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Molybdenum aluminum boride (MoAlB) is a ternary transition metal boride which

has promising aeronautic and nuclear applications. It inheres excellent properties of

the binary transitional metal borides (e.g., MoB, ZrB2) such as high melting

temperature, high hardness, and thermal conductivity. Besides, MoAlB is superior to

MoB because: (1) the Al element provides an oxidation resistance at high

temperatures; (2) its nanolaminated structure consisting of M-B layers with

alternating Al layers results in a unique damage tolerance property. In this research,

polycrystalline MoAlB have been successfully synthesized and simultaneously

sintered using spark plasma sintering (SPS) from molybdenum boride (MoB) and

aluminum (Al) powders. The SPS conditions have been optimized to obtain bulk

samples with a high purity (>98 vol.%) and a high relative density (>97%). The

microstructures have been characterized by X-ray diffraction and scanning electron

microscopy. The mechanical property and oxidation behavior have been studied by

using the Vickers indentation method and oxidation kinetics measurements,

respectively.
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Chapter 1: Introduction

1.1 Overview

Molybdenum aluminum boride (MoAlB) is a ternary transition metal boride which

has promising aeronautic and nuclear applications. The MoAlB structure is

molybdenum-boron (Mo-B) lattice interleaved by alternating layers of aluminum (Al).

It has some special properties of resistance to oxidation in high temperature and a

unique damage tolerance. Besides, it is inhering properties of binary transition metal

borides (e.g., MoB, ZrB2) such as high hardness, high melting temperature, electrical

conductivity, chemical resistance, etc.

1.1.1 Overview of ceramics

Ceramics are defined as inorganic and nonmetallic compositions, which are

comprising metallic and nonmetallic elements held by ionic and covalent bonds.

General properties of ceramics are high hardness, high compression strength (Low

tensile strength), low toughness, poor ductility, high melting point, high modulus of

elasticity, poor thermal and electrical conductivity, good abrasive resistance, and good

chemical resistance. Therefore, ordinary ceramics are widely used for wear resistant

coating, heat insulator, chemical container, etc.
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1.1.2 Binary transition metal borides

Binary transition metal borides (e.g., MoB, ZrB2) are characterized by good

thermal and electrical conductivity, and they also have some ordinary ceramics’

properties such as high hardness, good abrasive resistance, poor ductility, etc. Thus,

they are utilized as primary battery electrodes, wear resistant coatings, and

high-temperature structural materials [1-4]. However, its application is limited

because of poor oxidation resistance at high temperature and poor mechanical damage

tolerance. For example, the Vickers hardness of single crystals of molybdenum

diboride (MoB2) on the (001) face is in the range 21.3 to 24.2 GPa, but the oxidation

of the MoB2 in the air begins at 500 ℃ reported by Okada et al [5]. Therefore, it

results in manufacturing difficulties and applications limited at high temperature

(>1000 ℃).

1.1.3 MAlB ceramics

Ternary transition metal borides MAlB-type has a transition metal boride (MB)

lattice sandwiched by monolayers of aluminum (Al) element. Their special properties

include: (1) the aluminum element provides an oxidation resistance at high

temperatures; (2) its nanolaminated structure consisting of molybdenum-boron layers

with alternating aluminum layers results in a unique damage tolerance property.

Because of these special properties of MAlB ceramics, it can overcome the limitations

of the binary transition metal borides, such as low fracture resistance and poor

oxidation resistance in the high temperature oxidizing environment. Therefore, the
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MAlB Ceramics are promising materials used for aeronautic and nuclear areas. Table

1.1 lists some properties between the ordinary ceramic, the binary transition metal

boride and the ternary transition metal boride.

Common

Properties

Electrical and Thermal

Conductivity

Damage

Tolerance

Oxidation

Resistance at High

Temperature

Ordinary

Ceramic

High

hardness, high

compressive

strength, high

melting point,

high modulus

of elasticity,

good abrasive

resistance, and

good chemical

resistance

Poor Poor Poor

Binary

Transition

Metal

Boride

Good Poor Poor

Ternary

Transition

Metal

Boride

Good Good Good

Table 1.1: Common and different properties of ordinary ceramic, binary transition
metal boride and ternary transition metal boride
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MoAlB belongs to the MAlB-type ceramics. The synthesis, microstructure, and

properties of MoAlB samples will be discussed in next sections. The first work by

Okada [6] discussed single crystal structure and characterizations of the ternary

borides TMAlB (TM=Mo,W) in 1998. The MoAlB ceramic becomes a popular

material to study recently because of its oxidation resistance at high temperature.

Thus, more mechanical, electrical, thermal, and material properties are studied. For

example, Kota et al. [7] found polycrystals of MoAlB stable at least 1400 ℃ in

2016.

Therefore, the MoAlB is a high temperature resistant ceramic with great promise.

The motivation of this project is using an efficient method to fabricate the MoAlB

samples with high purity.

1.2 Crystal Structure

Crystal structures of the MoAlB were proposed by Jeitschko [8]. Then researchers

used chemical analysis and precise instruments to prove its unit cell and

nanolaminated structure.

1.2.1 Orthorhombic crystal

Rieger et al. [9] reported MoAlB phase was orthorhombic, and its group space was

Cmcm in 1961. The orthorhombic crystal is rectangle prism with a three-dimensional

coordinate a, b, and c in Figure 1.1. The length a, width b, and height c of the

rectangle prism are not equal.
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Figure 1.1: Simple orthorhombic crystal [10]

The MoAlB crystallized with an orthorhombic unit cell having the lattice

constants a = 0.3212 nm, b = 1.3985 nm, c = 0.3102 nm, and V = 0.1393 nm3 was

reported by Jeitschko [8] in 1966. Besides, the MoAlB crystal structure shown in

Figure 1.2 was determined by using single crystal structure film technique [8].

Figure 1.2: Crystal structure of MoAlB determined by Jeitschko [8]
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1.2.2 Description of the MoAlB crystal structure

The MoAlB unit cell of three dimensional model is illustrated in Figure 1.3, which

is reserved by the software PDF-4+2016 (2016 international center for diffraction

data). The crystal structure shows that three elements Mo, Al and B are stacking in

sequence in a unit cell. Aluminum atoms (Gray balls) are sandwiched between

molybdenum (Green balls) and boron atoms (Pink balls). The b axis is much longer

than the a and the c axis. It is bipyramid structure which is one of orthorhombic unit

cells.

Figure 1.3: MoAlB unit cell (Pink ball is B atom, green ball is Mo atom, and gray ball
is Al atom)
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The MoAlB crystal structures are shown in Figure 1.4 [6] and Figure 1.5

(PDF-4+2016). Both figures are illustrating the a-plane which is along the b and the c

axis, and the unit cells are outlined as rectangles (b and c sides) in both figures. The

Figure 1.4 is an ichnography and the Figure 1.5 is a stereogram.

The structures demonstrate a triangular prismatic array of six molybdenum atoms

surrounding each boron atom, one aluminum and two boron atoms situated outside

the rectangular faces of the triangular prism, and aluminum atoms forming folded

metal layers and interleaved between the molybdenum double layers [6]. All prism

axes are parallel to the b axis, and the boron atoms form the B-B zigzag chains in the

c axis [6].

Figure 1.4: Ichnography of MoAlB crystal structure in the a-plane along b and c axis
[6]
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Figure 1.5: Stereogram of MoAlB crystal structure in the a-plane along b and c axis
(Pink ball is B atom, green ball is Mo atom, and gray ball is Al atom)

1.3 Synthesis of the MoAlB ceramics

Single crystals and polycrystals of MoAlB are synthesized in different methods, but

synthesis condition should be in high temperature environment. The single crystal

means that atoms are periodic arrangements in the entire volume, which is shown in

Figure 1.6 (a). The polycrystal shown in Figure 1.6 (b) has multiple grains which are

formed by small single crystals. The polycrysta has grain boundaries.

Figure 1.6: (a) Single crystal periodic arrangements; (b) Polycrystal hasing multiple
grains [11].
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The synthesis of large single crystals was first reported by Okada [6]. They

fabricated with the method of high-temperature crystal growth [6]. One of methods

synthesizing polycrystals of MoAlB is using hot pressing method by Kota et al [7].

The sample of polycrystal is a bulk form with a cylindrical prism after fabricating.

Besides, an innovative method spark plasma sintering (SPS) was applied in

fabricating polycrystals of MoAlB. The SPS is an important part for this thesis, and

detailed information about synthesis will be introduced in Chapters 2 and 3.

1.3.1 Single crystals by crystal growth method

Synthesis of the MoAlB single crystals is by the method of crystal growth at the

high temperature environment. Pure molybdenum (Mo) powders, boron (B) powders,

and aluminum (Al) chips were mixed in a molar ratio of 1.0 : 1.0 : 53.3, respectively

[6]. The mixtures were placed in alumina crucible and heated in argon atmosphere at

1500 ℃ for 10 hours [6]. When it cooled down to the room temperature, the sample

was placed in hydrochloric acid (6 mol/L) for 7 days to dissolving excess aluminum

[6]. The largest single crystal of MoAlB sample with dimension 1.0 × 1.0 × 5.1 mm3

was selected under an optical microscope [6].

1.3.2 Hot pressing method

The method of synthesis of the MoAlB polycrystals was using the hot pressing.

Pure molybdenum boride (MoB) and aluminum (Al) powders were mixed

homogeneously in a molar ratio of 1.0 : 1.3 [7]. The mixtures were placed in a

graphite foil lined cylindrical graphite die and heated at 1200 ℃ for 5.8 hours with
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pressure 39 MPa [7]. After cooling to the room temperature, the MoAlB polycrystals

with a bulk form were obtained.

1.3.3 Spark plasma sintering

The spark plasma sintering (SPS) is a new technology of powder metallurgy

sintering which is sintering powders in a graphite die by electric discharging with a

high pressure and vacuum environment. The heat is generated by pulsed direct current

producing the spark plasma between powders, and the high pressure is caused by the

hydraulic power compressing punches. The process of sintering illustrates that

powders are compacted and formed a solid mass of material by heat and pressure.

Atoms in the material diffuse across the boundaries of the particles, and the particles

are fused together to create a solid mass because of an attraction between atoms in the

high temperature and pressure environment. The spark plasma creates the

environment of sintering. The powders finally are formed a fully dense bulk after

electrical discharge activation, thermoplastic deformation and cooling down to the

room temperature.

The SPS configuration in Figure 1.7 reveals that the control system commands

whole system operating. The vacuum pump and inert gas control operating

environment with vacuum, air and argon gas in the chamber. The hydraulic power

provides pressure to compress punches, and the pulsed direct current power produces

electrical discharge on the electrodes. The direct current is going through the powders

in the mold when the powders are activated by the electrical discharge. The thermal
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couple and optical pyrometers can measure the temperature in the mold, and the

cooling system can provide cooling water to cool the temperature in the chamber.

Transmit programs to the control system, and it can control temperature, pressure and

time to fabricate samples by commanding these subsystems.

Figure 1.7: Configuration of the SPS

Using the method of the SPS to fabricate the MoAlB polycrystal is referred by the

hot pressing method. The biggest advantage of the SPS is spending very short time to

synthesize the MoAlB samples with high purity. For example, the SPS method spends
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about 1 h to fabricate a bulk sample with a high purity (> 98 vol. %) and a high

relative density (> 97 %) at the temperature 1200 ℃ and pressure 100 MPa for 8

min.

1.3.4 Comparison of different methods

The different methods of synthesizing MoAlB crystals have close heating

temperatures (1200-1500 ℃), but they have large differences in fabricating time and

pressure. The MoAlB single crystals fabricated by crystal growth method need long

time 10 hours and free space to grow, but polycrystals synthesized by the hot pressing

and the SPS methods need high pressure and less time of 5.8 and 1 hours, respectively.

That is the reason why different fabricating methods obtain monocrystals and

polycrystals separately. Besides, dimensions of samples are different by using

different methods. The dimension of single crystal is small, which should be selected

under the optical microscope, but the shape of polycrystals is bulk form with

cylindrical prism.

Table 1.2 lists three methods which are the crystal growth, the hot pressing, and the

spark plasma sintering to fabricate the MoAlB samples with different synthesis

conditions. The SPS has a high efficiency to fabricate pure MoAlB samples compared

with other methods.
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Obtained

crystal

Temperature

(℃)

Pressure

(MPa)

Time

(hour)

Crystal growth method Single crystal 1500

0.101

(Normal

atmosphere)

10

Hot pressing Polycrystal 1200 39 5.8

Spark plasma sintering Polycrystal 1200 100 1

Table 1.2: Different methods of fabricating the MoAlB samples with different
synthesis conditions

1.4 Microstructure of MoAlB crystals

The crystal structure of MoAlB is mentioned above. Its microstructure is confirmed

by using X-ray diffraction (XRD), scanning electron microscopy (SEM),

High-resolution scanning transmission electron microscopy (HRSTEM), and some

chemical analysis.

1.4.1 Microstructure of MoAlB single crystals

The MoAlB single crystals have silver color and metallic luster reported by Okada

[6]. Besides, the b-plane of a needle-like rectangular of the single crystal can be

observed by the SEM in Figure 1.8 [6]. The Figure 1.8 shows the b-plane is extending

in the direction of the c axis. The unit cell parameters (a = 0.3213 nm, b = 1.3986 nm,
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and c = 0.3195 nm) are close to the Jeitschko’s results (a = 0.3212 nm, b = 1.3985 nm,

and c = 0.3102 nm) [6, 8]. The results of chemical analysis show Mo, Al, and B

elements in a molar ratio of 1.09 : 1.04 : 1.00, which is close to theoretical molar ratio

(Mo : Al : B = 1 : 1 : 1) [6].

Figure 1.8: SEM photograph of single crystal MoAlB [6]

1.4.2 Microstructure of MoAlB polycrystals

Figure 1.9 reveals that the X-ray diffractograms of MoAlB polycrystal in top

surface and cross-section; besides, they are comparing with calculated diffractogram

(Standard diffraction pattern) [7, 12]. Intensity ratios of sample’s top face are different

from the standard diffraction pattern. Higher intensity of the {0k0} peaks of the top

surface is attributed to the hot pressing which helps orient the {010} axis of the grains

parallel with the hot pressing direction preferentially [7]. Besides, there are weak

peaks at 22.8° and 43.9° of the top surface in the Figure 1.9 [7]. These peaks belong
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to Al3Mo and impurities. After the Rietveld refinement on cross-section, the results

show that MoAlB phase is major and Al3Mo phase is 3 vol. %; besides, the lattice

constants of a = 0.321 nm, b = 1.398 nm, and c = 0.310 nm are agreeing with the

results of Jeitschko [7, 8].

Figure 1.9: X-ray diffractograms of top face, cross-section, and standard pattern [7]

The image of High-resolution scanning transmission electron microscopy

(HRSTEM) in the [100] zone axis shows the evidence of nanolaminated structure

consisting of Mo-B layers with alternating Al layers in Figure 1.10 (a). Right inset of

the Figure 1.10 (a) shows selected area electron diffraction (SAED) pattern along the

[100] zone axis, and left inset illustrates the positions of Mo,Al, and B atoms in the

crystal structures [7]. The SEAD along the [100] zone axis also confirms the

orthorhombic symmetry of MoAlB with its special structure in Figure 1.10 (b) [7].
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Figure 1.10: (a) HRSTEM image of MoAlB along the [100] zone axis. Right inset
shows the SAED pattern and left insert shows Mo, Al, and B atoms in the crystal

structures; (b) MoAlB crystal structure on the (100) plane [7].

Secondary electron micrographs of the SEM show the cross-sectional fracture

surface at low and high magnification in Figure 1.11 (b) and (c) [7]. The micrographs

reveal striations and layered structure of grains. The striations are the characteristic of

nanolaminated materials [7].

Backscattered electron micrograph of the SEM in Figure 1.11 (a) shows major

phase of white regions, minor phase of gray regions, and minor phase of dark regions.

The EDS shows that the gray phase is an aluminum-molybdenum impurity with a

molar ratio of 2.5 : 1, so it is determined as Al3Mo [7]. The Al3Mo phase is about 6 ±

2 vol. % in this image. In addition, the dark phase is Al2O3 about 3 ± 0.5 vol. % [7].

The impurities of the MoAlB sample will be discussed in Chapter 3 by comparing the

results of the MoAlB samples fabricated by the SPS method.
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The purity of the MoAlB polycrystals synthesized by the hot pressing method is

about 94 vol. % measured by the backscattered electron micrograph. The volume

percentage of the impurities Al3Mo and Al2O3 is low, so the mechanical and electrical

properties will not be influenced.

Figure 1.11: (a) Backscattered electron micrograph of MoAlB on cross-section; (b, c)
Secondary electron micrographs of the cross-sectional fracture surface at low and

high magnification [7].

1.5 Mechanical properties

Mechanical properties of the MoAlB include hardness, strength, fracture toughness,

elastic modulus, etc. The Vickers hardness is applied in measuring ceramic’s hardness

commonly. More information about the Vickers hardness will be introduced in

Chapter 2 and 3. In addition, the ultimate compressive strength is used to measure

MoAlB samples’ strength. Ceramic materials have high values of the Vickers

hardness and the ultimate compressive strength, but they have low values of the

tensile strength.

The Vickers hardness measured on the b-planes of single crystal MoAlB is in the

range of 10.3 ± 0.2 GPa by Okada [13]. The hardness of polycrystal on the
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cross-section is approximately constant at 10.6 ± 0.3 GPa at different loads from 1kgf

to 10 kgf by Kota et al. [7]. These two results of the Vickers hardness values are close.

The Vickers hardness results of MoAlB samples are moderately lower, which are

comparing to its binary transition metal borides such as MoB (Hv= 23 GPa,) [14],

MoB2 (Hv = 21 - 27 GPa) [5, 15] . The ternary transition metal boride MoAlB is a bit

softer than its binary counterparts because of the Mo-Al bonds formed in the ternary

transition metal boride. The Mo-Al bond is the metallic bond which is weaker than

covalent bond (B-B) and ionic bond (Mo-B).

The SEM micrograph in Figure 1.12 (a) shows an indentation of the Vickers

hardness formed under 9.8 N load [7], and there is no crack along the edge of this

indentation. The nanolaminated structure in the MoAlB sample can decrease the

formation of cracks when this sample is indented. Figure 1.12 (b) reveals the Vickers

hardness indentation of zirconium diboride (ZrB2) which has dominate cracks along

the edge of the indentation [16]. Thus, it confirms the MoAlB ceramics have a unique

property of mechanical damage tolerance because of the nanolaminated structure

consisting of Mo-B layers with alternating Al layers.
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Figure 1.12: (a) A SEM micrograph of the Vickers hardness indentation of MoAlB, (b)
A SEM micrograph of the Vickers hardness indentation of ZrB2 [7] [16].

The ultimate compressive strength is 1940 ± 103 MPa in the room temperature by

Kota et al. [7]. The high value of compressive strength agrees well with the property

of ceramics.

1.6 Electrical resistivity

The electrical resistivity (ρ) of the MoAlB sample is increasing linearly with

temperature above 100 K, and the resistivity of its polycrystal is 0.36 μΩm at the
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temperature 300 K by Kota et al. [7]. It is closed to the electrical resistivity of metal.

For example, the resistivity of pure molybdenum metal is 0.055 μΩm at 300 K [17].

Single crystals of MoAlB have a higher value of resistivity 0.64 μΩm which was

measured along the b-plane reported by Okada et al [13].

The electrical resistivity of MoAlB polycrystal should be higher than single crystal

theoretically because the polycrystal has more grain boundaries which like barriers

decreasing electrical conductivity. However, the results are in contrast because a few

impurities in the MoAlB samples influence the electrical resistivity. For example, the

impurity Al3Mo in the MoAlB polycrystals can increase the sample’s electrical

conductivity. That is the reason why the polycrystal’s electrical resistivity is lower

than single crystal’s.

1.7 Oxidation resistance at high temperature

Oxidation of MoAlB at high temperature is caused by the oxidizing reaction

between inward diffusion of oxygen ions and outward diffusion of molybdenum and

aluminum ions [18]. At a specific temperature, the MoAlB sample surface can form

an adherent alumina scale which can protect the MoAlB sample from oxidation at

high temperature. The oxide layer can keep the MoAlB sample from corrosion at high

temperature because the alumina layer like a shield can prohibit the inward diffusion

of oxygen ions. The alumina layer has properties of denseness and slow growth;

besides, it has low diffusion of O, Mo, and Al ions. That is the reason why this kind of

ceramic materials can be resistant to oxidation damage. However, oxygen can ingress
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sample’s body rapidly and lead to heavy oxidation after the protective layer cracks at

higher temperature [18].

Okada did preliminary study revealing the oxidation reaction of single crystal

beginning at 740 ℃ [6]. Besides, the final oxidation products contain MoO3,

Al5(BO3)O6, and Al8B4O33, respectively [6]. The alumina of MoAlB samples formed

at temperature 740 ℃, and they can be oxidized below temperature 1200 ℃.

Kota et al. analyzed polycrystal MoAlB bulks oxidation at the constant temperature

1100, 1300, and 1400 ℃ [7]. The graph of Figure 1.13 shows the oxidation for 100 h

at 1100 ℃ formed 3 ± 0.4 μm thick scale of Al2O3 and the oxidation for 200 h at

1300 ℃ formed thick scale of Al2O3 and MoB [7]. The inset in the Figure 1.13

shows the SEM micrograph of the layers of MoAlB and Al2O3 of the cross section at

1300 ℃ after 200 h [7]. It means the MoAlB sample can be resistant to oxidize at

temperature 1300 ℃.
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Figure 1.13: Blue line is the oxidation for 100 h at 1100 ℃, and the red line is the
oxidation for 200 h at 1300 ℃; Inset is the SEM micrograph of the cross section for

200 h at 1300 ℃ [7].

The samples at temperature 1400 ℃ for 10 h and at 200 h at 1300 ℃ were

analyzed by the XRD in Figure 1.4 [7]. Dominant phase of the sample at 1400 ℃

after 10 h is Al2O3, and few phases are MoAlB and MoB. In addition, dominant phase

of the sample at 1300 ℃ after 200 h is MoAlB, and few phases are MoB and

unknown compositions.
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Figure 1.14: XRD results of samples at temperature 1400 ℃ for 10 h and at 200 h at
1300 ℃ [7]
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Chapter 2: Experimental Procedure

2.1 Synthesis of MoAlB

The synthesis of MoAlB ceramics is used to the method of spark plasma sintering

(SPS). Mixtures of molybdenum boride (MoB) and aluminum (Al) powders are

sintered in a graphite mold with high temperature and high pressure condition. The

final product of chemical reaction is MoAlB a cylindrical bulk. The chemical

equation shows

MoAlBAlMoB  , (1100 ℃ < T < 1200 ℃). (2-1)

The chemical equation is a combination reaction, and an atomic ratio of MoB to Al to

MoAlB is 1 : 1 : 1 theoretically. The SPS system can provide good reaction condition

with high temperature and high pressure. Eventually, optimized reaction condition

should be determined from the purity of product MoAlB.

2.1.1 Preparation for synthesizing

Raw materials were chosen from powders MoB (99%, < 38 μm, Alfa Aesar, Ward

Hill, MA, USA) and powders Al (-325 mesh, 99.5%, Alfa Aesar, Ward Hill, MA,

USA). The MoB and Al powders were mixed in an atomic ratio of 1:1.1 with 12

grinding balls (3/8 inch diameter, tungsten carbide, OPS Diagnostics LLC, Lebanon,

NJ, USA) and ethanol (>99.7% pure) in a plastic bottle. The volume of ethanol should

submerge the mixtures in a plastic bottle. All procedures of mixing were completed in

a glove box under argon atmosphere to avoid oxidation.
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The mixtures in the bottle were rotated for 24 hours on the tube roller (Scilogex

MX-T6-S, SoCal BioMed, Newport Beach, CA, USA) which is shown in Figure 2.1

(a). The powders can be milled homogeneously by 24 hours rotation with grinding

balls. The process of ball milling can decrease the powder’s size. Then the plastic

bottle containing ball-milled powders was dried in a tube furnace (MTI

GSL-1700X-S60HG, MTI, Richmond, CA, USA) in Figure 2.1 (b), which was setting

temperature at 70 ℃ for 5 hours with ventilating argon. After drying, the ethanol in

the bottle were volatilized completely. Finally, the grinding balls were taken out in the

glove box under argon atmosphere. The ball-milled powders left in the plastic bottle

were used to fabricate the MoAlB samples by using the SPS method.

Figure 2.1: (a) Tube roller, (b) Tube furnace

2.1.2 Spark plasma sintering

The MoAlB samples were synthesized and simultaneously sintered by using the
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SPS system (Model 10-4, Thermal Technology LLC, Santa Rosa, CA, USA) in Figure

2.2. The mixture powders were placed in the graphite die. The SPS could provide

uniaxial pressure and high pulsed current to compress and heat the powders.

Eventually, a bulk sample MoAlB can be formed in several minutes.

Figure 2.2: System of spark plasma sintering

The mixture powders were encased by graphite papers in a cylindrical graphite

mold which is in the chamber of the SPS machine. The initial pressure of the chamber

was set as 20MPa after vacuuming three times, and the temperature was set at 24 ℃

for room temperature. The mixture powders were heated at the rate of 100 ℃/min

and pressurized by 40 MPa/min. Then mixtures were sintered in a temperature region

between 1100 and 1200 ℃, and they were also compressed in a pressure region
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between 50 and 100 MPa. Both high temperature and pressure condition was

processed in 8 minutes for sintering. Finally, the temperature and pressure of chamber

should be decreased to 24 ℃ and 5 MPa by the rate of -100 ℃/min and -30

MPa/min, respectively.

More specifically, Table 2.1 lists the detailed program of fabricating the MoAlB

sample in a synthesis condition with temperature 1100 ℃ and pressure 50 MPa. The

initial condition was set, and the temperature was increased to 600 ℃with rate

100 ℃/min, which is a middle temperature. After keeping temperature 600 ℃ for 10

s, peak temperature 1100 ℃ was reached by same heating rate. Then the pressure in

the chamber began to compress with compressing rate of 40 MPa/min, and maximum

pressure 50 MPa was achieved quickly. Sintering time was set 8 min in this synthesis

condition. Finally, the temperature and pressure was decreased to final condition

simultaneously.
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Temperature

(℃)

Heating

Rate (℃

/min)

Pressure

(MPa)

Compressing

Rate

(MPa/min)

Time (min)

Initial Condition 24 0 20 0 0

Increase

Temperature &

Keep Pressure

600 100 20 0 5.76

Keep Temperature &

Keep Pressure
600 0 20 0 0.17

Increase

Temperature &

Keep Pressure

1100 100 20 0 5

Keep Temperature &

Increase Pressure
1100 0 50 40 0.75

Keep Temperature &

Keep Pressure
1100 0 50 0 8

Decrease

Temperature &

Decrease Pressure

24 -100 5 -30 30

Final Condition 24 0 5 0 0

Table 2.1: Process of synthesizing a MoAlB sample with temperature 1100 ℃ and
pressure 50 MPa for 8 minutes
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Fabricating a MoAlB sample takes about 1 hour, and most time of synthesis is

spent in cooling chamber by the cooling water. Comparing with the hot pressing

method, high efficiency of synthesizing the MoAlB crystal is a big advantage of the

SPS method.

2.2 Microstructure and properties analysis of MoAlB samples

The microstructures and chemical compositions of MoAlB samples were

characterized by some instruments. X-ray diffraction (XRD) diffractometer and

energy dispersive X-ray spectrometry (EDS) of scanning electron microscopy (SEM)

are used to analyze elemental compositions in a sample including impurities’

compositions. Besides, the SEM can scan micrographs by secondary electrons and

backscattered electrons. The secondary electron micrographs can describe topography

of sample surface in micro-level. The backscattered electron micrographs can reveal

different color and shape of phases on the sample surface. Therefore, the purity of

sample should be calculated.

The property of MoAlB sample includes physical property density, mechanical

property Vickers hardness, and property of oxidation resistance. The density was

measured by a density balance device which is followed by the Archimedes principle.

The Vickers hardness was measured by a special indentation and calculated by a

specific formula. The Oxidization resistance was measured at temperature 1400 ℃,

and the elemental compositions of a sample were analyzed by the XRD and SEM

after oxidation test.



30

2.2.1 Sample preparation

The MoAlB samples were removed from the chamber of the SPS system after

finishing sintering. The shape of each sample was a cylindrical bulk which its

diameter was about 20 mm respectively in Figure 2.3. Besides, each sample’ surface

was covered by a graphite layer formed after the SPS. The graphite layers should be

eliminated before microstructure and properties analysis.

Figure 2.3: The sample surfaces covered with graphite layers

Top and bottom faces of each sample were ground by abrasive papers with 240 grit

to grind the graphite layer off. Then the grinding papers in order of 400, 600, 800, and

1200 grit were used to grind the sample surface. Afterwards, the top surface was

polished by alumina powders (0.3 μm diameter). The top face should be kept flat, and

there was no obvious scratch on the top surface after polish. Acetone (>99.2% pure)

and alcohol (>99.7% pure) were used to rinse the top surface. After grinding process,

thickness of samples was about 2 mm. A gap was knocked at each sample’s edge in
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order to observe fracture surface by the SEM. Figure 2.4 shows a sample with top

surface and a gap after finishing sample preparations.

Figure 2.4: Top surface and gap in a sample after finishing sample preparations

2.2.2 Density measurement

A density balance kit (Density kit for XP/XS analytical balances, Mettler Toledo

LLC, Columbus, OH) was applied in measuring each sample’s density. Figure 2.5

illustrates the device which is made up of a low glass beaker containing water, an

electronic scale for measuring the samples’ weight in the air and water, three holders

placing samples in the air, and a steel basket placing samples in the water.
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Figure 2.5: Density balance kit

Density of sample is determined by the Archimedes principle. A sample is

immersed in the water, and it is buoyed up by a force which is equal to the weight of

water that the sample displaces [19]. The water density ρw is known, and measure the

samples’ weights in the air (Wa) and water (Ww). Thus, sample’s density (ρ) can be

calculated by the following equation:

WwWa

ρwWaρ



 (2-2)

Considering tiny influence of air buoyancy, above equation also can be rectified.
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Density of air (ρa) is around 0.0012g/cm3 in standard atmospheric pressure and

temperature 20 ℃ [20 ] . The formula is written as follows:

ρaWwWa

)ρaρw(Waρ 



 (2-3)

The water temperature measured was 23.2 ℃, and the density of water ρw

determined was 0.99752 g/cm3 by the density table for distilled water [20]. Each

MoAlB sample was placed on the holder for measuring its weight in the air and

placed on the basket for measuring weight in the water. Keep the water immersing

total volume of each sample when weighing every sample in the basket. Two weights

of every sample were measured 5 times. Then density of each measurement was

calculated by the Formula 2-3. Finally, the mean value of each sample’s density was

calculated.

2.2.3 X-ray diffraction characterization

The X-ray diffraction is an analytic technique applied in identification of crystalline

phase. Thereby, it can analyze crystalline structure and chemical compositions. The

mechanism of XRD is constructive interference of the X-rays and the crystal of

sample. An X-ray tube of the diffractometer produces CuKαX-rays when a hot

filament shoots high-power electron beam into a copper target. The X-rays have a

constant wavelength, and the wavelength value is close to the spacing of atomic

interface in the crystal of specimen. Thus, the crystal can be worked as raster for

X-ray beam, and constructive interference will be produced.
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The process of constructive interference is described by Bragg’s law:

 ndhkl )sin(2 (2-4)

where dhkl is the spacing between two planes hkl, θ is the angle between the X-ray

and the parallel plane, n is an integer, and λ is the wavelength of the X-ray. Figure 2.6

illustrates the Bragg’s analysis for XRD by crystalline plane. The incident beams of

X-ray radiates into crystalline planes, and 2 parallel beams (Beams 1 and 2) scatters in

a specific direction. After scattering, they become two parallel diffracted beams

(Beam 1’ and 2’), and the distance of parallel beams are the atomic spacing through a

range of 2θ angles. The atomic spacing converts to diffraction peaks in the X-ray

diffractogram, so it can identify crystalline phase. The diffraction peaks are compared

to the standard X-ray diffraction patterns (PDF cards) in order to identify

compositions in the sample.

Figure 2.6: Bragg’s analysis for XRD by crystalline plane
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An X-ray diffractometer (PANalytical Empyrean Diffractometer, PANalytical,

Westborough, MA, USA) was used for obtaining X-ray diffraction patterns of each

MoAlB sample’ top surface. The JADE software was applied in showing X-ray

diffractogram of each sample. The compositions of each sample were analyzed by

comparing to powder diffraction file (PDF) cards reserved by the software

PDF-4+2016 (2016 international center for diffraction data).

2.2.4 Scanning electron microscopy

Scanning electron microscopy is a technique producing the images of specimen’s

microstructure by scanning with a focused beam of electrons. The specimen should be

bulks or powders. The signals of imaging are from secondary electrons, backscattered

electrons, and absorbed electrons. The electrons can produce signals containing

information about sample’s topography, morphology, composition, and crystalline

structure after interacting with atoms of sample [21].

Figure 2.7 explains detailed mechanism of the SEM. The electron gun produces a

beam of electrons with energy between 5 and 35 keV. The beam of electrons is

focused by the first condenser lens and filtrated by the condenser aperture. Then

repeat the process of condensation and constriction by the second condenser lens and

objective aperture, respectively. At this time, the electron beam is formed in high

intensity with s small beam diameter after two times of condensation and constriction.

Afterwards, varying current in the scan coils can control electrons’ direction and

speed. Finally, the objective lens are used to condense the electron beam, and the
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focused stream of electrons shoot to the sample surface. The detectors of the SEM are

applied in receiving the signals produced by electrons interacting with atoms on the

sample surface.

Figure 2.7: Mechanism of the SEM

The reaction of the beam of electrons and atoms on the sample surface can produce

secondary electrons, backscattered electrons, characteristic X-rays, Auger electrons,

absorbed electrons, and direct beam. The relationship of these products are shown in
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Figure 2.8. The detectors detect them and convert to electric signals to image

characterizing sample’ microstructures. The secondary electrons are extranuclear

electrons of sample’s atoms ejected by the electron beam. They are from sample

surface layer about 5 to 10 nm depth. The secondary electrons are sensitive to sample

surface’ topography, so they can show the topography information about the

specimen’s surface. The backscattered electrons from the incident beam are bounced

back elastically by the sample’s nucleus. They have the information about specimen’s

phase difference. Characteristic X-ray is produced by electrons of sample’s atoms

bombarded by high-energy electrons from the electron beam. The X-ray spectra can

exhibit characteristic peaks identifying different elements in the region of the sample.

The X-ray spectra is used for energy-dispersive spectrometry (EDS) analysis.
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Figure 2.8: Different signals produced when incident electron beam reacting to
specimen

The microstructure of each MoAlB sample was characterized by the SEM (FEI

Nova NanoSEM 450, FEI, Hillsboro, OR, USA). The topographic micrographs of top

surface and fracture surface were shown by secondary electrons. Then the

backscattered electron micrographs were identified different phases on the top surface.

The EDS was used to analyze elemental composition in each phase from the

backscattered electron micrographs.

2.2.5 Vickers hardness

The Vickers hardness (HV) is a kind of hardness test with forming a square

indentation. The shape of indenter is a pyramid cone, and the angle of opposite sides
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is 136 degree. The material of indenter is diamond which has the highest hardness.

The force of indenting is allowed between 1 to 100 kgf, and it applied on the sample’s

surface for a constant time about 10 to 20 s [22]. Figure 2.9 reveals the indenter

impacting on the sample’s surface by a constant load.

Figure 2.9: Vickers indenter impacting on the sample’s surface

After indenting, an indentation are formed in the shape of a square with two

diagonals shown in Figure 2.10. Use a microscopy to observe and measure the

indentation of the Vickers Hardness. Measure the length of two diagonals in each

indentation, and calculate its mean value. The length of diagonals are large, and the

Vickers hardness value is small.
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Figure 2.10: Shape of indentation of the Vickers Hardness

The definition of the Vickers hardness is that a force loaded on an indentation is

dividing by an area of the indentation. The formula is showing:

d2
2
aFsin2

0.009807
S
F0.009807HV  (2-5)

where F is the load (kgf), d is an average value of two diagonals (mm), and a is the

angle of opposite sides 136 degrees. The unit of HV is GPa after this formula

calculation.

The MoAlB samples were indented by a Vickers hardness tester (2500 Knoop and

Vickers tester, Buehler, Lake Bluff, IL, USA) on the top surface. The load was set as a

constant value 10 kgf (9.8 N), and indenting time was 10 s. Every sample surface was

indented 5 times. After indenting, the micrographs of indentation were scanning by

microscope of this device. The diagonals of the indentation were measured in the

micrographs. Thus, Vickers hardness of each indentation was calculated by the
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Formula 2-5.

2.2.6 Oxidation resistance

The oxidation test is a corrosion test for determining oxidation resistance property

of a material at high temperature with constant pressure and air compositions. Kota et

al. tested MoAlB sample oxidation resistance at temperature 1100, 1300 and 1400 ℃,

but the information of oxidation resistance at 1400 ℃ is not integrated only the

composition analysis of sample surface after heating [7]. Therefore, oxidation

resistance at 1400 ℃ was analyzed.

A sample with high purity 97.42 Vol. % MoAlB phase was tested at 1400 ℃.

The dimension of sample was cut to 5.5 × 4.5 × 2.0 mm3 by a diamond saw (Buehler

Isomet low speed saw, Buehler, Lake Bluff, IL, USA). Figure 2.11 reveals the sample

size and three faces a, b, and c marked. The Face a, Face b, and Face c are the front,

left, and top. Each face of sample was ground down to 1200 grit by grinding papers,

so the sample surface should be mirror-like after grinding.
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Figure 2.11: Shape of the MoAlB sample for oxidation tests

Before the oxidation test, the value of the sample mass which was keeping 4

decimal places in unit gram, which were measured by the Sartorius Secura balance

(Sartorius Secura Balances S324-1S, DWS, Elk Grove, IL, USA). Besides, a

high-temperature furnace (1750 ℃ Bench-Top Muffle Furnace, MTI, Richmond, CA,

USA) shown in Figure 2.12 was applied in heating the MoAlB specimen. The

specimen was place in the chamber of the furnace, and the Face a (5.4 × 4.5 mm2) of

the sample was upward. The Face a was analyzed for oxidation resistance.
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Figure 2.12: High-temperature furnace

The pressure and air compositions were kept constant in the whole process of

oxidation. The program of this furnace was set following the process in Table 2.2. The

MoAlB specimen was heat up to 1400 ℃ with the heating rate of 10 ℃/min from

the room temperature. Then temperature 1400 ℃ as the oxidation temperature was

kept for 1 hour. Finally, the temperature of the chamber was cooled down to the room

temperature with the rate -10 ℃/min. The sample should cool in the chamber because

temperature difference could lead to cracks forming on the sample surface. In addition,

there is no cooling liquid for the furnace. Thus, it should require about 12 hours for

cooling sample in the furnace.
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Table 2.2: High-temperature furnace program of an oxidation test at 1400 ℃ for 1
hour

After finishing the first oxidation test, the sample mass should be measured and

recorded. Then the second oxidation test at 1400 ℃ was repeated. The process of

heating, cooling and weighting was repeated until the mass of sample remaining

unchanged.

After oxidation tests at 1400 ℃, the sample surface was formed an oxide layer.

The Face a of the specimen was characterized by the X-ray diffractometer. Then the

X-ray diffractogram was shown by the JADE software. Finally, the element

compositions of the Face a after oxidation were identified by the PDF cards.

Cross section the Face b (4.5 × 2.0 mm2) was used to observe oxide scale by the

SEM. The cold-mounting method was used to mount sample in a plastic cylindrical

die. The specimen was placed in the middle of the mold, and the Face b was

downward. Afterwards, resin and hardener were mixed in a volume ratio of 15 : 2.

After stirring the mixtures homogeneously, the mixtures were poured into the

cylindrical die until submerging the whole sample. Figure 2.13 demonstrates the

Temperature (℃) Heating Rate
(℃/min) Time (hour)

Initial Condition 24 0 0

Increase Temperature 1400 10 2.3

Keep Temperature 1400 0 1

Decrease Temperature 24 -10 12

Final Condition 24 0 0
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sample mounted in the mold. After 24 h, the sample with a mount was taken out, and

the Face b was polished down to 1200 grit by grinding papers. Finally, the

microstructure and compositions of the cross section was characterized by the SEM.

Figure 2.13: Cold-mounting method
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Chapter 3: Results and Discussion

3.1 Selection of MoAlB samples in different synthesis conditions

The MoAlB samples were fabricated by the SPS with different synthesis conditions

which have difference between temperature and pressure. The sintering time of the

SPS 8 minutes which is referencing the SPS method of fabricating Ti3SiC2 by Gao et

al. [23]. The pressure of the SPS was selected between 50 and 100 MPa. It was

referring to the hot pressing method of fabricating Ti2AlC by Cui et al. [18].

The optimized sintering temperature of the SPS was determined by controlling

sintering time 8 minutes and pressure 50 MPa. When temperature of sintering was

below 1100 ℃, the sample’s purity of MoAlB is low. For example, the impurity

phase was about 15 vol. % in the sample at sintering temperature 900 ℃ measured

by the backscattered electron micrographs. When the temperature was at 1300 ℃, the

phase of MoAlB was nonexistent in the sample, which was determined by its X-ray

diffractograms and corresponding PDF cards. Thus, optimum temperature was

determined in a range between 1100 and 1200 ℃.

According to above information about pressure and temperature, 4 kinds of MoAlB

samples with 4 kinds of synthesis conditions were fabricated by the SPS in Table 3.1.

The table lists these 4 MoAlB samples synthesized with different temperature and

pressure of the SPS. Thereby, find the best synthesis condition from them.
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Sintering Time (min) Temperature (℃) Pressure (MPa)

Sample 1 8 1100 50

Sample 2 8 1200 50

Sample 3 8 1100 100

Sample 4 8 1200 100

Table 3.1: Samples fabricated in 4 kinds of synthesis conditions

3.2 Density analysis

The densities of 4 samples was calculated by the Formula 2-3 following the

Archimedes principle in Table 3.2. Theoretical density of MoAlB is 6.45g/cm3 [7],

and samples’ densities from the table were bit lower than theoretical density. The SPS

system fabricated the cylindrical bulks of samples from the mixture powders, and

there were some pores formed in the bulk of samples when two punches compressed

powders at high temperature. Therefore, the density of each sample is lower than the

theoretical density. The secondary electron micrographs will show these pores on the

sample surface in the next section 3.2.

Synthesis Condition Density(g/cm3) Relative Density (%)

Sample 1 1100℃, 50MPa 5.947±0.008 92.20±0.12

Sample 2 1200℃, 50MPa 6.155±0.003 95.43±0.04

Sample 3 1100℃, 100MPa 6.186±0.006 95.90±0.09

Sample 4 1200℃, 100MPa 6.278±0.007 97.34±0.10

Table 3.2: Density and relative density of samples
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The Table 3.2 lists each sample’s density increasing with the temperature, so the

purity of MoAlB is increasing with temperature from 1100 to 1200 ℃. It also reveals

the density enlarging with pressure because high pressure can decrease the pores’

sizes in the process of sintering. Thus, optimum synthesis condition of the SPS is

temperature at 1200 ℃ and pressure at 100MPa. The sample 4 has optimized density

value 6.278 ± 0.007 g/cm3.

The relative density of MoAlB is also calculated in this table. The highest relative

of sample 4 is 97.34 ± 0.10 %. The relative density of MoAlB is 94 ± 1% fabricated

by the hot pressing method reported by Kota et al [7]. The sample 4’s relative density

by the SPS is much higher than the results by the hot pressing method.

3.3 Secondary electron micrograph

The top surface of MoAlB sample was characterized by the secondary electrons of

the SEM. Figure 3.1 demonstrates the microstructure on surface of the sample 1 with

8000 magnification. There are some big and small dents on the surface. The reason of

forming small dents is that grains on the surface were taken away by the grinding

papers when the sample 1 was polished by grinding papers. It confirms that the

MoAlB sample has low ductility. The big holes are the pores caused by the SPS

fabricating bulk MoAlB samples from powders. Thus, this is the reason why samples’

density lower than theoretical density. The surface topographies of the rest of samples

in secondary electron micrographs are close to the sample 1’s, which also have small

and big dents on the top surface.
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Figure 3.1: Secondary electron micrograph of sample 1’s top surface

Figure 3.2 shows the secondary electron micrograph of the fracture surface of

sample 1 at high magnification. The fracture surface was cracking along with grains’

shape, so the fracture surface can reflected the structure of grains. The Figure 3.2

illustrates striated and layered structure of grains which are the feature of

nanolaminated materials. It agrees with the results of fracture surface characterized by

Kota et al. [7].
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Figure 3.2: Fracture surface of sample 1 in secondary electron micrograph

3.4 Backscattered electron micrograph

Backscattered electrons were used to characterize different phases on the top

surface of MoAlB samples. Five backscattered electron micrographs of different areas

in each sample were taken by the SEM randomly. The volume percentage of

impurities in each micrograph was calculated by a software Image J. Then mean value

of the purity volume percentages was calculated in each sample. Finally, the EDS was

analyzed to the atomic ratio of elements in each phase, and the EDS results as

references can be used to deduce impurity compositions.

The backscattered electron micrographs of sample 1 in Figure 3.3 (a) and (b)

reveals there are two phases on the top surface. The Figure 3.3 (b) with high

magnification demonstrates that major phase is light gray, impurity phase is dark gray,

and the dents are dark. Besides, the main phase MoAlB is 95.24 ± 1.50 vol. % of
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sample 1, which is calculated by the Image J.

Figure 3.3: (a) Backscattered electron micrographs of sample 1 with low
magnification, (b) Backscattered electron micrographs of sample 1 with high

magnification

After the EDS analysis, the molar ratio of Al to Mo in major phase is close to 1 : 1,

so it is the MoAlB phase. In addition, the molar ratio of Al to Mo in minor phase is

2.62 : 1. From this atomic ratio, the impurity agrees with the impurity Al3Mo in the

MoAlB sample fabricated by the hot pressing method by Kota et al. [7].

However, the Al-Mo phase diagram in Figure 3.4 and partial Al-Mo phase diagrams

in Figure 3.5 and 3.6 reported by Saunders [24] show a different result. The Figure

3.5 shows the Al3Mo phase confused with Al8Mo3 phase at the atomic 25 % Mo from

1222 to 818 ℃ [24]. Then the confused phase can convert to pure Al8Mo3 phase

after cooling down under 818 ℃. The Figure 3.4 and the Figure 3.6 reveal that the

Al8Mo3 (Atomic ratio: Mo:Al = 2.67 : 1) from the atomic 20 to 27.3 % Mo. The molar

ratio of sample 1’s impurity (Atomic ratio: Mo:Al = 2.62 : 1) is close to the phase

Al8Mo3. Based on above information, the impurity phase which is speculated is
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Al8Mo3.

Figure 3.4: Al-Mo phase diagram [24]
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Figure 3.5: Partial Al-Mo phase diagram [24]

Figure 3.6: Partial Al-Mo phase diagram [24]

The sample 2’s backscattered electron micrographs of Figure 3.7 (a) and (b)

demonstrate there are 2 phases in the graphs and the color of impurity phase is

brighter than major phase’s. The major phase MoAlB is 96.25 ± 3.59 vol. % by the

Image J and the EDS. The EDS results of the impurity phase demonstrate that the

atomic ratio of Al to Mo is 1 : 59. It means there is no Al element in the impurity

phase referring to the Al-Mo systems in Figure 3.4. The impurity phase most likely to

be the MoB.
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Figure 3.7: (a) Backscattered electron micrographs of sample 2 with low
magnification, (b) Backscattered electron micrographs of sample 2 with high

magnification

The backscattered electron micrographs of sample 3 in Figure 3.8 (a) and (b)

illustrate light gray MoAlB phase and dark gray impurities phase. The MoAlB phase

is 97.42 ± 1.48 vol. % of sample 3, so the purity of MoAlB is high in sample 3. The

EDS results reveal the atomic ratio of Al to Mo is 2.53 : 1. According to the Al-Mo

phase diagram in Figure 3.4, the impurity phase could be Al8Mo3.

Figure 3.8: (a) Backscattered electron micrographs of sample 3 with low
magnification, (b) Backscattered electron micrographs of sample 3 with high

magnification
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Figure 3.9 (a) and (b) illustrate 2 phases in backscattered electron micrographs of

sample 4. Light gray phase is MoAlB, and dark gray phase is impurity phase by using

the EDS analysis. After calculation, the sample 4 has highest MoAlB phase 98.03 ±

0.98 vol. %. The impurity phase could be Al8Mo3 because the ratio of Al to Mo is

2.45 : 1 by the EDS analysis.

Figure 3.9: (a) Backscattered electron micrographs of sample 4 with low
magnification, (b) Backscattered electron micrographs of sample 4 with high

magnification

Table 3.3 summarizes the results of the backscattered electron micrographs and the

EDS. The purity of MoAlB is increasing with temperature and pressure in a partial

range. The results of purity are same with the results of density, which is also

increasing with temperature and pressure in Table 3.3. The highest purity is 98.03 ±

0.98 vol. % in the synthesis condition 1200 ℃ and 100MPa, it is the best synthesis

condition of the SPS. Besides, the results of impurities composition analysis are also

shown in this table. The volume percentage of impurity in each sample is low, so it is

not an important factor to affect property measurements for MoAlB samples.
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Synthesis Condition
Probable Impurity

Composition
MoAlB Vol.%

Sample 1 1100℃, 50MPa Al8Mo3 95.24±1.50

Sample 2 1200℃, 50MPa MoB 96.25±3.59

Sample 3 1100℃, 100MPa Al8Mo3 97.42±1.48

Sample 4 1200℃, 100MPa Al8Mo3 98.03±0.98

Table 3.3: Volume percentage and impurity probable composition of sample

3.5 X-ray diffractogram

The XRD is another method to analyze compositions of each sample. The

diffraction peaks in the X-ray diffractograms are compared to the standard X-ray

diffraction patterns (PDF cards). From the results of the EDS, the impurity

compositions could be confirmed from diffraction peaks in each sample. However, the

compositions of impurities are in small volume percentage. Thus, the diffraction

peaks of impurities are hardly observed in each diffractogram. Therefore, the X-ray

diffractograms reveal the diffraction peaks belong to MoAlB phase.

The diffraction peaks of 4 MoAlB samples are almost same because every sample

has high purity of MoAlB phase. The X-ray diffractogram of sample 1 are used to

analyze in Figure 3.10, and other 3 samples’ diffractograms are in Chapter 5 Appendix.

The diffraction peaks of the sample 1 are compared to the standard X-ray diffraction

pattern which is at the bottom of the Figure 3.10. Each peak position in the

diffractogram was labeled as corresponding plane {h k l} of MoAlB by referring its
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PDF card.

The results of the Figure 3.10 reveal all diffraction peaks are belong to MoAlB

phase. Besides, intensities of diffraction peaks in {0k0} peak positions are a bit higher

than peak intensities of the standard X-ray diffraction pattern. It is an agreement with

the results of the hot-pressed MoAlB sample on the top face reported by by Kota et al.

[7]. It confirms that the SPS can promote the MoAlB crystal growing preferentially in

the {0k0} axis on the top surface.

Figure 3.10: X-ray diffractograms of MoAlB sample 1 on the top surface and
diffraction peaks of MoAlB standard X-ray diffraction pattern

3.6 Vickers hardness

The Vickers hardness of each indentation was calculated by the Formula 2-5, and

each sample had 5 indentations. The Vickers hardness mean value of each sample

with a constant force 9.8 N is revealed in Table 3.4. The results shows the Vickers
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hardness values of samples in different synthesis conditions are close. It is the value

between 10.48 and 10.74 GPa. The results agree with the MoAlB polycrystal on the

cross-section 10.6 ± 0.3 GPa by Kota et al. [7] and MoAlB single crystal on the

b-plane 10.3 ± 0.2 GPa by Okada [13]. The hardness of binary counterpart

molybdenum boride (MoB) is 23 GPa [14], so the hardness value is decreasing when

binary counterpart forming a nanolaminated structure. The metallic bond Mo-Al is

weaker than the covalent bond B-B and the ionic bond Mo-B.

Synthesis Condition Force (N) Vickers Hardness (GPa)

Sample 1 1100℃, 50MPa 9.8 10.60±0.51

Sample 2 1200℃, 50MPa 9.8 10.75±0.36

Sample 3 1100℃, 100MPa 9.8 10.64±0.65

Sample 4 1200℃, 100MPa 9.8 10.48±0.41

Table 3.4: Vickers hardness of each sample

The indentations of 4 samples shown in Figure 3.11 are exactly similar. There are

some small cracks at the borders of indentations with the maximum load of 9.8 N.

However, the small cracks are not dominant. Thus, the nanolaminated structure of

MoAlB can reduce the formation of cracks when the samples are indente. Therefore,

the MoAlB ceramics have better damage tolerance.
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Figure 3.11: (a) Indentation of sample 1, (b) Indentation of sample 2, (c) Indentation
of sample 3, and (d) Indentation of sample 4

3.7 Oxidation resistance

The sample 3 with high purity 97.42 Vol. % was used for oxidation tests at

1400 ℃. The value of the sample mass was recorded after each oxidation test with 1

h, and the mass stopped increasing after the seventh test (7 hours). Then the relation

between the increase of mass and the time of oxidation at 1400 ℃ for 7 hours was

analyzed. The parabolic relation is between Δm/A and t at 1400 ℃ in Figure 3.12.

The Δm is the difference value between the mass after oxidation test and the initial
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mass (kg), A is the area of the Face a (0.0054×0.0045 m2), and t is the time of

oxidation (hour).

Figure 3.12: Δm/A increase with t (0< t <8)

Then Figure 3.13 illustrates linear relation between (Δm/A) 2 and t at 1400 ℃ by

equation:

  Ct
A
Δm 2

 , (0< t <8) (3-1)

where C is a constant number 0.0387 kg2/(hm4). The constant number C at 1400 ℃

is determined by the data in the graph with a good power law fit (R2= 0.9449). Finally,

transfer the Formula 3-1 to the parabolic rate law, and get the equation:

  8)t(0t,102.37Δm 112   . (3-2)
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Figure 3.13: (Δm/A) 2 is linear to t (0< t <8)

Figure 3.14 is the X-ray diffractogram of the sample 3 after oxidation at 1400 ℃

for 11 h. It reveals that peaks with high intensities are belonging to the Al2O3 phase

and weak peaks are belonging to MoB and MoAlB phases. The results confirm that

major phase on the Face a is Al2O3 and minor phases are MoB and MoAlB. Based on

above evidences of elemental compositions after oxidation tests, the oxidation

reaction is:

322 OAl
2
1MoBO

4
3MoAlB  (T = 1400 ℃). (3-3)
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Figure 3.14: X-ray diffractograms of the sample 3 after oxidation at 1400 ℃ for 11 h

The cross section (Face b) after oxidation tests was characterized by the SEM. The

secondary electron micrograph with low magnification (Figure 3.5) reveals the

boundary between the sample’s cross section and the resin. There are three regions

resin phase (a), Al2O3 phase (b), and mixed phases (c) in the micrograph.
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Figure 3.15: Secondary electron micrograph with low magnification of the cross
section’s boundary showing 3 significant regions

In order to analyze the mixed phases, the backscattered electron micrograph of

alumina scale boundary was taken in Figure 3.16. It shows there are 4 phases at the

interface between the region of mixture phases and alumina scale. The EDS results of

the Figure 3.16 show that phase a is Al2O3, phase b is MoAlB, phase c is the impurity

phase Al8Mo3, and phase d is MoB. Thereby, the Al2O3 phase and MoB phase are

inserting in the region of MoAlB phase. It causes the mixed phases in the region a in

the Figure 3.15.
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Figure 3.16: Backscattered electron micrograph of cross section interface

The backscattered electron micrograph in Figure 1.13 shows that the cross section

for 200 h at 1300 ℃ has a pure MoAlB region by Kota et al. [7]. However, the

MoAlB phase is mixed with MoB phase and Al2O3 phase in the Figure 3.16. Continue

to do oxidation at 1400 ℃ for 2 hours to observe micrographs of mixed region.
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Chapter 4. Conclusions

The polycrystal MoAlB samples were synthesized from MoB and Al powders by

using the SPS method. The optimum sintering temperature and pressure values are

1200 ℃ and 100 MPa with a sintering time of 8 minutes.

The sample has a high relative density of 97.34 ± 0.10 % and a high purity of 98.03

± 0.98 vol. %. The impurity composition could be Al8Mo3 by the EDS analysis. The

XRD can analyze high purity of MoAlB composition because almost all peaks in the

X-ray diffractogram belong to MoAlB phase.

There are some pores in the bulk of MoAlB samples, and they are caused by using

the SPS method to fabricate samples. Besides, striated and layered structure of grains

can be observed by the SEM.

The Vickers hardness value is 10.48 ± 0.41 GPa, and there are no dominate crack

along the edge of the indentations. The Mo-Al bonds in the MoAlB sample can

decrease the Vickers hardness value which is comparing with its binary counterparts;

besides, the nanolaminated structure can make MoAlB samples have the property of

mechanical damage tolerance.

The results of oxidation tests confirm that the MoAlB sample is stable at 1400 ℃.

The sample can form alumina layer and mixed layer at 1400 ℃ for 11 h. The mixed

layer contains the Al2O3 phase and the MoB phase inserting in the region of the

MoAlB phase.
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Chapter 5: Appendix

Figure 5.1: X-ray diffractograms of the MoAlB sample 1 on the top surface

Figure 5.2: X-ray diffractograms of the MoAlB sample 2 on the top surface
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Figure 5.3: X-ray diffractograms of the MoAlB sample 3 on the top surface

Figure 5.4: X-ray diffractograms of the MoAlB sample 4 on the top surface
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