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In this thesis, attempts have been made to understand halide exchange and mass transport 

inside the solid lattice of Lead Halide Perovskites (LHPs). We aim for the transformation 

of MAPbBr3 using ionic solutions including 1-Butyl-3-methylimidazolium iodide 

(BMIMI), and 1-Butyl-3-methylimidazolium chloride (BMIMCl) as halide ion sources to 

observe the halide diffusion across the thin film sample and to have LHPs with a gradient 

of mixed halides (MAPbBr3-x (I/Cl)x,  0 ≤ x ≤ 3). Successfully, MAPbBr3 single-crystalline 

thin film was fabricated with different configurations. Surface analysis of the LHPs, 

elemental composition, halide diffusion, roughness, and size of grains in our thin film was 

examined using a scanning electron microscope equipped with Energy-dispersive X-ray 

Spectroscopy (SEM-EDX), photoluminescence (PL), and Dektak-XT stylus surface 

profiling system.
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Chapter 1. Lead halide perovskites 

1.1 Introduction  

Lead halide perovskites (LHPs) have potential applications in the future 

optoelectronics, and electronics [1-7], because of their intrinsic electronic performance 

such as optimal bandgap  [8-10], large absorption coefficient  [11], high charge carrier 

mobility  [12, 13], long carrier diffusion length  [14, 15], long carrier lifetime  [16, 17], 

small exciton-binding energy [18], low-cost materials, and facile synthesis methodology 

[1, 5, 7]. Perovskite materials have been rapidly developed for other applications beyond 

solar cells and photovoltaics [19, 20], namely, light-emitting diodes (LEDs) [21-25], 

photodetectors[26-29], lasers (such as 2D halide perovskites, and CsPbX3 nanocrystal 

lasing [30-34]), memory devices [35-37] (such as halide perovskite quantum dots or 

resistive switching memory (ReRAM) with a composition of a metal-insulator-metal 

structure [38, 39]), and field-effect transistors (FETs) [40]. One of the interesting parts of 

research is using organic semiconductors in thin-film photovoltaics (PVs) [41], optical 

sensing, and X-ray detection [13, 14, 42-45].  

The following sections provide a brief overview of the LHPs’ composition, 

structure, and physical and chemical properties, and the synthesis approaches for 

fabrication processing. 
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1.1.1 LHPs (ABX3 composition, crystal structures, and band structures) 

The chemical formula ABX3 is used to express a halide perovskite, where A 

indicates either a monovalent organic cation which can be methylammonium (MA+) or 

formamidinium (FA+) or an inorganic cation (Cs+). The metal cation including Pb2+ or Sn2+ 

is corresponding to B, and the halide anion (I, Br, or Cl) is referred to as X. Five atoms 

exist in the unit cell of LHPs with the formula ABX3 in the cubic structure which is also 

called single-phase. In this case, cation B poses six X anions closest to its neighbor, and 

the A cation has twelve closest neighbors. Moreover, crystallization of a perovskite crystal 

lattice, sharing BX6 octahedral, occurs with a general ABX3 (or equivalent) stoichiometry 

as indicated in Figures 1 and 2a. [1, 2, 5, 7]  

 

 

 

 

 

Figure 1. An aristotype cubic perovskite structure. Copyright permission from Chemical 

reviews [2] Akkerman, Q.A. and L. Manna, What Defines a Halide Perovskite? ACS Energy 

Letters, 2020. 5(2): p. 604-610. 
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In 3D perovskite (ABX3) stoichiometry, the A coordinates with 12 cations, and B 

is aligned to 6 X anions, leading to the formation of cuboctahedral and octahedral structures 

[2, 5]. Geometrically, a principle cubic architecture, the cell axis, “a”, has a relation with 

the ionic radii (rA, rB, r0). This is calculated by equation (1): 

a= √2 ×  (𝑟𝑎 + 𝑟0) = 2 (𝑟𝐵 + 𝑟0)               Equation (1) 

To estimate the degree of distortion, and compatibility of ion crystal structure, Golds 

Schmidt's tolerance factor (t) is introduced, and this is obtained by the ionic radii. This 

means that we would assume it as purely ionic bonding. However, this tolerance factor is 

considered as an indication for compounds with a high degree of ionic 

bonding; [6]. This assumption is defined by equation (2): 

t =     
(𝑟𝐴+𝑟𝐵)

√2(𝑟𝑋+𝑟𝐵)
                                              Equation (2) 

when we have a large A or a small B ion, t is larger than 1. So, it is expected that hexagonal 

variants of the perovskites have stability [7]. In general, the tolerance factor for stable 3D 

perovskite structures ranges from 0.76−1.13. However, the stability of other perovskite-

related architectures does not share this same range. That is the reason why we have a 

limited number of A-cations such as Cs, MA, and FA which generate stable LHPs 

architectures. Other possible structures with A-cations which are too small (such as Na+, 

K+, and Rb+) or too large (with imidazolium, ethyl ammonium, and guanidinium) are 

unstable[5]. It is essential to note that the tolerance factor must be close to 1 for a high-

symmetry cubic configuration of perovskites within a range of 0.813 and 1.107. 
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The rA, rB, and rX present the ionic radii of the related ions [1]. In LHPs, site B is usually 

occupied by Pb or Sn as large atoms; therefore, to meet the tolerance factor, site A must be 

sufficiently large. Otherwise, distortion of the cubic structure can occur, and we would see 

a decrease in the crystal symmetry. The measurement of tolerance factor for hybrid 

perovskites has remained a challenge as molecular cations need to be accurately assessed 

by their ionic radius. The LHPs commonly contain MA+ and/or HC (NH2)
2 + anions (FA+) 

for site A. The crystal structure of CH3NH3SnI3−x Brx perovskite and a comparison of the 

tolerance factors against other lead or tin halide perovskites are depicted in Figures 2a and 

2b. 

 

 

 

 

 

 

 

 

Figure 2. a) Crystal structure of CH3NH3SnI3−x Brx perovskite b) Tolerance factor (t) of 

popular halide perovskites. Reproduced with permission. Copyright permission from 

Chemical reviews [1, 7, 46]  Jena, A.K., A. Kulkarni, and T. Miyasaka, Halide Perovskite 
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Photovoltaics: Background, Status, and Future Prospects. Chemical Reviews, 2019. 

119(5): p. 3036-3103. 

 

When site A is occupied by very large groups including a long chain of alkyl amine 

anions, LHPs are transformed to a two-dimensional (2D) layer structure[1, 5, 7].   

The halide perovskites are considered direct-bandgap semiconductors, with 

bandgaps varying with composition and covering the whole visible spectrum.  This family 

of materials also shows high photoluminescence quantum yield. For instance, it was 

reported that quantum yields for surface-treated MAPbI3 perovskite thin films can be over 

90% [7]. This report is critical as the charge carriers in the layers of perovskite materials 

can be an efficient way to produce in a photovoltaic device or a light emission device if it 

is recombinant. Tuning of the bandgap in a perovskite crystal can be done by altering the 

mixed halides (e.g., I–Br, Br–Cl), allowing for multicolor light emission devices and can 

be applied in any specific device with a certain bandgap[1, 9]. 

Theoretical studies have shown that the electronic structure of MAPbX3 is 

dominated by the p orbital of X and the p orbital of Pb in the LHPs. Therefore, in general, 

the bandgap can be adjusted by the p orbital of X. In the MAPbX3 perovskite materials, the 

valence orbitals vary from 3p to 4p to 5p when the X varies from Cl to Br to I. The optical 

absorption of MAPbX3 single crystals (X = I, Br, Cl) also confirms the narrowing of the 

bandgap. This occurs when X is altered from I to Br which then changes to another halide, 

Cl. Several theoretical reports, confirmed by empirical reports, suggest that mixed (I, Cl) 
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perovskites with high Cl content are difficult to form, while the formation of mixed (Br, 

Cl) as well as mixed (I, Br) alloys are easily achieved at room temperature [7, 47]. 

 

1.1.2 Photovoltaic performance and applications of LHPs 

Research in perovskite photovoltaics, involving conversion of photons to electrons, and 

optoelectronics, involving conversion of electron flow to light, have evolved in an 

interrelated fashion, with applications in optoelectronic devices and optical sensing 

devices, both perovskite photovoltaics research and optoelectronics have evolved as a very 

interdisciplinary area where the conversion of a photon to electron exists and/or vice versa 

[48]. The outstanding photoluminescence properties of LHPs (particularly, those of 

CsPbBr3) led to their introduction as the next generation of LEDs, and photodiodes [49-

51]. Perovskite photodiodes have also been considered to use in color image sensing for 

digital cameras and medical diagnosis [48, 52-56]. Harvesting light with high efficiency is 

very important in optical management in devices made with thin photovoltaic films [53]. 

The excellent photophysical properties of organohalide perovskite as an intrinsic 

semiconductor and its impressive mobility of photo-generated carriers have been reported 

over the past few years [1, 5, 54-56].  

The mechanism of photovoltaic activity involves charge generation, separation, and 

then diffusion of charge carriers to the electrodes [57, 58]. When illumination occurs, the 

absorption of photons by LHPs produces electron-hole pairs (or excitons which are bound 

states within the atomic lattice) in a few picoseconds. These electron-hole pairs pose 

https://en.wikipedia.org/wiki/Crystal_structure
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binding energies that range starts from 19 to 50 meV which is low. This is similar to the 

thermal energy (kBT ~ 25 meV) when it is measured at ambient temperature.  Therefore, 

the dissociation of excitons is facile and can further be facilitated by the large dielectric 

constant of halide perovskites. [54, 55]. 

Halide perovskites are semiconductors. One of the features that makes them so useful as 

devices are that tuning of the valence and conduction bands is easily accomplished [59]. 

Applications of density functional theory (DFT), and its calculations of the first principle 

theory have been incorporating with excellent photophysical properties of LHPs. This has 

been proved by optoelectronic measurements. As displayed in Figure 3, the band structures 

of CH3NH3PbI3 are composed of the valence band (VB), containing a mixture of I 5p 

orbitals (~70%) and Pb 6s2 lone pair orbital (~25%), and the conduction band (CB) 

containing other orbitals, and Pb 6p2 orbital [48, 60].  Optical absorption and 

magnetoabsorption spectra of the LHPs materials have been studied by Kondo to clarify 

the impacts of halogens replacements measured by optical and 

magnetoabsorption. The excitons with the lowest energy in these crystals normally which 

have three-dimensional Wannier-type excitons were investigated along with the Bohr radii, 

binding energies, and oscillator strengths of the excitons with acceptable accuracy. It was 

concluded that the larger bandgap and having more tightly the natural band structure of the 

excitons in CH3NH3PbBr3 in comparison with those crystals in CH3NH3PbI3 is the intrinsic 

consequence of the substitution of halogens. There is a strong coupling between the Pb 

lone pair 6s2 orbital and the I 5p orbital, which are opposite to the electronic structure of 

gallium arsenide (GaAs) [61]. In the latter, the formation of VB and CB occurs by p orbitals 
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and s orbitals, respectively. The s orbitals of the Pb lone pair and the symmetric orbital 

structure give rise to an outstanding high optical absorption coefficient for this type of 

perovskite (105 cm-¹) [62].  This contributes to the excellent photovoltaic property and 

production of high photovoltaic voltage [1].  

The electronic properties of LHP perovskites are characterized by the diffusion 

lengths of electron carriers and their semiconducting nature. The long diffusion lengths of 

these carriers (between 1 µm for polycrystalline films [63] to over 100 µm for single 

crystals) [63] are explained by the defect tolerant nature of LHP perovskites [64]. The 

intrinsic semiconducting behavior of LHP perovskites is produced by the ambipolar nature 

of the carriers (such as in CH3NH3PbI3) and the identical effective masses for electron and 

hole (0.23-0.29) in opposite to Si and GaAs [65]. Due to this nature, balanced charge 

transfer can be observed in the photoexcited state. Similarly, in the case of inorganic 

photovoltaic semiconductors, it is expected to observe that photogenerated carriers have 

free carriers in CH3NH3PbI3. They can migrate in the absorber layers in the perovskite with 

no recombination if they are maintained for a long time [66, 67]. The photoluminescence 

measurements have shown that the lifetimes of these carries can be up to several hundreds 

of ns [25, 63, 68]. 
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Figure 3. Depiction of the bandgap and crystal structure of MAPbI3 as well as the energy 

diagram. The bottom shows bandgap architecture corresponding to the quasiparticle. [Zero: 

valence band maximum. Green solid line: I 5p; red solid line: Pb 6p; gray dot line: Pb 6s]. 

M and R: zone-boundary points. Reproduced with permission. Copyright permission from 

Chemical reviews.[48] Miyasaka, T., Lead Halide Perovskites in Thin Film Photovoltaics: 

Background and Perspectives. Bulletin of the Chemical Society of Japan, 2018. 91(7): p. 

1058-1068. 

1.1.3 Optoelectronic applications 

Initial applications of LHPs have been concentrated on LEDs and transistors. However, as 

will be described below, the optical and electronic properties of these materials have led to 

a diverse set of applications [21, 22, 24, 33, 35, 49, 69, 70]. 
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In addition to this, the optical and electrical properties of LHPs led to their consideration 

as potential sensitizing materials in dye-sensitized solar cells. Later, the creation of 

excellent separating charges as well as electricity, notable properties for charge transport, 

and a boosting absorption across the device led to the introduction of single-cell perovskite-

based photovoltaic devices with high efficacy in the last few years [1-7]. 

As a result, the PCE of polycrystalline perovskite thin-film photovoltaic cells has 

improved from 3.8% to 23.7%. Compared to polycrystalline films, higher charge-carrier 

mobility, as well as longer diffusion length, have been seen in the materials, single-crystal 

perovskites that have no grain boundaries [1, 5, 7, 15]. This is because of their greatly 

decreased trap state density comparable with that of silicon and as a result, it is supposed 

to improve the device efficiency even further [1]. 

The potential applications of sensitive detection of X-rays include homeland security, 

medical diagnostic imaging, non-destructive methods for industry [13]. Sufficient 

sensitivity with a vast majority of active areas is required for these X-rays detectors. 

Currently, there are flat-panel detectors, non-flexible and detectors fabricated by expensive 

silicon materials, charge-coupled devices (CCD), or CMOS devices coupled with a 

scintillation layer [13, 71-73] are used in X-rays detection technologies. By introducing of 

scintillation layer, multiple imaging challenges occur which is pertinent to response times 

and signal-to-noise ratios [74]. The construction of a device with a large area based on 

flexible silicon is a challenge as well. Thus, it is recommended a flexible direct, real-time 

conformal X-ray detector; particularly, using flexible X-ray detectors that have been 



18 
 

 
 

 

fabricated by a thin film. The shape of the object also is important to be considered in this 

case as spatial X-ray gradient is provided for image-guided radiation therapy (IGRT) and 

intensity-modulated radiation therapy (IMRT). In comparison with silicon materials used 

for X-ray applications, perovskite materials have a higher absorption coefficient than that 

of Si using in hard X-ray although µ1 for 2D and 3D perovskites are identical. Within the 

two electrodes, fabrication of a highly crystalline thin film, and high charge transport and 

collection results in excellent X-ray absorption characteristics[75]. 

As shown in Figure 4, a detector incorporating a 0.83 mm X-ray absorber layer fabricated 

using a solution-processed perovskite displayed good sensitivity with X-ray detection [1]. 

It is interesting to note that the sensitivity of this device is an order of magnitude bigger 

than obtained in the indirect/direct detectors of TiCsI. Due to X-rays absorptivity, the 

detector must employ a layer of LHPs that is thicker than the layers used in the 

indirect/direct detectors. However, the ease of depositing perovskites from solution is 

predicted to facilitate detector preparation compared with the inorganic materials. 

The thickness of the absorber necessitates having sintering [heating, pressure 

process to compact solid mass materials] at high temperature and vacuum deposition, etc. 

The former suggested semiconductor materials are more expensive than perovskite 

materials. Indeed, because of the chemical, and physical properties of the lead placed in 

absorber and X-ray, or γ-ray, as radiation detectors, future commercialization of perovskite 

materials is very bright. Although to achieve high sensitivity (high current response), high 
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responsiveness in signal to noise ratio through dark background response suppression 

should be developed [53-56]. 

 

 

 

Figure 4. An X-ray detector fabricated by organic-inorganic perovskite absorbers. (a) 

image of processing all solutions utilized in digital X-ray detector. (b) illustration of printed 

MAPbI3 photoconductors (MPC) on the polyimide (PI) PI-MAPbI3. Indium tin oxide (ITO) 

is a conductive substrate. (c) image of a hand phantom X-ray gained from a detector. 

Copyright permission from Chemical reviews [1]. Jena, A.K., A. Kulkarni, and T. 

Miyasaka, Halide Perovskite Photovoltaics: Background, Status, and Future Prospects. 

Chemical Reviews, 2019. 119(5): p. 3036-3103. 

Among other applications, perovskites LEDs have gained interest as high 

luminance devices with low driving voltage [1, 5, 7]. LED technologies mobilized 
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innovation for sustainable development and improvement of this device, namely inorganic 

semiconductor LEDs [76-81], organic LEDs (OLEDs) [82-85], polymer LEDs (PLEDs) 

[86, 87], quantum-dot LEDs (QLEDs) [88-93], and in the last decade, perovskite LEDs 

(PeLEDs) [8, 18, 49, 94-101]. A multi-layered PeLED device is composed of a front 

transparent electrode (typically doped tin oxide (FTO) or indium tin oxide (ITO)), an n-

type hole-blocking layer (HBL), a back electrode, a p-type electron-blocking layer (EBL), 

and a perovskite emitter). To form a double-hetero junction structure, the perovskite active 

layer is inserted between the HBL and the EBL. This is performed for the confinement of 

the injected charges to have an efficient light emission. Once the voltage is applied through 

the transporting layers into the perovskite active layer, the electrodes inject charge carriers. 

This is the time for their radiative recombination, which led to emitting the light [96, 102-

104].  

1.2 Overview of the electrical properties of LHPs 

The high absorption coefficient, long-range ambipolar charge transport, low 

exciton-binding energy, high dielectric constant, etc are critical physical properties of 

perovskite materials, [1, 17, 105, 106] for applications in optics[107] and electronics [8, 

11].  

The electrical mobility (μ) is the key factor in the electrical properties of Halide 

perovskites (HaPs). It is also considered as the drift velocity obtained by a charge carrier 

per unit of the applied electric field. Diffusion length (LD) is defined as the average 

distance when a charge carrier moves between generation and recombination. There have 

https://www.sciencedirect.com/topics/engineering/exciton-binding-energy
https://www.sciencedirect.com/topics/engineering/high-dielectric-constant
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been several measurements for μ and LD in halide perovskites.   Although several studies 

on MAPbI3 have been reported thus far [108], there has not been agreement on a consistent 

set of values. 

These inconsistencies may be attributed to purity, stoichiometry, and morphology 

differences of the samples, various construction pathways of perovskite materials[109-

117], and different ways of measuring μ and LD[118]. The charge-carrier mobility of 

MAPbI3 thin films, at room temperature, is reported to be between 8 and 35 cm2·V−1·s−1 

[118-121]. There is no consensus on grain boundaries in the thin film. For thin films, it was 

astonishingly reported that the mobility of MAPbI3 single crystals can cover an even wider 

range from 0.7 to 600 cm2·V−1·s−1[118, 122, 123]. 

Long carrier lifetime is a defining feature of high-performance photovoltaic devices 

with hybrid organic-inorganic perovskites [124]. It has been proposed that different 

microscopic mechanisms, including large polarons, Rashba effect [125, 126], and 

ferroelectric domains [127], and photon recycling [128] exist to produce this property. In 

addition to this, results showed that band-edge carrier lifetime rises once the system enters 

from a lower phase rotational entropy to a higher entropy phase. This leads to polarons 

formation[127, 129, 130], and extension of a lifetime [125, 127, 129-135]. 

Favorable charge carrier mobilities are known for MHPs from multiple processing 

paths [118]. The tunability of stoichiometry changes and the high value of charge-carrier 

mobility has been shown fundamentally as well. Typical values of charge-carrier mobility 

in the tens of cm2/V s for lead iodide perovskites thin films along with these above-
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mentioned properties, and long charge-carrier diffusion lengths (in µm) under solar 

illumination densities were able to introduce a way for the fabrication of thin-film 

photovoltaic devices [63, 136, 137]. The charge-carrier mobility ratio and recombination 

rate have had a significant influence on the charge-carrier diffusion length. Although the 

trap concerning the rates of recombination is easily evaluated, charge-carrier mobilities 

have been just developed. Typical inorganic semiconductors, including GaAs, display only 

marginally lower effective masses for electrons of conduction band as well as valence band 

holes with noticeably higher mobilities.  

Both the extrinsic and intrinsic effects can restrict the charge-carrier mobility in 

MHPs. Intrinsic effects are the consequence of the unavoidable interaction of charge-

carrier with the fundamental lattice, permitting the well-designed high-charge-mobility 

MHPs according to the ABX3 stoichiometry[58]. Extrinsic properties, however, are 

because of limited material defects, including grain boundaries, and energy disruption [3, 

122].  

1.3 Progress in materials chemistry and its impact on optoelectronic properties 

and device performance 

Progress in materials chemistry has resulted in a significant increase in the long-

term stability of LHP-based solar cells [1]. To enhance the stability, the combination of 

various cations at the A-site and various halides at the B-site were explored and 

successfully implemented. Successful compositional mixing to form a homogeneous solid 

solution does not occur always. However, with a certain mixture of cations at the A-site as 
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well as halides at the B-site of the perovskites, the dominance of single-cation/halide 

perovskites has been demonstrated, resulted in either both efficiency or stability. According 

to the equation (1) and considering the parameters including size of the ion and geometrical 

tolerance factor, as the empirical index, to predict perovskite crystal structure, exploration 

of various cations and anions (I, Br, and Cl) or mixed have been conducted. The perovskites 

with quadruple cation, including Rubidium (Rb), considered as the fourth cation was 

proposed [7]. It was also revealed that Rb does not insert in any lattice site, instead, it is 

expelled out to grain boundaries [1, 97].  

1.3.1 LHPs with mixed cations (A) 

DFT calculations in all reported cases suggest that the iodine vacancy (V+
I) has the 

lowest diffusion barrier, followed by MA vacancy (V-
MA) and Pb vacancy (V-

Pb2). However, 

the diffusion barriers were reported to scatter over a wide range of the quantitative 

results[1, 138]. Under DFT calculations[139], in LHPs, upon the interactions between the 

Pb 6s6p and I 5p orbitals, two bands will be produced: 1) the valence band maximum 

(VBM) through antibonding (σ*) Pb 6s−I 5p interactions; and 2) the conduction band 

minimum (CBM) through empty Pb 6p orbitals and/or by Pb 6p−I 5p interactions. Thus, 

the cations that are placed in the A-site do not have direct contribution toward the band 

structure. However, they can have a considerable impact on structural stability because the 

charge is compensated largely across the PbI6 octahedra according to the interactions of 

their electrostatic (van der Waals) via the inorganic cage. In the lattice of the crystal, change 

in cations size, in the A-site can both contract and expand, leading to altering the 

perovskites’ optical properties. Small cations in the lattice including Cs and Rb are 
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predicted to contract the crystal lattice and therefore rises the bandgap. However, cations 

with large sizes such as FA+ are expected to expand the crystal lattice and reduce the band 

gap (Eg) [1, 5].  

1.3.2 LHPs with mixed anions (X)  

A mixture of various halides in the X-site has a powerful impact on optical and 

electronic properties, absorption and emission spectra, and carrier lifetime and diffusion 

length.  several research reports claimed that sublimation of chlorine can easily occur out 

of perovskite materials such as MAPbI3[140-142],; thus, Cl should not be retained in the 

ultimately formed film although the initial solution contains precursors of Cl (PbCl2 or 

MACl)[143-146]. In contrast to this, it has been also supposed that MAPbI3-x Clx is a 

metastable phase with high formation energy and will not form a final perovskite film even 

though materials were started with Cl[147, 148]. Nevertheless, the quality and morphology 

of crystalline perovskite films are remarkably affected by Cl in the precursor solution [1].  

PbCl2 is considered as the additive source of Pb- or Cl-, including HCl[148, 149], 

NH4Cl[150], and MACl[151], contributing to a high-quality film lacking pinholes when 

crystallization is slowed down. Consequently, the use of these additives during fabrication 

consistently increases device stability but also performance. The performance increases 

due to the greater diffusion length of electrons in MAPbI3xClx in comparison with MAPbI3 

materials[151]. Though, as the carrier lifetime or diffusion length is related to 

polycrystalline films’ morphology of (grain size and grain boundaries), separating the 

impact of Cl into electronic vs. morphology effects is challenging. XRD pattern studies 
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showed that the gradual shift of Cl doping led to the dimensions of the crystal lattice cell. 

This progressively reduces when x is rising in MAPbI3−xClx (x =0, 0.05, 0.1, and 0.3) single 

crystal materials at ambient temperature, showing that the MAPbI3−x Clx single crystal 

lattice architecture with a gradual change from the tetragonal phase to the cubic phase when 

X is rising.It is essential to mention that the inclusion and impact of Br in the X-site in the 

mixture of Br/I in perovskites materials affect directly directly affect both the optical or 

electronic properties. The smaller Br− ions in MAPbI3xBrx rises the bandgap of the mixed-

halide perovskite once they are incorporated[152]. This increment in bandgap is because 

of a quadratic relation with Br concentration [1]. 

1.3.3 LHPs with Sn-Pb substitutions (B) 

Stability issues attributed to LHPs solar cells (PSCs), and the toxicity of lead have 

been a major concern for industrialization, and commercialization, causing irreversible 

health effects [153, 154]. This issue led to investigations of perovskites that are lead-free 

or else incorporate a reduced amount of lead. A wide range of cations was introduced based 

on ionic size and Goldschmidt tolerance factor that estimates the perovskites' structural 

formability and stability to replace Pb. Group 14 elements, alkaline earth metals, transition 

metals and, lanthanides, and p-block elements can be suggested for replacing the 

perovskites without Pb. However, since we need to consider the stability in perovskite 

structure and photovoltaics factors, cations such as Sn2+, Ge2+, Mg2+, Mn2+, Ni2+, and Co2+, 

are the potential candidates for this aim[155]. This section discusses tin (Sn)-Based 

Perovskites as an example of lead-free perovskite. Tin has been chosen due to its similar 
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ionic radii (1.35 Å) as of Pb2+ (1.49 Å). Tin-based perovskites offer a lower bandgap with 

higher charge carrier mobility (102−103 cm2·V−1·s−1) in comparison with their Pb 

analogs[156].  The exciton ionization is not restricted as most 3D perovskites with Sn 

showed binding energies (2−50 meV) comparable to that of Pb perovskites, because of the 

exceptional low effective masses[157]. Sn-based perovskites demonstrated several 

favorable optoelectronic factors compared with traditional semiconductors including CdTe 

and Si:  narrow optical bandgap, absorption at wavelengths up to 1000 nm, bulk n-type 

electrical conductivity (5 × 10−2 S·cm−1), long diffusion length, as well as great electron 

mobility (∼2000 cm2·V−1·s−1). However, the ease of oxidation of Sn2+ to Sn4+ at ambient 

temperatures poses a considerable challenge to application of Sn-based perovskites  in 

PSCs [158]. If Sn4+ ion is oxidized, then, it behaves as a p-type dopant, resulting in the 

perovskites layer's self-doping, and PCE limitation. Sn perovskite films have also poor 

coverage, and inhomogeneity because of fast crystallization [159], resulting in numerous 

pinholes [160]. It was reported that different solvents can have effects on crystallization. 

Deposition from dimethyl sulfoxide (DMSO) as well as N-methyl-2-pyrrolidone (NMP) 

can give pinhole-free high-quality films, which is due to the induction of the intermediate 

phase, producing an extra ordinary rise in photocurrent, up to 21 mA/cm 2 [161]. 

Nonetheless, creating LHP material and devices with long-term stability still demands 

further investigations and remains as a challenge. [1] 

1.4 Overview of the solid-state chemistry of LHPs 
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LHPs have rich and versatile solid-state chemistry. Replacement of one ion with 

another can cause distortions, and vary the lattice parameters as well as crystal symmetry 

at times[162]. This is because size differences occur between their placing and replaced 

ions[163]. The ideal cubic ABX3 perovskite is not very common and slight distortion of 

the mineral perovskites is often observed. Distorted perovskites have decreased symmetry 

are introduced for their magnetic and electric properties[164]. Goldschmidt et al in the 

1920s pioneered structural studies on perovskites to explore the perovskite family of 

compounds.  

1.4.1 Halide Exchange 

The process of ion exchange in HaPs is related to the progression of a reaction in which 

structural ions are replaced by external ions [165]. Partial or complete ion exchange can 

result in the alteration of the crystal lattice [163]. Generally, the exchange process is 

conducted through either diffusion and reaction [163]. It was shown halide exchange can 

successfully occur in polycrystalline thin films by MAPbX3 with X = Cl, Br, I) because the 

reaction was slow, and incomplete sublimation of Br−by I− is seen (Figure 5) [163]. This 

study proposed that size differences are the limiting factor. MAPbCl3 and MAPbBr3 have 

the cubic perovskite structure and MAPbI3 has a distorted tetragonal structure. Therefore, 

for instance, in the MAPbBrxI3−x system, the compound symmetry may alter once the 

halide exchange occurs. Another study reported that halide replacement in MAPbX3 

microcrystals with a predicted size of approximately 10μm with a morphology of an 

inverse opal can be obtained. A reaction of crystals of HaPs with gaseous hydrogen halide 
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at higher temperature led to a complete halide exchange. Crystallinity and morphology 

were preserved for exchange with X, except in the case of having Cl− and I− where 

morphology is not retained. It was observed that their morphology is not maintained[163, 

166]  

 

Figure 5. Illustration of reaction of reversible anion exchange across the LHPs. 

Reproduced from copyright permission [167] Li, G., et al., Reversible Anion Exchange 

Reaction in Solid Halide Perovskites and Its Implication in Photovoltaics. The Journal of 

Physical Chemistry C, 2015. 119(48): p. 26883-26888. 

In addition to this, halide exchange was studied to measure the halide drift as a driving 

force for exchanging the prototypical LHPs [163]. The initial step for halide exchange is 

the establishment of concentration gradients of ions across a span ranging from a few 

microns to a few hundred microns. From the surface, the depth of the replaced volume is 

based on how the halides have been paired. Which halide is exchanged, and exchanging is 

important to pay attention to. It was reported that the concentration gradient of the 

incoming halides reduces from the surface of the crystal toward its inner core and vice 

versa for the halides that are outgoing [163]. The gradient concentration varies slowly when 

the time changes with the crystal. Evaluation of halide diffusion coefficients can be 
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functioned by the Boltzmann−Matano method. Also, diffusion profiles can be measured 

by electron-dispersive spectroscopy (EDS)[168]. It should be noted these parameters can 

vary, depending on the halide couple[163]. Moreover, while it was thought that gradients 

led to change in a lattice parameter and symmetry, X-ray diffraction showed that if the 

exchanged halides have identical size (e.g., Br−and Cl−, Br−and I−, but not Cl−and I−), the 

resultant perovskite materials will not alter single crystalline, and they would provide valid 

results irrespective of which halide is exchanging[163]. In the halide pairs that have a 

similar size, the solid-state chemical exchange is topotactic which determines the 

orientation of the crystal structure by that of the initial crystal, and explaining that 

substitution can occur through a topotactic reaction without damaging the single-crystal 

structure. 

. As a result, crystal directionality is defined by knowing the initial crystal architecture. It 

was also examined that I−Cl exchange causes single crystallinity loss[169]. This 

contributes to a lack of miscibility, and it is thought to be a challenge to determine the 

presence of Cl in MAPbI3 samples that were produced from solutions [163]. 

 

 

1.4.2 Ion migration   

Ion migration is considered an intrinsic property of LHPs [168, 170]. This 

phenomenon occurs across the LHPs when an electric field is applied, causing perovskite 

solar cells’ hysteresis (a unique characteristic of PSCs) and instability[171]. Also, 
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determination of ion migration can be determined by impedance spectroscopy, 

galvanostatic measurement, photothermal induced resonance (PTIR) microscopy, and 

kelvin probe force microscopy (KPFM), as well as conducting atomic force microscopy 

(c-AFM).  

In addition to this, ion transport is prominent for energy research. Devices such as 

batteries [172], fuel cells [138, 173], electrochemical sensors [174], and memristors include 

utilizing ion transport, relating to mixed conductivity. Conductors using mixed 

ionic−electronic materials have been extensively discussed in the area of solid-state Ionics, 

especially regarding the importance of oxide perovskites materials[175].  

1.4.3 Defect self-healing 

Given the nature of the perovskite materials, and because there are relatively soft ionic 

solids, a fundamental understanding of defect structures is essential[176]. “Self-healing” 

refers to the ability of a material to revert to its initial state once it is damaged by chemical, 

thermal exposure, or light conduction. It was reported that self-healing can occur inside the 

crystals of MAPbBr3, FAPbBr3, and CsPbBr3 single crystals to repair and therefore 

minimize the two-photon absorption induced photodamage. Then, the photoluminescence 

recovery was monitored after the damage. It was shown that self-healing in FAPbBr3 is the 

fastest (≈1 h) and in CsPbBr3 is the slowest (tens of hours) for recovery. This is typical in 

the bulk, and dependent on degradation products' localization that is not far from the 

damage site[177].  
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The self-healing mechanism was explained with polybromide species that are present in 

the crystal, providing a closed cycle chemically. Due to the significant bond anharmonicity 

of halide perovskites crystalline, dynamic disorder across the well-defined crystalline 

lattice is also observed. It is noteworthy. that the efficacy loss observed when a solar panel 

is operated under illumination is reversed when the panel is kept in darkness. Nevertheless, 

When they are left in a dark place, recovery occurs [138].  

1.5 The motivation of this thesis 

            In this thesis, we aim at understanding the fundamentals of halide exchange and 

transport inside the solid lattice of LHPs. We plan to achieve this objective by transforming 

MAPbBr3 using an iodide solution to create LHPs with a gradient of mixed halides 

(MAPbBr3-x Ix ,  0 ≤ x ≤ 3) and to map the chemical space of these materials.  

Because the ion exchange is observed from the interface, studying halide exchange 

and transport helps us to have a good understanding of the solid-state of lattice behavior in 

this condition. Thus, in this study, attempts have been made to know how or which lattice 

degrees of freedom determine the halide transport. As we discussed earlier, 3D perovskite 

structures (ABX3) stoichiometry poses the A and B cations and have coordination with 12 

and 6 X anions, respectively. From the microscopic point of view, because of the octahedral 

structures of the halide perovskite with a 3D bonding network, we are interested in the 

motion of halide ions across the lattice.  
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Halide diffusion occurs inside the lead-halide octahedral bonded framework. It has 

been suggested that halide diffusion proceeds through this bonded network via halide 

vacancy. By studying the halide diffusion kinetics, we aim to identify key lattice degrees 

of freedom that dictate the ion transport inside the solid crystal.  

The halide gradients formed in the halide diffusion study can be viewed as a 

chemical mapping of the composition space, translating the concentration of halides as a 

function of spatial coordinates.  

The electrical and optical properties including optical absorption, and carrier 

diffusion lengths are defined by the chemical composition and lattice structure. In this 

research study, we design the chemical space mapping to directly expose the halide 

gradient. Accessible halide gradient maps will elucidate how halide perovskite 

optoelectronic properties vary concerning composition. This in turn enables high-

throughput screening of desirable and/or unexpected materials behaviors. 

1.5.1 Fundamental study of halide exchange and transport inside solid lattice  

An effective method for changing the composition of raw material is performed via 

ion exchange, a chemical transformation method that maintains the original lattice structure 

of the LHP. [165]. As we discussed earlier, this reaction is typically done via ion diffusion 

that is kinetically managed with various ion concentrations between parent composition 

and reaction environments. Ion exchange has stood out in science because of the high 

tunability, and facile operability after synthesis to achieve heterogeneous architecture, 
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core-shell structures, alloys, and metastable phase products. Because of the intrinsic 

softness ionic lattice of halide perovskites, modulation of physicochemical properties of 

halide perovskites is feasible to be investigated [178]. 

1.5.2 If mesoscopic morphologies affect halide transport 

Another aspect of this study could be how mesoscopic morphologies affect halide 

transport.   Diffusion coefficient magnitude is one of the important factors to consider in 

assessing halide transport. Reported values of halide diffusion coefficients vary by orders 

of magnitude for polycrystalline, single crystalline, and nano confined halide 

perovskites[163]. 

In addition to the above-aforementioned research motivations, it has been reported 

that the rates of ion migration are controlled by microstructure features, and this is different 

from bulk architecture [171, 178]. Consequently, decreasing the diffusion rate of grain 

boundary results in blocking ion diffusion if the boundaries are transverse to the electric 

field direction[179]. 

To develop methodologies to decrease ion migration and its effects, it is critical to 

know that whether we would have a homogeneous migration or if migration is influenced 

by microstructural characteristics including grain boundaries. By increasing the grain size, 

the charge that was accumulated starts decreasing, while the activation energies rise. This 

is coherent with the high grain boundary density in small-grained films accountable for 

easing charge transport  [180]. 
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We hypothesize mesoscopic interfacial structural features are responsible for such 

a wide span of diffusion coefficients. Halide perovskite interfaces such as grain and/or 

domain boundaries might support halide transport mechanisms that differ from that of the 

bulk. By comparing the kinetics of the halide exchange reaction between samples of 

varying heterogeneity, key differences of the thermodynamic variables affecting halide 

transport will be elucidated. Moreover, fundamental knowledge of the structural features 

defining halide transport in halide perovskites will lead to an advanced understanding of 

lattice defects, which will ultimately translate into improved materials properties and 

device performance. 

 

Chapter 2. Halide exchange and diffusion in single-crystalline halide perovskite thin 

films  

2.1 Introduction  

Ion exchange, as a post-synthetic transformation approach, has shown to be able to 

control the compositions, and structures of materials beyond a synthetic pathway[181]. To 

resolve the kinetics on the single-particle level, few reports were made about the rich spatial 

and spectroscopic information. So, recently, image anion exchange kinetics quantitively 

was reported in nanoplates of individual single-crystalline LHPs through confocal 

photoluminescence microscopy (CPM) [181]. This symmetrical anion exchange route on 

the nanoplates is associated with the time of reaction as well as plate thickness which is 
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monitored/controlled by the crystal structure and limitation in the mechanism of the 

diffusion of transformation[181]. Estimates based upon a reaction-diffusion model 

suggested the halide diffusion coefficient would be on the order of 10−14 cm2·s−1, resulting 

in 2D perovskite heterostructures. The spatially resolved coherent interface was realized 

via the reaction of anion exchange [181].  

A recent study was conducted on CsPbCl3–CsPbBr3 single-crystalline perovskite 

nanowire heterojunctions to visualize directly the halide anion interdiffusion through wide-

field and CPM measurements. Measuring intrinsic anionic lattice diffusivities was done by 

direct imaging techniques, free from microscale inhomogeneity. It was also reported that 

the halide diffusivities are in the range of 10−13 and ∼10−12 cm2/second at around 100 °C 

[163]. This meant that the orders of magnitudes are several less than those reported for 

polycrystalline thin films [163]. Moreover, the key point of that study was the halide 

vacancies that facilitate ionic diffusion [163]. 

2.1.1 Review literature of halide exchange and diffusion  

In halide perovskites, two procedures for ion exchange should be considered a) 

diffusion and b) ion exchange. Diffusion is the mass transfer, indicating that the ion 

exchange begins with interacting diffusion between the ions that are outside the 

investigated structure and ions that are components of the parent compound. This term is 

related to ions, molecules, and atoms when they are migrated in substances that are mainly 

coming from the thermal motion, and its kinetics are measured with Fick’s law. The 

volume of substance that has been diffused should be passed via the unit cross-sectional 
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area if we want to have an ideal steady state of diffusion condition. This is a vertical 

diffusion direction that occurs per unit time (diffusion flux), and it is comparative to the 

concentration gradient at the cross-section:      

𝐽 = −𝐷∇𝐶           Equation (1) 

where J is considered as diffusion flux, D is considered as diffusion coefficient, as 

well as C indicates concentration probably the number of atoms that have been diffused 

per volume, or the grams quantity per atom or any other units of the number in the 

substances The concentration distribution of diffused substances varies over time. 

According to Fick’s first law, concentration divergence and the continuity equation are 

combined to calculate Fick’s second law:  

𝜕𝐶

𝜕𝑡
 =𝐷 × ∇2 × 𝐶                                                                   Equation (2) 

Fick’s law explains that the diffusion coefficient is the key parameter as it indicates the 

number of moles (mass) for the substance that has been diffused. Changes in concentration 

are perpendicular to the direction of the diffusion. This is calculated when the unit 

concentration gradient is considered per unit time. In practice, the diffusion coefficient D 

keeps follows the Arrhenius equation in a certain controlled temperature.  

 

 𝐷 = 𝐷0  × 𝑒
−𝐸𝐴

𝑅𝑇⁄       Equation (3) 
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where Do is considered a pre-exponential factor, R is equivalent to gas constant, EA 

is a constant (diffusion activation energy), and T is known as temperature. Diffusion is 

nearly dependent on temperature. Different mechanisms can occur including atom 

migration in the lattice, vacancy diffusion, and interstitial diffusion mechanism[119, 165, 

182-185]. 

In a halide perovskite, for instance, MAPbI3, the intrinsic concentrations of I–, Pb2+, 

and MA+ vacancies are expected to go beyond 0.4% at ambient temperature. This makes 

the main process of vacancy-mediated diffusion in MAPbI3 perovskite materials [165]. 

Figure 1 depicts four types of mechanism for vacancy diffusion in halide perovskites.  

 

 

 

 

 

Figure 1. Vacancy diffusion. reproduced with a copy right permission[165]. Jiang, H., et 

al., Ion exchange for halide perovskite: From nanocrystal to bulk materials. Nano Select.  

Apart from the constructed-covalent bond in MHPs, the A-site cation is also is part 

of an ionic link across the LHPs lattice but its migration is also affected by assisting such 
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vacancy route[165, 186, 187].  Based on the above equation, several special factors having 

an impact on the ion diffusion of LHPs. These are described below:  

2.1.1.1 Ion exchange in lattice sites 

Diffusion of X-site halogen anions requires the least activation energy. This is due 

to the desirable vacancy-assisted diffusion. Migration of A-site cation engages movement 

via the unit cell face or bottleneck including four X-site ions. This results in the observation 

of higher activation energy compared to X-site anion.  It is important to note that A-site 

cation occupies a significant fraction of the LHP unit cell volume, and its migration has a 

direct effect on the perovskite crystalline stability. The B-site ion is placed on the center of 

the cation sublattice architecture in perovskites, exhibiting the highest migration energy 

barrier. As for MAPbI3, the activation energy at A site is 0.84, B site is 2.31, and X-site is 

0.58 eV.[165, 187] 

2.1.1.2 Reactions of Ion-exchange 

Ion exchange occurs within the solution phase. The following steps present a 

process for understanding  how cation and anion exchanges occur [165, 167] 

𝐴𝐵𝑋3 +𝑋’−(𝑠𝑜𝑙.) →𝐴𝐵𝑋2𝑋′−+𝑋−(𝑠𝑜𝑙.) ⋯⋯→𝐴𝐵𝑋3
- 

i. 𝐴𝐵𝑋2 −𝑋 →𝐴𝐵𝑋2 + 𝑋 (𝑑𝑖𝑠𝑠𝑜𝑐𝑖𝑎𝑡𝑖𝑜𝑛)  

ii. 𝑋′−→ 𝑋′ (𝑑𝑒𝑠𝑜𝑙𝑣𝑎𝑡𝑖𝑜𝑛) 

iii. 3.𝐴𝐵𝑋2 +𝑋′ →𝐴𝐵𝑋2 −𝑋′ (𝑎𝑠𝑠𝑜𝑐𝑖𝑎𝑡𝑖𝑜𝑛) 
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iv. 𝑋 → 𝑋− (𝑠𝑜𝑙𝑣𝑎𝑡𝑖𝑜𝑛) ⋯⋯→𝐴𝐵𝑋3
−′ 

This reaction shows that the cation exchange occurs in two steps (1 and 3), each of 

which can alter the crystal energy such as Born-Lande lattice energy as well as surface 

energy. Also, anion exchange reaction is related to the dislocation energies between the 

initial compounds (parent) and perovskites with product phases [188, 189]. It has been 

discussed that there is a decrease in crystal energy in product perovskite materials. This is 

led to a reaction of thermodynamically spontaneous ion exchange[190]. Ingoing cations 

and outgoing cations can be observed in step 2 (dissolvation) and step 4  (solvation) 

energies, relating to the ion solubility in the solvent. This is showing that the reaction 

continues to proceed once the ingoing cation is desolvated and the product cation is 

solvated. Therefore, by knowing the crystal lattice energy[165, 188], dissociation, 

interfacial strain energy [191], dislocation energy, [177], solvation energy [172, 188], and 

the thermodynamic aspects of the halide exchange reaction can be estimated[177, 188, 

192]. In addition to this, the temperature of the ion exchange is highly important[165].  

2.2 The objective of this study 

In this work, attempts have been made to demonstrate how solution-solid chemistry 

using MAI and MACl solutions leads to the exchange of Cl and I into MAPbBr3 perovskite 

thin films. Since the liquid-phase ion exchange has been discussed for bulk perovskite thus 

far and suffers from the contradiction that exists between ion source solubility compound 

and solvent polarity, we investigated the deposition of the MAI and MACl droplets on the 

single-crystalline perovskite thin film to improve the dissolubility, and the stability of MA-
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X (X: Cl, and I) using the ionic liquid 1-butyl-3-methylimidazolium hexafluorophosphate 

(BMIMPF6).  The use of the ionic liquid enhanced not only the uniformity of the droplet 

on the MAPbBr3 thin film, setting up a spatially controlled and spatially confined way to 

deliver a drop of halide ion solution, but also enabled complete halide exchange I and Cl 

with MAPbBr3 was obtained. Additionally, chemical mapping on composition space was 

attempted to monitor halide gradient formation with different concentrations of MAI and 

MACl.  Finally, a methodology of controlling the material composition to change structural 

dynamics and optoelectronic properties has been investigated.  

 

2.3 Review literature on methods for LHP sample preparation - single crystal 

growth  

This section reviews the fabrication techniques used for perovskite single-crystal 

thin films in detail. The overview is divided into three parts: i) solution-based lateral crystal 

growth; ii) vapor-phase epitaxial growth, and iii) top-down techniques [7, 57, 193-196]. In 

this thesis, we focus on solution-based growth of single-crystalline perovskite thin-film.  

2.3.1 Synthesis of Bulk crystal  

2.3.1.1 Antisolvent Vapor-Assisted Crystallization 

Antisolvent vapor diffusion crystallization utilizes the different solubility behavior 

of perovskite materials in various solvents. In general, halide perovskites exhibit high 

solubility in DMSO, DMF, and GBL and low solubility in chlorobenzene, benzene, diethyl 
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ether, etc. Those solvents with less solubility for LHPs are used as antisolvents with a slow 

diffusion into the precursor solution of perovskite (in DMSO, DMF, or GBL, etc.) until 

supersaturation of perovskite materials is reached and crystallization is induced. This 

technique is useful to grow large-scale bulk single-crystals, fabrication of single-crystal 

perovskite thin films via kinetic control or geometrical confinement can be performed 

(Figure 2).[197, 198] 

 

 

 

 

 

Figure 2. antisolvent vapor-assisted crystallization [193]( reproduced with a copy 

right with permission 2021) Hussain, I., et al., Functional materials, device architecture, 

and flexibility of perovskite solar cell. Emergent Materials, 2018. 1(3): p. 133-154. 

A study reported that a single-crystal MAPbBr3 film could be fabricated through a 

cavitation-triggered asymmetrical crystallization approach [193]. The introduction of the 

transient ultrasonic pulse into a low supersaturation-level solution was done to induce non-

symmetrical crystallization[193]. A single crystalline MAPbBr3 film with a homogeneous 

and free of grain boundaries was achieved. Also, the thicknesses ranging from one up to 
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several tens of microns and lateral dimensions changing from 100’s μm to 3 mm after 

several hours of crystal growth via dichloromethane vapor diffusion into the precursor 

solution were obtained. The drawbacks of this technique are size limitation, the formation 

of a  (001)-oriented single-crystal MAPbBr3 thin film, and a lack of generality in terms of 

applications to other halide perovskites[193, 199]. 

For the growing of the perovskite single-crystal thin films, antisolvent vapor 

diffusion crystallization in a confined space is also suggested, particularly for 2D 

perovskites. Single-crystal (C6H5C2H4NH3)2PbI4 thin films with lateral sizes up to 1 cm 

with a minimum thickness of 1 μm via the diffusion of dichloromethane vapor into a 

solution of PbI2 and C6H5C2H4NH3I in GBL over 30 min was fabricated, led to the 

introduction of a high compatibility method, and suggested for growth of another halide 

perovskite single-crystal thin films[193]. 

2.3.1.2 Retrograde solubility - inverse temperature  

As the temperature increases, MHPs show decreasing solubility in certain organic 

solvents, such as DMF, DMSO, and GBL.[197] Accordingly, the perovskite-precursor 

solution can be heated to produce perovskite single crystals.  The inverse solubility curve 

related to MAPbI3 in GBL and MAPbBr3 in DMF is shown in Figures 3a and 3b. 
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Figure 3. The solubility curves of (a) MAPbI3 in GBL and (b) MAPbBr3 in DMF 

(reproduced with permission. Copy right 2021[193]. Wang, X.-D., et al., Recent Advances 

in Halide Perovskite Single-Crystal Thin Films: Fabrication Methods and Optoelectronic 

Applications. Solar RRL, 2019. 3(4): p. 1800294. 

 

Initially, the formation of a complex was obtained by molecular binding of 

perovskites and solvent with low temperatures. Once the temperature increases, the 

complex is decomposed into free perovskite molecules [7].  Thus, heating a perovskite-

precursor solution with the appropriate concentration can lead to effective inverse 

temperature crystallization. The crystallization rate of such a solution is an order of 

magnitude faster than that of other solution-phase techniques. Because of its simple 

procedure and fast crystallization rate, this technique is a common strategy for the 

fabrication of single crystals perovskite materials[152, 200-202]. Additionally, using two 

parallel plates for confined crystal growth along the z-direction with a controlled thickness, 
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inverse temperature crystallization can be introduced to synthesize single-crystalline thin 

films [193](Figure 4).  

 

 

 

 

 

 

 

 

Figure 4. Inverse temperature crystallization (Reproduced with a copy right permission 

2021)[193] Wang, X.-D., et al., Recent Advances in Halide Perovskite Single-Crystal Thin 

Films: Fabrication Methods and Optoelectronic Applications. Solar RRL, 2019. 3(4): p. 

1800294. 

2.3.2 Growth of MAPbX3 single-crystalline thin films  

In the last few years, different bulk single-crystal perovskites have been fabricated, 

such as MAPbBr3, MAPbI3, and CsPbBr3,
 and demonstrated as potential candidates for use 

in lasers, photosensors, X-ray detectors, and photovoltaic cells [7, 193]. The excessive 

thickness of the single crystals (longer than their diffusion length of charge carrier) and 

non-passivated surface defects have, however, severely restricted the development of 

optoelectronic applications based on the bulk single crystal perovskites[120, 127, 179, 
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203]. To overcome this barrier, the fabrication of large-area single-crystalline thin films is 

an effective approach to improve the optoelectronic efficiency of perovskite single crystals. 

It should be mentioned that single-crystalline perovskite thin films inherit the distinct 

properties of both polycrystalline films and bulk single crystals, such as low trap-site 

density, high mobility, and well-defined thickness. [193] 

2.3.2.1 Solution-based growth of single-crystalline perovskite thin-

films 

The most widely used technique for preparing perovskite single crystal is solution-

based growth. In general, this technique consists of two stages of nucleation and subsequent 

crystal growth, and as shown in Figure 5, both can be regulated using a solubility-super 

solubility diagram. 

 

 

 

 

 

Figure 5. Solubility and super solubility (reproduced by copy right permission 2021 from 

WILEY-VCH Verlag GmbH and Co. KGA, Weinheim)[193] Wang, X.-D., et al., Recent 
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Advances in Halide Perovskite Single-Crystal Thin Films: Fabrication Methods and 

Optoelectronic Applications. Solar RRL, 2019. 3(4): p. 1800294. 

Different inverse temperature crystallization strategies that have been modified for single-

crystalline thin films have been developed as shown in Figure 6. [193] 

 

 

 

 

 

 

 

 

Figure 6. illustration of ITC methods for single-crystal perovskite thin films. a) thickness-

controlled perovskite wafers b) SEM image of perovskite wafer c) various hybrid 

perovskites d) home-made spacer for growth of thin-film e) MAPbBr3 crystal films 

(thickness:0.4mm) f) Flow cell g) FTO glass used for a laminar single-crystal MAPbBr3 

[193, 204-206]. For more information, please go to the reference [193] (Reproduced with 

Copy right permission (2021)) Wang, X.-D., et al., Recent Advances in Halide Perovskite 
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Single-Crystal Thin Films: Fabrication Methods and Optoelectronic Applications. Solar 

RRL, 2019. 3(4): p. 1800294. 

Based on the inverse temperature crystallization technique, a geometrically defined 

dynamic-flow reaction system for the growth of single-crystal MAPbI3 wafers was 

developed as demonstrated in (Figure 6a). The dynamic flow was actuated using a 

peristaltic pump to effectively improve mass transport and facilitate continuous crystal 

growth by refreshing the solutions constantly. As can be seen in Figure 6b, using the 

sandwich spacers, the resulting single-crystal MAPbI3 wafer had a comparatively large 

lateral size of about 1 cm with a controlled thickness of about 150 mm. Nevertheless, the 

wafers' excessive thickness prevents them from being used in a vertical structure solar cells 

and photodetectors. More recently, thinner single-crystal MAPbI3 wafers that have 35 mm 

thickness were achieved using the same technique[193, 207].  

For vertical structure optoelectronic devices, direct-grown perovskite single 

crystals on specific substrates are preferred over freestanding single crystals[208]. 

Submillimeter MAPbBr3 single-crystal thin films on specific substrates (Figure 6c) were 

fabricated, in which two flat substrates were fastened together using the clips before being 

immersed into the perovskite-precursor solution vertically. By modifying the clipping 

force, the gap size between the two substrates could be modified, and thus, the resulting 

MAPbBr3 crystal film thickness could be modified from 13 nm to 4.5 µm. Different 

successful perovskite single-crystal thin films grew on different substrates using this 

technique, such as quartz, ITO, Si, and PET. However, the single-crystal line perovskite 
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thin films' lateral sizes were too limited (only hundreds of μm) to be effectively used in 

device fabrication[193, 204, 205, 209, 210]. 

Further study suggested an ingenious space-limited ITC technique[205]. An 

impressive, controlled 120 cm2 large-area single-crystal CH3NH3PbBr3 thin films with a 

thickness of 100–800 µm (Figure 6d and 6e) was obtained by the use of a spatially limiting 

platform compromising of FTO glass, a U-shaped thin polytetrafluoroethylene (PTFE) 

film, and a PTFE board. Furthermore, from bottom to top, a gradual reduction of 

temperature gradient was applied to control the crystal growth, and the precursor solution 

was constantly refreshed to obtain a large-area crystal growth. Another fascinating module 

(Figure 6f) was built based on a large lateral size (6   ×8 mm), and much thinner (16 μm) 

laminar MAPbBr3 single-crystal films (Figure 6g). This was a successful design for having 

a minimum thickness of perovskite single-crystal thin film to 10’s of microns and 

organized with a peristaltic pump to aim for a fluid flow circulation of the precursor 

solution (MABr and PbBr2 in DMF). Once the perovskite precursors are depleted, a fresh 

solution can replenish it with a steady flow. This enables to fabrication of continuous 

crystal growth, leading to a large-area perovskite single-crystal thin film. Furthermore, the 

employment of an ultrathin PTFE box for sealing the two glass substrates plays a pivotal 

role in the resultant perovskite single-crystal thin films’ thickness. For having a confined 

nucleation position, and simultaneous regulation of crystal nuclei, local heating at 90ºC 

was applied between the glass substrate[193, 205].  

2.3.2.2 Microfluidic (1D) approach 
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Microfluidic and/or nanofluidic technologies have been an emerging technology in 

biological, biomedical, and biochemical research in the last two decades. Microfluidics is 

about how to manipulate fluids at the microscale (µl, nL, pL, or fL) to fabricate small, fast, 

and portable devices to decrease the time, and cost of analysis, and volumes of samples, 

and reagent [15].  

Several materials are appropriate for the fabrication of microfluidic devices. 

Because of the low price, several protocols have been established for poly 

(dimethylsiloxane) (PDMS). This type of polymer is widely used in soft lithography and 

is biocompatible, gas permeable, and transparent,  suitable for mass construction, PDMS 

suffers from surface modification properties over time, and hydrophobic substances are 

absorbed in its surface [15]. 

Several studies have been reported for the fabrication of 1D perovskite materials 

through microfluidic technologies. For instance, the growth of graph epitaxial liquid-solid 

nanowires of the photovoltaic materials CH3NH3PbI3 in open nanofluidic channels was 

introduced via polar aprotic solvents. These wafer-scale perovskite nanowire thin films led 

to mm2-sized surfaces comprised of perovskite nanowires in a controllable size, shape, and 

orientation manner [16].  

In addition to this, laminar MAPbBr3 single crystals were generated at a 

controllable thickness of 16 μm and size of  6×8 mm via space-limited inverse temperature 

crystallization (SLITC) growth [17]. 
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Recently, a microfluidic flow cell has been published for microscopy applications 

and shows a passive flow control[211]. It has been found that thin flow-cell geometry can 

be combined with high numerical aperture (NA) optics to carry out high-resolution bright-

field and fluorescence microscopies.  

 

2.3.2.3 Other methods 

1D aligned single-crystalline CH3NH3PbI3 microwire arrays were reported to be 

fabricated through a simple solution-processed blade coating method at 100 °C. These 

microwires can be used in flexible sensors as novel optoelectronic devices including 

electronic eyes[7, 29, 41, 71], the implantable biomedical device[40, 212-216]s, and 

wearable electronics that had not been practical with rigid silicon-based image sensors[41, 

71, 73]. An advantage of the chemical vapor deposition (CVD) method is precise surface, 

morphology, structure, and product composition control for the introduction of alternative 

synthesis pathway to obtain high-quality single-crystalline semiconductor nanowires 

although the difficulty of its direct use through this approach in the devices without 

manipulation and transfer has been reported[114, 208, 217, 218].  

2.4 Experimental methods  

2.4.1 Bulk crystal growth procedure of MAPbI3 Single Crystals via Inverse 

temperature crystallization (for cuboids) 
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MAPbI3 single crystals were fabricated by the inverse temperature crystallization 

method described by [219] with some modification. In brief, a 2:1 mixture of MAI (1.80 

M) and PbI2 (0.90 M) solutions in GBL (γ- butyrolactone) was sonicated for 10 minutes 

and filtered using a 0.22-μm PTFE filter. It should be noted that no evacuation and N2 

filtering were done in this method. It is also possible to shake the solution gently without 

sonication for 10 minutes. Then, the precursor solution in which 5 mL of clear, yellow 

MAPbI3 solution exists, is distributed into two per closed vial. Then, it was placed in an 

oil bath at 60 °C for one hour. MAPbI3 has the largest solubility at this temperature, and 

then gradually (1 °C per 20 min), the temperature increases to 135 °C. At this stage, the 

hotplate temperature should be slowly ramped from 60 °C to 135 °C to suppress nucleation 

and favor a slower growth rate to get larger grains.  The time was adjusted to 24 hours to 

maintain the temperature at 135 °C. A single black MAPbI3 cuboid grows on the bottom 

of the vial. Wiping off the harvested crystal can be done with filter paper Figure 7 (a). 

2.4.1.1 Preparation of bulk MAPbBr3 Single Crystals 

Using the inverse temperature crystallization method, MAPbBr3 single crystals 

were synthesized based on a modification of a known procedure  [220]. A mixture of MABr 

(1.0 M) and PbBr2 (1.0 M) in 5 ml DMF (N, N-dimethyl formamide- a polar solvent) was 

sonicated directly for 5 minutes and filtered using a 0.22-μm PTFE filter. The precursor 

solution is distributed into two vials (2 mL per vial). The transparent solution of MAPbBr3 

in a closed vial was placed in an oil bath at room temperature for 30 minutes. At this 

temperature, MAPbBr3 has the largest solubility. To set up the program, the hotplate 
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temperature should be slowly ramped from 25 °C to 100 °C for 24 hours for suppression 

of nucleation and controlling the experiment with a slower growth rate to obtain larger 

grains.  Next, the temperature increases to 100 °C gradually (1°C per 20 min.). After almost 

24 hours, it was observed that several MAPbBr3 cuboids grew on the bottom of the vial 

and can be collected and wiped with filter paper Figure 7 (b). 

 

2.4.1.2 Preparation of bulk MAPbCl3 single crystals 

High-quality MAPbCl3 single crystals were fabricated by the inverse temperature 

crystallization method described in[206] with some modifications. Briefly, PbCl2 (≥ 

99.0%, 1.3905 g) and methyl-ammonium chloride (MACl) (98%, 0.3375 g, Aladdin) with 

an equimolar ratio were dissolved in a 2.5 mL of N, N-dimethylformamide (DMF) solvent 

and 2.5 ml of dimethyl sulfoxide (DMSO) solvent at 1:1 by a volume ratio at ambient 

temperature. Subsequently, the prepared solution was sonicated until no reactant precursor 

was presented. Next, filtration of the solution is done through the polytetrafluoroethylene 

(PTFE) filter with 0.22-μm pore size.  For the growth of MAPbCl3 single crystals, the 

precursor solution was transferred into some vials (1.5 mL per vial) and was kept in an oil 

bath. The temperature was set at 45 °C. The temperature of the oil bath was quickly 

elevated to 60 °C and maintained for ∼8 h. (Alternatively, the temperature could be 

increased from 45 to 60 °C  at 1°C per 20 min.). It was observed that MAPbCl3 single 

crystals with sizes of 2-3 mm were obtained. Notably, compared to the conventional one-

step heating method, this two-step temperature process can generate MAPbCl3 single 
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crystals with high quality including a lower defect density. In addition to this, the low-

temperature nucleation process at 45 °C plays a key role in obtaining the high quality of 

the crystalline thin film. Thus, the temperature of the hotplate should be slowly ramped 

from 25°C to 45 °C for 5 hours, and then from 45 °C to 60 °C for 8 hours to control the 

nucleation, resulting in slower crystal growth and larger grains Figure 7 (c).   

 

 

 

 

Figure 7. Bulk single crystals a) MAPbBr3 b) MAPbI3 c) MAPbCl3 

2.4.2 Space confined single-crystalline thin film growth methods for LHPs 

2.4.2.1 Oversaturated Procedure for growth of single-crystalline MAPbBr3 thin 

film  

A mixture of MABr (1.0 M) and PbBr
2
 (1.0 M) was dissolved in 2 ml DMF (N, N-

dimethyl formamide), sonicated for 10 minutes, and filtered using a 0.22-μm PTFE filter. 

Glass slides were cleaned by IPA, and DI water in the ultrasonic bath for 5 minutes, and 

dried at room temperature. A U-shaped thin PTFE spacer was pre-patterned by a cutter. As 

displayed in Figure 8 (a-c), the flat substrates were assembled and clipped together. The 
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clipped assembly confines growth space and reduces film thickness [208]. The temperature 

was slowly ramped programmatically, according to Rao’s work [205, 208]. The precursor 

solution was replenished intermittently. millimeter-sized grains of MAPbBr3 thin film was 

grown at the end of the growth procedure. 

Various configurations of heat transfer and temperature control were implemented. 

Figure 8 shows the vertical placement of the crystal growth container for 24 hours. Figure 

9 shows the vertically placed crystal growth carried out over multiple days. The 

temperature was slowly ramped to 60 °C for 30 minutes, and then ramped to 120 °C for 24 

hours. On day five, the temperature was slowly ramped from 25 °C for 30 minutes to 80 

°C, and maintained for 25 days.  

 

  

 

 

Figure 8. a) MAPbBr3 crystalline thin film growth after 24 hours. b) New configuration of 

steel stack, PTFE, and substrate. c) demonstration of final configuration after starting the 

reaction. 
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Figure 9. Photographs of the MAPbBr3 crystalline thin film after a) 2 days, b) 5 days, c) 1 

week, and d) 1 month  

 

A planar configuration of heat transfer was implemented to grow MAPbBr3 thin 

films, following a slightly modified procedure based on Rao’s work [204, 205] (Figure 10). 

The temperature program was slowly ramped from 25 °C for 30 minutes to 80 °C. No 

crystal growth was observed initially for two days. The temperature was maintained at 100 

°C for 5 days, better nucleation, and small grains of crystal thin films were observed. The 

precursor solution was not replenished during this attempt.   

 

 

 

 



56 
 

 
 

 

 

 

Figure 10. a) Photographs of MAPbBr3 crystals. b) Schematic diagram of the new module 

for MAPbBr3 crystalline thin film. 

2.4.3 Introduction of ionic liquid solution as halide ion source 

1-Butyl-3-methylimidazolium iodide (BMIMI), and 1-butyl-3-methylimidazolium 

chloride (BMIMCl) were selected as a halide ion source for their low vapor pressure/non-

volatility, high ionic conductivity, and good thermal stability [221-223] to assess the halide 

diffusion-reaction on the MAPbBr3 single-crystalline thin film.  
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2.4.3.1 Quantitative procedures to prepare ionic solution as a halide ion source. 

Efforts were made to dissolve MA-X (I or Cl) in ionic liquids (ILs), particularly with 

1-butyl-3-methylimidazolium hexafluorophosphate (BMIMPF6) to prepare a halide ion 

source solution for studying halide exchange.  

2.4.3.1.1 Dissolution of Methylammonium iodide in 1-butyl-3-methylimidazolium 

hexafluorophosphate  

Attempts have been made to introduce an optimized procedure for dissolution of 

methylammonium iodide (MAI) in 1-butyl-3-methylimidazolium hexafluorophosphate 

(BMIM-PF6).  0.02 gr of MAI was added to 200µl of BMIMPF6 corresponding to a 

concentration of 9.09 %W/W or 0.630M. The solution was sonicated at 50 ºC, and a bright 

yellow transparent solution was produced after 30 minutes.  

2.4.3.1.2 Dissolution of Methylammonium chloride in 1-butyl-3-

methylimidazolium hexafluorophosphate  

Although several experimental procedures were conducted to dissolve MACl in 

BMIMPF6, it was observed that MACl failed to dissolve at room temperature or even upon 

heating for  48 hours at 95 ºC. Stirring, sonication, and changing the concentration were 

not effective to disrupt powder agglomerates in this ionic liquid.   
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2.4.4 Solution delivery mechanism 

First, a small droplet of halide ion solution was manually placed onto LHP thin film 

samples via disposable glass micropipettes with a minimal volume. The droplet was placed 

arbitrarily in the center of the CH3NH3PbBr3 thin film under spatially confined growth 

conditions. Microcaps- Disposable Glass Micropipettes with a capacity of 10uL and single-

channel Eppendorf pipettor with a volume range from 0.1 to 2.5µL were both used in this 

experiment (Figure 11). 

 

 

 

 

 

Figure 11. Schematics of microscope setup and use of microcaps with a 16 mm-length tip 

 

2.4.5 Time-lapse imaging 

Time-lapse imaging of MAPbBr3 thin films was carried out on a home-built 

microscope. Low magnification large field of view objective lenses were used (Thorlabs 

AC254-150-AB, AC254-075-AB, and Nikon 10x Ph1-0.25-ADL). BMIMI or BMIMCl is 
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deposited on MAPBBr3 crystalline thin film under spatially confined growth conditions. 

Samples were monitored for a prolonged duration under ambient conditions.  

2.5 Results and Discussion  

2.5.1 Observed reaction phenomena 

In the first attempt, we tried MACl and MAI dissolved in isopropyl alcohol (IPA) 

to study the diffusion coefficient for LHPs. However, as time changes, and once a droplet 

of MACl and/or MAI in IPA are placed on the MAPbBr3 thin film, rings of MACl or MAI 

in IPA solution on the sample were shrunk, and then the solvents were evaporated. This 

limited our ability to measure the diffusion of halides on the thin film appropriately.  

Thus, using ILs in this project was suggested due to their chemical, and physical properties, 

and considered as a better choice of chemical mapping, and diffusion study of halides.  

 

2.5.1.1 Role of 1-butyl-3-methylimidazolium hexafluorophosphate (BMIMPF6) in 

MAPbX3 crystalline thin film 

Figure 12 shows the halide solution droplet on top of a MAPbBr3 thin film. It is 

observed that the film morphology changed after being in contact with the droplet for 3 

weeks.  
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Figure 12. a) microscopic observation of MAPbBr3 after placing 0.1 µl of BMIM-PF6 

(Time: 0 (s)) b) the SEM image of the same MAPbBr3 single-crystalline thin film sample 

for monitoring the halide transport after 3 weeks.   

 

2.5.2 Characterization Techniques 

2.5.2.1 Energy Dispersive Spectroscopy (EDS) 

A scanning electron microscope equipped with energy-dispersive X-ray 

spectroscopy (SEM-EDX) is an analytical tool for measuring and spatial mapping the 

elemental composition of sample surfaces (X-ray mapping) [224]. During an X-ray 

mapping experiment in an SEM, the scanning high energy electron beam interacts with the 

sample and produces characteristic X-ray spectra that are unique to the elements present in 

the locally scanned region [225].  This technique can potentially be applied to and map the 

distributions of elements of interest including Pb, C, Cl, Br, and I on the surface of 
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MAPbBr3 crystalline thin films and thus the diffusion of halides in our study. Particularly, 

the line profile of EDX mapping can be used to determine the local elemental composition 

of the surface taken perpendicular from the rim of the ionic liquid droplet on the top of the 

perovskite film samples discussed in previous sections to areas away from the droplet. 

Changes in the elemental compositions along this line profile can indicate the degree of 

halide diffusion. 

In our preliminary experiment, to evaluate the halide diffusion using the SEM-EDX 

technique, we placed a 0.1-μL droplet of BMIMCl on a MAPbBr3 crystalline thin film (Fig. 

13). To accelerate the discussion of chloride ions into the film, the sample was heated at 

50 ºC and the resulting sample was analyzed using line profile elemental mapping. We 

observed that the droplet of BMIMCl deposited on the surface of MAPbBr3 crystalline thin 

film did not evaporate at room temperature. Also, the color of the placed droplet turned 

brown after the heating. It should be mentioned that the melting point of BMIMCl (salt) is 

41 ºC [226]. If halides exchange between the BMIMCl and the MAPbBr3 thin film, we 

expect that mixed halide perovskite (such as MAPbBr3-xClx) may be detected across the 

sample.  

 

Figure 13. Photo of a 0.1-μL droplet of BMIMCl on a MAPbBr3 crystalline thin film. 
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Figure 14 (a) shows the EDX spectrum of the region of our interests. The EDX line 

profile indicates the presence of Pb and Br along with the very small concentration of Cl 

at this location (Figure 14b). Figure 14 (c) shows an SEM image of a MAPbBr3 film sample 

with a dried droplet of BMIMCl placed near the top-right of the thin film. The droplet is 

indicated by a darker gray circle. The sample was heated at 50 ºC for 30 min. At the rim of 

the droplet, an EDX line scan was performed along the red line. . The data suggests that 

SEM with EDX mapping and spectra along lines can be potentially applied to investigate 

the diffusion halide from the BMIMCl droplet across the MAPbBr3 film and yield 

information of halide gradients over multi-micron length scales in our study. To verify the 

incorporation of the chloride in the lattice of the MAPbBr3 film to form mixed halide 

perovskite (MAPbBr3-xClx), the use of X-ray photoelectron spectroscopy (XPS) can be 

further explored in future studies. Figure 14 (a) shows the EDX spectrum of the selected 

region of our interests. SEM image of the MAPbBr3 crystalline thin film and EDX 

spectrum of BMIMI placed in the center of a MAPbBr3 film sample with its spectra have 

been showing in Figure 15. The droplet is shown by a darker gray circle. The sample was 

heated at 50 ºC for 120 min. An EDX line scan was performed along the red line within the 

sample. The EDX line profile demonstrates the presence of Pb and Br along with the very 

small concentration of I at this location (Figure 14b). The data suggest that SEM with EDX 

mapping and spectra along lines can be ideally applied to study the diffusion halide from 

the BMIMI droplet across the MAPbBr3 film and yield information of halide gradients 

within the sample in micron length scales in this project. 
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Figure 14. SEM-EDX analysis of a MAPbBr3 crystalline thin film with a dry droplet of 

BMIMCl after 30 min. of heat treatment. (a) EDX spectra in a certain region. (b) EDX line 

profile of Pb, Br, and Cl along the red line in (c). (c) SEM image of the MAPbBr3 

crystalline thin film. The darker gray circle indicates the location of the dried droplet at the 

top-right of the thin film. 
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Figure 15. (a) EDX spectra in the certain region (b) EDX line profile of Pb, Br, and I along 

the red line in (c). (c) SEM image of the MAPbBr3 crystalline thin film. The darker gray 

circle indicates the location of the dried droplet at the center of the thin film. 

 

2.5.2.2 Photoluminescence spectroscopy  

Photoluminescence spectroscopy (PL) is a non-contact, non-destructive approach 

to detect the molecular and structural changes for materials including solids, solution, solid 

suspensions, and gaseous. The sample is exposed to a light source (usually a laser) and 

absorbs light (photo-excitation stage), resulting in the formation of electronically excited 

states.   Subsequently, the energy is released, and the materials return to the ground state 

with the emission of light.   PL fingerprints can identify various defect states by PL either 

at higher or especially at lowest temperatures [121, 227] and investigate the perovskite 

materials in different environments including solvent, humidity, or atmosphere[228].  
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In our study, a laser operating at 532 nm was used to excite the MAPbBr3 in the PL 

measurements. The laser beam of 2.5 mW power was focused on the MAPbBr3 surface. 

The arbitrary area of the sample was chosen and imaged by a CMOS camera. 

Photoluminescence was collected by the same objective, sent into a spectrometer, dispersed 

by a 600 gr/mm grating, and recorded by a cooled charge-coupled device (CCD) detector 

operating at -70ºC.  

 

2.5.2.2.1 Photoluminescence measurement on MAPbBr3 crystalline thin film 

Photoluminescence (PL) of the MAPbBr3 crystalline thin films with a deposited 

BMIMI was performed to seek any evidence of mixed halide perovskite, resulting from 

halide exchange and showing shifted PL. Two types of samples were used. 1) IL droplet 

(here is BMIMI) on LHP film sample (in which X ion solution and LHP have been in 

contact for prolonged time) and 2) pristine LHP film (as control). 

 Multiple locations on the sample surface with varying distances to the solution-slide 

interface were examined for meaningful variations in the PL spectra. The optical images 

of pristine MAPbBr3 perovskite thin films with and without the laser spot at room 

temperature have been collected, as well as images of MAPbBr3 perovskite thin films after 

adding 0.1 µl of BMIMI at room temperature with/without a laser spot location (Figure 15 

(a) and (b)). The total experimental reaction of BMIMI-MAPbBr3 crystalline thin film was 

2 minutes. The shifted PL were all taken at a fixed grating position of 540 nm using a 600 

g/mm grating. The exposure time to laser was 0.05 s. Next, the PL of MAPbBr3 crystalline 
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thin film during the reactions of halide exchange (here is BMIMI) was collected at several 

locations. 
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Figure 15.  a) Selected PL spectra for MAPbBr3-BMIMI at the selected location (L4) 

surrounding the BMIMI droplet with corresponding image b) Overlay of normalized PL 

spectra of MAPbBr3-BMIMI at room temperature, different locations, and different 

distances  

 

Significant peak shifts were not observed from solution-solid halide exchange experiments 

as indicated in Figure 15 (b). Spectra collected from different locations exhibited 

essentially identical peak position and width as shown in Figure 16, with varying 

intensities.  
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As a further attempt, 0.1 µl of BMIMI was deposited on the center of MAPbBr3 crystalline 

thin film and then was placed in the oven to dry over 1 hour at 50 ºC. Full scan analysis of 

MAPbBr3 and MAPbBr3 -BMIMI for any composition or anion exchange conducted by PL 

measurement showed that no spectral variations were seen.  

The PL data is correlated to the SEM-EDX results, both showing the absence of a halide 

gradient. One may continue the experiment at room temperature or at a higher temperature 

for a prolonged duration to investigate if there is any pair halide after adding BMIMI or 

BMIMCl.  

2.5.2.4 Profilometry 

As depicted in Figure 17 (a), and (b), a Dektak-XT stylus surface profiling system 

was used to probe different locations on the thin film surface, profiling film thickness 

(depth) while walking on the MAPbBr3thin film surface. As given in Figure 17 (c), the 

plot, initially, was flat, corresponding to the substrate (glass), and then was increased 

sharply to 118.1570 µm since it probes the surface of MAPbBr3 crystalline thin film 

sample. This is followed by less fluctuation from 118.1570 µm once the probe position is 

in 1073.1329. Finally, the average total profile for the measurement of the thickness is 

115.8454 after 3 times analysis. This obtained thickness is aligned with the proposed 

method for fabrication of single crystal thin film by ITC described by Rao et al.[193], 

ranging from 100-800 µm for MAPbBr3 material. 
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Figure 17. Bruker Dektak-XT Stylus Surface Profiling System results for the thickness of 

MAPbBr3 crystalline thin film a) first location b) second location c) plot legend of 

MAPbBr3 single-crystalline thin film thickness 

For measurement, the scan type was selected as standard. Hills and valleys were selected 

with a radius of 125 µm and length of 2000 µm for 10 secs, and a resolution of 0.66 (µm/pt), 

and speed of 200 µm/sec were set up. 
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Chap 3. Conclusion and Outlook  

3.1 Summary of the LHP halide exchange experiments 

Using ILs (BMIMI, and/or BMIMCl) for the halide diffusion and transport in the single 

crystalline LHP thin film with a thickness, ranging from 100-800 µm has been attempted.  

PL and SEM-EDX were attempted to demonstrate halide gradient over multi-micron length 

scales. The results from both methods showed the absence of a halide gradient. 

3.2 Future Outlook 

3.2.1 Fast halide exchange of Cl/Br co-insertion into the perovskite lattice 

thin films at room temperature 

In this work, halide exchange in LHPs with a general formula of MAPbX3 (X: Cl, Br, 

or I) was attempted. In brief, at ambient temperature, the halide substitution in the 

MAPbBr3 single-crystalline thin films followed by a hydrophobic treatment of the substrate 

is rapid and experiences different phases within minutes or less than an hour after contact 

with the precursor solutions of MAPbCl3. However, exceptions were also visualized for 

bromide conversation by iodide at room temperature on the MAPbBr3 single-crystalline 

thin films. In addition to this, using MAPbBr3 single-crystalline thin films without 

hydrophobic treatment of the substrate demonstrated a color change on the surface at 

ambient temperature. However, no further new reactions or crystallization was seen on the 

surface of MAPbBr3 single-crystalline thin films. For further studies, solid-state NMR, as 

a non-destructive strategy along with a controllable anion exchange of halide perovskite 

films, photoluminescence (PL) mapping, Low-Frequency Raman, XPS, and SEM 
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combined with EDX are proposed to investigate the reactions, crystal structures, rate of 

halide diffusion, and Pb environment.   
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