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University of Nebraska, 2019 

Advisor: Robert Powers 

Metabolomics is a rapidly growing field of study. Its growth reflects advancements in 

technology and an improved understanding of the impact of the environment on 

metabolism. As a result, metabolomics is now commonly employed to investigate and 

characterize human and plant metabolism. The first chapter of this thesis provides an 

introduction to metabolomics and an overview of the protocols for sample preparation, data 

collection and statistical analysis. The second thesis chapter describes in explicit detail the 

step-by-step process of extracting and analyzing metabolites collected from mammalian 

cells, specifically brain tissue with a focus on Parkinson’s disease. The chapter highlights 

important factors to consider including experiment design, sample collection, and data 

processing. Chapters 3 and 4 include the application of metabolomics to evaluate how the 

metabolome responds to the environment. Chapter 3 focuses on the neuronal response to 

the xenobiotic arsenic. It demonstrates how astrocytes increase glutathione production 

through an up regulation of the citric acid cycle and glycolytic processes. Arsenic was also 

observed to decreases related metabolites including citrate and lactate. These metabolites 

are important intermediates to ATP production and illustrate the interconnection of 

metabolomic processes. Chapter 4 shows how metabolite profiles can be used to evaluate 

the impact of environmental conditions on wines. Metabolite profiles of Pinot Noir derived 

from the same scion clone (Pinot noir 667) and grown in different regions along the Pacific 



   
 

 
 

coast were compared. NMR and a differential sensing array were used to profile the 

chemical composition of the samples. We observed how environmental conditions resulted 

in different metabolite profiles in the various wine samples. This thesis aims to highlight 

the application of metabolomic to various biological studies in order to evaluate the impact 

of external stimuli.  
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Chapter 1 

1. Introduction 

1.1 The Omics Field 

The ‘omics’ field refers to a data driven approach to study entire biological systems by observing 

the totality of the system rather than individual aspects of interest. Omics utilizes large quantities 

of biological data made available from the development of high throughput technologies, which 

includes the ability to quantify total levels of DNA, RNA, and proteins in a given system. By 

quantifying the complete set of biomolecules, a global overview of the molecular processes present 

in a system can be ascertained, and, accordingly, allows us to investigate and understand the 

organism in its entirety. Conversely, a traditional reductionist approach is likely to miss important 

relationships when only a single part is analyzed in isolation. Rather than studying individual genes 

or proteins, the 'omics' approach takes a holistic view of a biological system to identify significant 

variations in structure, function and/or biological activity.  

The earliest ‘omics’ studies took advantage of large amounts of data from DNA sequencing 

technology. For example, Sanger sequencing, allowed for the sequencing of entire organisms [1]. 

In this regard, genomics studies the entire genome rather than focusing on a specific set of genes 

of interest. The usefulness and popularity of genomics is directly correlated with the rapid analysis 

of genetic material from multiple organisms. Genomics allowed for the identification of novel 

genes associated with diseases and disorders, and streamlined the investigation of the cellular and 

functional role of specific genes [2]. Similarly, sequencing and microarrays allowed for the rapid 

quantification of RNA. Transcriptomics measures the total cellular levels of RNA to study gene 

expression and its role in disease [3]. Likewise, total cellular levels of proteins or the proteome is 
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identified and quantified with mass spectrometry (MS) or, occasionally, through assays [4]. 

Proteomics allows for a complete view on how proteins interact with drugs and the study of the 

role of proteins in disease mechanisms [5]. 

 

1.2 The Metabolome and Metabolomics 

The strength of ‘omics’ studies is the ability to evaluate the overall activity of a cell or organism 

as a result of a disease state, environmental stressor, or genetic mutation. Transcriptomics 

identifies changes in the transcription of genes. Proteomics analyzes changes in which RNA 

sequences are translated into proteins. Figure 1.1 shows the central dogma of biology, which 

illustrates how information flows from DNA to RNA to proteins. Metabolomics is the next logical 

step in the ‘omics’ cascade. Metabolomics is an analytical science that focuses on the study of 

metabolism. The discipline utilizes multiple analytical techniques and methods to quantify and 

identify metabolites. Metabolites are the small molecular-weight (< 1,000 Da) compounds found 

within a biofluid (e.g., serum, urine, etc.), cell, tissue, organ, or organism. Metabolites are 

intermediates and products of numerous cellular processes, which includes energy production, 

molecular and biomolecule synthesis, and signaling. Initially, metabolomics quantified 

metabolites as an extension of functional genomics. Measured metabolite concentrations provides 

a snapshot of the active metabolic processes which are then leveraged to identify the specific 

metabolic pathways affected by disease, environmental stressors, or gene deletion [6]. The 

observed metabolic dysfunction illustrates the downstream effects of a change in gene expression, 

RNA translation, or protein activity. A gene deletion or mutation may result in protein inactivation. 

Similarly, a disruption or a malfunction in transcription and/or translation may result in a decrease 
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in protein concentrations [7]. Of course, these processes may also result in an increase in protein 

activity or concentrations. Cellular processes are also regulated by various enzymes and proteins. 

Thus, quantifying disruptions in metabolite levels may serve as a proxy of genetic variation as well 

as a cellular response to external stressors [8]. External stressors, including toxins and bacteria, 

may damage DNA or alter protein and/or enzyme function. The application of metabolomics 

attempts to understand the biological response to various stressors. Metabolomics has increased 

exponentially over the last decade, and is now routinely applied to a wide variety of scientific 

concerns, including, food, nutrition, climate and environmental issues, human and livestock 

diseases, personalized medicine, drug development, and disease diagnosis [9].  

 

1.3 Application of Metabolomics  

1.3.1 Metabolomics as a Tool to Studying Disease 

Metabolomic dysfunction has been associated with human diseases for hundreds of years [10].  

For example, diabetes mellitus is marked by the dysfunction in the production or functionality of 

the hormone insulin [11]. Insulin plays multiple roles in carbohydrate metabolism including 

defusing glucose into muscle and fat, and increasing the amount of glucose in the bloodstream. 

Thus, insulin dysfunction may also result in hyperglycemia. Diabetes mellitus shares similar 

symptoms with diabetes insipidus, which is marked by a dysfunction of the antidiuretic hormone 

or receptor [12]. Biomarkers, in combination with clinical symptoms, are useful tools for disease 

diagnosis and monitoring disease progression [13]. For example, biomarkers can be useful for 

predicting the onset of neurodegenerative diseases such as Alzheimer’s disease [14]. Biomarkers 

have been observed in blood, serum, and cerebral spinal fluid [15-17]. Metabolomics allows for 
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the efficient discovery of novel biomarkers as well as linking diseases with metabolic 

dysfunction(s). In addition to biomarkers, metabolomics may also provide insights into the 

mechanism of a disease. Disease-associated metabolites or metabolic pathways may be used to 

identify new therapeutic targets for drug development or to provide insights into drug resistance. 

In fact, the more we understand about the underpinning processes of human diseases, the greater 

the appreciation we obtain regarding the importance of metabolism in disease.  

 

  

 

Figure 1.1: The central dogma of biochemistry illustrates the cascade of how information flows 

down from DNA to proteins. DNA is transcribed into RNA, which codes for proteins. External 

stressors, as well as inherited genetic variation result in downstream modification. Metabolomics, 

therefore, can capture dysfunction through altered metabolite levels. 
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Cancer is a disease that effected roughly 12 million Americans in 2008 with numbers expected to 

grow [18]. Cancer is characterized by metabolic dysfunction, which is used to differentiate cancer 

cells from healthy cells. For example, the “Warburg Effect” is a hallmark of cancer cells, which 

exhibit higher levels of glycolysis and a higher consummation of glucose [19]. Notably, a more 

efficient ATP production occurs through mitochondrial respiration and the citric acid (TCA) cycle 

then glycolysis [20]. One potential explanation is the upregulation of hexokinase II in cancer cells, 

which has been shown to be important for fixing glucose into glycolysis compared to oxidative 

phosphorylation [21].  

Diseases of the central nervous system (CNS) are also being investigated by leveraging complex 

metabolomic processes in the brain. In this regard, metabolomics may provide an overview of 

brain function or activity by monitoring various cellular processes. Neurodegenerative diseases, 

which include Parkinson's Disease (PD), Alzheimer’s, and Huntington's Disease, are characterized 

by the progressive death of neurons and the loss of neuronal activity.  For example, PD is the result 

of the death of dopaminergic neurons in the substantia nigra. The symptoms are progressive, start 

small, and build over time. The major symptoms of PD are motor disorders including stiffness and 

rigidity, which often start on one side of the body and then spreading throughout. There are also 

multiple non-motor symptoms that include depression, sleep behavior disorders, and nausea [22]. 

PD is difficult to diagnose and treat since symptoms appear during the mid- to late-stages of disease 

progression [23]. In 2010, roughly 630,000 individuals in America were diagnosed with PD with 

an estimated yearly medical cost of 14.4 billion dollars [24].  

The complex nature of the brain and the limited access to tissue samples complicates the diagnosis 

of PD. Clinical tests that include neurological scans and a physician’s assessment of a response to 

treatment are typical methods used to diagnose PD [25]. An early diagnosis of PD and the 
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immediate initiation of treatment may result in reduced symptoms for patients. Early drug-

intervention has been suggested to slow down disease progression [26]. However, PD diagnosis is 

difficult, requires the identification of specific symptoms, and often requires multiple physician 

visits. Understanding how PD alters metabolism may be beneficial to the early diagnosis and for 

monitoring disease progression through the use of biomarkers.  

The pathogenesis of PD is not fully understood. However, a few risk factors have been linked to 

the development of PD, which include age, genetics, and exposure to environmental toxins [27]. 

For example, exposure to copper or lead have been shown to be a high-risk factor for PD [28], 

which have been linked to oxidative stress [29]. Metabolomics enables understanding how these 

risk factors alter brain metabolism (i.e., neurons and astrocytes), and how dysregulated metabolism 

is correlated with the onset and progression of PD [30].  

Oxidative stress is a popular investigative target in CNS neurological disorders [31]. Oxidative 

stress is regulated by metabolomic processes involving oxidative species and antioxidants. 

Reactive oxygen species (ROS) include radical and non-radical compounds. ROS is generated 

mainly through aerobic metabolism, but can be induced by other ion transferring reactions. At high 

levels, ROS can damage lipids, proteins, and DNA [32]. However, ROS is also necessary and is 

important for the regulation of signaling pathways, including apoptosis. ROS activities occur 

through oxidation and reducing reactions [33].  ROS cellular levels are kept in balance with 

antioxidants, one of the most important antioxidants is glutathione (GSH) [34]. Thus, oxidative 

stress is an imbalance between pro-oxidants and antioxidants [35]. The resting brain consumes 

about 20% of the body’s oxygen [36], which results in a high production of ROS. Accordingly, 

the brain is highly susceptible to oxidative stress.  
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1.3.2 Metabolomics in Food science 

Food science studies the physical, biological, and chemical processes involved in food. This 

includes determining the authenticity, contamination, nutritional content, quality, and safety of 

food. Foods can be evaluated and compared by measuring levels of macro and micronutrients. The 

amount of water, carbohydrates, proteins, and lipids will affect the flavor, structure and nutritional 

content of food [37]. Metabolomics is a valuable tool to generate a chemical profile for different 

foods. These chemical profiles will list the identification and quantification of key metabolites. 

Alternatively, an entire spectrum may provide a chemical fingerprint. These chemical or 

metabolomic profiles may be useful for the traceability of food or beverages, or for evaluating 

quality [38]. This is particularly useful for high-cost items, such as honey, oil and wine, where 

authentication is useful to avoid or prevent fraud [39]. 

For plant-based beverages, a major factor impacting the quality and value of the product are the 

environment and the weather. Essentially identical food crops grown in different regions will 

exhibit a locality-specific metabolite profile. Accordingly, the variable chemical composition will 

impact the taste, smell and texture of the beverage. Wine, in particular, is often measured by the 

quality of the grapes. To address this issue, metabolite levels were measured in grape pulp skins 

and seeds from different regions of South Korea. A specific set of metabolites including sugars 

and proline were observed to increase in areas with high sun exposure and lower water levels. 

There was also a decrease of malate, citrate, and alanine [40]. Notably, these metabolomic 

differences extended to all stages of grape development. 1H NMR was used to identify region 

specific isopentanol and isobutanol compounds from wines and grapes from regions in Rioja [41]. 

The processing of the grapes also impacts the wine’s metabolome. For example, during 

fermentation, yeast consumes sugars and produce a variety of metabolites. Different strains of 
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yeast produced variable levels of succinate and glycerol [42]. Thus, metabolomics may help 

monitor and analyze the fermentation processes and asses its quality and verify its origin. A change 

in a metabolomics profile may easily identify the substitution of a cheaper, lower quality vintage 

or type of wine for a higher priced product [43]. Metabolomic studies follow a general protocol as 

outlined in figure 1.2. From a given biological sample, metabolites are extracted. Once extracted, 

the metabolites are identified and quantified. The resulting data is than analyzed and evaluated, 

typically with univariate and multivariate statistical methods. 

 

1.4 Protocols and Procedures 

 

Figure 1.2: The metabolomic process from sample collection to biological interaction. 

Samples can be collected from a wide variety of sample types.  

 

 

1.4.1 Sample Collection and Processing 

Metabolomics requires the collection of all the available metabolites from a biological sample to 

provide a complete view of the state of the system. Metabolite extraction is a very important step 

of the protocol since it determines what parts of the metabolome are studied [44]. Thus, 

metabolomics requires specialized and targeted extraction techniques to ensure the preservation of 
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the metabolites and the prevention of chemical (e.g., oxidation, degradation, etc.) or enzymatic 

transformation. An efficient extraction protocol is fast with minimal sample preparation. Minimal 

sample preparation is typically needed for samples that are already in a liquid state. Conversely, 

solid tissues or cells are typically subjected to sample homogenization or mechanical cell lysis 

[45]. The quenching of biochemical reactions is also necessary to obtain a correct view of the 

metabolome at the time of extraction. Different extraction procedures will highlight or emphasize 

different biochemical pathways as well as impacting the percentage of each metabolite 

successfully extracted [46]. In addition to chemical stability, physical properties such as solubility 

and polarity will drastically impact which metabolites are maintained for a given extraction 

solvent. Methanol and/or water will extract polar metabolites, such as amino acids. Chloroform 

and/or methanol will extract nonpolar metabolites [47], while dichloromethane and methanol has 

been used for lipid extraction [48]. Given these physical-chemical constraints, it is not possible to 

harvest the entire metabolome utilizing a single extraction technique. Instead, extraction methods 

typically focus on collecting a specific subset of the metabolome. Multiple subsets of metabolites 

can be extracted with repeated extractions [49]. An additional goal of the extraction process is to 

remove biomolecules while preserving the metabolites of interest. Reducing error and variability 

is key to choosing an optimized extraction protocol.  

Metabolites comprise a very diverse set of molecules that includes amino acids, vitamins, and 

polyols. Accordingly, metabolites exhibit a wide range of chemical stability, and are variably 

susceptible to changes in temperature, pH, ionic strength, oxidation and enzymatic activity. 

Furthermore, the type of biological sample, such as a cell lysate or a urine sample, may also 

differentially impact the chemical stability and the detection of specific metabolites. Sample 

transport and storage is important concern since many human clinical samples cannot be tested as 
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soon as collected. Most investigations of the impact of storage conditions on metabolite stability 

recommend storage of samples at or below –20°C to preserve as many metabolites as possible 

[50]. Freezing of the samples preserves the greatest number of metabolites. However, there is some 

degradation during an extended storage of more than 5 years [51]. Notably, amino acids are more 

prone to degradation compared to other metabolites [52]. Before samples are collected it is 

important to consider how samples will be processed and stored.  

Once the metabolome is collected, the metabolites need to be quantified and identified.  Nuclear 

magnetic resonance (NMR) spectroscopy and mass spectrometry (MS) are the analytical methods 

ordinarily used to characterize a metabolomics sample.  Both methods have inherent strengths and 

weaknesses in regards to their ability to quantify and analyze different samples and detect different 

metabolites.  

MS is highly versatile and is used in a majority of metabolomic studies. MS detects ions based on 

their mass to charge ratio, which is used to quantify and identify metabolites and fragments based 

on their known mass. An advantage of MS is its highly sensitive and universal detection of all 

ionizable metabolites. Sensitivity and selectivity of the mass spectrometry experiment is 

determined by the detection method. Mass spectrometers can be single or tandem instruments. 

Triple-quadrupole and triple-quadrupole ion trap MS are highly sensitive and are typically used in 

experiments where specific metabolites are targeted. Quadrupole-time of flight, linear-quadrupole 

ion trap-orbitrap, and Fourier transform ion cyclotron resonance are typically used for global 

profiling [53].  

While MS can detect and identifying multiple metabolites, the use of chromatographic separation 

helps avoid ion-suppression and addresses the low-mass range of metabolites. Of course, matrix 
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effects may still interfere with the detection of the metabolites [54]. Liquid chromatography and 

gas chromatography are the most common chromatographic techniques used in metabolomics. Gas 

chromatography provides high separation and is less prone to ion suppression, but often requires 

chemical modification to form ions in the gas phase [55]. Liquid chromatography does not require 

chemical modification, but may still modulate the composition of the metabolome due to variable 

recovery of the metabolite from the column, metabolite decomposition or chemical modification, 

or ion-suppression due to co-eluting matrix compounds [56].  

Ionization occurs typically after separation and is key for metabolite detection and quantification. 

Electron impact is common for GC-MS. It is a harder ionization method and tends to lead to sample 

fragmentation; however, it tends to avoid matrix effects [54]. Electrospray ionization is commonly 

used in LC-MS. It is a softer technique and is less prone to fragmentation, but ion suppression is 

common. Ion suppression occurs when charges on some molecules are lost due to the presence of 

endogenous compounds that are more efficient in acquiring a charge. This negatively impacts the 

reproducibility and accuracy of the metabolomics experiments. Ion suppression can be reduced 

during experimentation design through extraction of only molecules of interest or separating 

potentially competing molecules [57]. The use of multiple ionization methods has been suggested 

to expand the number of detectable metabolites. [58] 

Mass to charge ratio is used to identify the metabolite. However, the reliably identification of 

metabolites by exact mass alone is challenging given the narrow mass distribution of metabolites 

and the fact that a large number of molecules have the same molecular formula and mass. 

Combining exact mass with retention time may improve the accuracy of metabolite identification. 

Chromatography provides the experimental retention times. Software programs, such as Progensis 

QI, are routinely used to identify metabolites based on mass and retention time. However, manual 



12 
 

 

confirmation of metabolites is necessary to avoid misidentification with molecules with similar 

mass and retention time. MS/MS fragmentation patterns can be matched with data from the PRIMe 

website (http://prime.psc.riken.jp/) to further improve the assignment confidence [59]. 

Nuclear Magnetic Resonance (NMR) is also widely used in metabolomics. NMR detects the 

absorbance of radio-frequency (RF) energy by specific nuclei in a magnetic field. NMR can detect 

RF absorbance by 1H, 13C, and 31P nuclei. NMR samples require minimal sample preparation. This 

is often limited to adding a deuterated buffer or solvent, and an internal standard. NMR chemical 

shift standards include sodium trimethylsilylpropanesulfonate (DSS), 3-(Trimethylsilyl)propionic-

2,2,3,3 acid sodium salt (TMSP), and trimethylsilylpropanoic acid (TSP), which are also critical 

for quantitation [60]. Buffers are used sample-dependent pH variations, which is a common 

problem for clinical samples. For example, a phosphate buffer is typically added to urine samples 

to maintain a pH of 7. 

The most common NMR experiment used in metabolomics detects protons or 1H. 1H is an NMR 

active nuclei, is a very common atom in organic molecules, and has a natural abundance of 99.98%. 

NMR experiment acquisition time is directly proportional to the desired sensitivity. For 1H NMR 

metabolic experiments, high sensitivity or signal-to-noise (S/N) can be obtained with acquisition 

times of 5 minutes or less. Conversely, the natural abundance of 13C is only 1.1% requiring 

significantly longer experimental times (> hours) to achieve the same relative S/N. Despite 100% 

natural abundance, 31P NMR experiments are not as common, but are increasing in popularity. For 

example, phosphorylation is important in various biological reactions that include glycolysis [61]. 

Metabolomics typically rely on one-dimensional (1D) 1H NMR experiments or two-dimensional 

(2D) 1H-13C correlated experiments. 1D NMR experiments allow for easy quantification of 

metabolites as intensities are directly correlated with metabolite concentrations. 2D NMR 

http://prime.psc.riken.jp/
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experiments, while more time consuming, allow for easy identification of metabolites by utilizing 

multiple correlated chemical shifts. NMR is not as sensitive as MS, but can detect metabolites with 

concentrations as low as ~ 3 M. NMR also requires a larger sample volume, typically from 500 

L, for common 5 mm NMR tube, to 35 L for a 1.7 mM NMR tube.  

Metabolite identification is accomplished by matching experimental chemical shifts to chemical 

shifts from standard spectra in NMR databases. For example, the ECMDB (Escherichia coli 

metabolome database, http://www.ecmdb.ca) is a compressive database that contains information 

about the genome and metabolome of E. coli. The database contains 3760 compounds [62]. 

Chemical shifts are very sensitive to variations in the chemical environment, such as differences 

in pH, ionic strength and temperature. Accordingly, databases routinely contain chemical shifts 

collected at a pH of 7 and a temperature of 25 oC. Thus, an improvement in assignment accuracy 

is obtained by matching the databases’ experimental parameters. Nevertheless, a chemical shift 

error tolerance of 0.05 and 0.5 ppm is commonly required for 1H and 13C chemical shifts, 

respectively.  

 

1.4.2 Statistical Analysis of Metabolomics Data 

Once NMR or MS spectra have been successfully collected, the data set is subjected to a variety 

of statistical analysis to identify the underlying metabolic differences. Typical data analysis 

methods focus on observing patterns in multivariate data sets. Proper data analysis requires 

extracting the significant spectral data that defines the group separation while accounting for non-

biological sources of variance. Cell growth or sample collection, as well as sample preparation and 

data collection can introduce variation and bias in the data set. Clinical samples have intrinsically 
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large biological variations due to numerous factors such as age, diet, ethnicity, gender, physical 

activity, race, and weight. 

Principal component analysis (PCA), partial least squares regression (PLS), and orthogonal 

projections to latent structures (OPLS) are multivariate statistical models commonly used in 

metabolomics. PCA is an unsupervised technique, where sample group membership is not 

identified. OPLS and PLS are supervised techniques where group membership is defined. As a 

result, OPLS and PLS suffer from over-fitting the data and require extensive validation of the 

resulting models. These multivariate statistics methods identify class separation by reducing data 

to a few components and determining the source of the variance in the data set. The goal is to 

identify changes in metabolite levels in response to a treatment or stressor. PCA is primarily used 

to identify without bias the presence of group separation or variance in the data. OPLS is used to 

identify the spectral signals or metabolites that define the group-based variation.  

After a statistical model is generated, it is important to validate the model. Without proper 

validation, erroneous metabolic perturbations may be improperly assigned to falsely differentiated 

groups. Model quality and validation is commonly assed using R2, Q2, and p-values. R2 (ranges 

from 0 to 1) is the measure of the degree of fit to the data. Q2 (ranges from 0 to 1) is a quality 

assessment corresponding to the measure of the degree of fit for the data left out. A p-values < 

0.05 from CV-ANOVA or a cross-permutation test provide model validation [63]. In practice, 

good PCA or OPLS models yield extremely small p-values, much lower than 0.001. 

 

 1.5 Summary of Work 
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Chapter 2 provides a detailed description of the metabolomics protocol developed and employed 

to investigate PD and other neurodegenerative diseases. The protocol provides a detailed step-by-

step description for acquiring metabolomics data from human cell cultures and mouse brain 

tissues.  The protocol includes the step by step direction for NMR and MS metabolite collection 

and analysis. It also illustrates several statistical analysis methods for both multivariate and 

univariate approaches. The chapter also covers the process of metabolite identification, a key step 

to understand what cellular process were altered. Finally, it includes guides on univariate and 

multivariate statistical methods and ways to validate significance.  

Chapter 3 focuses on the effect of xenobiotic arsenic, a common metalloid associated with 

Parkinson’s’ disease. Cultured astrocytes were treated with and without arsenic to evaluate 

changes in cellular metabolism, especially in regards with glycolysis. Arsenic treatment was 

observed to induce the production of potentially neurotoxic glutamate and a reduction in lactate 

and citrate. Glycolysis may be upregulated to produce glutamate for glutathione (GSH), and as a 

byproduct disrupted the production of other metabolites. 

Chapter 4 examined the effect of different environments on grapes used in Pinot Noir wine. 

Untargeted 1D 1H NMR metabolomics and a targeted differential sensing (DS) array were 

combined to characterize the chemical profile of Pinot Noir wines due to different environments. 

Each wine was differentiated by variable combinations of NMR and assay features. The NMR data 

provided a comprehensive coverage of the metabolome, while the DS array targeted phenolic 

compounds. Thus, the DS assay and the NMR data likely detect a distinct set of metabolites and 

provided a complementary characterization of the wines. 
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Chapter 2  

2. Metabolomics Analyses from Tissues in Parkinson’s disease 

2.1 Introduction 

Parkinson’s disease (PD), the second most common neurodegenerative disorder worldwide, is 

characterized by the selective loss of dopaminergic neurons of the substantia nigra pars compacta 

(SNpc) [1]. There is no current treatment to stop neuronal cell death progression or to cure PD. 

Thus, to find neuroprotective strategies, a clear understanding of the mechanism(s) involved in 

dopaminergic cell death is needed. Mitochondrial dysfunction and the concomitant alterations in 

redox homeostasis and bioenergetics (energy failure) are thought to be a central component of PD 

[2-4]. One means of analyzing the state of a biological system is by monitoring the metabolome, 

i.e., all the metabolites present in a cell, biofluid, tissue, organ, or organism [5, 6]. In this regard, 

metabolomics is the study of the changes in the concentration and the identity of these metabolites 

that result from environmental or genetic stress, or from a disease state or drug treatment. A better 

understanding of the biological phenotype during disease development and progression may be 

achieved by identifying and quantifying variations in metabolite levels. In essence, metabolomics 

provides a top-down view of complex biological systems. Accordingly, metabolomics has evolved 

to become an important resource for systems biology and a valuable tool to study disease states 

[7]. Metabolomics has been successfully applied to study neurological and neurodegenerative 

disorders [8]. Indeed, previous studies have demonstrated the applicability of metabolomics in: 1) 

the identification of potential biomarkers of PD diagnosis, onset and progression [9-11]; 2) the 

identification of novel mechanisms of disease progression [12-15]; and 3) the assessment of 

treatment prognosis and outcome [16]. Using metabolomics, we and others have established a link 
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between the alterations in central carbon metabolism induced by PD risk factors, redox 

homeostasis and bioenergetics and their contribution to the survival or death of dopaminergic cells 

[2].   

Unlike other OMICs techniques, the composition of the metabolome can easily change from the 

processing, handling and storage of samples [17]. Metabolites may chemically transform or 

degrade due to residual enzymatic activity, from oxidation, from low chemical stability, or from 

other chemical activity. Thus, robust and reproducible isolation of metabolites is a key step in the 

metabolomics workflow. Univariate and multivariate statistical analysis are also an important 

aspect of a metabolomics study [18]. But, the incorrect application of statistical techniques, the 

insufficient preprocessing, the lack of proper model validation, or the over-interpretation of models 

and outcomes are all common concerns that often lead to erroneous or misleading biological 

insights from metabolomics data [18]. Metabolomics has commonly relied on mass spectrometry 

(MS) [19] or nuclear magnetic resonance (NMR) [20] as the primary analytic source for sample 

analysis. Again, a successful metabolomics investigation is dependent on appropriate protocols for 

data collection, processing and analysis. To address these issues, we have provided a detailed, step-

by-step description of a metabolomics workflow specifically applicable to the analysis of brain 

cell cultures and tissues used in our research using PD-experimental models (see Figure 2.1). We 

describe methods to assist in the efficient cell culturing, metabolite extraction, and data collection 

and analyses. Alongside, we discuss a combined NMR and MS approach to improve metabolome 

coverage, which allows for the identification of key neurological metabolites. While the protocols 

outlined in this chapter have been developed using PD-experimental models, most of the 

methodology may be universally applied to any metabolomics study. 
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Figure 2.1: A schematic diagram is shown that outlines the overall metabolic workflow used in 

the analysis of brain cell cultures and tissues from experimental PD-models. Only the major 

protocol steps are highlighted in the flow diagram. The figure was generated using free medical 

images from Servier Medical Art (https://smart.servier.com/) under the Creative Commons 

License Attribution 3.0 Unported (CC BY 3.0). 

 

2.2 Materials 

Prepare all aqueous solutions and buffers with either Nanopure H2O or deuterated water (D2O). 

Please follow all safety regulations in regards to handling biological samples and the disposal of 

both chemical and biological waste. A valuable rule-of-thumb in the handling of all tissues, 

biofluids (e.g., blood, urine, etc.) and cell lines is to assume a contamination with a virus, pathogen 

or toxin and to handle the samples accordingly.    

2.2.1 Laboratory Equipment 

1. Bruker AVANCE III HD 700 MHz NMR spectrometer equipped with a 5 mm quadruple 

resonance QCI-P cryoprobe (1H, 13C, 15N, and 31P) with z-axis gradients, an automatic tune 

and match system (ATM), and a SampleJet automated sample changer system with Bruker 

ICON-NMR software (Bruker Biospin, Billerica, MA) 
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2. Synapt G2 HDMS quadrupole time-of-flight (TOF) MS instrument equipped with an ESI 

source (Waters, Milford, MA). 

3. Waters ACQUITY M-class Xevo G2-XS QToF MS instrument equipped with an ESI 

source (Waters, Milford, MA). 

4. BSL-2 biosafety level grade hood (e.g., Biological Safety Cabinet, LF BSC class 2 type A, 

Thermo Fischer Scientific, Waltham, MA). 

5. Nanopure ultra water system (Barnstead Inc., Dubuque, IA) 

6. Lab Armor bead bath (Chemglass Life Sciences, Vineland NJ) 

7. Incubator capable of maintaining physiological temperature and proper carbon dioxide 

levels (e.g., HERA CELL VIOS 250i CO2 Incubator, Thermo Fischer Scientific, Waltham, 

MA). 

8. pH meter and probe 

9. Refrigerated centrifuge capable of speeds up to 13000 rpm (e.g., SORVALL micro 21R 

centrifuge, Thermo Fischer Scientific, Waltham, MA). 

10. Speed Vac for solvent removal (e.g., SAVANT SC210A SpeedVac concentrator, Thermo 

Fischer Scientific, Waltham, MA)). 

11. Freeze dryer to remove water (e.g., FreeZone 4.5, LABCONCO, Kansas City, MO)). 

12. 1000 µL to 1 µL pipettes 

13. FastPrep-96 homogenizer (MP Biomedicals, Santa Ana, CA) for brain tissue analysis, uses 

Lysing Matrix D. 

14. ACCU-SCOPE 3030ph microscope (Commac, NY) 

15. cryogenic storage container (Taylor Wharton, Theodor, Al) 

16. -80°C freezer 
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2.2.2 Disposable supplies 

1. 1 mL to 1 L pipette tips 

2. 10 mL aspirating pipettes 

3. 15 mL Falcon tubes 

4. 2 mL Eppendorf tubes 

5. 1 mL screw-cap microcenterfuge tubes 

6. LC-MS certified total recovery vial (Waters, Milford, MA) 

2.2.3 Isotopically labeled solvents and reagents (see Notes 1 and 2) 

1. Deuterium oxide (D2O, 99.8 atom %D)  

2. 3-(trimethylsilyl) propionic-2,2,3,3-d4 acid sodium salt (TMSP-d4, 99.8 atom % D) 

3. Dimethyl sulfoxide-d6 (DMSO-d6, 99.8 atom %D 

4. 13C6-glucose (99% 13C) 

5. 13C2-acetate (99% 13C) 

6. Other potential 13C-carbon labeled or 15N-nitrogen labeled reagents  

 

2.2.4 Buffers  

1. Wash buffer, phosphate-buffered saline (PBS) at pH 7.4: 137 mM NaCl, 2.7 mM KCl, 10 

mM Na2HPO4
 and 2 mM KH2PO4. To prepare 1 L PBS buffer at pH 7.4, add 8.0 g of NaCl, 

0.2 g of KCl, 2.68 g of Na2HPO4
.7H20 and 0.24 g of KH2PO4 to a final volume of 1 L of 

Nanopure water. 
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2. NMR buffer: 50 mM phosphate buffer at pH 7.2 (uncorrected, see Note 3) in 600 μL of 

99.8% D2O. Add 50 μM (one-dimensional [1D] NMR experiment) or 500 μM (two-

dimensional [2D] NMR experiment) TMSP-d4 as an internal chemical shift reference. 

3. MS extraction buffer: Mix 20 mL LC-MS grade water with 80 mL LC-MS grade methanol. 

Store at –40°C. 

4. MS reconstitution solution: LC-MS grade water with 0.1% LC-MS grade formic acid. 

5. LC mobile phase A: LC-MS grade water with 0.1% LC-MS grade formic acid. 

6. LC mobile phase B: LC-MS grade acetonitrile/methanol with 0.1% LC-MS grade formic 

acid. 

 

2.2.5 Cell lines and media 

1. For cell cultures, we have used human dopaminergic neuroblastoma cell lines such as SK-

N-SH (HTB-11, ATCC, Manassas, VA) [15], SH-SY5Y (CRL-2266, ATCC), N27 

immortalized rat dopaminergic cells (SCC048, EMD Millipore, Temecula, CA) [31], 

human immortalized midbrain neuronal precursors LUHMES (CRL-2927, ATCC) and 

primary rat/mouse astrocytes [32] following the specifications of the commercial providers 

or published protocols.  

2. Cell culture media and supplements are obtained from commercial vendors such as 

GIBCO/Life Technologies (Grand Island, NY), Fisher Scientific, Hyclone (GE Healthcare, 

Logan, UT) and Atlanta Biologicals (Flowery Branch, GA). 

2.2.6 Software and Databases 

1. Bruker ICON-NMR software for automated NMR data acquisition (Bruker Biospin, 

Billerica, MA). 
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2. MVAPACK metabolomics toolkit for processing and analyzing chemometric data 

(http://bionmr.unl.edu/mvapack.php) [21]. 

3. PCA/PLS-DA utilities for quantifying separation in PCA, PLS-DA and OPLS-DA scores 

plots (http://bionmr.unl.edu/pca-utils.php) [22]. 

4. NMRPipe software for processing and visualizing NMR data  

(https://www.ibbr.umd.edu/nmrpipe/install.html) [23]. 

5. NMRViewJ software for processing and visualizing NMR data (One Moon Scientific, Inc. 

Westfield, NJ; https://nmrfx.org/) [24]. 

6. MassLynx V4.1(Waters Corp., Milford, MA) for mass spectral data processing 

(http://www.waters.com/waters/en_US/MassLynx-Mass-Spectrometry-Software-

/nav.htm?locale=en_US&cid=513164). 

7. Progenesis QI (version 2.0, Nonlinear Dynamics, Newcastle, UK) for processing and 

analysis of LC-MS data (http://www.nonlinear.com/progenesis/qi/) 

8. R statistical package (https://www.r-project.org/) [25]. 

9. Chenomx (Chenomx, Inc., Edmonton, AB, Canada) software for automated metabolite 

assignment and quantification from 1D 1H NMR spectra (https://www.chenomx.com/). 

10. Mzmine software (http://mzmine.github.io/download.html) for metabolite identification 

from MS data [26]. 

11. MetaboAnalyst software for the statistical, functional and integrative analysis of 

metabolomics data (http://www.metaboanalyst.ca/) [26]. 

12. ChemSpider chemical structure database http://www.chemspider.com/ [27]. 

13. Human Metabolomics Database (HMDB) of reference NMR and mass spectral data for 

known metabolites (http://www.hmdb.ca/) [28]. 

http://bionmr.unl.edu/mvapack.php
http://bionmr.unl.edu/pca-utils.php
https://www.ibbr.umd.edu/nmrpipe/install.html
https://nmrfx.org/
http://www.waters.com/waters/en_US/MassLynx-Mass-Spectrometry-Software-/nav.htm?locale=en_US&cid=513164
http://www.waters.com/waters/en_US/MassLynx-Mass-Spectrometry-Software-/nav.htm?locale=en_US&cid=513164
http://www.nonlinear.com/progenesis/qi/
https://www.r-project.org/
https://www.chenomx.com/
http://mzmine.github.io/download.html
http://www.metaboanalyst.ca/
http://www.chemspider.com/
http://www.hmdb.ca/
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14. Biological Magnetic Resonance Data Bank (BMRB) of reference NMR data for known 

metabolites http://www.bmrb.wisc.edu/metabolomics/) [29]. 

15. Non-uniform schedule (NUS) generator (http://bionmr.unl.edu/dgs-gensched.php) for 

NUS NMR data acquisition [30]. 

 

2.3 Methods 

2.3.1 Experimental PD models 

The etiology of PD has yet to be clearly established. The major risk factor identified for PD is 

aging as its prevalence and incidence increases exponentially from ages 65 to 90 [31]. A fraction 

of PD occurrence (~10%) is related to mutations in genes such as those encoding α-synuclein 

(SNCA/PARK1-4), DJ-1 (PARK7), PTEN-induced putative kinase 1 (PINK1/PARK6), leucine-rich 

repeat kinase 2 (LRRK2/PARK8) and parkin (PARK2) [32, 33]. However, over 85% of PD occurs 

in a sporadic (idiopathic) form without a clearly defined genetic basis. Epidemiological studies 

suggest that lifestyle, occupational and environmental exposures can increase the risk of 

developing PD [34-36]. Thus, it is thought that PD arises from the convergence of genetic 

susceptibility, environmental exposures, and aging.  

Cellular and animal disease models based on both genetic-, toxin- or stress-induced 

neurodegeneration have been used to understand PD pathogenesis [35, 37] (see Figure 2.2. 

However, not all experimental models recapitulate all PD hallmarks in their entirety. Genetically 

engineered PD mouse models have been developed for the overexpression of mutant genes [35, 

33]. However, only marginal or null dopaminergic cell death has been observed in genetic-based 

animal models. Recent advances in mammalian genome engineering technology have led to the 

generation of rat PD models that seem to better reproduce PD hallmarks including progressive loss 

http://www.bmrb.wisc.edu/metabolomics/
http://bionmr.unl.edu/dgs-gensched.php


32 
 

 

of dopaminergic neurons, locomotor behavior deficits, and age-dependent formation of abnormal 

α-synuclein protein aggregates (Lewy bodies) [38]. 

 

 

Figure 2.2: Common models of PD. (A) A summary of advantages and disadvantages of common 

models of PD. (B) A List of some model specific characteristics observed for different PD models. 

The figure was generated using free medical images from Servier Medical Art 

(https://smart.servier.com/) under the Creative Commons License Attribution 3.0 Unported (CC 

BY 3.0). 

On the other hand, the use of mitochondrial/environmental toxins such as 1-methyl-4-phenyl-

1,2,3,6-tetrahydropyridine (MPTP, or its active metabolite 1-methyl-4-phenylpyridine MPP+) and 

the pesticides rotenone and paraquat that induce dopaminergic cell death in vitro and in vivo, is 

supported by clinical and epidemiological studies [35]. Several other toxicants, such as metals, 

diverse pesticides, polychlorinated biphenyls, diet as well as inflammatory processes have been 

implicated as PD risk factors [39, 40].  However, it is clear that not a single environmental exposure 

is responsible for all PD cases nor are they the single cause for PD. Accordingly, new models 

studying gene-environment interactions have also emerged.  
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For the most part, experimental PD-models are design to reproduce one or more key aspects of PD 

pathogenesis including: genetic modifications, mitochondrial dysfunction, oxidative stress, 

accumulation of misfolded aggregates and impaired proteostatic processes, alterations in 

dopamine metabolism and inflammation [35]. Experimental PD models have helped to identify 

important mechanisms regulating dopaminergic cell death and survival, and they should continue 

to enhance our understanding of PD pathogenesis. In our metabolomics investigations, we have 

used neuronal-like cell cultures of neuroblastoma cells and immortalized midbrain dopaminergic 

cells from rats and humans exposed to PD-related insults and gene-environment interactions. In 

addition, we have also evaluated changes in the metabolome of mice exposed to pesticides and 

heavy-metals liked to PD or parkinsonisms [41, 15]. The protocol described below is a general 

protocol for isolating and characterizing changes in the metabolome applicable to different types 

of cell cultures and brain.   

 

2.3.2 Cell culture 

Cell culture procedures must follow published guidelines to avoid misidentification and 

contamination [42]. We recommend to start with one 100 mm2 dish of 90% confluent cells per 

sample/replica, but if the metabolite is abundant enough, this can be reduced to a smaller sample 

size.  

 

For PD-related insults, cells can be treated with mitochondrial toxins (MPP+ or rotenone), 

pesticides (paraquat or dieldrin) or the overexpression of PD-related genes (WT or mutant forms 

of α-synuclein via viral vectors or conventional transfection procedures), as explained in our 
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previous publications [41, 45]. The exact dose and time course must be determined empirically, 

but we recommend to work with a dose that will induce cell death of ~50% within no less than 48 

h as neurodegeneration is a slow process, and evaluate changes in the cellular metabolome prior 

to any detection of cell death (~24 h of treatment) (see Note 4-6 for considerations in regards to 

cell survivability, sample handling and randomization). 

 

2.3.3 Unlabeled Metabolomics Sample Number/Replicas 

Use the maximal number of replicates per group that is possible (see Note 7). A typical number of 

replicate cultures per group is ten. Adjust the number of replicates given practical considerations, 

such as the number of groups, but the number of replicates per group should not be below six. 

 

2.3.4 Isotopically Labeled Metabolomics Samples  

Identify the 13C-, 15N or other isotopically labeled tracer. The tracer should be in accordance to the 

metabolic pathway of interest and expected to be affected by the experimental treatment. 13C6-

glucose is a common choice for a tracer since it highlights central carbon metabolism (glycolysis 

and TCA cycle), but a variety of other tracers may be used. Equimolary supplement culture media 

with the appropriate 13C-carbon labeled source. (see Note 8).  

 

2.3.5.   Extracting Water Soluble Metabolites from PD Cell Cultures 

All samples should be kept on ice or at 4 oC during sample preparation or handling. Samples should 

be stored at -80 oC, but, ideally, samples should be immediately analyzed. In addition to keeping 
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samples cold, there are four other issues that are critical to the successful preparation of 

metabolomics samples: (1) speed, (2) consistency, (3) random processing of samples, and (4) the 

efficient removal of all biomolecules and cell debris [6]. The processing of all metabolomics 

samples should proceed as quickly as possible while minimizing any loss in quality. Metabolites 

can chemically degrade or transform within milliseconds due to enzymatic activity, oxidation, 

chemical instability, or any number of other chemical processes [43]. Accordingly, rapidly 

inactivating and removing all biomolecules and cell debris (usually through methanol/ethanol 

precipitation) that may transform or bind a metabolite is a necessary step of the protocol (see Notes 

9).  

1. Collect 1 mL of the media for metabolomic analysis. In addition to the cell extract, the 

media may should also be analyzed for metabolomics changes as many metabolites get 

exchanged or effluxed outside of the cell. In this regards, the media is treated simply as 

another cell extract. 

2. Wash the cells twice with 5 mL of PBS to remove debris. Discard the wash. 

3. Lyse and quench cells with 1 mL of pre-chilled methanol at -20 oC. Incubate cells at -80 

°C for 15 min. 

4. Using a cell scraper, detach and collect cell debris and methanol in a 2 mL microcentrifuge 

tube. Confirm cell detachment using a microscope and repeat lyse and quenching if 

necessary. 

5. Centrifuge the 2 mL microcentrifuge tube for 5 min at 15,000 g and 4 °C to pellet the cell 

debris. 

6. Collect the supernatant and transfer to a new 2 mL microcentrifuge tube. 
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7. Repeat the metabolome extraction by adding 0.5 mL of an 80%/20% mixture of 

methanol/water kept at -20°C to the cell pellet.  

8. Centrifuge the cell pellet with the extraction solvent for 5 min at 15,000 g at 4 °C to pellet 

the cell debris. 

9. Collect the supernatant and transfer it to the 2 mL microcentrifuge tube containing the 

original methanol extract. Combine the two extraction supernatants into a single tube.  

10. Repeat the metabolome extraction a third time by adding 0.5 mL of ice cold water to the 

cell pellet. 

11. Centrifuge the cell pellet with the extraction solvent for 5 min at 15,000 g at 4 °C to pellet 

the cell debris. 

12. Collect the supernatant and transfer it to the 2 mL microcentrifuge tube containing the two 

previous extraction supernatants. Combine the three extraction supernatants into a single 

tube. 

13. Split the sample into two 2 mL Eppendorf tube. Aliquot 100 L for MS analysis and the 

remainder of the sample is used for NMR analysis. 

14. Use a SpeedVac or a rotary evaporator to remove the methanol. 

15. Flash-freeze the samples in liquid nitrogen.  

16. Remove the water and bring to dryness using a lyophilizer. 

17. Repeat steps 1 to 16 for each replicate and for each group (see Note 6). 

18. Store samples in a -80 oC freezer or proceed to preparing the NMR and/or MS samples (see 

sections 3.7 and 3.8).  

 

2.3.6 Extracting Water Soluble Metabolites from Mouse Brain Tissue 
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1. Similar to cell culture treatments, a number of experimental paradigms have been used to 

model PD in vivo [35, 44]. We have used the subchronic exposure to pesticides and metals 

[15], but the protocol described can be applied to all murine animal models. 

2. We have successfully used 200 mg/kg of 13C6-glucose at a total volume of 100 µL 

administered to fasted mice (overnight) via intra-orbital injection to label metabolites 

extracted from mouse brain tissue (Figure 2.3). 

3. Harvest and dissect the mice brain tissue (15 to 20 min after the injection of 13C-labeled 

tracer if used, see Figure 2.3). 

4. Transfer the tissue to a 2 mL microcentrifuge tube containing Lysing Matrix D and weigh 

the amount of tissue harvested from the mice, and immediately freeze the tissue with liquid 

nitrogen. 

5. Extract the tissue with a 1:1 mixture of methanol and water prechilled to -20 oC. The 

volume of the extraction solvent depends upon the weight of the tissue.  

6. Homogenize the sample in a FastPrep with lysing Matrix D at 1300 rpm for 20 seconds, 

and for two cycles. 

7. Incubate the tissue at -80 oC for 10 min to extract the metabolome.  

8. Centrifuge at 1000 g for 10 min at 4 oC to remove tissue debris 

9. Collect the supernatant and transfer to a new 2 mL microcentrifuge tube. 

10. Repeat the metabolome extraction by adding 0.7 ml of 1:1 mixture of methanol and water 

prechilled to -20 oC to the tissue pellet.   

11. Repeat steps 6 to 8 and combine the supernatant with the previous extract.  
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12. Normalize the metabolomics sample to the tissue weight by diluting all of the samples to a 

final volume of 1.5 mL. Add as much of a 1:1 mixture of methanol and water prechilled to 

-20 oC as needed to achieve a final volume of 1.5 mL.  

13. Split the sample into two 2 mL Eppendorf tube. Aliquot 100 L for MS analysis and the 

remainder of the sample is used for NMR analysis. 

14. Use a SpeedVac or a rotary evaporator to remove the methanol. 

15. Flash-freeze the samples in liquid nitrogen.  

16. Remove the water and bring to dryness using a lyophilizer. 

17. Repeat steps 3 to 16 for each replicate and for each group (see Note 6). 

18. Store samples in a -80 oC freezer or proceed to preparing the NMR and/or MS samples (see 

sections 2.3.7 and 2.3.8).  
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Figure 2.3: In vivo evaluation 13C6-glucose metabolism. Fasted mice (overnight) were 

administered 13C-glucose (200 mg/kg body weight , 100 µl) via retro-orbital injection and 

brain regions were dissected at the time indicated for NMR analysis. 
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2.3.7 Preparation of NMR Samples 

1. For one-dimensional (1D) NMR experiments, lyophilized cell-free lysates or tissue 

extracts are suspended in 600 μL of 100% 50 mM D2O phosphate buffer (uncorrected pH 

7.2) with 50 µM 3-(trimethylsilyl) propionic-2,2,3,3-d4 acid sodium salt (TMSP-d4) 

2. For two-dimensional (2D) NMR experiments, lyophilized cell-free lysates or tissue 

extracts are suspended in 600 μL of 100% 50 mM D2O phosphate buffer (uncorrected pH 

7.2) with 500 µM TMSP-d4. 

3. Centrifuge the sample at 14,000 g for 10 min to remove any particulates. 

4. The sample is transferred to a 4” 5 mM SampleJet NMR tube with a pipette (see Note 10). 

5. Repeat steps 1 to 4 for each replicate and for each group (see Note 6) 

6. Each sample is added to a 96 well plate SampleJet configuration equilibrated to 4 °C to 

prevent metabolite degradation (see Figure 2.4). 
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Figure 2.4: High-throughput sample preparation. Images illustrating the loading of replicate 

metabolomics samples into the (A) 96 well plate SampleJet configuration and (B) the LC-MS 

autosampler. 

 

2.3.8 Preparation of Mass Spectrometry Samples 

1. Dissolve lyophilized cell-free lysates or tissue extracts in 20 µL of reconstitution solution 

and vortex for 30 s. 

2. Centrifuge the solution at 14,000 g for 10 min to remove any particulate matter. 

3. Transfer the supernatant to LC vials and keep them in wet ice. 

4. Repeat steps 1 to 3 for each replicate and for each group (see Note 6) 

5. Prepare quality control (QC) samples by pooling a 1 L aliquot from each biological 

sample and transferring to a new LC vial labeled as QC. 
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6. Place all vials into the autosampler equilibrated to 4 °C to prevent metabolite degradation 

(see Figure 2.4). 

 

2.3.9 NMR Data Collection 

All NMR experiments are conducted at 298 K using a Bruker AVANCE III HD 700 MHz 

spectrometer equipped with a 5 mm quadruple resonance QCI-P cryoprobe (1H, 13C, 15N, and 31P) 

with z-axis gradients. An automatic tune and match system (ATM), and a SampleJet automated 

sample changer system with Bruker ICON-NMR software were used to automate the NMR data 

collection (see Figure 2.5).  
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Figure 2.5: High-throughput NMR data collection. ICONNMR screenshots illustrating the 

stepwise workflow for setting-up a high-throughput 1D 1H NMR metabolomics screen. 

2.3.9.1 1D 1H NMR 

1. Load the NMR metabolomics samples into the SampleJet automated sample changer system 

(see Figure 2.4). Check that the SampleJet is in the correct mode (i.e., 5 mm tubes) 

2. Log into an account on the spectrometer workstation and start the Topspin software.  
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3. The first NMR sample is lowered into the magnet using the Bruker command, sx 101, where 

101 corresponds to sample one in rack one.  

4. The spectrometer is locked onto the D2O solvent frequency using the Bruker command, lock 

D2O. 

5. The NMR sample is shimmed for optimal signal and suppression of the water signal by typing 

the Bruker command topshim. This will initiate an automated gradient shimming procedure, 

which may take a few min to complete (see Note 11).  

6.  The sample is automatically tuned and matched using the ATM system by typing the Bruker 

command, atma. 

7. The 90-degree pulse length (μs) is determined by measuring a null spectrum with an 

approximate 360-degree pulse using the Bruker zg pulse sequence (see Note 12).  

8. A 1D 1H NMR spectrum is obtained for each sample using a standard excitation sculpting 

water suppression pulse program (Bruker zgesgp pulse sequence) that provides optimal 

suppression of the residual water signal while maintaining a flat baseline (see Note 13).  

9. Typical experimental parameters for a 1D 1H NMR spectrum obtained on a Bruker 700 

MHz spectrometer with a cryoprobe correspond to 128 scans, 16 dummy scans, 32,768 

data points, a spectral width of 11,160.7 Hz, and a relaxation delay of 1.5 (see Note 14). 

10. Automated data collection of the entire set of metabolomics samples is accomplished using 

Bruker ICONNMR 5 (see Figure 2.5). 

11. The sample filename, solvent, pulse program and temperature parameters are all defined 

in Bruker ICONNMR 5 (see Notes 15 to 17). 

12. Collect the 1D 1H NMR spectrum for each replicate and each group (see Note 2.6). 
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13. The data is processed initially with Topspin to verify spectral quality, but exported for 

further analysis (see Figure 2.6A). 

 

Figure 2.6: NMR metabolomics spectral data. Examples of a typical (A) 1D 1H NMR spectrum 

and a (B) 2D 1H-13C HSQC spectrum acquired from PD metabolomics samples. 

 

2.3.9.2 2D 1H-13C-HSQC NMR (see Note 18) 

1. Follow steps 1 to 7 from section 3.9.1. 

2. Using ICONNMR 5, the sample filename, solvent, pulse program and temperature 

parameters are adjusted (see Notes 15 to 17).  

3. The ICONNMR setup is similar to a 1D 1H NMR data collection as shown in Figure 

5. 

4. A standard 2D 1H-13C-HSQC experiment (Bruker hsqcetgpsisp2 pulse program) is 

used to determine the 1H-13C chemical shift correlations for all 13C-labeled 

metabolites in the metabolomics sample (see Note 19).  

5. Typical experimental parameters for a 2D 1H-13C-HSQC NMR spectrum obtained 

on a Bruker 700 MHz spectrometer with a cryoprobe correspond to 128 scans, 32 

dummy scans, and a 1.0 s relaxation delay. The spectrum is collected with 2 K data 
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points and a spectrum width of 4,734 Hz in the direct dimension and 64 data points 

and a spectrum width of 18,864 Hz in the indirect dimension (see Note 14). 

6. Implementation of fast NMR methods that includes non-uniform sampling 

significantly decreases data acquisition time and/or increases spectral resolution, 

but may introduce artifacts (see Note 20). 

7. Collect the 2D 1H-13C-HSQC NMR spectrum for each replicate and each group (see 

Note 6). 

8. The data is processed initially with Topspin to verify spectral quality, but exported 

for further analysis (see Figure 2.6B). 

 

2.3.10 Mass Spectrometry Data Collection 

2.3.10.1 Direct-Injection (DI) Mass Spectrometry 

1. Positive-ion direct infusion electrospray ionization mass spectrometry (DI-ESI–

MS) data are collected on a Synapt G2 HDMS quadrupole time-of-flight (TOF) MS 

instrument equipped with an ESI source. 

2. The mass spectrometry experiments are carried out at a flow rate of 10 μL/min for 

1 min.  

3. The mass spectra are acquired in positive ion and negative mode over a mass range 

of m/z 50 to 1200. 

4. Mass spectra are acquired for 0.5 min using the following optimized source 

conditions: 2.5 kV for ESI capillary voltage, 60 V for sampling cone voltage, 4.0 

V for extraction voltage, 80 °C for source temperature, 250 °C for desolvation 

temperature, 500 L/h for desolvation gas, and 15 μL/min flow rate of injection 
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5. Collect the DI-ESI–MS mass spectral data for each replicate and each group (see 

Note 6 and Figure 2.7). 

 

Figure 2.7: MS metabolomics data. Examples of typical (A) DI-ESI-MS spectrum, (B) typical 

analysis sequence, (C) LC base peak chromatograms and (D) MS spectrum acquired from 

metabolomics samples. 

2.3.10.2 Liquid Chromatography - Mass Spectrometry 

1. Liquid chromatography - mass spectrometry (LC–MS) data are collected on a 

Waters ACQUITY M-class Xevo G2-XS QToF MS instrument equipped with an 

ESI source. 

2. The LC-MS mass spectrum are acquired with the following system parameters: 

• LC System: Waters ACQUITY M-class 

• Column:  ACQUITY HSS T3 Column 1.0 mm x 100 mm 
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• Mobile phase A: 0.1% Formic Acid in Water 

• Mobile phase B: 0.1% Formic Acid in Acetonitrile 

• Flow rate: 70 µL/min 

• Run time: 10 min 

• Injection volume: 2 µL 

• MS system: Xevo G2-XS QtoF 

• Ionization mode: ESI + and – 

• Capillary voltage: 2.8 kV 

• Cone voltage: 30 V 

• Source temp: 120 °C  

• Desolvation temp: 500 °C 

• Cone gas flow: 18 L/h  

• Lock mass:  

− Positive mode: Leukin- Enkephalin, m/z 556.2771  

− Negative mode: Leukin- Enkephalin, m/z 554.2615 

• Acquisition mode: MSE 

• Acquisition range: 50 to 1200 m/z 

• Collision energy (LE): 6 eV 

• Collision energy (HE): 20 to 40 eV 

3. The temperature for the LC column and auto sampler is set to 40 °C and 4 °C, 

respectively. 

4. Create a sample analysis sequence and inject the QC samples five times for column 

conditioning. After second QC injection, monitor peak area (<25% RSD), retention 
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time (+/- 0.05 min), and mass accuracy (+/- 3ppm) until the end of the fifth 

injection. If the QC samples pass the minimal system performance parameters, then 

acquire data. If not, do not collect data until the issue has been resolved and the QC 

samples pass the minimal system performance parameters. 

5. Collect the LC-MS mass spectral data for each replicate and each group (see Note 

6 and Figure 2.7). 

 

2.3.11 NMR Data Processing (see Note 21) 

All NMR data is processed and analyzed with our MVAPACK software [21], our PCA/PLS-DA 

utilities [22],  NMRPipe [23], and  NMRViewJ [24]. See example processing scripts at 

http://bionmr.unl.edu/wiki/Scripts. 

 

2.3.11.1 1D 1H NMR (see Figure 2.8A) 

1. A 1.0-Hz exponential apodization function is applied to the FID.  

2. Fourier transform the FID.  

3. The resulting NMR spectrum is automatically simultaneously phased corrected and 

normalized with the phase-scatter correction algorithm [45]. 

4. The NMR spectrum is referenced to the peak of TMSP-d4 (0.0 ppm).  

5. Noise and solvent regions are manually removed. 

http://bionmr.unl.edu/wiki/Scripts
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Figure 2.8: MVAPACK processing scripts. (A) Schematic illustration of the major processing 

steps.  Examples MVAPACK processing script for (B) 1D 1H NMR dataset, (C) 2D 1H-13C 

HSQC dataset, and (D) combined NMR and MS datasets. The numbered steps in the flow diagram 

correspond to the numbered lines in the processing scripts. 

 

2.3.11.2 2D 1H-13C-HSQC NMR (see Figure 2.8B) 

1. A sine-bell apodization function is applied to the t2 dimension.  

2. The t2 dimension is zero filled three times.  

3. The t2 dimension is Fourier transformed, manually phase corrected and the 

imaginary data deleted. 

4. The matrix is transposed.  

5. A sine-bell apodization function is applied to the t1 dimension.  

6. The t1 dimension is zero filled three times.  

7. The t1 dimension is Fourier transformed and manually phase corrected. 
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8. The NMR spectrum is referenced in both dimensions to the peak of TMSP-d4 (0.0 

ppm).   

 

2.3.12 Mass Spectrometry Data Processing - DI-ESI–MS (see Figure 2.8C)  

1. Mass spectral data processing is first performed using MassLynx V4.1. 

2. A background subtraction is performed on all spectra using appropriate reference 

spectra, such as a free drug or toxin used to treat a cell culture. The background 

subtraction of each spectrum is performed in a class-dependent manner (i.e., only the 

MS reference spectrum of the drug/toxin used to treat the cell culture is used for 

background subtraction). Accordingly, mass spectral signals from the drug/toxin 

treatments are guaranteed to not influence subsequent analyses. An example of a typical 

MS spectrum from a metabolomics sample is shown in Figure 2.7. 

3. The background-subtracted mass spectra are then loaded into MVAPACK as a text file 

for binning and normalization.  

 

2.3.13 Mass Spectrometry Data Processing - LC-MS (see Figure 2.9) 

All LC-MS data is processed and analyzed with Progenesis QI (version 2.0.). Please see the 

Progenesis QI user guide (http://storage.nonlinear.com/webfiles/progenesis/qi/v2.2/user-

guide/Progenesis_QI_User_Guide_2_2.pdf) for detailed instructions. 

http://storage.nonlinear.com/webfiles/progenesis/qi/v2.2/user-guide/Progenesis_QI_User_Guide_2_2.pdf
http://storage.nonlinear.com/webfiles/progenesis/qi/v2.2/user-guide/Progenesis_QI_User_Guide_2_2.pdf
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Figure 2.9: LC-MS processing protocol. The small molecule discovery workflow using the 

Progenesis QI software is diagrammed. (top left) Summary of the major steps in the LC-MS 

processing protocol, which also describes each figure block in order starting from middle-left to 

bottom-right.  Images are screenshots from the Progenesis QI software. 

2.3.13.1 Data Upload 

1. Go to File and create a new experiment. Select a location to store the experiment 

file. Click Next. 

2. Select the machine type (i.e., high resolution mass spectrometer) and the polarity 

used to collect the mass spectrum (i.e., positive or negative). Click Next. 

3. Select the expected adducts [e.g., M+Na+ (+), M+H+CH3OH+ (+,-), 

M+H+CH3N
+(+,-), M+H3O

+ (+)] and click Create experiment. 
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4. Go to Select your run data, choose the MS Format and click Import. Click Next. 

5. Apply Lock mass calibration. Click Next. 

6. Select Import.  

 

2.3.13.2 Perform Automatic Processing 

1. Click on Start automatic processing. 

2. Select an alignment reference by choosing Use the most suitable run from 

candidates that I select. Click Next. 

3. Select all QC runs. Click Next. 

4. Select Yes, automatically align my runs. Click Next. Click Next again 

5. After processing is complete, click Section Complete to move forward to the Review 

Alignment stage. 

 

2.3.13.3 Review Alignment  

1. Interrogate the number of vectors and alignment scores. 

2. Examine the distribution of green (good alignment), yellow (acceptable alignment) 

and red (needs review) alignments present in the ion intensity map. 

3. As necessary, manually edit the alignments. Make sure that each ion is properly 

aligned across all replicates and to the reference mass spectrum. This is 

accomplished by interactively adjusting the alignment vector positions. 

4. After processing is complete, click Section Complete. 

 

2.3.13.4 Create Experiment Design  
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1. Choose the type of experiment and click Create (see Note 22). 

2. Click Add condition and rename it according to the groups in the study (e.g., 

control, treated, etc.). 

3. Drag and drop each replicate mass spectrum into each of the defined groups from 

2. 

4. After processing is complete, click Section Complete to move forward to the Peak 

Picking stage. 

 

2.3.13.5 Peak Picking 

1. Click Change parameters. 

2. Go to the Peak picking limits grid and define a minimum peak width to reject noise 

spikes. A typical minimum peak width is 0.05 min.  

3. Click Start peak picking. 

4. After the process is completed, go to Review normalization and choose the 

normalization method. Normalize to all metabolites is the default. A preferred 

choice is to normalize to an internal standard (e.g., reserpine).  

5. After processing is complete, click Section Complete to move forward to the 

Deconvolution Review stage. 

 

2.3.13.6 Review Deconvolution (see Note 23) 

1. Go to the Deconvolution Review grid. 

2. On the left panel, choose organize the compound features by adducts. 

3. Click over an ion metabolite to review its adducts (see Note 24). 
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4. To remove an adduct assigned to a metabolite, right click on the peak in the adduct 

panel and click Remove from compound. 

5. After the processing is complete, click Section Complete to move forward to the 

Compound Statistics stage. 

 

2.3.14 NMR Data Preprocessing for Multivariate Modeling 

In order to obtain an accurate and reliable multivariate statistical model, it is essential that the data 

set is properly preprocessed to remove normal systematic variations resulting from biological 

variability, instrument instability, and inconsistency in sample handling and preparation. Key 

preprocessing steps include: (1) alignment, (2) normalization, (3) binning, and (4) scaling, which 

is illustrated in Figure 2.8.  Examples of results from a variety of statistical models are shown in 

Figure 2.10. All NMR datasets are processed with our MVAPACK software [21] and our 

PCA/PLS-DA utilities [22]. See example MVAPACK scripts at 

http://bionmr.unl.edu/wiki/Scripts. 

http://bionmr.unl.edu/wiki/Scripts
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Figure 2.10: Univarate and multivariate statistical models. Example of PCA scores plot and the 

associated metabolomics tree diagram for (A,D) 1D 1H NMR dataset, (B,E) DI-ESI-MS dataset, 

and (C,F) combined 1D 1H NMR DI-ESI-MS dataset. (G) NMR and (H) MS back-scaled loadings 

from an OPLS model generated from combined 1D 1H NMR DI-ESI-MS dataset. Reproduced 

with permission from [61]. (I,J) PCA scores plot and OPLS back-scaled loadings generated from 

2D 1H-13C HSQC NMR data set. Reproduced with permission from [1]. (K) Example heat-map 

with hierarchal clustering summarizing specific metabolite changes per replicate and the relative 

clustering of each individual replicate. Reproduced with permission from [L].  Example metabolic 

pathway summarizing the major metabolite changes between the two groups. Reproduced with 

permission from [1].     
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2.3.14.1 1D 1H NMR 

1. Spectra may first be normalized based on either the total cell count or the total 

protein concentration using the BCA (Biscinchronic Acid) protein estimation assay 

using parallel dishes treated similarly on the same day.  

2. Spectra are normalized with the PSC algorithm [46].  

3. Spectra are aligned and/or binned. For principal component analysis (PCA),use the 

following parameters:  

• The spectral data are globally aligned to the peak of TMSP-d4 at 0.0 ppm. 

• The spectral data are regionally aligned using the icoshift algorithm [47]. 

• The spectral data are binned using the adaptive, intelligent binning 

algorithm [48]. 

For orthogonal projection to latent structures (OPLS), use the following 

parameters: 

• The spectral data are globally aligned to the peak of TMSP-d4 at 0.0 ppm. 

• The spectral data are regionally aligned using the icoshift algorithm [47]. 

• The spectral data is not binned. Instead, the full-resolution spectral data is 

used to build the model. 

4. Solvent peaks and noise regions are manually removed.  

5. The data set is scaled using Pareto scaling. 

6. A PCA or OPLS model is generated from the data matrix. 

 

2.3.14.2 2D 1H-13C-HSQC NMR  
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1. Spectra may first be normalized based on either the total cell count or the total 

protein concentration as explained above. 

2. The spectral data is normalized using standard normal variate normalization. 

3. The spectral data is binned using a generalized adaptive, intelligent 

binning algorithm [48]. 

4. The data are Pareto-scaled. 

5. A PCA or OPLS model is generated from the data matrix. 

 

2.3.15 Mass Spectrometry Data Preprocessing for Multivariate Modeling 

LC-MS datasets need to be preprocessed in a similar manner to NMR spectra. The LC-MS datasets 

are processed with Progenesis QI (version 2.0.). 

 

2.3.15.1 DI-ESI–MS 

1. All mass spectra are linearly re-interpolated onto a common axis that spanned from 

m/z 50 to 1,200 in 0.003 m/z steps, resulting in 383,334 variables prior to 

processing.  

2. The mass range m/z 1,100 to 1,200 is removed prior to binning because of the low 

probability of observing a metabolite in this region.   

3. The mass spectra are uniformly binned using a bin width of 0.5 m/z, resulting in a 

data matrix of 2,095 variables.  

4. The MS data matrix is normalized using probabilistic quotient (PQ) normalization. 

5. The MS data matrix is then scaled to unit variance prior to modeling. 
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6. A PCA or OPLS model is generated from the data matrix. 

 

2.3.15.2 LC-MS (see Note 25 and Figure 9) 

1. The LC-MS datasets are processed with Progenesis QI (version 2.0.). Please see the 

Progenesis QI user guide 

(http://storage.nonlinear.com/webfiles/progenesis/qi/v2.2/user-

guide/Progenesis_QI_User_Guide_2_2.pdf) for detailed instructions. 

2. Right click on the Compounds table and select Quick Tags. 

3. Set the ANOVA cutoff value to 0.05.  

4. Click Create tag. 

5. All metabolites with an ANOVA p-value ≤ 0.05 will be marked with a red tag. 

6. Repeat the process to create a tag for fold change (see Note 29). Right click on the 

Compounds table and select Quick Tags 

7. Set the fold change cutoff value to 2. 

8. All metabolites with a fold change greater than 2 will be marked with a green tag. 

9. Create a filter to show only tagged metabolites. Click Create on Filter grid to open 

the filter dialog box. 

10. Select the tags and then drag to the box Show compounds that have all these tags. 

Click OK. 

11. Only the metabolites that match the criteria are showed and will be used for 

metabolite identification. 

12. Go to the Compound statistics grid. The statistical analysis is available as a PCA 

scores plot. A statistically relevant dataset is indicated by replicate samples 

http://storage.nonlinear.com/webfiles/progenesis/qi/v2.2/user-guide/Progenesis_QI_User_Guide_2_2.pdf
http://storage.nonlinear.com/webfiles/progenesis/qi/v2.2/user-guide/Progenesis_QI_User_Guide_2_2.pdf
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clustering together in the scores plot. Furthermore, the set of control and treated 

replicates form distinct clusters from each other. 

13. Go to File and select export all measurements. A comma-separated value (csv) file 

will be created with a list of several values per metabolite: (1) metabolite 

identification, (2) m/z value, (3) charge, (4) retention time, (5) relative abundance, 

(6) ANOVA value and other parameters.     

 

2.3.16 Statistical Analysis (see Figure 10) 

Data sets are analyzed with our MVAPACK software [21], our PCA/PLS-DA utilities [22], and R 

[49]. See example MVAPACK and R scripts at http://bionmr.unl.edu/wiki/Scripts. 

 

A major challenge in the analysis of metabolomics datasets, and a common source of error, is the 

incorrect application of statistics. This results from a number of prevailing misconceptions within 

the metabolomics community. For example, a multivariate model, especially supervised methods 

such as PLS or OPLS, needs to be properly validated. Validation can be accomplished with CV-

ANOVA [50] and/or response permutation testing [51]. Conversely, the resulting R2 and Q2 values 

only provides a measure of the model fit to the original data and an internal measure of consistency 

between the original and cross-validation predicted data, respectfully. R2 and Q2 values do not 

provide for model validation without a proper standard of comparison. 

 

PCA, PLS, and OPLS are routinely used to model metabolomics data. Nevertheless, there are 

misconceptions regarding the proper application and interpretation of the resulting models, 

http://bionmr.unl.edu/wiki/Scripts


61 
 

 

especially in regards to comparing PCA, PLS, and OPLS models. For example, PCA finds the 

largest source of variance in the dataset irrespective of the intent of the study. So, an observed 

separation between treated and untreated groups in a PCA scores plot may have nothing to do with 

the treatment if some other larger variant is present in the dataset. Supervised methods, like PLS 

and OPLS, address this issue by aggressively forcing group separation based on the defined group 

membership. Hence, PLS and OPLS models almost always yield separated groups, as by design! 

As a result, PLS and OPLS models are easily over-fitted, especially for metabolomics data sets 

since the number of variables (e.g., metabolites) are typically larger than the number of replicates. 

Again, model validation is essential for PLS and OPLS. 

 

Another serious misconception is the false belief that PLS/OPLS is a better method than PCA and 

may find group differences when PCA fails to expose group separation. Instead, PCA, PLS and 

OPLS are simply different models that extract different information and achieve different goals. 

Thus, if PCA fails to identify group separation it is unlikely that PLS/OPLS will yield a valid 

model [51]. Remember, PCA finds the largest source of variance. If PCA doesn’t find any major 

variance, then there cannot be any smaller group-specific variance. 

 

PLS and OPLS appear to provide similar models. In fact, a comparison of PLS and OPLS scores 

plots generated from the same data set may suggest the only difference is a relative rotation of the 

group-defined ellipses. Nevertheless, this apparently subtle change highlights a critical difference. 

Simply, OPLS places group-independent variance (e.g., confounding factors such as differences 

in diet, age, race, etc.) orthogonal to group-dependent variance. Conversely, PLS entangles both 
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group-independent and group dependent variance. In this regards, a metabolite identified as a 

major contributor to an OPLS model is strictly the result of the defined group difference. For PLS, 

metabolite changes may be a result of the group difference, a confounding factor or a combination 

of both. Accordingly, a PLS identified metabolite may be of little interest to the intent of the study. 

In this regard, we strongly recommend always using OPLS instead of PLS. 

 

2.3.16.1 Univariate Analysis 

1. Relative metabolite abundances are inferred from NMR and/or mass spectral peak 

heights and/or peak volumes. 

2. Relative metabolite abundances are then normalized on a per spectrum basis. One 

common approach is to convert the absolute peak intensities (arbitrary units) to a 

Z-score: 

𝑍 =
𝐼𝑖−𝐼̅

𝜎
     (1) 

where 𝐼 ̅is the average peak intensity for the spectrum, Ii is the intensity of peak i, 

and 𝜎 is the standard deviation of peak intensities. Peak intensities may also be 

normalized to the total number of cells, to the total protein concentration (see 

section 2.3.14.1), to the average spectral noise, or to an internal standard (see Note 

26). Relative metabolite abundances may also be converted to fold-changes:  

𝐹 =
𝐼𝑖

𝐼𝑜
      (2) 
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where Ii is the normalized peak intensity of metabolite i from a treated spectrum 

and Io is the normalized peak intensity of metabolite i from the control or untreated 

spectrum. 

3. A standard Student’s t-test is commonly used to determine statistical significance 

only for a pairwise comparison of metabolite changes based on either fold-changes 

or normalized peak intensities (see Note 27). A statistically significant difference 

is typically identified by a p-value < 0.05. 

4. A Student’s t-test is insufficient for the multiple comparisons that are common to a 

metabolomics study [51, 52]. In order to identify the set of metabolites that exhibit 

a statistically significant change, a multiple hypothesis test correction method such 

as a Benjamini-Hochberg [53] or a Bonferroni [54] correction must be applied (see 

Note 28). 

5. A heat-map with hierarchical clustering (see Figure 2.10k) is commonly generated 

from the fold-changes or normalized peak intensities using R (see example R script 

at bionmr.unl.edu/wiki/scripts). The heat-map may contain relative metabolite 

abundances for each individual replicate in the study or simply the replicate-

averages for each group (see Note 29). 

 

2.3.16.2 Multivariate Analysis 

1. Generate a PCA and or OPLS model from the data matrix. 

2. Fractions of explained variation (R2
X and R2

Y) are computed during PCA or OPLS 

model training.  
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3. The PCA or OPLS model is internally cross-validated using seven-fold Monte 

Carlo cross-validation [55] to compute Q2 values (see Note 30).  

4. For an OPLS model, the Q2 value is compared against a distribution of null model 

Q2 values in 1000 rounds of response permutation testing [51]. Group membership 

is randomly reassigned to generate the set of null models. A p-value is calculated 

from a comparison of the true Q2 value to the set of null model Q2 values (see Note 

31). 

5. The model is further validated using CV-ANOVA significance testing, which is 

used to calculate another model p-value [50] (see Note 31). 

6. Scores plots (see Figure 2.10a,b,c,i), back-scaled loadings plots (see Figure 

2.10g,h,j), S-plots and/or SUS-plots are often generated from OPLS models. 

7.  PCA/PLS-DA utilities [22] is used to define group membership by drawing an 

ellipse per group onto the scores plots (see Figure 2.10a,b,c,i). Each ellipse 

corresponds to 95% confidence interval for a normal distribution. The PCA/PLS-

DA utilities also generates a metabolomics tree diagram that identifies the statistical 

significance (p-value and/or bootstrap value) and the relative similarity of each 

group in the scores plot (see Figure 2.10d,e,f). The p-value or bootstrap number 

from the pairwise comparison is labeled at each node in the tree.  

 

2.3.17 Data Analysis - Metabolite Assignment from 1D 1H NMR Data 

All NMR data is analyzed with NMRPipe [23], NMRViewJ [24], and Chenomx. See example 

scripts at http://bionmr.unl.edu/wiki/Scripts. 

http://bionmr.unl.edu/wiki/Scripts
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1. The identification of metabolites in a 1D 1H NMR spectrum is performed with software 

programs such as Chenomx. Chenomx matches the experimental 1D 1H NMR spectrum 

to a database of 1D 1H NMR spectra of known metabolites. Chenomx attempts to 

explain or describe the experimental NMR spectrum by combining or summing as 

many of the individual reference metabolite NMR spectra as needed. In addition to 

metabolite identification, Chenomx also provides an estimate of the metabolite 

concentration (see Note 32).    

2. Upload the 1D 1H NMR spectrum for processing. The NMR spectra can be batch 

processed or processed one at a time.  

3. The 1D 1H NMR spectrum is phased. 

4. The 1D 1H NMR spectrum is calibrated and reference to TMSP-d4, using the known 

concentration of TMSP-d4.  

5. The properly phased and calibrated 1D 1H NMR spectrum is then sent to the Chenomx 

profiler where the spectrum is compared against the metabolite library.  

6. Chenomx will overlay a 1D 1H NMR reference spectrum for each metabolite identified 

in the experimental 1D 1H NMR spectrum. The spectral overlay needs to be manually 

adjusted to optimize the alignment of the experimental 1D 1H NMR spectrum with the 

reference spectrum. Figure 2.6A shows an example of a labeled 1D 1H NMR spectrum.  

7.  

2.3.18 Data Analysis - Metabolite Assignment from 2D 1H-13C-HSQC NMR Data 

All NMR data is analyzed with NMRPipe [23], NMRViewJ [24], and Chenomx. See example 

scripts at http://bionmr.unl.edu/wiki/Scripts. 

 

http://bionmr.unl.edu/wiki/Scripts
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2.3.12.1 NMRPipe Processing to Obtain .ft2 and .nv Files.  

1. The data files from ICONNMR can be used directly by NMRPipe to process the 

2D 1H-13C-HSQC spectra.  

2. On a Linux workstation, open a terminal and go to the directory that contains the 

NMR data. Type bruker to start the NMRpipe software.  

3. Read in the experimental parameters file by clicking Read Parameters and verify 

that all of the parameters have been correctly updated. Confirm that the mode of 

data collection has been set to echo-antiecho if the NMR spectrum was collected 

with the hsqcetgpsisp2 pulse program. 

4. Click Update Script to save an NMRPipe processing script fid.com file in the 

working directory.  

5. Type ./fid.com to start the NMRPipe processing script.  

6. When the NMRPipe processing has finished, type nmrDraw to view the processed 

NMR spectrum. Please see the NMRPipe and nmrDraw tutorial 

(https://spin.niddk.nih.gov/NMRPipe/doc1/) for detailed instructions. 

7. Phase the NMR spectrum in NMRpipe and note the p0 and p1 values for both the 

1H and 13C dimensions.  

8. Edit the NMRPipe processing script hsqcproc.com and replace the parameters 

associated with the NMRPipe phase correction command, ps, with the p0 and p1 

values obtained from step 7.  

9. Type ./hsqcproc.com to start the NMRPipe processing script 

https://spin.niddk.nih.gov/NMRPipe/doc1/
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10. Repeat steps 3 to 9 for each 2D 1H-13C-HSQC NMR spectrum in the dataset. This 

produces a set .ft2 files. One .ft2 file is created for each 2D 1H-13C-HSQC NMR 

spectrum collected for each replicate from each group.  

11. Copy all of the .ft2 files into a new folder and use the NMRPipe script addnmr.com 

to generate NMRviewJ files from the .ft2 files. A .nv file will be generated for each 

individual spectrum (.ft2 file) with an numerically incremented root name of 

“Final_”. In addition, the script will combine all of the NMR spectra together into 

a single file called results.nv. The script will also generate the text file, rate.txt, that 

lists all of the individual .nv files (Final_). 

 

2.3.18.2 Peak Picking and Peak Integration of 2D 1H-13C-HSQC Spectra in 

NMRviewJ. 

1. Type nmrviewj to start NMRviewJ. Please refer to NMRViewJ documentation 

(http://docs.nmrfx.org/) for more details. 

2. From the Dataset toolbar in the main window, use the Open and Draw Datasets 

function to select the result.nv file. 

3. Right click and select attributes to open the attributes window. 

4. In the attributes window, select the PeakPick tab. 

5. In the blank Lists field in the attribute window, type a filename (i.e., lists) for the 

new peak pick list. Click the Pick button. The software will automatically peak pick 

the displayed spectrum and populate lists with the peak ID number, chemical shifts, 

and intensity.    

http://docs.nmrfx.org/
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6. Choose Show Peak Table from the Peak toolbar on the main window. A peak table 

window will open that lists the peak ID, peak intensity and the peak chemical shifts. 

7. Manually edit the peak list and remove solvent peaks, noise peaks or other spectral 

artefacts. Peaks are deleted from the peak table by using the delete function in the 

PeakPick tab in the attributes window along with the spectrum display window. In 

the spectrum display window, use the mouse to position the two cursors around any 

peak or spectral region to form a box. Then, click the Delete button under the 

PeakPick tab in the attributes window to remove the peak(s).   

8. After the peak table has been completely edited, on the peak table window choose 

the Edit tab and select Compress & Degap. Answer yes to the pop-up question. This 

will finalize changes to the peak list and prevent any further edits. 

9. On the peak table window choose the Edit tab and then select Save Table. A file 

browser window will open in order to choose a name and location to save the new 

peak list file. The saved peak pick file can be viewed and edited by Excel. 

10. In order to obtain peak intensities across the entire set of NMR spectra in the 

dataset, click on the Analysis tab on the main window and select Rate Analysis. A 

set-up window for the Rate Analysis will open.  

11. In the Rate Analysis set-up window:  

• set the Prefix for matrix numbers field to Final_  

• set the Peaklist field to lists (defined in section 2.3.18.2 step 5). 

• make sure Auto fit is checked. 

• use all other default settings. 

• Click Load time file. 
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• In the file browser window, select rate.txt (created in section 2.3.18.1 step 11). 

• Click Measure All. The software automatically populates the table in the Rate 

Analysis set-up window with all of the peak intensities across the entire NMR 

dataset. 

• Click Save Table. In the file browser window, save the peak intensities table to 

a new filename (i.e., intensities). 

12. The peak list (i.e., list) and the peak intensities (i.e., intensities) files are merged in 

Microsoft Excel using the common peak ID column. The ppm1 (1H ppm) and ppm2 

(13C ppm) columns are added to the peak intensities columns to generate a complete 

matrix of NMR peaks and intensities across the entire data set.  

13. The merged Excel file is saved to a new filename.  

2.3.18.3 Metabolite Assignments from 2D 1H-13C-HSQC Peak Lists 

1. The complete list of peaks obtained from the NMRviewJ analyses is searched using 

NMR metabolomics databases such as HMDB [28], BMRB [29], or other databases 

(see Note 33). 

2.  On the HMDB homepage, choose the Search tab and select 2D NMR Search. 

3. From the Spectra Library pull-down menu, choose 13C HSQC. 

4. Cut and paste the 2D 1H-13C-HSQC peak lists into the Peak List field. One set of 

1H and 13C chemical shifts, respectively, per line. Chemical shift values should only 

be separated by white space. 

5. Set the 1H chemical shift error tolerance to 0.05 ppm (X-axis Peak Tolerance ± 

field) and the 13C chemical shift error tolerance to 0.10 ppm (Y-axis Peak Tolerance 

± field).  
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6. Click the Search button. Depending on the size of the peak list, the software will 

return a ranked-order list of possible metabolites based on the number of chemical 

shift matches to reference spectrum.   

7. Manually curate the list of potential metabolite assignments based on the number 

of chemical shift assignments, the quality of the spectral overlap (i.e., chemical shift 

match), number of other metabolites in the same metabolic pathway, and the 

biological system (i.e., is it a reasonable or possible metabolite for the organism), 

8. Obtain additional NMR (e.g., HMBC, HSQC-TOCSY) and/or MS spectral data to 

confirm or refute the assignment.      

9. An assigned 2D 1H-13C-HSQC spectrum is shown in Figure 2.6B. 

 

2.3.19 Data Analysis - Metabolite Assignments from LC-MS Data  

The identification process is accomplished using the Progenesis QI (version 2.0.) software (see 

Note 34 and Figure 2.9). Please see the Progenesis QI user guide for detailed instructions 

(http://storage.nonlinear.com/webfiles/progenesis/qi/v2.2/user-

guide/Progenesis_QI_User_Guide_2_2.pdf). 

 

3.19.1 Identification of Compounds (see Note 36) 

1. Make sure the filter created in section 2.3.15.2 step 9 is applied and then proceed 

to Identity Compounds grid. 

2. At the left panel, define the method to be used. In this case, select Progenesis 

MetaScope. 

http://storage.nonlinear.com/webfiles/progenesis/qi/v2.2/user-guide/Progenesis_QI_User_Guide_2_2.pdf
http://storage.nonlinear.com/webfiles/progenesis/qi/v2.2/user-guide/Progenesis_QI_User_Guide_2_2.pdf
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3. Choose the search parameter, in this case choose HMDB (see Note 35).  

4. Click Search for identifications. 

5. After few min, a dialogue box will open identifying the number of metabolites 

identified. Click ok to close. 

6. All ions with possible identifications will presented as a solid gray icon on the left 

side. 

 

2.3.19.2 Incorporation of Theoretical Fragmentation (see Note 36). 

1. On the left panel, select ChemSpider [27] as the identification method (see Note 

37). 

2. In the Choose search parameter field, choose default and then click edit. 

3. Set the following parameters: 

• Select name as theoretical fragmentation. 

• Set precursor tolerance to 5 ppm. 

• Tick Perform theoretical fragmentation box. 

• Set the Fragment tolerance to 5 ppm. 

4. Click Save. 

5. Click Search for identifications. 

6. After a few minutes, a dialogue box will open displaying the number of metabolites 

identified. Click ok to close. 

 

2.3.19.3 Accepting Compounds Assignment  

1. Proceed to Review Compounds grid. 
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2. Go to the option Choose the correct identification and set a threshold of 45. The 

choice of a threshold is empirical and may need refinement based on the specific 

properties of the dataset. The higher the threshold setting, the more confident are 

the assignments, but the more restrictive analysis may result in a lower number of 

assignments.  

3. Click Accept identifications. All identifications with a score of 45 or above will be 

accepted automatically. 

 

2.3.19.4 Review and Accept the Identifications Manually (see Note 38)  

1. Select a metabolite from the list. 

2. Go to the Possible identifications grid. 

3. In the bottom panel, select the desired identification threshold for the metabolite.  

2.4. Notes    

1. Isotopically-labeled reagents commonly used for NMR are not radioactive and do not 

require special handling or safety precautions. However, gloves and eye protection are 

standard safety protocol for preparing all types of metabolomics samples. 

2. Deuterated solvents, such as D2O or DMSO, are very hygroscopic and require storage in a 

drybox and need to remain sealed until used.  

3. The pH of a 100% D2O sample using a standard pH probe may not report the correct pH. 

A standardly applied correction is: pD = pH + 0.4. Conversely, a recent study by K. A. 

Rubinson [56] suggests the variance is not as significant, especially for a phosphate buffer, 

and a correction may not be required. 
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4. Complete cell survivability in each group is essential to a successful metabolomics study. 

This may be particularly challenging in a study that involves treating cells with a drug, 

toxin or some other condition (including nutrient depletion or supplementation) that is 

expected to alter cell viability. Thus, the goal is to identify a dosage and time for the 

experimental paradigm that will stress the cells, prior to the induction of cell death. In this 

regard, the observed metabolomic changes will be a result of the cell’s immediate response 

to the mechanism of action of the experimental condition, or the adaptation of the cell to 

the stress, and not a general cell death response. We typically identify the dosage by 

collecting a series of growth curves over a range of drug/toxin concentrations and compare 

them to a growth-curve from untreated cell culture.  

5. The resulting composition of the metabolome is easily perturbed by any difference in the 

protocol. Thus, it is essential that every sample is handled in exactly the same manner as 

reasonably as possible. Bias can be induced if cells are cultured in different incubators or 

shakers, if cells are handled by different personnel, if cells are treated with a different wash, 

buffer or media (even if it is the exact same recipe as prepared by the same individual), or 

if the time to process the cells differ, etc. In essence, any source of variance (regardless of 

how slight) may lead to a significant biologically-irrelevant change in the metabolome. As 

a result, an important aspect of the protocol is to randomize the processing of each sample 

to minimize any bias induced by sample order. The order of sample processing should 

change at each step of the protocol. It is especially critical to randomly interleave replicate 

samples from each group.   

6. Randomization of samples throughout the protocol is essential to avoid the introduction of 

bias. For example, if all of the control samples are processed together and first, and all of 
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the treated samples are processed second, a difference between the controls and treated 

samples may be due to the processing order instead of the expected response to treatment. 

Consider another example consisting of a set of twenty samples numbered 1 to 20. If the 

samples are always processed in the order of the sample number, then a time-bias will be 

induced across the entire dataset. Sample 20 will always be processed after a maximal wait-

time and sample 1 will always be processed the quickest. Accordingly, biologically-

relevant differences in the metabolomes will accumulate between the samples due to the 

difference in processing time. Instead, if the order is constantly changed at each step, the 

processing time and any impact on the metabolome will be randomized, which in turn will 

minimize or eliminate any bias.   

7. The number of replicates per group will have a significant impact on the quality of the 

study and the statistical validity of the outcomes. In general, it is best to maximize the 

number of replicates per group, within reason, with a typical target of ten replicates per 

group. A variety of experimental considerations may impact the number of replicates that 

are practical for a given study. For example, a large number of groups may require a 

reduction in the number of replicates per group. Another consideration is the impact of the 

number of replicates on the quality of the metabolomics samples. Sacrificing quality for a 

greater number of replicates will not likely lead to a successful outcome. Conversely, a 

limited number of replicates < 4 per group will likely provide meaningless results. 

8. Other studies have used a combination of isotopically labeled and non-labeled carbon 

sources. The conditions of optimal labeling should be standardized for every cell line/type 

used for experimentation considering the composition/recipe of the culture media and the 

required carbon sources (glucose, pyruvate or glutamine) for cell growth.  A time course 
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between 1-48 h should be performed to assess the rate of carbon consumption. Examples 

of media used for 13C-carbon labeled metabolomics are Dulbecco's Modified Eagle 

Medium DMEM (11966-025, 10938-025, 11960-044 and A14430-01) and RPMI 

(11879020) from GIBCO/Life Technologies 

9. Removal of proteins and other biomolecules by methanol or ethanol precipitation is 

preferred over mechanical filtration methods or the application of Carr–Purcell–Meiboom–

Gill (CPMG) NMR T2 filtering techniques. Filtering techniques may remove metabolites 

that bind to biomolecules leading to biologically-irrelevant group differences [111]. 

10. Smaller diameter NMR tubes of 3 mm (160 μL) or 1.7 mm (35 μL) may be needed if the 

available metabolomics sample is limited. Filling of these smaller diameter NMR tubes 

may require a liquid handling robot, such as a Gilson 215 Liquid Handler. In addition, the 

NMR acquisition parameters will likely need to be adjusted to account for the lower 

sensitivity due to the lower number of nuclei in the samples.             

11. Topshim requires the sample contains either a D2O or H2O solvent. It is advisable to create 

a shim file with a parameter set that produces an optimal set of shims for your sample type. 

Read in a shim file using the Bruker command rsh and select the appropriate Topshim shim 

file. If you are doing this for the first time, complete the command topshim, if you are not 

satisfied with the shim performance use command topshim tuneb tunea to obtain an 

improved set of shims. Write the shim set parameters with the Bruker command wsh and 

save it to a new file name for future reference. 

12. The 90 degree pulse length is commonly measured by incrementing the P1 pulse in the zg 

pulse program by 1 μs or smaller increments; and by plotting the relative peak heights or 

intensities. A maximum peak height should be observed at the pulse length corresponding 
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to the 90-degree pulse. Conversely, a minimum or null spectrum should be observed at the 

pulse length corresponding to the 360-degree pulse length. In practice, a more accurate 

measure of the 90-degree pulse is obtained by measuring the 360-degree pulse length and 

dividing by four to obtain the 90-degree pulse length. A typical 90-degree pulse length for 

a metabolomics sample ranges from approximately 8 μs to 13 μs or longer. Among other 

factors, the relative salt concentration of the metabolomics sample affects the 90-degree 

pulse, in which a higher salt concentration results in a longer 90-degree pulse. Other factors 

also contributed to the observed 90-degree pulse, so it is always necessary to 

experimentally determine the 90-degree pulse for each sample or set of samples. 

13. Excitation Sculpting parameters (zgesgp) - 32768 data points (TD), SW = 12.02 ppm, O1P 

(transmitter offset) = 4.70 ppm, D1= 1 second, NS (number of scans) = 128, DS 

(dummy/steady state scans) = 16, P1 = 9.5 -13.5 us, SPNAM (shaped pulse for water 

suppression) = SINC1.1000 at 26.39 dB or 0.00228 W.   

14. The NMR data acquisition parameters need to be adjusted to compensate for differences in 

the field strength and sensitivity of the NMR spectrometer actually used for the data 

collection. Specifically, the number of scans, the number of data points, the sweep-width 

(13.79 ppm, 1H frequency range) and the frequency-offset (centered on water peak at 4.70 

ppm) need to be adjusted according to the type and configuration of the NMR spectrometer 

used for the study.  

15. For high throughput NMR data collection please refer to the Bruker ICONNMR manual to 

explore various configuration options. For example, composite experiments allow for the 

collection of multiple 1D and 2D experiments for the same metabolomics sample. An 

experimental set consisting of a 1D 1H, a 2D 1H-13C HSQC, and 2D 1H-13C HMBC 
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experiment may be subsequently collected for the same sample before moving to the next 

sample in queue.  

16. It is imperative that NMR data is collected at the same temperature for a queue of 

metabolomics samples. ICONNMR assists this by allowing for a temperature delay when 

a large number of samples are in the SampleJet queue. For example, a 15 to 60 second 

delay may be inserted prior to data acquisition to allow each sample to equilibrate to the 

probe temperature. We recommend a 60 second delay for both pre- and post- sample 

insertion to prevent any temperature variation. 

17. Parameters to check before you queue experiments in ICONNMR for 1D 1H NMR are: 

number of scans ns, number of dummy scans ds, 90 degree pulse p1, delay d1, sweep width 

sw, receiver gain rg, experiment temperature te, and automation setup aunm. We 

recommend using au_zgonly as the automation setup. This will collect all samples at the 

same receiver gain, which will avoid peak intensity variation across the dataset.  

18. In addition to 2D 1H-13C-HSQC NMR experiments, NMR metabolomics studies may make 

use of HMBC, TOCSY, HSQC-TOCSY, 2D J-Resolved spectra, or other experiments. 

Similarly, 15N, 31P and other isotope-labeled metabolites may be detected in addition to 1H- 

and 13C-labeled metabolites. Accordingly, experimental parameters, data processing and 

preprocessing methods, and data analysis techniques all need to be adjusted to 

accommodate the specifics of each NMR experiment. Nevertheless, there is enough 

similarity that the detail discussion of the application of 2D 1H-13C-HSQC NMR 

experiments may provide a useful initial guide to the application of other NMR 

experiments to metabolomics.       
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19. 2D 1H-13C-HSQC parameters (hsqcetgpsisp2) - 1024 data point in F2 and F1, Non-

Uniform Sampling at 25%, O1P = 4.7 ppm, O2P (offset for 13C) = 75 ppm, NS = 64, DS = 

16, d1 =2, P1 = 10 - 13 μs depending on salinity, CPDPRG2 = garp (decoupling program), 

PCPD2 = 55 us at PLW12 = 4.09 W.  

20. Non-uniform sampling of 2D 1H 13C HSQC data can be performed on metabolomics 

samples. We have successfully acquired data at 20% sparsity using a burst augmented 

scheduler available from http://bionmr.unl.edu/dgs-gensched.php [30]. Download the 

sampling schedules as a text file for Topspin. 

21. A minimalistic approach to the processing of NMR and mass spectrometry data is optimal 

for a metabolomics analysis utilizing multivariate statistics such as PCA and OPLS. The 

resulting multivariate statistical model is dependent on the choice of processing and 

preprocessing protocols. In effect, a different statistical model is likely to be obtain based 

on the presence (or absence) of baseline correction and the type of baseline correction 

method chosen. Similarly, the type of weighting (apodization) function, the type of spectral 

alignment or referencing, the resulting phase correction or phase correction algorithm, the 

number of zero-fills or the application of linear-prediction, or any other data manipulation 

method will affect the outcome of the statistical model. Accordingly, it is best to avoid any 

unnecessary data processing steps since it is difficult to ascertain if the data processing 

induced a biologically-irrelevant bias to the data or actually improved the model. 

22. Before proceeding to statistical analysis it is necessary to create an experiment design. 

Progenesis QI supports Between-subject design and Within-subject design. Between-

subject design separates samples according to the experimental condition (control vs 

treated) for the statistical comparison. Within-subject design is a repeated-measures study 

http://bionmr.unl.edu/dgs-gensched.php
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design where the same subject (i.e., cell, animal, or human) is compared across the full 

range of experimental conditions (before treatment and after treatment; different time 

points, etc.). 

23. The ions and adducts for a compound are automatically recombined by Progenesis QI, but 

it is advisable to review the deconvolution results. It is important to make sure the same 

pattern of adducts are assigned equally across all replicates and between all groups. 

Progenesis compares each detected ion with each of its co-eluting ions. If by the chance, 

their mass difference matches the difference between two adduct masses (i.e., from the 

previously chosen list), then it is probably an adducted form of the same compound. 

Progenesis groups the two ions as the same compound and automatically assigns the ions 

to the respective adduct. However, if an interesting compound is identified in the sample, 

it is important to review the deconvolution process to make sure all of the ions grouped 

together are actually adducts of the same compound. 

24. Adducts assigned to a compound should have the same retention time as the compound. 

Thus, compare the chromatograms from the potential adduct with the compound to 

determine how well the chromatograms overlay. If a poor match is observed, then remove 

the adduct. 

25. A primary goal of the LC-MS data analysis is to identify metabolites that exhibit significant 

concentration differences between groups. This is accomplished in the Progenesis software 

by creating tags to identify metabolites that exhibit a statistically significant (ANOVA 

[110] p-value < 0.05) difference in relative abundance between the groups. Progenesis 

relies on PCA for this analysis. 
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26. For NMR, relative peak intensities are averaged across all replicates per group and also for 

each NMR peak assigned to the metabolite. Most metabolites will have more than one peak 

in an NMR spectrum and all NMR peaks should be incorporated into an average relative 

peak intensity. Please note, NMR peaks may need to be scaled by the number of attached 

hydrogens, since peak intensity is proportional to the number of nuclei. 

27. Of course, there are a variety of options beyond the standard Student’s t-test such as: 

Mann–Whitney U test [57], Welch's t-test [58], Hotelling's t-squared statistic [59], and one-

way analysis of variance [51], among others. The proper choice of a statistical test depends 

on a number of factors, which is well-beyond the scope of this protocol review. For an 

introduction to the topic, please see A Biologist's Guide To Statistical Thinking And 

Analysis [60]. 

28. In effect, the uncertainty in each pairwise comparison (as determined by the Student’s t-

test) is compounded with the addition of each metabolite to a set. The actually p value for 

a set of metabolites is defined as: 

p = 1-(1-𝛼)m      (3) 

where m is the number of hypotheses (metabolites) and 𝛼 is typically defined as 0.05.  

Accordingly, a set of 10 metabolites becomes an insignificant p = 0.401 even though each 

individual metabolite is statistically significant based on a pairwise Student’s t-test with a 

p < 0.05.  

29. A heat-map displaying all of the replicates from each group is preferred to only a group-

average plot. Specifically, the hierarchical clustering of each replicate is indicative of the 

relative group separation and provides further confirmation of an observed group 

separation from a PCA, PLS or OPLS scores plot.     
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30.  A valid PCA, PLS or OPLS model typically has R2 values > Q2 values, and Q2 values > 

0.4. 

31. While p-values < 0.05 are typically acceptable, more often than not, high quality 

PLS/OPLS models from metabolomics data sets yield p-values << 0.001.  

32. Chenomx maintains a series of 1D 1H NMR databases for a variety of NMR field strengths 

and sample pH. Use the database that matches the experimental conditions of the dataset 

being analyzed. 

33. Most NMR metabolomics databases function in a similar manner to HMDB [28]. Simply 

upload a peak list with a set of chemical shift tolerances and obtain a list of potential 

matches. 

34. The identification process is also available in open source software such as Mzmine [25] 

or web based tools such as MetaboAnalyst [26]. 

35.  It is also possible to create or select your own search parameter. Click on Edit and select 

Create New. Select a database file in Structure Data Format (SDF) as input. 

36. The possible compound assignments are based on an overall score determined by the mass 

error, retention time error, isotope similarity, fragmentation score and, if available, the 

collision cross section. The confidence of the identification may be increased by including 

theoretical fragmentation (see Note 37).  

37. ChemSpider is a database comprised of 67 million compounds, and accordingly, is not 

restricted to known metabolites [27]. But, Progenesis can use the ChemSpider database for 

in silico prediction of fragmentation patterns. Progenesis cannot do this with HMDB [28]. 

38.  Section 2.3.18.3 sets a global threshold setting for all metabolites. Sometimes this may be 

too restrictive for specific metabolites, where a lower global threshold setting may cause a 
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large number of erroneous assignments. Section 2.3.18.4 describes a manual approach to 

adjust the threshold settings for individual metabolites to recover incorrectly missed 

assignments while avoiding a high false assignment rate.  

 

2.5. Acknowledgments 

 

This material is based upon work supported by the National Science Foundation under Grant 

Number (1660921). This work was supported in part by funding from the Redox Biology Center 

(P30 GM103335, NIGMS); and the Nebraska Center for Integrated Biomolecular Communication 

(P20 GM113126, NIGMS). The research was performed in facilities renovated with support from 

the National Institutes of Health (RR015468-01). Any opinions, findings, and conclusions or 

recommendations expressed in this material are those of the author(s) and do not necessarily reflect 

the views of the National Science Foundation. 

  



83 
 

 

2. 6 References 

1. Gardner, S.G., et al., Metabolic Mitigation of Staphylococcus aureus Vancomycin 

Intermediate-Level Susceptibility. Antimicrob Agents Chemother, 2018. 62(1). 

2. Anandhan, A., et al., Metabolic Dysfunction in Parkinson's Disease: Bioenergetics, Redox 

Homeostasis and Central Carbon Metabolism. Brain Res Bull, 2017. 133: p. 12-30. 

3. Camandola, S. and M.P. Mattson, Brain metabolism in health, aging, and 

neurodegeneration. EMBO J, 2017. 36(11): p. 1474-1492. 

4. Powers, R., et al., Metabolic Investigations of the Molecular Mechanisms Associated with 

Parkinson's Disease. Metabolites, 2017. 7(2). 

5. Gebregiworgis, T. and R. Powers, Application of NMR metabolomics to search for human 

disease biomarkers. Comb Chem High Throughput Screen, 2012. 15(8): p. 595-610. 

6. Halouska, S., et al., Revisiting Protocols for the NMR Analysis of Bacterial Metabolomes. 

J Integr OMICS, 2013. 3(2): p. 120-137. 

7. Powers, R., The current state of drug discovery and a potential role for NMR 

metabolomics. J Med Chem, 2014. 57(14): p. 5860-70. 

8. Botas, A., et al., Metabolomics of neurodegenerative diseases. Int Rev Neurobiol, 2015. 

122: p. 53-80. 

9. Han, W., et al., Profiling novel metabolic biomarkers for Parkinson's disease using in-depth 

metabolomic analysis. Mov Disord, 2017. 32(12): p. 1720-1728. 



84 
 

 

10. Luan, H., et al., Comprehensive urinary metabolomic profiling and identification of 

potential noninvasive marker for idiopathic Parkinson's disease. Sci Rep, 2015. 5: p. 13888. 

11. Roede, J.R., et al., Serum metabolomics of slow vs. rapid motor progression Parkinson's 

disease: a pilot study. PLoS One, 2013. 8(10): p. e77629. 

12. Poliquin, P.O., et al., Metabolomics and in-silico analysis reveal critical energy 

deregulations in animal models of Parkinson's disease. PLoS One, 2013. 8(7): p. e69146. 

13. Chen, X., et al., Longitudinal Metabolomics Profiling of Parkinson's Disease-Related 

alpha-Synuclein A53T Transgenic Mice. PLoS One, 2015. 10(8): p. e0136612. 

14. Lewitt, P.A., et al., 3-hydroxykynurenine and other Parkinson's disease biomarkers 

discovered by metabolomic analysis. Mov Disord, 2013. 28(12): p. 1653-60. 

15. Lei, S., et al., Alterations in energy/redox metabolism induced by mitochondrial and 

environmental toxins: a specific role for glucose-6-phosphate-dehydrogenase and the pentose 

phosphate pathway in paraquat toxicity. ACS Chem Biol, 2014. 9(9): p. 2032-48. 

16. Havelund, J.F., et al., Changes in kynurenine pathway metabolism in Parkinson patients 

with L-DOPA-induced dyskinesia. J Neurochem, 2017. 142(5): p. 756-766. 

17. Breier, M., et al., Targeted metabolomics identifies reliable and stable metabolites in 

human serum and plasma samples. PLoS One, 2014. 9(2): p. e89728. 

18. Worley, B. and R. Powers, Multivariate Analysis in Metabolomics. Curr Metabolomics, 

2013. 1(1): p. 92-107. 



85 
 

 

19. Dettmer, K., A. Aronov Pavel, and D. Hammock Bruce, Mass spectrometry‐based 

metabolomics. Mass Spectrometry Reviews, 2006. 26(1): p. 51-78. 

20. Nicholson, J.K., J.C. Lindon, and E. Holmes, 'Metabonomics': understanding the metabolic 

responses of living systems to pathophysiological stimuli via multivariate statistical analysis of 

biological NMR spectroscopic data. Xenobiotica, 1999. 29(11): p. 1181-9. 

21. Worley, B. and R. Powers, MVAPACK: a complete data handling package for NMR 

metabolomics. ACS Chem Biol, 2014. 9(5): p. 1138-44. 

22. Worley, B., S. Halouska, and R. Powers, Utilities for quantifying separation in PCA/PLS-

DA scores plots. Anal Biochem, 2013. 433(2): p. 102-4. 

23. Delaglio, F., et al., NMRPipe: a multidimensional spectral processing system based on 

UNIX pipes. J Biomol NMR, 1995. 6(3): p. 277-93. 

24. Johnson, B.A., Using NMRView to Visualize and Analyze the NMR Spectra of 

Macromolecules, in Protein NMR Techniques, A.K. Downing, Editor. 2004, Humana Press: 

Totowa, NJ. p. 313-352. 

25. Pluskal, T., et al., MZmine 2: Modular framework for processing, visualizing, and 

analyzing mass spectrometry-based molecular profile data. BMC Bioinformatics, 2010. 11(1): p. 

395. 

26. Xia, J., et al., MetaboAnalyst 3.0-making metabolomics more meaningful. Nucleic Acids 

Res., 2015. 43(W1): p. W251-W257. 

27. Pence, H.E. and A. Williams, ChemSpider: An Online Chemical Information Resource. 

Journal of Chemical Education, 2010. 87(11): p. 1123-1124. 



86 
 

 

28. Wishart, D.S., et al., HMDB 3.0-The Human Metabolome Database in 2013. Nucleic Acids 

Res., 2013. 41(D1): p. D801-D807. 

29. Markley, J.L., et al. New bioinformatics resources for metabolomics. 2007. World 

Scientific Publishing Co. Pte. Ltd. 

30. Worley, B. and R. Powers, Deterministic multidimensional nonuniform gap sampling. J. 

Magn. Reson., 2015. 261: p. 19-26. 

31. Poewe, W., et al., Parkinson disease. Nat Rev Dis Primers, 2017. 3: p. 17013. 

32. Bras, J., R. Guerreiro, and J. Hardy, SnapShot: Genetics of Parkinson's disease. Cell, 2015. 

160(3): p. 570-570 e1. 

33. Klein, C. and A. Westenberger, Genetics of Parkinson's disease. Cold Spring Harb Perspect 

Med, 2012. 2(1): p. a008888. 

34. Goldman, S.M., Environmental toxins and Parkinson's disease. Annu Rev Pharmacol 

Toxicol, 2014. 54: p. 141-64. 

35. Cannon, J.R. and J.T. Greenamyre, Gene-environment interactions in Parkinson's disease: 

specific evidence in humans and mammalian models. Neurobiol Dis, 2013. 57: p. 38-46. 

36. Franco, R., et al., Molecular mechanisms of pesticide-induced neurotoxicity: Relevance to 

Parkinson's disease. Chem Biol Interact, 2010. 188(2): p. 289-300. 

37. Falkenburger, B.H., T. Saridaki, and E. Dinter, Cellular models for Parkinson's disease. J 

Neurochem, 2016. 139 Suppl 1: p. 121-130. 



87 
 

 

38. Creed, R.B. and M.S. Goldberg, New Developments in Genetic rat models of Parkinson's 

Disease. Mov Disord, 2018. 33(5): p. 717-729. 

39. Mosley, R.L., et al., Inflammation and adaptive immunity in Parkinson's disease. Cold 

Spring Harb Perspect Med, 2012. 2(1): p. a009381. 

40. Ascherio, A. and M.A. Schwarzschild, The epidemiology of Parkinson's disease: risk 

factors and prevention. Lancet Neurol, 2016. 15(12): p. 1257-1272. 

41. Anandhan, A., et al., Glucose Metabolism and AMPK Signaling Regulate Dopaminergic 

Cell Death Induced by Gene (alpha-Synuclein)-Environment (Paraquat) Interactions. Mol 

Neurobiol, 2017. 54(5): p. 3825-3842. 

42. Geraghty, R.J., et al., Guidelines for the use of cell lines in biomedical research. Br J 

Cancer, 2014. 111(6): p. 1021-46. 

43. Westerhoff, H.V. and Y.D. Chen, How do enzyme activities control metabolite 

concentrations? An additional theorem in the theory of metabolic control. Eur J Biochem, 1984. 

142(2): p. 425-30. 

44. Blesa, J. and S. Przedborski, Parkinson's disease: animal models and dopaminergic cell 

vulnerability. Front Neuroanat, 2014. 8: p. 155. 

45. Siegel, M.M., The use of the modified simplex method for automatic phase correction in 

fourier-transform nuclear magnetic resonance spectroscopy. Analytica Chimica Acta, 1981. 

133(1): p. 103-108. 

46. Worley, B. and R. Powers, Simultaneous Phase and Scatter Correction for NMR Datasets. 

Chemometr Intell Lab Syst, 2014. 131: p. 1-6. 



88 
 

 

47. Savorani, F., G. Tomasi, and S.B. Engelsen, icoshift: A versatile tool for the rapid 

alignment of 1D NMR spectra. J Magn Reson, 2010. 202(2): p. 190-202. 

48. De Meyer, T., et al., NMR-based characterization of metabolic alterations in hypertension 

using an adaptive, intelligent binning algorithm. Anal Chem, 2008. 80(10): p. 3783-90. 

49. Development Core Team, R., R: A Language and Environment for Statistical Computing. 

Vol. 1. 2011. 

50. Eriksson, L., J. Trygg, and S. Wold, CV‐ANOVA for significance testing of PLS and 

OPLS® models. Journal of Chemometrics, 2008. 22(11‐12): p. 594-600. 

51. Triba, M.N., et al., PLS/OPLS models in metabolomics: the impact of permutation of 

dataset rows on the K-fold cross-validation quality parameters. Mol Biosyst, 2015. 11(1): p. 13-9. 

52. Goodacre, R., et al., Proposed minimum reporting standards for data analysis in 

metabolomics. Metabolomics, 2007. 3(3): p. 231-241. 

53. Benjamini, Y. and Y. Hochberg, Controlling the False Discovery Rate: A Practical and 

Powerful Approach to Multiple Testing. Journal of the Royal Statistical Society. Series B 

(Methodological), 1995. 57(1): p. 289-300. 

54. Bland, J.M. and D.G. Altman, Multiple significance tests: the Bonferroni method. BMJ, 

1995. 310(6973): p. 170. 

55. Xu, Q.-S. and Y.-Z. Liang, Monte Carlo cross validation. Chemometrics and Intelligent 

Laboratory Systems, 2001. 56(1): p. 1-11. 



89 
 

 

56. Rubinson, K.A., Practical corrections for p(H,D) measurements in mixed H2O/D2O 

biological buffers. Anal Methods, 2017. 9(18): p. 2744-2750. 

57. Ruxton, G.D., The unequal variance t-test is an underused alternative to Student's t-test and 

the Mann–Whitney U test. Behavioral Ecology, 2006. 17(4): p. 688-690. 

58. Fay, M.P. and M.A. Proschan, Wilcoxon-Mann-Whitney or t-test? On assumptions for 

hypothesis tests and multiple interpretations of decision rules. Statistics surveys, 2010. 4: p. 1-39. 

59. Hotelling, H., The Economics of Exhaustible Resources. Journal of Political Economy, 

1931. 39(2): p. 137-175. 

60. Fay, D.S. and K. Gerow A biologist's guide to statistical thinking and analysis. WormBook 

: the online review of C. elegans biology, 2013. 1-54 DOI: 10.1895/wormbook.1.159.1. 

61. Marshall, D.D., et al., Combining DI-ESI–MS and NMR datasets for metabolic profiling. 

Metabolomics, 2015. 11(2): p. 391-402. 

  



90 
 

 

CHAPTER 3 

3. Arsenic and Neurodevelopmental Disorders  

3.1 Heavy Metal and Arsenic Toxicity, an Environmental Danger 

Heavy metals are naturally occurring elements with high atomic weights and densities five times 

heavier than water. They are typically metals and metalloids such as mercury, lead, chromium, 

and arsenic [1]. Industrial wastewater and emissions often lead to accumulation of heavy metals 

in soil [2].  In addition to environmental exposure, use of products containing heavy medals lead 

to human exposure. Pesticides and fertilizers often contain trace levels of heavy metals including 

iron, cadmium, and cobalt [3]. Consumer products such as cosmetics may contain trace levels of 

heavy metals including iron and chromium, which may be absorbed through the skin [4]. Heavy 

metals are highly toxic, and many are known carcinogens. The threat level posed by a given heavy 

metal is highly dependent on the level and nature of the exposure. 

One of the higher risk heavy metals to humans is arsenic. Arsenic is a common metalloid typically 

exposed to humans through contaminated water supplies [5]. Production of tube wells in 

Bangladesh with arsenic contamination put between 35 to 77 million people at risk [6]. This 

contaminated water may even be used to water crops, resulting in arsenic build up in the food 

supply. In south east Asia, arsenic contaminated wells led to arsenic build up in rice [7]. In the 

United States, arsenic exposure is typically through food and water. Roughly 2.1 million 

Americans use water that contains 10 μg/L of arsenic [8].  

Arsenic is a known carcinogen, and has been associated with skin, lung, and bladder cancer [9]. 

Unlike other cancers, epideological studies rather than animal models were used to establish a 

dose-response relation. Specifically, wells in Taiwan with high levels of arsenic were used to 

establish cancer rates [10].  After establishing arsenic as a carcinogen, the exposure limit was 
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lowered to 10 μg/L from 50 μg/L [11]. However, the risks of lower levels of exposure are difficult 

to measure.  

Neurological disorders are often associated with low levels of exposure often through water and 

food. Neurological symptoms are typically observed in children or pregnant women.  Studies have 

linked high levels of arsenic exposure to hindered learning development. A study on school 

children observed arsenic levels in urine at 50 μg/L was corrolated with lower scores in language 

and memory tests [12]. Another study measured arsenic in the blood of children. Children found 

with arsenic levels of 147 μg/L scored lower in cognative behavior tests [13]. Children exposed 

through arsenic in drinking water at levels of 106 to 142 mg/L had lower IQ scores [14]. 

Nevertheless, these studies have raised concerns and suggest arsenic exposures levels, particularly 

for products intended to be used by children and pregnant women, should be reevaluated. 

Establishing a lower limit of arsenic exposure is difficult since epidemiological studies have not 

yielded consistant results [15]. Additionally, epidemiological studies do not provide a dose-

response relationship between arsenic exposure and neurological effects. Further complicating the 

situation is the fact that other nutritional defects, or additional neurotoxins may contribute to the 

neurological disorders attributed to arsenic [16].  Recently, the FDA proposed a standard of 10 

ppb of arsenic in apple juice; however, more research is needed before a safe level of exposure can 

be determined [17].  

 

3.2 Metal Xenobiotics and Metabolism 

While Epidemiological data is not sufficient to establish a safe limit, understanding the mechanism 

of toxicity may provide more insights in how arsenic disrupts neurological functions. The toxic 

effect of arsenic is highly dependent on the dosage and route of exposure. Some heavy metals like 
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aluminum can be removed from the body while others accumulate and lead to chronic health 

effects. Heavy metals may act as pseudo elements in the body and interfere with metabolomic 

processes, generate free radicals, and produce oxidative stress. [18].  

Arsenic is known to alter protein and some enzyme function due to a high affinity to sulfhydryl 

groups and can bind to reduced cysteines [19].  Enzymes that contain hydroxyl and thiol groups, 

such as pyruvate dehydrogenase (PDH), can be deactivated through arsenic binding [20]. PDH is 

part of the pyruvate dehydrogenase complex (PDC), which plays an important role by controlling 

the rate of pyruvate entry into the tricarboxylic acid cycle (TCA) by converting it into acetyl 

coenzyme A (Acetyl-CoA). PDC is the limiting step in the TCA cycle by funneling pyruvate into 

the TCA cycle. Arsenic is shown to substitute for the phosphate in ATP, which can potentially 

lead to a disruption to energy metabolism [21]. These effects, once built up, can lead to cell death 

or metabolic dysfunction. Energy metabolism is very important in the brain and its dysfunction 

has been linked to neuronal death [22]. Energy metabolism dysfunction is commonly observed in 

disorders in the nervous system including psychomotor retardation [23]. 

 

3.3 Astrocytes and the Brain 

In the case of arsenic, it is believed that the developing brain is more susceptible to arsenic-induced 

toxic damage [24]. To that end, it is important to consider how heavy metals disrupt neuron 

function or lead to cell death, especially during the developmental stage [25]. Brain development 

includes prenatal to early childhood. The formation of neurons, axons, and dendrites occur during 

brain development. It also includes building and pruning of synapses located between neurons 

[26]. These synapses are key to learning and memory formation. Increase and decrease in synapse 

strength is critical to memory storage [27].  
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An increasing focus on glial cells and their role in neurological disorders has emerged [28]. The 

glial cell astrocytes play an important role in forming and maintaining synapses [29]. Astrocytes 

are also located between synapses and maintain and regulate synapse function [30]. Astrocytes 

help maintain synapses by regulating levels of metabolites present in the synapse. They help 

maintain the synapses between neurons including the removal of excess neurotransmitters, such 

as glutamate and GABA [31, 32]. Glutamate is taken in by astrocytes and metabolically converted 

to glutamine through glutamine synthetase. Glutamine is than shuttled to neurons, which is 

converted back to glutamate in a glutamate/glutamine cycle [33]. Astrocytes also help regulate 

nutrients that enter the brain. Astrocyte end feet cover 90% of the blood vesicles in the brain and 

assist with the blood brain barrier (BBB) function [34]. These blood vesicles form the BBB, which 

is very selective in allowing what crosses into the brain [35].  

Astrocytes metabolically process nutrients from the BBB and shuttle them to neurons [36]. 

Glucose metabolism is of interest in astrocytes. Astrocytes consume glucose glycolytically, 

blocking glycolysis had minimal effect on ATP production [37]. Astrocytes take in glucose and 

produce pyruvate, which is pooled into cytosol pyruvate, which is converted to lactate and 

mitochondrial pyruvate [38]. Astrocytes can also glycolytically produce glycogen and convert it 

back to lactate for later use [39, 40]. 

Mitochondrial pyruvate is also funneled into the TCA cycle. Neurons cannot upregulate glycolysis 

due to a lack of 6-phosphotrocto-2-kinase/fructose 2,6-bisphosphatse isoform 3 enzymes [41]. 

Both neurons and astrocytes express PDC to generate ATP from glucose. While neurons express 

PDC at a near maximum capacity, astrocytes tightly regulate PDC [42]. Astrocytes produce and 

export a number of TCA intermediates, which get taken up by neurons [43]. 13C glucose has been 

used to show that TCA products, including citrate, is funneled to neurons [44]. 
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Due to astrocytes’ relationship to the BBB, it is one of the first cell types to encounter and respond 

to foreign agents. Arsenic has been shown to cross the BBB and the placenta [45]. This suggests 

that astrocytes are the first neurological cells to encounter xenobiotics like arsenic. Rodent models 

have shown that arsenic can accumulate in the brain, particularly in the pituitary, hippocampus, 

thalamus and hypothalamus [46].   

Astrocytes have high concentrations of antioxidants, including glutathione and vitamin C, making 

them highly resistant to oxidative stress induced by xenobiotics [47]. GSH has also been shown to 

catalyze the reduction of peroxides and to form complexes with xenobiotics [48]. GSH is also used 

by arsenic (III) methyltransferase (AS3MT), which methylates arsenic in the brain [46]. In 

addition, GSH has been shown to form complexes with arsenic as part of the arsenic excretion 

process. However, in addition to supporting cells, astrocytes have been known to induce toxic 

effects. Astrocytes have been shown to be reactive, including regulating and inducing 

inflammation, and can induce cell damage as well as cell repair [49].  

Cultured astrocytes have been shown to alter their metabolism when exposed to arsenic notably in 

the production of GSH [51]. Glucose metabolism is important in the production of GSH as well as 

the formation of many biomolecules. When treated with 3 mM of arsenic for 2 hours there was a 

decrease in internal GSH and an increase in external GSH [52]. To observe how arsenic altered 

the glucose metabolism, astrocytes were feed 13C labeled glucose. Levels of metabolites derived 

from glucose were measured to identify metabolomic pathways that were altered by arsenic 

treatment. 

 

3.4 Method and Materials  

3.4.1 Chemicals and Reagents. 
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Astrocyte Cell Cultures. 

All cell culture work was done by Jordan Rose from Dr. Rodrigo Franco Cruz’s lab.  

Primary astrocytes were cultured in 100 mm dishes for NMR analysis and 6 well plates for flow 

cytometric analysis and cell-based assays. Primary astrocytes were collected from mouse pups, 

stored in a cryofreezer, and were thawed on ice before use. Cells were grown in Dulbecco’s 

Modified Nutrient Mixture F-12 (DMEM) media with 10% Fetal Bovine Serum (FBS) and 1% 

penicillin-streptomycin. The cells were incubated at 37oC and 5% CO2 and the media was changed 

every 2-3 days until cells reached 90% confluence. Once the cells reached confluence, the media 

was replaced with the treatment media. Treatment media consisted of DMEM with the measured-

out arsenic dosage as well as replacing 12C-glucose with 13C6-glucose for 13C-labeling of the 

metabolome. The cells were treated for 12 hours followed by extraction of the metabolome. 

 

3.4.2 Preparation of Metabolomics Samples for NMR Analysis. 

Prior to cellular extraction, 1 mL of media was collected of and used to measure extracellular 

metabolites.  Extracellular metabolites extracted by centrifuging the collected media for 5 minutes 

at 15,000 g at 4°C and collecting the supernatant. Intracellular metabolites were collected from the 

cell lysate. The cells were first washed twice with 5 ml of phosphate buffer. 1 mL of methanol at 

-80°C was used to lyse and quench the cells. Cells were then incubated for 15 minutes at -80°C to 

facilitate the lysis. Cells were then detached with a cell scraper and confirmed with an inverted 

microscope. The process was repeated if cells remained attached. The methanol and cell debris 

were collected in 2 mL microcentrifugation tubes and centrifuged for 5 minutes at 15,000 g at 4 

oC to pellet the cell debris. The methanol supernatant was collected. The cell debris was extracted 

with a 80%/20% mixture of methanol/water, centrifuged for 5 minutes at 15,000 g at 4oC, and the 
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supernatant collected. The process was repeated with 100% water. The three supernatants were 

combined, evaporated in a RotoSpeed vacuum to remove the methanol. and then lyophilized to 

dryness. The samples were reconstituted for NMR analysis with the addition of 500 uL of 50 mM 

phosphate buffer in D2O at pH 7.2 (uncorrected) with 500 M sodium-3-trimethylsilylpropionate 

(TMSP) used as an internal chemical shift standard. 

 

3.4.3 NMR Data Collection and Processing. 

NMR spectra was collected on a Bruker AVANCE  III-HD 700 MHz with a 5 mm quadrupole 

resonance QCI-P cryoprobe (1H, 13C,15N and 31P) with z-axis gradients. Samples were collected at 

300K using a SampleJet automated sample changer and Bruker ICON-NMR software to automate 

data collection. The 1D 1H experiments were collected with 128 scans and 4 dummy scans. There 

were 32,768 data points collected with a spectral width of 11,160 Hz with a 2s relaxation delay. 

2D 1H-13C HSQC spectra were collected with 128 scans and 16 dummy scans. In the direct 

dimension, there were 1024 points and a spectral width of 9,090 Hz. In the indirect dimension, 

there were 128 points and a spectral width of 29,165 Hz. NMR data was Fourier transformed, auto 

phased, and referenced to TMSP with NMRpipe. NMRViewJ Version 98 was used to peak pick 

and to quantify peak changes. The NMR data sets was normalized to the total peak intensity.  

 

3.4.4 Metabolite identification.  

Chemical shifts were assigned using Platform for RIKEN Metabolomics (PRIMe) 

(http://prime.psc.riken.jp/) with a 0.05 ppm and 0.1 ppm error range for 1H and 13C chemical shifts, 

respectively. Metabolite identity was manually confirmed with the Human Metabolome Database 

(HMDB) (https://hmdb.ca/) [54]. Metabolite concentrations were measured from peak intensities. 

http://prime.psc.riken.jp/
https://hmdb.ca/
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All metabolite concentrations were normalized to TMSP (500 M). For metabolites with multiple 

peaks, intensities were averaged after normalization.  

 

3.4.5 Statistical Analysis and Data Processing. 

To measure the effect of arsenic, metabolite levels of treated samples were compared to untreated 

control samples. Fold changes were calculated between treated and untreated samples. Student’s 

t-test was used to verify statistical significance followed by a Benjamin-Hochberg multiple 

hypothesis correction to account for false discovery rate [53]. A corrected p-value < 0.05 was 

considered statistically significant.  

 

3.5 Results and Discussion  

Astrocytes respond to arsenic in a time and concentration dependent fashion. Astrocytes exposed 

to arsenic have been shown to have decreased viability. Exposure of cultured cells at 1 mM for 24 

hours resulted in decreased cell viability [55].  

To observe the effect arsenic on glucose metabolites, intermediate and product metabolites were 

measured by NMR.  13C Glucose was fed to astrocytes and metabolite products were quantified 

in both the intracellular and extra cellular space. Figure 3.1 is an example HSQC and shows some 

of the metabolites identified by chemical shifts. We looked for changes which upon treatment 

showed consistent increases or decrease across replicates. Figure 3.2 shows fold change in 

metabolites. Upon treatment with arsenic, there was an observed increase in glycolysis 

intermediates, fructose-6-phosphate at and 3-Phosphate-Glycate. However, there was a decrease 

in glycolytic products lactate and glycogen precursor Uridine diphosphate glucose (UDP-glucose). 

Figure 3.2 shows the fold changes for metabolites identified both intracellular and extra cellular. 
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This suggests that glycolysis is upregulated but funneled into pyruvate production rather than 

lactate production. 

 

 

Figure 3.1: 2D 1H-13C HSQC spectra from astrocytes cell extract following treatment with 10 μ 

of As2O3. Highlighted are some of the metabolites identified based on chemical shifts.  

 

Decreased lactate production is observed when astrocytes experience oxidative stress. It has been 

observed that peroxide induced oxidative stress exposure decreased lactate production. Measuring 

13C enrichment levels show that it was not a shift in carbon sources but a decrease in overall 

production [56]. At low levels of arsenic exposure, astrocytes with 0.1 mM and 0.3 mM arsenic 

stimulated GSH export and glycolic flux resulted in excess lactate production [51]. However, we 

observed it is likely that astrocytes divert glucose from glycolytic lactate production to pyruvate 

production for use in the TCA cycle at high levels of arsenic exposure. Lactate has been theorized 

to be funneled into the TCA cycle of neurons as a carbon source [43]. However, lactate also 
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modulates receptors and channels in neurons [57].  

TCA cycle intermediates are difficult to measure after long treatments due to the cyclic nature of 

metabolic processes. Instead, the focus was shifted to the products. Figure 3.2 shows metabolites 

with significant fold change in both the intercellular and extracellular space. We observed a major 

increase in glutamate (2.33, 36.35 ppm) in the extracellular and a matching decrease in the 

intercellular concentration. We also observed a decrease in extracellular metabolites lactate and 

citrate at high doses. Figure 3.3 shows where these metabolites are in the glycolic and citric acid 

cycle. Increases in the export of glutamate due to arsenic exposure has been previously observed 

[58, 59].  

 

 

 

Figure 3.2: Relative fold change of metabolites detected in 2D 1H-13C HSQC spectra. Fold 

changes represent metabolite levels compared to an untreated control. Error bar represents standard 

deviation. Astrocytes cells were treated with 0 (black), 2, (grey) 5 (dark grey) and 10 (white) M 

of As2O3. All detected metabolites are derived from 13C6-glucose. 

After being converted into pyruvate, glucose was funneled into the TCA cycle. The intermediates  
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Figure 3.3: Summary of change in metabolism of 13C glucose in astrocytes following arsenic 

treatment. The metabolic pathway shows glucose metabolized through glycolysis and the TCA 

cycle. Gray colored metabolites were not detected. Black colored metabolites were identified but 

had no significant change. Green colored metabolites had a significant decrease relative to 

untreated astrocytes. Red colored metabolites had a significant increase relative to untreated 

astrocytes.   

 

Treating astrocytes with 1.5 to 30 μM of arsenic resulted in decrease in the expression of glutamate 

transporters in astrocytes, which resulted in a decrease in glutamate uptake [60]. Glutamate is a 

key component in GSH. It has been previously shown that GSH catalyzes the condensation of 

ammonia and glutamate, which reduces toxic levels of glutamate and ammonia [61]. Astrocytes 

exposed to hydrogen peroxide has been shown to reduce glutamine levels, suggesting a disruption 
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in GSH [62]. Glutamate export is also important to the import of cystine through the xCT transport 

[63]. Studies have shown that the production of GSH results in the consumption of cystine [64]. 

Glutamate export is a response to the import of cystine into the cell to upregulate GSH production. 

This may result in neuron death due to an inability to produce GSH, leading to oxidative stress 

[65].  

A decrease in citrate was also observed at a high level of arsenic exposure. A decrease in citrate 

production has been observed with aluminum, although this was likely due to the binding to 

aluminum and prevention of transport [66]. Citrate is a TCA intermediate and could act as a 

possible carbon source for ATP production in neurons. Citrate has been speculated to chelate 

calcium and magnesium, and modulate glutamate receptors [67]. 

 

3.6 Conclusion 

Astrocytes being a one of the larges types of glial cells play a large and diverse role in the brain. 

They have been shown to metabolically support neurons, including maintaining homeostasis by 

metabolically producing molecules that support neurons. However, they have also been shown to 

have negative impacts on neurons. Astrocytes have been known to produce inflammatory products 

such as cytokines in response to stressors [68].  There is also the consideration that exposure to 

toxins can hijack glucose metabolism to shift focus to protective GSH production.  

Overall, we observed a decrease in glucose products specifically lactate and citrate as well as an 

increase in glutamate. It is possible that the production of GSH alters carbon metabolism away 

from energy production towards antioxidant production. Decreased TCA intermediates could 

deprive neurons of a carbon source. Additionally, increased consumption of cystine could reduce 

the pool available to neurons resulting in oxidative stress [65]. However, it is important to note 
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that these metabolites also function to modulate receptors. Lactate has been shown to bind to 

synaptic receptors connected to synaptic plasticity [57]. Lactate has suggested to be a key 

metabolite in memory formation due to high brain energy demands [69]. Westergaard suggested 

that citrate plays a role in NMDA glutamate receptor by chelation of Zn2+ [67]. Many of these 

effects could lead to dysfunction or cellular death of neurons. 
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Chapter 4  

 

4. Geographical Analysis of Wine  

 

4.1 Introduction to Wine Science 

Since wines discovery, continuous efforts have been made to improve its quality, taste and 

production levels. Wine is a complex mixture consisting of 86% water, 12% glycerol and 

polysaccharides, 0.5% acids, and 0.5% volatile compounds [1]. This mixture is shaped by the 

complex process of wine making, from grape growth to fermentation. For example, phenolic 

compounds (hydroxy-substituted benzene rings) are developed in grapes and are largely 

responsible for the taste and color of wine. Each phenolic compound comes from a different part 

of the grape and plays a unique role in the overall quality of the wine. For example, flavonols are 

phenolic compounds found in the seed and skin of the grape, where production is stimulated by 

UV light exposure. Flavonols can increase the wine’s color intensity and are highly correlated with 

the market price of wine. Anthocyanins are another class of phenolic compounds responsible for 

the color of red wine [2]. Yeast fermentations develops wine further by consuming grape products 

and converting them into new chemicals. There are two key steps to wine fermentation, alcoholic 

fermentation and malate fermentation, which may occur simultaneously or sequentially. Alcoholic 

fermentation converts sugars, mainly glucose and fructose, to ethanol and carbon dioxide. Malic 

fermentation, while not technically fermentation, converts malic acid to lactic acid [3]. Overall, 

the taste, smell and texture of wine, and correspondingly its value, is defined by the wine’s 

chemical composition, which is impacted by the environment, climate and wine-making process. 

Accordingly, there is a long history and interest in correlating the chemical composition of wine 

with its quality and production.       
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In 1866, In the late 1970s, Shauils and Smart evaluated canopy management and found ways to 

increase the production of high quality grapes [4]. As scientific methods improved, wine science 

was better able to pinpoint the specific compounds that contribute to wine flavor. In the late 19th 

century, many of the phenolic compounds in wine were identified and the structures determined 

[5]. Thus, phenolic compounds can now be rapidly quantified from individual wine samples [6]. 

In this manner, the factors that contribute to high-quality wines may be assessed by studying the 

wine’s phenolic profile. Furthermore, by identifying and quantifying the different compounds in a 

wine, the resulting chemical profile may be used to ensure wine quality. Alternatively, wine 

chemical profiles may be used to evaluate different yeast strains to identify which strains produced 

the desired result [7]. Phenolic compounds are also of interest to human health. Their antioxidant 

and anti-inflammatory capacities may present potential health benefits [8]. Chemical or phenolic 

profiles are frequently used to authenticate wines or identify its terrior [9]. Terroir defines all the 

factors or variables (i.e., soil composition, sun exposure, rainfall, etc.) that impact how the wine 

was produced by a vineyard. Alternatively, terroir is a measure of the effect of the environment on 

the wine [10]. 

 

The profiling of the chemical composition of wine may be accomplished in several ways. Assay 

tests are frequently used to quantify a specific class of chemicals or just a few particular 

compounds. Assays allow for the rapid testing of many wine samples while providing accurate 

analysis. For example, an assay can monitor the fermentation process by specifically measuring 

ethanol production [11]. Other assays may be used to identify errors or problems with the 

fermentation process, such as observing the accumulation of acetic acid. The production of excess 

acetic acid leads to wine with an undesirable sour taste [12]. Similarly, the Fox-1 assay targets 
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tannins, which are often associated with wine astringency [12]. Of course, any assay limited to a 

single molecule will be restricted to what can be learned about the system. 

 

As an alternative to targeted assays, analytical techniques can offer a broader coverage of wine 

metabolites. The simultaneous quantification and identification of the large number of compounds 

present in wine has an inherent and distinct value for characterizing authenticity [13]. Mass 

spectrometry (MS) coupled with liquid chromatography (LC-MS) or gas chromatography (GC-

MS) may rapidly quantify the entire metabolic or chemical profile of wine. MS is a popular method 

for detecting any ionizable compound, which is further enabled by the availability of large 

reference databases for ready metabolite assignments. The exact mass, retention time and 

fragmentation patterns are used to identify metabolites by matching experimental values to 

database reference values. For example, LC-MS has been used to measure tannins in red wine to 

characterize its age [14]. NMR has also been effectively used to profile wines, grapes, and the 

products before, during and after fermentation. NMR detects 1H and 13C chemical shifts, which 

makes it useful for identifying and quantifying the organic compounds in wine. For example, NMR 

was used to measure the compounds in the pulp, skin, and the seeds from grapes to evaluate quality. 

The pulps were differentiated by levels of alanine and citrate [15]. NMR was also used to compare 

different strains of yeast, it was noted that yeasts that fermented wine faster produced higher levels 

of succinate and glycerol [16]. Port wines of different ages were compared by NMR and it was 

observed that aged wines had lower levels of succinate acid, pyruvic acid -butyric acid and proline 

[17].  

Chemical or metabolic profiles are useful for evaluating wines, but sample variation is frequently 

a problem with commercial wines, Herein, we describe the chemical characterization of various 
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Pinot Noir (PN) wines produced by a number of California and Oregon vineyards. A chemical 

profile can be used to measure the environmental impact on PN wines and to differentiate different 

PN wines. A differential sensing assay that provides a phenolic profile was combined with 

untargeted one-dimensional (1D) 1H NMR data to compare PN wines from different vineyards, 

vintages, and wine regions. Wines were successfully identified based on vineyard of origin using 

a combination of univariate and multivariate statistical analysis.   

 

4.2 Materials and Methods 

4.2.1 Chemicals  

Deuterium oxide (99.9% D) was obtained from Sigma Aldrich (Milwaukee, WI). 3-(trimethylsilyl) 

propionic-2,2,3,3-D4 acid sodium salt (98% D) (TMSP-D4) was purchased from Cambridge 

Isotopes (Andover, MA). Potassium phosphate dibasic salt (anhydrous, 99.1% pure) and 

monobasic salt (crystal, 99.8% pure) were purchased from Fisher Scientific (Fair Lawn, NJ). 

 

Wine grapes (Vitis vinifera L. cv. Pinot noir clone Dijon 667) from fifteen different vineyard sites 

along the West Coast of the United States were harvested at similar sugar concentration of 24 Brix 

between 13 Aug to 15 Sept 2015 and between 25 Aug to 21 Sept 2016 (Table 4.1). Eight American 

Viticultural Areas, which span a latitudinal distance of approximately 1450 km, are represented in 

this experiment: Santa Rita Hills (SRH), Santa Maria Valley (SMV), Arroyo Seco (AS), Carneros 

(CRN), Sonoma Coast (SNC), Russian River Valley (RRV), Anderson Valley (AV), and 

Willamette Valley (OR). Table 4.1 lists the selected vineyards, the wine region and the nearest 

county. 
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County Wine Region Vineyard 

Sonoma Sonoma Coast Annapolis 

Sonoma Sonoma Carneros Cloud Landing 

Sonoma Sonoma RRV Carneos Hills West 

Sonoma Sonoma RRV Ross 

Sonoma Sonoma RRV Bones 

Sonoma Sonoma RRV Bloomfield 

Mendocino Anderson Valley Boone Ridge 

Mendocino Anderson Valley Maggy Hawk 

Monterey Arroyo Panarama 5A 

Monterey Arroyo MSA 

Santa Barbara Santa Maria Valley Nielson 

Santa Barbara Santa Maria Valley Rice/Cambria 

Santa Barbara Santa Maria Hills Radian 

Marin County Willamette Valley Gran Moraine 

Marin County Willamette Valley Zenna West 
Table 4.1: List of wines and vineyards. The nearest county was used to group wine regions. 

Counties Sonoma, Mendocino, Monterey, and Santa Barbra are located on the cost of California 

while Marin County is in Oregon. 
 

4.2.2 Winemaking 

Grapes were fermented in 200 L stainless steel fermenters at the UC Davis Teaching & Research 

Winery.  Primary fermentation was initiated by inoculating with Lalvin RC212 (Lallemand) after 

warming the must to 21°C. The fermentation temperature was held a 21°C for two days after 

inoculation, and subsequently allowed to rise to 27°C where it was held for the remainder of 

primary fermentation.  Wine was separated from the red grape skins by using a basket press on the 

ninth day after grapes were placed into the fermenter. 

 

4.2.3 Differential Sensing Method 

The indicators Chrome Azurol S (CAS) (purity 65%), Bromopyrogagllol Red (BPR), and 

Pyrocatechol Violet (PCV) (purity 100%) were purchased from Sigma-Aldrich (Saint Louis, MO). 
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Nickel chloride hexahydrate (purity 99.7%), copper (II) sulfate (purity 99.2%), and HEPES buffer 

were purchased from Fisher Scientific (Hampton, NH). Solid phase peptide synthesis reagents 

were purchased from P3 BioSystems (Louisville, KY). Peptides were synthesized using standard 

SPPS and a CEM Liberty Blue Automated Microwave Synthesizer, (Matthews, NC, USA). 

Absorbance values were recorded using a Spectra Max Plus 384 plate reader (Molecular Device 

Inc.) 

 

4.2.4 Array and Indicator Displacement Assay 

A library of nine peptide-based sensors were used for the construction of the differential sensing 

(DS) array. Each ensemble was composed of a histidine peptide, a divalent metal and a 

colorimetric indicator. The peptides: WAHEDEFF (TT2), FHFPHHF (SEL1), and WEEHEE 

(RN8) were used to prepare the same peptide-metal-indicator ensembles (MM1-MM9) and 

corresponding binding ratios were previously reported [18,19]. Arrays were prepared in Fisher 

Scientific non-treated 96-well plates with flat bottom and clear polystyrene. Final well-plate 

solutions of peptide ensembles and wine concentration of 1% (v/v) were prepared using 50 mM 

HEPES in ethanol, 1:1 (v/v), pH = 7.4). Absorbance endpoint-values due to the displacement of 

each indicator by the tannins were measured at 430 nm, 444 nm, and 560 nm corresponding to the 

λmax of free CAS, PCV, and BPR, respectively. Eight replicates were performed to ensure 

reproducibility. Controls consisted of a column of wine alone and a column of the ensemble alone 

in each plate. Two experimental replicates of the full array were performed in 2017 using the wines 

from 2015 vintage and in 2018 using wines from the 2016 vintage, respectively. 

 

4.2.5 NMR Sample Preparation. 
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Wine was removed for amber vials via a syringe immediately before preparing the NMR samples. 

Each NMR sample was prepared by adding 15 µL of 50 mM phosphate buffer prepared in D2O at 

pH 7.2 (uncorrected) with the addition of 50 µM of TMSP-D4 as an internal chemical shift 

standard to 150 µL of wine.  Eight analytical replicates were prepared for each wine for a total of 

120 NMR samples. 

 

4.2.6 NMR Data Collection and Processing. 

NMR spectra were collected on Bruker a AVANCE III 700 MHz spectrometer equipped with a 5 

mm quadrupole resonance QCI-P cryoprobe™ (1H, 13C, 15N and 31P) with a Z-axis gradient. A 

SampleJet automated sample changer system with Bruker ICON-NMR™ software and an 

automatic tuning and matching accessory was used to automate the data collection. 

  

A 1D 1H NMR spectrum with a presaturation pulse and a NOESY pulse sequence was collected 

for each of the 120 wine samples. The Bruker automation program, Multisupp, was used to 

suppress the multiple solvent peaks resulting from the presence of water and ethanol in the sample. 

Multisupp automatically identifies and suppresses the most intense peaks in the NMR spectrum. 

For this experiment, one peak at 4.7 ppm due to water and the three peaks at 1.3, 2.7. and 3.7 ppm 

due to ethanol were suppressed. The 1D 1H NMR spectra were collected at 300K with 65K points, 

a spectral width of 14705 Hz, 128 scans, 4 dummy scans, and 4s relaxation delay. 

1D 1H NMR spectra were batch processed and analyzed using our NMR metabolomics toolbox, 

MVAPACK [20]. The spectra were Fourier transformed, auto phased and referenced to TMSP at 

0 ppm. Regions of the spectra containing residual water and TMSP were removed. The spectra 

were normalized using probabilistic quotient normalization and unit-variance scaled. Uniform bins 
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of the 1D 1H NMR dataset were exported as a matrix from MVAPACK.  

 

4.3 Statistical Analysis.  

4.3.1 PCA analysis 

PCA models were generated from the binned NMR data, the DS array data, and the combined 

NMR and DS array data set. PCA models were generated with MVAPACK [13] using 3 principal 

components. Dendrogram were created from the associated PCA scores plot with all wines 

separated by a Mahalanobis distances depicted as p-values [21,22]. A p-value < 0.05 was deemed 

to be statistically significant. 

 

4.3.2 ROC analyses  

The combined NMR and DS array data set was processed in MetaboAnalyst 4.04 

(https://www.metaboanalyst.ca/) to obtain multivariate ROC curves [23]. The dataset was range 

scaled and ROC curves generated using a support vector machine algorithm. A one versus all 

comparison was made for each individual wine.  

 

4.4 Results 

4.4.1 NMR Data Collection for Wine Samples 

To optimize data collection, multiple methods of NMR data collection and data processing were 

evaluated. Wine contains relatively high concentrations of water and ethanol, while containing low 

concentrations of other compounds, such as phenolic, which are key to characterizing wines. In 

order to fully chemically profile each wine, it is essential to detect metabolites with low 

concentrations in the 1D 1H NMR spectrum. The large dynamic range between the solvent peaks 
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and the wine metabolites posed a serious challenge. Therefore, an initial goal was to suppress the 

high-intensity solvent peaks while preserving the NMR peaks from the low concentration 

metabolites. Furthermore, the experimental design focused on minimizing sample preparation and 

handling to reduce the introduction of error.  

 

Solvent signals are often removed by lyophilization. However, we observed residual amounts of 

solvent after lyophilizing the wine samples and reconstitution into buffered D2O. Therefore, the 

water and ethanol signals were also suppressed during NMR data collection. The Bruker program 

Multisupp was used, which suppresses the most intense peaks in the NMR spectrum. Accordingly, 

the four largest peaks corresponding to the residual water and ethanol resonances were 

simultaneously suppressed. A dramatic improvement in the spectral quality was achieved as 

evident by the observation of weak metabolite peaks near the base line that were not visible prior 

to solvent suppression. Figure 4.1 shows a comparison between the suppressed and unsuppressed 

1D 1H NMR spectra for the wine from Nielson.  In total, 120 NMR spectra were collected. While 

the baseline in the multi suppressed NMR spectra was not stable across the data set and required 

baseline corrections, there were significantly more metabolites detectable following solvent 

suppression. Specifically, an abundance of low level metabolites were observed in the NMR 

spectral regions between 0 to 3 ppm and between 5.5 to 8 ppm, which corresponds to organic acids 

and carbohydrates, respectively.  

 

Other experimental protocols were evaluated to assess which approach preserved the most 

metabolites detected in the 1D 1H NMR spectrum. For example, samples were prepared under both 

atmospheric conditions or a nitrogen atmosphere. No difference was observed between samples 
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prepared in the presence or absence of oxygen. Wine samples were also adjusted to a common pH 

by the addition of a D2O phosphate buffer at pH 7.2. Not surprisingly, the addition of a buffer 

resulted in a better comparison between NMR spectra. Any residual pH variation was accounted 

for by aligning the NMR spectra in data processing.  

 

Figure 4.1: A comparison between a multi-suppressed 1D 1H NMR spectrum (red) and a water 

suppressed spectrum (blue) for wine from Nielson. (A) The expanded region of the 1D 1H NMR 

spectra between 6 ppm and 9 ppm highlights phenolic compounds. (B) The expanded region of 

the 1D 1H NMR spectra between 3 ppm and 5 ppm highlights sugar compounds. (C) Overlay of 

the complete 1D 1H NMR spectra highlighting the dramatic improvement resulting from 

successful solvent suppression.  

 

4.4.2 Overview of the Statistical Analysis of NMR and DS array data sets 

Combining the NMR and DS array data sets provides an expanded view of the entire wine 

metabolome [24]. Simply, the NMR data set provides an untargeted characterization of the 
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metabolome; in which, only the relatively high concentrated metabolites (> 3 M) are detected. 

Conversely, the DS array data set is only providing a profile of the phenolic compounds present in 

the wine sample. Thus, the NMR and DS array datasets are highly complementary. The NMR 

spectral data set was UV scaled and then exported as a matrix to match the structure of the DS 

assay data. The NMR data matrix was generated by uniformly binning the 1D 1H spectra such that 

the resulting data matrix consisted of an integrated intensity over the binned ppm range. The NMR 

matrix for each wine sample consisted of 8 technical replicates. The DS assay data set also contains 

8 technical replicates. The NMR and DS assay data sets were analyzed individually and as a 

combined multiblock data set. The combined data set was used to identify which spectral features 

was best at categorizing each wine.  

 

4.4.3 Variations in Vineyard Climates  

To study the impact of climate on each wine’s metabolome, environmental statistics were obtained 

from the Everyvine (http://www.everyvine.com/) database. Everyvine provides climate conditions 

for various wine regions by collecting data from individual vineyards and determining an average 

from the collated climate data. Climate data was assembled for the wine regions of interest with 

the assumption that a vineyard in a defined region will have a similar climate. The average sunlight, 

average high and low growing temperatures, and the total rain fall were measured during each 

growing season. Heliothermal or Huglin index values were also reported by Everyvine. Huglin 

index is a vineyard heat index that sums all temperatures above 10 oC between April and September 

[25]. The Huglin heat sum index relies on the daily median and maximum temperatures, and a 

parameter (k) based on the latitude of the vineyard (eqn 4.1): 

∑ 𝒎𝒂𝒙 [
𝑻𝒎𝒊𝒏−𝟏𝟎+𝑻𝒎𝒂𝒙−𝟏𝟎

𝟐
, 𝟎] 𝒌𝒏

𝒅=𝟏     (4.1)  

http://www.everyvine.com/
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Equation 2.1: The calulation for the Huglin heat sum index where k factor is adjusted for latitude 

[26]. 

However, only averages climate values were available, which does not account for seasonal 

variation. Since the Pinot noir wines were derived from the same clone (Dijon 667), a major source 

of metabolome variations may be attributed to climate differences. In this regards, climate data 

was used to determine if wines that exhibited a similar metabolome also shared similar climate 

data. Table 4.2 lists the available climate data for the wine regions used in this study. Climate data 

was divided into low medium and high based on the regions selected.  For the Huglin Index low 

is considered below 2000, with high above 2190. For average high temperature is considered 

below 24.5°C and high above 25.5. For average low temperature low is considered 8.5°C and high 

above 9.25C. Rain fall was considered low below 3 in and high above 6in.  
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Vineyard Wine Region Huglin 
Index 

Average 
High (°C) 

Average 
Low  
(°C) 

Rain 
Fall 
(in) 

Annapolis Sonoma Coast 2146.3 25.33 9.11 6.24 

Cloud 
Landing 

Sonoma Carneros 2224.94 25.67 9.89 4.14 

Carneos Hills 
West 

Sonoma RRV 2197.24 25.78 8.83 5.92 

Ross Sonoma RRV 2197.24 25.78 8.83 5.92 

Bones Sonoma RRV 2197.24 25.78 8.83 5.92 

Bloomfield Sonoma RRV 2197.24 25.78 8.83 5.92 

Boone Ridge Anderson Valley 2185.79 25.67 8.50 7.55 

Maggy Hawk Anderson Valley 2185.79 25.67 8.50 7.55 

Panarama 5A Arroyo 2034.7 25.00 9.17 1.96 

MSA Arroyo 2034.7 25.00 9.17 1.96 

Nielson Santa Maria Valley 1862.37 23.72 9.50 2.8 

Rice/Cambria Santa Maria Valley 1862.37 23.72 9.50 2.8 

Radian Santa Maria Hills 1862.37 24.28 9.83 2.54 

Gran Moraine Willamette Valley 1749 21.78 8.11 14.13 

Zenna West Willamette Valley 1749 21.78 8.11 14.13 

Table 4.2: Average Climate Conditions Local environmental and climate information was 

generated from averaging vineyard climate data submitted to Everyvine. Climate data was 

collected September of 2019. The Huglin index acts as a measure of heat and is the sum of the 

temperatures above 10°C during the growing period (see eqn. 4.1). 

 

4.4.4 Global Comparison of PN using Metabolic Profiles  

An overall PCA model was generated that included all 15 wines. A PCA model reduces a large 

multivariate data set into a limited number of principle components (usually 2 to 9) and identifies 

the unique spectral features that distinguishes the groups. A PCA model is a common approach for 

viewing wine classification data and is frequently used to provide an overview of the global 

similarity or differences between the individual wines. A PCA model is usually presented as a 

scores plot where each replicate (i.e., 1D 1H NMR spectrum or DS assay array) is presented as a 

single point in the two- or three-dimensional plot. The relative similarity or difference between 

each replicate and/or group is assessed by how close or how far each data point or group cluster is 

from each other.  
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PCA models were generated from the 1D 1H NMR data set, the DS assay data set, and the 

combined NMR and DS array data set. A PCA model was generated from the data sets with 

replicates grouped by the individual vineyards (15 groups) or the vineyards classified by wine 

region (8 groups, Table 4.2). The quality of the resulting PCA models were assessed by the 

reported R2 and Q2 values. Typically, a good model has an Q2 and R2 close to 1, with R2 > Q2. A 

high R2 value indicates that the data fits the model well. A high Q2 value indicates a good 

reproducibility of the model. Q2 measures the amount of variance in fitting the held-out data to the 

model.  

PCA models could not be generated using the NMR and/or DS assay data grouped by wine region. 

This indicates that there was too much variation in the wine region defined data sets to generate a 

valid PCA plot. However, a PCA model was generated from the NMR and/or DS assay data 

grouped by individual vineyards. The resulting PCA models could separate each wine.  

 

4.4.5 DS Assay PCA Model 

The PCA model generated from the DS assay data set (Figure 4.2A) indicated that most of the 

individual vineyards formed a distinct group from the other vineyards in the scores plot. The 

associated dendrogram (Figure 4.2B) also indicated a clear separation between most of the 

vineyards. Thus, despite the wines being derived from the same Pinot noir clone Dijon 667, 

environmental and climate factors, among others, define the chemical profile of the wines. 

 

The dendrograms were produced from the associated PCA scores plot based on a matrix of 

Mahalanobis distances between each group. Each node in the dendrogram was labeled with a p-

value indicating the statistical significance of the group separation. Overall, the dendrogram 
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clusters the vineyards into 4 groups containing between 3 to 5 vineyards within each cluster. A 

few wines did significantly overlap (p-values > 0.05). Notably, wines from vineyards in the same 

region did not all cluster together, which is consistent with the failure to generate a PCA model 

based on wine regions  

 

Wines from Bloomfield, Annapolis, and Cloud Landing did cluster together, which could be due 

to the fact that these vineyards are all located in Sonoma County. However, the wines are in distinct 

wine regions. Bones and Carneros Hills West clustered together and do belong to the same wine 

region, Sonoma RRV. In fact, the wines were statistically indistinguishable (p-value 0.33). 

However, the other vineyards in Sonoma RRV, Ross and Bloomfield, were found in other clusters. 

Boone Ridge and Nielson also clustered together and were statistically indistinguishable (p-value 

0.23). These wines were not in the same wine region and do not share climate averages as observed 

from the Everyvine data. This suggests that general location and/or climate data are insufficient to 

explain relative vineyard groupings. Other terroir factors, such as soil conditions, or wine 

processing protocols, may better explain the relative clustering of vineyards.   
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Figure 4.2: PCA model (R2 .787, Q2 .634 generated from the DS assay data. (A) PCA scores plot 

showing all 15 wines where Nielson (red), Rice/ Cambria (Orange), Radian (Yellow), Panorama 

5A (Lime Green), MSA ( Light Green), Annapolis (Green), Cloud Landing (Green), Carneros 

Hills West (Teal), Ross (Cyan), Bones (Blue), Bloomfield (Navy Blue), Boone Ridge (Violet), 

Maggy Hawk (Purple), Gran Moraine (magenta), Zena West (Pink). Each ellipse corresponds to 

95% confidence interval for a normal distribution. (B) The dendrogram was generated from the 

PCA scores plot in A and is based on a matrix of Mahalanobis distances between each wine group 

in the PCA scores plot. Each node in the dendrogram is labeled with a pairwise p-value. 

 

4.4.6 NMR PCA Model 

The PCA model generated from the 1D 1H NMR data (Figure 4.3) clustered similarly to the DS 

assay data. Most of the individual vineyards formed a separate and distinct group in the PCA scores 

plot. The associated dendrogram clustered the wines into 5 distinct groups containing between 2 

to 4 wines each. Like the DS assay data, the vineyard grouping was not determined by wine region 

or climate data. Notably, the relative wine clustering differed between the NMR and DS array data 

sets. For example, Bones is now nearly overlapped with Zena West (p –value 0.04) instead of 
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Carneros Hills West. Similarly, Boone Ridge is close to, but not identical (p-value 2.6x10-4) to 

Cloud Landing instead of Nielson.  While Ross and Bloomfield are still clustered together they are 

now grouped with Annapolis. They are all from the Sonoma county, but not the same wine region. 

All of the wines were more distinguishable based on the NMR data set (p-values < 0.05). The pair 

of wines with the highest p value (p-value 0.05) was Panorama 5A and Radian, which are from 

the Santa Barbra County, but not from the same wine region.  

Wines from Bloomfield, Annapolis, and Cloud Landing did cluster together, which could be due 

to the fact that these vineyards are all located in Sonoma County. However, the wines are in distinct 

wine regions. Bones and Carneros Hills West clustered together and do belong to the same wine 

region, Sonoma RRV. In fact, the wines were statistically indistinguishable (p-value 0.33). 

However, the other vineyards in Sonoma RRV, Ross and Bloomfield, were found in other clusters. 

Boone Ridge and Nielson also clustered together and were statistically indistinguishable (p-value 

0.23). These wines were not in the same wine region and do not share climate averages as observed 

form the Everyvine data. This suggests that general location and/or climate data are insufficient to 

explain relative vineyard groupings. Other terroir factors, such as soil conditions, or wine 

processing protocols, may better explain the relative clustering of vineyards.   
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Figure 4.3: PCA model (R2  .812 Q2 .77 generated from the 1D 1H NMR data. (A) PCA scores 

plot showing all 15 wines where Nielson (red), Rice/ Cambria (Orange), Radian (Yellow), 

Panorama 5A (Lime Green), MSA ( Light Green), Annapolis (Green), Cloud Landing (Green), 

Carneros Hills West (Teal), Ross (Cyan), Bones (Blue), Bloomfield (Navy Blue), Boone Ridge 

(Violet), Maggy Hawk (Purple), Gran Moraine (magenta), Zena West (Pink). Each ellipse 

corresponds to 95% confidence interval for a normal distribution. (B) The dendrogram was 

generated from the PCA scores plot in A and is based on a matrix of Mahalanobis distances 

between each wine group in the PCA scores plot. Each node in the dendrogram is labeled with a 

pairwise p-value. 

 

4.4.7 Multiblock PCA Model 

Unexpectedly, the multiblock-PCA (MB-PCA) model generated from the combined NMR and DS 

array data did not perform as well as the individual data sets. Very few vineyards were clearly 

separated in the MB-PCA scores plot (Figure 4.4A).  

In fact, the pairwise comparison of six vineyards yielded p-values > 0.05 indicating no difference 

in the chemical profile. Bones, Carneos Hills, and Gran Morane could not be distinguished by the 

MB-PCA model. The Bone Ridge, Nielson, and Zena West wines also were indistinguishable. 

These wines do not share similar climate or locational data. The associated dendrogram clustered 

the wines into 4 clusters containing between 3 to 5 wines each. Again, there was no similarity in 
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the clustering patterns between the three PCA models (Figures 4.2 to 4.4), suggesting unique, non-

overlapping information between the NMR and DS array data sets. Furthermore, since combining 

the two data sets resulted in a worse differentiation between the vineyards, the discriminating 

spectral features may be anti-correlated. In essence, variance in the NMR data sets partially cancel 

variance in the DS array data sets. 

 

 

Figure 4.4: PCA model (R2 .767 Q2 .623) generated from the combined NMR and DS assay data 

set. (A) PCA scores plot showing all 15 wines where Nielson (red), Rice/ Cambria (Orange), 

Radian (Yellow), Panorama 5A (Lime Green), MSA (Light Green), Annapolis (Green), Cloud 

Landing (Green), Carneros Hills West (Teal), Ross (Cyan), Bones (Blue), Bloomfield (Navy 

Blue), Boone Ridge (Violet), Maggy Hawk (Purple), Gran Moraine (magenta), Zena West (Pink). 

Each ellipse corresponds to 95% confidence interval for a normal distribution. (B) The dendrogram 

was generated from the PCA scores plot in A and is based on a matrix of Mahalanobis distances 

between each wine group in the PCA scores plot. Each node in the dendrogram is labeled with a 

pairwise p-value. 

 

4.4.8 Wine Classification using a ROC Curve Analysis 

Receiver operator characteristic (ROC) curves plot the true positive rate against the false positive 

rate. In this regard, a ROC curve is used to ascertain the predictive accuracy of a set of signals or 

spectral features by measuring the area under the curve (AUC). The AUC ranges from 1 for a 
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perfect prediction to 0.5 for a completely random outcome. A ROC curve was used to identify the 

spectral features most useful for wine classification. Specifically, which NMR and/or DS assay 

spectral features were better at classifying each wine to a given vineyard?  To accomplish this, a 

ROC curve was generated that compared each individual wine against the entire collection of PN 

wines. A total of 15 ROC curves were produced, one for each wine listed in Table 4.1. Overall, 

most ROC curves yielded an AUC close to 1 with the lowest AUC being approximately 0.8. This 

indicates that the ROC curves have an accuracy of > 80 to 90% in correctly classifying each PN 

wine from the set of 15 wines. Notably, most ROC curves required only 10 spectral features to 

achieve the high AUC values. Furthermore, the contribution of NMR and/or DS array spectral 

features to the ROC curves varied by wine or vineyard. In some cases, the model was dominated 

by NMR spectral features, in other cases by DS array data, or as a nearly equal combination of 

both NMR and DS array spectral features. Table 4.3 shows a summary of the ROC curves.    
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Wine Area Under 
the Curve 

Confidence 
Interval 

NMR 
Components 

Assay 
Components 

Nielson . 736 . 376 − .979 0 5 

Rice/Cambria . 926 . 614 − .995 3 2 
Radian . 808 . 335 − .978 1 4 

Panorama 5A . 766 . 496 − .937 1 4 

MSA . 942 . 496 − .937 5 0 

Annapolis . 916 . 778 − 1 1 4 

Cloud Landing . 904 . 642 − .991 0 5 

Canneros Hills . 897 . 733 − .933 1 4 

Ross . 967 . 883 − 1 4 1 

Bones . 847 . 35 − 1 0 5 

Bloomfield . 97 . 814 − 1 2 3 

Boone Ridge . 792 . 577 − .938 4 1 

Maggy 
Hawk/Falk 

. 907 . 606 − 1 0 5 

Gran Moraine . 909 . 674 − 1 1 4 

Zena West . 86 . 576 − .992 2 3 

Table 4.3: Shows the summary of the ROC curves for each vineyard and includes the area under 

the curve and confidence interval for the best performing ROC curve. It also lists the top ten 

components used to generate the curves and whither they came from the NMR or Assay data. 

 

Assigning the NMR spectral features to a specific metabolite is challenging. Databases of NMR 

reference spectra are incomplete and typically lack secondary metabolites from plants [27]. 

Instead, databases are primarily populated with metabolites associated with known metabolic 

process. So, uniquely modified compounds are lacking in reference databases and NMR chemical 

shifts can only be estimated based on similarities to known compounds. Spiking NMR samples 

with a commercially available compound can be used to identify and confirm the presence of a 

specific metabolite. Of course, there is a very limited availability of known metabolites, especially 

in regard to secondary metabolites from plants. The typical 1D 1H NMR spectrum for wine can be 

divided into three sections. The 0 to 3 ppm region contains organic acids that includes lactic acid, 

acetic acid, citric acid and malic acid. The 3 to 5.5 ppm region contains carbohydrates that includes 



131 
 

 

glucose and fructose. The > 5.5 ppm region includes aromatic compounds, such as 2-phenylethanol 

[17]. While the compounds contributing to each wine’s chemical profile can’t be individually 

identified, the class of compounds may be inferred.  

 

4.4.9 Wine Regions 

4.4.9.1 Santa Maria Valley 

Santa Maria Valley is in northern Santa Barbara County and San Luis Obispo County in California.  

Two vineyards, Nielson and Rice/Cambria, were selected from the Santa Maria Valley wine region 

for this study. 

 

For the PCA models using the DS assay data, Nielson clustered with Cloud Landing and Boone 

Ridge vineyards. Nielson clustered with Boone Ridge and Panorama 5A using the NMR data. 

Similarly, Nielson clustered with Boone Ridge, Zena West, and Panorama 5A using the MB data 

set.  

 

For the Nielson ROC curves shown in Figure 4.5, the ROC curve with the highest AUC of 0.802 

was generated using 10 variables. The AUC of 0.802 indicates a predictive accuracy of 80% when 

differentiating the Nielson wine from the 14 other wines. The ROC curve was defined 

predominately with DS array assay data, with MM7 430 being the top feature that distinguished 

the Nielson wine. 
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Figure 4.5: (A) The ROC curves for the Nielson wine compared against the 14 other wine samples. 

ROC curves were generated with MetaboAnalyst (https://www.metaboanalyst.ca/). The graph 

shows the ROC curves generated using 5 (orange), 10 (blue), 15 (purple), 25 (teal), 50 (red), and 

500 (yellow) variables. (B) The top fifteen variables used to generate the ROC curves. The 

frequency represents how often a variable is used in the ROC curve. MM1 to MM7 represents data 

from the DS assay, while the numbers (ppm) are binned NMR data. 

 

For the PCA models using the DS assay data, Rice/Cambria clustered with MSA and Ross 

vineyards. Rice/Cambria clustered with Radian, Panorama 5A, and Carneos Hills West using the 

NMR data. Similarly, Rice/Cambria clustered with Radian, Panorama 5A, and Carneos Hills West 

using the MB data set.  

 

For the Rice/Cambria ROC curves shown in Figure 4.6, the ROC curve with a high AUC of 0.926 

was generated using 5 variables. The AUC of 0.926 indicates a predictive accuracy of 93% when 

differentiating the Rice/Cambria wine from the 14 other wines. The ROC curve used a significant 

amount of NMR data. Since the majority of the NMR bins were in the range of 2 to 3 ppm, the 

metabolites potentially corresponded to organic acids.  
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Figure 4.6: (A) The ROC curves for the Rice/Cambria wine compared against the 14 other wine 

samples. ROC curves were generated with MetaboAnalyst (https://www.metaboanalyst.ca/). The 

graph shows the ROC curves generated using 5 (orange), 10 (blue), 15 (purple), 25 (teal), 50 (red), 

and 500 (yellow) variables. (B) The top fifteen variables used to generate the ROC curves. The 

frequency represents how often a variable is used in the ROC curve. MM1 to MM7 represents data 

from the DS assay, while the numbers (ppm) are binned NMR data. 

 

 

4.4.9.2 Santa Maria Hills 

Santa Maria Hills is a wine region located in the Santa Ynez Valley in California. Santa Rita Hills 

has the highest level of solar radiation at 149663.28 WH/m2. Only one wine, Radian, was selected 

from the Santa Maria Hills wine region.  

 

For the PCA models using the DS assay data, Radian clustered with Zena West. Radian clustered 

with Panorama 5A and Rice/Cambria using the NMR data. Radian clustered with MSA, 

Rice/Cambria, and Ross using the MB data set. The vineyards did not share a similar climate with 

Radian. 

For the Radian ROC curves shown in Figure 4.7, the ROC curve with a high AUC of 0.86 was 
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generated using 15 variables. The AUC of 0.86 indicates a predictive accuracy of 86% when 

differentiating the Radian wine from the 14 other wines. The ROC curve was nearly defined by all 

DS array data, but an NMR bin was the top feature that distinguished the Radian wine. The ppm 

of .9 suggests that this feature is an organic acid.  

 

Figure 4.7: (A) The ROC curves for the Radian wine compared against the 14 other wine samples. 

ROC curves were generated with MetaboAnalyst (https://www.metaboanalyst.ca/). The graph 

shows the ROC curves generated using 5 (orange), 10 (blue), 15 (purple), 25 (teal), 50 (red), and 

500 (yellow) variables. (B) The top fifteen variables used to generate the ROC curves. The 

frequency represents how often a variable is used in the ROC curve. MM1 to MM7 represents data 

from the DS assay, while the numbers (ppm) are binned NMR data. 

 

4.4.9.3 Arroyo  

Arroyo or the Arroyo Grande Valley wine region is located in the San Luis Obispo county of 

California Of all the wine regions selected for this study, Arroyo has the lowest rain fall at 1.96 

inches per year. Two wines, Panarma 5A and MSA, were selected from the Arroyo wine region.  

 

For the PCA models using the DS assay data, Panorama 5A clustered with Nielson and Boone 
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Ridge. Panorama 5A clustered with Radian, Rice/Cambria and Carneros Hills using the NMR data. 

Panorama 5A clustered with Zena West, Nielson, Boone Ridge using MB data set. Zena West does 

not share environmental conditions with Panorama 5A.  

 

For the Panorama 5A ROC curves shown in Figure 4.8, the ROC curve with a high AUC of 0.841 

was generated using 15 variables. The AUC of 0. 841 indicates a predictive accuracy of 84% when 

differentiating the Panorama 5A wine from the 14 other wines. The ROC curve used a mixture of 

NMR and DS array data, with MM7 560 being the top feature that distinguished the Panorama 5A 

wine. The NMR bins covered a range of chemical shifts from 0.9 to 4.3 ppm, suggesting key 

metabolites defining Panorama 5A as potentially corresponding to carbohydrates and organic 

acids. 
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Figure 4.8: (A) The ROC curves for the Panorama 5A wine compared against the 14 other wine 

samples. ROC curves were generated with MetaboAnalyst (https://www.metaboanalyst.ca/). The 

graph shows the ROC curves generated using 5 (orange), 10 (blue), 15 (purple), 25 (teal), 50 (red), 

and 500 (yellow) variables. (B) The top fifteen variables used to generate the ROC curves. The 

frequency represents how often a variable is used in the ROC curve. MM1 to MM7 represents data 

from the DS assay, while the numbers (ppm) are binned NMR data. 

 

4.4.9.4 MSA 

For the PCA models using the DS assay data, MSA clustered with Rice/Cambria and Ross. MSA 

clustered with Rice/Cambria and Radian using the NMR data. MSA clustered again with 

Rice/Cambria and Radian. using the MB data set. 

For the MSA ROC curves shown in Figure 4.9, the ROC curve with a high AUC of 0.96 was 

generated using 10 variables. The AUC of 0.96 indicates a predictive accuracy of 96% when 

differentiating the MSA wine from the 14 other wines. The ROC curve was nearly exclusively 

defined by NMR data. The NMR bins covered a range of chemical shifts from 1.5 to 3.3 ppm, 

suggesting key metabolites defining MSA are potentially organic acids. 
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Figure 4.9: (A) The ROC curves for the MSA wine compared against the 14 other wine samples. 

ROC curves were generated with MetaboAnalyst (https://www.metaboanalyst.ca/). The graph 

shows the ROC curves generated using 5 (orange), 10 (blue), 15 (purple), 25 (teal), 50 (red), and 

500 (yellow) variables. (B) The top fifteen variables used to generate the ROC curves. The 

frequency represents how often a variable is used in the ROC curve. MM1 to MM7 represents data 

from the DS assay, while the numbers (ppm) are binned NMR data. 

 

4.4.9.5 Sonoma Coast 

Only one wine, Annapolis, was selected from Sonoma Coast region. For the PCA models using 

the DS assay data, Annapolis clustered with Bloomfield and Cloud Landing. Annapolis clustered 

with Ross and Bloomfield using the NMR data. Annapolis clustered again with Bloomfield and 

Cloud Landing using the MB data set.  

 

For the Annapolis ROC curves shown in Figure 4.10, the ROC curve with a high AUC of 0.92 

was generated using 10 variables. The AUC of 0. 92 indicates a predictive accuracy of 92% when 
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differentiating the Annapolis wine from the 14 other wines. The ROC curve was defined as a 

mixture of NMR and DS assay features. The NMR bins covered a range of chemical shifts from 

1.3 to 3.5 ppm, suggesting key metabolites defining Annapolis are potentially carbohydrates and 

organic acids. 

 

 

Figure 4.10: (A) The ROC curves for the Annapolis wine compared against the 14 other wine 

samples. ROC curves were generated with MetaboAnalyst (https://www.metaboanalyst.ca/). The 

graph shows the ROC curves generated using 5 (orange), 10 (blue), 15 (purple), 25 (teal), 50 (red), 

and 500 (yellow) variables. (B) The top fifteen variables used to generate the ROC curves. The 

frequency represents how often a variable is used in the ROC curve. MM1 to MM7 represents data 

from the DS assay, while the numbers (ppm) are binned NMR data. 

 

4.4.9.6 Sonoma Carneros 

Sonoma Carneros is a wine region in California. Sonoma Carneros is one of the hottest wine 

regions included in this study. The Huglin index is the highest at 2224.94. It also experiences the 

highest growing low temperature at 9.88°C. Only one vineyard, Cloud Landing, was selected from 

the Sonoma Carneros wine region. 
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For the PCA models using the DS assay data, Cloud Landing clustered with Annapolis and 

Bloomfield. Cloud Landing clustered with Boone Ridge and Nielson using the NMR data. Cloud 

Landing clustered again with Annapolis and Bloomfield using the MB data set. 

For the Cloud Landing ROC curves shown in Figure 4.11, the ROC curve with a high AUC of 

0.936 was generated using 15 variables. The AUC of 0. 936 indicates a predictive accuracy of 94% 

when differentiating the Cloud Landing wine from the 14 other wines. The ROC curve was defined 

primarily by DS assay features, with MM2 560 as the top feature distinguishing the Cloud Landing 

wine. 

 

 

Figure 4.11: (A) The ROC curves for the Cloud Landing wine compared against the 14 other wine 

samples. ROC curves were generated with MetaboAnalyst (https://www.metaboanalyst.ca/). The 

graph shows the ROC curves generated using 5 (orange), 10 (blue), 15 (purple), 25 (teal), 50 (red), 

and 500 (yellow) variables. (B) The top fifteen variables used to generate the ROC curves. The 

frequency represents how often a variable is used in the ROC curve. MM1 to MM7 represents data 

from the DS assay, while the numbers (ppm) are binned NMR data. 
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4.4.9.7 Sonoma RRV 

Sonoma RRV or the Russian River Valley is located in Sonoma County. It is also a rather hot wine 

region with the highest high growing temperature of 25.77 oC. Sonoma RRV was the wine region 

with the largest number of vineyards used in this study. Specifically, Sonoma RRV consisted of 

vineyards: Carneos Hills West, Bloomfield, Bones, and Ross.  

 

For the PCA models using the DS assay data, Carneos Hills West clustered with Bones, Gran 

Moraine, and Maggy Hawk. Carneos Hills West clustered with Rice/Cambria, Radian and 

Panorama 5A using the NMR data. Carneos Hills West clustered again with Bones, Gran Moraine, 

Maggy Hawk/Falk using the MB data set. Carneos Hills West does not share a similar climate with 

any of these vineyards. 

 

For the Carneos Hills West ROC curves shown in Figure 4.12, the ROC curve with a high AUC 

of 0.935 was generated using 25 variables. The AUC of 0. 935 indicates a predictive accuracy of 

94% when differentiating the Carneos Hills West wine from the 14 other wines. The ROC curve 

was defined by a majority of DS assay features. The NMR features included chemical shift bins 

of 2.94, 2.91, 2.77, 2.21, and 1.36, which are likely organic acids. 
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Figure 4.12:  (A) The ROC curves for the Carneos Hills West wine compared against the 14 other 

wine samples. ROC curves were generated with MetaboAnalyst (https://www.metaboanalyst.ca/). 

The graph shows the ROC curves generated using 5 (orange), 10 (blue), 15 (purple), 25 (teal), 50 

(red), and 500 (yellow) variables. (B) The top fifteen variables used to generate the ROC curves. 

The frequency represents how often a variable is used in the ROC curve. MM1 to MM7 represents 

data from the DS assay, while the numbers (ppm) are binned NMR data.  

 

For the PCA models using the DS assay data, Ross clustered with MSA and Rice/Cambria. Ross 

clustered with Annapolis, Bloomfield, Zena West, and Radian using the NMR data. Ross clustered 

with Rice, MSA, and Radian using the MB data set.  

 

For the Ross ROC curves shown in Figure 4.13, the ROC curve with a high AUC of 0.983 was 

generated using 10 variables. The AUC of 0.983 indicates a predictive accuracy of 98% when 

differentiating the Ross wine from the 14 other wines. The ROC curve was defined by a mixture 
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NMR and DS assay features. The NMR features included chemical shift bins that ranged from 

1.38 to 2.97 ppm, which are likely organic acids. 

 

 

Figure 4.13: (A) The ROC curves for the Ross wine compared against the 14 other wine samples. 

ROC curves were generated with MetaboAnalyst (https://www.metaboanalyst.ca/). The graph 

shows the ROC curves generated using 5 (orange), 10 (blue), 15 (purple), 25 (teal), 50 (red), and 

500 (yellow) variables. (B) The top fifteen variables used to generate the ROC curves. The 

frequency represents how often a variable is used in the ROC curve. MM1 to MM7 represents data 

from the DS assay, while the numbers (ppm) are binned NMR data. 

 

For the PCA models using the DS assay data, Bones clustered with Carneos Hills West and Gran 

Moraine. Bones clustered with Zena West and Maggy Hawk using the NMR data. Bones clustered 

with Carneos Hills West and Gran Moraine using the MB data set.  

For the Bones ROC curves shown in Figure 4.14, the ROC curve with a high AUC of 0.836 was 

generated using 15 variables. The AUC of 0.836 indicates a predictive accuracy of 84% when 

differentiating the Bones wine from the 14 other wines. The ROC curve was defined by a majority 
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of DS assay features with MM9 444 and MM9 430 being the top features distinguishing the Bones 

wine.   

 

 

Figure 4.14: (A) The ROC curves for the Bones wine compared against the 14 other wine samples. 

ROC curves were generated with MetaboAnalyst (https://www.metaboanalyst.ca/). The graph 

shows the ROC curves generated using 5 (orange), 10 (blue), 15 (purple), 25 (teal), 50 (red), and 

500 (yellow) variables. (B) The top fifteen variables used to generate the ROC curves. The 

frequency represents how often a variable is used in the ROC curve. MM1 to MM7 represents data 

from the DS assay, while the numbers (ppm) are binned NMR data. 

 

For the PCA models using the DS assay data, Bloomfield clustered with Annapolis and Cloud 

Landing. Bloomfield clustered with Ross and Annapolis using the NMR data.Bloomfield clustered 

again with Annapolis and Cloud Landing using the MB data set.  

For the Bloomfield ROC curves shown in Figure 4.15, the ROC curve with a high AUC of 0.98 

was generated using 15 variables. The AUC of 0.986 indicates a predictive accuracy of 98% when 

differentiating the Bloomfield wine from the 14 other wines. The ROC curve was defined by a 

majority of DS assay features, but an NMR bin was top feature that differentiates Bloomfield from 
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the other wines.   
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Figure 4.15: (A) The ROC curves for the Bloomfield wine compared against the 14 other wine 

samples. ROC curves were generated with MetaboAnalyst (https://www.metaboanalyst.ca/). The 

graph shows the ROC curves generated using 5 (orange), 10 (blue), 15 (purple), 25 (teal), 50 (red), 

and 500 (yellow) variables. (B) The top fifteen variables used to generate the ROC curves. The 

frequency represents how often a variable is used in the ROC curve. MM1 to MM7 represents data 

from the DS assay, while the numbers (ppm) are binned NMR data. 

 

 

4.4.9.8 Anderson Valley 

Anderson Valley is a wine region in Mendocino County California. Two vineyards, Boone Ridge 

and Maggy Hawk, were selected from the Anderson Valley.  

 

For the PCA models using the DS assay data, Boone Ridge clustered with Nielson and Panorama 

5A. Boone Ridge clustered with Cloud Landing and Nielson using the NMR data. Boone Ridge 

clustered with Nielson, Zena West and Panorama 5A using the MB data set.  
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For the Boone Ridge ROC curves shown in Figure 4.16, the ROC curve with a high AUC of 0.809 

was generated using 10 variables. The AUC of 0.809 indicates a predictive accuracy of 81% when 

differentiating the Boone Ridge wine from the 14 other wines. The ROC curve was defined by a 

mixture of NMR and DS assay features, where a number NMR bins were top features that 

differentiates Boone Ridge from the other wines. The NMR bins corresponded to chemical shifts 

that ranged from 1.49 to 4.06, which are likely carbohydrates and organic acids. 

 

 

 

Figure 4.16: (A) The ROC curves for the Boone Ridge wine compared against the 14 other wine 

samples. ROC curves were generated with MetaboAnalyst (https://www.metaboanalyst.ca/). The 

graph shows the ROC curves generated using 5 (orange), 10 (blue), 15 (purple), 25 (teal), 50 (red), 

and 500 (yellow) variables. (B) The top fifteen variables used to generate the ROC curves. The 

frequency represents how often a variable is used in the ROC curve. MM1 to MM7 represents data 

from the DS assay, while the numbers (ppm) are binned NMR data. 

 

 

For the PCA models using the DS assay data, Maggy Hawk/Falk clustered with Gran Moraine, 
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Carneos Hills, and Bones. Maggy Hawk/Falk clustered with Bones and Zena West using the NMR 

data. Maggy Hawk/Falk clustered with Gran Moraine, Carnos Hills, and Bones using the MB data 

set. 

For the Maggy Hawk/Falk ROC curves shown in Figure 4.17, the ROC curve with a high AUC 

of 0.929 was generated using 10 variables. The AUC of 0.929 indicates a predictive accuracy of 

93% when differentiating the Maggy Hawk/Falk wine from the 14 other wines. The ROC curve 

was defined nearly exclusively by DS assay features, with MM4 560 as the top distinguishing 

feature.  

 

 

 

Figure 4.17: (A) The ROC curves for the Maggy Hawk/Falk wine compared against the 14 other 

wine samples. ROC curves were generated with MetaboAnalyst (https://www.metaboanalyst.ca/). 

The graph shows the ROC curves generated using 5 (orange), 10 (blue), 15 (purple), 25 (teal), 50 

(red), and 500 (yellow) variables. (B) The top fifteen variables used to generate the ROC curves. 

The frequency represents how often a variable is used in the ROC curve. MM1 to MM7 represents 

data from the DS assay, while the numbers (ppm) are binned NMR data. 
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Anderson Valley vineyards did not cluster in the PCA models with vineyards that shared similar 

climate conditions. Interestingly, ROC data curves were split in their utilization of NMR and DS 

array data. Boone Ridge used a mixture of DS assay and NMR data favoring organic acids, while 

Maggy Hawk used nearly all DS assay data. 

 

4.4.9.9 Willamette Valley 

Willamette Valley is located in Oregon. Willamette Valley is the least sunny and the coldest the 

wine region used in this study. Its solar radiation is 131092.27 WH/m2 with the smallest Huglin 

index of 1749. Willamette Valley also has the lowest high and low growing temperatures at 21.9 

oC and 8.1 oC, respectively. Two vineyards, Gran Moraine and Zena West, were selected from the 

Willamette Valley wine region.  

 

For the PCA models using the DS assay data, Gran Moraine clustered with Bones, Carneos Hills, 

and Maggy Halk. Gran Moraine clustered with MSA using the NMR data. Gran Moraine again 

clustered with Bones, Carneos Hills, and Maggy Halk using MB data set.  

 

For the Gran Moraine ROC curves shown in Figure 4.18, the ROC curve with a high AUC of 

0.976 was generated using 25 variables. The AUC of 0.976 indicates a predictive accuracy of 98% 

when differentiating the Gran Moraine wine from the 14 other wines. The ROC curve was defined 

by a majority of NMR features, with only three DS array values. The NMR bins corresponded to 

chemical shifts that ranged from 1.99 to 4.27, which are likely carbohydrates and organic acids.  
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Figure 4.18: (A) The ROC curves for the Gran Moraine wine compared against the 14 other wine 

samples. ROC curves were generated with MetaboAnalyst (https://www.metaboanalyst.ca/). The 

graph shows the ROC curves generated using 5 (orange), 10 (blue), 15 (purple), 25 (teal), 50 (red), 

and 500 (yellow) variables. (B) The top fifteen variables used to generate the ROC curves. The 

frequency represents how often a variable is used in the ROC curve. MM1 to MM7 represents data 

from the DS assay, while the numbers (ppm) are binned NMR data. 

 

For the PCA models using the DS assay data, Zena West clustered with Radian. Zena West 

clustered with Nielson, Boone Ridge, and Panarama 5A using the NMR data. Zena West again 

clustered with Nielson, Boone Ridge, and Panarama 5A using the MB data set.  

For the Zena West ROC curves shown in Figure 4.18, the ROC curve with a high AUC of 0.95 

was generated using 25 variables. The AUC of 0.95 indicates a predictive accuracy of 95% when 

differentiating the Zena West wine from the 14 other wines. The ROC curve was defined with a 

mixture of NMR and DS array features. The NMR bins corresponded to chemical shifts that ranged 

from 0.86 to 3.50, which are likely carbohydrates and organic acids.  
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Figure 4.19: (A) The ROC curves for the Zena West wine compared against the 14 other wine 

samples. ROC curves were generated with MetaboAnalyst (https://www.metaboanalyst.ca/). The 

graph shows the ROC curves generated using 5 (orange), 10 (blue), 15 (purple), 25 (teal), 50 (red), 

and 500 (yellow) variables. (B) The top fifteen variables used to generate the ROC curves. The 

frequency represents how often a variable is used in the ROC curve. MM1 to MM7 represents data 

from the DS assay, while the numbers (ppm) are binned NMR data. 

 

4.5 Conclusion 

The goal of this project was to determine if a metabolomics profile can distinguish between 

different PN wines based on vineyard, and to determine if wines with similar environmental 

conditions have similar chemical profiles. Based on the PCA models and the ROC curve analysis 

most PN wines was distinguishable with the either the 1D 1H NMR or the DS assay data. The PCA 

models suggested that the NMR data provided a slight improvement over the DS assay data in 

differentiating between the 15 PN wines, where Panorama 5A and Radian (p-value 0.05) and Zena 

West and Bones (p-value 0.04) were the closest wine pairs. Surprisingly, a PCA model generated 

by combining the NMR and DS array data sets resulted in poor group separation. Potentially, the 

wine-dependent variance in the two datasets were partially anti-correlated. Also, a valid PCA 
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model could not be generated when the individual wines were grouped according to wine region. 

Suggesting a larger variance in the chemical profile of the individual wines that cannot be explain 

by wine region alone. The fact that all 15 PN wines, despite originating from grapes from the same 

clone (Dijon 667), were uniquely differentiated and could not be classified by wine region, 

highlights that local environment and climate are key factors for determining the chemical profile 

of a wine.  

 

The ROC curves generated from the combined NMR and DS array data sets lead to variable 

contributions of spectral features for the characterization of individual wines. Specifically, 

depending on the wine, the ROC curves used different combinations of NMR and DS array spectral 

features. In some cases, a ROC curve was nearly exclusively defined by NMR features, while other 

wines were defined predominately by DS array data. There were also other cases where an equal 

combination of NMR and DS array features were used to define a wine. Nevertheless, in all cases 

the ROC curves yielded AUCs ranging from 0.80 to 0.98 indicating an accuracy of ≥ 80% in 

characterizing the PN wines. In most cases, the ROC curves required only 5 to 10 spectral features. 

Notably, a majority of the NMR spectral features used in the ROC curves corresponded to chemical 

shifts in the 0 to 4 ppm region suggesting a potential importance of organic acids and carbohydrates 

in differentiating the wines. Of course, the DS array data highlights the importance of phenolics to 

classifying different wines. Our results are consistent with some prior studies in which differences 

in isopentanol and isobutanol (0.9 ppm region) where observed to be key discriminators of La 

Rioja wine terroir [29]. Similarly, changes in tannins and other phenolic compounds have been 

attributed to changes in environmental conditions and grapevine vigor [30, 31]. 
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The second part of the study was to determine if wines harvested under similar climate conditions 

or in the same wine region shared similar metabolomic profiles. Overall, our results demonstrated 

that the PN wines were impacted significantly by local variations in environment and climate, and 

likely other factors. In general, the PN wines could not be grouped by wine region or average 

climate parameters using metabolomics profiles. Instead, each PN wine yielded a unique metabolic 

profile. Pinot Noir wine are derived from vitis vinifera L. These grapes are associated with the 

Burgundy region of France, but are grown around the world with the exclusion of hot climates. 

Pinot Noir is known to take on the characteristics of the environment resulting in a distinct taste 

[32], which is consistent with our overall findings. Goldman et al. examined different varieties of 

red wine with 1D 1H NMR and found that PN had a 95% prediction rate, which is comparable to 

our findings, but high compared to the other wines [33]. Thus, environmental and climate 

conditions that vary between vineyard or are altered due to human action impact the metabolome 

of wines. 

 

Nicholas et al. evaluated climate variability on PN from the Carneros and Sonoma Valley in 

California. Phenolic compounds and temperature were measured and correlated. Warm 

temperatures from budburst to bloom were found to increase phenolic content; however, cooler 

temperatures from the previous harvest negated this effect [31]. Reynolds et al. measured the effect 

of water stress on PN fruit maturity and vegetative growth. Exposure to reduced water resulted in 

a decrease in berry weight and an increase in soluble solids found in the grapes. Vegetative growth 

was reduced with decreases in shoot length, number, and leaf size when exposed to reduced water. 

This effect was also observed in grapes grown in soils that do not retain water [34]. Cortel and 

Kennedy measured the effect of sunlight on PN grapes by comparing the flavonoid compounds 



153 
 

 

found in shaded grapes compared to sunlight exposed grapes. Shaded grapes resulted in lower 

levels of flavonoids, proanthocyanidins and anthocyanins [35]. Price et al. measured quercetin 

glycosides at different levels of sun exposure and found an increase in grapes exposed to sunlight 

[36]. Thus, numerous factors, including activities directly controlled by humans, impact how 

grapes grow, and consequently, the chemical composition of the resulting wine. Overall, this study 

exposed the complexities of terroir, its impact on metabolic profile of wine, and its utility to 

accurately characterize PN wines derived from the same PN clone (Dijon 667).  
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Chapter 5  

5. Summary and Conclusion 

5.1 Summary of Work  

Metabolomics has seen applications in human diseases, plant genomics, and toxicology, among 

numerous other research areas [1-3]. In fact, metabolomics is expanding into other areas of 

investigation, such as the food industry. As a growing field, there is a strong need for standardized 

methodologies for preparing metabolomics samples, conducting experiments, and analyzing 

analytical data sets. As such, it is important to consider how samples are properly handled, and to 

evaluate protocols for data processing, statistical modeling and the identification of metabolites. 

Metabolites are unstable, and are often prone to oxidation or other forms of modification [4]. 

Therefore, the proper storage and transport of metabolomics samples is an important point to 

consider. Metabolomics experiments generate large volumes of data, but commonly have limited 

number of biological replicates. As a result, statistical and network analysis may be prone to 

overfitting and over-interpretation. To address these and other issues, my thesis highlights the 

development of metabolomics procedures and the application of metabolomics to issues related to 

human health and food integrity. 

  

Chapter 2 provides an exhaustive and detailed description of metabolomics protocols for the 

investigation of Parkinson’s Disease (PD) and other neurological disorders. The described 

protocols include methods to extract, quantify, and process metabolomic samples obtained from 

mammalian cells and brain tissues [5]. Proper and complete metabolite extraction from a biological 

sample is a critical step of the entire metabolomics protocol since it determines how much of the 
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metabolome is available for study [6]. In this regard, Chapter 2 focuses on the extraction of water-

soluble metabolites from cell lysis and the extracellular space or culture medium. Water soluble 

metabolites include amino acids, sugars, and other organic acids. In addition to sample preparation, 

Chapter 2 includes details regarding standard data collection for NMR and mass spectrometry, and 

liquid chromatography. Typical statistical methods for the analysis of metabolomics data that 

include principal component analysis and orthogonal projection to latent structures were also 

described. Importantly, the described protocols include methods for validating multivariate 

statistical models, such as permutation testing. Permutation testing validates supervised statistical 

models by generating multiple replicate models using different subsets of the data while 

scrambling group classification [7]. Furthermore, the importance of multiple hypothesis testing, 

like Bonferroni and Benjamini-Hochberg, which help establish significance by controlling false 

discovery rates, are also highlighted [8, 9]. 

 

Although the metabolomics procedures described in Chapter 2 can be applied to a variety of 

metabolomic studies, the protocols were focused on investigating PD using neuroblastoma cells 

and brain tissue. The complex heterogeneous nature of the brain makes metabolomics a useful tool 

for providing an overview of cellular processes. Also, metabolomic studies are particularly useful 

for neurological studies where regular access to tissues is difficult. Typical PD studies expose 

animal models to various conditions to replicate PD symptoms or exposure risks. Similarly, 

cellular models use neuroblastoma cells to reproduce PD changes and to mimic PD risk factors 

[10]. Evidence suggests that the interactions between environment and genetics play an important 

role in PD development [11]. Thus, animal or tissue models exposed to various environmental 
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stressors are useful for investigating PD, other neurodegenerative diseases, or for monitoring brain 

or neuronal health at different points in life.  

 

Chapter 3 describes our investigation into astrocytes response to the neurotoxin arsenic.  

Importantly, the outcome of this study may provide insights into how arsenic exposure may relate 

to neurodevelopmental disorders in children. The role of astrocytes in the brain is a complex one. 

Typically, astrocytes play a supportive role by providing neurotransmitter precursors to neurons 

and by maintaining neuronal synapses [12].  However, astrocytes have been shown to respond to 

immune or minor trauma in both supportive and harmful ways [13]. Astrocytes are known to be a 

major source of glutathione, which protects the brain from oxidative stress and xenobiotics [14]. 

Astrocytes may also play a role in protecting neurons from bystander death (i.e., the death of cells 

not directly impacted by an injury, toxin or radiation). Glial cells and neurons co-cultured with 

astrocytes were protected from arsenic treatments [15].  

 

In our metabolomics analysis of astrocytes exposed to arsenic, we observed an upregulation in 

antioxidant production, which is possibly due to an upregulation of glycolysis and pyruvate 

carboxylase. The production of glutathione (GSH) is dependent on glucose metabolism; therefore, 

we focused our metabolomics analysis on the effect of arsenic on glucose metabolism. We 

observed an increase in glutamate, a potentially neurotoxic neurotransmitter in the extracellular 

space. Glutamate has been shown to upregulate glycolysis in astrocytes through activation of the 

Na+ dependent uptake system [16]. We also observed a decrease in the export of lactate and citrate 

by astrocytes. Lactate is a product of glycolysis and is derived from pyruvate; whereas, citrate is 



161 
 

 

an intermediate of the tricarboxylic acid (TCA) cycle. Thus, lactate and citrate are known to be 

energy substrates by entering the TCA cycle to produce ATP. However, recent evidence suggest 

lactate and citrate may also play a role in modulating receptors like glutamate. Lactate has been 

shown to modulate receptors linked to memory [17]. Similarly, citrate may modulate the glutamate 

receptor MNDA by chelating Zn2+. Overall, our analysis of astrocytes exposed to arsenic 

demonstrated a rapid metabolomics response to combat the oxidative damage induced by arsenic.  

 

Metabolomics is valuable approach for evaluating the impact of a wide variety of environmental 

stressors. Accordingly, metabolomics has been introduced into other areas of research, which 

includes the food industry. The environment, handling and processing procedures may impact the 

production of both food and beverages. Metabolomics can be used to produce a chemical profile 

of a consumable, which allows food scientists to examine the impact of production, transport, and 

storage on the food product. Wine is a prime example of a chemically complex food with 

metabolites originating from plants, yeast fermentation, and sample aging [18]. Profiling is where 

the chemical composition of the wine is measured. This is a useful tool for evaluating the nutrition 

and health properties of a wine. For high value items like wine, chemical profiles are often used to 

authenticate the wine’s origin for quality purposes. Chapter 4 examined Pinot Noir wines produced 

from the same scion clone (Pinot noir 667) grown in vineyards across multiple California and 

Oregon wine regions. Metabolite profiles were built from a combination of untargeted 1D 1H NMR 

spectral data and a targeted differential sensing array data. The profiles were used to evaluate the 

metabolic differences between the Pinot Noir wines produced by 15 vineyards. A major outcome 

of the study was the observation that each method has its own advantages and limitations in regard 

to classifying the wines. NMR captured a wide variety of molecules, such as carbohydrates and 
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organic acids. Conversely, the DS assay was only used to detect phenolic compounds [19, 20]. The 

1D 1H NMR and DS array data were evaluated individually and as a combined data set. A PCA 

model produced from the NMR data set provided the best separation of the wines based on 

vineyard of origin. Conversely, one versus all ROC curves were generated from the combined data 

set. All of the ROC curves yielded a predictive accuracy of > 80% in distinguishing one wine from 

the set of Pinot Noir wines. Notably, each resulting ROC curve used a different combination of 

NMR and DS array spectral features to classify each wine. In some cases, the ROC curve was 

dominated by either NMR or DS array features. In other cases, the ROC curve used an equal 

mixture of both. Clearly, combining analytical techniques improved the overall wine classification 

accuracy. Notably, the wines could not be consistently clustered by either wine region or by 

average climate data. Thus, wine metabolic profiles are predominantly impacted by the local 

environment (i.e., terrior), by the handling of the grapes/wine or by the fermentation process.  

 

5.2 Future Direction 

Metabolomics is a growing field and is constantly developing and refining techniques. As the 

application of metabolomics continues to expand into new fields, it is important to consider how 

the experimental design and the protocols will affect the desired results. As shown in chapter 4, 

the application of different instrumentation or analytical methods will dictate the results or 

outcomes of a given study. Simply, NMR and the DS array detected a completely different set of 

metabolites and provided unique, but distinct views of each wine sample. In this regard, the 

analytical method will determine which metabolites are detected. It will also determine how the 

samples are prepared and how much sample is needed. Which, in turn, will impact the experimental 
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time, the metabolome extraction protocol, and numerous other experimental parameters. These are 

not trivial concerns. Following proper protocols reduces systemic error and exposes more of the 

metabolome for proper characterization. Chapter 2 described the sample preparation protocol for 

mammalian cells, but extraction and other procedures will vary based on the sample and the 

analytical instrument. Thus, as the field of metabolomics continues to evolve, what is critical to its 

future success is the establishment of a set of standardized protocols. Challengingly, these 

protocols are likely to be sample and/or study specific.  

 

NMR-based metabolomics often relies on the inclusion of a 13C-labeled metabolite like 13C6-

glucose to enhance the sensitivity of the NMR experiment and the detection of metabolites [21]. 

Many biological and cellular reactions are independent of carbon movement and are therefore 

difficult to monitor by only following central carbon metabolism. For example, many 

phosphorylated compounds, which are involved in energy metabolism or regulate signaling 

pathways, may be missed by relying on only 1H -13C-NMR [22]. Instead, 31P and other nuclei 

NMR experiments will be needed to expand the coverage of the metabolome by NMR.  

 

The application of metabolomics to clinical samples has further highlighted the important 

differences between humans and animal models. Metabolomics may be valuable in breaching these 

differences to facilitate drug discovery and disease diagnosis. For example, metabolomics may be 

able to correlate disease relevant biomarkers across multiple platforms, from cell system, to animal 

model, and then to the human patient. Identifying biomarkers for neurological disorders like PD 

would allow for early diagnosis. An early diagnosis and intervention for PD has been shown to 
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slow down the progression of symptoms. Leveraging metabolomics to identify risk factors for PD 

may reduce exposure and prevent the disease. Metabolomics can make equally beneficial 

contributions to the food industry. Metabolomics may be used to evaluate multiple aspects of the 

food cycle - from growing food to its efficient processing. In this regard, metabolomics can be 

used to improve anything from nutritional value to taste.  

  



165 
 

 

5.3 References 

1. Robertson, D.G., P.B. Watkins, and M.D. Reily, Metabolomics in Toxicology: Preclinical 

and Clinical Applications. Toxicological Sciences, 2010. 120(suppl_1): p. S146-S170. 

2. Emwas, A.-H.M., et al., NMR-based metabolomics in human disease diagnosis: 

applications, limitations, and recommendations. Metabolomics, 2013. 9(5): p. 1048-1072. 

3. Sumner, L.W., P. Mendes, and R.A. Dixon, Plant metabolomics: large-scale 

phytochemistry in the functional genomics era. Phytochemistry, 2003. 62(6): p. 817-36. 

4. Clark, S., et al., Stability of plasma analytes after delayed separation of whole blood: 

implications for epidemiological studies. International Journal of Epidemiology, 2003. 32(1): p. 

125-130. 

5. F. Bhinderwala, S.L., J. Woods, J. Rose, D. D. Marshall, F. Bhinderwala, E. Riekeberg, A. 

De Lima Leite, M. Morton, E. D. Dodds, R. Franco, and R. Powers, In Metabolomics. Methods in 

Molecular Biology. 2019. 

6. Mushtaq, M.Y., et al., Extraction for metabolomics: access to the metabolome. Phytochem 

Anal, 2014. 25(4): p. 291-306. 

7. Triba, M.N., et al., PLS/OPLS models in metabolomics: the impact of permutation of 

dataset rows on the K-fold cross-validation quality parameters. Molecular BioSystems, 2015. 

11(1): p. 13-19. 

8. Benjamini, Y. and Y. Hochberg, Controlling the False Discovery Rate: A Practical and 

Powerful Approach to Multiple Testing. Journal of the Royal Statistical Society. Series B 

(Methodological), 1995. 57(1): p. 289-300. 



166 
 

 

9. Bland, J.M. and D.G. Altman, Multiple significance tests: the Bonferroni method. BMJ, 

1995. 310(6973): p. 170. 

10. Cannon, J.R. and J.T. Greenamyre, Gene-environment interactions in Parkinson's disease: 

specific evidence in humans and mammalian models. Neurobiol Dis, 2013. 57: p. 38-46. 

11. Falkenburger, B.H., T. Saridaki, and E. Dinter, Cellular models for Parkinson's disease. J 

Neurochem, 2016. 139 Suppl 1: p. 121-130. 

12. Allen, N.J. and C. Eroglu, Cell Biology of Astrocyte-Synapse Interactions. Neuron, 2017. 

96(3): p. 697-708. 

13. Liddelow, S.A. and B.A. Barres, Reactive Astrocytes: Production, Function, and 

Therapeutic Potential. Immunity, 2017. 46(6): p. 957-967. 

14. Wilson, J.X., Antioxidant defense of the brain: a role for astrocytes. Can J Physiol 

Pharmacol, 1997. 75(10-11): p. 1149-63. 

15. Singh, V., et al., Hijacking microglial glutathione by inorganic arsenic impels bystander 

death of immature neurons through extracellular cystine/glutamate imbalance. Scientific Reports, 

2016. 6(1): p. 30601. 

16. Pellerin, L. and P.J. Magistretti, Glutamate uptake into astrocytes stimulates aerobic 

glycolysis: a mechanism coupling neuronal activity to glucose utilization. Proc Natl Acad Sci U S 

A, 1994. 91(22): p. 10625-9. 

17. Alberini, C.M., et al., Astrocyte glycogen and lactate: New insights into learning and 

memory mechanisms. Glia, 2018. 66(6): p. 1244-1262. 



167 
 

 

18. Robinson, J., The Oxford companion to wine. 1994, Oxford ; New York: Oxford 

University Press. xvi, 1088 p. 

19. McCloskey, L.P., An Acetic Acid Assay for Wine Using Enzymes. American Journal of 

Enology and Viticulture, 1976. 27(4): p. 176-180. 

20. Mercurio, M.D., et al., High Throughput Analysis of Red Wine and Grape 

PhenolicsAdaptation and Validation of Methyl Cellulose Precipitable Tannin Assay and Modified 

Somers Color Assay to a Rapid 96 Well Plate Format. Journal of Agricultural and Food Chemistry, 

2007. 55(12): p. 4651-4657. 

21. Clendinen, C.S., et al., An overview of methods using 13C for improved compound 

identification in metabolomics and natural products. Frontiers in Plant Science, 2015. 6(611). 

22. Duboc, D., et al., Phosphorus NMR spectroscopy study of muscular enzyme deficiencies 

involving glycogenolysis and glycolysis. Neurology, 1987. 37(4): p. 663-663. 

 


	The Application and Development of Metabolomics Methodologies for the Profiling of Food and Cellular Toxicity
	

	OLE_LINK3
	OLE_LINK4
	OLE_LINK9
	OLE_LINK5
	OLE_LINK6
	OLE_LINK10
	OLE_LINK7
	OLE_LINK8
	OLE_LINK11
	OLE_LINK46
	OLE_LINK47
	OLE_LINK1
	OLE_LINK2
	OLE_LINK12
	OLE_LINK13
	OLE_LINK23
	OLE_LINK22
	OLE_LINK17
	OLE_LINK32
	OLE_LINK33
	OLE_LINK20
	OLE_LINK21
	OLE_LINK18
	OLE_LINK19
	OLE_LINK34
	OLE_LINK35
	OLE_LINK36
	OLE_LINK37

