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Figure 5.1: MCA ASIC Die Photograph

A testbench PCB was designed, fabricated, and assembled to test the MCA. It

included necessary components such as regulators, communication channels, and a

PMT connector. It also included several components for testing and backup, such

as a DAC to test the on-chip ADC and several other DACs to provide external bias

voltages and references, should the on-chip biases fail. A rendering of the MCA PCB

can be found in Figure 5.2.

Figure 5.2: MCA PCB Rendering
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A software package was written to provide human interface GUI to control the

MCA. The GUI was used for testing the functionality of the MCA, configuring its

parameters, and collecting histogram data from its internal memory.

The microcontroller ASIC was fabricated using IBM’s 8RF 0.13 µm, 8 metal layer

process. Each die measures 1.5 mm by 1.5 mm, and the physical layout consumes

the entire available area on the chips. The microcontroller ASIC also includes an RF

front end and a different CSA and ADC architecture for radiation detection, but only

the processor was used for the work in this thesis. Figure 5.3 depicts a die photograph

of the microcontroller ASIC.

Figure 5.3: Microcontroller Die Photograph

A testbench PCB was also designed for the microcontroller ASIC to interface with

the MCA PCB. Software was written for the microcontroller to create a medium

between the MCA and a host computer and to implement the embedded MLPNN.
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5.2 Functionality

The MCA and microcontroller were tested using the PCBs and software, and were

able to produce measurable results. After much tweaking of the MCA settings, valid

gamma ray histograms were produced. Figure 5.4 provides some example histograms

that were collected from the MCA. The histograms have the same y-axis scale to

show the relative strengths for each isotope.

Cs-137 has a single photopeak at 662 keV and a Compton edge associated with the

peak. Co-60 has two photopeaks at 1,173 keV and 1,333 keV, two Compton edges,

and very weak single and double escape peaks from pair production (not visible).

Ba-133 has a relatively low energy spectrum with photopeaks at 80 keV and 356 keV

and a Compton edge to go with the larger peak. Mn-54 has a rather weak single

photopeak at 835 keV.

Unfortunately, bin 7 cannot accumulate any counts in memory because the bin

has excessive DNL, and always displays zero counts.

5.3 Analog Front-End

5.3.1 CSA

The CSA was tested with real gamma ray charge pulses emitted from a Cs-137 source.

The CSA output drives both the peak detector and a buffer. The buffer exits the

MCA ASIC via an IO pad so that the output of the CSA can be measured on an

oscilloscope. However, the buffer introduces some degree of nonlinearity to the CSA

output, particularly for larger voltages, along with a dc offset. Unfortunately, prob-

ing the CSA cannot be used to measure the linearity or bandwidth of the CSA itself.

This limits the tests that can be performed on the CSA that produce quantifiable
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Figure 5.4: Example Histograms Collected from Radiation Detection System
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results. However, the function of the CSA can be readily examined with an oscillo-

scope measurement, such as in Figure 5.5, which shows a 662 keV pulse from Cs-137

as detected by the CSA.
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Figure 5.5: CSA Pulse Measurement

By visual inspection of the oscilloscope captures, the CSA was able to integrate

the incoming charge pulses reliably. The feedback capacitor and triode FET could

be configured to fine-tune the height and duration of the pulses. The peak detector

caused some charge stealing from the CSA output (look carefully at Figure 5.5 at the

8.8 µs mark), slightly distorting the output. This was irrelevant, however, because

the ADC measures the peak detector output, not the CSA output.

Notably, the duration of the charge pulses is much longer than the simulator

models suggested. Referring back to Figure 2.8, the simulator predicted an ordinary

pulse duration somewhere around 1.6 µs. However, the testing results, as depicted in

Figure 5.5, suggest average pulse durations around 7 µs. This results in the count rate
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being over four times slower than predicted in the simulator. Choosing a different

VRfb
and Cfb value could shorten the pulse tail while retaining the height, but the first

part of the pulse cannot be hastened. The difference between the simulated result

and the test result is likely due to the simulated pulse model being shorter than what

it would be in reality.

5.3.2 Peak Detector

The peak detector has the same nonlinear buffer attached to it for viewing its output

on an external oscilloscope, and thus cannot be tested for linearity. However, useful

information can still be extracted from scope captures, as exemplified in Figure 5.6.
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Figure 5.6: Peak Detector Pulse Measurement

The peak detector tracked the CSA output well, leveling off at the maximum

CSA pulse voltage. A small amount of charge was drained off the output of the peak
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detector when the CSA output dropped below the noise floor (at 8.8 µs), leading

to a small voltage decrease. This does create a small amount of bias, as the ADC

converts the voltage after the small charge is taken from it. The stolen charge is

nearly identical for all peak detector voltages, meaning that the ADC sees only a dc

shift, which can easily be accounted for with the MCA settings.

The peak detector was tested and measured to settle back to the baseline upon

being reset at a rate of 1.008 V µs−1. Peaks as high as 3 V then would take as long

as 3 µs to fall back to the baseline. The digital control system has a timer that

can be configured to disallow any more pulses from being processed while the peak

detector settles back to the baseline. This also severely limits the maximum count

rate to a value much below the theoretical value of 228 kcps. If the actual typical

pulse duration and the actual peak detector settling time are taken into account, the

MCA dead time is about τp = 8.7 µs per pulse. Equation 3.1 therefore predicts a

maximum count rate of 42.3 kcps.

5.3.3 ADC

The ADC was tested for linearity by sweeping its input with an external DAC voltage

and reading its binary output value. The results of the sweep can be found in Figure

5.7. The green fill in the graph indicates sections that the ADC flagged an overflow

value, indicating that the input voltage was greater than its positive reference voltage.

Note that the DNL of bin 7 is −1, meaning that its DNL is so severe that the ADC

never outputs it.

The ADC linearity sweep was used to calculate the differential nonlinearity (DNL)

of the ADC, found in Figure 5.8. Note that some bins approach a DNL value of 1

LSB.
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Figure 5.7: ADC Linearity Measurement
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The speed of the ADC could not be tested directly. However, it was able to

produce accurate results with the digital control system allowing it less than 0.75 µs

to perform its conversions, suggesting that the simulation data was relatively accurate.

5.4 Neural Network

After the embedded MLPNN was trained, it was tested with real data collected with

the MCA separately from the training set. Histograms with combinations of the

five tested isotopes (Cs-137, Co-60, Ba-133, Mn-54, Na-22), including one with no

isotopes and just the background radiation, were collected every 2 seconds, yielding

64 histograms for each combination, or 2,048 total histograms. The MLPNN had 64

input neurons, 15 hidden neurons, and 5 output neurons. It also used hidden bias

terms for each element in the hidden activation vector.

5.4.1 Identification Rate

The expected output vector for each test histogram was determined in the same

way as the training set in Section 4.2.1, calculating the relative abundances of each

isotope to the background. Next, the training set histograms were normalized and

presented to the embedded MLPNN, which produced its output vectors. The output

vectors were compared to the expected output vectors. The MSE statistics for the

test histograms can be found in Table 5.1.

After 10,000 epochs and about an hour and forty minutes of computer execution

time, the training set MSE was minimized to 3.67 × 10−5, as shown in Figure 5.9.

However, after the first 4,000 epochs, only small decreases in the error were observed.

The maximum number of epochs could have been reduced to save training time, but

training time was not of great importance for this project.



58

MSE Statistic Value

Median MSE 1.241× 10−4

Mean MSE 2.598× 10−4

Min MSE 1.863× 10−4

Max MSE 2.900× 10−4

Table 5.1: Embedded MLPNN MSE Testing Statistics
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Figure 5.9: MLPNN MSE vs. Epoch

90.65% of the test histograms were below an MSE threshold of 5× 10−4. Further-

more, 98.35% of the test histograms correctly identified which isotopes were present in

their respective radioactive sources using the ROC binary decision threshold values.

After the first 10 seconds of histogram collection time (with the sources generating up

to 1,000 cps, or fewer then 10,000 total counts), the identification rate stayed above

95%, as shown in Figure 5.10.

When the MLPNN and ROC were unable to correctly identify the isotopes in the
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Figure 5.10: MLPNN ROC Identification over Time

system, the source usually contained Mn-54 or just background radiation only. It

often would determine that a histogram with only background radiation contained

Mn-54. This is because Mn-54 was the least radiative source tested, meaning that its

histogram is most akin to the background histogram. The signal to noise ratio for

Mn-54 is lower than the others, and the ROC threshold needed to declare Mn-54 is

contained in the histogram is also quite low. Therefore, the false alarm rate for Mn-

54 is much higher than the other isotopes. Almost all other misidentified histograms

contained Mn-54.

5.4.2 Memory Consumption

Table 5.2 lists the amount of memory each MLPNN data structure required, based

on the design parameters from Table 4.2.
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Data Structure Symbol Memory (bytes) RAM FLASH

Unnormalized Input Vector x 192 ×
Hidden Weights W1 2,880 ×
Hidden Decision Vector d1 30 ×
Output Weights W2 225 ×
Output Vector ŷ 10 ×

Table 5.2: Embedded MLPNN Memory Consumption

Both synaptic weights matrices are stored in the FLASH memory, consuming

3,105 bytes of FLASH in total. To save RAM memory, the matrices are not loaded

into RAM in their entirety before being used. Instead, the embedded MLPNN recalls

each element of the matrices from RAM as it needs it, one at a time. However, the

unnormalized input vector, the hidden decision vector, and the output vector need to

be present in RAM during the entire process, consuming 232 bytes of RAM in total.

The low memory footprint of the embedded MLPNN means that many separate

“profiles” of synaptic weights matrices can be stored in the FLASH memory at once

for different situations. The microcontroller can choose one based on its configuration

and setting for a specific task.

5.4.3 Execution Time

Under the testing criteria with 15 hidden neurons, 1,050 multiplies needed to be

performed to generate the output of the MLPNN. The MLPNN process was clocked

using one of the timers included in the microcontroller. It took 1,916,208 cycles to

generate the MLPNN outputs and ROC binary decisions, or less than 1,825 cycles per

multiply. With the system clock running at a normal operating speed of about 22.6

MHz, it takes the MLPNN less than 85 ms to run. Some time and power savings could

be made if the synaptic weights were moved from the external SPI FLASH module to
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the microcontroller RAM at the expense of having fewer RAM resources for additional

MLPNN profiles or other program functions. Using a hardware multiplier would also

decrease execution time and power consumption.

5.5 Power

While the system is not specifically meant for low power applications, it is still worth-

while to specify the power consumption for the two ASICs.

5.5.1 MCA Power

The MCA ASIC has two power domains: digital (DVDD) and analog (AVDD). Both

power domains operate at 5 V provided by two separate regulators.

The current through each power domain was measured to calculate the power.

The analog supply power was steady at 46.0 mW for a typical configuration and bias

point, but would rise or fall with different bias settings.

The digital supply power, however, was more variable, but independent of config-

uration. At a clock speed of 16 MHz, the digital supply power averaged 164.5 mW,

but could dip down to 140 mW or up to as much as 200 mW. It should be noted that

the digital core in the MCA does not incorporate clock gating, meaning that every

flip flop is clocked on every clock cycle, leading to great power inefficiencies.

In total, the MCA consumes an average of 210.5 mW.

5.5.2 Microcontroller Power

The microcontroller ASIC has only one relevant power domain, digital (VDD), which

operates at 1.2 V. The power consumption, measuring in at 3.002 mW, was tested



62

while the microcontroller was running a serial command line forth interpreter, which

takes up the most processing time by far. Entering sleep states when no action is

taking place would significantly reduce the power consumption of the microcontroller.

However, the amount of power it consumes when it is awake is not significant when

compared to the power the MCA consumes, rendering the effort of implementing a

sleep state not worthwhile.
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Chapter 6

Conclusion

This section wraps up the thesis, beginning with future work both planned and un-

planned for another fabrication, and ending with some closing remarks.

6.1 Future Work

The radiation detection system could be improved in several meaningful ways to boost

its accuracy and speed. Indeed, several of the following improvements are scheduled

to be implemented on a new version of the MCA ASIC, but will not be fabricated in

time to present in this thesis.

6.1.1 CSA Buffer

The CSA buffer on the MCA ASIC provides the only means to measure the output of

the CSA with an external oscilloscope. However, the buffer introduces nonlinearity,

particularly for large CSA voltages, and has its own frequency response independent

of the CSA. While it is adequate for verifying the functionality of the CSA, it cannot

be used to measure the linearity or the frequency response of the CSA.
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The future chip removes this problem with a CSA capable of driving a pad and

an oscilloscope probe, eliminating the need for a buffer. The CSA will be able to be

rigorously tested for linearity, charge pulse response, and frequency response.

6.1.2 Peak Detector Return to Baseline

After a charge pulse has been processed, the peak detector output returns to the

baseline by shunting its internal capacitor to ground, discharging it. The simulator

indicates that the peak detector can discharge the capacitor in under 10 ns, but

experimental results show a much longer duration up to 3 µs. Indeed, for very large

pulses, the peak detector sometimes does not return back to the baseline, but settles

at some voltage above the baseline. It becomes a problem if the peak detector settles

above the noise floor level. If a small, valid peak is detected while the peak detector

is above the noise floor level, the system may not process it, or may place it in a

higher bin than it should be.

This problem can be addressed by increasing the reject time on the MCA digital

control system, at the expense of the count rate. The future chip will implement a

larger shunting FET to allow the charge on the peak detector capacitor to dissipate

more rapidly.

6.1.3 ADC DNL

The ADC on the MCA ASIC has DNL that adversely affects the bin widths within

the gamma ray histogram. Ideally, the DNL would be zero for each bin, leading to

identically spaced energy ranges. However, the DNL is significant enough to inflate

or deflate the bins, resulting in an inaccurate gamma ray histogram.

The DNL is caused by matching problems within the ADC reference and the
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ADC comparators. Unfortunately, there is nothing to be done about the comparators

without changing the ADC architecture. The comparators are locally matched, but

not globally matched, meaning that comparators near one another are matched, but

not to the entire block of them. There is not sufficient chip area to match the

comparators, so they must remain as they are.

The ADC reference is realized as a resistive ladder with outputs at each rung

leading to an individual comparator Vref input. The rung unit resistors are also

locally but not globally matched due to area limitations. Originally, the rung unit

resistance was a small value, which is much more prone to process variations than a

large value. For example, a small change in length of a small resistor yields a larger

percent error than the same change in length on a large resistor. The simulator used

for the MCA ASIC was unable to help diagnose this problem because it treats all

resistors as ideal resistors without consideration for process variations. The future

chip will incorporate larger rung unit resistors to combat this problem.

6.1.4 Bin 7 Always Zero

Excessive DNL in bin 7 prevents the MCA from accumulating pulses into that par-

ticular bin. Therefore, whenever bin 7 is read, it displays zero counts. The future

chip will fix this problem so that the DNL in bin 7 is decreased in magnitude.

6.1.5 High Count Rate (Bit 8 Always Set)

An undetected error in the EDI layout of the MCA digital control system rails bit

8 of every histogram bin register set to logical 1. Therefore, the actual number of

counts in each bin may be 256 counts less than what is stored in the register. In

order to get credible data from the MCA, no bin can be allowed to accumulate over
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255 counts, or else the exact number of counts may not be accurate. However, this

requires polling the MCA very frequently, which drastically reduces the count rate

from the expected 228 kcps.

The future chip will implement a new EDI generated layout of the MCA digital

control system. The new layout will include a fix for this problem as well as some

extra features intended to decrease the time it takes to poll the bin registers.

6.1.6 MCA Digital Power

The MCA digital control system consumes 77% of the total system power, largely

because the RAM was implemented in VHDL without clock gating. Every D flip flop

in the RAM is clocked for every MCA clock cycle, running at 16 MHz. The power

efficiency has much room for improvement by simply adding a clock gate to the RAM

blocks. However, the routing density for the digital control system is about at its

maximum, which may prevent even a simple clock gate from being added. Effort will

be made on the future MCA chip to implement clock gating.

6.1.7 Fixed Point Multiplier

The microcontroller ASIC was implemented with a buggy hardware multiplier. The

multiplier is only able to multiply positive integers, and produces errors if either of

the multiplicands are negative integers. Indeed, the bug is severe enough to halt the

processor if presented with a negative number. The problem was addressed by adding

a compiler flag to use software multiplication rather than hardware, which makes

multiplications take longer to execute, but sidesteps the faulty hardware multiplier.

Future versions of the microcontroller will address this issue.
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6.1.8 System on a Chip

The radiation detection system currently requires two ASICs (the MCA and the

microcontroller) and several external supporting ICs. The MCA is fabricated on an

old, power hungry 0.5 µm process, while the microcontroller is fabricated on a more

recent (but not new) 0.13 µm process. Modern processes consume much less power

for similar or better results. If combined onto a single chip, the system could be

faster, more accurate and precise, much more compact, and more power efficient.

6.2 Conclusion

A complete and compact radiation detection system was designed and implemented

using a scintillator and photomultiplier tube, an MCA ASIC, and a microcontroller

ASIC. The MCA creates a gamma ray histogram by quantizing detected gamma

ray energies and converting them into digital values using an analog front-end and

a digital control system and RAM memory. The microcontroller ASIC reads the

histogram from the MCA and can identify the isotopes in the radiation source with

high reliability once it has collected about 10,000 total counts using a fast, low memory

embedded MLPNN.
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