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INTRODUCTION

Cammack et al. (2009, p. 517) wrote, “Biological 
and economic efficiencies of cow-calf production are 
largely dependent on successful reproduction.” The lit-
erature is replete with works about reproduction, dys-
tocia, and maturity. Bellows et al. (1971) used ordinary 
least squares (OLS) regression to quantify the effect of 
physical size on 4 degrees of dystocia. Morrison et al. 
(1985) and Basarab et al. (1993) proposed using a dis-
criminant analysis methodology. While similar to OLS, 
this method optimizes a different objective function giv-
ing the estimates of the coefficients an altered meaning 
and use. In seeking a method to optimize productivity 

and identify the control variables for reproduction ef-
ficiency, Greer et al. (1983) developed an “index of ma-
turity.” Their index values proved to be less than sta-
tistically significant. More recently, work by Patterson 
et al. (1992) using target weight (TW) has become a 
widely accepted method to forecast maturity and initi-
ate heifer breeding. Using the same metric, Feuz (1991) 
developed a profit function.

As Feuz (1991) recognized, the economically op-
timal breeding readiness of beef replacement heifers is 
that point of development where costs are less than or 
equal to expected revenues obtained by such develop-
ment. Costs and revenues are dependent on both physi-
cal and economic factors used in producing beef cattle, 
and any model used to accurately reflect profitability/
productivity must include both. In a step toward this 
end, the maturity index (MI) developed by Stockton et 
al. (2013) is used to transform observed physical sam-
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ABSTRACT: Understanding the biology of heifer 
maturity and its relationship to calving difficulty and 
subsequent breeding success is a vital step in building 
a bioeconomic model to identify optimal production 
and profitability. A limited dependent variable probit 
model is used to quantify the responses among heif-
er maturities, measured by a maturity index (MI), on 
dystocia and second pregnancy. The MI account for 
heifer age, birth BW, prebreeding BW, nutrition lev-
el, and dam size and age and is found to be inversely 
related to dystocia occurrence. On average there is a 
2.2% increase in the probability of dystocia with every 
1 point drop in the MI between the MI scores of 50 and 
70. Statistically, MI does not directly alter second preg-
nancy rate; however, dystocia does. The presence of 

dystocia reduced second pregnancy rates by 10.67%. 
Using the probability of dystocia predicted from the 
MI in the sample, it is found that on average, every 1 
point increase in MI added 0.62% to the probability 
of the occurrence of second pregnancy over the range 
represented by the data. Relationships among MI, dys-
tocia, and second pregnancy are nonlinear and exhibit 
diminishing marginal effects. These relationships indi-
cate optimal production and profitability occur at vary-
ing maturities, which are altered by animal type, eco-
nomic environment, production system, and manage-
ment regime. With these captured relationships, any 
single group of heifers may be ranked by profitability 
given their physical characteristics and the applicable 
production, management, and economic conditions.
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ple information into usable dystocia and second preg-
nancy input/output relationships or response functions 
(Kay 1981). The nature of these response functions pro-
vides structure to the economic relationships and, when 
appropriately applied, may be used to form objective 
functions such as a profit equation.

MATERIAL AND METHODS

In a review of the literature, Zaborski et al. (2009) 
categorizes dystocia into 4 groups. These categories are 
further divided into individual causes totaling 21 differ-
ent factors. Only those factors relevant to the occurrence 
of dystocia and its relationship to second pregnancy 
with respect to heifer maturity are considered here.

Two systems used to indicate breeding readiness 
(defined here as maturity), measured by the MI proposed 
by Stockton et al. (2013) and the TW approach as out-
lined by Patterson et al. (1992), are tested as predictors 
of dystocia. This comparison is a step forward in build-
ing a systems model to determine the bioeconomic opti-
mal maturity of heifers.

Currently, the most common method used in fore-
casting reproductive maturity and future productivity is 
the TW approach. This method is simple and straightfor-
ward and requires only 2 pieces of information: heifer 
BW at the time of first breeding and average mature BW 
for either the herd or breed of the heifer. The TW method 
is based on an average mature BW for a group of ani-
mals assumed to reflect the same characteristics as the 
heifer. This measure is substituted into the calculation 
since the heifer’s true mature BW cannot be known un-
til long after first parity. More recently, Stockton et al. 
(2013) introduced the MI, which incorporates additional 
animal-specific information and characteristics. The MI 
uses heifer BW at breeding, dam mature BW, dam age, 
heifer breeding age and birth weight, and nutrition level 
before breeding (Eq. [11]). Unlike TW, MI uses only 
known information that is observable before breeding. 
The addition of factors other than prebreeding weight 
provides key information to the MI making it a measure 
of maturity based on more than just size.

The current thinking is that maturity, whether mea-
sured by MI or TW, is inversely related to dystocia with 
a yet-to-be-tested and specified relationship to second 
pregnancy. As maturity increases, the likelihood of dys-
tocia is thought to decrease and become asymptotic to 
some natural rate. Patterson et al. (1991) suggested that 
heifers that are smaller at calving experience greater in-
cidence of calving difficulty.

Biological data used in this analysis was collected 
at the University of Nebraska–Lincoln, Gudmundsen 
Sandhills Laboratory, and represents 2 consecutive in-
vestigations (Funston and Deutscher, 2004; Martin et 

al., 2008), which are combined into a single data set (n 
= 500). Heifers from the earlier study were a composite 
breed of 25% Hereford, 25% Angus, 25% Simmental, 
and 25% Gelbviech. The later study heifers were from 
the same composite females bred to the Husker Red com-
posite males, which are approximately 75% Red Angus 
with either 25% Simmental or Gelbviech. Both studies 
are continuous in time and used the same management 
regime designed to capture the difference in pregnancy 
rates based on average TW scores at the time of breed-
ing. The earlier study included 240 heifers retained as re-
placements in 1997, 1998, and 1999, whereas 260 heifers 
in the latter study were retained in 2000, 2001, and 2002.

The combined data set includes each replacement 
heifer’s identification number, birth weight, birth date, 
weaning weight, and prebreeding BW and BCS; dam 
BW; heifer pregnancy status at first pregnancy diagno-
sis; heifer BW, BCS, and pregnancy status at second 
pregnancy diagnosis; and weaning weight of her first 
calf. When a heifer was removed from the study prema-
turely, the subsequent information was recorded as null. 
Dummy, control, or indicator variables are created from 
the data set to designate the feed treatment and manage-
ment change groups that heifers were assigned during 
their development.

For the purposes of this study, factors not related to 
maturity are assumed to be held constant or randomly 
distributed among animals. One such random effect is 
the bulls used for breeding the heifers. These bulls var-
ied by individual animal over time but met the criteria as 
safe to use on first time calving heifers.

Modeling Dystocia and Second Pregnancy Rates

A series of probit regression models (Griffiths et al., 
1993; Gujarati, 2003), a type of limited dependent vari-
able model, are used to capture the effects of maturity on 
dystocia and second pregnancy. This type of model limits 
the predicted or dependent variable to a specific range, in 
this case between 0 and 1, where 0 represents a nonoc-
currence of dystocia or second pregnancy diagnosis and 1 
indicates an occurrence. While the actual observations are 
binary, identified as happening or not, the predicted out-
comes are expressed as a portion of the area under a dis-
tribution and are discretely continuous between 0 and 1.

As a predictive model, all of the values within the 0 
to 1 range are interpreted as probabilities. These values 
are mapped on the vertical axis of a normal cumulative 
distribution function (CDF). A sample distribution is 
shown in Fig. 1. This modeling technique has been ap-
plied in numerous animal science studies. For example, 
Doyle et al. (2000), Eler et al. (2002), and Evans et al. 
(1999) studied factors that affect cow pregnancy. More 
recently, Hadley et al. (2006) modeled farm and ani-
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mal characteristics found in over 7 million Dairy Herd 
Improvement Association records (DHIA) as determi-
nates in the cull decision of dairy cows. Cow data was 
from DHIA records supplied to those authors by Dairy 
Records Management Systems (DRMS, Raleigh, NC). 
States represented in the data set were Maine, New 
Hampshire, Pennsylvania, and Vermont (1993 to 1999); 
and New York (1996 to 1999), Illinois, Iowa (1996–
1999), Indiana (1993–1999), Michigan (1997–1999), 
and Wisconsin (1995–1999), all within the United States

As stated, the probit model is constructed such that 
the dependent variable is a function of the standard 
normal distribution with a mean of 0 and a SD of 1, 
[~N(0,1)]. The portion of the model that holds the in-
dependent, right-hand side variables is represented by 
z and identified here as I in Eq. [1]. Equation [1] looks 
much like a standard OLS form: a constant term plus the 
sum of a vector of coefficients multiplied by their as-
sociated independent variables derived from the GLM:

0 1 1 2 2 ... n nI c b x b x b x= + + + + , [1]

in which c0 is the regression constant, bi is the vector of 
coefficients, and xi is the vector of independent variables.

However, this part of the formulation is the numera-
tor of the exponent to the e term in Eq. [2]. This math-
ematical formulation being different from the OLS re-
quires estimation of the solution by other means.

As a nonlinear form, the probit model is estimated 
using the maximum likelihood method. Also, due to its 
form, the coefficient estimates differ in their interpretation 
from the typical OLS estimates. The I is the distance in 
SD from the mean of 0 and is determined by any value be-
tween negative and positive infinity, none of which result 
in a Pi (dependent variable) greater than 1 or less than 0. 
Graphically, the predicted dependent variable I becomes 

Pi, a probability represented by the values of vertical axis 
identified on the CDF (Fig. 1). Positive coefficient esti-
mates of the bi’s indicate that the corresponding variables 
have a positive effect on increasing the probability Pi. 
The opposite is true for negative coefficient estimates.

[ ] ( )
21/2 /22

z I
z

i i
z

P P z I e
=

- -

=-µ

= £ = ò π  [2]

Model estimations are accomplished using a sub-
routine package in SHAZAM (Whistler et al., 2007), an 
econometric software program. Once estimates for the 
coefficients are obtained and substituted into the CDF, 
Eq. [1] and [2], individual predictions for the set of the 
independent variables (x) may be generated. These pre-
dictions are calculated by integration. The Pi for any in-
dividual x becomes a particular prediction or probability 
of a specific heifer with that maturity having dystocia or 
being pregnant for the second time, depending on which 
is specified and estimated. The typical r2 calculations are 
not valid for this statistical method, so a normalized suc-
cess index (NSI) value (Hensher and Johnson 1981) is 
used to gauge the effectiveness of the predictive power 
of the coefficient estimates within the sample. This index 
is derived from the weighted ratios of correct and incor-
rect predictions of the estimated model (Whistler et al., 
2007). The NSI and other associated measures of model 
accuracy are listed in Tables 1, 2, 4, and 5. Like an r2, 
the larger the NSI value, the better the performance of 
the estimated regression in predicting the within sample 
outcomes.

RESULTS AND DISCUSSION

Maturity Index and Target Weight as Predictors  
of Dystocia

Six probit equations are estimated using dystocia as 
the dependent variable. Dystocia is measured as present 
if a heifer required any aid in giving birth without dis-
tinction for varying degrees of assistance. The presence of 
dystocia was recorded at the time of parturition. The pres-
ence of dystocia is identified as the number one (1) and its 
absence as zero (0). The degree of maturity measured by 
either MI or TW at the time of first breeding is used as the 
independent variable and specified as linear, quadratic, or 
cubic forms. The quadratic and cubic forms are included 
to capture any possible diminishing effects maturity has 
in relationship to dystocia. These 6 models (Eq. [3] to [8]) 
are evaluated using the student t statistic; P-values (found 
in parenthesis beneath the coefficient estimates in the 
equations), with those at or below the 5% level consid-
ered statistically significance; and the NSI score (Table 1).

Figure 1. A representative mapping of outcomes of a normal distribution 
with a 0 mean and a SD of 1, also known as a cumulative distribution function. 
The values on the vertical axis are interpreted as probabilities. In the case of 
the blue arrow, approximately 0.30, there is a 30% probability of observing 
values on the x-axis of 0.5 or less. See online version for figure in color.
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The coefficient estimates are statistically significant 
for each of the MI model forms but not with any of the 
TW models. The ranking of the 6 models using NSI 
scores are captured in Table 1. These results indicate 
very little difference among the 3 MI equations, each 
separated by only a one-hundredth of a NSI score. The 
TW equations have a much smaller NSI score but show 
an identical pattern in ranking. The cubic form of the MI 
model, Eq. [5], has the largest NSI score.

1 ( 0.01) ( 0.01)
3.559 0.0689MIDI
< <

= - , [3]

2
2 ( 0.01) ( 0.01)

1.504 0.000575MIDI
< <

= - , [4]

3
3 ( 0.04) (0.01)

0.816 0.00000636MIDI
<

= - , [5]

1
4 (0.11) (0.49)

0.498 0.0207TWDI = - , [6]

2
5 (0.93) (0.08)

0.0307 0.000199TWDI =- - , and [7]

3
3 (0.06) (0.41)

0.209 0.0000025TWDI =- - , [8] 

in which, for IDi, i = {1, 2, 3, 4, 5, 6} – distance the value 
is from its mean, assuming a ~N(0,1) distribution; MI is 
the maturity index, a measure of maturity; and TW is the 
target weight, a method of measuring maturity.

Equations [3] to [5] each in combination with Eq. [2] 
are used to estimate the predicted probability of dystocia 
for the MI scores over the range of 50 to 70.5 (Table 3). 
The resulting predictions for the 3 models are graphed in 
Fig. 2. This visual provides insight into the effect of the 

different model forms and how they vary in predicting 
the probability of dystocia. The predicted probabilities 
of dystocia are quite similar to each other over the range 
of MI found in the data, which is not surprising given 
the similar NSI scores.

Surprisingly, the linear form of the dystocia probit 
shows the most curvature at its upper and lower ends. 
This may seem counterintuitive as linear models gener-
ally reflect a straight line. The curvature in this case is 
not related to the linear nature of the I portion of the 
equation but the exponential form of the overall model 
in deriving the Pi. The number of heifers with maturities 
greater than 71% of true mature weight at the time of 
breeding is limited to 11, with the most mature having a 
maturity of 84.37%, making it difficult to say anything 
definitive about what the natural rate of dystocia might 
be. As a complex health issue, dystocia can be caused 
by varying factors other than maturity (Zaborski et al., 
2009). It is expected that dystocia will occur at some 
“natural” rate greater than 0 independent of maturity.

Predicting Second Pregnancy

Unlike first pregnancy (Stockton et. al., 2013) and 
dystocia, MI is not found to be a statistically significant 
forecaster of second pregnancy. However, the occurrence 
of dystocia at first calving is a significant predictor of 
successful rebreeding rates and, as expected, has a nega-
tive effect, shown by Eq. [9]. In this case, the dependent 
variable is assigned a value of (0) for a nonpregnant di-
agnosis and (1) for a positive diagnosis. The independent 
variable, dystocia, being a binary qualitative variable, is 
modeled in like manner with an assigned value of 1 for 
its presence and 0 for its absence. Unlike the previous 
probit regressions, the resulting model is not based on 
a continuous variable. As a binary choice variable, the 
outcome is interpreted as a single occurrence with a dis-
crete 1-time effect on the second pregnancy rate and rep-
resents an average effect. The average effect of dystocia 
on the second breeding rate, IPG2, effectively separates 

Table 1. A listing of the normalized success index values 
for the 6 probit models proposed as predictors of dys-
tocia. Each model is represented in the text in order of 
listing as Eq. [3], [4], [5], [6], [7], or [8]
Form of maturity measure1 Normalized success index
MI2 0.030
MI3 0.031
MI4 0.032
TW2 0.005
TW3 0.006
TW4 0.007

1MI = maturity index; TW = target weight.
2Linear variable.
3Squared variable.
4Cubed variable.

Table 2. Statistical significance and the normalized suc-
cess index (NSI) score of the 2 models developed by 
the 2 methods used to relate dystocia effects on second 
pregnancy rates. Method 1—Eq. [9] in the text—uses the 
actual observations in binary form, where 1 represents 
the occurrence of dystocia and 0 a nonevent. Method 
2—Eq. [10]—uses continuous probability value fore-
casts based on each heifer’s maturity index, estimated 
by Eq. [3]
 Heifer maturity measure Coefficient P-values NSI scores
Method 1 <0.01 0.046
Method 2 <0.04 0.066
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the underlying effect maturity has on the second preg-
nancy. Evaluating Eq. [9] using the formula of the CDF 
indicates the second pregnancy rate for the average cow 
is 94.98% without the presence of dystocia and 84.31% 
with its presence. This result indicates that the fertility of 
cows in this study that experienced calving difficulty at 
first parturition is 10.67% less than cows not experienc-
ing calving difficulty:

PG2 ( 0.01) ( 0.01)
1.645 0.637I D
< <

= - , [9]

in which IPG2 is the distance the value is from its mean, 
assuming a ~N(0,1) distribution, and D is a binary vari-
able indicating the presence of dystocia (0 or 1).

If dystocia rates are somehow made continuous, 
rather than binary, and then used to estimate the second 
pregnancy, that model would be continuous providing 

varying probabilities of second pregnancy based on prob-
abilities of dystocia. Equations [3], [4], and [5] from the 
previous analysis do exactly that: they provide predic-
tions or imputations of dystocia as a discrete continuous 
variable. By substituting the imputed probabilities of 
dystocia in place of the binary dystocia measures, the re-
sulting model, Eq. [10], reflects second pregnancy rates 
predicted by varying chances of dystocia, which are a 
function of maturity as measured by MI, making second 
pregnancy rates indirectly a function of MI. As indicated 
by the P-values, in parenthesis below the coefficients, 
both models are statistically significant at the 5% level. 
A visual verification and illustration of the difference be-
tween the methods outcomes are graphed in Fig. 3 and 4:

PG2 ( 0.01) ( 0.04)
ˆ1.8531 0.0165 cI D

< <
= - , [10]

in which IPG2 is the distance the value is from its mean, 
assuming a ~N(0,1) distribution, and 

cD̂  is a continuous 
variable for dystocia, predicted by MI using Eq. [4] and [2].

Figure 3 contrasts the difference in the predictions 
of second pregnancy between the 2 models described 
above. While this is not an appropriate application of Eq. 
[9], it provides insight into the maturity effect on second 
pregnancy through its effect on dystocia.

Equation [9] results in limited variation in expected 
second pregnancy rates ranging from 94.31 to 90.78%. 
This is much less than the range of 94.98 to 84.31% found 
with Eq. [10]. Both methods are illustrative of the nega-
tive relationship between maturity and calving difficulty.

The interrelationship between the MI and dystocia 
is evident from Eq. [3] to [5] as is that between dystocia 
and the second pregnancy rate from Eq. [9] and [10]. 

Table 3. A listing of relevant maturity indices (MI) and 
their associated predicted probabilities of dystocia rates 
as predicted by the 3 models estimated to forecast this 
event. Maturity index is used linearly and quadratically 
and in cubic specifications, listed in the text as Eq. [3], 
[4], and [5], respectively
Sample  
  MI

Linear  
MI (3)

Quadratic  
MI (4)

Cubic  
MI (5)

50.0 0.55 0.53 0.51
50.8 0.52 0.51 0.49
51.6 0.50 0.49 0.48
52.4 0.48 0.47 0.46
53.2 0.46 0.45 0.44
54.0 0.44 0.43 0.43
54.8 0.41 0.41 0.41
55.6 0.39 0.39 0.39
56.4 0.37 0.37 0.37
57.2 0.35 0.35 0.35
58.0 0.33 0.33 0.34
58.8 0.31 0.31 0.32
59.6 0.29 0.30 0.30
60.4 0.27 0.28 0.28
61.2 0.26 0.26 0.26
62.0 0.24 0.24 0.24
62.8 0.22 0.22 0.22
63.6 0.21 0.21 0.21
64.4 0.19 0.19 0.19
65.2 0.18 0.17 0.17
66.0 0.16 0.16 0.16
66.8 0.15 0.14 0.14
67.6 0.14 0.13 0.13
68.4 0.12 0.12 0.11
69.2 0.11 0.11 0.10
70.0 0.10 0.09 0.09
70.8 0.09 0.08 0.07

Figure 2. Predicted dystocia rates, where the probabilities of their 
occurrence are listed on the vertical axis and graphically mapped with the 
corresponding maturity index (MI) measures from Eq. [3], [4], and [5], 
respectively, for the linear, quadratic, and cubic specifications of the MI 
models on the horizontal axis.

http://www.journalofanimalscience.org/
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By mapping Eq. [10] results, second pregnancy prob-
abilities, on the y-axis with the MI values substituted for 
the appropriate dystocia probabilities on the x-axis, the 
indirect effect of MI on second pregnancies is shown 
(Fig. 4). As expected, second pregnancy rates increase, 
although at a decreasing rate, as MI increases.

In addition to these visual illustrations, NSI scores 
and statistical measures are used to determine the effec-
tiveness and relevance of the 2 models. Both methods 
have significance for all parameters at the 95% level as 
shown in Table 2. Method 2 loses significance for its vari-
able term at the 97% confidence level but has a higher 
NSI score; that is, it predicts more accurately. Method 1 
correctly predicts the average effect of cows becoming 
pregnant with their second calf having experienced dysto-
cia. Method 2 predicts second pregnancy based on vary-
ing probabilities of dystocia based on maturity, in essence, 
the average effects of maturity on a cow’s second preg-
nancy given the probability of dystocia for that maturity.

Summary, Implications, and Discussion

When comparing TW and MI, only MI significant-
ly predicts dystocia, which has a direct effect on sec-
ond pregnancy. Therefore, MI has an indirect effect on 
second pregnancy through its direct effect on dystocia. 
Combining findings from Stockton et al. (2013) with 
those in the current study, there is a link between a lower 
MI and a reduction in the chance of first pregnancy, an 
increased rate of dystocia, and, secondarily, a reduction 

in the chance of second pregnancy. The biology is such 
that increases in the MI produce a smaller response in 
pregnancy rates and dystocia with each succeeding in-
cremental increase, diminishing marginal productivity.

These decreasing relationships provide some basic un-
derstanding of why simple measures of maturity such as 
TW or MI alone are inadequate benchmarks for optimizing 
profitability. In addition to this inadequacy, TW has the 
additional problem of inaccuracy (Stockton et al., 2012). 
This is further complicated by the fact that heifers with the 
same MI do not necessarily have the same characteristics. 
While heifers with the same MI are predicted to have the 
same pregnancy and dystocia rates, they may differ in 
other ways such as dam size, age, and so on. These dif-
ferences directly impact profitability by creating varying 
production costs and revenues for the same MI. Combine 
this fact with the diminishing marginal product of the 
biological relationships and it becomes clear that optimal 
profits do not just happen but are created by the factors and 
dynamics that are maximized at varying levels of maturity 
for different types of cattle, during different economic cir-
cumstances, and by varying management regimes.

These facts are indicative that the factors that contrib-
ute to MI (heifer age, birth weight, prebreeding weight, 
dam age and weight, and nutrition) combined with the spe-
cific economic realities and management environment be-
come the basis for understanding costs and revenue since 
they are the primary drivers of the biological outcomes.

Figure 3. Predicted second pregnancy rates, listed as the probabilities 
of its occurrence on the vertical axis and graphically mapped as a function 
of probability measures of dystocia using Eq. [9] and [10] and the range of 
dystocia probabilities estimated from the experimental data range. 

Figure 4. Predicted second pregnancy rates, listed as the probabilities of 
its occurrence on the vertical axis and graphically mapped in relation to heifer 
maturity measured by maturity index (MI) on the horizontal axis. The sample 
range of the MI are used to estimate dystocia rates using Eq. [3], which are 
then used in Eq. [9] and [10] to estimate the probabilities of second pregnancy 
providing the extended effect of MI on second pregnancy. 
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To illustrate how the factors that control MI potential-
ly alter productivity, 2 heifers from the same herd of vary-
ing prebreeding weights, ages, birth weights, dam mature 
weights and ages, and nutritional regimes, as described in 
Table 6, are compared by pregnancy and dystocia rates. 
Heifer 1 weighs 340 kg while heifer 2 weighs 226 kg at 
prebreeding with a herd average mature weight of 521 kg. 
The estimated TW percent for heifer 1 and 2 are 65 and 
43%, respectively, making the larger heifer meet the stan-
dard optimal breeding weight target and the smaller heifer 
underweight. However, the MI and associated predicted 
variables tell a different story. Considering all of the fac-
tors that make up a heifer’s MI, Eq. [11], heifer 1 is found 
to have a MI score of 50 and heifer 2 is found to have a 
MI score of 60. These scores are in opposition to the TW 
rankings, illustrating the difference between the 2 mea-

sures. The specific heifer characteristics that translate into 
these respective MI scores are listed in Table 6:

MI= 43.351
P<0.01( )

+0.06854WtPb
P<0.01( )

-−0.3128WtBirth
P<0.01( )

+0.000089AgeHeifer
2

P<0.01( )
-−0.02804WtDam

P<0.01)( )

+1.756AgeDam
P<0.03( )

-−0.1448AgeDam
2

P<0.03( )

+4.888T1
P<0.01( )

+2.645T2
P<0.01( )

+2.588T3
P<0.01( )

, [11]

in which MI is the maturity index, WtPb is the prebreed-
ing BW, WtBirth is the birth weight, Age2

Heifer is the pre-
breeding age (in days), WtDam is the mature BW of dam, 
T1 is a dummy/indicator variable for the feed treatment 
group resulting in a traditional group average prebreed-
ing BW of 58% of herd average, T2 is a dummy/indi-
cator variable for the feed treatment group resulting in 
a traditional group average prebreeding BW of 53% of 
herd average, and T3 is a dummy/indicator variable for 
the feed treatment group resulting in a traditional group 
average prebreeding BW of 56% of herd average.

In addition to the prebreeding weight difference, the 
heifers also varied by 1) age (heifer 1 is 51 d younger than 
heifer 2); 2) birth weight (heifer 1 has a 13.15 kg heavier 
weight than heifer 2); 3) the dam’s mature weight, which 
differs by 344 kg (heifer 1 having the heavier dam); 4) 
the dam’s age (heifer 1 has a 10-yr-old dam and heifer 2 
had a 6-yr-old dam); and 5) nutrition level after wean-
ing before breeding, where heifer 1 was developed on 
a higher level of nutrition (ration T1) verses a medium 
level for heifer 2 (ration T3). While nothing here identi-

Table 4. The actual predictions of the probit model of 
second pregnancy based on the observed binary dysto-
cia occurrence for method 1, Eq. [9], shown in the nor-
malized success index (NSI) table. The column head-
ing indicates the model predictions and the row heading 
indicates actual events, where 1 is affirmation of occur-
rence and 0 is its absence. Success of the NSI is based 
on correct predictions of both occurrence and nonoccur-
rence

Model predicted outcomes

Share0 1 Count
Actual occurrences 0 5 27 32 0.076

1 52 336 388 0.924
Prediction totals 57 363 420
Predicted share 0.14 0.86 1
Proportional success 0.09 0.93 0.81
Success index –0.05 0.06 0.046

Table 5. The actual predictions of the probit model of 
second pregnancy based on the observed binary dystocia 
occurrence for method 2, Eq. [10], shown in the normal-
ized success index (NSI) table. The column heading indi-
cates the model predictions and the row heading indicates 
actual events, where 1 is affirmation of occurrence and 0 
is its absence. Success of the NSI is based on correct pre-
dictions of both occurrence and nonoccurrence

Model predicted outcomes

Share0 1 Count
Actual occurrences 0 18 14 32 0.076

1 165 223 388 0.924

Prediction totals 183 237 420

Predicted share 0.44 0.56 1
Proportional success 0.1 0.94 0.57
Success index –0.34 0.38 0.066

Table 6. The statistically significant heifer character-
istics found in the maturity index (MI) Eq. [11] from 
Stockton et al. (2013)1 and respective values for the 2 
example heifers used to illustrate the difference between 
using the MI or the target weight approach in forecast-
ing pregnancies and dystocia as found in the summary, 
implications, and conclusions section
MI heifer  
  characteristics Heifer 1 Heifer 2
Prebreeding weight, kg 340 227
Birth weight, kg 43 31
Prebreeding age, d 390 443
Mature dam weight, kg 755 410
Dam age, yr 11 8
Nutrition level 22 42

1Stockton et al. (2013) has a complete discussion of the 4 levels of nutri-
tion.

2Ration 1 has the highest level of nutrition followed by ration 2 and then 3 
and ration 4 has the least.
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fies the appropriate costs and revenues associated with 
these heifers, it is clear that feed intake and quality are 
different creating differences in direct cost.

With a MI score of 60, heifer 2 is predicted to have a 
97.4% chance of a positive first pregnancy diagnosis, and 
if she has a calf, she is predicted to have a 28% chance of 
dystocia and a 91.7% probability of a second pregnancy 
diagnosis. This compares to heifer 1, the larger heifer, 
with a MI score of 50 predicted to have an average posi-
tive first pregnancy diagnosis of 74.8%, nearly 23% less 
than heifer 2. If this larger heifer has a calf, she faces a 
54.5% probability of experiencing some type of dystocia, 
is twice as likely to experience dystocia, and is over 14% 
less likely to be diagnosed pregnant for the second time 
with an 83% chance of a positive outcome. This difference 
is also likely to result in varying costs and revenues. From 
this example, it is clear that TW and the MI approach pre-
dict very different expectations. But even with the added 
information provided by the MI, it is still unknown which 
is likely to be most profitable without the assignment of 
specific economic relationships and values. It is possible 
to construct a set of economic scenarios where either 
heifer would be equal or superior in producing profit to 
the other, further validating the point that the combination 
of biology, management, and markets together are what 
determine optimal profitability.

In the introduction, it was posited that producers 
wanting to make optimal profits would develop replace-
ment heifers to the point where expected added revenue 
is as least as much if not more than the added costs, that 
is, where marginal costs equals marginal revenue (Epp 
and Malone, 1981). Using this concept and knowing the 
relationships among the biological factors and appropri-
ately assigning cost and revenues, profits can be made 
optimal. This work provides a limited biological basis 
for building such a bioeconomic model where marginal 
revenues and costs may be discovered. Further investiga-
tion is needed to substantiate these findings to determine 
if they apply to other breeds and types of beef cattle and/
or to refine the relationships so reliable decision tools, 
models, or methodologies may be created, providing 
timely and valuable outcomes helping producers adjust 
and better manage their livestock systems and helping 
scientists to better direct and focus their research.
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