






129

began to mark the errors. This provides evidence that the system can determine which

threshold predicate comparisons are “close” to “flopping” and can also identify the most

recently flopped thresholds.

6.5 Image Capture Experiment

6.5.1 Overview

The final system we examined was a UAV equipped with a camera that would search for a

smiling person and capture their photo. The system contains around 25,800 lines of code

in total. The static analysis identified 61 threshold predicate comparisons. 32 parameters

are read and used to populate the thresholds in the predicates. The predicate comparisons

are spread across 12 different files. The execution is spread across multiple ROS nodes.

These nodes deal with camera image processing, UAV control, and communication.

Figure 6.13 contains an image of the UAV and camera used for the trials in this section.

Figure 6.13: The UAV and camera used
during the Image Capture experiments

A trial begins with the UAV on the

ground and off. The motors start and the

UAV takes off and flies to a predetermined

point and orientation. The UAV rotates

and place and performs image processing

on the image stream from the camera lo-

cated on the UAV. Once the UAV identifies

a face it remains at the same orientation

attempts to center the face in the image

frame. Once the UAV has the person cen-

tered in the image it snaps a photo and
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lands at a predetermined location. If at any point in time it looses track of the person, the

UAV returns to circling in place.

We made the following three treatments to the system:

1. Type I Error: configuration parameter face detection limit. This parameter controls

how many times the face must be seen in the images before the drone captures an

image. This parameter is setup in the main launch file. With too low of a value,

a face found in the noise of the image could trigger the image capture stop the

mission before the person is found and captured. We will lower this threshold to

cause a type I error.

2. Type II Error: configuration parameter min coverage limit. This parameter deter-

mines how much of the image the identified face must cover before the image is

saved. If the limit is not exceeded the UAV will remain in the same position without

taking the picture for a long period of time. We will raise the threshold to create a

type II error.

3. Source Code Error: smile detector node members.cpp Line 114. We will modify the

range comparisons this line to result in the system only continuing to take a photo

when the image is over the max coverage limit. The error produced here emulates

a type II error.

6.5.2 Threshold Statistics RQ1

Information on the runtime characteristics of threshold predicate comparisons grouped

by the parameter that loaded the value into the system can be found in Table 6.12. The

columns are defined in Subsection 6.3.1. The runtime analysis observed 36 (59.0%) out of

the 61 predicate locations identified in the static analysis. The used predicates represented
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32 (59.3%) unique parameters out of the possible 41 found used to populate the thresholds

used in the instrumented predicates. Each of the parameters was used in between one or

three threshold predicate locations in the source code. A higher proportion of threshold

predicate comparisons appear in the static analysis and in the system trace compared two

the other systems. However, still over 40% of the threshold predicate comparisons found

in the static analysis are not found in the system execution trace. This shows that not all

of the code involved in a system is used and also shows that the approach can be used

to reduce the problem search space without the requirement to perform other types of

analysis on the system or runtime data.

Table 6.12: Runtime parameter statistics

Locations Comparisons Frequency Runtime % Flops True % False %
collapse deadband 1 17833 28.37 95 0 100 0

enable baro ctrl mode 2 35633 56.69 95 0 100 0

enable derv fir filter 1 17439 27.74 95 0 100 0

enable pitch ctrl 1 17831 28.37 95 0 0 100

enable roll ctrl 2 17835 28.37 96 0 0 100

enable thrust ctrl 1 17833 28.37 95 0 0 100

enable thrust iir filter 1 17833 28.37 95 0 100 0

enable yaw ctrl 2 17836 28.38 96 0 0 100

face detection threshold 2 6700 10.66 59 23 58.55 41.45

gps enable mode 1 17833 28.37 95 0 0 100

max coverage limit 8 7188 11.44 29 0 66.44 33.56

max pkt size 1 64884 103.22 99 12 99.99 0.01

max selfie count 4 16554 26.34 72 673 81.71 18.29

min coverage limit 4 4707 7.49 29 57 47.27 52.73

min displacement 1 6183 9.84 99 81 63.72 36.28

min land height 1 132 0.21 2 5 96.21 3.79

min z displacement 1 2243 3.57 41 8 7.09 92.91

selfie control rate 1 5 0.01 0 0 100 0

waypose idle timeout 1 617 0.98 98 18 90.28 9.72

mean 1.89 15111.53 24.04 72.89 46.16 58.49 41.51

median 1 17439 27.74 95 0 66.44 33.56

std 1.76 15106.26 24.03 34.87 153.36 43 43

minimum 1 5 0.01 0 0 0 0

maximum 8 64884 103.22 99 673 100 100

sum 36 287119 456.78 1385 877 1111.27 788.73

The combined six observed missions had a runtime of around 628 seconds. In total

the instrumented code logged 287119 executions of the predicates instrumented during
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the static analysis of the system’s source code. This amounts to around 456 threshold

comparisons per second. The number of comparisons per second for the parameters

ranges from less than 0.01 per second to over 103 per second for the most frequent.

The runtime percentage distribution is shown in Figure 6.14. The definition and

computation of runtime percentage is described in subsection 6.3.1. The runtime charac-

teristics of this system are slightly different than those of the other two. There are not

three very distinct groups as in the other two systems. Two groups are very well defined,

the very frequent and the very rare. 12 parameters appear in over 90 % of the runtime.

This is a higher proportion of parameters occurring very often compared to the other

two systems. The other five parameters appear in between 30 and 80% of the runtime

percentage, but do not have as strong of a grouping as the middle frequency parameters

of the other two systems. There is still a strong grouping of parameters that occur very

often and those that appear very infrequently.

We did not observe any evidence of the system experiencing problems handling the

increased overhead of the threshold predicate comparison monitoring. To determine how

many additional resources the messages from the threshold predicate comparisons we

examined the percentage of messages that came from the instrumentation. In total 16.1%

of the messages were from instrumented threshold predicate comparisons. The overhead

is not completely unreasonable, but the approach does consume some resources.

This subsection has shown that many of the findings that appear in the two other

systems also appear in the image capture trials. Threshold predicate comparisons are

very common throughout the execution of a mission by the robot system. However,

different sources of the thresholds within the comparisons have different rates of occur-

rence throughout the systems execution. In this trial the very common and very rare

comparisons frequency are again obvious. However there is not a defined grouping in

the middle frequencies. Again many of the threshold predicate comparisons that are
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identified in the static analysis do not appear in the system execution trace.

Figure 6.14: Percentage of total seconds in which a parameter
is used in a predicate

The trials for this sys-

tem differed from the

other two systems in a

few ways. First, the trials

had the highest amount

of threshold predicate

comparisons in the exe-

cution trace and the high-

est frequency of thresh-

old predicate compar-

isons. There are around

100 more per second in

these trials than the wa-

ter sampler and over 3.6

times the amount of comparisons compared to the navigation trials. These trials are

also similar to the navigation trials, in the number of locations a parameter is used in a

threshold predicate comparison. In these trials they were commonly used in 2 or even

3 different locations. However, the mapping of parameters to locations is still relatively

small, and still allows the pinpointing of a problematic parameter by finding the threshold

predicate comparison in which it was used.

6.5.3 Flops RQ2

In the 8 trials there are a total of 877 flops. This corresponds to 0.31% of the threshold

predicate comparisons in the execution trace. This is a very small percentage and shows
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further evidence that flops are a rare occurrence. This value is similar to that of the flop

percentage of the navigation system trials. One parameter is responsible for 76.7% of the

flops in the system execution trace. This again provides evidence that some parameters

do flop more often than other parameters. Similar to the other systems 11 (57%) of the

parameters are used in predicates that never change values. The results from the image

capture trials offer more evidence to that a flop is an important event during the execution

of a robot system.

6.5.4 User Marks RQ3

Table 6.15 displays information about user marks for the image capture trials. Users

marked a total of 39 type I errors and 78 type II errors. This is similar to the amount

marked in the navigation system. The mean number of marks per trial across all users

is 14.6. The maximum number of marks in one trial is 29 and the minimum number of

marks in one trial is 0. One user only marked 2 errors in one trial and did not mark any

other errors. All of the other users marked upwards of 20 errors.

As with the other systems type II or type II like errors caused many more marks than

the trials involving type I errors. The marks in these trials continue to show that different

users will mark different errors at different rates across different systems. If the robot

system continues to struggle to complete the task the users will mark many errors. This

may also help to identify the true difference between type I and type II errors. The larger

number of marks around a type II error show that the robot is stalled if the user marks

many times in a row. This may help disambiguate which type of error the user is truly

marking.

In the trials users marked fewer type I errors (39) than type II errors (78). These trials

provide evidence that the user may not be able to successfully determine which type of
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error is occurring during operation, but they can determine that an error is occurring.

However, the large number of markings for the trials may help to provide evidence when

the system is encountering a type II error. Further work needs to be done to help users

tell the difference between these two types of errors.

Table 6.13 displays the confusion matrix for treatments 1 and 2. From this matrix, it

is very easy to see the confusion between type I and type II errors by the users in the

trials. Again the users marked far more type II errors during the treatment with type I

errors. However, in this case it may be because the type II error was not as obvious as

other systems. There was a near equal marking of type I and type II errors in the second

treatment. These results again show that users struggle to correctly identify type I and

type II errors and that something must be done to allow the system to better handle

misidentified errors or to allow users to better mark the error types.

Table 6.13: Confusion Matrix for Type I and Type I Errors and Treatments

Type I Marks Type II Marks
Treatment Type I 2 15

Treatment Type II 26 25

As with the other two sets of trials users marked errors in the code treatment. This

shows that users will mark errors that occur due to code faults as well as configuration

errors. While this may not be an issue it may lead to some confusion when changing

parameters does not cause a change in the error behavior of the robot.

Finally, the users marked 0 errors in one of the clean trials and only 7 errors in the

other clean trial. These are the two smallest mark totals for any trial. This provides

evidence that marks are not as common during clean trials as other trials.

Table 6.14 displays the average delay in marking an error after the changed threshold

has flopped or should have flopped. In this system there is a delay between 1.7 and 25

seconds before marking the error. Different from the other systems there is not the clear
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difference between marking times in the two experiments. There is still a large mean time

from the start of the error to marking the issue in the systems. As stated previously, the

delay is not an issue during type II errors, but may cause problems after a Type I error

has occurred.

Table 6.14: Delays from error to the first mark by the users.

User 1 User 2 User 3 User 4 Mean
Treatment 1 Trial 1 11.69 25.07 11.45 21.63 17.46

Treatment 1 Trial 2 3.12 3.78 0.96 2.62

Treatment 2 Trial 1 6.99 12.37 12.07 10.47

Treatment 2 Trial 2 1.71 9.97 9.91 7.19

The results of the users marking errors during the image capture trials demonstrate

that users can identify problems in the robot system. It also provides further evidence

that there is confusion between the two types of errors. However, there continues to

be evidence that type II errors will be marked much more frequently in the system in

comparison to type I errors even if they are incorrectly marked by the user.

Table 6.15: User marks during the image capture trials

User 1 User 2 User 3 User 4 Total
Type I Type II Type I Type II Type I Type II Type I Type II Type I Type II

Treatment 1 Trial 1 0 3 0 1 0 2 0 2 0 8

Treatment 1 Trial 2 0 3 0 2 0 0 2 2 2 7

Treatment 2 Trial 1 6 1 3 1 0 0 10 1 19 3

Treatment 2 Trial 2 2 7 3 3 0 0 2 12 7 22

Treatment 3 Trial 1 3 5 1 3 0 0 2 11 6 19

Treatment 3 Trial 2 0 6 0 2 0 0 0 9 0 17

Treatment 4 Trial 1 0 0 0 0 0 0 0 0 0 0

Treatment 4 Trial 2 2 1 1 1 0 0 2 0 5 2

mean 1.62 3.25 1 1.62 0 0.25 2.25 4.62 4.88 9.75

median 1 3 0.50 1.50 0 0 2 2 3.50 7.50

std 2.13 2.55 1.31 1.06 0 0.71 3.28 5.13 6.38 8.45

minimum 0 0 0 0 0 0 0 0 0 0

maximum 6 7 3 3 0 2 10 12 19 22

sum 13 26 8 13 0 2 18 37 39 78
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6.5.5 Runtime Analysis Results RQ4

Table 6.16 displays the average scores given to the marked errors by the analysis in the

two treatments with modified parameters. No type I error marks occurred in the first

trial because the error situation did not arise during the execution of the system. The

threshold appeared in the upper part of the ranks in the Type II error reports. In the

second trial again the type I marks are occur in parts of the system where the threshold

has flopped, but other parts of the system prevented the system from continuing on and

displaying the error. These two missions did not perform as well as expected, but the

previous trial sets show that the system is able to identify the most recently flopped

predicates and can assist users in determining when an error arose.

The second treatment again shows how the approach is able to identify threshold

predicate comparisons that are about to “flop”. In the first trial the marks occur when

the UAV modified parameter is in the top four threshold predicate comparisons. It has a

high-ranking score on the error marks. In the second mission the predicate is in the top

of the rankings until it drops from comparisons and the mission is aborted after the robot

fails to capture the image. Many of the marks came after comparisons to the modified

parameter end so the score for these missions is lower than that of the others.

Table 6.16: Average score produced on marked errors and average ranking

Type I Rank Type I Score Type II Rank Type II Score
Treatment 1 Trial 1 0.00 9999.00 0.80 0.74

Treatment 1 Trial 2 0.98 36.68 0.88 0.50

Treatment 2 Trial 1 0.20 7895.84 0.96 0.52

Treatment 2 Trial 2 0.00 9999.90 0.15 8181.87

6.5.6 Trial Summaries

More details on the individual trials will be presented in the following subsections

grouped by trial. The results will help to further clarify the research questions. In the
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following subsections we present graphics for each individual trial. The first graphics

contain the X, Y, Z, and yaw position of the UAV. The UAV should identify the person

and capture the image when the yaw is at a value of around 2.2. After capturing the

image one can see the UAV landing by the decrease in height.

The other figure displayed for the missions are the rank scores through time. They

show the rank scores of the type I and type II errors for all of the threshold predicate

comparisons in the mission. In these graphics the red line represents the modified

threshold in the trial if there is a modification. All of the other lines are color-coded

and each represent a different threshold predicate comparison within the code. If the

threshold predicate comparison had a score of 99999 it was given a rank score of 0. More

thresholds were present at points in time than appeared within the graphs due to this

zeroing of scores.

User marks are indicated in both sides of the figure using vertical lines with x marks

on them. In the figures the blue marks represent a user marked a type I error and green

marks represent type II errors as marked by the users.

6.5.6.1 Treatment 1 - Type I Error

Figure 6.15 displays location and threshold values for the two trials with the first treatment.

In both trials the UAV took off and circled and found the target. The flopping of the

threshold did not cause an immediate error and the UAV did not change behavior as it

did in previous runs with the modified thresholds. However, the users did mark errors

after the UAV obtained a yaw pointing at the person and maintained that position. This

is obvious in the graphs of the yaw position. The lack of concrete type I errors is not

an issue as the previous trial sets have shown that the approach can identify recently

flopped thresholds. The results from the first treatment also show that the user will mark

errors that are perceived after a short wait of the robot maintaining the same position.
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They mark many type II errors after the UAV attains the yaw pointing to the position of

the person.

As in previous trial sets both of the trials show a large increase in the number of

threshold predicate comparisons present in the graph during what appear to be key

portions of the mission. The large increase in the type II graphs appear to correspond

to the moment in which person first comes into view of the UAV’s camera. This shows

that there is a lot of activity in the code while it tries to lock in on the person’s location.

There is also a second increase in present threshold predicate comparisons when the

UAV is landing. There are also more threshold predicate comparisons in the type I

graph showing that more have flopped when the mission is completed. These graphics

bolster the argument that there are more active threshold predicate comparisons during

transitional or active parts of the mission.

6.5.6.2 Treatment 2 - Type II Error

Figure 6.16 displays location and threshold values for the two trials with the second

treatment. In the first mission the UAV identified the person and tried to meet the

modified minimum coverage threshold and failed. It then rotated twice before it identified

the person again and finally captured the image. Users began marking errors immediately

after the UAV paused when it identified the person and did not take a picture and land.

There is another grouping of markings when the UAV was directly pointed at the person

on the second rotation and a final group of markings when the UAV landed. This

provides evidence that the users were able to identify that errors were occurring when

the UAV should have been capturing the image. However, nearly all of the markings are

of type I errors, which provides further evidence that users struggle to correctly identify

the underlying type of error that is occurring in the system. The marking of errors while

the UAV is landing is also an interesting feature. It’s almost as if the users were used to
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(a) (b)

Figure 6.15: The position of the UAV and the ranking score of the modified threshold
predicate comparison during treatment 1 (Type I Error)

the UAV circling at that point and did not expect the mission to complete at that point in

time.

In the second trial for this treatment the UAV took off and began searching. Once it

identified the user, the UAV tried to meet the minimum threshold by changing X and Y

location of the UAV. However, unlike the first trial, the UAV became stuck in the state after

it did not meet the threshold after some time. After 2 minutes of flight the mission was

aborted. What is most interesting about this mission is that the code stopped executing

many of the threshold predicate comparisons after failing to compete the image capture

the first time. This may indicate that the robot system entered an error state or that

there is an error in the logic of the mission. However, while it was comparing values

the modified threshold predicate comparison was in the top 4 of the values in the rank



141

(a) (b)

Figure 6.16: The position of the UAV and the ranking score of the modified threshold
predicate comparison during treatment 2 (Type II Error)

graphs. As with previous trials most of the marks came after the robot was “stuck” for 10

or more seconds. The users continued to mark errors until the mission was aborted. Also

interesting is the fact that the users marked the opposite error type in this mission. They

marked 3 times as many type II errors. This may be because the UAV was stationary

while trying to meet the threshold and in the stuck state. This provides evidence that the

type of error marked has a lot to do with the motion that the robot system is performing

and not the underlying error type.

6.5.6.3 Treatment 3 - Source Code Error

Figure 6.17 displays location and threshold values for the two trials with the source code

error treatment. In both cases the UAV began the search, identified the person, and then
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(a) (b)

Figure 6.17: The position of the UAV and the ranking score of the threshold predicate
comparisons during treatment 3 (Source Code Error)

become stuck in a state that did not continue on the mission. Eventually the mission was

aborted after around 100 seconds. The characteristics of user markings during these two

missions are very similar to other missions where the robot becomes stuck. After a delay

of around, 10 seconds the user begin marking many errors and continue to do so until the

mission is aborted. The rank graphs again show something very similar to all of the other

trials. The thresholds are active while the UAV is actively trying to search for the person.

As with one of the trials in treatment 2 the drone enters a state where it stops comparing

values to thresholds after it fails to meet the threshold and capture the image. The results

of these trials again show that users will mark errors in the source code as type I and

type II errors and that there are active portions of threshold when the system is running.
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(a) (b)

Figure 6.18: The position of the UAV and the ranking score of the threshold predicate
comparisons during treatment 4 (No Error)

6.5.6.4 Treatment 4 - Clean

Figure 6.18 displays location and threshold values for the two trials without any modifica-

tion. In both trials the UAV took off, found the person, and captured the image within 30

seconds. In the first trial no marks were recorded. Interestingly in the second trial, marks

did get recorded. This is one of the few times that marks appeared before 10 seconds

passed after the UAV reached the target location. The exact reasoning of these marks is

not known for certain. However, there were the fewest marks of any trial for the image

capture trial. This provides evidence that users do not mark correctly operating systems

as often as they would work errors in a system with configuration errors, if they mark

them at all.
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6.5.7 Summary

The image capture trials provided further evidence to support the answers to research

questions for the water sampling and navigation trials and helped to further clarify other

questions. A consistent finding between all of the trials is that a number of threshold

predicate comparisons found in the source code do not appear in the system execution

trace. The number of threshold predicate comparisons that did not appear in the execution

trace is slightly lower in this instance, but it was still over 40%. This demonstrates the

ability of the approach to eliminate a large number of possible problem parameters,

before the need of any type of additional analysis.

The image capture trials provide more evidence to show that threshold predicate

comparisons are frequent during operation. This experiment had the highest number of

predicate comparisons per second at 456. The trials also further supported that different

threshold predicate comparisons appear at different times and different rates in different

portions of the mission. A large portion of them appear over 90% of the time in image

capture experiment and two of them appear less than 10% of the time. The bursty nature

of predicate appearing during important parts of the mission can be seen in the type II

ranking graphs for all of the trials.

Flops were extremely rare throughout all of the systems execution in the image capture

trials. Only 0.31% of the threshold predicate comparisons resulted in flops. This provides

further evidence to show that a flop is an important occurrence that can help users

identify why the robot system changed behavior or did not change behavior.

As with previous trial sets users did not have problems marking errors when they

occurred, but they did have problems marking the correct type of error. Users marked

both types of errors in all trials. Hopefully, more familiarity with a system will help the

users identify the types of errors more accurately. Otherwise, steps must be taken to help
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users identify the correct type of error or allow the system to determine which error type

to use for the ranking score calculation. For the two trials on the clean treatment, users

marked 0 errors and the fewest number of errors respectively.

The runtime analysis also did a reasonable job identifying the problematic threshold

when it was the cause of the error and the correct type of error was marked. The system

correctly identifies the most recently flopped threshold. When the threshold has not

been met you can see the modified threshold rise towards the top as it gets past the

point where it should have flopped. This provides evidence that the system can help

to determine which threshold predicate comparisons are close to flopping and can also

identify the most recently flopped thresholds.

6.6 Summary

We performed experiments with three robot systems to answer a number of research

questions on the runtime characteristics of threshold predicate comparisons, the user iden-

tification of runtime errors, and the success of the system on identifying the problematic

threshold predicate comparisons.

We found that threshold predicate comparisons occur very frequently during the

execution of a robot system. The number of threshold predicate comparisons per second

present in the systems ranged between 126 and 456. We found that between 40 and 60

percent of the threshold predicate comparisons identified in the static analysis did not

appear in the execution trace. This allows for a simple filtering of possible problematic

thresholds. We also found evidence that some parameters are used throughout the whole

execution of the system and others only appear in small portions of the execution. This

may allow for a more fine-grained approach to determining problematic thresholds in

the future.
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We also found evidence that “flops” are rare during system execution. Flops were

found to happen in between 0.03-0.4% of the time on threshold predicate comparisons

in the systems. This provides evidence that our assumption that “flops” are important

events that signal a change in the behavior of the robot system is correct. It also provides

evidence that being able to identify flops or near flops is of use to a user trying to discover

configuration errors in the robot system.

Users did not have a problem identifying when an error occurs and they mark them

many times during the course of execution. They also do not mark error free trials as

often as other trials as evidenced in the clean trials. The three systems’ trials provide

evidence that the users are not as accurate in identifying the types of errors that occur

during system operation, as we would hope. There is major confusion between type I

and type II errors. They often marked the incorrect type during the trials for the opposite

type. As users become more familiar with the system that they are running we assume

that they would become more familiar with the types of errors present. If they do not

improve at marking the correct error type something must be done to allow the system to

accommodate incorrect error markings or help the user correctly identify errors.

There is evidence that there is a delay between when the error occurs in the running

system and the user first marks an error. Type II errors took around twice as long to

mark as Type I errors as well. Type II calculations should not be affected by this delay.

The threshold will still be close to flopping and appear in the top of the rankings. Type I

errors may be affected if the system continues on with another task and other threshold

predicate comparisons flop.

Finally, in the approach did a reasonable job of identifying which thresholds were the

causes of marked errors. The system can reasonably identify the most recently “flopped”

threshold predicate comparison on type I errors. It also did a reasonable job identifying

which thresholds are about to flop when the robot should be continuing on with the
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mission. When the users correctly marked the error type the threshold was in the top

portion of the rankings.
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Chapter 7

Conclusions

The validation and selection of proper configuration on large systems has been recognized

as a difficult task in our community. Robotic systems face many of the same issues. The

systems we examined in this work showed the many possible configuration options are

available across the spectrum of robotic systems. Poorly set configuration options often

cause the robot system to behave in a manner that does not complete the desired mission.

Co-robot systems offer the ability for the user of the system to integrate their capabilities

and with the robots ability. This work aims to use that ability to identify errors and

leverage a static analysis and instrumentation technique to determine which configuration

parameter may be causing troublesome in the system. We have developed an approach

the user to identify problems and offer suggestions on which parameters to change. Our

work expands prevous software engineering work on large configuration spaces into

co-robotic systems. It appears to be one of the first works examining and instrumenting

configuration options within robot systems and aims to help users diagnose and solve

configuration problems.

In this thesis, we developed two static analysis tools for Python and C++ ROS nodes.

The static analysis tools are able to identify threshold predicate comparisons within
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the nodes. A threshold predicate comparison is defined as a predicate in a branching

statement on which an exposing statement has a control and or data dependency. This

means that the branching statement determines the execution or data present in a call

that exposes the execution of part of the robot system to the rest of the system. We

also developed methods to take the data produced by instrumented threshold predicate

comparisons and offer recommendations on which configuration parameters to change

when a user marks and error. We validated the static analysis by manually examining the

performance of the analysis on 20 nodes and with suite of 70 test nodes.

After the development and validation of the approach we examined threshold predi-

cate comparisons on over 100 open source robot systems. We found that one third of the

packages contained threshold predicate comparisons and on average each of the packages

contained 5 threshold predicate comparisons. The comparisons are often present in only

a small number of files in each repository.

Finally, we used our analysis on three different robotic systems to determine the

runtime characteristics of threshold predicate comparisons, how often the values in a

particular predicate comparisons flopped, how users marked errors in a running system,

and how well the approach could suggest the correct fix for a threshold comparison. We

found that threshold predicate comparisons occur very frequently while the system is in

operation, but many of the values do not occur in the system trace. We also found that

flops are relatively rare while the system is in operation that indicates that a flop is an

important event. Users are able to mark and identify errors, but are not able to easily

determine the type of error. This may cause problems for the suggestion and determining

of the predicate that is error. There was also a delay between when the error occured in

running system code and the users marking their first error. Finally, when the correct

error was chosen the system did a reasonable job in highlighting which parameter was

the cause of the error.
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There are a few key limitations to our work. First, it relies on the system setting up

configuration options through the standard interface. If values are defined or read into

the system in a different way, they will not be captured by our analysis. Our approach

also relies on the system containing a state machine containing the threshold predicate

comparisons that has a behavior that is recognizable to a system observer. The system

must also be comprised of different nodes communicating to one another, will be no

threshold predicate comparisons to identify. If they are not present the user will not be

able to mark errors. Finally, the largest limitation of our system is that it depends on the

user marking the correct type of error to produce good score estimates.

In the future work can be done to help the user correctly identify the type of error that

is occurring or allow the system to work on only the marking of an error and not require

the correct error type. We also want to incorporate other source of setup parameters

beside values loaded from the ROS parameter server. These other sources can include

integer constants and header constants within the source code. Finally, more can be

done to characterize how a threshold behaves in the system and if we can track different

groupings of threshold predicate comparisons during execution to determine how the

system is performing.
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Appendix A

C++ Considerations

The C++ version of the analysis and instrumentation requires a custom built version of

LLVM [85] version 3.7.0 and clang [93] version 3.7.0. More specifically it uses commit

52386ce of LLVM and commit ff7b692 of the tools github mirror of the tools. It also

requires a version of the gold linker that supports link time plugins to be executed [87].

Each portion of the static analysis and instrumentation is broken into a series of LLVM

Module level passes. Each pass works to identify LLVM instructions that carry out specific

operations and connect the instructions through analysis of the program dependencies.

The separation of the processing allows the slicing algorithm to be expanded easily to

account for different sources of configuration variables, different exposing statements,

and different instrumentation methods. Any of the main features can be changed by

simply adding, removing or extending the passes to incorporate the new desired features.

The C++ implementation of the analysis consists of 5850 lines of C++ code and 1300

lines of header files. Around 4000 lines of the C++ code and 900 lines of the header code

comes from an open source library [94] used to add JSON functionality to report the

static information.



165

A.1 LLVM and Clang

LLVM [85] and clang [93] offer a very nice set of tools to create analysis and modifications

tools for programs written in C++. LLVM implements a SSA intermediate language that

allows easy implementation of optimizations and analysis on program dependencies.

Clang offers a drop in replacement for the gcc compiler and it serves as a front end for

the LLVM system.

A.2 Link Time Analysis

The implementation of a ROS node in C++ is often spread across multiple files and our

analysis must examine variables that may be shared across these files. For this reason the

analysis and instrumentation must be run after the files have been linked and just before

the executable is created. LLVM allows link time optimizations using the gold linker from

GNU Binutils [87]. The passes for the analysis are added to the Link Time Optimizations

that LLVM performs. After building LLVM link time optimizations can than be enabled

by passing the -flto flag to both the compiler and linker when building the ROS nodes.

A.3 Integration with the ROS Catkin Build System

ROS uses the catkin [95] build system to build and install ROS nodes and packages. It

makes building, linking and using any ROS system straightforward, but complicates

matters when trying to pass special flags or change the compiler. To change the compiler

we can pass the “-DCMAKE CXX COMPILER=” flag on the command line with the path

to the customized clang++ compiler. In addition to changing the compiler we must also

enable the link time optimizations of our custom compiler. To do this for each executable

in the CMakeLists.txt file we add or create properties using the set target properties
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command. We add to the “COMPILE FLAGS” the “-g -flto” to enable debugging symbols

and link time optimizations. To the “LINK FLAGS” we add “-flto” to ensure that ld-

gold is used and link time optimizations are performed and our custom passes are

ran during compilation. This modification of build files can be automated using the

modify cmakelists.py script created for this work. The script automatically reads and

modifies build files for the ROS package to be built using the llvm and clang compilers

with the passes created for our approach.

A.4 Passes

The analysis and instrumentation of C++ ROS nodes is split into nine separate LLVM

Module passes. Each of these passes performs a different part of the analysis and is able

to share data with other passes in the analysis. A quick overview of each pass can be

found in Table A.1. Additionally, the analysis makes use of two LLVM analysis passes.

The LoopInfoWrapperPass allows the analysis to easily find out if an instruction or basic

block is inside of one or more loop constructs. The DominatorTreeWrapperPass allows the

analysis to determine information on which BasicBlocks in the program being analyzed

dominate other basic blocks. Information about each of the passes implemented can be

found in the following sections.

A.5 SimpleCallGraph Pass

This pass creates a mapping from every function defined in the module to all instructions

in the module where it is called or invoked. This creates a needed portion of data for

the program slice and predicate identification. The pass performs two steps to compute

the list of calling locations. The pass creates a list of all functions in the module and
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Table A.1: Brief Description of each pass implemented in the analysis.

Name Description Lines of Code
SimpleCallGraph Pass Creates a call graph for usage in

slice creation and predicate iden-
tification.

57

ClassObjectAccess Pass Finds all element pointers that
are used in the module and de-
termines where they are accessed.
Finds class variable access for
data flow in slice creation and
configuration variable analysis.

104

IfStatements Pass Finds which if statements contain
each basic block in the module.

156

ExternCallFinder Pass Finds all exposing statement in
the module.

60

ParamCallFinder Pass Finds all configuration variables
in the module.

75

BackwardPropagate Pass Implements the procedure to find
slices based on the criterion of
exposing statements and deter-
mine which predicates the expos-
ing statement has a data and con-
trol dependency on.

347

ParamUsageFinder Pass Find the intersection of configu-
ration variables found in Param-
CallFinder Pass and predicates
identified in the BackwardsProp-
agate Pass.

198

GatherResults Pass Gather results to determine
which predicates are to be instru-
mented.

64

InstrumentBranches Pass Instrument marked predicates to
report values at runtime.

398

gives them an empty list of calling locations. Next, the pass examines all instructions

and if the instruction is a function call to a method within the module, the instruction

is added to the list of calling locations. The determination of what function is called is

done by creating a CallSite object which provides the getCalledFunction() method. This
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method returns a pointer to the function being called. This is allows the easy lookup of

the function in the map created in the first step. The information in this pass is used in

the slice and predicate identification procedure.

A.6 ClassObjectAccess Pass

This class helps to determine the location of where class variables are read from and stored

to. LLVM implements classes by creating structures in the Intermediate Representation.

The class variables within the structures are accessed using the GetElementPointerInstruc-

tion. This pass iterates through the Module and when it encounters a GetElementPoint-

erInstruction it determines which element the instruction points to. The instruction is

then saved for later usage. The variable the access is using is determined matching both

the structure and the indices used in the GetElementPointer operation.

A.7 IfStatement Pass

From our understanding, there is no method similar to LLVM’s LoopInfo.getLoopFor, which

provides the loop which contains the passed BasicBlock, for if statements. This pass

compiles this information about if statements for use in the slice creation procedure. It

builds a map for each of basic block the immediate conditional predicate that the block

is contained within. For every function in the module the pass identifies all conditional

predicates in the function. Next, for each predicate, the pass iterates through the control

flow graph and marks of the number of times each basic block is visited. It also keeps

track of the number of branch statements encountered during iteration. After iteration,

all basic blocks that are visited less than the number of branch statements are contained

within the branch statement being examined. Each instruction within the branch is then
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marked as a child of the branch.

A.8 ExternCallFinder Pass

This pass determines the exposing statements in the compilation unit being analyzed.

This pass is a pure syntactic search through the intermediate representation. The pass

examines every statement in the module and if it is a function determines if the mangled

names match that of the specific ROS calls to publish a message or call a service. Publish

calls names begin with “ ZNK3ros9Publisher7publishIN” and services calls begin with

“ ZN3ros13ServiceClient4callIN.” Any matching function calls or invoke instructions are

saved for use for slice criterion.

A.9 ParamCallFinder Pass

This pass determines the parameter variables for use in the identification of the threshold

predicate comparison portion of the analysis. It will identify which variables have values

loaded from the standard C++ ROS API. Any call to the function “ ZNK3ros10NodeHandle5param”

is the reading of a configuration variable from the ROS parameter server. The variable

that is used to store the value from this call is stored by this pass for use in the later

portion of the analysis.

A.10 BackwardPropagate Pass

The BackwardPropagate Pass is responsible for computing the program slices and pred-

icates that an exposing statement have a data and control dependence on. The pass

implements the procedure to compute the slice and find predicates as described in
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Algorithm 3. The makes use of the SSA of LLVM to determine data dependencies at

the function level. Function level control flow dependencies are determined using data

from the IfStatementPass and LLVM’s LoopInfoWrapperPass. The pass uses the data

structures found in previous structures to determine the program dependencies needed

at each statement to run the algorithm. The program dependencies that cross functions

are determined from the data in the previously run passes.

A.11 ParamUsageFinder Pass

This pass determines which predicates use configuration variables. The pass loops

through all functions in the module and determines which GetElementPointerInstructions

used to load values match parameter storage calls found by the ParamCallFinder Pass.

Upon a match, the pass traces the data flow from the load to the branch statements.

If it reaches the predicate marked during the BackwardsAnalysis Pass without being

modified by an operation than we have a location to instrument. The branch is marked

for instrumentation and information about the predicate is saved.

A.12 GatherResults Pass

This pass simply gathers results from the passes that mark branch statements for in-

strumentation. This allows for the expansion of methods to mark branch statements

for instrumentation without the need to refactor other parts of the analysis. The pass

implements three methods that provide necessary information to the instrumentation

portion of the analysis. The get results() function provides a list of all predicate statements

in the module that are threshold predicate comparisons. get setup(Instruction*) returns

information about the setup of the configuration variable. The get distance(Instruction*) re-
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turns the distance from the branch to the identified exposing statements as determined in

Algorithm 3. The get type(Instruction*) gets the type of the configuration parameter that is

being instrumented (e.g. parameter, source constant, etc.). In the current implementation

all of the configuration variables are parameters.

A.13 InstrumentBranches Pass

The InstrumentBranches pass handles the instrumentation and output of static informa-

tion for each threshold predicate comparison. The instrumentation requires one additional

source file that contains the function shown in Listing A.1. This function provides the key,

time, comparison results, and values involved in a predicate on threshold. The ROS INFO

call will send the string with data to the ROS system with the current time and this

information can be accessed by the runtime analysis.

For each marked threshold the pass determines which part of the comparison is the

configuration variable. After determining the proper values to report, the pass inserts the

function call with runtime values. The threshold and the comparator are converted to

doubles. The results of the predicate are transformed into 1 byte integers. In addition, if

the information on the comparisons flows across BasicBlocks a PhiStatement is required to

to ensure that the instrumented code conforms to LLVM. The pass also creates a unique

UUID so the information reported at runtime can be matched with static information.

After setting up all data values the correct call is made to report the values to the outside

world and inserted directly before the branch statement

The static information is stored and exported to the file system using the JsonCpp

library [94]. This open source library easily allows the pass to save information for later

use by the runtime analysis.
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Listing A.1: Instrumetaton source file with function to publish data.

# include ” ros/ros . h”

void log one ( char * key , bool res , double c1 , double t1 , bool r1 ){

std : : s t r ings t ream ss ;

ss << key << ” , ” << re s << ” ,cmp : ” << c1 << ” , thresh : ” << t1 << ” , r es : ” << r1 ;

ROS INFO ( ” thresho ld in format ion :%s ” , ss . s t r ( ) . c s t r ( ) ) ;

}
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Appendix B

Python Considerations

The Python implementation only requires the source code of the robotic control code

to run. It uses the standard Python library Abstract Syntax Tree module [96] to parse,

examine, and manipulate the abstract syntax tree of a Python file. In total there are

around 3000 lines of Python code in the implementation of the Python tool to find and

instrument threshold predicate comparisons. The Python portion of the analysis requires

Python 2.7 to run correctly.

The analysis requires the control flow graph and reaching definitions for all of the

methods within a Python source file. These two analyses are determined using the

algorithm found in [82]. The control flow graph and reaching definitions are only needed

at the function scope, because the three exceptions for control flow outside of the function

level can be handled during the creation of the program slices.

B.1 Exposing Statements

The Python method to determine exposing statements cannot use a simple syntactic

search for the names of methods because the python ast does not covert the common
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calls to the underlying function which is used by the publish calls like the C++ version

of the approach uses. It requires identifying which variables are created using functions

which create ROS publishers and service objects using the calls “rospy.publisher” or

“rospy.ServiceProxy” constructors. Once these variables are identified, any location where

a function call to the “publish()” or “call()” methods are identified as exposing statements.

The algorithm also creates one additional source of exposing statements. When an object

is created in source code, its methods are searched to determine if any of the methods

contain an exposing statement. If they do contain an exposing statement then any call to

the method’s method is marked as an exposing statement. This was added because many

Python objects are used to encapsulate the functionality of ROS in the code we examined.

B.2 Configuration Variables

To identify configuration variables in the Python implementation the analysis finds all

locations where a call of “rospy.get param()” assign a value to a variable. All class, local,

and global variables that are set up in this way are saved as configuration variables. The

Python analysis is able to mark class, local, and global variables that contain constant

values constants, but those methods are not used in our later experiments.

B.3 Slicing and Predicate Identification

The computation of the slices and identifying predicates follows the procedure identified

in Algorithm 3. The procedure makes use of the variable information, control flow graph,

and reaching definitions computed for our analysis.
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B.4 Threshold Predicate Comparison Identification

The Python implementation follows the methods described in Subsection 3.4.5. The

analysis examines every predicate and determines if any of the variables are identified

as configuration variables or can be traced back to a configuration variable without a

statement to modify the values from the configuration variable. If the predicate meets

the criteria, it is marked for instrumentation and information about the source of the

threshold, the distance to the exposing statement, and other data output for use during

the runtime portion of the analysis.

B.5 Instrumentation

The Python implementation replaces each marked predicate with a function call that

will return the value of the original predicate. The function call reports the threshold’s

identifying key, the result, the comparison, and threshold value out to the rest of the

ROS system. This function takes as arguments a lambda function that computes the

result of the predicate, a dictionary containing the arguments for that function, keys and

values to be reported, and other necessary pieces of data to that need to be processed.

Lambda functions are used to prevent the calling of functions that may have side effects

more than once. The predicate is replaced with a call to the function and the predicate is

substituted in the ast to be that of the lambda function. Upon being called the reporting

function evaluates any necessary sub expressions, evaluates the lambda function to get the

result of the predicate, and than reports the key, result, time, threshold, and comparisons

in the predicate out to the rest of ROS. The reporting is done by using a publisher

singleton that publishes comma separated string out to the rest of the ROS system on the

“threshold information” topic which accepts string variables. More information about the
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format of runtime messages can be found in section 3.5.3
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Appendix C

Ros System Information

Table C.2: Information on the repositories analyzed.

Name C++

Files

C++

Lines of

Code

Header

Files

Header

Lines of

Code

Python

Files

Python

Lines of

Code

Source

Files

Total

Lines of

Code

airbotix ros

package

0 0 3 132 20 1747 23 1879

app man-

ager

0 0 16 2977 28 6153 44 9130

apriltags

tracking

18 1436 25 733 0 0 43 2169

ar tracking 83 13869 63 3408 0 0 146 17277

arm nav 0 0 3 308 1 25 4 333

asctec base 84 7989 25 2131 14 1018 123 11138

asctec mav

pacakge

12 1923 53 2729 0 0 65 4652

baxter robot 0 0 0 0 65 5546 65 5546

Continued on next page
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Table C.2 – continued from previous page

Name C++

Files

C++

Lines of

Code

Header

Files

Header

Lines of

Code

Python

Files

Python

Lines of

Code

Source

Files

Total

Lines of

Code

bwi from

texas

91 13232 99 4493 30 2600 220 20325

calibration 32 2567 13 477 39 4326 84 7370

calvin ros

stack

4 495 1 26 1 28 6 549

careobot con-

tro

29 5492 21 1255 3 305 53 7052

careobot

evnironment

perception

30 6080 33 2420 14 1004 77 9504

careobot ma-

nipulation

10 29853 3 342 24 1277 37 31472

careobot nav-

igation per-

ception

3 622 1 48 0 0 4 670

careobot per-

ception

9 2014 8 520 1 103 18 2637

cob com-

mand tools

8 1618 5 477 30 4813 43 6908

cob common 0 0 0 0 1 25 1 25

cob driver 62 18019 61 3543 16 853 139 22415

cob external 5 868 125 14681 0 0 130 15549

cob robots 0 0 0 0 3 101 3 101

control tool-

box

8 704 8 238 1 20 17 962

Continued on next page
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Table C.2 – continued from previous page

Name C++

Files

C++

Lines of

Code

Header

Files

Header

Lines of

Code

Python

Files

Python

Lines of

Code

Source

Files

Total

Lines of

Code

crazyflie ros

stack

0 0 0 0 10 613 10 613

NIMBUS

crop survey-

ing

58 4462 33 1665 0 0 91 6127

func maninu-

lators

24 42056 2 221 0 0 26 42277

graft 10 1787 7 270 0 0 17 2057

grizzly robot 9 721 6 279 0 0 15 1000

hector arm 3 156 1 39 1 48 5 243

hector diag-

nostics

14 2783 7 370 0 0 21 3153

hector navi-

gation

14 2783 7 370 0 0 21 3153

hector slam 14 1676 32 2291 0 0 46 3967

hector turtle-

bot

2 63 0 0 0 0 2 63

icart mini 7 678 2 54 1 36 10 768

jaco robot

arm

8 2379 9 1083 0 0 17 3462

jsk control 9 1209 4 676 54 3802 67 5687

jsk smart

apps

3 167 17 223277 9 574 29 224018

jsk travis 0 0 0 0 1 231 1 231

kobuki 15 1719 9 1053 37 2268 61 5040

kobuki soft 4 213 2 84 0 0 6 297

Continued on next page
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Table C.2 – continued from previous page

Name C++

Files

C++

Lines of

Code

Header

Files

Header

Lines of

Code

Python

Files

Python

Lines of

Code

Source

Files

Total

Lines of

Code

mav ros 40 6953 15 853 9 503 64 8309

maxwell 0 0 0 0 1 55 1 55

motoman 22 3532 25 1704 1 84 48 5320

nao camera 4 437 2 79 3 241 9 757

nao extras 4 854 1 77 0 0 5 931

nao interac-

tion

0 0 0 0 2 407 2 407

nao robot

repo

3 614 1 41 24 2163 28 2818

nao ros 2 87 0 0 21 1999 23 2086

nao sensors 5 465 2 79 7 468 14 1012

nao virtual 0 0 0 0 1 21 1 21

nao viz 0 0 0 0 7 253 7 253

naopi bridge 8 978 3 122 33 10387 44 11487

nav2 plat-

form

3 364 1 34 0 0 4 398

navigation

stack

96 16289 89 4090 11 295 196 20674

neo robot 14 2493 12 805 0 0 26 3298

next stage 0 0 0 0 19 1284 19 1284

novatel

spann

0 0 0 0 11 674 11 674

ocs library 30 3329 21 1299 18 936 69 5564

people track-

ing ros

20 3284 19 1707 3 148 42 5139

Continued on next page
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Table C.2 – continued from previous page

Name C++

Files

C++

Lines of

Code

Header

Files

Header

Lines of

Code

Python

Files

Python

Lines of

Code

Source

Files

Total

Lines of

Code

pepper robot

for stuff

0 0 0 0 4 300 4 300

pr2 os robot 11 7462 6 591 0 0 17 8053

pr2 common 1 84 0 0 1 47 2 131

pr2 futre 1 178 1 42 54 4429 56 4649

pr2 coli-

braiton

18 1469 6 163 18 1958 42 3590

pr2 common

actions

11 1042 2 54 8 250 21 1346

pr2 delivery 0 0 0 0 6 309 6 309

pr2 doors 0 0 0 0 3 91 3 91

pr2 kinemat-

ics

8 1788 6 330 0 0 14 2118

pr2 naviga-

tion

14 1711 11 1399 1 156 26 3266

pr2 pbd 0 0 0 0 17 5856 17 5856

pr2 precise

trajectory

0 0 0 0 12 558 12 558

pr2 self test 9 1756 8 320 10 1230 27 3306

pr2 surro-

gate

7 145 3 58 0 0 10 203

pr2 apps 7 2992 1 157 7 186 15 3335

rail ceiling 4 731 3 121 0 0 7 852

rail pick and

place library

30 3265 23 884 0 0 53 4149

Continued on next page
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Table C.2 – continued from previous page

Name C++

Files

C++

Lines of

Code

Header

Files

Header

Lines of

Code

Python

Files

Python

Lines of

Code

Source

Files

Total

Lines of

Code

rail segmen-

tation

4 791 2 132 0 0 6 923

realtime

tools

2 72 5 350 1 21 8 443

robitician ric 18 5137 580 49202 8 700 606 55039

robot rescue 12 654 0 0 0 0 12 654

ros concert 16 1444 7 258 431 33911 454 35613

ros control 40 5361 50 2698 13 831 103 8890

ros con-

trollers

33 4176 32 2762 5 370 70 7308

ros create

driver

0 0 0 0 15 1151 15 1151

ros darwin 0 0 0 0 4 364 4 364

ros descartes 24 3293 18 1254 0 0 42 4547

ros filter li-

brary

12 680 8 1263 0 0 20 1943

ros univer-

sial robot

4 1058 3 354 10 1719 17 3131

rqt pr2 dash-

board

0 0 0 0 6 303 6 303

segbot 17 3953 18 1351 7 258 42 5562

segbot apps 4 806 1 90 2 104 7 1000

shcunk mod-

ular

27 17089 60 5380 3 363 90 22832

sr demo 10 1210 11 571 11 1555 32 3336

Continued on next page
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Table C.2 – continued from previous page

Name C++

Files

C++

Lines of

Code

Header

Files

Header

Lines of

Code

Python

Files

Python

Lines of

Code

Source

Files

Total

Lines of

Code

sr manipula-

tion

0 0 0 0 28 2896 28 2896

sr utils 2 212 2 77 0 0 4 289

turtlebot 3 142 0 0 2 17 5 159

turtlebot

apps

47 6248 25 1890 16 898 88 9036

turtlebot

arm

11 6624 2 246 1 219 14 7089

turtlebot cre-

ate

0 0 0 0 15 1151 15 1151

turtlebot in-

teractions

2 79 0 0 0 0 2 79

uos tools 8 525 3 139 7 465 18 1129

water sam-

pler

4 762 0 0 20 1217 24 1979

mean 13 2894 18 3522 13 1201 44 7616

median 7 791 3 221 3 241 19 2637

std 20 6031 60 22672 44 3675 81 23524

min 0 0 0 0 0 0 1 21

max 96 42056 580 223277 431 33911 606 224018

sum 1354 292251 1792 355696 1321 121317 4467 769264
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Table C.1: The statistics gathered during static analysis of ROS packages.

Data Description Table Key
Name Name of the metapackage Name
Compilation time Time the metapackage takes to

compile with clang++.
Time

Time Factor Total compilation time with anal-
ysis in reference to original com-
pilation. In other words Compi-
lation Time x Time Factor is total
time to compile with analysis

Time Factor

Threshold Predicate Compar-
isons

A count of the number of predi-
cates in the metapackage which
both use a parameter threshold
in the predicate and have an “ex-
posing statement” which has a
data flow or control flow depen-
dency on the predicate.

Threshold Predi-
cate Comparisons

C++ Threshold Predicate Com-
parisons

Number of Predicates on Thresh-
olds appearing in C++ code.

C++

Python Threshold Predicate
Comparisons

Number Predicates on thresh-
olds appearing in Python code.

Python

Unique Threshold Sources Number of thresholds loaded
from uniquely named parame-
ters.

Unique

Files Containing Threshold Pred-
icate Comparisons

Number of files in the metapack-
age containing Threshold Predi-
cate Comparisons

Files

C++ Files Number of C++ files in the meta-
package.

-

C++ Lines of Code Lines of C++ code in the meta-
package.

-

Headers .h header files in the metapack-
age.

-

Headers Lines of Code Lines of .h code in the metapack-
age.

-

Python Files Python files in the metapackage. -
Python Lines of Code Lines of Python code in the meta-

package.
-

Total Files Total Python, C++, and header
files in the metapackage.

-

Total Lines of Code Total Lines of code in the meta-
package.

-
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Appendix D

User Instructions

This appendex contains the instructions each user was given during the trials for each of

the three systems.

D.1 Water Sampler

Monitor my Robot
Name:

Date:

Goal

I am developing tools to enhance the dependability of robots that interact with people. In

particular, I am studying how we can help users collaborate with robots to improve their

configuration. A part of that work includes employing user input to determine what may



be wrong with a robot’s configuration. And that is where you come in.

Robot and Mission

You will be observing a water sampling UAV that is able to autonomously collect water

samples and return them to land. When the mission starts the UAV will be on the ground

with motors off in the cage. It will then takeoff, fly to altitude, and approach the fish tank.

Once over the fish tank it will lower the sampler into the water and pump one vial full of

water. After filling the vial the UAV will return to the target altitude, fly to the takeoff

location, land, and shutdown.

Tasks

We will first show you the Robot performing the mission correctly three times. This

should give you a better idea of what is expected from the Robot. We will also show you

the basic equipment you will be using during the mission.

We will then perform three other trials where the Robot may be changed in a way that

impacts the mission. During these trials your job is to detect two types of error:

• Type I Error. Robot performs an action when it should not have.

• Type II Error. Robot should perform an action but it does not.

When you detect Type I errors mark them by pressing the key on the keyboard,

and when you detect Type II errors make them by pressing the key on the keyboard.

If you have any additional comments or concerns during or after the study please write

them at the bottom of this sheet.

This activity should take 20 minutes. Thank you for your time and assistance.



D.2 Navigation

Monitor my Robot
Name:

Date:

Goal

I am developing tools to enhance the dependability of robots that interact with people. In

particular, I am studying how we can help users collaborate with robots to improve their

configuration. A part of that work includes employing user input to determine what may

be wrong with a robot’s configuration. And that is where you come in.

Robot and Mission

You will be observing a ground robot that is able to autonomously navigate in the

environment. When the mission starts it will be at one location in the small sample area.

The robot will than navigate to the finish location. Th finish location is marked on the

ground. To successfully complete the mission the robot must be completely inside the

marked area and stationary.

Tasks

We will first show you the Robot performing the mission correctly three times. This

should give you a better idea of what is expected from the Robot. We will also show you

the basic equipment you will be using during the mission.



We will then perform three other trials where the Robot may be changed in a way that

impacts the mission. During these trials your job is to detect two types of error:

• Type I Error. Robot performs an action when it should not have.

• Type II Error. Robot should perform an action but it does not.

When you detect Type I errors mark them by pressing the key on the keyboard,

and when you detect Type II errors make them by pressing the key on the keyboard.

If you have any additional comments or concerns during or after the study please write

them at the bottom of this sheet.

This activity should take 20 minutes. Thank you for your time and assistance.

D.3 Image Capture

Monitor my Robot
Name:

Date:

Goal

I am developing tools to enhance the dependability of robots that interact with people. In

particular, I am studying how we can help users collaborate with robots to improve their

configuration. A part of that work includes employing user input to determine what may

be wrong with a robot’s configuration. And that is where you come in.
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Robot and Mission

You will be observing a UAV that is able to autonomously find a person, take their

photograph, and return to land. When the mission starts the UAV will be on the ground

with motors off. The motors start and the UAV takes off and flies to a predetermined

point and orientation. The UAV rotates and place and performs image processing on

the image stream from the camera located on the UAV. Once the UAV identifies a face it

remains at the same orientation attempts to center the face in the image frame. Once the

UAV has the person centered in the image it snaps a photo and lands at a predetermined

location. If at any point in time it looses track of the person, the UAV returns to circling

in place.

Tasks

We will first show you the Robot performing the mission correctly three times. This

should give you a better idea of what is expected from the Robot. We will also show you

the basic equipment you will be using during the mission.

We will then perform three other trials where the Robot may be changed in a way that

impacts the mission. During these trials your job is to detect two types of error:

• Type I Error. Robot performs an action when it should not have.

• Type II Error. Robot should perform an action but it does not.

When you detect Type I errors mark them by pressing the key on the keyboard,

and when you detect Type II errors make them by pressing the key on the keyboard.

If you have any additional comments or concerns during or after the study please write

them at the bottom of this sheet.
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This activity should take 20 minutes. Thank you for your time and assistance.


