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(a)

(b)

(c)
Fig. 1 Illustration of the proposed transfer learning approaches: (a) Optimization based TL, applied on output only, (b) Optimization based TL,
applied on both input and output, and (c) Domain transfer TL, applied on both input and output

IC50 (median ρs = 0.28) [5]. Note that in spite of
our discussion on inconsistencies between databases, the
main goal here is to consider the scenario where a small
portion of database 1 (i.e., GDSC) is available while data
for the entire database 2 (i.e., CCLE) is available and

we would like to use database 2 to improve the predic-
tion performance for the rest of database 1. Thus, for
evaluation, we will use the GDSC experimental AUCs
as the gold standard and compare with the predicted
AUCs.
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Latent variable cost optimization approach
We have performed drug sensitivity prediction using the
three latent variable cost optimization based approaches –
Latent Regression Prediction (LRP), Latent-Latent Predic-
tion (LLP), Combined Latent Prediction (CLP) (described
in the “Methods” section) for 7 common drugs with suf-
ficient cell lines (n > 200). For each method, subsets of
50 randomly chosen GDSC cell lines (X11 & y11 in Figs. 2
& 3) are used for the cost optimization in training and the
rest (y12) are predicted along with the known CCLE data
(X2 & y2 in Figs. 2 & 3). Table 1 illustrates the compari-
son of prediction performance for all three methods with
Direct prediction (DP) for K-fold cross-validation, where
DP is defined as training on the 50 available cell lines and
predicting for the rest. Here, the number of folds is found
as K = n

50
, where 1 fold (containing ∼50 samples) is used

for training and the remaining (K − 1) folds are used for
testing.

Domain transfer approach
We have performed the Mapped Prediction (MP)
approach (described in the “Methods” section) for pre-
dicting GDSC sensitivities for 7 common drugs with suf-
ficient cell lines (n > 200) and different levels of database
consistency. Figure 4 demonstrates the effect of first-order
polynomial mapping for a representative gene expres-
sion set, while Fig. 5 illustrates the effect of second-order
polynomial mapping for a representative drug sensitiv-
ity vector. Again, we used random subsets of 50 cell lines
(G11, d11 &G21, d21 in Fig. 6) to retrieve themapping func-
tions and sensitivities for the rest (d12) are predicted using
the known CCLE data (G22, d22). Table 2 shows the com-
parison of prediction performance for MP approach for
all 7 drugs with two other methods – Direct Prediction

(DP) and CCLE model prediction (CP) for K-fold cross-
validation, as defined above (i.e.,K = n

50
and 1 fold is used

for training and (K−1) folds for testing). For CP approach,
the model is built using the available CCLE data directly
and prediction is performed using the GDSC expression
data. For prediction of AUC values using gene expres-
sion data, we have used a Bias-corrected Random Forest
(BC-RF) [17–19] model.

Discussion
From Table 1, it is evident that the CLP method yields
the best performance. Additionally, even though the LLP
method often yield better results than DP, it frequently
underperforms than LRP. Overall, 6 drugs out of 7 yield
the best performance for CLP method while only Nilo-
tinib performs the best with LRP. The prediction perfor-
mance is similar in the reverse direction (i.e., CCLE as the
primary set and GDSC as secondary) where 5 out of 7
drugs show best performance for CLP.
For the Domain Transfer approach, it is evident from

Table 2 that theMP approach performs significantly better
than the both CP and DP. Furthermore, the performance
of the CP approach is much worse compared to either MP
or DP, which can be attributed to the existing distribution
shift between CCLE and GDSC data in general. Note that
among the 7 drugs, 17-AAG and PD-0325901 has moder-
ate concordance (0.5 ≤ ρs < 0.6) while AZD6244, Nutlin-
3 and PD-0332991 have poor concordance (ρs < 0.4)
between databases. For PLX4720 andNilotinib, there exist
moderate to high consistency in terms of Pearson corre-
lation (ρ = 0.57 and ρ = 0.88 respectively), although
the rank correlation is low (ρs = 0.29 and ρs ≈ 0.1
respectively).We have also implemented amodel that uses
the ensemble of available CCLE and GDSC data directly

Fig. 2 Illustration of Latent Regression Prediction. Here, unknown set of GDSC AUC values, y12, is predicted using the underlying latent vector, w2,
calculated from corresponding CCLE AUC set, y22
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Fig. 3 Illustration of Latent-Latent Prediction. Here, unknown set of GDSC AUC values y12 is predicted using the underlying latent variables V and
w1, calculated from X1, X2 and y11, y21. V1 & w1 are used for training while V2 is used to predict w2 and then y12

for training and predicts for the unlabeled GDSC expres-
sion data, referred as the Combined Model Prediction.
An additional section provides a detailed description and
comparative analysis of this model with the MP approach
[see Additional file 1].

Comparisonwith inductive transfer learning
We have compared the results from the Mapped Predic-
tion approach with an existing transfer learning approach,
namely the Importance-weighted Direct Inductive Transfer
Learning (DITL) proposed by Garcke et al. [8]. In DITL,
the primary and secondary datasets are assumed to be
related in a way so that in some parts of the domain, the
two distributions can be similar, and therefore, one can

employ the secondary dataset with primary via impor-
tance sampling (i.e., reweighting the secondary distribu-
tion to the primary so that the secondary data points with
positive effect on primary data will have greater weights).
For prediction, DITL uses weighted Kernel Ridge regres-
sion (KRR) with Gaussian kernels, dubbing the whole
approach as DITL-KRR [8]. Table 3 shows the comparison
of prediction performance for DITL-KRR approach with
MP and DP approaches for 4 representative drugs. Unlike
the MP approach, DITL follows the n > p assumption of
machine learning and therefore, we used the intersection
of top 50 genes from both datasets as the feature set while
50 cell lines were used for training. From Table 3, we can
conclude that MP has a superior performance compared

Table 1 Comparison of K-fold cross-validation performance for 4 GDSC drug sensitivity prediction approaches – Latent Regression
Prediction (LRP), Latent-Latent Prediction (LLP), Combined Latent Prediction (CLP) and Direct Prediction (DP), using data from CCLE

Drug Pearson Correlation NRMSE

LRP LLP CLP DP LRP LLP CLP DP

17-AAG 0.5441 0.4691 0.6382 0.4591 0.2117 0.2147 0.1930 0.2164

AZD6244 0.3988 0.4155 0.4524 0.4008 0.1833 0.1718 0.1684 0.1703

Nilotinib 0.9053 0.3886 0.8768 0.4524 0.0728 0.1295 0.0888 0.1242

Nutlin-3 0.4093 0.5473 0.5646 0.5108 0.1965 0.1756 0.1745 0.1799

PD-0325901 0.6448 0.4502 0.6606 0.4465 0.1614 0.1870 0.1585 0.1878

PD-0332991 0.2497 0.0912 0.2540 0.0884 0.1695 0.1729 0.1672 0.1733

PLX4720 0.5682 0.5040 0.6384 0.5001 0.1237 0.1290 0.1173 0.1291

Bold values indicate the best performance
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Fig. 4 Scatter plot of gene expression association between GDSC and CCLE spaces before and after applying the polynomial mapping for the gene
“DBNDD1”

Fig. 5 Scatter plot of AUC association between GDSC and CCLE spaces before and after applying polynomial mapping for the drug “AZD6244”
(ρs = 0.26)
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Fig. 6 Illustration of drug sensitivity prediction for GDSC using the nonlinear mapping between CCLE and GDSC

to the other approaches even when the number of features
(therefore, information) is reduced to <50.

Conclusions
In precision medicine, data from multiple large pharma-
cological studies can be utilized to design better predictive
models. In this regard, transfer learning is employed to
eliminate the distribution shift between the primary and
secondary datasets. In this paper, we have proposed two

different TL approaches to incorporate data from two
large studies i.e., CCLE and GDSC for designing a better
predictive model. In the first approach, we have used a
latent variable approach and then optimized the appropri-
ate cost functions to get a pertinent predictionmodel. The
second method uses a nonlinear mapping between both
genomic and sensitivity data to transfer the primary data
to secondary domain space and perform prediction utiliz-
ing the secondary datasets. Both methods show marked

Table 2 Comparison of K-fold cross-validation performance for three GDSC drug sensitivity prediction approaches – Mapped
Prediction (MP), CCLE model Prediction (CP) and Direct Prediction (DP) using data from CCLE

Drug Pearson Correlation NRMSE

MP CP DP MP CP DP

17-AAG 0.6062 0.4354 0.4591 0.2112 0.3073 0.2164

AZD6244 0.4692 0.3580 0.3579 0.1683 0.2173 0.1743

Nilotinib 0.8698 0.7957 0.4524 0.1093 0.1323 0.1242

Nutlin-3 0.5606 0.3102 0.5114 0.1852 0.2180 0.1808

PD-0325901 0.6132 0.5731 0.4224 0.1689 0.1875 0.1865

PD-0332991 0.0923 0.0305 0.0802 0.1748 0.1764 0.1755

PLX4720 0.6335 0.6135 0.5001 0.1242 0.159 0.1291

Bold values indicate the best performance
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Table 3 Comparison of prediction performance for DITL-KRR approach with Mapped Prediction (MP) and Direct Prediction (DP)
approaches for 4 common drugs

Drug Number of features Pearson Correlation NRMSE

MP DP DITL-KRR MP DP DITL-KRR

17-AAG 47 0.6319 0.4749 -0.2885 0.1942 0.2167 0.4056

AZD6244 49 0.4407 0.4016 -0.1468 0.1554 0.1570 0.2042

Nilotinib 35 0.9338 0.4674 -0.1701 0.1003 0.1257 0.1410

Nutlin-3 48 0.5921 0.5207 -0.1500 0.1881 0.1903 0.2697

Here, intersection of top 50 genes is taken as the feature set. Bold values indicate the best performance

improvement in drug sensitivity prediction compared to
direct prediction and existing TL approaches, while the
mapping approach shows the best overall performance.
We have faced a couple of issues during implemen-

tation. The LRP approach utilizes the underlying latent
variable between the sensitivity datasets and generate
the latent variable corresponding to unknown primary
sensitivity data. However, to do so, it uses the available
secondary data inferring that the prediction can be only
performed for matched pair of datasets. Although the
LLP approach overcomes this limitation, it often under-
performs than LRP. In Table 4, we have presented the
applicability of the sensitivity prediction approaches dis-
cussed in this paper for matched vs. unmatched pairs
of datasets.
Furthermore, in Mapped Prediction, drug sensitivity

mapping between databases using polynomials is drug-
dependent and thus vulnerable to a user-fault. One poten-
tial new step can be modeling the map to be robust
against the outliers. Another development can be inves-
tigating the effect of model stacking using the proposed
approaches.

Methods
Latent variable cost optimization approach
In this section, our goal is to analyze the transfer learning
approach from the viewpoint of a cost function optimiza-
tion. Here, the assumption is that– if there exists such
a way to transfer data from both CCLE and GDSC to

Table 4 Applicability of Drug Sensitivity Prediction approaches
for Matched and Unmatched Pairs of sets between Databases

Prediction Approach Applicability

Matched Unmatched

Direct Prediction Yes Yes

Latent Regression Prediction Yes No

Latent-Latent Prediction Yes Yes

Combined Latent Prediction Yes No

Mapped Prediction (Domain Transfer) Yes Yes

Direct Inductive Transfer Learning Yes Yes

a common space, then the information available in both
databases can be incorporated together to result in a bet-
ter overall performance [3]. Therefore, it can be inferred
that in a suitable common space, the individual concor-
dance between the common set (i.e., underlying latent
variable) and each dataset will be maximized and the
reconstruction errors from the common set will be min-
imized. This is the rationale behind the cost function
optimization approach.

Drug sensitivity prediction via cost optimization of sensitivity
data
In this section, we have deployed cost function optimiza-
tion of CCLE and GDSC sensitivity data to utilize the
underlying latent vector for improving the sensitivity pre-
diction to an anti-cancer drug. The hypothesis is that if
both CCLE and GDSC sensitivity vectors can be repre-
sented as functions of a common latent variable, then
this variable can be utilized along with a known set of
CCLE sensitivity values to predict the unknown GDSC
sensitivity or vice versa. This approach is regarded as
the Latent Regression Prediction (LRP), as the final pre-
diction is performed using a regression model on the
latent vector. For this method, only the drug sensitivity
values (namely AUC) from the two databases are
employed without any use of genomic characteristics data.
Figure 2 illustrates the use of LRP method for drug sen-
sitivity prediction. Assume that only a small portion,
(y11)n1×1 of GDSC AUC set, (y1)n×1, is known, where
n1 < n. Then, the corresponding AUC set, (y21)n1×1,
in CCLE can be used with y11 to perform a cost opti-
mization to retrieve the optimum weight vector c for the
latent variable, (w1)n1×1, as follows (An additional section
provides the detailed development of the cost function
[see Additional file 1])

min
c

∥
∥y11 − W1a1

∥
∥2
2 + ∥

∥y21 − W1a2
∥
∥2
2

ρ(y11,w1) + ρ(y21,w1)
(1)

subject to
−1 ≤ c0 ≤ 1,
0 ≤ c1, c2 ≤ 1,
c1 + c2 = 1


