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Plant mitochondrial genomes are large but contain a small number of genes. 

These genes have very low mutation rates, but genomes rearrange and expand at 

significant rates. We propose that much of the apparent complexity of plant 

mitochondrial genomes can be explained by the interactions of double-strand break 

repair, recombination, and selection. One possible explanation for the disparity between 

the low mutation rates of genes and the high divergence of non-genes is that synonymous 

mutations in genes are not truly neutral. In some species, rps14 has been duplicated in the 

nucleus, allowing the mitochondrial copy to become a pseudogene. By measuring the 

synonymous substitution rate of rps14 genes and the total substitution rate of Ψrps14 

pseudogenes we inferred that synonymous mutations in plant mitochondrial genes are not 

truly neutral. Plant mitochondrial genomes contain many repeated sequences and little is 

known about their evolution. We wrote a Python script that utilizes BLAST to identify 

and organize repeated sequences in DNA. Using this program on a large number of 

species from many different lineages of plants, we found that large repeats above 1kb are 

found only in the tracheophytes, and repeats larger than 10kb are unique to angiosperms. 

We proposed that the creation and maintenance of these repeats may be a side effect of 

the DNA repair pathways necessary to survive desiccation during seed or spore 

formation. To test our hypothesis that double-strand break repair is a generalized DNA 



 
 

repair pathway in plant mitochondria, we examined an Arabidopsis thaliana uracil DNA 

N-glycosylase (UNG) mutant, which cannot repair uracil in DNA through the base 

excision repair pathway. We set up a mutation-accumulation study, growing independent 

ung mutant lines for 10 generations and sequencing the mitochondrial genome with next-

generation sequencing. No mutations had reached fixation in any of the sequenced lines, 

and the rate of heteroplasmic mutation accumulation was not different from wild-type. 

Using RT-PCR, we found that genes involved in double strand break repair were 

transcriptionally elevated. Clearly double strand break repair is an effective and 

generalized form of DNA repair in plant mitochondria. 
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CHAPTER 1 

DNA REPAIR, RECOMBINATION, AND GENOME STRUCTURE IN 

PLANT MITOCHONDRIA 

Introduction 

Plant mitochondrial genomes are weird. Animal mitochondrial genomes are 

known for their small size, circular structures, and high mutation rates. In contrast, plant 

genomes can be extremely large, are made up of overlapping linear, branched and 

circular molecules (Bendich 1993), and have very low mutation rates in genes (Wynn and 

Christensen 2015). Despite the low mutation rate in coding sequences, the genomes 

expand and rearrange at appreciable rates (Palmer and Herbon 1988). Here we review the 

literature of plant mitochondrial DNA repair and genome dynamics and propose a model 

to explain the seeming complexity and contradictions of plant mitochondrial genomes by 

the interactions of a few simple forces, namely double-strand break repair, 

recombination, and selection.  

Plant mitochondria and animal mitochondria are likely derived from the same 

endosymbiotic event (Gray 1999). However, their evolution has produced very different 

strategies for genome maintenance. For comparison, the human mitochondrial genome is 

around 16.5 kilobases (kb) and contains 37 genes (Taanman 1999), whereas the 

Arabidopsis thaliana mitochondrial genome is almost 367 kb and contains 57 genes 

(Unseld et al. 1997).  The Arabidopsis mitochondrial genome is more than 20 times the 

size of the human mitochondrial genome, but contains not even twice the number of 

genes. The mitochondrial genome of the plant Silene conica is over 11.3 megabases (Mb) 
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in length, but contains only 30 genes (Sloan et al. 2012). Clearly plant mitochondrial 

genomes have grown exceptionally large by accumulating non-coding DNA, not by 

acquiring new genes.  

One explanation for the differences in sizes between plant and animal genomes is 

the mutational hazard hypothesis (Lynch et al. 2006). The premise of this hypothesis is 

that mutations are more likely to be deleterious than beneficial, even in non-coding DNA. 

One strategy to minimize genetic risk and maximize fitness when mutation rates are high 

is to reduce genome size and thus reduce the number of targets for a deleterious mutation. 

This hypothesis can explain the dynamics of animal mitochondrial genomes quite nicely: 

animal mitochondrial genomes have high mutation rates and therefore have selective 

pressure to reduce the target for potentially deleterious mutations by reducing genome 

size as much as possible. It may appear that the mutational hazard hypothesis can explain 

plant mitochondrial genomes as well: plant mitochondrial genomes have very low 

mutation rates, alleviating the selective pressure to maintain small genomes. Plant 

mitochondrial genomes have low mutation rates in genes, however it is difficult to 

calculate mutation rates in non-gene regions because rearrangements and large indels 

make it difficult to align sequences of common origin among taxa (Christensen 2013). 

Some plants, however, such as Silene conica described above, have large and expanded 

mitochondrial genomes as well as increased mutation rates in genes (Mower et al. 2007, 

Sloan et al. 2012). The mutational hazard hypothesis is then insufficient to explain plant 

mitochondrial genome dynamics. 

Another hypothesis is that the DNA repair pathways have shaped the evolution of 

plant mitochondrial genomes (Christensen 2014). This hypothesis argues that, in contrast 
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to animal mitochondria, double-strand break repair is the predominant method of DNA 

repair in plant mitochondria, and that this reliance on double-strand break repair has 

shaped genome evolution and structure. Double-strand break repair can have three 

different outcomes: long-homology based repair which is accurate, short-homology based 

repair which can be accurate but can also introduce expansions or rearrangements, and 

non-homologous repair which is inaccurate and introduces expansions or rearrangements. 

There is strong selective pressure to complete accurate repair in genes, however the non-

coding regions can be free to expand, contract, rearrange, and diverge.  

DNA repair in plant mitochondria 

The powerhouse of the cell is a dangerous place to store DNA. Reactive oxygen 

species (ROS), which can damage DNA (Cadet and Wagner 2013), are byproducts of the 

electron transport that drives oxidative ATP formation in mitochondria (Murphy 2009). 

Despite the high potential for damage to mtDNA and the low mutation rate of plant 

mitochondrial genes, we have only a partial understanding of the mechanisms of DNA 

repair in plant mitochondria. Many of the proteins responsible for essential steps in DNA 

repair have not been characterized or confirmed to act in the mitochondria. 

Plant mitochondria have evolved specific repair pathways for some types of DNA 

lesions. The base excision repair pathway is known to be active in plant mitochondria 

(Boesch et al., 2009). This pathway is initiated by a DNA glycosylase that binds to a 

specific DNA lesion and excises the damaged base, leaving an abasic site. Several 

different DNA glycosylases have been characterized in plant mitochondria: OGG1 

recognizes and excises 8-oxo-guanine (Dany and Tissier 2001, García-Ortiz et al. 2001), 

Neil1/2 recognizes and excises 5‐hydroxy deoxyuracil (Ferrando et al. 2018), and UNG 
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recognizes and excises uracil in DNA (Boesch et al. 2009). The DNA backbone at the 

abasic site can then be cleaved by an apurinic/apyrimidinic endonuclease, allowing a 

new, undamaged, nucleotide to be polymerized in its place (see Figure 1.1).  

Many commonly occurring DNA repair pathways are apparently absent in plant 

mitochondria. There is currently no evidence for the existence of nucleotide excision 

repair (NER) for bulky adducts, nor for the photoreactivation of pyrimidine dimers. 

MSH1 is a homolog of the E.coli mismatch repair enzyme MutS. MSH1 is targeted to 

plant mitochondria and plastids (Christensen et al. 2005). However, there is no evidence 

that MSH1 initiates mismatch repair through the canonical MutS-catalyzed pathway 

(Abdelnoor et al. 2003). The plant MSH1 has a mismatch-recognition domain and DNA-

binding domain similar to MutS, but it also has a novel GIY-YIG endonuclease not found 

in animal, fungal or bacterial MutS homologs. It has recently been shown that the GIY-

YIG endonuclease domain of MSH1 binds to branched DNA structures such as D-loops 

and Holliday junctions and shows no endonuclease activity by itself (Fukui et al. 2018). 

However, MSH1 also contains the MutS domain I, which recognizes distortions of the 

DNA backbone agnostic to the specific interactions of base pairs causing the distortions. 

This mismatch-recognition domain then binds to the distorted double-stranded DNA as a 

dimer (Lamers et al. 2000). Some GIY-YIG endonucleases act as homodimers to cut 

DNA (Liu et al. 2013), while others act in complex with other protein subunits (Gaur et 

al. 2015). MSH1 therefore may have the ability to recognize and bind to non-specific 

DNA lesions as a dimer, and then to create a double strand break either as a dimer or as 

part of a protein complex.  
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We hypothesize that the DNA lesions normally repaired through the “missing” 

repair pathways, NER and MMR, are instead recognized by the mismatch-recognition 

domain of MSH1 and shunted into the double-strand break repair pathway by a double-

strand break made by the GIY-YIG endonuclease domain of MSH1 (see Figure 1.2).   

Double-strand breaks, whether initiated by MSH1 or directly induced by DNA 

damage, can be repaired by several different pathways (see Figure 1.3). If a homologous 

template is available, a double-strand break can be repaired by homologous 

recombination (Jasin and Rothstein 2013). In this pathway, the 5’ ends at the site of the 

double-strand break are resected, leaving 3’ overhangs. The single-strand binding 

proteins WHY2 (Zaegel et al. 2006) and OSB (Maréchal et al. 2009) bind to these 

overhangs and protect the ssDNA and allow for the recruitment of the RECA proteins, 

RECA2 and RECA3 (Miller-Messmer et al. 2012). The RECA proteins aid in strand 

invasion of the homologous template, allowing the 3’ overhang to anneal to the template 

and provide a priming site for DNA polymerase to begin DNA synthesis. Once the gap 

has been filled in, ligation can occur and Holliday junctions will be resolved. This 

pathway will accurately repair the DNA at a double strand break, but requires a 

significant region of sequence homology between the broken DNA and the repair 

template.   

If there is a homologous template that is long enough for one side of a double 

strand break to do a single strand invasion, but short enough that the other side of the 

break cannot find significant homology, then a double-strand break can be repaired by 

break-induced replication (BIR) (Kramara et al. 2018). This situation may occur near the 

intermediate repeats of a plant mitochondrial genome. In Arabidopsis, these repeats are 
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between 50-600bp long and are present at 2-4 copies in the genome (Arrieta-Monteil et 

al. 2009). If a double-strand break were to occur in or near one of these repeats, one end 

of the break could find homology in another copy of the repeat, while the other end of the 

break would not. Similar to homologous recombination, BIR begins with the resection of 

the 5’ and the creation of a 3’ overhang. This overhang will invade a homologous 

sequence and provide a primer for DNA synthesis. Unlike homologous recombination, 

the other end of the double-strand break cannot anneal to a homologous template or 

prime DNA synthesis. This means that a Holliday junction will not form and DNA 

synthesis of the annealed end will continue unabated. The final outcome of BIR is a 

chimeric molecule containing both one end of the double-strand break and the region of 

DNA that the broken end annealed to, leading to a duplication of that region. This type of 

repair is rare in wild-type mitochondria, but can result in many rearrangements when 

enzymes involved in recombination are impaired or absent. While these events may be 

rare in population, this process may account for the expansion and rearrangements of 

mitochondrial genomes over evolutionary time. 

If no homologous template is available, a double-strand break can be repaired 

through microhomology-mediated end-joining (MMEJ) or non-homologous end-joining 

(NHEJ). In MMEJ, 3’ overhangs at a double-strand break can transiently anneal at short 

homologies or bind to the ssDNA binding protein SSB. Transient annealing or SSB 

binding can allow a DNA polymerase to bind and begin DNA synthesis (García-Medel et 

al. 2019). This can result in accurate repair, small indels, or rearrangements depending on 

the nature of the double-strand break and the available microhomology. If a double-

strand break has blunt ends, it can simply be ligated together in the process of NHEJ. In 



7 
 

many organisms, NHEJ is mediated by homologs of Ku70/80 (Davis and Chen 2013), but 

no such homologs have been characterized in plant mitochondria. Non-homologous end 

joining can be accurate if the two ends have been blunted and no nucleotides have been 

lost, but can also cause deletions if ends have been damaged or processed, or can cause 

rearrangements if two ends from different regions of the genome are joined. 

A double-strand break anywhere in the genome can be repaired by any of these 

mechanisms, but inaccurate repair of essential genes will be heavily selected against. In 

contrast, inaccurate repair of double-strand breaks may persist in non-conserved regions 

of the genome that are neutrally evolving via the process of genetic drift. The prevalence 

of double strand break repair in plant mitochondrial genomes followed by different 

outcomes of selection in coding versus non-coding regions provides a model that can 

explain many of the seemingly anomalous aspects of plant mitochondrial dynamics.  

Plant Mitochondrial Genome Structure 

Plant mitochondrial genomes can be aligned to circles and are often displayed in 

the literature as circular molecules. However, pulse-field gel electrophoresis and electron 

microscopy have shown that these genomes consist of linear, branched, and sigma shaped 

molecules of different sizes (Bendich 1996; Backert 1996). These molecules contain 

overlapping DNA sequences, allowing the genomes to be mapped as master circles, but 

there is no evidence that these master circles exist as molecules in the mitochondria of 

vascular plants. The presence of sigma shaped molecules and branched rosettes indicates 

that vascular plant mitochondrial genomes likely replicate by recombination-dependent 

or rolling-circle replication, similar to bacteriophage T4 (Backert and Börner 2000)(see 

Figure 1.4).  The mitochondria of some non-vascular plants, such as the liverwort 
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Marchantia polymorpha have circular, genome sized molecules (Oda et al. 1992). Even 

in these species that contain circular, genome sized molecules, most mitochondrial DNA 

is contained in smaller linear molecules, with large circles being around 5% of the total 

DNA content (Oldenburg and Bendich 2001). 

All post-embryogenesis cell division in a plant occurs in meristematic tissue. 

Plant growth in mature, differentiated tissue is the result of cell elongation and expansion, 

not of cell division. In the shoot apical meristem (SAM), and by extension the floral 

meristem that develops from the SAM, the mitochondria undergo extensive fusion to 

form a large, cage-like mitochondrion that surrounds the nucleus and can divide and 

segregate during meristematic cell division (Seguí-Simarro et al. 2008). The 

centralization of many copies of the mitochondrial genome within the cage-like fused 

mitochondrion ensures that there are ample templates for DNA repair by homology-based 

mechanisms, providing the raw material necessary to accurately repair damage. The 

mitochondrial genomes in the female gametes of a flowering plant originate in the SAM, 

so there is strong selection to maintain an undamaged mitochondrial genome to pass on to 

the next generation. In contrast, the mitochondria within the root apical meristem (RAM) 

do not fuse to form a large, cage-like mitochondrion and instead remain small and 

“sausage-shaped” like the mitochondria of terminally differentiated cells (Seguí-Simarro 

and Staehelin 2009). None of the mitochondrial genomes derived from the RAM will be 

passed on to the next generation, so the selection for accurate repair is much weaker. 

Despite the absence of a large mitochondrial fusion, cells in the RAM perform sufficient 

mtDNA replication and segregation to provide each root cell with a population of 

functioning mitochondria. Clearly, mtDNA replication and repair is still possible by the 
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small-scale fusion of mitochondria to find homologous sequence in subgenomic 

molecules.  

In terminally differentiated cells, mtDNA degrades over time, likely due to DNA 

damage caused by ROS generated during respiration. Extremely long PCR products 

(~11kb) are amplified less in older cells relative to smaller PCR products, but in vitro 

treatment of DNA from these older cells with DNA repair enzymes restores the ability to 

amplify long PCR products (Kumar et al. 2014). This indicates that much of the mtDNA 

damage accumulated as cells age is due to DNA lesions, not from structural damage or 

loss of subgenomes. In a physiologically active cell, why would a plant allow it’s 

organellar genomes to degrade? One explanation is that in mature leaves, mitochondria 

transition from a state of high respiration and ATP production, to a state in which their 

primary function is to detoxify glycolate generated during photorespiration of the 

chloroplasts (Oldenburg et al. 2013). The gene products encoded in the mitochondria are 

those focused on respiration, while gene products encoded in the nucleus and targeted to 

the mitochondria are involved in more diverse biochemistry, such as glycolate 

detoxification. However, it has been shown that mature leaves continue to perform 

respiration at significant rates up until senescence of the leaf (Hardwick et al. 1968). 

Another explanation for this phenomenon is that the mRNAs that code for the respiration 

proteins may be exceptionally stable. Chloroplasts also undergo a degradation of DNA in 

mature leaves, but it has been shown that the mRNA of the chloroplast gene psbA 

becomes more stable and persists longer in mature leaves (Klaff and Gruissen 1991), 

allowing cpDNA to degrade without a loss of translational ability. One final explanation 

that has not yet been addressed is the possibility of transcription-coupled repair in mature 
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leaves. In mature leaves when mitogenomes are dispersed throughout the cell, the stalling 

of an RNA polymerase during transcription and the recruitment of a transcription-

coupled repair complex could signal a mitochondrion to initiate fusion and find a 

template for repair. Repairing only the transcribed regions of the genome would allow a 

mature leaf to maintain its respiratory machinery, but the non-gene regions would 

accumulate damage and degrade. RNA-seq data from several different ages and tissue 

types of Arabidopsis thaliana shows that there are transcripts of mitochondrial mRNA 

available in mature leaves, including in senescing leaves (personal analysis of SRA 

Bioproject PRJNA314076, Klepikova et al. 2016), indicating that increases in mRNA 

stability or transcription coupled repair are plausible. Regardless of why mtDNA is able 

to degrade in mature leaves, it is clear that there is a fundamental difference in both the 

methods and outcomes of DNA repair between meristematic and differentiated cells.  

In fused meristematic mitochondria, recombination between subgenomic 

molecules to initiate replication can produce differing isoforms of the genome. Southern 

blot analysis and Pac-Bio long-sequencing reads have revealed the existence of multiple 

different isoforms at repeated regions in the genome (Dawson et al. 1986, Kozik et al. 

2019). These different isoforms can be formed due to recombination at repeated 

sequences, if the repeats are long enough to provide sufficient homology. Isomerization 

of the genome can result in loss of large regions of DNA by genetic drift if an 

subgenomic unit does not contain a region under selective pressure (Wu and Sloan 2019, 

Chang et al. 2013). In Arabidopsis thaliana, there are two large repeats that can produce 

the major isoforms of the mitochondrial genome (Klein et al. 1994). In addition to these 

large repeats, there are dozens of smaller repeats between 50 and 500 base pairs. These 
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intermediate repeats can recombine if there is a deficiency in the mitochondrial 

recombination machinery (Arrieta-Montiel et al. 2009), but do not commonly recombine 

in wild-type plants. MSH1 has been implicated in homology surveillance during 

recombination (Shedge et al. 2007). Thus, the rarity of recombination at the intermediate 

repeats allows us to infer the length of homology necessary to successfully perform 

recombination. Homologies that are the length of the intermediate repeats or shorter are 

apparently too short to escape the homology surveillance of MSH1, while the 4kb length 

of Large Repeat 2 is long enough. The length of homology necessary to initiate 

recombination can determine what happens to the DNA ends at a double-strand break and 

which of the double-strand break repair pathways are used to repair the break 

RESEARCH GOALS 

This dissertation is an investigation of the hypothesis that double strand break 

repair and recombination have shaped the evolution of plant mitochondrial genomes. The 

following chapters will detail different avenues of examining the predictions and 

implications of this hypothesis. 

In chapter 2 we will show that synonymous substitutions in plant mitochondrial 

genes are not truly neutral. Due to heavy selection against deleterious mutations in genes, 

gene conversion by homologous recombination can cause a selective sweep of nearby 

synonymous mutations, lowering the mutation rate of synonymous substitutions in genes. 

In chapter 3 we analyze the intermediate repeats of plant mitochondrial genomes. 

We show that these repeats emerge and become common in land plants. We hypothesize 

that the desiccation that occurs during seed or spore formation caused an increase in 
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double strand breaks compared to bryophytes and algae, providing more opportunities for 

break induced replication to create duplications of the genome. We also show that the 

pathways that create repeats by DNA duplication are rare, but can occur suddenly and 

become fixed in a population during speciation. 

In chapter 4 we examine a line of Arabidopsis thaliana that is deficient in base 

excision repair and we test the hypothesis that these DNA lesions will now be repaired by 

MSH1 initiated double strand breaks. 
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Figure 1.1: The Base Excision Repair Pathway. During Base Excision Repair, a DNA 

glycosylase such as UNG will recognize and bind to a specific DNA lesion and excise the 

base, leaving an abasic site. An AP endonuclease will cut the DNA backbone at the 

abasic site and a patch of DNA will be removed by a lyase. DNA polymerase can then 

bind and synthesize new DNA, correcting the former lesion, and the newly synthesized 

DNA will be ligated to the rest of the DNA molecule. 
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Figure 1.2 [Reproduced from (Christensen 2018)]: A model of plant mitochondrial 

genome evolution by double-strand break repair. DNA lesions may be recognized by 

MSH1 and shunted into the DSBR pathway. Double-strand breaks can be repaired by 

homologous recombination (HR), gene conversion (GC), non-homologous end-joining 

(NHEJ), or break-induced replication (BIR). Selection ensures accurate repair in 

conserved regions, while non-conserved “junk” can expand and rearrange. 
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Figure 1.3 [Reproduced from (Christensen 2013)]: Double-strand break repair by 

homologous recombination of break-induced replication. (A) If a long homologous 

template is available, a double-strand break can be accurately repaired by gene 

conversion by homologous recombination. (B) If only one end of a double-strand break 

can find a homologous template, break-induced replication can occur, leading to 

rearrangements and expansions. 
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Figure 1.4 [Reproduced from (Arimura 2018)]: Structure of mitochondrial DNA 

and genome replication by recombination dependent replication. (A) Plant 

mitochondrial genomes consist of many subgenomic linear molecules with overlapping 

sequences. (B) The overlapping sequences of the linear molecules allows the construction 

of master circles, but no such molecules exist in vivo. (C) Individual mitochondria can 

contain different subgenomic molecules, or no DNA at all. (D) Mitochondrial fusion 

brings subgenomic molecules together, providing a template for recombination dependent 

replication or DNA repair. 

 

 

 



17 
 

REFERENCES 

Abdelnoor RV, Yule R, Elo A, Christensen AC, Meyer-Gauen G, Mackenzie SA. 2003. 

Substoichiometric shifting in the plant mitochondrial genome is influenced by a 

gene homologous to MutS. Proc Natl Acad Sci USA. 100(10): 5968-5973 

Arimura SI. 2018. Fission and Fusion of Plant Mitochondria, and Genome Maintenance. 

Plant Physiology. 176(1): 152-161 

Arrieta-Montiel MP, Shedge V, Davila J, Christensen AC, Mackenzie SA. 2009. 

Diversity of the Arabidopsis Mitochondrial Genome Occurs via Nuclear-Controlled 

Recombination Activity. Genetics. 183(4): 1261-1268 

Backert S, Dörfel P, Lurz R, Börner T. 1996. Rolling-Circle Replication of Mitochondrial 

DNA in the Higher Plant Chenopodium album (L.). Molecular and Cellular 

Biology. 16(11): 6285-6294 

Backert S, Börner T. 2000. Phage T4-like intermediates of DNA replication and 

recombination in the mitochondria of the higher plant Chenopodium album (L.). 

Curr Genet. 37: 304-314. 

Bendich AJ. 1993. Reaching for the ring: the study of mitochondrial genome structure. 

Curr Genet. 24(4): 279-290 

Bendich AJ. 1996. Structural Analysis of Mitochondrial DNA Molecules from Fungi and 

Plants Using Moving Pictures and Pulsed-field Gel Electrophoresis. Journal of 

Molecular Biology. 255(4): 564-588 

Boesch P, Ibrahim N, Paulus F, Cosset A, Tarasenko V, Dietrich A. 2009. Plant 

mitochondria possess a short-patch base excision DNA repair pathway. Nucleic 

Acids Research. 37(17): 5690-5700 

Cadet J, Wagner JR. 2013. DNA Base Damage by Reactive Oxygen Species, Oxidizing 

Agents, and UV Radiation. Cold Spring Harb Perspect Biol. 5(2):a012559 

Chang S, Wang Y, Lu J, Gai J, Li J, Chu P, Guan R, Zhao T. 2013. The Mitochondrial 

Genome of Soybean Reveals Complex Genome Structures and Gene Evolution at 

Intercellular and Phylogenetic Levels. PLoS ONE 8(2): e56502.  

Christensen AC, Lyznik A, Mohammed S, Elowsky CG, Elo A, Yule R, Mackenzie SA. 

2005. Dual-Domain, Dual-Targeting Organellar Protein Presequences in 

Arabidopsis Can Use Non-AUG Start Codons. The Plant Cell. 17(10) 2805-2816 

Christensen AC. 2013. Plant Mitochondrial Genome Evolution Can Be Explained by 

DNA Repair Mechanisms. Genome Biol Evol. 5(6): 1079-1086 

Christensen AC. 2014. Genes and Junk in Plant Mitochondria – Repair Mechanisms and 

Selection. Genome Biol Evol. 6(6): 1448-1453 

Christensen AC. 2018. Mitochondrial DNA Repair and Genome Evolution. Annual Plant 

Reviews. 50, 11-32 

Dany AL, Tissier A. 2001. A functional OGG1 homologue from Arabidopsis thaliana. 

Mol Genet Genomics. 265(2): 293-301 

Davis AJ, Chen DJ. 2013. DNA double strand break repair via non-homologous end-

joining. Transl Cancer Res. 2(3): 130-143 

Dawson AJ, Hodge TP, Isaac PG, Leaver CJ, Lonsdale DM. 1986. Location of the genes 

for cytochrome oxidase subunits I and II, apocytochrome b, α-subunit of the F1 

ATPase and the ribosomal RNA genes on the mitochondrial genome of maize (Zea 

mays L.). Curr Genet. 10: 561-564 



18 
 

Ferrando B, Furlanetto ALDM, Gredilla R, Havelund JF, Hebelstrup KH, Møller IM, 

Stevnsner T. 2018. DNA repair in plant mitochondria – a complete base excision 

repair pathway in potato tuber mitochondria. Physiologia Plantarum. 

doi:10.1111/ppl.12801 

Fukui K, Harada A, Wakamatsu T, Minobe A, Ohshita K, Ashiuchi M, Yano T. 2018. 

The GIY-YIG endonuclease domain of Arabidopsis MutS homolog 1 specifically 

binds to branched DNA structures. FEBS Letters. 592: 4066-4077 

García-Medel PL, Baruch-Torres N, Peralta-Castro A, Trasviña-Arenas CH, Torres-

Larios A, Brieba LG. 2019. Plant organellar DNA polymerases repair double-

stranded breaks by microhomology-mediated end-joining. Nucleic Acids Research. 

doi: 10.1093/nar/gkz039 

García-Ortiz MV, Ariza RR, Roldán-Arjona T. 2001. An OGG1 orthologue encoding a 

functional 8-oxoguanine DNA glycosylase/lyase in Arabidopsis thaliana. Plant Mol 

Biol. 47(6): 795-804. 

Gaur V, Wyatt HDM, Komorowska W, Szczepanowski RH, de Sanctis D, Gorecka KM, 

West SC, Nowotny M. 2015. Structural and Mechanistic Analysis of the Slx1-Slx4 

Endonuclease. Cell Rep. 10(9): 1467-1476 

Gray MW. 1999. Evolution of organellar genomes. Curr Opin Genet Dev. 9:678–687. 

Hardwick K, Wood M, Woolhouse HW. 1968. Photosynthesis and Respiration in 

Relation to Leaf Age in Perilla frutescens (L.) Britt. New Phytol. 67: 79-86 

Jasin M, Rothstein R. 2013. Repair of Strand Breaks by Homologous Recombination. 

Cold Spring Harb Perspect Biol. 5(11): a012740 

Klaff P, Gruissem W. 1991. Changes in Chloroplast mRNA Stability during Leaf 

Development. The Plant Cell. 3(5): 517-539. 

Klein M, Eckert-Ossenkop U, Schmiedeberg I, Brandt P, Unseld M, Brennicke A, 

Schuster W. 1994. Physical mapping of the mitochondrial genome of Arabidopsis 

thaliana by cosmid and YAC clones. The Plant Journal. 6(3): 447-455 

Klepikova AV, Kasianov AS, Gerasimov ES, Logacheva MD, Penin AA. 2016. A high 

resolution map of the Arabidopsis thalina developmental transcriptome based on 

RNA-seq profiling. The Plant Journal. 88: 1058-1070 

Kozik A, Rowan BA, Lavelle D, Berke L, Schranz ME, Michelmore RW, Christensen 

AC. 2019 The alternative reality of plant mitochondrial DNA. BioRxiv. doi: 

10.1101/564278 

Kramara J, Osia B, Malkova A. 2018. Break-Induced Replication: The Where, The Why, 

and The How. Trends in Genetics. 34(7) 518-531 

Kumar RA, Oldenburg DJ, Bendich AJ. 2014. Changes in DNA damage, molecular 

integrity, and copy number for plastid DNA and mitochondrial DNA during maize 

development. J Exp Bot. 65(22): 6425-6439. 

Lamers MH, Perrakis A, Enzlin JH, Winterwerp HHK, de Wind NW, Sixma TK. 2000. 

The crystal structure of DNA mismatch repair protein MutS binding to a G·T 

mismatch. Nature. 407: 711-717. 

Liu X, Feng Y, Liu JZ, Chen Y, Pham K, Deng H, Hirschi KD, Wang X, Cheng N. 2013. 

Structural insights into the N-terminal GIY-YIG endonuclease activity of 

Arabidopsis glutaredoxin AtGRXS16 in chloroplasts. PNAS. 110(23): 9565-9570. 

Lynch M, Koskella B, Schaack S. 2006. Mutation pressure and the evolution of organelle 

genomic architecture. Science. 24;311(5768):1727-1730 



19 
 

Maréchal A, Parent JS, Véronneau-Lafortune F, Joyeux A, Lang BF, Brisson N. 2009. 

Whirly proteins maintain plastid genome stability in Arabidopsis. PNAS. 106(34): 

14693-14698 

Miller-Messmer M, Kühn K, Bichara M, Le Ret M, Imbault P, Gualberto JM. 2012. 

RecA-Dependent DNA Repair Results in Increased Heteroplasmy of the 

Arabidopsis Mitochondrial Genome. Plant Physiol. 158(1): 211-226 

Morales-Ruiz T, Birincioglu M, Jaruga P, Rodriguez H, Roldan-Arjona T, Dizdaroglu M. 

2003. Arabidopsis thaliana Ogg1 Protein Excises 8-Hydroxyguanine and 2,6-

Diamino-4-hydroxy-5-formamidopyrimidine from Oxidatively Damaged DNA 

Containing Multiple Lesions. Biochemistry. 42(10) 3089-3095 

Mower JP, Touzet P, Gummow JS, Delph LS, Palmer JD. 2007. Extensive variation in 

synonymous substitution rates in mitochondrial genes of seed plants. BMC Evol 

Biol. 7:135. 

Murphy MP. 2009. How mitochondria produce reactive oxygen species. Biochem J. 

417(1):1-13 

Oda K, Yamato K, Ohta E, Nakamura Y, Takemura M, Nozato N, Akashi K, Kanegae T, 

Ogura Y, Kohchi T, et al. 1992. Gene organization deduced from the complete 

sequence of liverwort Marchantia polymorpha mitochondrial DNA. A primitive 

form of plant mitochondrial genome. J Mol Biol. 223(1): 1-7 

Oldenburg DJ, Bendich AJ. 2001. Mitochondrial DNA from the liverwort Marchantia 

polymorpha: circularly permuted linear molecules, head-to-tail concatemers, and a 

5’ protein. J Mol Biol. 310(3): 549-562 

Oldenburg DJ, Kumar RA, Bendich AJ. 2013. The amount and integrity of mtDNA in 

maize decline with development. Planta. 237: 603-617 

Palmer JD,  Herbon LA. 1988.Plant mitochondrial DNA evolves rapidly in structure, but 

slowly in sequence. J Mol Evol. 28:87-97 

Seguí-Simarro JM, Coronado MJ, Staehelin LA. 2008. The Mitochondrial Cycle of 

Arabidopsis Shoot Apical Meristem and Leaf Primordium Meristematic Cells Is 

Defined by a Perinuclear Tentaculate/Cage-Like Mitochondrion. Plant Physiology. 

148: 1380-1393 

Seguí-Simarro JM, Staehelin LA. 2009. Mitochondrial reticulation in shoot apical 

meristem cells of Arabidopsis provides a mechanism for homogenization of 

mtDNA prior to gamete formation. Plant Signaling & Behavior. 4(3): 168-171 

Shedge V, Arrieta-Montiel M, Christensen AC, Mackenzie SA. 2007. Plant 

Mitochondrial Recombination Surveillance Requires Unusual RecA and MutS 

Homologs. Plant Cell. 19(4): 1251-1264 

Sloan DB, Alverson AJ, Chuckalovcak JP, Wu M, McCauley DE, Palmer JD, Taylor DR. 

2012. Rapid Evolution of Enormous, Multichromosomal Genomes in Flowering 

Plant Mitochondria with Exceptionally High Mutation Rates. PLoS Biol. 

10(1):e1001241 

Taanman JW. 1999. The mitochondrial genome: structure, transcription, translation, and 

replication. Biochimica et Biophysica Acta – Bioenergetics. 1410(2):103-123 

Unseld M, Marienfeld JR, Brandt P, Brennicke A. 1997. The mitochondrial genome of 

Arabidopsis thaliana contains 57 genes in 366,924 nucleotides. Nat Genet. 

15(1):57-61 



20 
 

Wang DY, Zhang Q, Liu Y, Lin ZF, Zhang SX, Sun MX, Sodmergen. 2010. The Levels 

of Male Gametic Mitochondrial DNA are Highly Regulated in Angiosperms with 

Regard to Mitochondrial Inheritance. The Plant Cell. 22: 2402-2416 

Wu Z, Sloan DB. 2019. Recombination and intraspecific polymorphism for the presence 

and absence of entire chromosomes in mitochondrial genomes. Heredity. 122:647-

659 

Zaegel V, Guermann B, Le Ret M, Andrés C, Meyer D, Erhardt M, Canaday J, Gualberto 

JM, Imbault P. 2006. The Plant-Specific ssDNA Binding Protein OSB1 Is Involved 

in the Stoichiometric Transmission of Mitochondrial DNA in Arabidopsis. The 

Plant Cell. 18: 3548-3563 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



21 
 

CHAPTER 2 

ARE SYNONYMOUS SUBSTITUTIONS IN PLANT MITOCHONDRIA 

NEUTRAL? 

This chapter has been published: Wynn EL, Christensen AC. 2015. Are Synonymous 

Substitutions in Flowering Plant Mitochondria Neutral? J Mol Evol. 81(3-4): 131-135. 

doi: 10.1007/s00239-015-9704-x. 

ABSTRACT 

 Angiosperm mitochondrial genes appear to have very low mutation rates, while 

non-gene regions expand, diverge, and rearrange quickly. One possible explanation for 

this disparity is that synonymous substitutions in plant mitochondrial genes are not truly 

neutral and selection keeps their occurrence low. If this were true, the explanation for the 

disparity in mutation rates in genes and non-genes needs to consider selection as well as 

mechanisms of DNA repair. Rps14 is co-transcribed with cob and rpl5 in most plant 

mitochondrial genomes, but in some genomes, rps14 has been duplicated to the nucleus 

leaving a pseudogene in the mitochondria. This provides an opportunity to compare 

neutral substitution rates in pseudogenes with synonymous substitution rates in the 

orthologs. Genes and pseudogenes of rps14 have been aligned among different species 

and the mutation rates have been calculated. Neutral substitution rates in pseudogenes 

and synonymous substitution rates in genes are significantly different, providing evidence 

that synonymous substitutions in plant mitochondrial genes are not completely neutral. 

The non-neutrality is not sufficient to completely explain the exceptionally low mutation 

rates in land plant mitochondrial genomes, but selective forces appear to play a small 

role. 



22 
 

INTRODUCTION 

Synonymous substitution rates in angiosperm mitochondrial genes are about 10-

fold lower than in the nuclear genes (Drouin et al. 2008; Richardson et al. 2013; Wolfe et 

al. 1987) and approximately 100-fold lower than in animal mitochondria (Palmer and 

Herbon 1988). This low rate appears to be a derived trait in land plants (Smith 2015). 

Synonymous substitutions are often used to calculate mutation rates in genes under the 

assumption that they are selectively neutral (Nei et al. 2010). It might also be expected 

that mutations in non-coding or nonessential regions would also be neutral, and this could 

provide an interesting comparison to synonymous substitution rates. However, the non-

gene regions of land plant mitochondrial genomes expand and rearrange so quickly, and 

to such an extent, that it is difficult to align the non-gene regions outside of very closely 

related species (Christensen 2013, 2014; Darracq et al. 2010; Kubo and Newton 2008; 

Mower et al. 2007; Palmer and Herbon 1988; Richardson et al. 2013; Sloan et al. 2012; 

Smith and Keeling 2015). If the mutation rate in plant mitochondrial genomes is truly 

low, then why do the non-gene regions diverge so quickly? One possible part of the 

explanation may be that synonymous substitutions in angiosperm mitochondria are not 

selectively neutral, and therefore underestimate the mutation rate. If so, the explanation 

for the paradox of low mutation rates in genes and high mutation rates in junk may need 

to be explained not just by DNA repair and maintenance mechanisms, but by a further 

understanding of the role of selection on synonymous substitutions. 

This possibility has been addressed (Sloan and Taylor 2010) using patterns of 

codon usage in mitochondrial genes. Their study concluded that selection on synonymous 

sites was neutral or nearly neutral, and that selective effects on synonymous sites were 
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too weak to explain the reduced substitution rates. They also identified a bias toward A-T 

bases and pyrimidines at synonymous sites, but this non-randomness is not fully 

understood. More recently, presumably neutral mutation rates in mitochondrial insertions 

of plastid DNA were measured, but were not able to be directly compared to homologous 

sequences under selection in mitochondria (Sloan and Wu 2014). Thus, the substitution 

rates of synonymous sites have never been directly compared to truly neutral substitution 

rates, such as the rates of homologous non-selected sequences. Such a comparison would 

provide a direct way of confirming that synonymous substitutions are truly neutral; 

however, the highly divergent nature of non-gene regions prevents proper alignment 

among lineages, and thus, there are very few opportunities for direct comparisons across 

diverse species. 

Ribosomal protein small subunit 14 (rps14) is co-transcribed in many plant 

mitochondrial genomes (see Fig. 2.1) with ribosomal protein large subunit 5 (rpl5) and 

cytochrome b (cob) (Hoffmann et al. 1999; Quinones et al. 1996). In some lineages, a 

copy of rps14 has been relocated to the nucleus and the protein is imported by 

mitochondria. In these lineages, the mitochondrial copy of rps14 has become a 

pseudogene (Aubert et al. 1992; Figueroa et al. 1999; Ong and Palmer 2006). These 

pseudogenes accumulate frameshift mutations so are clearly non-functional and not under 

selection for protein coding capacity. Because both rps14 genes and pseudogenes are co-

transcribed with and located between rpl5 and cob, large rearrangements of the area will 

be selected against, as cob would lose its promoter. These rps14 pseudogenes are thus a 

unique example of a non-coding sequence that can still be aligned to homologous coding 

sequences across very diverse lineages. Therefore, rps14 is a perfect candidate to 
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measure neutral mutation rates. In lineages with functional rps14 genes, the synonymous 

substitution rate can be measured, while in lineages with ψrps14 pseudogenes, the total 

substitution rate is the neutral mutation rate. These rates can be compared to find out if 

synonymous substitutions in plant mitochondrial genes are selectively neutral. 

METHODS 

Accession numbers of all sequences used are listed in Table 2.1. In a few species, 

the synteny of cob with rpl5 and rps14 was disrupted, but it was still possible to identify 

rps14 or ψrps14 just downstream of rpl5. The ψrps14 pseudogenes were confirmed by 

the presence of internal stop codons or frameshifts. Four multiple alignments were used 

in this analysis: an alignment of the rps14 sequences in all species analyzed, an alignment 

of the concatenated sequences of atp4, rpl5, and cob in all species analyzed, an alignment 

of the functional rps14 sequences, and an alignment of the concatenated sequences of 

atp4, rpl5, and cob in only those species with a functional rps14 gene. 

There is also RNA editing by pentatricopeptide repeat (PPR) proteins in the 

analyzed genes in several of these species (Uchida et al. 2011). A PPR protein binds to an 

mRNA and edits a cytosine to a uracil. These edits may change the amino acid encoded. 

A mutation at an edited site, or in the binding sequence of the PPR protein, may appear 

synonymous at the DNA level, but change the final protein, or may appear non-

synonymous at the DNA level but leave the protein sequence unchanged. To avoid 

confounding the analysis, edited codons and the 18 upstream nucleotides representing 

potential PPR binding sites under selection have been deleted from analysis. 

Two phylogenetic trees were constructed: one using the concatenated sequences 

of atp4, rpl5, and cob from all species analyzed, and one using the concatenated 
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sequences of atp4, rpl5, and cob from only those species with a functional rps14 gene. 

The atp4 gene was chosen because it is independently transcribed (Forner et al. 2007). 

All alignments and phylogenetic trees were constructed with Mega5 (Tamura et al. 

2011). 

Analysis of functional rps14 genes was done using CodeML in PAML 4.8 

implemented in PAMLX (Yang 2007). Branch lengths were calculated using 

synonymous substitutions, and the phylogenetic tree of the concatenated sequences of 

atp4, rpl5, and cob was used to set the topology. This was done separately using the 

multiple alignment of the rps14 sequence including only species with functional rps14 

genes (Fig. 2.2A) and the multiple alignment of the concatenated sequences of atp4, rpl5, 

and cob including only species with a functional rps14 gene (Fig. 2.2B). Taking the 

branch length of each terminal branch leading to a lineage on the rps14 tree and dividing 

it by the length of the same branch on the atp4, rpl5, and cob tree provides a ratio of the 

synonymous substitution rate of rps14 genes compared to the synonymous substitution 

rate of the other three genes. 

Analysis of ψrps14 pseudogenes was done using BaseML in PAML 4.8 

implemented in PAMLX (Yang 2007), branch lengths were calculated using total 

substitutions, and the phylogenetic tree of the concatenated sequences of atp4, rpl5, and 

cob was used to set the topology. This was done using the multiple alignment of the 

rps14 sequence including all species (Fig. 2.2C). A phylogenetic tree using CodeML as 

described above was made using the multiple alignment of the concatenated sequences of 

atp4, rpl5, and cob including all species analyzed (Fig. 2.2D). Taking the branch length 

of each terminal branch leading to a lineage with an ψrps14 pseudogene on the rps14 tree 
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and dividing it by the length of the same branch on the atp4, rpl5, and cob tree provides a 

ratio of the total substitution rate of the ψrps14 pseudogene compared to the synonymous 

substitution rate of the other three genes. Species with functional rps14 genes were 

included in these trees to avoid counting as much divergence before the pseudogenes 

became pseudogenes as possible. Indels were counted in all rps14 sequences. Indel rates 

per site were calculated. 

All alignments and tree files can be found at 

https://link.springer.com/article/10.1007%2Fs00239-015-9704-x#SupplementaryMaterial 

RESULTS 

If synonymous substitutions in plant mitochondria are not neutral, then the 

synonymous substitution rate would erroneously underestimate the neutral mutation rate. 

In this event, we would expect rps14 genes to have a significantly lower synonymous 

substitution rate than the total substitution rate in an ψrps14 pseudogene. Alignments 

were done for ψrps14 of the chosen species as well as rps14 genes for the chosen species. 

Alignments were also done for the concatenated sequences of atp4, rpl5, and cob for all 

chosen species in order to generate the trees shown in Fig. 2. Following alignments, we 

calculated both rates. 

Terminal branch lengths for the genes were calculated using PAML 4.8 (Yang 

2007), and are shown in Fig. 2.2. For rps14 genes, the normalized neutral mutation rate is 

calculated by dividing the terminal branch length of the rps14 tree by the terminal branch 

length of the atp4, rpl5, and cob tree, both calculated using synonymous substitutions per 

synonymous site. For ψrps14 pseudogenes, the normalized neutral mutation rate is 

calculated by dividing the terminal branch length of the rps14 tree (calculated using total 
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substitutions per site) by the terminal branch length of the atp4, rpl5, and cob tree 

(calculated using synonymous substitutions per synonymous site). 

The neutral mutation rates normalized with the atp4, rpl5 and cob genes are 

shown in Table 2.2 and Fig. 2.3. The average normalized neutral mutation rate of the 

functional rps14 genes is 0.276, and the average normalized neutral mutation rate of the 

ψrps14 pseudogenes is 1.32. Using a Student’s t test, these rates are significantly 

different (p = 0.0099). One species, Citrullus lanatus, had branch lengths of zero for both 

ψrps14 and atp4, rpl5, cob, and was excluded from analysis. Despite having no lineage 

specific substitutions when compared to neighboring species, C. lanatus differed by 

several indels. 

In addition to substitutions, we also measured indel rates. Indels should be 

strongly selected against in functional genes, but neutral in pseudogenes. The ψrps14 

pseudogenes had an average indel rate of 0.011 indels per site. The rps14 genes had an 

average indel rate of 0 indels per site. These rates are significantly different (p = 

0.00043), as expected. 

DISCUSSION 

Because there is no selective pressure on a non-functional pseudogene, 

substitutions will be neutral. The availability of both genes and alignable pseudogenes of 

rps14 allowed us to measure the neutral substitution rate directly and compare it to the 

synonymous substitution rate, often used as a proxy for the neutral rate. The normalized 

synonymous substitution rate of the rps14 genes is significantly different from the neutral 

substitution rate of the ψrps14 pseudogenes (Fig. 2.3; Table 2.2). Therefore, it can be 
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inferred that the number of observable synonymous substitutions in plant mitochondria is 

lower than we would expect in the absence of any selection. 

One possible explanation for the apparent selection on synonymous substitutions 

is RNA stability and translation efficiency. If synonymous substitutions affect the 

stability of mitochondrial RNA or the association with the translation machinery, then 

there will be selective pressure to repair them even without a difference in the encoded 

protein. Another possibility is that mutational processes may be responsible for the A-T 

and pyrimidine biases in codon usage observed by Sloan and Taylor (2010), as well as 

the A-T bias in mutations of neutral insertions of plastid DNA in mitochondrial genomes 

(Sloan and Wu 2014). In other systems, it has been estimated that the rate of cytosine 

deamination which causes G-C to A-T transitions is at least 50-fold higher than 

deamination reactions that could cause A-T to G-C transitions (Friedberg et al. 2006). 

The oxidation of guanine to 8-oxo-guanine, which can result in G-C to T-A transversions, 

appears to occur in plant mitochondria as well (Christensen 2013; Markkanen et al. 2012; 

van Loon et al. 2010). These two processes may skew the overall mutational spectrum 

toward an A-T bias, resulting in the non-randomness at synonymous sites previously 

observed (Sloan and Taylor 2010; Sloan and Wu 2014). 

Another possible explanation for the apparent selection on synonymous 

substitutions is that synonymous substitutions might be repaired simultaneously with 

non-synonymous substitutions via gene conversion if gene conversion tracts are long 

enough. In genes, the selective pressure on deleterious mutations is very high, so repaired 

mutations should be frequent. In the pseudogene, there will not be selection to repair 
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mutations, so nearby neutral mutations will not be repaired as a result of a selective 

sweep. 

The low mutation rate in land plant mitochondrial genes compared to non-genes 

does not appear to be due to differences in repair processes available, but is likely due to 

differences in selection on the repaired products (Christensen 2013, 2014). Gross 

rearrangements or even small indels would be strongly selected against in gene 

sequences, while they would not be selected against in non-genes, including 

pseudogenes. These events appear to be common on evolutionary timescales, explaining 

the large divergence of non-coding sequences. 

This study is the first direct comparison of plant mitochondrial synonymous 

substitution rates with a neutral substitution rate in homologous pseudogenes. Although 

we have found that synonymous substitutions are not completely neutral, we still concur 

with the conclusion of Sloan and Taylor (2010) that the non-neutrality is not sufficient to 

explain the large disparity between the low mutation rates in genes and the much higher 

mutation, rearrangement, and expansion rates of the non-coding sequences in plant 

mitochondria. 
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Figure 2.1: A map showing the three co-transcribed mitochondrial genes, rpl5, 

rps14, and cob. These three genes are syntenic in all the species of angiosperm 

examined. A single promoter has been identified in several species (Forner et al. 2007; 

Hoffmann et al. 1999; Quinones et al. 1996) indicated at left 
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Table 2.1: Accession numbers for sequences used in analysis. 

Species atp4 rpl5 cob rps14 

Citrullus 

lanatus 

>gi|295311632:c365914-

365318 

>gi|295311632:274340-

274897 

>gi|295311632:275820-

276992 

>gi|37896208|gb|AY30

5267.1| 

Cucurbita 

pepo 

>gi|295311672:471138-

471713 

>gi|295311672:83088-

83645 

>gi|295311672:84568-

85740 

>gi|37896209|gb|AY30

5268.1| 

Cucumis 

sativus 

>gi|346683357:419518-

420114 

>gi|346683357:c119058

9-1189999 

>gi|346683357:c378504

-377338 

>gi|31322689|gb|AY25

8274.1| 

Vigna 

angularis 

>gi|501594995:214689-

215273 

>gi|501594995:263314-

263871 

>gi|501594995:265075-

266256 

>gi|501594995:263875-

264177 

Lotus 

japonicus 

>gi|387866040:c98133-

97546 

>gi|387866040:c276862

-276305 

>gi|387866040:c274684

-273500 

>gi|387866040:c276301

-276061 

Mimulus 

guttatus 

>gi|391348915:c374983-

374393 

>gi|391348915:c146313

-145759 

>gi|391348915:c144016

-142829 

>gi|391348915:c145757

-145455 

Carica 

papaya 

>gi|224020948:c290564-

28998

  

>gi|224020948:c322118

-321561 

>gi|224020948:c319915

-318734 

>gi|224020948:c321559

-321257 

Brassica 

napus 

>gi|112253843:c41887-

41309 

>gi|112253843:202531-

203088 

>gi|112253843:204898-

206079 

>gi|1524184|emb|X636

53.1| 

Arabidopsis 

thaliana 

>gi|13984|emb|X67105.

1| 

>gi|26556996:57774-

58331 

>gi|26556996:60235-

61416 

>gi|14340|emb|X65123

.1| 

Vitis vinifera >gi|224365609:274514-

275110 

>gi|224365609:175173-

175724 

>gi|224365609:177407-

178588 

>gi|224365609:175672-

176028 

Spirodela 

polyrhiza 

>gi|387164694:119785-

120315 

>gi|387164694:97522-

98076 

>gi|387164694:99277-

100458 

>gi|387164694:98082-

98340 

Phoenix 

dactylifera 

>gi|372450205:c249115-

248528 

>gi|372450205:10114-

10680 

>gi|372450205:11928-

13109 

>gi|372450205:10661-

10984 

Triticum 

aestivum 

>gi|81176508:c197162-

196584 

>gi|81176508:c30347-

29778 

>gi|81176508:c64318-

63122 

>gi|27803141|emb|AJ5

35507.1| 

Oryza sativa >gi|89280701:c18996-

18403 

>gi|194033210:c343465

-342899 

>gi|89280701:c306002-

304809 

>gi|89280701:c424972-

424696 

Amborella 

trichopoda 

>gb|KF754803.1|:65262

1-653210 

>gb|KF754803.1|:20107

47-2011304 

>gb|KF754803.1|:20133

06-2014494 

>gb|KF754803.1|:20113

06-2011608 

Cycas 

taitungensis 

>gi|166895601:c309686-

309093 

>gi|166895601:81967-

82545 

>gi|166895601:83720-

84916 

>gi|166895601:82550-

82852 
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Figure 2.2: Phylogenetic trees with terminal branch lengths calculated using PAML 

as described in methods. A) Phylogenetic tree of functional rps14 genes using 

synonymous substitutions. B) Phylogenetic tree of atp4, rpl5, and cob using synonymous 

substitutions and including only species with functional rps14 genes. C) Phylogenetic 

tree of both rps14 genes and ψrps14 pseudogenes using total substitutions. Species with 

ψrps14 pseudogenes are labeled with a ψ. D) Phylogenetic tree of atp4, rpl5, and cob 

using synonymous substitutions and including all species. For all trees, topology is based 

on an initial tree of atp4, rpl5, and cob sequences 
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Table 2.2: Synonymous substitution rates in rps14 genes and substitution rates in 

ψrps14 pseudogenes, relative to synonymous substitution rates in atp4, rpl5, and cob 

in the same species. Rates were calculated as described in methods, using the terminal 

branch lengths shown in Fig. 2.2. Citrullus lanatus was excluded from analysis because 

both branch lengths were zero 
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Figure 2.3: Comparison of the neutral mutation rate of species with functional rps14 

genes and species with ψrps14 pseudogenes. Rates are from Table 2.2. This figure has 

been edited from the original publication for clarity. 
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CHAPTER 3 

REPEATS OF UNUSUAL SIZE IN PLANT MITOCHONDRIAL GENOMES: 

IDENTIFICATION, INCIDENCE AND EVOLUTION 

This chapter has been published: Wynn EL, Christensen AC. 2019. Repeats of Unusual 

Size in Plant Mitochondrial Genomes: Identification, Incidence and Evolution. G3. 9(2): 

549-559. doi: 10.1534/g3.118.200948 

ABSTRACT 

Plant mitochondrial genomes have excessive size relative to coding capacity, a 

low mutation rate in genes and a high rearrangement rate. They also have abundant non-

tandem repeats often including pairs of large repeats which cause isomerization of the 

genome by recombination, and numerous repeats of up to several hundred base pairs that 

recombine only when the genome is stressed by DNA damaging agents or mutations in 

DNA repair pathway genes. Early work on mitochondrial genomes led to the suggestion 

that repeats in the size range from several hundred to a few thousand base pair are 

underrepresented. The repeats themselves are not well-conserved between species, and 

are not always annotated in mitochondrial sequence assemblies. We systematically 

identified and compared these repeats, which are important clues to mechanisms of DNA 

maintenance in mitochondria. We developed a tool to find and curate non-tandem repeats 

larger than 50bp and analyzed the complete mitochondrial sequences from 157 plant 

species. We observed an interesting difference between taxa: the repeats are larger and 

more frequent in the vascular plants. Analysis of closely related species also shows that 

plant mitochondrial genomes evolve in dramatic bursts of breakage and rejoining, 
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complete with DNA sequence gain and loss. We suggest an adaptive explanation for the 

existence of the repeats and their evolution. 

INTRODUCTION 

It has long been known that plant mitochondrial genomes are much larger than 

those of animals (Ward, B. L. et al. 1981) and include significant amounts of non-coding 

DNA (Schuster, W. and A. Brennicke 1994). These genomes also often have repeats of 

several kb, leading to multiple isomeric forms of the genome (Folkerts, O. and M. R. 

Hanson 1989; Klein, M. et al. 1994; Palmer, J. D. and L. A. Herbon 1988; Palmer, J. D. 

and C. R. Shields 1984; Siculella, L. et al. 2001; Sloan, D. B. et al. 2010; Stern, D. B. 

and J. D. Palmer 1986). Plant mitochondrial genomes have very low mutation rates, but 

paradoxically have such high rearrangement rates that there is virtually no conservation 

of synteny (Drouin, G. et al. 2008; Palmer, J. D. and L. A. Herbon 1988; Richardson, A. 

O. et al. 2013; Wolfe, K. et al. 1987). 

In addition to the large, frequently recombining repeats, there are often other 

repeated sequences in the size range of 1kb and lower (Arrieta-Montiel, M. P. et al. 2009; 

Forner, J. et al. 2005). Ectopic recombination between these non-tandem repeats has been 

shown to increase when double-strand breakage is increased, or in plants mutant for DNA 

maintenance genes (Abdelnoor, R. V. et al. 2003; Shedge, V. et al. 2007; Wallet, C. et al. 

2015). Understanding the repeats is critical to understanding the mechanisms of DNA 

maintenance and evolution in plant mitochondria, yet they have never been 

systematically identified and analyzed. In addition to being infrequently and 

inconsistently annotated and described in mitochondrial genome sequences, repeats are 

often described as long, short and intermediate-length (Arrieta-Montiel, M. P. et al. 2009; 
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Davila, J. I. et al. 2011; Miller-Messmer, M. et al. 2012). The repeats are sometimes 

thought to be distributed into two size classes (one of up to several hundred bp and 

another of several kb), but this is derived from early studies of Arabidopsis and a few 

other species in which repeats were described and annotated (Alverson, A. J. et al. 2011b; 

Andre, C. et al. 1992; Arrieta-Montiel, M. P. et al. 2009; Davila, J. I. et al. 2011; 

Folkerts, O. and M. R. Hanson 1989; Sugiyama, Y. et al. 2005). 

The most likely hypothesis that explains the peculiar characteristics of plant 

mitochondrial genomes is that double-strand break repair (DSBR) is abundantly used in 

plant mitochondria, perhaps to the exclusion of nucleotide excision and mismatch repair 

pathways (Christensen, A. C. 2014; Christensen, A. C. 2018). Double-strand break repair 

is very accurate when the repair is template-based, accounting for the low mutation rate 

in genes, but the nonhomologous end-joining or break-induced-replication pathways can 

account for the creation of repeats and chimeric genes, expansions, and loss of synteny 

through rearrangements. 

The inconsistent reporting and annotation of repeated sequences leads to a 

number of questions. What is the best way to discover and characterize them? Is the size 

distribution really bimodal in angiosperms? Are there repeats in the mitochondria of other 

groups of green plants? How do they differ between groups? Can they be followed 

through evolutionary lineages like genes? Are the repeats themselves somehow adaptive, 

or are they a side-effect of DSBR that is neutral or nearly neutral? The availability in 

recent years of complete mitochondrial genome sequences across a wide variety of taxa 

of green plants allows us to begin addressing these questions. We describe a 

computational strategy for finding non-tandem repeats within plant mitochondrial 



40 
 

genomes. Using this tool, we describe the phylogenetic distribution of repeats in both size 

classes, examine their evolution in a family of closely related angiosperms, and propose 

an hypothesis for the evolutionary significance of the repeats and the DSBR processes 

that produce them.  

MATERIALS AND METHODS 

Sequence Data and Manipulation 

Table 1 lists the mitochondrial genome sequences that were downloaded as 

FASTA format files from GenBank (https://www.ncbi.nlm.nih.gov/genbank/). BLAST 

searches (Altschul, S. F. et al. 1990) were done using version 2.7.1 on a Linux-based 

machine. In addition to the sequences shown in Table 1, mitochondrial genomes from 

several Brassica species were used to compare close relatives. These sequences are as 

follows: Brassica carinata; JF920287, Brassica rapa; JF920285, Brassica oleracea 

fujiwase; AP012988, Brassica napus polima; FR715249, Brassica juncea; JF920288. 

Alignments were done using the clustalW implementation in the VectorNTI 11.5 

software package (ThermoFisher). 

Repeat Analysis 

Custom Python scripts are in Supplementary Materials. The script 

ROUSFinder.py (Appendix A1) uses blastn to perform a pairwise ungapped comparison 

of a sequence with itself, both strands separately, using a word size of 50, E value of 

10,000, reward for a match +1, penalty for a mismatch -20. The script then concatenates 

the two output files and the full length self-identity is deleted. Alignments are then sorted 

and compared to identify and remove duplicate repeats, and an output file containing 
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each distinct repeat in fasta format is created. The sorting by size allows the script to 

automate the curation of the repeats by comparing the query start and end coordinates of 

each identified repeated sequence with the subject start and end coordinates of repeated 

sequences of the same size. When there are more than two copies of a repeat, BLAST 

does not report every pairwise hit, so the output file of FASTA-formatted sequences of 

repeats is then used as a query with the entire genome as subject to locate every copy of 

that repeat, create a table, and a table of binned sizes. The output can also be formatted 

for GenBank annotation. MultipleRepeats.py (Appendix A2) automates running 

ROUSFinder.py on every sequence within a directory. 

Prior work identifying repeats, especially in Arabidopsis thaliana (Arrieta-

Montiel, M. P. et al. 2009) showed that although BLAST is very useful, it has some 

characteristics that make it difficult to automate curation of the identified matches of non-

tandem DNA sequences. For example, if there are a number of mismatches in a repeat, 

sometimes BLAST will identify subsets of the repeat sequence, or not give the same 

alignments when two imperfect repeats are used as queries of the entire genome. When 

there are three or more copies of a repeat, BLAST will also not identify every possible 

pairwise alignment, giving a subset instead. When examining the repeats in a single 

species, these problems can be solved by additional manual curation and inspection of the 

species. However, for automated curation of sequences from multiple species, some 

compromises have to be made. The simplest way to curate the repeated sequences is to 

ensure that the sizes of each repeat in a pair are the same. This ensures that repeats can be 

matched with each other by examining the coordinates of each copy to find all copies of 

the repeated sequence. In Arabidopsis thaliana, an ungapped blastn search with a match 
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reward of +1 and a mismatch penalty of -18 or lower ensured that different copies of the 

repeats were the same length, allowing automated curation. We therefore set the penalty 

parameter to -20 to make the automated curation reliable and fast. In order to more 

carefully examine the repeats in a single species, the script ROUSFinder2.py (Appendix 

A3) allows the user to set the match reward and mismatch penalty parameters on the 

command line. 

After an initial analysis of sequences available in early 2018, we added additional 

species to the data in late 2018. These additional species are indicated in Table 1 by an 

asterisk. These include two hornworts, two liverworts, 3 bryophytes and 14 angiosperms. 

These new species do not change the patterns or conclusions compared to the earlier 

analysis, providing additional validation of the use of BLAST and the curation methods 

described. 

Data Availability 

The authors state that all data necessary for confirming the conclusions presented 

in this article are represented fully within the article, including python scripts in 

Appendices and accession numbers of DNA sequences shown in Table 3.1. 

RESULTS 

Repeats in Plant Mitochondrial Genomes 

The existence of large non-tandem repeats in plant mitochondrial genomes is well 

known by now, but they have not been systematically identified and analyzed. Prior 

studies used variations of BLAST (Altschul, S. F. et al. 1990) to find repeats (Alverson, 

A. J. et al. 2011a; Alverson, A. J. et al. 2010; Alverson, A. J. et al. 2011b; Liu, Y. et al. 
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2014) or REPuter (Hecht, J. et al. 2011; Kurtz, S. and C. Schleiermacher 1999). Other 

available software packages specifically identify tandem repeats, or repeats matching 

known repetitive sequences. Due to the ready availability of BLAST and the flexibility of 

its use, and because most prior work used it, we wrote and used a Python script called 

ROUSFinder.py that uses BLAST to identify non-tandem repeats within mitochondrial 

genomes. The parameters for identification of a sequence repeat were relatively stringent 

and included a blastn word size of 50, and match/mismatch scores of +1/-20. Any choice 

of parameters will necessarily identify some false positives and false negatives. These 

parameters were chosen in order to find duplicate copies of sequence that were either 

recently created or recently corrected by gene conversion. As described in the Methods, 

they were also chosen to enable automated curation of the repeats that are found in the 

first iteration of BLAST. A duplication longer than 100 bases that has several mismatches 

or a gap in the center of the repeat unit will be identified as two different repeats by this 

script. However, mismatches in the center of one copy of a repeat are indicative of either 

two independent events producing the two parts of the repeat, or mutation and drift that 

have escaped gene conversion. Because we are concerned with the recombination 

behavior of the repeats we therefore chose to call these two different repeats. To analyze 

and identify repeats in a single sequence for further study or annotation would require 

additional manual curation of the output. The word size parameter of 50 is chosen to 

make the output more manageable. Reducing the word size identifies numerous smaller 

repeats, but the smaller the repeats get, the more complex the curation task of 

distinguishing identical sequences from similar ones of the same size – a task that at this 

point still needs to be done manually. Reducing the word size does not change the 
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conclusions about any of the potentially recombinogenic repeats that also distinguish the 

major groups in the plant kingdom. Previous work in Arabidopsis thaliana has shown 

that crossover products between non-tandem repeats of 556bp or smaller in accession 

Col-0 and 204bp or smaller in accession Ws are undetectable by PCR (Wallet, C. et al. 

2015), similar to prior results using Southern blots (Arrieta-Montiel, M. P. et al. 2009; 

Davila, J. I. et al. 2011; Sakamoto, W. et al. 1996) 

The species we used represent a significant subset of the complete mitochondrial 

genome sequences from green plants in GenBank and are shown in Table 3.1. Sequences 

available on GenBank are not a random sample across taxa (food crops are very over-

represented, for example), so to reduce sampling bias somewhat we used only one 

species per genus. Incomplete sequences or sequences with gaps or wildcard characters 

(such as N, R, Y, etc.) are not handled well by BLAST without further curation, so these 

were not used. Species with multiple distinct chromosomes were also not used because of 

the additional layer of complexity from inter- and intra-chromosomal repeats. The full 

output is in Supplemental Table S1. The repeats seen in plant mitochondrial genomes are 

much larger than those found in random sequence (data not shown), suggesting that they 

arise from specific biological processes and are not stochastic. 

Phylogenetic Clustering 

The distribution of repeat sizes forms distinct clusters between broad phylogenetic 

groups (see Figure 3.1). Because there are different numbers of species in each group, 

and some species have an order of magnitude more total repeats than others, we represent 

the data as the fraction of species within that group that have at least one repeat within a 

given size range. Within the chlorophytes, repeats of greater than 200bp are rare. The 
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exceptions are the prasinophytes (discussed below) and a few interesting cases. 

Chlamydomonas reinhardtii has a 532 bp inverted repeat at the termini of its linear 

chromosome. Dunaliella salina, Kirchneriella aperta and Polytoma uvella have novel 

structures at a small number of loci that consist of overlapping and nested repeats and 

palindromes (Smith, D. R. et al. 2010). The function of these structures is unknown, but 

they are unusual and not common in the chlorophytes. The prasinophyte group resembles 

the rest of the chlorophytes in having no non-tandem repeats greater than 200bp but many 

of them include two copies of a single very large repeat between 9.5 and 14.4 kb. This is 

similar to many chloroplast genomes and it is possible that this structure is involved in 

replication (Bendich, A. J. 2004). The bryophytes generally resemble the chlorophytes; 

there are no repeats longer than 200bp. 

In contrast to the chlorophytes and bryophytes, the Marchantiophyta (liverworts) 

and Anthocerotophyta (hornworts) have repeats greater than 200bp in size, but none 

bigger than 1131bp. The other lineages of streptophytic green algae (referred to as 

charophytes in GenBank) resemble the chlorophytes albeit with a slightly higher upper 

limit. In this group the largest repeat is found in Chlorokybus atmophyticus and is 291bp. 

The ferns and lycophytes are strikingly different from the previous groups. 

Unfortunately, the number of species sequenced is low. They have large numbers of 

repeats and the repeat sizes range well above 200bp, up to 10 kb. Some members of these 

groups, such as Huperzia, are similar to the bryophytes, but others are large and have 

significant repeat content (Guo, W. et al. 2017). These groups are underrepresented 

among available mitochondrial sequences, in part due to the complexity caused by the 
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repetitive nature of lycophyte and fern mitochondrial genomes (Grewe, F. et al. 2009), 

but the patterns are noticeably different from the nonvascular plants described above. 

The angiosperms are represented very well in the sequence databases. Only one 

member of this group does not have any repeats larger than 200bp (Medicago 

truncatula). A small number of angiosperms lack repeats larger than 1 kbp, and 

approximately half include repeats larger than 9 kbp. Silene conica, a species with 

multiple large chromosomes not included in our dataset has a nearly 75kb sequence 

found in both chromosomes 11 and 12 (Sloan, D. B. et al. 2012). Gymnosperms are also 

underrepresented, but appear to be similar to the other vascular plants. Interestingly, the 

gymnosperms Ginkgo biloba and Welwitschia mirabilis resemble angiosperms, while 

Cycas taitungensis is more similar to ferns. The C. taitungensis mitochondrion has 

numerous repeats, including many that are tandemly repeated. Five percent of this 

genome consists of the mobile Bpu element, a remarkable level of repetitiveness (Chaw, 

S. M. et al. 2008). 

It is only in the vascular plants that the number and size of repeated sequences in 

mitochondrial genomes has been expanded. The vascular plants generally only have 

mitochondrial genomes a few times larger than the bryophytes, liverworts and hornworts, 

but the repeats are expanded well beyond proportionality to size. Some taxa, such as the 

Geraniaceae, Plantago, and Silene include species with significantly expanded 

mitochondrial DNA (Park, S. et al. 2015; Parkinson, C. L. et al. 2005; Sloan, D. B. et al. 

2012). These species are outliers in the mitochondrial genome sizes and the number of 

repeats, but the underlying DNA replication, recombination and repair processes are 
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likely to be the same. There appears to have been a significant change in mitochondrial 

DNA maintenance mechanisms coincident with the origin of the vascular plants. 

Repeat Sizes and Frequency in Angiosperms 

 Large repeats of several kilobases have been identified in several species and 

shown to be recombinationally active, isomerizing angiosperm mitochondrial genomes 

(Folkerts, O. and M. R. Hanson 1989; Klein, M. et al. 1994; Palmer, J. D. and L. A. 

Herbon 1988; Palmer, J. D. and C. R. Shields 1984; Siculella, L. et al. 2001; Sloan, D. B. 

2013; Stern, D. B. and J. D. Palmer 1986). A few species have been reported to lack such 

structures (Palmer, J. D. 1988). The first comprehensive catalog of repeated sequences 

shorter than 1000 base pairs was done in Arabidopsis thaliana, and they were shown to 

be recombinationally active in some mutant backgrounds, but not generally in wild type 

(Arrieta-Montiel, M. P. et al. 2009; Davila, J. I. et al. 2011; Miller-Messmer, M. et al. 

2012; Shedge, V. et al. 2007). Is the spectrum of repeat sizes in Arabidopsis, and its 

bimodality, typical for angiosperms? Figure 3.2 illustrates the presence of repeats in the 

size range of 50bp to over 10,000 bp in 72 angiosperms, sorted by the class and order of 

the species. While individual species often have a bimodal distribution of sizes, there is 

no size range that is universally absent from the distribution. Thirteen of the 72 species 

have no repeats larger than 600bp, leaving open the question of whether those particular 

mitochondrial genomes isomerize through recombination. All of the other species have a 

large repeat of somewhere between 600bp and 65kbp. There is no pattern of repeat size 

distribution or total size with the phylogenetic group or total mitochondrial genome size, 

suggesting that these are not produced by stochastic processes, and suggesting that they 

occur and change faster than speciation does. 
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Alignment of Repeats Within the Brassicales 

In order to test the hypothesis that the repeated sequences change rapidly 

compared to speciation events, leading to the lack of pattern in the Angiosperm orders, 

we analyzed 6 closely related species in the Brassica genus. Within the Brassica genus 

there are three diploid species: Brassica rapa, Brassica nigra and Brassica oleracea, and 

three allotetraploid species (Cheng, F. et al. 2017). The diploid nuclear genomes are 

called the A, B and C genomes, respectively. Based on both nuclear and mitochondrial 

sequences it appears that Brassica carinata has the B. nigra and B. oleracea nuclear 

genomes (BBCC) and the B. nigra mitochondrial genome, while Brassica juncea has the 

B. nigra and B. rapa nuclear genomes (BBCC) and the B. rapa mitochondrial genome. 

Brassica napus has two subspecies, polima and napus. Both have the B. oleracea and B. 

rapa nuclear genomes (AACC), but B. napus polima appears to have the B. rapa 

mitochondrial genome and B. napus napus has the B. oleracea mitochondrial genome 

(Chang, S. et al. 2011; Franzke, A. et al. 2011; Grewe, F. et al. 2014). Thus it appears 

that the hybridization event between B. oleracea and B. rapa occurred at least twice, with 

each species being the maternal parent. In the analysis below we use the B. napus polima 

mitochondrial genome. We compared these Brassica species to Raphanus sativus and 

Sinapis arvensis as outgroups. These species are the closest relatives of the Brassicas 

with complete mitochondrial genome sequences (Grewe, F. et al. 2014). Several of these 

species were mapped prior to genomic sequencing, and repeated sequences and 

mitochondrial genome isomerization was observed (Palmer, J. D. 1988; Palmer, J. D. and 

L. A. Herbon 1986). 
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All eight of these species include one pair of long repeats, ranging in length from 

1.9kb to 9.7kb. However, these species show an interesting pattern. B. nigra, B. carinata, 

R. sativus and S. arvensis, hereafter referred to as group A, each have two copies of a 6.5 

to 9.7kb repeat that is only present as single copy sequence in the mitochondria of B. 

rapa, B. oleracea, B. napus and B. juncea, herafter referred to as group B (see Figure 

3.3). The group B species each have two copies of a long repeat 1.9kb long that is present 

as single-copy sequence in group A. Figure 3.3 shows these repeated sequences, aligned 

only to each other and placed onto the known phylogenetic tree of the Brassicales 

(Grewe, F. et al. 2014). The longest repeats are aligned, and the genes flanking them are 

shown. Part A shows the long repeat and neighboring sequences from the A group and 

the homologous single-copy sequences from the B group. Part B compares the long 

repeat from the B group to the single-copy homologous region from the A group. 

Grewe et al. examined the synonymous substitution rates in genes of Brassicales 

mitochondrial genomes (Grewe, F. et al. 2014) and found them to be very low, consistent 

with most land plants. However, the presence of repeats allows mutations in non-coding 

DNA to be examined qualitatively. The long repeats in the A group differ by large block 

substitutions and insertion/deletions. Where two copies are present in a species there are 

very few difference between copies, and they are generally near the boundaries of the 

repeats. Although significant differences can arise during speciation events, both copies 

of a repeat within a species remain identical. This supports the hypothesis that copies of 

repeated DNA are maintained as identical sequence by frequent recombination and gene 

conversion. 
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The long repeat of B. nigra and B. carinata underwent massive change in the 

lineage leading to the B group of Brassica species (see Figure 3.3). The first 1.6kb and 

the last 1.7kb of the long repeat in the A group are conserved in the B group, and the 

ccmB gene still flanks the repeat on one side. However, the last 1.7kb are inverted and 

separated from the first 1.6kb by 3.3kb of a sequence of unknown origin. An additional 

difference is seen in B. oleracea wherein rps7 now flanks the repeat rather than ccmB. 

Other major changes appear to have occurred in the time since B. nigra diverged from the 

ancestor of B. oleracea and B. rapa; a comparison of the complete mitochondrial 

genomes of B. rapa and B. nigra reveal at least 13 segments of DNA that have been 

rearranged. No major rearrangements have occurred between B. nigra and B. carinata, 

nor between B. rapa, B. juncea and B. napus polima. B. oleracea differs from B. rapa by 

approximately six rearrangement events (Grewe, F. et al. 2014). 

At the same time that the long repeat of the A group was being dramatically 

altered in the lineage leading to B. rapa and B. oleracea, a new long repeat appeared in 

the B group, which includes the coding sequence of the cox2 gene. This new long repeat 

is maintained throughout this group of four species, and the flanking genes are also 

conserved (see Figure 3.3). The cox2 gene is single copy in the A group and is in a nearly 

syntenic arrangement with neighboring genes. 

All alignments used in this analysis can be found at 

http://www.g3journal.org/content/9/2/549.supplemental 
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DISCUSSION 

The availability of complete mitochondrial genome sequences from many taxa of 

green plants allows us to compare the abundance and size distribution of non-tandem 

repeats across taxa. Although such repeats have been known for some time, their 

functions (if any) and evolution are largely mysterious. It has been suggested that their 

existence and maintenance are outgrowths of double-strand break repair events such as 

nonhomologous end-joining (NHEJ), break-induced replication (BIR) and gene 

conversion (Christensen, A. C. 2018). We describe here a Python script that uses BLAST 

(Altschul, S. F. et al. 1990) to find non-tandem repeats within sequences, and use it to 

analyze plant mitochondrial DNA. In addition, comparison of repeats between closely 

related species within the Brassicales showed that repeat differences between species 

were largely due to rearrangements and block substitutions or insertions, which could be 

due to NHEJ and BIR, while the two copies of the repeat were identical within a species, 

suggesting continuing repair by gene conversion or homologous recombination. 

Repeats in mitochondria appear to be more abundant and larger in the vascular 

plants than in the non-vascular taxa. This suggests that the first vascular common 

ancestor of lycophytes, ferns, gymnosperms and angiosperms acquired new mechanisms 

of mitochondrial genome replication and repair that led to a proliferation of repeats and 

increases in repeat size and mitochondrial genome size. Complete sequences of more 

species, particularly in the lycophytes and ferns, is necessary to add clarity but the 

ancestor of vascular plants evidently made a transition to increased use of double-strand 

break repair in their mitochondria, leading to the genomic gymnastics seen today. 
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The analysis of repeats in the Brassica species suggests that mitochondrial 

genomes can remain relatively static for long periods of time, but can also diverge very 

rapidly by rearrangements, sequence loss, and gain of sequences of unknown origin. This 

pattern resembles punctuated equilibrium (Gould, S. J. and N. Eldredge 1977). The 

mechanisms and frequency are unknown, but it suggests that a lineage can experience a 

burst of genome recombination, breakage and rejoining, dramatically rearranging and 

altering the mitochondrial genome, as if it had been shattered and rebuilt. These events 

occur on a time scale that is faster than that of speciation, leading to high levels of 

divergence, and loss of synteny. 

Qualitative differences have been described between the repeats shorter and 

longer than about 1kb (Arrieta-Montiel, M. P. et al. 2009; Klein, M. et al. 1994; Mower, 

J. P. et al. 2012). In general, the largest repeats within a species have been found to 

recombine constitutively, leading to isomerization of the genome into multiple major 

forms. The shortest repeats (less than 50bp) may be involved in homologous 

recombination events only rarely, while those of intermediate size, generally in the 100s 

of base pairs, can recombine in response to genome damage or in DNA maintenance 

mutants, but do not normally do so in unstressed, non-mutant plants, as noted above. The 

intermediate size repeats have been primarily analyzed in Arabidopsis thaliana, and have 

been found to recombine in abnormal conditions. In plants treated with ciprofloxacin 

(which induces mitochondrial double-strand breaks), or in mutants of the mitochondrial 

recG homolog, repeats of 452, 249, 204 and 126bp were seen to recombine (Wallet, C. et 

al. 2015). In mutants of msh1 (which results in high levels of ectopic recombination), 

there was some recombination seen between repeats as small as 70bp, but none in repeats 
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of 50bp or smaller (Davila, J. I. et al. 2011). This suggests a changing spectrum of 

function and activity correlated with size, which could also vary by species. 

Functional analysis of repeat recombination can be done by analyzing clones big 

enough to include the repeats (Klein, M. et al. 1994), by long read sequencing 

(Shearman, J. R. et al. 2016), PCR (Wallet, C. et al. 2015) or by Southern blotting 

(Arrieta-Montiel, M. P. et al. 2009; Sakamoto, W. et al. 1996). Functional analysis of the 

large repeats is an important step in understanding plant mitochondrial genome structure 

and evolution (Guo, W. et al. 2016; Guo, W. et al. 2017; Sloan, D. B. 2013) and may 

reveal different patterns of recombination between species, which would reveal important 

differences in the replication and repair machinery and dynamics. 

We doubt that there is an adaptive advantage to large size and abundant 

rearrangements in the genomes of plant mitochondria. We suggest that these are 

correlated traits accompanying the adaptive advantage of a greatly increased reliance on 

double-strand break repair. DNA repair is critically important because damage is more 

likely in mitochondria than the nucleus due to the presence of reactive oxygen species. In 

animals, the mitochondrial mutation rate is high, but the reduced mitochondrial genome 

size minimizes the number of potential mutational targets (Lynch, M. et al. 2006; Smith, 

D. R. 2016). However, with multiple copies of mitochondrial DNA in each cell, an 

alternative strategy in a high DNA damage environment is to increase the use of template 

DNA in repair. The accuracy of double-strand break repair when a template is used is 

accompanied by the creation of chimeras, rearrangements and duplications when 

templates are not identical or cannot be found by the repair enzymes. Dramatic 

expansions, rearrangements and losses, accompanied by low substitution rates in genes is 
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characteristic of flowering plant mitochondria. Selection on gene function maintains the 

genes, while the expansions and rearrangements must be nearly neutral. Once 

mitochondria evolved very efficient double-strand break repair, and a mechanism for 

inducing double-strand breaks at the sites of many types of damage, more primitive 

mechanisms, such as nucleotide excision repair can and have been lost (Gualberto, J. M. 

et al. 2014; Gualberto, J. M. and K. J. Newton 2017) without obvious evolutionary cost. 

The adaptive value of increased and efficient double-strand break repair is 

probably to avoid mutations in the essential genes of mitochondria, and is possible 

because of the abundance of double-stranded template molecules in each cell. However, 

this mechanism of repair has an additional correlated trait. There are bacterial species, 

such as Deinococcus radiodurans, that excel at double-strand break repair and can 

rebuild even significantly fragmented genomes (Krisko, A. and M. Radman 2013) while 

also being able to minimize radiation-induced damage (Sharma, A. et al. 2017). While D. 

radiodurans is notoriously resistant to ionizing radiation, the adaptive value is thought to 

be desiccation resistance, because dehydration is more likely to have been experienced 

than extreme radiation in the history of the lineage, and also produces double-strand 

breaks (Mattimore, V. and J. R. Battista 1996). Radiation resistant bacteria in unrelated 

phylogenetic groups show more genome rearrangements and loss of synteny than their 

radiation sensitive relatives (Repar, J. et al. 2017), suggesting that abundant double-

strand break repair is the cause of both the resistance to significant double-strand 

breakage and the loss of synteny. An interesting possibility is that very efficient double-

strand break repair in plant mitochondria also confers desiccation resistance as a 

correlated trait. Because mitochondria are metabolically active immediately upon 
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imbibition of seeds, DNA damage must be repaired very efficiently and rapidly 

(Paszkiewicz, G. et al. 2017). Efficient repair of desiccation-mediated damage in all 

cellular compartments is a prerequisite to being able to produce seeds or spores for 

reproduction. It is possible that the DNA repair strategy of plant mitochondria was one of 

several factors (including desiccation resistance of the nuclear and plastid genomes, 

presumably by distinct mechanisms) that are beneficial to vascular plants. The evidence 

of the repeats suggests that the transition to double-strand break repair in mitochondria 

occurred at approximately the same time as the transition to vascularity in plants, and it 

may have been one of several traits that enabled their success. In addition, once the life 

cycles of land plants included periods of desiccation in spores and seeds, double-strand 

breakage would have increased, accompanied by increases in rearrangements, 

expansions, and chimeras. The mechanisms of double-strand break repair continue to be 

important for understanding the evolution of plant mitochondrial genomes. 
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Figure 3.1: Size distributions of repeats in groups of species. The number of species 

represented in each group is shown. Headings indicate the bins of repeat sizes and the 

numbers indicate the fraction of species in that group that have at least one repeat of that 

size. Heat map color coding is blue for one and yellow for zero. 
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Figure 3.2: Distribution of repeat sizes among angiosperms. Species are sorted by the 

phylogenetic groups as described by the Angiosperm phylogeny group (Cole et al. 2017). 

The number of repeats of each size class is shown. Blue shading indicates a number 

greater than zero. 

 



58 
 

 

 

 



59 
 

Figure 3.3: Alignment of long repeats in the Brassicales. A phylogenetic tree is shown 

at left, derived from Grewe et al. (Grewe, F. et al. 2014). Part A aligns the longest repeat 

in Group A (R. sativus, S. arvensis, B. nigra and B. carinata) and shows the genes 

flanking them. The homologous single-copy sequence from B. rapa, B. napus, B. juncea 

and B. oleracea is also shown. Part B aligns the longest repeat in Group B (B. rapa, B. 

napus, B. juncea and B. oleracea), and shows the homologous single-copy region in 

Group A. Red arrows indicate the long repeats that were used to align all sequences in the 

two parts of the figure. Blue indicates genes in the flanking regions that may or may not 

be conserved or rearranged. Green indicates rRNA genes and small arrows represent 

tRNA genes. Branch lengths in the tree are not to scale. The sequences are depicted at the 

scale shown in the figure. 
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CHAPTER 4 

MITOCHONDRIAL DNA REPAIR IN AN ARABIDOPSIS THALIANA URACIL 

DNA N-GLYCOSYLASE MUTANT 

ABSTRACT 

Substitution rates in plant mitochondrial genes are extremely low, indicating 

strong selective pressure as well as efficient repair. Plant mitochondria possess base 

excision repair pathways, however, many repair pathways such as nucleotide excision 

repair and mismatch repair appear to be absent. In the absence of these pathways, many 

DNA lesions must be repaired by a different mechanism. To test the hypothesis that 

double-strand break repair (DSBR) is that mechanism, we maintained independent self-

crossing lineages of plants deficient in uracil-N-glycosylase (UNG) for 10 generations to 

determine the repair outcomes when that pathway is missing. Surprisingly, no single 

nucleotide polymorphisms (SNPs) were fixed in any line in generation 10. The pattern of 

heteroplasmic SNPs was also unaltered through 10 generations. Clearly DNA 

maintenance in reproductive meristem mitochondria is effective in the absence of UNG. 

In mature leaves, there is evidence of aborted DSBR at short homologies, indicating an 

increase in double strand breaks. In young leaves there is no evidence of aborted DSBR, 

indicating that mitochondria in meristematic tissue have access to full homologous repair 

templates. These results indicate that double strand break repair is a general system of 

repair in plant mitochondria. The existence of this general system may explain the 

seemingly anomalous differences in plant mitochondria between low mutation rates in 

genes and rearrangements in non-genes. 
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INTRODUCTION 

Plant mitochondrial genomes have very low base substitution rates, while also 

expanding and rearranging rapidly (Wolfe et al., 1987, Palmer and Herbon, 1988, Drouin 

et al., 2008, Richardson et al., 2013). The low substitution rate and the high 

rearrangement rate of plant mitochondria can be explained by selection and the specific 

DNA damage repair mechanisms available. These mechanisms can also account for the 

observations of genome expansion found in land plant mitochondria. The low 

nonsynonymous substitution rates in protein coding genes indicates that selective 

pressure to maintain the genes is high, and the low synonymous substitution rates indicate 

that the DNA repair mechanisms are very accurate (Sloan and Taylor, 2010, Wynn and 

Christensen 2015). Despite the low mutation rate of mitochondrial genes over 

evolutionary time, mitochondrial genomes in mature cells accumulate DNA damage that 

is not repaired (Kumar et al. 2014). This indicates that there are fundamental differences 

between DNA maintenance in genomes meant to be passed on to the next generation and 

genomes that are not. In meristematic cells, where cell division occurs, mitochondria fuse 

together to form a large mitochondrion (Seguí-Simarro and Staehelin 2008). This fusion 

brings mitochondrial genomes together for genome replication, but also ensures that there 

is a homologous template available for DNA repair. These meristematic cells eventually 

produce the reproductive tissue of a plant; from embryogenesis to egg cell production, the 

mitochondrial genomes inherited from parents and passed down to offspring will have 

homologous templates available to them (Seguí-Simarro and Staehelin 2009).  

However, little is known about the multiple pathways of DNA repair in plant 

mitochondria. So far, there is no evidence of nucleotide excision repair (NER), nor 
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mismatch repair (MMR) in plant mitochondria (Boesch et al., 2009, Gualberto and 

Newton, 2017). It has been hypothesized that in plant mitochondria, the types of DNA 

damage that are usually repaired through NER and MMR are repaired through double-

strand break repair (DSBR) (Christensen, 2014, Christensen, 2018). Plant mitochondria 

have the nuclear-encoded base excision repair (BER) pathway enzyme Uracil DNA 

glycosylase (UNG) (Boesch et al., 2009). UNG is an enzyme that can recognize and bind 

to uracil in DNA and begin the process of base excision repair by enzymatically excising 

the uracil (U) residue from single stranded or double stranded DNA (Cordoba-Cañero et 

al., 2010). Uracil can appear in a DNA strand due to the spontaneous deamination of 

cytosine, or by the misincorporation of dUTP during replication (Krokan et al., 1997). 

Unrepaired uracil in DNA can lead to G-C to A-T transitions within the genome.  

Few pathways of repair besides BER and DSBR are known in plant mitochondria, 

and it is possible that many lesions, including mismatches, are repaired by creating 

double-strand breaks and using a template to repair both strands. Our hypothesis is that 

DSBR accounts for most of the repair in meristematic plant mitochondria, and both error-

prone and accurate subtypes of DSBR lead to the observed patterns of genome evolution 

(Christensen, 2013). One way of testing this is to eliminate the pathway of uracil base 

excision repair and ask if the G-U mispairs that occur by spontaneous deamination are 

repaired, and if so are instead repaired by DSBR. In this work we examine an 

Arabidopsis thaliana UNG knockout line and investigate the effects on the mitochondrial 

genome over many generations. To further disrupt the genome, we express the cytidine 

deaminase APOBEC3G in the Arabidopsis mitochondria to increase the rate of cytosine 

deamination and accelerate DNA damage. 
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One of the hallmarks of DSBR in plant mitochondria is the effect on the non-

tandem repeats that exist in virtually all plant mitochondria (Wynn and Christensen2019). 

The Arabidopsis thaliana mitochondrial genome contains two pairs of very large repeats 

(4.2 and 6.6kb) that commonly undergo recombination (Palmer and Shields, 1984, Klein 

et al., 1994, Unseld et al., 1997) producing multiple isoforms of the genome. The 

mitochondrial genome also contains many smaller repeats between 50 and 1000 base 

pairs, (Unseld et al., 1997, Arrieta-Montiel et al., 2009, Davila et al., 2011, Wynn and 

Christensen, 2019). In wild type plants, these intermediate-size repeats recombine at very 

low rates. However, these repeats have been shown to recombine with ectopic repeat 

copies at higher rates in several mutants in these DSBR genes, such as msh1 and reca3 

(Abdelnoor et al., 2003, Shedge et al., 2007, Miller-Messmer et al., 2012). Thus genome 

dynamics around intermediate repeats can be an indicator of increased DSBs. In this 

work we show that a loss of uracil base excision repair leads to alterations in repeat 

dynamics. 

Numerous proteins known to be involved in the processing of plant mitochondrial 

DSBs have been characterized. Plants lacking the activity of mitochondrially targeted 

recA homologs have been shown to be deficient in DSBR (Odahara et al., 2007, Miller-

Messmer et al., 2012). In addition, it has been hypothesized that the plant MSH1 protein 

may be involved in binding to DNA lesions and initiating DSBs (Christensen, 2014, 

Christensen, 2018). The MSH1 protein contains a mismatch binding domain fused to a 

GIY-YIG type endonuclease domain which may be able to make DSBs (Abdelnoor et al., 

2006, Kleinstiver et al., 2013). In this work we provide evidence that in the absence of 
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mitochondrial UNG activity, several genes involved in DSBR, including MSH1, are 

transcriptionally upregulated, providing a possible explanation for the increased DSBR. 

RESULTS 

Lack of UNG activity in mutants 

It has previously been reported that cell extracts of the Arabidopsis thaliana ung 

T-DNA insertion strain used in this experiment, GK-440E07 (ABRC seed stock 

CS308282), shows no uracil glycosylase activity (Boesch 2009). To increase the rate of 

cytosine deamination in the mitochondrial genome and show that effects of the UNG 

knockout on mitochondrial mutation rates could be detected, the human APOBEC3G –

CTD 2K3A cytidine deaminase (A3G) (Chen et al., 2007) was expressed in both wild-

type and ung Arabidopsis thaliana lines and targeted to the mitochondria by an amino-

terminal fusion of the 62 amino acid mitochondrial targeting peptide (MTP) from 

Alternative Oxidase (AOX1A). Fluorescence microscopy of Arabidopsis thaliana 

expressing an MTP-A3G-GFP fusion shows that the MTP-A3G construct is expressed 

and targeted to the mitochondria (See Figure 4.1). 

We expected that in the absence of UNG there would be an increase in G-C to A-

T substitution mutations. To test this prediction, we sequenced both a wild-type 

Arabidopsis plant expressing the MTP-A3G construct (Col-0 MTP-A3G) and a ung plant 

expressing the MTP-A3G construct (ung MTP-A3G) using an Illumina Hi-Seq4000 

system. Mitochondrial sequences from these plants were aligned to the Columbia-0 

reference genome using BWA-MEM (Li, 2013) and single nucleotide polymorphisms 

were identified using VarDict (Lai et al., 2016).  
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There were no SNPs that reached fixation (an allele frequency of 1) in either 

plant. Mitochondrial genomes are not diploid; each cell can have many copies of the 

mitochondrial genome. Therefore, it is possible that an individual plant could accumulate 

low frequency mutations in some of the mitochondrial genomes in the cell. VarDict was 

used to detect heteroplasmic SNPs at allele frequencies as low as 0.05. VarDict's 

sensitivity in calling low frequency SNPs scales with depth of coverage and quality of the 

sample, so it is not possible to directly compare heteroplasmic mutation rates in samples 

with different depths of coverage. However, because the activity of the UNG protein is 

specific to uracil, the absence of the UNG protein should not have any effect on mutation 

rates other than G-C to A-T transitions. We therefore considered heteroplasmic mutations 

that are not G-C to A-T transitions to be the background rate of heteroplasmic SNP 

accumulation in plant mitochondria. We therefore compared the numbers of G-C to A-T 

transitions to all other mutations. If the ung MTP-A3G line is accumulating G-C to A-T 

transitions at a faster rate than the Col-0 MTP-A3G line, we would expect to see that as 

an increased ratio of G-C to A-T transitions compared to other mutation types. The Col-0 

MTP-A3G plant had a heteroplasmic GC-AT/total SNPs ratio of 0.59, while the ung 

MTP-A3G plant had a heteroplasmic GC-AT/total SNPs ratio of 0.68 (Table 4.1). When 

the rate of cytosine deamination is increased by the activity of APOBEC3G, the ung plant 

accumulates heteroplasmic GC-AT SNPs at a faster rate than wild-type, and our 

computational pipeline is able to detect this difference. 

Mutation accumulation in the absence of UNG 

To determine the effects of the UNG knockout across multiple generations under 

normal conditions, without the presence of APOBEC3G in the mitochondria. We 
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performed a mutation accumulation study (Halligan and Keightley, 2009). We chose 23 

different ung homozygous plants derived from one hemizygous parent. These 23 plants 

were designated as generation 1 ung and were allowed to self-cross. The next generation 

was derived by single-seed descent from each line, and this was repeated until generation 

10 ung plants were obtained. Leaf tissue and progeny seeds from each line were kept at 

each generation. 

The leaf tissue from generation 10 of the 23 ung mutation accumulation lines and 

a wild-type Col-0 were sequenced and analyzed with VarDict as described above. Similar 

to the MTP-A3G plants, there were no SNPs in any of our ung mutation accumulation 

lines that had reached fixation (an allele frequency of one). In contrast, there is little 

difference in the ratios of GC-AT/total SNPs between the ung lines and Col-0 (see Table 

4.1). Because detection of low frequency SNPs depends on read depth, we only analyzed 

the 7 ung samples with an average mitochondrial read depth above 125x for this 

comparison. In the absence of a functional UNG protein and under normal greenhouse 

physiological conditions, plant mitochondria do not accumulate cytosine deamination 

mutations at an increased rate. 

Nuclear Mutation Accumulation 

UNG is the only Uracil Glycosylase in Arabidopsis thaliana and may be active in 

the nucleus as well as the mitochondria. To test for nuclear mutations due to the absence 

of UNG, sequences were aligned to the Columbia-0 reference genome using BWA-MEM 

and single nucleotide polymorphisms were identified using Bcftools Call (Li, 2011). No 

increase in GC-AT transitions was detected in any line (Table 4.2) 
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Increased Double-strand break repair 

If most DNA damage in plant mitochondria is repaired by double-strand break 

repair (DSBR), supplemented by base excision repair (Boesch et al., 2009), then in the 

absence of the Uracil-N-glycosylase (UNG) pathway we predict an increase in DSBR. To 

find evidence of this we used quantitative PCR (qPCR) to assay crossing over between 

identical non-tandem repeats, which increases when DSBR is increased (Shedge et al., 

2007, Miller-Messmer et al., 2012, Wallet et al., 2015). Different combinations of 

primers in the unique sequences flanking the repeats allow us to determine the relative 

copy numbers of parental-type repeats and low frequency recombinants (Figure 4.2A). 

The mitochondrial genes cox2 and rrn18 were used to standardize relative amplification 

between lines. We and others (Davila et al., 2011, Wallet et al., 2015) have found that 

some of the intermediate repeats are well-suited for qPCR analysis and are sensitive 

indicators of ectopic recombination, increasing in repair-defective mutants and when 

drugs are used to increase double-strand breaks. We analyzed the three repeats known as 

Repeats B, D, and L (Arrieta-Montiel et al., 2009) in both young leaves and mature 

leaves. In young leaves, there is no significant difference in the amounts of parental or 

recombinant forms between ung lines and Col-0 (Figure 4.2B). In mature leaves, all three 

repeats show significant reductions in the parental 2/2 form, while repeat B also shows a 

reduction in the parental 1/1 form (unpaired T-test p<0.05, Figure 4.2C).  

Alternative Repair Pathway Genes  

Because the ung mutants show increased double-strand break repair but not an 

increase of G-C to A-T transition mutations, we infer that the inevitable appearance of 

uracil in the DNA is repaired via conversion of a G-U pair to a double-strand break and 
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efficiently repaired by the DSBR pathway. If this is true, genes involved in the DSBR 

processes of breakage, homology surveillance and strand invasion in mitochondria will 

be up-regulated in ung mutants. To test this hypothesis, we assayed transcript levels of 

several candidate genes known to be involved in DSBR (Abdelnoor et al., 2003, Khazi et 

al., 2003, Edmondson et al., 2005, Odahara et al., 2007, Shedge et al., 2007, Arrieta-

Montiel et al., 2009, Miller-Messmer et al., 2012, Gualberto et al., 2014, Wallet et al., 

2015, Gualberto and Newton, 2017) in ung lines compared to wild-type using RT-PCR. 

MSH1 and RECA2 were significantly upregulated in ung lines (MSH1: 5.60-fold increase, 

unpaired T-test p<0.05. RECA2: 3.19-fold increase, unpaired T-test p<0.05 – see Figure 

4.3). The single-strand binding protein gene OSB1 was also measurably upregulated in 

ung lines (3.07-fold increase, unpaired T-test p=0.053). RECA3, SSB, and WHY2 showed 

no differential expression compared to wild-type (unpaired T-test p>0.05). 

DISCUSSION 

In the mitochondrion as well as in the nucleus and chloroplast, cytosine is subject 

to deamination to uracil. This could potentially lead to transition mutations, and is dealt 

with by a specialized base excision repair pathway. The first step in this pathway is 

hydrolysis of the glycosidic bond by the enzyme Uracil-N-glycosylase (UNG), leaving 

behind an abasic site (Cordoba-Cañero et al., 2010). An AP endonuclease can then cut 

the DNA backbone, producing a 3’ OH and a 5’ dRP. Both DNA polymerases found in 

Arabidopsis mitochondria, POL1A and POL1B, exhibit 5’-dRP lyase activity, allowing 

them to remove the 5’ dRP and polymerize a new nucleotide replacing the uracil 

(Trasviña-Arenas et al., 2018). In the absence of functional UNG protein, cytosine will 

still be deaminated in plant mitochondrial genomes, so efficient removal of uracil must be 
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through a different repair mechanism, most likely DSBR (Christensen, 2014, Christensen, 

2018). We have found that in ung mutant lines, there are significant changes in the 

relative abundance of parental and recombinant forms of intermediate repeats, as well as 

an increase in the expression of genes known to be involved in DSBR, consistent with 

this hypothesis. 

We have shown that when cytosine deamination is increased by the expression of 

the APOBEC3G cytidine deaminase in plant mitochondria, ung lines accumulate more G-

C to A-T transitions than wild-type. Surprisingly, we have also found that under normal 

cellular conditions, without the added deamination activity of APOBEC3G, ung lines do 

not accumulate G-C to A-T transition mutations at a higher rate than wild-type. This 

finding is particularly surprising given the presumed bottlenecking of mitochondrial 

genomes during female gametogenesis, and given the deliberate bottleneck in the 

experimental design of single-seed descent for 10 generations. This finding supports the 

hypothesis that plant mitochondria have a very efficient alternative damage surveillance 

system that can prevent G-C to A-T transitions from becoming fixed in the mitochondrial 

population.  

The angiosperm MSH1 protein consists of a DNA mismatch binding domain 

fused to a double-stranded DNA endonuclease domain (Abdelnoor et al., 2006, 

Kleinstiver et al., 2013). Although mainly characterized for its role in recombination 

surveillance (Shedge et al., 2007), MSH1 is a good candidate for a protein that may be 

able to recognize and bind to various DNA lesions and make DSBs near the site of the 

lesion, thus funneling these types of damage into the DSBR pathway. With many 

mitochondria and many mitochondrial genomes in each cell there are numerous available 
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templates to accurately repair DSBs through homologous recombination, making this a 

plausible mechanism of genome maintenance. Here we show that in ung lines, MSH1 is 

transcriptionally upregulated more than 5-fold compared to wild-type. This further 

supports the hypothesis that MSH1 initiates repair in plant mitochondria by creating a 

double-strand break at G-U pairs, and possibly other mismatches and damaged bases.  

Several other proteins involved in processing plant mitochondrial DSBs have 

been characterized. The RECA homologs, RECA2 and RECA3, are homology search and 

strand invasion proteins (Xu and Marians, 2002, Khazi et al., 2003, McGrew and Knight, 

2003, Odahara et al., 2007, Shedge et al., 2007, Rowan et al., 2010, Miller-Messmer et 

al., 2012). The two mitochondrial RECAs share much sequence similarity, however 

RECA2 is dual targeted to both the mitochondria and the chloroplast, while RECA3 is 

found only in the mitochondria (Shedge et al., 2007, Miller-Messmer et al., 2012). 

RECA3 also lacks a C-terminal motif present on RECA2 and most other homologs. This 

motif has been shown to modulate the ability of RECA proteins to displace competing 

ssDNA binding proteins in E. coli (Eggler et al., 2003). Arabidopsis reca2 mutants are 

seedling lethal and both reca2 and reca3 lines show increased ectopic recombination at 

intermediate repeats (Miller-Messmer et al., 2012). Arabidopsis RECA2 has functional 

properties that RECA3 cannot perform, such as complementing a bacterial recA mutant 

during the repair of UV-C induced DNA lesions (Khazi et al., 2003). Here we show that 

in ung lines, RECA2 is transcriptionally upregulated more than 3-fold compared to the 

wild-type. However, RECA3 is not upregulated in ung lines. Responding to MSH1-

initiated DSBs may be one of the functions unique to RECA2. The increased expression 
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of RECA2 in the absence of a functional UNG protein is further evidence that uracil 

arising in DNA may be repaired through the mitochondrial DSBR pathway. 

The ssDNA binding protein OSB1 is upregulated over 3-fold. At a double strand 

break, OSB1 competitively binds to ssDNA and recruits the RECA proteins to promote 

the repair of a double strand break by a homologous template and avoid the error-prone 

microhomology-mediated end-joining pathway (García-Medel et al. 2019). 

We also tested the differential expression of other genes known to be involved in 

processing mitochondrial DSBs. The single stranded binding protein genes WHY2 and 

SSB were not found to be differentially expressed at the transcript level compared to 

wild-type. The presence of different ssDNA binding proteins influences which pathway 

of DSBR a break is repaired by (García-Medel et al. 2019). Increased amounts of WHY2 

and SSB may not be needed to accurately repair induced DSBs in the ung lines. 

The specific patterns of recombination at mitochondrial intermediate repeats are 

different between wild-type, ung mutants, and DSBR mutants. In msh1 lines, there is an 

increase in repeat recombination likely due to relaxed homology surveillance in the 

absence of the MSH1 protein (Shedge et al., 2007). In mutant lines of ssDNA binding 

proteins involved in DSBR, such as recA2, recA3, and osb1 (Miller-Messmer et al. 2012, 

Zaegel et al. 2006), there is an increase in repeat recombination due to differences in the 

way DNA ends are handled in the absence of the ssDNA binding proteins. In ung lines, 

the mitochondrial recombination machinery is still intact, so any differences in repeat 

recombination between ung lines and wild-type are not due to differences in processing 

the DSB, but due to the increase in the amount of DSBs in the absence of UNG. 
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Plant mitochondrial genomes likely replicate by recombination-dependent 

replication (RDR) (Backert and Börner, 2000). Most organellar genome replication 

occurs in meristematic tissue, where mitochondria fuse together to form a large, reticulate 

mitochondrion (Seguí-Simarro et al. 2008). This mitochondrial fusion provides a means 

to homogenize mtDNA by gene conversion, and repair lesions through homologous 

recombination (Rose and McCurdy, 2017). As cells differentiate and age, organellar 

genomes degrade (Bendich 2003). Clearly there is a difference in mitochondrial DNA 

maintenance in mature cells compared to young cells, either due to a lack of DNA repair 

in mature mitochondria, or a difference in DNA repair mechanism. 

 In young leaves, there is no significant difference in recombination at 

intermediate repeats between ung lines and wild-type. In meristematic cells, 

mitochondrial fusion brings many copies of the mitochondrial genome together, 

providing many possible templates for the accurate repair of Uracil by homologous 

recombination. In mature leaves, ung lines show a reduction in parental type repeats 

compared to wild-type. This indicates that there is an increase in double strand breaks 

and an increase in attempted DSBR by break-induced replication at intermediate repeats. 

However, MSH1 aborts recombination at the heteroduplexes that form during 

recombination at intermediate repeats (Shedge et al., 2007)(see Figure 4.4). The dispersal 

of subgenomic molecules into individual mitochondria during cell maturation and 

differentiation increases the difficulty of finding a long homology for DNA repair, 

leading to an increase in aborted recombination at intermediate repeats and may help 

explain the degradation of mtDNA in mature cells.  
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To determine the outcomes of genomic uracil in the absence of a functional UNG 

protein, we sequenced the genomes of several ung lines. No fixed mutations of any kind 

were found in ung lines, even after 10 generations of self-crossing. Low frequency 

heteroplasmic SNPs were found in both wild-type and ung lines, but ung lines showed no 

difference in the ratio of G-C to A-T transitions to other mutation types when compared 

to wild-type.  

Clearly the double-strand break repair pathway in plant mitochondria can repair 

uracil in DNA sufficiently to prevent mutation accumulation in the absence of the UNG 

protein. Why then has the BER pathway been conserved in plant mitochondria while 

NER and MMR have apparently been lost? DSBR protects the genome efficiently from 

mutations in plants growing under ideal conditions, but cannot successfully repair all 

lesions when the rate of cytosine deamination is increased (see Table 4.1). Throughout 

the evolutionary history of Arabidopsis thaliana and into the present, wild growing plants 

are exposed to a range of growth conditions and stresses that experimental plants in a 

greenhouse avoid. The rate of spontaneous cytosine deamination increases with 

increasing temperature (Drake and Baltz, 1976, Lewis et al., 2016), so DSBR alone may 

not be able repair the extent of uracil found in DNA across the range of temperatures a 

wild plant would experience, providing the selective pressure to maintain a distinct BER 

pathway in plant mitochondria. 

Here we have provided evidence that in the absence of a dedicated BER pathway, 

plants growing in greenhouse growth chamber conditions do not accumulate 

mitochondrial SNPs at an increased rate. Instead, DNA damage is accurately repaired by 

double-strand break repair which also causes an increase in ectopic recombination at 
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identical non-tandem repeats. It has recently been shown that mice lacking a different 

mitochondrial BER protein, oxoguanine glycosylase, also do not accumulate 

mitochondrial SNPs (Kauppila et al., 2018). Here we show that in plants base-excision 

repair by UNG is similarly unnecessary to prevent mitochondrial mutations in growth 

chamber conditions. Perhaps a generalized system of DNA repair also exists in 

mammalian mitochondria similar to the broad capacity of DSBR to repair different 

lesions in plant mitochondria. Clearly DSBR is efficient and accurate, and the presence of 

the UNG pathway reduces ectopic recombination slightly and can successfully repair 

uracil in DNA even if the rate of cytosine deamination is increased. Double strand break 

repair and recombination are important mechanisms in the evolution of plant 

mitochondrial genomes, but many key enzymes and steps in the repair pathway are still 

unknown. Further identification and characterization of these missing steps is sure to 

provide additional insight into the unique evolutionary dynamics of plant mitochondrial 

genomes. 

METHODS 

Plant growth conditions 

Arabidopsis thaliana Columbia-0 (Col-0) seeds were obtained from Lehle Seeds 

(Round Rock, TX, USA). UNG (AT3G18630) T-DNA insertion hemizygous lines were 

obtained from the Arabidopsis Biological Resource Center, line number CS308282. 

Hemizygous T-DNA lines were self-crossed to obtain homozygous lines (Genotyping 

primers: wild-type 5’-TGTCAAAGTCCTGCAATTCTTCTCACA-3’ and  

5’-TCGTGCCATATCTTGCAGACCACA-3’, 

 ung 5’-ATAATAACGCTGCGGACATCTACATTTT-3’ and  
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5'-ACTTGGAGAAGGTAAAGCAATTCA-3'). All plants were grown in walk-in growth 

chambers under a 16:8 light:dark schedule at 22oC. Plants grown on agar were surface 

sterilized and grown on 1x Murashige and Skoog Basal Medium (MSA) with Gamborg’s 

vitamins (Sigma) with 5μg/mL Nystatin Dihydrate to prevent fungal contamination. 

Vector construction 

The APOBEC3G gene was synthesized by Life Technologies Gene Strings 

(Carpenter et al 2010) using Arabidopsis thaliana preferred codons and including the 62 

amino acid mitochondrial targeting peptide (MTP) from Alternative Oxidase on the N-

terminus of the translated protein. The MTP-APOBEC3G construct was cloned into the 

vector pUB-DEST (NCBI:taxid1298537) driven by the ubiquitin (UBQ10) promoter and 

transformed into wild-type and ung Arabidopsis thaliana plants by the Agrobacterium 

floral dip method (Clough and Bent 1998). To ensure proper mitochondrial targeting of 

the MTP-APOBEC3G construct, the construct was cloned into pK7FWG2 with a C-

terminal GFP fusion (Karimi et al. 2002). Arabidopsis thaliana plants were again 

transformed by the Agrobacterium floral dip method and mitochondrial fluorescence was 

confirmed with fluorescence microscopy. 

RT-PCR 

RNA was extracted from young leaves of plants grown in soil during ung 

generation ten (Onate-Sanchez and Vicente-Carbajosa, 2008). Reverse transcription using 

Bio-Rad iScript was performed and the resulting cDNA was used as a template for qPCR 

to measure relative transcript amounts. Quantitative RT-PCR data was normalized using 

UBQ11 as a housekeeping gene control. Reactions were performed in a Bio-Rad CFX96 

thermocycler using 96 well plates and a reaction volume of 20µL/well. SYBRGreen 
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mastermix (Bio-Rad) was used in all reactions. Three biological and three technical 

replicates were used for each amplification. Primers are listed in Table S2. The MIQE 

guidelines were followed (Bustin et al., 2009) and primer efficiencies are listed in Table 

S3. The thermocycling program for all RT-qPCR was a ten-minute denaturing step at 95o 

followed by 45 cycles of 10s at 95o, 15s at 60o, and 13s at 72o. Following amplification, 

melt curve analysis was done on all reactions to ensure target specificity. The melt curve 

program for all RT-qPCR was from 65o-95o at 0.5o increments for 5s each. 

Repeat recombination qPCR 

DNA was collected from the mature leaves of Columbia-0 and generation ten ung 

plants using the CTAB DNA extraction method (Allen et al., 2006). qPCR was 

performed using primers from the flanking sequences of the intermediate repeats. Primers 

are listed in Table S1. Using different combinations of forward and reverse primers, 

either the parental or recombinant forms of the repeat can be selectively amplified (see 

Figure 1A). The mitochondrially-encoded COX2 and RRN18 genes were used as 

standards for analysis. Reactions were performed in a Bio-Rad CFX96 thermocycler 

using 96 well plates with a reaction volume of 20µL/well. SYBRGreen mastermix (Bio-

Rad) was used in all reactions. Three biological and three technical replicates were used 

for each reaction. The thermocycling program for all repeat recombination qPCR was a 

ten-minute denaturing step at 95o followed by 45 cycles of 10s at 95o, 15s at 60o, and a 

primer specific amount of time at 72o (extension times for each primer pair can be found 

in Table S1). Following amplification, melt curve analysis was done on all reactions to 

ensure target specificity. The melt curve program for all qPCR was from 65o-95o at 0.5o 

increments for 5s each. 
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DNA sequencing 

DNA extraction from frozen young leaves of Columbia-0, generation 10 ung, and 

APOBEC3G plants was done by a modification of the SPRI magnetic beads method of 

Rowan et al (Rowan et al., 2015, Rowan et al., 2017). Genomic libraries for paired-end 

sequencing were prepared using a modification of the Nextera protocol (Caruccio, 2011), 

modified for smaller volumes following Baym et al (Baym et al., 2015). Following 

treatment with the Nextera Tn5 transpososome 14 cycles of amplification were done. 

Libraries were size-selected to be between 400 and 800bp in length using SPRI beads 

(Rowan et al., 2017). Libraries were sequenced with 150bp paired-end reads on an 

Illumina HiSeq 4000 by the Vincent J. Coates Genomics Sequencing Laboratory at UC 

Berkeley. 

Reads were aligned using BWA-MEM v0.7.12-r1039 (Li, 2013). The reference 

sequence used for alignment was a file containing the improved Columbia-0 

mitochondrial genome (accession BK010421.1) (Sloan et al., 2018) as well as the TAIR 

10 Arabidopsis thaliana nuclear chromosomes and chloroplast genome sequences 

(Berardini et al., 2015). Using Samtools v1.3.1 (Li et al., 2009), bam files were sorted for 

uniquely mapped reads for downstream analysis. 

Organellar variants were called using VarDict (Lai et al., 2016). To minimize the 

effects of sequencing errors, SNPs called by VarDict were filtered by the stringent quality 

parameters of Allele Frequency ≥ 0.05, Qmean ≥ 30, MQ ≥ 30, NM ≤ 3, Pmean ≥ 8, Pstd 

= 1, AltFwdReads ≥ 3, and AltRevReads ≥ 3. The mitochondrial reference genome 

positions corresponding to RRN18 and RRN26 were excluded from analysis because they 

have similarity to bacterial 16S and 23S ribosomal RNAs, respectively. Sequencing reads 
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from contaminating soil bacteria can be misaligned to these positions and falsely called 

as low frequency SNPs. No other mitochondrial sequences show enough similarity to 

bacterial genes to be misaligned by BWA MEM. 

Nuclear variants were called using Samtools mpileup (v. 1.3.1) and Bcftools call 

(v. 1.2) and filtered for a call quality of 30. To avoid false positives, a 5 Mb region of 

each chromosome was used for analysis, avoiding centromeric and telomeric regions. 

Accession Numbers 

Fastq files generated from Illumina sequencing of ung lines and wild-type control 

are available from the Sequence Read Archive, BioProject ID PRJNA492503. 
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Figure 4.1: Mitochondrial targeting of a GFP labeled MTP-APOBEC3G construct. 

Fluorescence microscopy of an Arabidopsis thaliana plant transformed with an MTP-

APOBEC3G-GFP construct. Green mitochondria indicate the proper expression and 

targeting of the construct. Autofluorescence of chloroplasts can be seen in red.  
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Table 4.1: Heteroplasmic mitochondrial SNPs in Col-0 wild-type, ung mutant lines, 

Col-0 MTP-A3G, and ung MTP-A3G. SNPs were called using VarDict as described in 

Methods. SNP counts are shown for the entire mitochondrial genome, sorted by the type 

of change. Only lines with average mitochondrial depth greater than 125x are used in this 

analysis 

 

GC-

AT 

GC-

TA 

GC-

CG 

AT-

GC 

AT-

TA 

AT-

CG Total GC-AT/total 

Col-0 41 8 6 6 7 3 71 0.577465 

ung115 19 6 3 4 3 3 38 0.5 

ung159 20 5 3 5 5 1 39 0.512821 

ung163 38 10 6 5 7 3 69 0.550725 

ung176 37 10 4 6 6 3 66 0.560606 

ung198 31 7 5 12 10 4 69 0.449275 

ung201 37 7 5 12 8 3 72 0.513889 

ung203 28 5 3 18 4 2 60 0.466667 

Col-0  

MTP-A3G 44 11 4 3 9 3 74 0.594595 

ung 

MTP-A3G 81 7 4 20 5 2 119 0.680672 
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Table 4.2: Nuclear SNPs in Col-0 wild-type, ung mutant lines, Col-0 MTP-A3G, and 

ung MTP-A3G. SNPs were called using Bcftools Call as described in Methods. SNP 

counts are shown for 5Mb regions of each chromosome. 

 GC-AT Total SNPs Ratio 

Col-0 287 2173 0.132075 

ung115 1207 10967 0.110057 

ung159 1396 12676 0.110129 

ung163 260 2281 0.113985 

ung176 650 6427 0.101136 

ung198 1301 11679 0.111397 

ung201 1311 13713 0.095603 

ung203 1313 12702 0.10337 

Col-0  

MTP-A3G 334 2756 0.12119 

ung  

MTP-A3G 888 7310 0.121477 
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Figure 4.2: qPCR analysis of intermediate repeat recombination in ung lines 

compared to wild-type. Recombination at intermediate repeats is an indicator of 

increased double strand breaks in plant mitochondrial genomes.  A) Primer scheme for 

detecting parental and recombinant repeats. Using different combinations of primers that 

anneal to the unique sequence flanking the repeats, either parental type (1/1 and 2/2) or 

recombinant type (1/2 and 2/1) repeats can be amplified B) Fold change of intermediate 

repeats in young leaves of ung lines relative to wild-type. Error bars are standard 

deviation of three biological replicates. C) Fold change of intermediate repeats in mature 

leaves of ung lines relative to wild-type. Error bars are standard deviation of three 

biological replicates. B1/1, B2/2, D2/2, and L2/2 show significant reduction in copy 

number (unpaired, 2-tailed Student’s t-test, * indicates p<0.05) 
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Figure 4.3: Quantitative RT-PCR assays of enzymes involved in DSBR in ung lines 

relative to wild-type. Fold change in transcript level is shown on the Y-axis. Error bars 

are standard deviation of three biological replicates. MSH1 and RECA2 are significantly 

transcriptionally upregulated in ung lines relative to wild-type (5.60-fold increase and 

3.19-fold increase, respectively. Unpaired, 2-tailed Student’s t-test, * indicates p<0.05). 

OSB1 is nearly significantly upregulated in ung lines relative to wild-type (3.07-fold 

increase. Unpaired T-test p=0.053). 
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Figure 4.4: Model for the loss of intermediate repeats due to aborted base excision 

repair. Red strands represent short homologous sequences at an intermediate repeat, blue 

and purple strands represent flanking regions. As part of the homology surveillance 

system, MSH1 binds to heteroduplexes that form at the margins of recombining 

intermediate repeats. Endonuclease activity at the heteroduplex creates a break between 

the annealing strands. The invaded strand (purple) can be ligated back together, while the 

invading strand (red) remains broken.  
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APPENDICES 

Appendix A1: Rousfinder.py 

#! /usr/bin/env python   
import sys, math, os, argparse, csv   
csv.field_size_limit(sys.maxsize)   
   
# January 16, 2018 version 1.1   
# Find dispersed repeated sequences in genomes.    
# Designed for plant mitochondrial genomes of up to a few Mbp.   
# May be very slow with larger genomes.    
# Blast can also sometimes give odd results with large or highly repetetive genomes.
   
# Gaps, or runs of 'N's in the sequence will definitely give weird results.    
# The program assumes there aren't any, and that the longest repeat will be the full
 sequence to itself.   
# If there are long repeats in the output that are listed as being only at one locat
ion, this is probably what happened.   
# If there are a lot of repeats within repeats the results can also be odd.   
# Copyright Alan C. Christensen, University of Nebraska, 2018   
# No guarantees, warranties, support, or anything else is implicit or explicit.   
# Input is a fasta format file of a sequence. Genbank format works but generates lot
s of error messages in stdout.   
# Output is a list of unique, ungapped repeated sequences, fasta formatted.   
# The names are in the format '>Repeat/ROUS_name_start_end_length'.   
# Percent identity is limited to >=99%, to allow for sequencing errors of <1%.   
# A table of repeats with the coordinates of each one is generated.   
# A list of repeat name, length and copy number is generated.   
# A binned table of the total number of repeats in size ranges is generated.   
#   
# PARAMETERS   
#   REQUIRED:   
#      input file in fasta format   
#   Optional   
#      -o output file name   
#      -m minimum length of exact matches to keep   
#      -b path to blastn (default is /usr/bin/)   
#      -k keep temp files   
#      -gb to write the repeats to a genbank format file   
   
parser = argparse.ArgumentParser(description='Find repeats in a fasta sequence file'
)   
parser.add_argument('infile', action='store', help='Input .fasta file')   
parser.add_argument('-
o', action='store', dest='outfile', help='Output file name seed, default is input_re
peats', default='default')   
parser.add_argument('-
m', action='store', dest='minlen', help='Minimum length of matches to keep, default=
24', default='24')   
parser.add_argument('-
b', action='store', dest='blast_path', help='Path to blastn program, default is /usr
/bin/', default='/usr/bin/')   
parser.add_argument('-
k', action='store_true', dest='keep', help='True to keep temp files', default=False)
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parser.add_argument('-
gb', action='store_true', dest='genbank', help='True to write GenBank format file', 
default=False)   
results = parser.parse_args()   
infile = results.infile   
outfile = results.outfile   
minlen = int(results.minlen)   
blast_path = results.blast_path   
keep = results.keep   
genbank = results.genbank   
   
# It might be useful to define the wordsize as something less than minlen, so both v
ariables are used.   
# Wordsize smaller than minlen would give smaller core identical sequences in the mi
ddle of repeats.   
# An example might be to change this to wordsize = str(int(minlen/2)).   
wordsize = str(minlen)   
   
# If no output file seed is specified, make one by stripping leading directory infor
mation   
# and stripping trailing .fa or .fasta from the input file name and using that.   
if outfile == 'default':   
    outfile = infile   
    if outfile.count('/') > 0:   
        for i in range(outfile.count('/')):   
            index = outfile.index('/')   
            outfile = outfile[index+1:]   
    if outfile.endswith('.fa') or outfile.endswith('.fasta'):   
        outfile = outfile.rstrip('fasta')   
    outfile = outfile.rstrip('.')   
outfa = outfile+'_rep.fasta'   
outtab = outfile+'_rep_table.txt'   
outbin = outfile+'_binned.txt'   
outcount = outfile+'_rep_counts.txt'   
outgb = outfile+'_repeats.gb.txt'   
tempblast = outfile+'_tempblast.txt'   
temprepeats = outfile+'_temprepeats.txt'   
tempparse = outfile+'_sequence_parsing.txt'   
   
# Get sequence name and length from fasta file.   
seq = open(infile, 'r')   
seqname = seq.readline()   
seqname = seqname.lstrip('> ')   
seqname = seqname.rstrip()   
seqlen = 0    
for line in seq:   
    if(line[0] == ">"):   
        continue   
    seqlen += len(line.strip())   
seq.close()   
   
# run blastn with query file plus strand (removing first line which is full length s
equence), minus strand, and concatenate   
print 'Performing self-blastn comparison with '+seqname   
os.system(blast_path+'blastn -query '+infile+' -strand plus -subject '+infile+' -
word_size '+wordsize+' -reward 1 -penalty -20 -ungapped -dust no -
soft_masking false -evalue 1000 -
outfmt "10 qstart qend length sstart send mismatch sstrand qseq" | tail -
n+2 > tempblast1.txt')   
os.system(blast_path+'blastn -query '+infile+' -strand minus -subject '+infile+' -
word_size '+wordsize+' -reward 1 -penalty -20 -ungapped -dust no -
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soft_masking false -evalue 1000 -
outfmt "10 qstart qend length sstart send mismatch sstrand qseq" > tempblast2.txt') 
  
os.system('cat tempblast1.txt tempblast2.txt > '+tempblast)   
os.system('rm tempblast1.txt tempblast2.txt')   
   
# open tempblast.txt, convert to list of lists, and sort by length and position desc
ending   
# This is necessary because blastn does not output every possible pair of hits when 
there are more than 2 copies of a repeat   
   
print 'Sorting alignments...'   
f = open(tempblast, 'r')   
reader = csv.reader(f)   
alignments = list(reader)   
f.close()   
alignments = sorted(alignments, key=lambda x: (-1*int(x[2]), -1*int(x[0])))   
alignments.append(['1','1','1','1','1','0','A','X'])   
   
# New list of uniques   
# Text file '_sequence_parsing.txt' includes the information on how duplicates were 
found.   
# Start at row 0. Compare to subsequent rows.    
# If repeat length is different from the next row, it has passed all the tests, writ
e it to the file.   
# If query or subject coordinates are the same as the query or subject or reversed c
oordinates   
# of a subsequent row, it is not unique, so go to the next row and do the comparison
s again.   
# Thanks to Alex Kozik for repeatedly testing and finding bugs in the algorithm.   
print 'Finding unique repeats...'   
uniques = []   
sp = open(tempparse, 'w')   
for row in range(len(alignments)):   
    sp.write('row '+str(row)+'\n')   
       
    if int(alignments[row][2]) < minlen:   
        # This won't happen unless the word_size is defined as something other than 
minlen.   
        # That could be useful under some circumstances.   
        sp.write('row '+str(row)+' is less than minlength')   
        break   
    else:   
       
        for compare in range(row+1,len(alignments)):   
            if alignments[row][2] != alignments[compare][2]:    
                uniques.append(alignments[row])   
                sp.write('\tadding row '+str(row)+' to unique list\n')   
                break   
            else:   
                sp.write('\tcomparing to '+str(compare)+'\n')   
       
                if alignments[row][0] == alignments[compare][0] and alignments[row][
1] == alignments[compare][1]:   
                    sp.write('\tqstart and qend of row '+str(row)+' and '+str(compar
e)+' are the same\n')   
                    break   
                elif alignments[row][0] == alignments[compare][1] and alignments[row
][1] == alignments[compare][0]:   
                    sp.write('\tqstart and qend of row '+str(row)+' is the same as q
end and qstart of '+str(compare)+'\n')   
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                    break   
                elif alignments[row][0] == alignments[compare][3] and alignments[row
][1] == alignments[compare][4]:   
                    sp.write('\tqstart and qend of row '+str(row)+' is the same as s
start and send of '+str(compare)+'\n')   
                    break   
                elif alignments[row][0] == alignments[compare][4] and alignments[row
][1] == alignments[compare][3]:   
                    sp.write('\tqstart and qend of row '+str(row)+' is the same as s
end and sstart of '+str(compare)+'\n')   
                    break   
                elif alignments[row][3] == alignments[compare][0] and alignments[row
][4] == alignments[compare][1]:   
                    sp.write('\tsstart and send of row '+str(row)+' is the same as q
start and qend of '+str(compare)+'\n')   
                    break   
                elif alignments[row][3] == alignments[compare][1] and alignments[row
][4] == alignments[compare][0]:   
                    sp.write('\tsstart and send of row '+str(row)+' is the same as q
end and qstart of '+str(compare)+'\n')   
                    break   
                elif alignments[row][3] == alignments[compare][3] and alignments[row
][4] == alignments[compare][4]:   
                    sp.write('\tsstart and send of row '+str(row)+' is the same as s
start and send of '+str(compare)+'\n')   
                    break   
                elif alignments[row][3] == alignments[compare][4] and alignments[row
][4] == alignments[compare][3]:   
                    sp.write('\tsstart and send of row '+str(row)+' is the same as s
end and sstart of '+str(compare)+'\n')   
                    break   
                else:   
                    sp.write('\t'+str(row)+' is different\n')   
   
sp.close()   
   
# Write uniques into output file   
# Start list for copy number table   
rous_count = 0   
g = open(outfa, 'w')   
repcopies = []   
   
for i in range(len(uniques)):   
    qstart = uniques[i][0]   
    qend = uniques[i][1]   
    length = uniques[i][2]   
    seq = uniques[i][7]   
       
    rous_count += 1   
    g.write('>Repeat_'+str(rous_count)+'\n'+seq+'\n')   
    repcopies.append(['Repeat_'+str(rous_count),length])   
           
if rous_count == 0:   
    print "\tRepeats of unusual size? I don't think they exist"   
g.close()   
print 'Repeat fasta file is done, as you wish.'   
   
# Now find each copy of each repeat. Again, this is because the blastn output file d
oes not have every possible alignment.   
# It is also because the information on locations and strand is not organized well i
n the blastn output.   
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# In addition, this subroutine eliminates duplicates of nested repeats.   
   
print "Finding all copies of repeats..."   
g = open(outfa, 'r')   
os.system(blast_path+'blastn -query '+outfa+' -strand both -subject '+infile+' -
word_size '+wordsize+' -reward 1 -penalty -20 -ungapped -dust no -
soft_masking false -evalue 1000 -
outfmt "10 qseqid length sstart send sstrand qcovhsp" > '+temprepeats)   
g.close()   
   
tempr = open(temprepeats, 'r')   
reader = csv.reader(tempr)   
replist = list(reader)   
tempr.close()   
   
print "Making a table of the repeats..."   
sum_rep_len = 0   
bin_dict = {}   
binned = [seqname,seqlen,0]   
   
# defining the bins   
i = 0   
j = 50   
while j < 1000:   
    bin_dict[i] = j   
    binned.append(0)   
    i += 1   
    j += 50   
while j <= 10000:   
    bin_dict[i] = j   
    binned.append(0)   
    i +=1   
    j += 250   
       
# make list for entire sequence, set each position as 0   
posit = []   
for n in range(seqlen):   
    posit.append(0)   
   
# Thanks to Emily Wynn for suggesting qcovhsp for this loop.   
# if qcovhsp is >98%, write to the file   
# write tab separated values of repeat name, length, start, end, strand to outtab   
# make list for genbank file   
# Keep stats on lengths   
rt = open(outtab, 'w')   
rt.write(seqname+'\t'+str(seqlen)+'\n')   
templist = []   
gblist =[]   
   
# look at each repeat in turn   
for i in range(len(replist)):   
    # if repeat is good (>98% identical to another one), write it to the file, and p
ut the name in a list   
    if int(replist[i][5])>98:   
        rt.write(str(replist[i][0])+'\t'+str(replist[i][1])+'\t'+str(replist[i][2])+
'\t'+str(replist[i][3])+'\t'+str(replist[i][4])+'\n')   
        if replist[i][4] == 'minus':   
            location = 'complement('+replist[i][3]+'..'+replist[i][2]+')'   
        else:   
            location = replist[i][2]+'..'+replist[i][3]   
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        gblist.append('     repeat_region   '+location+'\n                     /rpt_
type=dispersed\n                     /label='+replist[i][0]+'\n')   
        templist.append(replist[i][0])   
        # then write 1's at every position in the sequence covered by that repeat   
        # these can then be summed to get total bases of repeats   
        # bases in overlapping repeats are only counted once   
        for n in range(int(replist[i][2]), int(replist[i][3])):   
            posit[n] = 1   
        # then scan through bin sizes and if a repeat is greater than the   
        # bin_dict size cutoff, add one to the bin   
        for j in range(len(binned)-4, -1, -1):   
            if int(replist[i][1]) >= bin_dict[j]:   
                binned[j+3] +=1   
                break   
sum_rep_len = posit.count(1)   
binned[2] = sum_rep_len   
rt.close()   
if genbank == True:   
    gb = open(outgb, 'w')   
    for i in range(len(gblist)):   
        gb.write(gblist[i])   
    gb.close()   
   
# write tab separated values of repeat name, length, copy number to outcount   
# first two lines are also a table of stats on repeats   
rc = open(outcount,'w')   
rc.write('Sequence\tGenome_size\tNumRepeats\tAvgSize\tAvgCopyNum\n')   
   
numrous = 0   
sizerous = 0   
copyrous = 0   
   
for i in range(len(repcopies)):   
    repname = repcopies[i][0]   
    replen = float(repcopies[i][1])   
    repcop = float(templist.count(repname))   
   
    numrous += 1   
    sizerous += replen   
    copyrous += repcop   
   
if numrous == 0:   
    avsizerous = 'NA'   
    avcopyrous = 'NA'   
else:   
    avsizerous = sizerous/numrous   
    avcopyrous = copyrous/numrous   
   
   
rc.write(seqname+'\t'+str(seqlen)+'\t'+str(numrous)+'\t'+str(avsizerous)+'\t'+str(av
copyrous)+'\n')   
   
for i in range(len(repcopies)):   
    rc.write(repcopies[i][0]+'\t'+repcopies[i][1]+'\t'+str(templist.count(repcopies[
i][0]))+'\n')   
   
rc.close()   
   
# Write binned table headers, then stats for this sequence.   
binfile = open(outbin, 'w')   
binfile.write('Sequence\tSeq_len\tRep_len\t')   
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for i in range(len(bin_dict)):   
    binfile.write(str(bin_dict[i])+'\t')   
binfile.write('\n')   
for i in range(len(binned)):   
    binfile.write(str(binned[i])+'\t')   
binfile.write('\n')   
binfile.close()   
print "Repeat tables are done, as you wish."   
   
# Removing temp files if necessary   
if keep == False:   
    os.system('rm '+tempblast+' '+temprepeats+' '+tempparse)   
   
# Rachael Schulte, William Goldman and Rob Reiner inspired this section of code   
quote_dict = {0:"48656c6c6f2e204d79206e616d6520697320496e69676f204d6f6e746f79612e205
96f75206b696c6c6564206d79206661746865722e205072657061726520746f206469652e", 1:"57686
56e20492077617320796f7572206167652c2074656c65766973696f6e207761732063616c6c656420626
f6f6b732e", 2:"486176652066756e2073746f726d696e2720646120636173746c6521", 3:"4d79207
761792773206e6f7420766572792073706f7274736d616e6c696b652e", 4:"596f75206b65657020757
3696e67207468617420776f72642e204920646f206e6f74207468696e6b206974206d65616e732077686
17420796f75207468696e6b206974206d65616e732e", 5:"4d757264657265642062792070697261746
57320697320676f6f642e",6:"496e636f6e6365697661626c6521", 7:"546865726527732061206269
6720646966666572656e6365206265747765656e206d6f73746c79206465616420616e6420616c6c2064
6561642e", 8:"596f7520727573682061206d697261636c65206d616e2c20796f752067657420726f74
74656e206d697261636c65732e", 9:"476f6f64206e696768742c20576573746c65792e20476f6f6420
776f726b2e20536c6565702077656c6c2e2049276c6c206d6f7374206c696b656c79206b696c6c20796f
7520696e20746865206d6f726e696e672e",10:"4e6f206d6f7265207268796d65732c2049206d65616e
2069742120416e79626f64792077616e742061207065616e75743f"}   
import random, binascii   
z = random.randint(0,10)   
print binascii.unhexlify(quote_dict[z])+'\n'   
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Appendix A2: MultipleRepeats.py 

#! /usr/bin/env python   
import sys, math, os, argparse   
   
# Usage: -din directory of files to find repeats in   
#        -word word_size   
   
parser = argparse.ArgumentParser(description='Find repeats in a directory of fasta s
equence files')   
parser.add_argument('-
din', action='store', dest='din', help='Input .fasta directory')   
parser.add_argument('-
word', action='store', dest='word', help='Word size for blast')   
results = parser.parse_args()   
din = results.din   
word = results.word   
   
li = os.listdir(din)   
inputs = filter(lambda x: '.fasta' in x, li)   
inputs.sort()   
   
for i in range(len(inputs)):   
    infile = str(inputs[i])   
    os.system("/home/alan/applications/ROUSFinder.py -m "+word+" "+din+infile)  
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Appendix A3: Rousfinder2.py 

#! /usr/bin/env python   
import sys, math, os, argparse, csv   
csv.field_size_limit(sys.maxsize)   
   
# Version 2.0, November 21, 2018   
# Changes: uses variable parameters   
# Find dispersed repeated sequences in genomes.    
# Designed for plant mitochondrial genomes of up to a few Mbp.   
# May be very slow with larger genomes.    
# Blast can also sometimes give odd results with large or highly repetetive genomes.
   
# Gaps, or runs of 'N's in the sequence will definitely give weird results.    
# The program assumes there aren't any, and that the longest repeat will be the full
 sequence to itself.   
# If there are long repeats in the output that are listed as being only at one locat
ion, this is probably what happened.   
# If there are a lot of repeats within repeats the results can also be odd.   
# Copyright Alan C. Christensen, University of Nebraska, 2018   
# No guarantees, warranties, support, or anything else is implicit or explicit.   
# Input is a fasta format file of a sequence. Genbank format works but generates lot
s of error messages in stdout.   
# Output is a list of unique, ungapped repeated sequences, fasta formatted.   
# The names are in the format '>Repeat/ROUS_name_start_end_length'.   
# A table of repeats with the coordinates of each one is generated.   
# A list of repeat name, length and copy number is generated.   
# A binned table of the total number of repeats in size ranges is generated.   
#   
# PARAMETERS   
#   REQUIRED:   
#      input file in fasta format   
#   Optional   
#      -o output file name   
#      -m minimum length of exact matches to keep   
#      -b path to blastn (default is /usr/bin/)   
#      -k keep temp files   
#      -gb to write the repeats to a genbank format file   
#      -rew reward for match (default is 1)   
#      -pen penalty for mismatch (default is 20)   
   
parser = argparse.ArgumentParser(description='Find repeats in a fasta sequence file'
)   
parser.add_argument('infile', action='store', help='Input .fasta file')   
parser.add_argument('-
o', action='store', dest='outfile', help='Output file name seed, default is input_re
peats', default='default')   
parser.add_argument('-
m', action='store', dest='minlen', help='Minimum length of matches to keep, default=
50', default='50')   
parser.add_argument('-
b', action='store', dest='blast_path', help='Path to blastn program, default is /usr
/bin/', default='/usr/bin/')   
parser.add_argument('-
k', action='store_true', dest='keep', help='True to keep temp files', default=False)
   
parser.add_argument('-
gb', action='store_true', dest='genbank', help='True to write GenBank format file', 
default=False)   
parser.add_argument('-
rew', action='store', dest='reward', help='Reward for match', default='1')   
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parser.add_argument('-
pen', action='store', dest='penalty', help='Penalty for mismatch', default='20')   
results = parser.parse_args()   
infile = results.infile   
outfile = results.outfile   
minlen = int(results.minlen)   
blast_path = results.blast_path   
keep = results.keep   
genbank = results.genbank   
reward = results.reward   
penalty = results.penalty   
   
# It might be useful to define the wordsize as something less than minlen, so both v
ariables are used.   
# Wordsize smaller than minlen would give smaller core identical sequences in the mi
ddle of repeats.   
# An example might be to change this to wordsize = str(int(minlen/2)).   
wordsize = str(minlen)   
   
# If no output file seed is specified, make one by stripping leading directory infor
mation   
# and stripping trailing .fa or .fasta from the input file name and using that.   
if outfile == 'default':   
    outfile = infile   
    if outfile.count('/') > 0:   
        for i in range(outfile.count('/')):   
            index = outfile.index('/')   
            outfile = outfile[index+1:]   
    if outfile.endswith('.fa') or outfile.endswith('.fasta'):   
        outfile = outfile.rstrip('fasta')   
    outfile = outfile.rstrip('.')   
outfa = outfile+'_rep.fasta'   
outtab = outfile+'_rep_table.txt'   
outbin = outfile+'_binned.txt'   
outcount = outfile+'_rep_counts.txt'   
outgb = outfile+'_repeats.gb.txt'   
tempblast = outfile+'_tempblast.txt'   
temprepeats = outfile+'_temprepeats.txt'   
tempparse = outfile+'_sequence_parsing.txt'   
   
# Get sequence name and length from fasta file.   
seq = open(infile, 'r')   
seqname = seq.readline()   
seqname = seqname.lstrip('> ')   
seqname = seqname.rstrip()   
seqlen = 0    
for line in seq:   
    if(line[0] == ">"):   
        continue   
    seqlen += len(line.strip())   
seq.close()   
   
# run blastn with query file plus strand (removing first line which is full length s
equence), minus strand, and concatenate   
print 'Performing self-blastn comparison with '+seqname       
os.system(blast_path+'blastn -query '+infile+' -strand plus -subject '+infile+' -
word_size '+wordsize+' -reward '+reward+' -penalty -'+penalty+' -ungapped -dust no -
soft_masking false -evalue 10  -
outfmt "10 qstart qend length sstart send mismatch sstrand qseq" | tail -
n+2 > tempblast1.txt')   
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os.system(blast_path+'blastn -query '+infile+' -strand minus -subject '+infile+' -
word_size '+wordsize+' -reward '+reward+' -penalty -'+penalty+' -ungapped -dust no -
soft_masking false -evalue 10 -
outfmt "10 qstart qend length sstart send mismatch sstrand qseq" > tempblast2.txt') 
  
os.system('cat tempblast1.txt tempblast2.txt > '+tempblast)   
os.system('rm tempblast1.txt tempblast2.txt')   
   
# open tempblast.txt, convert to list of lists, and sort by length and position desc
ending   
# This is necessary because blastn does not output every possible pair of hits when 
there are more than 2 copies of a repeat   
   
print 'Sorting alignments...'   
f = open(tempblast, 'r')   
reader = csv.reader(f)   
alignments = list(reader)   
f.close()   
alignments = sorted(alignments, key=lambda x: (-1*int(x[2]), -1*int(x[0])))   
alignments.append(['1','1','1','1','1','0','A','X'])   
   
# New list of uniques   
# Text file '_sequence_parsing.txt' includes the information on how duplicates were 
found.   
# Start at row 0. Compare to subsequent rows.    
# If repeat length is different from the next row, it has passed all the tests, writ
e it to the file.   
# If query or subject coordinates are the same as the query or subject or reversed c
oordinates   
# of a subsequent row, it is not unique, so go to the next row and do the comparison
s again.   
# Thanks to Alex Kozik for repeatedly testing and finding bugs in the algorithm.   
print 'Finding unique repeats...'   
uniques = []   
sp = open(tempparse, 'w')   
for row in range(len(alignments)):   
    sp.write('row '+str(row)+'\n')   
       
    if int(alignments[row][2]) < minlen:   
        # This won't happen unless the word_size is defined as something other than 
minlen.   
        # That could be useful under some circumstances.   
        sp.write('row '+str(row)+' is less than minlength')   
        break   
    else:   
       
        for compare in range(row+1,len(alignments)):   
            if alignments[row][2] != alignments[compare][2]:    
                uniques.append(alignments[row])   
                sp.write('\tadding row '+str(row)+' to unique list\n')   
                break   
            else:   
                sp.write('\tcomparing to '+str(compare)+'\n')   
       
                if alignments[row][0] == alignments[compare][0] and alignments[row][
1] == alignments[compare][1]:   
                    sp.write('\tqstart and qend of row '+str(row)+' and '+str(compar
e)+' are the same\n')   
                    break   
                elif alignments[row][0] == alignments[compare][1] and alignments[row
][1] == alignments[compare][0]:   
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                    sp.write('\tqstart and qend of row '+str(row)+' is the same as q
end and qstart of '+str(compare)+'\n')   
                    break   
                elif alignments[row][0] == alignments[compare][3] and alignments[row
][1] == alignments[compare][4]:   
                    sp.write('\tqstart and qend of row '+str(row)+' is the same as s
start and send of '+str(compare)+'\n')   
                    break   
                elif alignments[row][0] == alignments[compare][4] and alignments[row
][1] == alignments[compare][3]:   
                    sp.write('\tqstart and qend of row '+str(row)+' is the same as s
end and sstart of '+str(compare)+'\n')   
                    break   
                elif alignments[row][3] == alignments[compare][0] and alignments[row
][4] == alignments[compare][1]:   
                    sp.write('\tsstart and send of row '+str(row)+' is the same as q
start and qend of '+str(compare)+'\n')   
                    break   
                elif alignments[row][3] == alignments[compare][1] and alignments[row
][4] == alignments[compare][0]:   
                    sp.write('\tsstart and send of row '+str(row)+' is the same as q
end and qstart of '+str(compare)+'\n')   
                    break   
                elif alignments[row][3] == alignments[compare][3] and alignments[row
][4] == alignments[compare][4]:   
                    sp.write('\tsstart and send of row '+str(row)+' is the same as s
start and send of '+str(compare)+'\n')   
                    break   
                elif alignments[row][3] == alignments[compare][4] and alignments[row
][4] == alignments[compare][3]:   
                    sp.write('\tsstart and send of row '+str(row)+' is the same as s
end and sstart of '+str(compare)+'\n')   
                    break   
                else:   
                    sp.write('\t'+str(row)+' is different\n')   
   
sp.close()   
   
# Write uniques into output file   
# Start list for copy number table   
rous_count = 0   
g = open(outfa, 'w')   
repcopies = []   
   
for i in range(len(uniques)):   
    qstart = uniques[i][0]   
    qend = uniques[i][1]   
    length = uniques[i][2]   
    seq = uniques[i][7]   
       
    rous_count += 1   
    g.write('>Repeat_'+str(rous_count)+'\n'+seq+'\n')   
    repcopies.append(['Repeat_'+str(rous_count),length])   
           
if rous_count == 0:   
    print "\tRepeats of unusual size? I don't think they exist"   
g.close()   
print 'Repeat fasta file is done, as you wish.'   
   
# Now find each copy of each repeat. Again, this is because the blastn output file d
oes not have every possible alignment.   
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# It is also because the information on locations and strand is not organized well i
n the blastn output.   
# In addition, this subroutine eliminates duplicates of nested repeats.   
   
print "Finding all copies of repeats..."   
g = open(outfa, 'r')   
os.system(blast_path+'blastn -query '+outfa+' -strand both -subject '+infile+' -
word_size '+wordsize+' -reward 1 -penalty -20 -ungapped -dust no -
soft_masking false -evalue 1000 -
outfmt "10 qseqid length sstart send sstrand qcovhsp" > '+temprepeats)   
g.close()   
   
tempr = open(temprepeats, 'r')   
reader = csv.reader(tempr)   
replist = list(reader)   
tempr.close()   
   
print "Making a table of the repeats..."   
sum_rep_len = 0   
bin_dict = {}   
binned = [seqname,seqlen,0]   
   
# defining the bins   
i = 0   
j = 50   
while j < 1000:   
    bin_dict[i] = j   
    binned.append(0)   
    i += 1   
    j += 50   
while j <= 10000:   
    bin_dict[i] = j   
    binned.append(0)   
    i +=1   
    j += 250   
       
# make list for entire sequence, set each position as 0   
posit = []   
for n in range(seqlen):   
    posit.append(0)   
   
# Thanks to Emily Wynn for suggesting qcovhsp for this loop.   
# if qcovhsp is >98%, write to the file   
# write tab separated values of repeat name, length, start, end, strand to outtab   
# make list for genbank file   
# Keep stats on lengths   
rt = open(outtab, 'w')   
rt.write(seqname+'\t'+str(seqlen)+'\n')   
templist = []   
gblist =[]   
   
# look at each repeat in turn   
for i in range(len(replist)):   
    # if repeat is good (>98% identical to another one), write it to the file, and p
ut the name in a list   
    if int(replist[i][5])>98:   
        rt.write(str(replist[i][0])+'\t'+str(replist[i][1])+'\t'+str(replist[i][2])+
'\t'+str(replist[i][3])+'\t'+str(replist[i][4])+'\n')   
        if replist[i][4] == 'minus':   
            location = 'complement('+replist[i][3]+'..'+replist[i][2]+')'   
        else:   
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            location = replist[i][2]+'..'+replist[i][3]   
        gblist.append('     repeat_region   '+location+'\n                     /rpt_
type=dispersed\n                     /label='+replist[i][0]+'\n')   
        templist.append(replist[i][0])   
        # then write 1's at every position in the sequence covered by that repeat   
        # these can then be summed to get total bases of repeats   
        # bases in overlapping repeats are only counted once   
        for n in range(int(replist[i][2]), int(replist[i][3])):   
            posit[n] = 1   
        # then scan through bin sizes and if a repeat is greater than the   
        # bin_dict size cutoff, add one to the bin   
        for j in range(len(binned)-4, -1, -1):   
            if int(replist[i][1]) >= bin_dict[j]:   
                binned[j+3] +=1   
                break   
sum_rep_len = posit.count(1)   
binned[2] = sum_rep_len   
rt.close()   
if genbank == True:   
    gb = open(outgb, 'w')   
    for i in range(len(gblist)):   
        gb.write(gblist[i])   
    gb.close()   
   
# write tab separated values of repeat name, length, copy number to outcount   
# first two lines are also a table of stats on repeats   
rc = open(outcount,'w')   
rc.write('Sequence\tGenome_size\tNumROUS\tAvgSize\tAvgCopyNum\n')   
   
numrous = 0   
sizerous = 0   
copyrous = 0   
   
for i in range(len(repcopies)):   
    repname = repcopies[i][0]   
    replen = float(repcopies[i][1])   
    repcop = float(templist.count(repname))   
   
    numrous += 1   
    sizerous += replen   
    copyrous += repcop   
   
if numrous == 0:   
    avsizerous = 'NA'   
    avcopyrous = 'NA'   
else:   
    avsizerous = sizerous/numrous   
    avcopyrous = copyrous/numrous   
   
   
rc.write(seqname+'\t'+str(seqlen)+'\t'+str(numrous)+'\t'+str(avsizerous)+'\t'+str(av
copyrous)+'\n')   
   
for i in range(len(repcopies)):   
    rc.write(repcopies[i][0]+'\t'+repcopies[i][1]+'\t'+str(templist.count(repcopies[
i][0]))+'\n')   
   
rc.close()   
   
# Write binned table headers, then stats for this sequence.   
binfile = open(outbin, 'w')   
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binfile.write('Sequence\tSeq_len\tRep_len\t')   
for i in range(len(bin_dict)):   
    binfile.write(str(bin_dict[i])+'\t')   
binfile.write('\n')   
for i in range(len(binned)):   
    binfile.write(str(binned[i])+'\t')   
binfile.write('\n')   
binfile.close()   
print "Repeat tables are done, as you wish."   
   
# Removing temp files if necessary   
if keep == False:   
    os.system('rm '+tempblast+' '+temprepeats+' '+tempparse)   
   
# Rachael Schulte, William Goldman and Rob Reiner inspired this section of code   
quote_dict = {0:"48656c6c6f2e204d79206e616d6520697320496e69676f204d6f6e746f79612e205
96f75206b696c6c6564206d79206661746865722e205072657061726520746f206469652e", 1:"57686
56e20492077617320796f7572206167652c2074656c65766973696f6e207761732063616c6c656420626
f6f6b732e", 2:"486176652066756e2073746f726d696e2720646120636173746c6521", 3:"4d79207
761792773206e6f7420766572792073706f7274736d616e6c696b652e", 4:"596f75206b65657020757
3696e67207468617420776f72642e204920646f206e6f74207468696e6b206974206d65616e732077686
17420796f75207468696e6b206974206d65616e732e", 5:"4d757264657265642062792070697261746
57320697320676f6f642e",6:"496e636f6e6365697661626c6521", 7:"546865726527732061206269
6720646966666572656e6365206265747765656e206d6f73746c79206465616420616e6420616c6c2064
6561642e", 8:"596f7520727573682061206d697261636c65206d616e2c20796f752067657420726f74
74656e206d697261636c65732e", 9:"476f6f64206e696768742c20576573746c65792e20476f6f6420
776f726b2e20536c6565702077656c6c2e2049276c6c206d6f7374206c696b656c79206b696c6c20796f
7520696e20746865206d6f726e696e672e",10:"4e6f206d6f7265207268796d65732c2049206d65616e
2069742120416e79626f64792077616e742061207065616e75743f"}   
import random, binascii   
z = random.randint(0,10)   
print binascii.unhexlify(quote_dict[z])+'\n'   
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