface shown in Figure 3.10.

Now, because h = 0, the surface Σ0,3 is already a pair of pants, and thus Ωα =

Ωβ = Ωγ is empty, and steps 1 and 4 of the curve algorithm are trivial to implement.

Additionally, up to isotopy there is a unique choice for each of Cα, Cβ, and Cγ, depicted

in Figure 3.11a. Now for 1 ≤ i ≤ 3, we have αi = {biγ} × ∂N3, βi = {biα} × ∂N1, and

γi = {biβ}×∂N2; these curves are shown in Figure 3.11b. Our last three curves have the



39

B1
β

B3
β

B2
β

B3
γ

B1
α

B2
γ

B2
α

B1
γ

B3
α

Figure 3.10: The 1-skeleton for T 2 and the corresponding trisection surface for T 2×S2.

form α4 = (V ×Cα)∪(Bα×{c1
α})∪(Bβ×{c2

α}), β4 = (V ×Cβ)∪(Bβ×{c1
β})∪(Bγ×{c2

β}),

and γ4 = (V ×Cα)∪ (Bγ ×{c1
γ})∪ (Bα×{c2

γ}) (see Figure 3.11c). The full trisection

diagram is shown in Figure 3.12.

Cγ
CβCα

∂N1

∂N2

∂N3

c1α

c2α c1β

c2β

c1γc2γ

(a)

α
3

α1
α2

β1

β2

β

γ1

γ2

γ

(b)

β
4

α
�

γ

(c)

Figure 3.11: Curve placement on Σ, a trisection surface for T 2 × S2.

Remark 3.16. The trisection diagrams in Figures 3.8 and 3.12 are related by a

surface diffeomorphism and a sequence of handle slides, indicating that this is in fact

the same trisection of X = T 2 × S2. Figure 3.13 shows a trisection diagram that

is handle-slide equivalent to the diagram for S2 × T 2 constructed in Example 3.9,

and related to the diagram for T 2 × S2 constructed in Example 3.15 by the surface
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Figure 3.12: A trisection diagram for T 2 × S2.

diffeomorphism that takes the curve triple (α1, β1, γ1) in Figure 3.8 to the curve triple

(α4, β4, γ4) in Figure 3.12.

Figure 3.13: Another trisection diagram for S2 × T 2. A sequence of handle slides
will transform this diagram to that in Figure 3.8, and a surface diffeomorphism will
transform this diagram to that in Figure 3.12.
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3.3 Minimality

In this section, we prove that the trisection of Σg×Σh defined in Section 3.1 is minimal.

Our proof leverages the fact that a trisection of a 4-manifold X induces a handle

decomposition of X, which then corresponds to a presentation of π1(X). In particular,

Gay and Kirby showed that a 4-manifold admitting an (`, k)-trisection also admits a

handle decomposition with one 0-handle, k 1-handles, `−k 2-handles, k 3-handles, and

one 4-handle [GK16, Theorem 4]. A more general statement, for possibly unbalanced

trisections, says that a 4-manifold with an (`; k1, k2, k3)-trisection admits a handle

decomposition with one 0-handle, k1 1-handles, ` − k2 2-handles, k3 3-handles, and

one 4-handle [MSZ16]. Furthermore, the symmetry of a trisection invokes a triality

among the sectors, in which permuting X1, X2, and X3 still produces a trisection.

Thus, there is a corresponding triality of handles in a handle decomposition of a

trisected 4-manifold. Recall from Section 2.1 that a handle decomposition gives rise

to a cell structure on X in which k-handles correspond to k-cells, and that the 1- and

2-cells of a cell complex X determine a presentation for π1(X). It follows that the

number of 1-handles in a handle decomposition of X is bounded below by the rank

of π1(X). This leads us to the following theorem:

Theorem 3.17. The trisection genus of X4 = Σg ×Σh is (2g+ 1)(2h+ 1) + 1. That

is, the ((2g + 1)(2h+ 1) + 1; 2g + 2h)-trisection of X4 constructed in Theorem 3.3 is

minimal.

Proof. Let F n denote the free group of rank n. For some relator sets R1, R2, R3, note

that

π1(Σg × Σh) ∼= π1(Σg)× π1(Σh) ∼= (F 2g/〈R1〉N)× (F 2h/〈R2〉N) ∼= F 2g+2h/〈R3〉N
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has rank 2g+2h. Thus, trisection triality grants that min{k1, k2, k3} ≥ 2g+2h for any

(`; k1, k2, k3)-trisection of X4 = Σg×Σh. In particular, when k1 = k2 = k3 = 2g+ 2h,

such a trisection cannot be destabilized, as doing so would reduce one of the ki’s by

one. Finally, since the Euler characteristic, χ, of X is χ = 2 + `−
∑3

i=1 ki, it follows

that ` is minimal when
∑3

i=1 ki is minimal. Therefore, the trisection genus of Σg×Σh

is at least (2g + 1)(2h+ 1) + 1, and this is achieved precisely with Theorem 3.3.
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CHAPTER 4

TRISECTING FLAT SURFACE BUNDLES OVER

SURFACES

The purpose of this chapter is to generalize Theorem 3.3 to trisections of flat surface

bundles over surfaces with orientable fibers and orientable or non-orientable bases.

We do this in Section 4.1. In Section 4.2, we present an algorithm to construct

trisection diagrams for a special case of flat surface bundles with both base and fiber

orientable, and conjecture that only a slight modification of the algorithm is necessary

for general flat bundles. The chapter concludes with a proof in Section 4.3 that the

diagram from the algorithm corresponds to the trisection given in Theorem 4.3.

Throughout this chapter, we let Fn = #nRP2 denote the closed, connected, non-

orientable surface of genus n. Let S in {Σg, Fk | g ≥ 0, k ≥ 1} be given, and let χ

denote the Euler characteristic of S; recall χ(Σg) = 2− 2g and χ(Fk) = 2− k.

Lemma 4.1. S admits a cell structure consisting of 6−2χ vertices, 9−3χ edges, and

three faces. In particular, we may write S = B1 ∪B2 ∪B3, subject to the following:

• Each Bi is diffeomorphic to a closed 2-disk B2.

• The pairwise intersections of these disks are Bα = B1 ∩B2, Bβ = B2 ∩B3, and

Bγ = B3 ∩ B1; each is a pairwise disjoint collection of 3− χ edges and may be



44

enumerated as Bα = t3−χ
i=1 B

i
α, etc.

• The triple intersection B1 ∩ B2 ∩ B3 = ∂Bα = ∂Bβ = ∂Bγ is a disjoint union

of 6− 2χ vertices. We call this set V .

Proof. When S = Σg is orientable, this is the same decomposition described in Lemma

3.1 and used throughout Chapter 3. We remind the reader that in this case, Figure

3.1 depicts an appropriate decomposition of S. In the case where S = Fk is non-

orientable, the decomposition shown in Figure 4.1 suffices, with the connect sum

taken at an appropriate pair of vertices (similar to Figure 3.2).

Remark 4.2. The constructions that follow will always use this decomposition for

S = Fk, and the decomposition in Figure 3.1 for S = Σg.

#k



Bα

Bβ

Bγ

Bα

Bβ

Bγ

B1

B3

B2 Bα

Bβ

Bγ


Figure 4.1: A disk decomposition of the base surface Fk = #kRP2

Fix h ≥ 0, and let X4 be an orientable Σh-bundle over S with monodromy repre-

sentation ϕ : π1(S) → MCG±(Σh); recall that such a bundle is called flat when the

monodromy representation lifts to a map ϕ̃ : π1(S) → Diff(Σh) so that π ◦ ϕ̃ = ϕ,

where π : Diff(Σh) → MCG±(Σh) is the quotient map. In particular, we assume
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ϕ̃ : π1(S) → Diff(Σh) is a lift of ϕ such that X can be obtained in the following

way: To each edge in the 1-skeleton of S, assign a choice of transverse direction. Let

x0 ∈ V be chosen so that, up to relabeling, the edges adjacent to x0 are B3−χ
α , B3−χ

β ,

and B3−χ
γ . Now, let D be the disk obtained by starting with the disk B1, attaching B2

by identification along the edge B3−χ
α , and then attaching B3 by identification along

the edges B3−χ
β ∪ B3−χ

γ . We now have S as the quotient of D, a (12 − 6χ)-gon, by

pairwise edge identification. For each δ ∈ {α, β, γ}, for each 1 ≤ i ≤ 2− χ, let tiδ be

the element of π1(S, x0) that starts at x0, runs in the interior of D to the middle of

the edge Bi
δ, crosses the edge in the indicated transverse direction, and returns in the

interior of D back to x0. Thus, we can label each edge of ∂D with a diffeomorphism

ϕ̃(tiδ) and a transverse direction, and obtain X from D × Σh by identifying the two

copies of Bi
δ × Σh via the labeling, for each 1 ≤ i ≤ 2 − χ and δ ∈ {α, β, γ}. We

denote this bundle structure by X = S ×ϕ̃ Σh. Conjecturally, every surface bundle

has this structure (see [MT19]).

4.1 A trisection of S ×∼
ϕ

Σh

In this section, we use the flat structure on X = S ×ϕ̃ Σh to define and prove a

trisection of X. We then show that this trisection is minimal in certain cases.

Let p : X → S be the fibration, and choose disjoint sections σ1, σ2, and σ3 over B1,

B2, and B3, respectively. Let νi be a closed tubular neighborhood of σi for i = 1, 2, 3,

with the νi’s also disjoint. The flat structure of X discussed above allows each section

σi to have the form Bi×{qi} ⊂ D×Σh for some point qi in the fiber Σh, by choosing

qi such that the sets {qi, ϕ̃(tjδ)(qi) | 1 ≤ j ≤ 2 − χ} are distinct for 1 ≤ i ≤ 3.

Furthermore, each neighborhood νi has the form Bi × Ni ⊂ D × Σh, where Ni is a

closed tubular neighborhood of qi in Σh; we will be heavily relying on this structure
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throughout this section. With indices taken mod 3, define

Xi = p−1(Bi) \ νi ∪ νi+1 (4.1)

for i = 1, 2, 3. Note that this definition agrees with (3.1) when X = Σg × Σh.

Theorem 4.3. With X1, X2, X3 defined as in (4.1), let Σ := X1 ∩ X2 ∩ X3. Then

(Σ;X1, X2, X3) is a ((3−χ)(2h+1)+1; 2−χ+2h)-balanced trisection of X = S×ϕ̃Σh.

Before proving Theorem 4.3 in full, we first address the nature of the pairwise

and triple intersections among the Xi with Lemmas 4.4 and 4.5. The arguments

presented here are similar to those presented in Chapter 3, but have been adapted to

accommodate the nontrivial bundle structure.

Lemma 4.4. For each pair 1 ≤ i 6= j ≤ 3, the intersection Xi∩Xj is a 3-dimensional

handlebody with genus (3− χ)(2h+ 1) + 1.

Proof. The 3-dimensional intersection of X1 ∩X2 is the union of four pieces:

(a) The first piece, p−1(B1) \ ν1 ∩ p−1(B2) \ ν2, is 3 − χ copies of a genus 2h + 1

handlebody. In particular, since the sections σi and their neighborhoods νi were

chosen to be disjoint, this intersection is diffeomorphic to Bα × Σh,2 using the

local coordinates on either p−1(B1) or p−1(B2). With Σh,2 having two boundary

components, thickening a copy of this surface yields a genus 2h+1 3-dimensional

handlebody; there are 3 − χ such handlebodies here because Bα has 3 − χ

connected components.

(b) The second piece, ν2 ∩ p−1(B2) \ ν2 = ∂ν2 is a solid torus, diffeomorphic to

B2 × ∂N2 using the local coordinates on p−1(B2). The torus boundary of this
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piece is ∂B2×∂N2 = (Bα×∂N2)∪(Bβ×∂N2), which intersects the ith component

of the previous piece in the annulus Bi
α × ∂N2.

Thus, attaching p−1(B1) \ ν1∩p−1(B2) \ ν2 to ν2∩p−1(B2) \ ν2 involves stacking

up the 3 − χ different handlebodies so that one solid torus summand of each

lines up. It follows that X1 ∩ p−1(B2) \ ν2 is connected, and is a 3-dimensional

handlebody with genus (3− χ)(2h) + 1.

(c) The third piece, p−1(B1) \ ν1∩ν3, is a collection of 3−χ pairwise disjoint 3-balls,

each diffeomorphic to Bi
γ×N3 for some 1 ≤ i ≤ 3−χ. Since Bα and Bγ intersect

only on their common boundary, V , it follows that each component Bi
γ ×N3 is

attached to X1 ∩ p−1(B2) \ ν2 along the two disks comprising ∂Bi
γ ×N3 sitting

in the boundary of Bα × Σh,2 ⊂ p−1(B1). Thus, this piece contributes 3 − χ

1-handles.

(d) The final piece, ν2 ∩ ν3, is empty by construction.

Therefore, X1 ∩ X2 is a 3-dimensional handlebody with genus (3 − χ)(2h + 1) + 1.

A permutation of indices in the preceding argument produces the same result for

X2∩X3 and X3∩X1, since each may be viewed as Xi∩Xi+1 for some choice of i.

As in Remark 3.6, the form of the triple intersection X1 ∩ X2 ∩ X3 follows from

the other conditions on the Xi, but the analysis presented in the proof of Lemma 4.5

is useful in the discussion of the generalized curve algorithm in the next section.

Lemma 4.5. Let X1, X2, X3 be defined as in (4.1), and define Σ := X1 ∩X2 ∩X3 as

their triple intersection. Then Σ is diffeomorphic to Σ(3−χ)(2h+1)+1.

Proof. The proof of Lemma 4.4 describes X1 ∩ X2 as the union of a subset of

p−1(∂B1) = p−1(Bγ ∪ Bα) and a subset of p−1(B2). Symmetry with the other pair-

wise intersections grants that the triple intersection Σ = X1 ∩ X2 ∩ X3 is a subset
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of p−1(Bγ ∪ Bα ∪ Bβ); in what follows, we consider Σ relative to the local product

structure of p−1(B1) ⊃ p−1(Bγ∪Bα). In particular, building off of the previous proof,

we have Σ as the union of the following four pieces; the labels here correspond to

those used in the proof of Lemma 4.4:

(a1)
[
p−1(B1) \ ν1 ∩ p−1(B2) \ ν2

]
∩ p−1(B3) \ ν3 is diffeomorphic to V ×Σh,3, a col-

lection of 2(3− χ) copies of Σh,3.

(a2)
[
p−1(B1) \ ν1 ∩ p−1(B2) \ ν2

]
∩ν1 is diffeomorphic to Bα×∂N1. Each component

Bi
α × ∂N1 has two boundary components, which coincide with two boundary

components of the disconnected surface in (a1). Gluing these together connects

the copies of Σh,3 in pairs, yielding a collection of 3− χ copies Σ2h,4.

(c)
[
p−1(B1) \ ν1 ∩ ν3

]
∩ p−1(B3) \ ν3 is diffeomorphic to Bγ × ∂N3. Again, each

component Bi
γ × ∂N3 has two boundary components, which each coincide with

a boundary component of the surface we have constructed so far. Attaching

these annuli produces a copy of Σ(3−χ)(2h)+1,2(3−χ), where each of the remaining

boundary components corresponds to {v} × ∂N2 for some v ∈ V . This surface

is entirely contained in the trivial bundle p−1(∂B1) ∼= B1 × Σh.

(b) ∂ν2 ∩ X3 = ∂ν2 ∩ p−1(B3) \ ν3 is diffeomorphic to Bβ × ∂N2 as a subset of

p−1(Bβ).

This final piece is glued to our surface via some diffeomorphisms of the S1 boundary

components that preserve orientability of the total surface. Thus, we are left with Σ as

diffeomorphic to Σ(3−χ)(2h+1)+1. Additionally, this breakdown of Σ into pieces makes it

readily recognizable as the boundary of each 3-dimensional handlebody Xi∩Xi+1.

Proof of Theorem 4.3. We first note that p−1(Bi) \ νi is diffeomorphic to Bi×Σh \Ni,

a 4-dimensional 1-handlebody with genus 2h. Since the intersection of this with νi+1 is



49

3−χ mutually disjoint 3-balls, we may glue νi+1 to p−1(Bi) \ νi by attaching at each 3-

ball one at a time. This amounts to adding 3−χ 1-handles, the first of which connects

νi+1 with p−1(Bi) \ νi, while the remaining 2 − χ handles add to the genus. Thus,

each Xi is a 4-dimensional 1-handlebody with genus 2−χ+ 2h. Lemmas 4.4 and 4.5

established that the pairwise and triple intersections of these pieces are 3-dimensional

handlebodies and a surface, respectfully, each with genus (3− χ)(2h+ 1) + 1.

The fact that X = X1 ∪ X2 ∪ X3 is immediate from the definition of the Xi.

Moreover, as in the trivial bundle case, Lemma 3.8 yields that for each 1 ≤ i ≤ 3, we

have Xi ∩Xi+1 = ∂Xi ∩ ∂Xi+1, and Σ = ∂(Xi ∩Xi+1). This completes the proof.

Proposition 4.6. Let X be as in Theorem 4.3. If π1(X) has rank 2− χ + 2h, then

the trisection genus of X is (3− χ)(2h+ 1) + 1.

Proof. The proof of Theorem 3.17 carries over directly.

Remark 4.7. The topic of minimality is revisited in Section 5.2 with a discussion

of how Proposition 4.6 might be strengthened, and how the trisection genus of a flat

surface bundle over a surface might be calculated in general.

4.2 A diagram algorithm for certain flat bundles

In this section, we present an algorithm for constructing a trisection diagram for a

flat Σh-bundle over Σg in the case where the associated diffeomorphisms ϕ̃(·) each

fix a handful of points (see Remark 4.9). We begin with a particular description of

the base, the details of which require that that surface be orientable. We then state

the diagram algorithm, which takes this description of the base together with the

flat bundle structure encoded by ϕ̃, and outputs three systems of curves in Σ. In

the algorithm statement, we highlight those parts that are the same as for the trivial
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bundles discussed in Section 3.2. The section is wrapped up with an example of the

algorithm for a T 2-bundle over T 2. The proof that the algorithm gives a diagram

corresponding to the trisection from Section 4.1 is deferred until Section 4.3.

Remark 4.8. Despite focusing on the case where the base is the orientable surface

Σg, we continue to use χ, the Euler characteristic of the base, as a parameter in our

arguments, rather than g. This fits more naturally with the proofs of Section 4.1,

and the algorithm conjecturally extends to bundles with non-orientable base; this

extension is more easily seen in terms of χ. That being said, the similarities with

the algorithm in Chapter 3 are more easily recognized by substituting 2− 2g for each

instance of χ in what follows.

To each edge in the 1-skeleton of Σg, assign an orientation and a consistent choice

of transverse direction according to the right-hand rule, as shown in Figure 4.2. For

convenience, we orient edges so that the boundaries of B1 and B3 each have a coherent

orientation, with transverse directions (for Bγ and Bα) all pointing to the interior of

B1, and transverse directions (for Bβ and Bγ) all pointing outward from B3. Addi-

tionally, enumerate the vertex set V as {p1, p2, . . . , p6−2χ}, with vertex order following

the chosen orientation of ∂B3 such that p5−2χ is the basepoint x0 defined at the start

of this chapter. Relabel, if necessary, the edges {Bi
α, B

i
β, B

i
γ | 1 ≤ i ≤ 3− χ} so that

the boundary of B3 based at x0 is the oriented path

B3−χ
γ , B1

β, B
1
γ, . . . , B

2−χ
β , B2−χ

γ , B3−χ
β , (4.2)

and the boundary of B1 based at x0 is the oriented path

Bk3−χ
γ , B1

α, B
k1
γ , . . . , B

2−χ
α , Bk2−χ

γ , B3−χ
α , (4.3)
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Figure 4.2: An oriented edge (in blue) and the associated transverse direction (in
black)

for some ordering k1, . . . , k3−χ of the set {1, . . . , 3−χ}. Note that we necessarily have

k3−χ = 3− χ, as x0 is the common endpoint of the edges B3−χ
α , B3−χ

β , B3−χ
γ . Finally,

note that for each 1 ≤ i ≤ 3 − χ, and with indices taken mod 6 − 2χ as needed,

we have: the edge Bi
α starts at p2ki−1

and ends at p2ki−1; the edge Bi
β starts at p2i−2

and ends at p2i−1; the edge Bi
γ starts at p2i−1 and ends at p2i; the loop tiα crosses

the edge Bi
α from B2 into B1; the loop tiβ crosses the edge Bi

β from B3 into B2; the

loop tiγ crosses the edge Bi
γ from B3 into B1. Here, the loops tiδ, for δ ∈ {α, β, γ} and

1 ≤ i ≤ 2− χ, are as defined at the start of Chapter 4, and we define the loops t3−χδ

to be trivial in π1(Σg, x0). See Figure 4.3a for a depiction of these orientations and

labels in the case where g = 1.

Remark 4.9. The following algorithm requires that each map ϕ̃(tiβ) fixes ∂Ωβ ∪ ∂Cβ

pointwise, and that each map ϕ̃(tiα) fixes ∂Ωγ ∪ ∂Cγ pointwise, where these sets are

defined in steps 1 and 2 of the algorithm. This occurs, for instance, when the images

of the standard generators for π1(Σg) under φ̃ have small support, as with products

of Dehn twists about disjoint simple closed curves.

Generalized Curve Algorithm. Steps 1–3 of this algorithm define the same arcs

and curves as appear in Section 3.2. Additionally, the α curves defined in steps 4–5

are the same.

1. a) Choose Ωα = t2h
i=1ω

i
α to be a pairwise disjoint collection of simple properly

embedded arcs in Σh,3 with endpoints in ∂N1 such that Σh,3 \Ωα is a pair
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of pants. As in Section 3.2, Ωα is minimal.

b) Choose Ωβ = t2h
i=1ω

i
β to be a pairwise disjoint collection of simple properly

embedded arcs in Σh,3 with endpoints in ∂N2 such that Σh,3 \Ωβ is a pair

of pants.

c) Choose Ωγ = t2h
i=1ω

i
γ to be a pairwise disjoint collection of simple properly

embedded arcs in Σh,3 with endpoints in ∂N3 such that Σh,3 \Ωγ is a pair

of pants.

2. a) Choose Cα, a simple properly embedded arc in Σh,3 \ Ωα such that Cα has

endpoints c1
α in ∂N1 \ ∂Ωα and c2

α in ∂N2.

b) Choose Cβ, a simple properly embedded arc in Σh,3 \ Ωβ such that Cβ has

endpoints c1
β in ∂N2 \ ∂Ωβ and c2

β in ∂N3.

c) Choose Cγ, a simple properly embedded arc in Σh,3 \ Ωγ such that Cγ has

endpoints c1
γ in ∂N3 \ ∂Ωγ and c2

γ in ∂N1.

3. For each 1 ≤ i ≤ 3 − χ, let biδ denote the midpoint of the edge Bi
δ for each

δ ∈ {α, β, γ}. Additionally, define:

αi = {biγ} × ∂N3 βi = {biα} × ∂N1 γi = {biβ} × ∂N2

4. For each 1 ≤ j ≤ 2h and each 1 ≤ i ≤ 3 − χ, let tiα denote the reverse of the

loop tiα, and define:

α(3−χ)j+i = (∂Bi
α × ωjα) ∪ (Bi

α × ∂ωjα)

β(3−χ)j+i =
(
∂Bi

β × ϕ̃(tiβ)(ωjβ)
)
∪ (Bi

β × ∂ω
j
β)

γ(3−χ)j+i =
(
{p2ki−1} × ϕ̃(tiα)(ωjγ)

)
∪
(
Bki
γ × ∂ωjγ

)
∪
(
{p2ki} × ϕ̃(ti+1

α )(ωjγ)
)
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5. Finally, define:

α(3−χ)(2h+1)+1 = (∂Bα × Cα) ∪ (Bα × {c1
α}) ∪ (Bβ × {c2

α})

β(3−χ)(2h+1)+1 = t3−χ
i=1

(
∂Bi

β × ϕ̃(tiβ)(Cβ)
)
∪ (Bβ × {c1

β}) ∪ (Bγ × {c2
β})

γ(3−χ)(2h+1)+1 = t3−χ
i=1

(
∂Bi

α × ϕ̃(tiα)(Cγ)
)
∪ (Bγ × {c1

γ}) ∪ (Bα × {c2
γ})

Together with Σ, these α, β, γ curves form our trisection diagram.

Conjecture 4.10. A slightly more general description of the curves defined in the al-

gorithm should yield an extension to bundles with non-orientable base, and to bundles

where the points specified in Remark 4.9 need not be fixed by the specified maps.

Example 4.11. In this example, we demonstrate the algorithm with a particular T 2-

bundle over T 2. To define the bundle, we first need a map ϕ̃ : π1(base)→ Diff(fiber),

which we define using the presentation π1(T 2, x0) = 〈a, b | aba−1b−1〉 and Dehn twists

about the curves `, µ ∈ T 2 (see Figure 4.3).

B3

B3

B3

B3

B2

B1

B3
α

B3
γ

B2
γ B1

γ

B1
β

B3
β

B2
β

B1
α B1

α

B2
α

B2
α

x0

p2

p6 p6

p3 p3

p4

p4

p1

p1

x0 a

x0

b

(a) The base, T 2, with π1(T 2, x0) = 〈a, b〉

`

µ

∂N1

N1

∂N2
N2

∂N3

N3

(b) The fiber, T 2, with τµ` ∈ Diff(T 2)

Figure 4.3: The structures imposed on the base and fiber surfaces of T 2 ×ϕ̃ T 2

Notation. We use τc to denote a right Dehn twist about a curve c, so that τ−1
c denotes

a left Dehn twist about c. Additionally, we use τcd to mean τc followed by τd. Figure

4.4 depicts τ`(T
2).
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τ`(`)

τ`(µ)

τ`(∂N1)

τ`(∂N2)

τ`(∂N3)

Figure 4.4: The result of applying τ` to the fiber surface

The particular bundle we are working with is T 2×ϕ̃T 2, where ϕ̃ : 〈a, b〉 → Diff(T 2)

is given by ϕ̃(a) = τµ` and ϕ̃(b) = (τµ`)
−1. The arcs chosen in steps 1 and 2 of the

algorithm are shown in Figure 4.5. Note that Ωα and Cα are the same as in Figure

3.7a, from the trisection of S2 × T 2.

∂N1

∂N2

∂N3
ω1
α

ω2
α

Cαc1α

c2α

∂N1

∂N2

∂N3
ω1
β

ω2
β

Cβ

c1β

c2β

∂N1

∂N2

∂N3
ω1
γ

ω2
γ

Cγ

c1γ
c2γ

Figure 4.5: Arcs in Σ1,3

Steps 4 and 5 of the algorithm involve images of these arcs under different diffeo-

morphisms of the fiber surface, and it will be helpful to have those images before we
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draw the full diagram. In particular, we need to know how to write the loops tiδ as

elements of 〈a, b〉, for δ ∈ {α, β} and 1 ≤ i ≤ 3. From Figure 4.3a, we observe:

t1α = a, t2α = b, t3α = 1, t1β = a−1, t2β = a−1b, t3β = 1, (4.4)

as elements of π1(T 2, x0). Additionally, from the boundary path of B1 we see that

Bk1
γ = B2

γ, B
k2
γ = B1

γ, and Bk3
γ = B3

γ. We now have the tools to draw the more

complicated pieces of the curves in steps 4–5. Beginning with the β curves, recall

that for 1 ≤ j ≤ 2 and 1 ≤ i ≤ 3 we have the arcs ∂Bi
β × ϕ̃(tiβ)(ωjβ) contained in

β3j+i. Furthermore, β10 contains the arcs t3−χ
i=1

(
∂Bi

β × ϕ̃(tiβ)(Cβ)
)
. From (4.4) and

the definition of ϕ̃, we know that ϕ̃(t1β) = (τµ`)
−1, ϕ̃(t2β) = (τµ`)

−2, and ϕ̃(t3β) = 1.

Note that for each i, the two components of ∂Bi
β×Σh,3 look the same with regards to

the β curves, so we need only consider three cases. Figure 4.6 shows ϕ̃(tiβ)(Cβ ∪ Ωβ)

for each 1 ≤ i ≤ 3, with each arc labeled according to which curve contains it.

∂N1

∂N2

∂N3

∂B1
β = {p6, p1}

β4

β10

β7

∂N1

∂N2

∂N3

∂B2
β = {p2, p3}

β5

β10

β8

∂N1

∂N2

∂N3

∂B3
β = {p4, x0}

β6

β10

β9

Figure 4.6: Pieces of β curves in V × Σh,3
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Similarly, for the γ curves, recall that for 1 ≤ j ≤ 2 and 1 ≤ i ≤ 3, the curve

γ3j+i contains the arcs {p2ki−1}× ϕ̃(tiα)(ωjγ) and {p2ki}× ϕ̃(ti+1
α )(ωjγ), while the curve

γ10 contains t3−χ
i=1

(
∂Bi

α × ϕ̃(tiα)(Cγ)
)

. From (4.4) and the definition of ϕ̃, we have

ϕ̃(t1α) = (τµ`)
−1, ϕ̃(t2α) = τµ`, and ϕ̃(t3α) = 1. Unlike with the β curve system, the two

endpoints of each Bi
γ have different images of γ arcs, all labeled in Figure 4.7.
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Figure 4.7: Pieces of γ curves in V × Σh,3
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We now proceed with the placement of curves in Σ ∼= Σ10. Figure 4.8 shows

two copies of the trisection surface, one with pieces labeled corresponding to the

description of Σ given in the proof of Lemma 4.5, and the other containing the curves

from step 3 of the algorithm. Note that in the construction of Σ, the copies of the

fiber are rotated or reflected to respect the orientations on the 1-skeleton of the base.
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β1 β2

β3

γ1

γ2

γ3

Figure 4.8: A trisection surface for T 2×ϕ̃ T 2, and the first curves from the algorithm

We build the remaining curves from the arcs that we constructed previously. In

particular, the α arcs in Figure 4.5 will be embedded in each component of V ×Σ1,3,

with the endpoints connected across Bα× ∂N1 or Bβ × ∂N2 (see Figure 4.9a). The β

and γ arcs from Figures 4.6 and 4.7, respectively, will be embedded in the appropriate

components of V ×Σ1,3, and the endpoints will be connected across Bβ × ∂N2, Bγ ×

∂N3, or Bα × ∂N1 as necessary. The remaining γ curves are shown in Figure 4.9b;

Figure 4.10a shows the remaining β curves, while a curve system that is handle-slide

equivalent to β is shown in Figure 4.10b. In each of these figures, note how the

arc embeddings respect the reflections that have occurred among the components of

V × Σ1,3.



58

α4 α5

α6

α7 α8

α9

α10

(a) α curves for T 2 ×ϕ̃ T 2

γ4

γ5γ6

γ7

γ8
γ9

γ10

(b) γ curves for T 2 ×ϕ̃ T 2

Figure 4.9: Two partial sets of curves for T 2 ×ϕ̃ T 2

β4

β5

β6

β7

β8

β9

β10

(a) β curves for T 2 ×ϕ̃ T 2 (b) A slide-equivalent curve system

Figure 4.10: A third partial set of curves for T 2 ×ϕ̃ T 2

Finally, we obtain the trisection diagram for T 2 ×ϕ̃ T 2 shown in Figure 4.11 from

the curves in Figures 4.8, 4.9, and 4.10b.
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Figure 4.11: A trisection diagram for T 2 ×ϕ̃ T 2

4.3 Proof that diagram and trisection coincide

In this section, we use descriptions of the pairwise intersections Xi ∩ Xi+1 and of

the trisection surface Σ given in the proofs of Lemmas 4.4 and 4.5 to see that the

curves defined in Section 4.2 define the same trisected 4-manifold as Theorem 4.3.

Throughout this section, we consider the local product structure on Σ relative to the

trivial bundle structure on p−1(B2) = B2 × Σh. For convenience, we consider each

curve system separately.

4.3.1 α curves

We first demonstrate that each curve in α = (α1, . . . , α(3−χ)(2h+1)+1) bounds a disk in

X1 ∩X2. Consider X1 ∩X2 as the union of

X1 ∩ p−1(B2) \ ν2 =
(
Bα × Σh \ (N1 tN2)

)
∪ (B2 × ∂N2) ,
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a genus (3− χ)(2h) + 1 handlebody inside p−1(B2) = B2 × Σh, and

X1 ∩ ν3
∼= Bγ ×N3,

3 − χ 1-handles contained in p−1(Bγ). Each of these 1-handles has a co-core of the

form {biγ}×N3 with boundary αi for some 1 ≤ i ≤ 3−χ; these α curves are unaffected

by the monodromy. Thus, the same arguments used in the proof of Lemma 3.13 work

here to show that α is a defining set of curves for X1 ∩X2.

4.3.2 β curves

We now turn to the β curves, which bound disks in X2 ∩X3. We consider X2 ∩X3

as the union of

p−1(B2) \ ν2 ∩X3 =
(
Bβ × Σh \ (N2 tN3)

)
∪ (Bα ×N1), (4.5)

a genus (3− χ)(2h) + 1 handlebody inside p−1(B2), and

ν3 ∩X3 = ∂ν3
∼= B3 × ∂N3, (4.6)

a solid torus contained in p−1(B3).

For 1 ≤ i ≤ 3− χ, the curve

βi = {biα} × ∂N1

bounds the disk {biα}×N1, which is a co-core of the 1-handle Bi
α×N1 inside Bα×N1,

a subset of p−1(B2), as shown in (4.5). Additionally, for each 1 ≤ j ≤ 2h and each
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1 ≤ i ≤ 3− χ, the curve

β(3−χ)j+i = (∂Bi
β × ϕ̃(tiβ)(ωjβ)) ∪ (Bi

β × ∂ω
j
β)

bounds the product disk Bi
β × ϕ̃(tiβ)(ωjβ) inside Bβ × Σh \ (N2 tN3), which is again

contained in p−1(B2).

The final β curve is

β(3−χ)(2h+1)+1 = t3−χ
i=1

(
∂Bβ × ϕ̃(tiβ)(Cβ)

)
∪ (Bβ × {c1

β}) ∪ (Bγ × {c2
β}).

Consider the disk (B3×{c2
β})∪ (Bβ ×Cβ), viewed as a subset of p−1(B3) ∼= B3×Σh.

We claim that β(3−χ)(2h+1)+1 is the boundary of this disk, which is properly embedded

in X2∩X3. First note that B3×{c2
β} is a meridional disk of the solid torus B3×∂N3

inside B3 × Σh, as described in (4.6). Now, for each 1 ≤ i ≤ 3 − χ, we take the

boundary arc Bi
β × {c2

β} of this meridional disk and attach the disk Bi
β × Cβ inside

p−1(B3). We thus replace each arc Bi
β × {c2

β} with the corresponding union of arcs

({p2i−2} × Cβ) ∪ (Bi
β × {c1

β}) ∪ ({p2i−1} × Cβ) in B3 ×Σh. Finally, we map these arcs

back to B2 × Σh to see how they lie in Σ. From the definition of X as a flat bundle,

we see that ∂Bi
β ×Cβ in B3×Σh is identified with ∂Bi

β × ϕ̃(tiβ)(Cβ) in B2×Σh. Since

each ϕ̃(tiβ) fixes ∂Cβ pointwise (by Remark 4.9), the boundary of this disk is exactly

β(3−χ)(2h+1)+1. See Figure 4.12a.

Remark 4.12. This collection of β curves is handle-slide equivalent to the set of

β curves from the algorithm for the trivial bundle, as it was in Example 4.11 with

Figure 4.10. It follows that β is a defining set of curves for X2 ∩X3.
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Figure 4.12: At left: a schematic of the disk bounded by β(3−χ)(2h+1)+1 in B3×Σh. Bβ,
Bγ, and Cβ are depicted in blue, green, and black, respectively. At right: a schematic
of the disk bounded by γ(3−χ)(2h+1)+1 in B1 × Σh. Bα, Bγ, and Cγ are depicted in
red, green, and black, respectively. Edge orientations and transversality are indicated
with arrows.

4.3.3 γ curves

With our consideration of X3 ∩ X1, we will find it convenient to work largely in

p−1(B1) before translating to p−1(B2), similar to how we used p−1(B3) to see the disk

in X2 ∩X3 bounded by β(3−χ)(2h+1)+1. In particular, we have X3 ∩X1 as the union of

X3 ∩ p−1(B1) \ ν1
∼= (Bγ × Σh \ (N3 tN1)) ∪ (B1 × ∂N1),

a genus (3− χ)(2h) + 1 handlebody inside p−1(B1), and

X3 ∩ ν2 = Bβ ×N2,

a collection of 3− χ 1-handles inside p−1(Bβ) ⊆ p−1(B2). For each 1 ≤ i ≤ 3− χ, we

have the curve γi = {biβ} × ∂N2 bounding the disk {biβ} × N2, which is a co-core of

the 1-handle Bi
β ×N2.
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Now, given 1 ≤ j ≤ 2h and 1 ≤ i ≤ 3 − χ, consider the disk Bki
γ × ωjγ in

B1 × Σh
∼= p−1(B1). Recall from Section 4.2 that the edge Bki

γ starts at p2ki−1, the

terminal vertex of edges Bi
α and Bki

β , and ends at p2ki , the initial vertex of edges Bi+1
α

and Bki+1
β . It follows that the boundary arc

{p2ki−1} × ωjγ

as an arc in ∂Bi
α × Σh ⊂ B1 × Σh is identified with

{p2ki−1} × ϕ̃(tiα)(ωjγ)

as an arc in ∂Bki
β ×Σh ⊂ B2×Σh. Likewise, the arc {p2ki}×ωjγ in ∂Bi+1

α ×Σh ⊂ B1×Σh

is identified with the arc {p2ki} × ϕ̃(ti+1
α )(ωjα) in ∂Bki+1

β × Σh ⊂ B2 × Σh. Hence, for

each 1 ≤ j ≤ 2h and each 1 ≤ i ≤ 3− χ, the curve

γ(3−χ)j+i =
(
{p2ki−1} × ϕ̃(tiα)(ωjγ)

)
∪
(
Bki
γ × ∂ωjγ

)
∪
(
{p2ki} × ϕ̃(ti+1

α )(ωjγ)
)

bounds the disk Bki
γ × ωjγ inside B1 × Σh.

Our final γ curve,

γ(3−χ)(2h+1)+1 = t3−χ
i=1

(
∂Bi

α × ϕ̃(tiα)(Cγ)
)
∪ (Bγ × {c1

γ}) ∪ (Bα × {c2
γ}),

forms the boundary of (B1×{c2
γ})∪ (Bγ ×Cγ), which is again a disk in B1×Σh. See

Figure 4.12b.

Once again, the arguments used in the proof of Lemma 3.13 apply to show that

γ is a defining set of curves for X3 ∩X1.
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CHAPTER 5

EXTENSIONS

In this chapter, we present some open questions in an attempt to relate the con-

structions in Chapters 3 and 4 to existing work in other areas of trisection theory. In

Section 5.1, we consider the potential relationship between different bundle structures

on a given 4-manifold X, specifically when X fibers as a surface bundle over T 2 and

as a 3-manifold bundle over S1. Section 5.2 addresses the possibility of strengthening

Proposition 4.6 and further classifying the trisection genus of nontrivial flat surface

bundles over surfaces. We end the chapter with a closer look at relative trisections of

compact manifolds in Section 5.3, and a question of whether the methods of Chapter

4 can be extended to manifolds with boundary.

5.1 Connections to 3-manifold bundles over S1

Koenig has shown that a 3-manifold bundle over S1 admits a (3g+1; g+1)-trisection

whenever the bundle monodromy preserves or flips a genus g Heegaard splitting of

the 3-manifold M [Koe17]. In the case where M is a Σh-bundle over S1, classical

Heegaard theory tells us that M admits a genus (2h+1) Heegaard splitting, and that

this splitting is minimal when the rank of π1(M) is 2h+ 1, as with trivial bundles or

closed bundles where the monodromy is a sufficiently large power of a pseudo-Anosov
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map (see [Sch93,Rub05]).

Taking a closer look at 4-dimensional trivial bundles within this framework, we

consider 4-manifolds of the form T 2×Σh = X = S1× (S1×Σh). Applying Theorem

3.3 to the first perspective here, we have a fiber surface of genus h and a base surface

of genus g = 1, giving us a (3(2h + 1) + 1; 2 + 2h)-trisection of T 2 × Σh. For the

latter perspective, we know the standard Heegaard splitting of S1 × Σh is minimal

and has genus 2h + 1; this splitting is preserved by the (trivial) bundle monodromy

in this case, and hence, we get a (3(2h+ 1) + 1; 2h+ 2)-trisection of S1× (S1×Σh) by

Koenig [Koe17]. The parameter values agree in these two cases, and both trisections

are minimal by Theorem 3.17. However, it is not obvious whether the trisection

diagrams arising from the two different algorithms are related solely by handle slides

and diffeomorphism, without the need for stabilization or destabilization. Hence, we

ask:

Question 5.1. Does X = T 2 × Σh have a unique minimal trisection T , in the

sense that every trisection of X is handle slide and diffeomorphism equivalent to a

stabilization of T ? In particular, does trisecting X as a 3-manifold bundle over S1

following Koenig’s construction [Koe17] give the same trisection as Theorem 3.3?

More generally, we consider 4-manifolds X which fiber nontrivially as Σh → X →

T 2 and as M → X → S1, with Σh → M → S1. Since there are 3-manifolds

Σh → M → S1 with Heegaard genus two for arbitrarily large h [HT85], we expect

there to be 3-manifolds Σh → M → S1 and 4-manifolds M → X → S1 for which a

genus g 6= 2h + 1 splitting of M is minimal with respect to the bundle monodromy

of X preserving or flipping the splitting, as required by Koenig’s construction. Such

a pair (M,X) would yield a trisection of Σh → X → T 2 with different parameters

than those obtained in Theorem 4.3.
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Question 5.2. Suppose X fibers as a Σh-bundle over T 2 and as a M -bundle over S1,

where M is itself a Σh-bundle over S1. Suppose further that this second fibration of X

has a bundle monodromy that flips or preserves a genus g Heegaard splitting ofM , and

that g is minimal with respect to this property. Let T denote the (3(2h+1)+1; 2+2h)-

trisection of X given by Theorem 4.3, and let T ′ denote the (3g+ 1; g+ 1)-trisection

of X given in [Koe17].

1. If g < 2h+1, then T is not minimal. In this case, is T stabilized? In particular,

is T a stabilization of T ′?

2. If g > 2h+ 1, is T ′ a stabilization of T ?

3. If g ≥ 2h+ 1, is T stabilized? How are T and T ′ related in this case?

Section 5.2 presents additional questions related to minimality, Question 5.2, and

Proposition 4.6.

5.2 More on minimality

Theorem 3.17 asserts that for any choice of g, h ≥ 0, the ((2g+1)(2h+1)+1; 2g+2h)-

trisection of Σg×Σh produced in Chapter 3 is minimal; the proof relies on the fact that

the rank of π1(Σg×Σh) is 2g+2h. Chapter 4 produces a ((2g+1)(2h+1)+1; 2g+2h)-

trisection of any flat Σh-bundle over Σg, but the analogous minimality result is weaker:

Proposition 4.6 states only that a sufficient condition for the trisection to be minimal

is that the fundamental group of the bundle has rank 2g + 2h. It is not obvious if

that condition is necessary or when it holds:

Question 5.3. Theorem 4.3 puts an upper bound of (2g + 1)(2h + 1) + 1 on the

trisection genus of a flat Σh-bundle over Σg. When is that bound sharp? In general,

what is the trisection genus of a given nontrivial flat Σh-bundle over Σg?
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A related question follows once a bundle with a lower trisection genus has been

identified (potential candidates are discussed in Section 5.1). While any two trisec-

tions of that bundle are stably isotopic by Theorem 1.1, there is no guarantee that

a non-minimal trisection can be strictly destabilized down to a minimal trisection.

It is feasible that some combination of both destabilizations and stabilizations would

need to be employed to obtain a trisection with minimal genus:

Question 5.4. For what bundles can the trisection defined in Theorem 4.3 be desta-

bilized?

5.3 Relative trisections

Let X be a compact connected 4-manifold with connected boundary ∂X 6= ∅. A

relative trisection of X is similar to a trisection of a closed manifold, but with slightly

altered characteristics including a restriction on how each sector Xi intersects ∂X.

The result is that the relative trisection structure induces an open-book decomposition

on ∂X [GK16]. Relative trisection diagrams are also similar to the closed case, except

that the surface now has boundary and the diagram may contain properly embedded

arcs in addition to curves, although these arcs are not strictly necessary to reconstruct

the original 4-manifold [CGPC18].

The constructions from Chapter 4 translate nicely to relative trisections of disk

bundles over S2, along with accompanying relative trisection diagrams [CGPC18,

Example 5.1]. However, for a disk bundle over Σg with g > 0, the extra boundary

conditions for a relative trisection cannot be met by the construction used in Theorem

4.3. In particular, a relative trisection has four non-negative parameters (h, k; p, b),
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satisfying the relations

2p+ b− 1 ≤ k ≤ h+ p+ b− 1 (5.1)

[CGPC18]; the trisection surface is Σh,b, the 4-dimensional sectors Xi are each dif-

feomorphic to \k(S1 ×B3), and the open-book decomposition on ∂X induced by the

trisection has pages Σp,b. For a disk bundle over Σg, a decomposition of Σg as de-

scribed in Lemma 3.1 gives h = 2g + 2, k = 2g + 1, and b = 4g + 2. Substituting

these values into (5.1) yields the simplified relations

2p+ 2g ≤ 0 ≤ 4g + 2 + p. (5.2)

With non-negative parameters, the relations (5.2) are satisfied only when p = g =

0, thus precluding the possibility of the base surface having higher genus. To our

knowledge, other variants of surface bundles over surfaces with base and fiber both

compact have not yet been considered through the lens of trisection theory. We thus

have a natural question on how the results in Chapter 4 might extend:

Question 5.5. Is there an adaptation of Theorem 4.3 to relative trisections of com-

pact surface bundles over surfaces, in cases other than disk bundles over S2?
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APPENDIX A

EXAMPLES (DIAGRAMS)

A.1 Trivial bundles

The figures that follow are trisection diagrams for trivial bundles, obtained from the

algorithm in Chapter 3 unless otherwise indicated.

Figure A.1: A trisection diagram for Σ2×T 2, viewed as the trivial T 2-bundle over Σ2
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Figure A.2: A trisection diagram for Σ2×S2, viewed as the trivial S2 bundle over Σ2

(a) (b)

Figure A.3: Two trisection diagrams for S2 × Σ2, viewed as the trivial Σ2-bundle
over S2. The first comes from the algorithm described in Chapter 3. The second is
obtained from the first by a sequence of handle slides; this diagram is diffeomorphic
to that given in Figure A.2



71

(a) (b)

Figure A.4: Two trisection diagrams for S2×T 2, first viewed as the trivial T 2-bundle
over S2, and then as the trivial S2-bundle over T 2

Figure A.5: A trisection diagram for T 2 × T 2
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A.2 Nontrivial bundles

The figures in this section are trisection diagrams for nontrivial bundles, obtained

using the modified algorithm from Chapter 4, or the conjectured extension to bundles

with non-orientable base.

Figure A.6: A trisection diagram for T 2 ×ϕ̃ T 2, with ϕ̃ defined in Example 4.11.
The diagram on the left is straight from the algorithm; the diagram on the right is
handle-slide equivalent and appeared previously in Figure 4.11

Figure A.7: A trisection diagram for RP2×̃S2
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