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Results

Mean 2010 maize grain DM yield for the four counties repre-
sented by the 40-km service area was 9.074 mT ha .
Assuming a 1:1 weight distribution between maize grain and
stover results in the production of a mean 2010 maize stover
weight of 9.074 mT ha'. A stover removal rate of 30-50 %
allows for 2.72-4.54 mT of stover to be sustainably collected
annually. Of the 277,177 ha of cropland in the plant service
area, 14,113 ha were found suitable for conversion to switch-
grass, and the remaining 263,064 ha of non-bioenergy switch-
grass cropland were assumed to consist of 131,532 ha of
maize and 131,532 ha of soybeans. Multiplying the total
number of bioenergy switchgrass enrolled hectares by the
average switchgrass DM yield range of 5-11 mT ha ™' results
in a total switchgrass yield of 70,565-155,243 mT (Table 2).
Multiplying the number of maize-enrolled hectares by the
metric tons of maize stover available for removal per hectare
results in an annual removal of 358,030-596,761 mT of maize
stover (Table 3). The sum of switchgrass and maize stover
supplies in the 40-km plant service area is a total annual
biomass production potential of 428,595-752,004 mT. At a
bioconversion efficiency of 334 1 mT ', the annual cellulosic
ethanol production capacity of the ethanol plant is
143,150,730-251,169,336 liters.

Discussion

Sufficient quantities of biomass for year-round cellulosic
ethanol production could be generated from maize stover
and switchgrass in the 40-km road network service area of
the existing starch-based ethanol plant at current feedstock
yields, sustainable removal rates and bioconversion efficien-
cies. In addition to the 208 million liters of starch-based
ethanol already produced annually at the existing plant [35],
another 143-251 million L of cellulosic ethanol could be
produced annually from maize stover and switchgrass.
Mitchell et al. (2012) recommended supplying 115-120 %
of required biomass to cellulosic ethanol plants annually, in
order to account for biomass yield variability and storage
losses. The 428,595-752,004 mT of estimated annual

Table 2 Annual switchgrass biomass and ethanol production potential
within the 40-km road network service area of an existing starch-based
ethanol plant, assuming 5 mT ha ', 11 mT ha ', and 20 mT ha ' switch-
grass DM yields and an ethanol bioconversion efficiency of 334 1 mT '

Switchgrass Total biomass (mT) Ethanol
yield (mT ha™") produced (1)
5 70,565 23,568,710
11 155,243 51,851,162
20 282,260 94,274,840

biomass produced within the ethanol plant service area pro-
vides 77-135 % of the 556,990 mT of biomass necessary to
support a cellulosic ethanol plant with an annual ethanol
output of 189 million L.

Total ethanol production estimates provided here assume
the conversion of 14,113 ha of marginally productive agricul-
tural lands to switchgrass within the plant service area (~5 %
of total cropland area). Without converting any land from
rowcrops to switchgrass, the 138,589 maize-enrolled ha
within the plant service area could supply 377,239-
628,778 mT of biomass annually at a stover removal rate
of 30-50 %. This quantity of corn stover provides 68—113 %
of the 556,990 mT of biomass necessary to support a cellu-
losic ethanol plant with an annual ethanol output of 189
million L. Because farmers may not be willing to plant
switchgrass without an operational biorefinery already in
place [5], maize stover may be utilized exclusively as a
feedstock in the year of switchgrass planting. Even if mar-
ginally productive croplands are taken out of production and
seeded to switchgrass, the 131,532 ha of remaining maize-
enrolled cropland could supply 358,030-596,761 mT of
maize stover biomass, or 64—107 % of the biomass necessary
for supporting an ethanol plant with an annual ethanol output
of 189 million L.

Development of biomass supply chains and bioconver-
sion infrastructure are current logistical challenges facing
advancement of the cellulosic ethanol industry.
Management of feedstock delivery contracts between etha-
nol companies and farmers could increase the costs and
difficulties associated with ensuring continual biomass sup-
plies to ethanol plants. Even with established contracts, high
grain prices and the appeal of shorter-term commitments
could encourage farmers to continue raising annual
rowcrops instead of switchgrass. Decreased productivity in
drier years could increase the difficulty of obtaining suffi-
cient biomass quantities for year-round production. Lastly,
ethanol plants dependent on surrounding cropland for bio-
mass could be outcompeted by larger plants, if methods for
large-scale gathering and transportation of biomass are de-
veloped and implemented.

Although not considered in this analysis, grasslands
enrolled in the CRP could be converted to bioenergy

Table 3 Annual maize stover biomass and ethanol production potential
within the 40-km road network service area of an existing starch-based
ethanol plant, assuming a maize stover DM yield 0of9.074 mT ha™", 30 %
and 50 % annual maize stover removal rates, and an ethanol bioconver-
sion efficiency of 334 1 mT '

Stover yield Removal % Total Ethanol

(mT ha™") biomass (mT) produced (1)
9.074 30 358,030 119,582,020
9.074 50 596,761 199,318,174
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switchgrass stands or back to annual rowcrops, and thereby
contribute to biomass supplies in ethanol plant service areas.
In the 40-km service area of the existing starch-based etha-
nol plant, there are approximately 493 ha of CRP enrolled
grassland. If removed from the CRP, these lands could yield
an additional 2,465-5,423 mT of switchgrass or 1,342—
2,237 mT of maize stover biomass annually, which is
<1 % of the biomass necessary to support a cellulosic
ethanol plant with an annual ethanol output of 189 million
liters.

In the future, switchgrass yields are projected to increase
with the introduction of bioenergy specific cultivars and
improved hybrids [33], which would increase the quantities
of biomass supplied to ethanol plants (Table 2). Similarly,
extending ethanol plant service areas to distances greater
than 40 km would increase biomass supplies. Farmers may
be willing to transport feedstocks farther than 40 km if
economic incentives are provided and if there is only one
plant producing cellulosic ethanol in the vicinity. Increased
biomass supplies would make cellulosic ethanol production
more feasible and less vulnerable to variations in annual
biomass supply. Even without increased biomass supplies,
supplying adequate biomass for year-round cellulosic etha-
nol production in the 40-km service area of an existing
starch-based ethanol plant appears to be feasible at
current maize stover and switchgrass biomass yields and
bioconversion efficiencies.

Results of this location-specific analysis provide in-
sights into the feasibility of cellulosic ethanol production
in landscapes throughout the Great Plains. In highly
cultivated areas like the Rainwater Basin region of
Nebraska, it is likely that maize stover will be readily
available and utilized as a bioenergy feedstock, but large
areas of marginally productive cropland are not available
for conversion to switchgrass. Less intensively cultivated
landscapes, which likely have a greater proportion of
marginally productive agricultural lands, may be utilized
to produce more switchgrass. If sufficient land area is
enrolled in bioenergy switchgrass, grass-dominated land-
scapes could generate sufficient quantities of switchgrass
biomass to supply feedstock to cellulosic ethanol plants.
Regardless of whether maize stover or switchgrass is
utilized as the primary feedstock at ethanol plants, cel-
lulosic ethanol production could sustainably increase
overall ethanol output in the Great Plains while mini-
mizing competition with food resources. This study
addressed the biomass producing potential for a single
ethanol plant service area and determined that it is
feasible to supply adequate biomass feedstock with
maize stover and switchgrass in an intensively managed
agricultural fuelshed. Similar, specific analyses should
be conducted for additional proposed bioenergy facility
locations.
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