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This work presents a design for a binary driven optical square M-ary quadrature amplitude 

modulation (QAM) transmitter for high speed optical networks. The transmitter applies 

tandem quadrature phase shift keying (QPSK) modulators to eliminate the need for linear 

broadband amplifiers and high-resolution digital to analog converters (DACs), which are 

both required by conventional transmitters. The transmitter design could be scaled to any 

order of square M-ary QAM by simply adding more QPSK modulators in tandem. It also 

provides a Gray coded symbol constellation, insuring the lowest bit error rate possible 

during symbol recovery. We also provide the design for the coupling ratios of the optical 

couplers that take into account the insertion loss of the optical components, in order to 

generate a proper 16-QAM and 64-QAM symbol constellation with equally-spaced 

symbols. Additionally, we analyze the impact of coupling ratio errors as well as phase 

errors on the bit error rate (BER) performance and constellation diagrams.  

The performance is tested using the OptiSystem simulation at 50 Gbaud and under presence 

of additive white Gaussian noise (AWGN), which demonstrated high quality symbol 

constellation and a BER performance similar to theoretical expectations. For 16-QAM, a 

BER better than 10-4 and power penalty of about 2 dB are achieved for coupling ratio errors 

less than 10 %, or phase errors within ±7 degrees. The 64-QAM transmitter, on the other 



 

 

hand, demonstrated a BER better than 10-4 and power penalty of about 1 dB for coupling 

ratio errors less than 4%, or phase errors within ±2 degrees. 
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CHAPTER 1 INTRODUCTION 

1.1. Introduction 

     Coherent optical transmission refers to optical communication systems that apply 

higher order modulation format at the transmitter side and coherent detection using local 

oscillator laser and digital signal processing (DSP) at the receiver side. Using higher order 

modulation format such as M-ary quadrature amplitude modulation (QAM) would allow 

better utilization of fiber bandwidth thus reducing the cost per bit of transmitted 

information. This chapter reviews the development of coherent optical transmission and its 

advantages. It also describes the commercially available coherent optical transmitters and 

summarizes the state of the art optical modulation formats used in coherent optical 

communication.  

1.2. Background 

     DeLange introduced the first coherent optical communication system that applies phase 

modulation and heterodyne detection in the early 1970’s [1]. His system did not receive a 

great deal of attention owing to the frequency instability and phase noise associated with 

the large linewidth semiconductor lasers. In addition, a simpler optical communication 

system based on intensity modulation (IM) of the semiconductor laser and direct detection 

(DD) using photo detector was the main stream at the time.   

 In the early 1980’s, Okoshi and Kikuchi introduced a frequency stabilization technique for 

the semiconductor lasers that mitigated the frequency drifting and reduced the linewidth to 

https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=3&cad=rja&uact=8&ved=0ahUKEwitp7ftl-LXAhWC3YMKHaczDzAQFggyMAI&url=http%3A%2F%2Fdictionary.reverso.net%2Fenglish-synonyms%2Fa%2520great%2520deal%2520of%2520attention&usg=AOvVaw1BeTtNOqvdfgkRJ7n7ijna
https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=3&cad=rja&uact=8&ved=0ahUKEwitp7ftl-LXAhWC3YMKHaczDzAQFggyMAI&url=http%3A%2F%2Fdictionary.reverso.net%2Fenglish-synonyms%2Fa%2520great%2520deal%2520of%2520attention&usg=AOvVaw1BeTtNOqvdfgkRJ7n7ijna
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less than 10 MHz [2-4]. In [5], a comparison was made between a simple coherent optical 

system based on phase shift keying (PSK) and optical systems that are based on IM-DD. It 

was shown that the coherent system improves the receiver sensitivity by 6 dB and in return 

extends the transmission distance. This was a big motivation of research and development 

in coherent optical communications before the emergence of erbium doped fiber amplifiers 

(EDFAs).  

In the 1990’s, the invention of EDFAs interrupted the research in coherent optical 

transmission since the power-limited transmission distance of the IM-DD system could be 

extended. Furthermore, EDFA-based IM-DD system incorporated wavelength division 

multiplexing (WDM) to increase the transmission capacity of single-mode fiber [6]. In 

2002, the International Telecommunication Union (ITU) introduced ITU-T G.694.1 WDM 

recommendation which allows 80 optical carriers spaced by 50 GHz to be simultaneously 

transmitted over a single fiber. Each optical carrier would employ IM-DD at a data rate of 

10 Gbps per channel, employing ON/OFF keying (OOK) and achieving an aggregated 

capacity of 800 Gbps (80-channel ×10 Gbps) over single fiber [7].  

In early 2000’s, many research efforts began to focus on implementing IM-DD at data rates 

higher than 10 Gbps per WDM channel [8-10]. This approach was not viable because IM 

signal is highly susceptible to optical channel impairments such as chromatic dispersion 

(CD) and polarization mode dispersion (PMD) [11, 12]  that worsen with shorter optical 

pulses. In addition, IM-DD-based systems at data rates more than 10 Gbps per channel 

have proven to be nonlinear and power inefficient, making it unsuitable to employ 
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electronic compensation for optical channel impairments. Consequently, coherent optical 

transmission has received renewed attention as the technology of choice. 

The rebirth of coherent optical transmission started with the development of coherent 

optical system based on optical differential quadrature phase-shift keying (DQPSK) [13, 

14]. This scheme increased the bit rate by 4- fold compared to IM-DD systems, achieving 

40 Gbps at 20 Gbaud per WDM channel. Between 2005 and 2010, the research efforts 

focused on applying DSP techniques and polarization division multiplexing to further 

increase the data rate of coherent optical systems to 100 Gbps[15-17].   

In 2010, the first coherent optical system that is based on orthogonal polarization division 

multiplexing (PDM) and QPSK became commercially available [18]. The system provides 

100 Gbps at 25 Gbaud and applies DSP extensively for bit coding [19-22], laser source 

non-linearity compensation [22-25], fiber non-linearity pre-compensation [26], pulse 

shaping, carrier phase and frequency estimation, as well as CD and PMD compensation 

[27-30]. The 100 Gbps PDM-QPSK coherent optical system by far has been the highest 

data rate optical system available in the market.  

Currently, coherent optical communication systems with data rates beyond 100 Gbps per 

optical channel are under investigation. The goal is to achieve 400 Gbps per WDM channel 

using higher order QAM modulation formats such as 16-QAM and 64-QAM. There are 

several publications that reported 400 Gbps using 16-QAM [31-33] and an even higher 

data rate using 64-QAM at 50 Gbaud [34]. Yet none of these solutions is commercially 

available. 
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1.3. Advantages of coherent optical transmission 

Coherent optical transmission is the key to achieve high data rates that are required for next 

generation optical networks. It provides high spectral efficiency (SE) and long transmission 

distance. It applies digital signal processors (DSP) to compensate for fiber transmission 

impairments such as CD and PMD, which in return eliminates the need for dispersion 

compensation modules and allows robust performance over different types of glass optical 

fiber. Coherent optical transmission allows higher network flexibility by supporting 

different baud rates and modulation formats per single optical carrier leading to increment 

in SE and reduction of the cost per bit of transmitted information. Compared to the widely 

used IM-DD systems, coherent optical systems provide the following advantages: 

1. Concurrent modulation of carrier amplitude and phase using higher order modulation 

format would allow increases in the transmission capacity as well as SE. For instance, 

applying 16-QAM and 64-QAM would increase the SE and thus the capacity by 4-fold 

and 6-fold as compared to IM-DD.  

2. Thanks to the DSP capability, coherent optical systems allow increase of receiver 

sensitivity by 15 dB to 20 dB [35] and therefore increasing the transmission distance 

by about 100 km over the C band while mitigating the need for EDFA. 

3. Provide spectral shaping functionality that enables the usage of flexible grid systems 

and allows rejection of interference from adjacent channels. This increases the spectral 

efficiency by placing the optical carriers closer to one another within the transmission 

band.   
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4. Provide flexible programmable design that can support multiple modulation formats, 

therefore enabling the user to choose from a variety of data rates.  

5. Apply DSP to compensate for the CD and PMD and improve system tolerance to 

polarization dependent losses. This eliminates the need for dispersion compensation 

modules and increases the data rate by transmitting information over multiple 

polarization states using PDM.    

1.4. Commercially available coherent optical systems  

Commercially available coherent optical systems are based on PDM and 4-QAM, 

or PDM-QPSK as shown in Fig. 1.1a. The input digital data are split into 4 parallel binary 

streams and converted to multilevel electrical signals using high-speed digital to analog 

converters (DACs). The two pairs of electrical signals modulates the two orthogonal 

polarization states (X and Y) of the optical carrier. The electrical signal levels are adjusted  

(b) 

 

(a) 

Input data 

Output data 

Fig.1. 1: (a) PDM-QPSK transceiver [36]; (b) QPSK constellation diagram. 
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to the values desired by the two in-phase/quadrature modulators (I/Q) using linear 

driving amplifiers. The two I/Q modulators modulate a narrow linewidth laser generating 

QPSK signals per each X Y polarization state as represented by the constellation diagram 

shown in Fig. 1.1b. The polarization beam combiner (PBC) combines the two QPSK 

polarized waves to generate PDM-QPSK signal at the output fiber. The DSP block at the 

transmitter side applies multiple algorithms for bit coding [36], I/Q non- linearity 

compensation [37, 38], non-linearity pre-compensation [39-41], and pulse shaping [42-45]. 

The signal is then amplified and sent through the optical fiber to the coherent receiver  

At the receiver, the optical signal is split into two polarized signals X and Y using the 

polarization beam splitter (PBS) as shown in Fig. 1.1a. The 90o optical hybrids combine 

each signal with the polarization matched optical signal from the narrow linewidth local 

oscillator laser and converted to electrical domain using balanced I/Q photo detectors. The 

electrical signals are amplified and sampled into 4 digital bit streams via high speed analog 

to digital converters (ADCs). The DSP at the receiving end performs carrier phase and 

frequency estimation as well as CD and PMD compensation [46-51].  

Operating the DACs/ADCs at a symbol rate of 25 Gbaud, the above configuration would 

be able to provide a data rate of 100 Gbps per WDM channel achieving an aggregated 

capacity of 8 Tbps over standard WDM.  The coherent optical link described above is the 

highest speed link available in the market. 

1.5. The need for coherent M-ary QAM transmission 

     The Internet traffic demand has been growing at a rate of 25% per year owing to the 

emergence of high data rate solutions including high definition 3D TV, video conferencing, 
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online gaming, cloud computing, and big data [52-55]. Fig. 1.2 shows the traffic model 

developed by Bell Lab for North American core networks. The model predicts the total 

traffic demand over the last three decades and some forecasts through 2020.  

 

 

Fig.1. 2: Total traffic demand and available communication systems per year for North Americans core networks [52]. 

As illustrated, the current traffic demand in North American core networks is about 200 

Tbps and is projected to increase 5-fold by 2020. However, the maximum achievable data 

rate over standard single-mode fiber is 8 Tbps [56]. Consequently, accommodating the 

current traffic demand for North American core networks would require about 25 WDM 

fiber links with capacity of 8 Tbps each. Around 125 WDM such links would be required 

to accommodate the 1000 Tbps anticipated for 2020. This huge number of WDM links 
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would result in high capital expenditure costs (CapEx) and thus increase the cost per bit of 

the optical transmission.  

To increase the capacity of the core networks while reducing the number of WDM links, 

and thereby reducing the CapEx, coherent optical systems that employ higher modulation 

format such as 16-QAM and 64- QAM should be employed to increase SE. 16-QAM and 

64-QAM would increase the SE and thus the capacity by 2-fold and 3-fold respectively, as 

compared to QPSK, and thereby decrease the number of required WDM links by the same 

factor.  

1.6. State of the art optical modulation format 

     The data rate of an optical communication link is determined by the number of 

polarization states (ρ), number of optical carriers (N), symbol rate per carrier (R), and the 

number of distinct binary pulses per symbol (M) as follows: 

                             data rate = 𝜌 × 𝑁 × 𝑅 × log2(𝑀)                                                  (1.1) 

Also, the SE is defined as the number of bit per second per Hz: 

                                                   𝑆𝐸 =
𝑑𝑎𝑡𝑎 𝑟𝑎𝑡𝑒

𝐵𝑊
=

𝜌×𝑁×𝑅×log2(𝑀)

𝐵𝑊
                                             (1.2) 

where BW is the transmission bandwidth in Hertz. 

Equations (1.1) and (1.2) suggest that a high data rate and thus high SE could be achieved 

using several approaches: 

• Increasing ρ using PDM 

•  Increasing N using multi-carrier modulation techniques 
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• Increasing M using M-ary QAM 

The data rate can be increased by combining two or more of the above-mentioned 

techniques. The following subsections provide a quick overview of each possible approach 

along with the recent research efforts. 

1.6.1. Polarization division multiplexing 

PDM is a technique that allows simultaneous transmission of multiple independent data 

streams over the same wavelength using different states of polarization for each stream 

[57]. At the receiving end, the multiple polarization channels are separated and detected 

independently. The most widely used form of PDM is orthogonal PDM where the 

horizontally and vertically polarized optical waves are independently modulated as shown 

in Fig. 1.3. Some investigations have been carried out to explore PDM with more than two 

states of polarization [57-59]. In [58], experimental OOK link using four states of 

polarization has been demonstrated at 32 Gbaud, achieving an aggregated data rate of 128 

Gbps over distance of 2 km. Currently, the minimum achievable polarization multiplexing 

angle in research literature is 23o which means that fifteen different data streams with 

 
Fig.1. 3: Orthogonal PDM wave [56]. 
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different polarizations could potentially be sent simultaneously over the same wavelength 

[58]. The lab experiments, however, have been carried out with only four states of 

polarization owing to the complexity associated with the simultaneous detection of 

multiple states of polarization at the receiving end due to the cross-talk interference [60, 

61]. Also, the asymmetries in circular geometry and stresses in the fiber core lead to a 

polarization dependent refractive index which produces PMD [62]. PMD causes a change 

in the state of polarization as the optical signal propagates down the fiber leading to a 

degradation of the optical link performance especially for long distances. Owing to these 

limitations, PDM is limited in practice to orthogonal PDM.  

1.6.2. Multi-carrier modulation 

     Multi-carrier modulation is the process of transmitting user data by dividing it into bit 

streams and using them to modulate several carriers [63]. In optical communication, there 

are two main categories of multicarrier modulation: super channel and optical orthogonal 

frequency division multiplexing O-OFDM [64].  

1.6.2.1. Super channel     

      Super channel is a form of dense WDM that allows multiple carriers with small and 

non-overlapping frequency spacing to be transmitted simultaneously over a single channel 

as illustrated in Fig. 1.4a. As can be seen, five optical carriers with frequency spacing of 

10 GHz are squeezed into a 50 GHz channel. Each carrier can be modulated using simple 
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modulation format such as OOK which in return allows simple demodulation process by 

simply applying DD. To further increase the super channel data rate while operating the 

DACs/ADCs at relatively lower symbol rate, higher order modulation format such as 

PDM-M-ary QAM have been applied per sub-carrier [65]. In [66], a data rate of 400 Gbps 

was achieved using a super channel comprised of four sub-carriers that occupy only 150 

GHz of bandwidth at 37.5 GHz sub-carrier spacing. Each carrier is modulated using the 

commercially available 100 Gbps PDM-QPSK modulator achieving a total data rate of 400 

Gbps. In [67], four sub-channels modulated using PDM-16 QAM and occupying 100 GHz 

of bandwidth achieved an aggregated data rate of 800 Gbps. 

 The main advantage of super channel is to increase the SE of the optical link as well as 

reduce the demand on the DACs/ADCs by operating each sub-channel at a lower data rate 

compared to the channel bandwidth [68]. The main limitations on the other hand are the 

large number of modulators and demodulators required for each super channel as well as 

the cross-channel interference at the receiver side which increases with decreasing channel 

spacing [69].  

 

(a) 

 

(b) 

 
Fig.1. 4: (a) Super channel; (b) O-OFDM channel. 
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1.6.2.2.Optical orthogonal frequency division multiplexing 

     O-OFDM is a multi-carrier modulation technique that overlaps multiple orthogonal 

carriers within the channel bandwidth to increase the SE [70]. As can be seen in Fig. 1.4b, 

10 overlapped sub-channels, each with 10 GHz bandwidth, can be squeezed into 55 GHz 

channels, effectively doubling the spectrum efficiency obtained with super channel. The 

orthogonality property of O-OFDM signals enable demodulation without co-channel 

interference. It is worthwhile to mention that the O-OFDM is different from the electrical 

OFDM in the way the signal is generated. While electrical OFDM signal is generated and 

processed using discrete Fourier transform (DFT) and fast Fourier transform (FFT) [71], 

O-OFDM typically employs multiple laser sources, photo detectors, and filters to generate 

and detect the signal in order to circumvent the speed limitation of the DACs/ADCs [72]. 

The distinct advantage of O-OFDM is the high spectrum efficiency owing to the 

orthogonality between the adjacent channels [73]. It can facilitate resource allocation and 

provide dynamic data rates based on the traffic demand as each carrier can be modulated 

with different modulation format as needed [74]. 

In [72], a 275 Gbps O-OFDM signal based on eleven sub-carriers each applies IMDD at 

25 Gbaud was demonstrated. To further increase the O-OFDM system capacity while 

operating the DACs/ADCs at a lower symbol rate, higher order modulation format such as 

PDM-M-ary QAM have been applied per O-OFDM sub-carrier. In [74], error free 80 Gbps 

based on four O-OFDM sub-carriers, each modulated using PDM-QPSK, was proposed.  
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Even though many experiments have been conducted to evaluate the performance of O-

OFDM, only a few can be practically realized due to various limitations associated with 

digital signal processor capability [73]. In addition, the modulation and demodulation 

process in O-OFDM is complicated as it requires multiple laser sources, photo detectors, 

and filters [70]. Also, high accuracy in the phase and frequency of the receiver local 

oscillator laser is required because any carrier mismatch would result in degradation of the 

system performance [72]. The peak to average power ratio (PAPR) along with the 

challenges facing real time implementation at high data rate have been major drawbacks 

of O-OFDM systems [70, 71]. 

1.6.3. M-ary quadrature amplitude modulation 

     M-ary QAM is a single carrier modulation technique that allows multiple bits to be 

transmitted simultaneously by mapping them into one symbol [75]. The advantages of 

single carrier M-ary QAM include simplicity, easy wavelength allocation, more 

compactness, low power dissipation, and it can be implemented in real time [76, 77]. 

Optical M-ary QAM signal can be generated by modulating a single narrow linewidth 

cavity laser using single or multiple I/Q modulators as described below. 

1.6.3.1. M-ary QAM generation using single QPSK modulator  

In this configuration, a QPSK modulator is used to modulate a narrowband optical laser in 

quadrature phases using multilevel electrical signals from high-speed DACs and driving 

amplifiers as shown in Fig. 1.5. In [75], 256.8 Gbps data rate and spectral efficiency of 12 

bit/s/Hz was achieved using a single carrier at 21.4 Gbaud by applying PDM-64 QAM 
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using a single I/Q optical modulator driven by eight-level electrical waveforms from a 

high-power DAC. In [76], the author demonstrates 400 Gbps transmission by means of 

dual-polarization I/Q modulator on a single carrier using 16-QAM at 56 Gbaud, and 64-

QAM at 38 Gbaud, achieving spectral efficiency of 7 bit/s/Hz and 10 bit/s/Hz respectively. 

The main advantage of this approach is the simplicity in optical domain as only a single 

I/Q modulator is required.  The main drawback is the high-resolution required by the DACs 

to cope with the nonlinearities associated with the Mach-Zehnder modulator (MZM), as 

well as the high power driving amplifiers in order to generate high quality symbol 

constellations and eye diagrams [77] 

1.6.3.2. M-ary QAM using multiple I/Q modulators driven by binary electrical signals  

This configuration overcomes the nonlinearities and DAC/amplifier limitations by 

employing multiple I/Q modulators that are driven by binary electrical signals [78-81]. 

Single carrier with multiple I/Q modulators transmitters are proposed in different 

configurations [79, 80] as shown in Fig. 1.6. The tandem I/Q (TIQ) modulator proposed in 

 

𝜋/2 

Fig.1. 5: Configuration of single I/Q M-ary QAM transmitter. 
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[79] is shown in Fig. 1.6a. As illustrated, two I/Q modulators in tandem are used to generate 

16-QAM signal. The first I/Q modulator is operated to generate 4-QAM constellation in 

the first quadrant. The second I/Q modulator rotates the offset 4-QAM to the four-

quadrants generating 16-QAM as shown. In [80], reconfigurable nested Mach-Zehnder 

(a) 

 

(b) 

Fig.1. 6: (a) Block diagram for TIQ scheme [79]; (b) Block diagram for RN-MZI scheme [80]. 

 



16 

 

interferometer (RN-MZI) is proposed with the configuration shown in Fig. 1.6b. As can be 

seen, 16-QAM modulator is implemented using four phase modulators (L1-L4) embedded 

in a double-nested MZI, and tunable optical splitters/couplers (TC). The two QPSK signals 

generated in the T-and B-arms in Fig. 1.6b combine constructively or destructively, 

depending on the splitting ratio of the TC as well as the applied binary signals, generating 

the 16-QAM constellation as shown. Fig. 1.7 shows the symbol transition diagrams for 

TIQ and RN-MZI transmitters. The diagrams show the schemes are susceptible to inter-

symbol interference (ISI) due to the nonlinear phase transitions between the 

symbols,reflecting the vulnerability of the generated 16-QAM signals to CD and PMD 

[81]. The two configurations are not easily scalable to higher-order modulation formats 

and also generate non-Gray coded symbol constellations resulting in high bit error rates 

from symbol errors. 

 

(a) (b) 

Fig.1. 7: (a) Symbol transitions for TIQ scheme [79]; (b) Symbol transitions for RN-MZI scheme [80]. 
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1.7. Conclusion  

     Coherent optical systems apply higher order modulation format to increase optical 

systems capacity. The highest data rate coherent optical links available in the market can 

achieve 100 Gbps over single wavelength using PDM and QPSK. There is a variety of 

modulation formats that would allow higher data rate such as O-OFDM, super channel, 

and optical QAM.  . However, optical QAM transmitters based on multiple QPSK 

modulators that are driven by binary electrical signals appears to be the most promising as 

they eliminate the need for high speed DAC and driving amplifiers associated with single 

QPSK modulator that is driven by multilevel electrical signals.  
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CHAPTER 2 MAIN COMPONENTS IN COHERENT 

OPTICAL TRANSMISSION SYSTEM 

2.1. Introduction 

     Similar to all communication systems, coherent optical systems comprise three basic 

components: transmitter, transmission media, and receiver as shown in Fig. 2.1. The transmitter 

modulates the optical carrier with input data and sends it over the transmission media. The 

transmission media is a glass optical fiber that provides the connection between the transmitter 

and the receiver. At the receiver, the signal is demodulated and converted to electrical domain 

by means of balanced coherent detection. The electrical signal is then converted to digital 

domain via high speed ADC. DSP allows compensation of the noise and distortion from the 

Transmitter 

Receiver 

Modulator 

Input 

data 

Balanced 

coherent 

detection 

ADC  DSP  
Output 

data 

Transmission 

media 

 

Optical carrier 

Fig. 2. 1: Structure of coherent optical communication system. 
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lasers and transmission media while recovering the transmitted information. This chapter 

provides detailed description of the main components in coherent optical transmission system.  

2.2. Optical transmitter 

     An optical transmitter is a device that encodes the input bits, transforms the bits into 

symbols of a given a modulation format, and modulates them into the optical carrier for 

transmission by the media. The general configuration of coherent optical transmitter 

comprises laser source, and optical modulator as shown in Fig. 2.1.  

2.2.1. Laser source 

 The term “laser” is an acronym for light amplification by stimulated emission of radiation. 

It implies that turning an atomic system into a laser would require: a lasing medium, also 

called an amplification medium, a pump to excite the atoms to a higher energy level, and 

a mechanism that converts the energy of the excited atoms to the output optical signal. This 

can be practically achieved using an optical resonator. 

2.2.1.1. Optical resonator 

     The basic optical resonator is a cavity formed by two parallel mirrors facing each other, 

with the lasing medium placed in between as shown in Fig. 2.2. The mirrors reflect 

spontaneously emitted photons out of the system while forcing the coherent photons back, 

so they can stimulate more photons and thus contribute to the lasing process. The external 

source pumps the lasing medium to generate excited atoms in high energy state. As the 

excited atoms decay to low energy state, they release energy via spontaneous emission by  

 



20 

 

 

emitting non-coherent photons in all directions. Some of the photons travel along the axis 

of the lasing medium, while others are directed outside. The photons traveling along the 

axis bounce back and forth between the end mirrors, causing excited atoms in the lasing 

medium to undergo stimulated emission by emitting coherent photons. Lasing action or 

optical oscillation, which depends on the pump power and atom density, takes place when 

light amplification due to the stimulated emission dominates over spontaneous emission 

[82]. The amount of amplification or gain due to stimulated emission must be higher than 

the resonator loss to ensure optical oscillation. Also, one mirror is partially reflective to 

couple optical signal to the output.  

For a linear resonator, the oscillation frequency of the output optical signal can be obtained 

as [83]: 

Stimulated emission Spontaneous emission  

100% reflective 

mirror  
Partially reflective mirror  

Pump 

Lasing medium 

(Amplifier) 

  

Excited 

atoms  

Fig. 2. 2: Optical resonator 
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                                                     𝑓 = 𝑞
𝑐

2𝑛𝐿
                                                                  (2.1) 

Here L is the distance between the mirrors, q is an integer, n is the refraction index of the 

medium and c is the speed of light. To obtain a monochromatic laser source, the gain 

bandwidth should be kept less than the free spectral range (FSR) (
𝑐

2𝑛𝐿
). Light sources in 

optical communication are predominantly semiconductor diode lasers where photons are 

generated via carrier (electrons and holes) recombination.  Since the gain bandwidth of 

laser diode is larger than the FSR of the semiconductor cavity, typically distributed 

feedback (DFB) laser diodes achieve monochromatic light by employing Bragg grating to 

ensure that lasing would occur in a single longitudinal mode. 

Laser diodes in coherent optical communication must be monochromatic with constant 

amplitude, phase, and frequency. However, there are many reasons that lead to random 

fluctuations in the amplitude, phase, and frequency of the laser source including quantum 

noise associated with the spontaneous emission, vibration of the resonator, and temperature 

variations [84]. 

2.2.1.2. Laser amplitude noise 

Amplitude noise refers to the fluctuations of the laser output power over time. This noise 

occurs for many reasons but the most intuitive one is the stimulated emission. In [84], it 

has been shown that the laser energy has a direct proportion to the number of stimulated 

photons. Therefore, addition or removal of one photon would change the output laser 

power. Additional contributions to amplitude noise could be the unstable pump power and 

resonator losses.  

https://www.rp-photonics.com/intensity_noise.html
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2.2.1.3. Laser phase and frequency noise 

Phase noise refers to fluctuations of the output optical signal phase over time. It is mainly 

attributed to the random phase of the spontaneously-emitted photons. For a single mode 

semiconductor laser, the phase variance can be found in terms of the number of excited 

electrons (N2), number of non-excited electrons (N1), average number of quanta in the 

mode 𝑛̅, symbol duration (𝜏), and photon lifetime in the laser resonator without pumping 

the lasing medium(𝜏𝑝ℎ) as [85]: 

                                                     𝜎2(𝜏) =
𝑁2/(𝑁2−𝑁1)

2𝑛̅𝜏𝑝ℎ
𝜏                                                         (2.2) 

The phase noise is related to frequency fluctuation or linewidth, (∆𝑣) as follows: 

                                                 ∆𝑣 =
𝑑𝜎2(𝜏)

2𝜋𝑑𝜏
=

𝑁2/(𝑁2−𝑁1)

4𝜋𝑛̅𝜏𝑝ℎ
                                                          (2.3) 

For coherent communications, the effect of 𝜎2(𝜏) over a symbol duration ( 𝜏) can be found 

in terms of the laser linewidth at the transmitter (∆𝑣𝑇𝑥) and laser linewidth at the (∆𝑣𝑅𝑥) 

as [85]: 

                                            𝜎2(𝜏) = 2𝜋(∆𝑣𝑇𝑥 + ∆𝑣𝑅𝑥)𝜏                                                             (2.4) 

Since the baud rate is the inverse of the symbol duration (𝜏), it is clear that the effect of 

phase variation can be minimized by increasing the baud rate.  

2.2.2. Modulator  
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Modulator is a device that changes the amplitude, phase or the frequency of the laser source 

in response to the information being transmitted. Here we focus on amplitude modulation, 

also called intensity modulation, as well as phase modulation. 

2.2.2.1. Amplitude modulation    

Amplitude modulation is the process of conveying user information into a laser source 

amplitude. Many optical communication systems apply this type of modulation owing to 

its simplicity. There are two techniques used for intensity modulation namely: direct 

modulation and external modulation.  

2.2.2.1.1. Direct modulation 

In direct modulation, the laser emits light when 1 is being transmitted and emits no light 

when 0 is being transmitted as illustrated in Fig. 2.3.  

For this type of modulation, the laser switching speed should be fast enough to allow proper 

operation at the desired bit rate. At a data rate of 100 Gbps for instance, the duration of the 

optical pulse is 10 ps and therefore the expected laser switching speed should be within a 

fraction of this pulse duration. This is not practically visible due to the long-life time of the 

Electrical signal 

1 0 1 1 
1 1 1 0 0 

Optical signal 

 

0 

Fig. 2. 3: Intensity modulation 
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photon in the resonator and the relaxation oscillation frequency [86].  The intensity noise 

of the laser signal is also another obstacle for applying direct modulation in high speed 

optical transmission.  

2.2.2.1.2. External modulation  

In external modulation, the limited switching speed and amplitude noise of the laser source 

are mitigated by moving the modulation process out of the laser source to an 

interferometric structure such as Mach Zehnder interferometer (MZI). In this case, MZI 

would operate as a switch that allows the signal corresponding to ‘1’ to pass and blocks the 

signal that corresponds to ‘0’.  In contrast to direct modulation, external modulation allows 

for modulation at higher data rate. In addition, high order modulation formats can be 

achieved by modulating both the amplitude and phase of optical carrier, which in return 

increase the transmission capacity.  

2.2.2.1.3. Mach Zehnder interferometer (MZI) 

The basic MZI configuration is shown in Fig. 2.4. As can be seen, it comprises two 

waveguide arms with lengths L1 and L2, a splitter (S), and a combiner (C). As the light  

L2 

𝐸𝑖𝑛(𝑡) 𝐸𝑜𝑢𝑡(𝑡) 

L1 

S C 

Fig. 2. 4: MZI configuration 
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signal (𝐸𝑖𝑛(𝑡)) is fed to the input, S splits the signal equally into the two arms. C then 

combines the light from the two arms to produce the output signal ( 𝐸𝑜𝑢𝑡(𝑡)). The optical 

signal phase (∅) at the output of  each arm can be found in terms of  the signal wavelength 

(λ), arm length, and the refractive index (n) of the arm material as: ∅1 =
2𝜋

𝜆
𝑛(𝐿1 ) and 

∅2 =
2𝜋

𝜆
𝑛(𝐿2 ) respectively, assuming that both arms are made from the same material. 

Therefore, the electrical field transfer function for the MZI can be found as: 

                                                      
𝐸𝑜𝑢𝑡(𝑡)

𝐸𝑖𝑛(𝑡)
 = 

𝑒𝑗∅1+𝑒𝑗∅2

2
                                                      (2.5) 

Thus, 
𝐸𝑜𝑢𝑡(𝑡)

𝐸𝑖𝑛(𝑡)
 varies depending on the differential phase shift between the signals in the two 

arms. 

 Amplitude modulation can be achieved by controlling ∅1 and ∅2 in (2.5). For example, if 

∅1 = ∅2 = 2𝜋, then we find that: 

                                      
𝐸𝑜𝑢𝑡(𝑡)

𝐸𝑖𝑛(𝑡)
 = 

𝑒𝑗∅1+𝑒𝑗∅2

2
=

𝑒𝑗2𝜋+𝑒𝑗2𝜋

2
=

2

2
= 1                                         (2.6) 

Simplifying to  

                                               𝐸𝑜𝑢𝑡(𝑡) = 𝐸𝑖𝑛(𝑡)                                                             (2.7) 

Similarly, if  ∅1 = 2𝜋 and  ∅2 = 𝜋, then 

                                                  
𝐸𝑜𝑢𝑡(𝑡)

𝐸𝑖𝑛(𝑡)
 = 

𝑒𝑗2𝜋+𝑒𝑗𝜋

2
=

𝑒𝑗2𝜋+𝑒𝑗𝜋

2
=

1−1

2
= 0                            (2.8) 

 Simplifying to  

                                                            𝐸𝑜𝑢𝑡(𝑡) = 0                                                                     (2.9) 
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From (2.7) and (2.9), we conclude that MZI can be used as an amplitude modulator if the 

phases of the optical signals in the modulator arms are changed as a function of the 

modulating signal.  

In practice, MZI are made from Titanium that is diffused onto a substrate layer made of 

Lithium Niobate crystal (LiNbO3). LiNbO3 has a strong electro-optic effect such that if a 

voltage 𝑢(𝑡) is applied to it as shown in Fig. 2.4b, a change in the refractive index(∆neff) 

would be induced. The change in the refractive index would result in a change of the optical 

length and thus a phase shift φPM is induced which can be obtained as [87]:  

                                             φPM =
2π

λ
∆neff𝐿 𝛼 u(t)                                                                (2.10) 

where 𝐿 is the the length of the light path along the optical axis as shown in Fig. 2.5. We 

define the half wave voltage (Vπ ) as the applied voltage required to induce a phase shift of 

180 degrees. The phase introduced in the waveguide is related to 𝑢(𝑡) and Vπ as : 

                                            𝜑𝑃𝑀 = 𝑢(𝑡)(
𝜋

𝑉𝜋
)                                                               (2.11) 

𝑢(𝑡) 

𝐸𝑖𝑛(𝑡) 𝐸𝑜𝑢𝑡(𝑡) 

𝐿 

Fig. 2. 5: Principles of phase modulation 
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Therefore,  the electrical field transfer function for the phase modulator in Fig. 2.5 can be 

found as : 

                                              
𝐸𝑜𝑢𝑡(𝑡)

𝐸𝑖𝑛(𝑡)
  = 𝑒𝑗𝜑𝑃𝑀 = 𝑒

𝑗𝑢(𝑡)(
𝜋

𝑉𝜋
)
                                           (2.12) 

The MZI with electro-optic arms is usually referred to as Mach Zehnder modulator (MZM). 

Thus, amplitude modulation can be achieved using the MZM shown in Fig. 2.6. Here, the 

upper arm length, hence the phase of the optical signal in the arm, is controlled by 𝑢(𝑡) 

while the lower arm length is kept constant. Therefore, the transfer function in (2.5) can be 

modified as:        

                                            
𝐸𝑜𝑢𝑡(𝑡)

𝐸𝑖𝑛(𝑡)
 =

𝑒
𝑗𝑢(𝑡)(

𝜋
𝑉𝜋

)
+𝑒𝑗∅2

2
                                                      (2.13) 

Applying a voltage across the MZM arm would shift the phase of the signal in that arm 

by an amount proportional to 𝑢(𝑡). If the phase shift equates to an integral number of 

                                                      

A 

𝐸𝑖𝑛(𝑡) 𝐸𝑜𝑢𝑡(𝑡) 

B 

𝑢(𝑡) 

Fig. 2. 6: (a) MZI with phase modulator embedded in one arm. 
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wavelengths, the two light beams in the arms will combine constructively, and the intensity 

of the output light will be at its maximum. If the phase shift is a half wavelength out of 

phase, the two beams will combine destructively, and the output light will be at its 

minimum. For example, in Fig. 2.6, if 𝑢(𝑡) changes between 0 and 𝑉𝜋, the induced phase 

shift in the upper arm would change between 0 and 𝜋. If  ∅2= 2𝜋, then from (2.13) we 

have: 

                              𝐸𝑜𝑢𝑡(𝑡) =    

  
𝐸𝑖𝑛(𝑡)     if       𝑢(𝑡) = 0

    0            if     𝑢(𝑡) = 𝑉𝜋 
                                                   (2.14) 

Notice that when there is no voltage applied to the upper arm, the output will be maximum 

only if the arms of the MZM are symmetric. This symmetry ensures that the modulated 

output of the MZM is not shifted in phase/frequency, also called frequency chirped. 

Ensuring the arms symmetry is practically challenging due to material inhomogeneity, 

waveguide non-uniform doping profiles, and manufacturing tolerances [88]. Therefore, to 

overcome the frequency chirp, both arms of the MZI should be made of an electro optic 

material where the electrodes are driven by complimentary signals (𝑢(𝑡) and −𝑢(𝑡)) as 

shown in Fig. 2.7. This configuration is the most commonly used for amplitude modulation 

and is referred to as chirp free or push-pull configuration. The electrical field transfer 

function for the MZM with push pull configuration can be found as:                                    

                           
𝐸𝑜𝑢𝑡(𝑡)

𝐸𝑖𝑛(𝑡)
= 

 𝑒
𝑗𝑢(𝑡)(

𝜋
𝑉𝜋

)
+𝑒

−𝑗𝑢(𝑡)(
𝜋

𝑉𝜋
)

2
= cos [𝑢(𝑡) (

𝜋

𝑉𝜋
)]                                (2.15)            
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 From (2.15), the amplitude modulation can then be obtained by alternating 𝑢(𝑡) between 

0 and 
𝑉𝜋

2
 such that: 

                                  𝐸𝑜𝑢𝑡(𝑡) =

  
𝐸𝑖𝑛(𝑡)  if      𝑢(𝑡) = 0

 0            if    𝑢(𝑡) =
𝑉𝜋

2
 
                                                 (2.16) 

Commercial MZM are either single drive or dual drive. In the single drive, separate pair of 

electrodes are used to drive each arm independently. Dual drive MZM uses only one 

electrode to drive both arms with complementary voltage levels.  

2.2.2.2. Phase modulation 

Phase modulation refers to the process in which the optical carrier phase changes in 

response to user information. As described in section 2.2.2.1.3, if a voltage is applied to 

electro- optic material like LiNbO3, its refractive index changes and that introduce a phase 

shift to the optical signal (see Fig. 2.5). Phase modulation can also be obtained using the 

A 

𝐸𝑖𝑛(𝑡) 𝐸𝑜𝑢𝑡(𝑡) 

B 

𝑢(𝑡) 

−𝑢(𝑡) 

Fig. 2. 7: (a) MZI with phase modulator embedded in one arm. 
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dual drive MZM shown in Fig 2.7. In this case, both arms are driven by equal voltage 𝑢(𝑡).  

Therefore, the electrical field transfer function can be obtained as: 

           
𝐸𝑜𝑢𝑡(𝑡)

𝐸𝑖𝑛(𝑡)
=

𝑒
𝑗

𝑢(𝑡)
𝑉𝜋

𝜋
+𝑒

𝑗
𝑢(𝑡)
𝑉𝜋

𝜋

2
= 𝑒

𝑗
𝑢(𝑡)

𝑉𝜋
𝜋

= cos(
𝑢(𝑡)

𝑉𝜋
𝜋) + 𝑗 sin(

𝑢(𝑡)

𝑉𝜋
𝜋)                            (2.17)                  

Thus, any phase shift angle can be obtained by controlling 𝑢(𝑡). For instance, 
𝜋

4
 phase shift 

can be obtained by setting 𝑢(𝑡) =
𝑉𝜋

4
. Also, binary phase shift keying (BPSK) signal can 

be obtained by alternating 𝑢(𝑡) between 𝑉𝜋 and −𝑉𝜋.   

2.2.2.2.1. In phase/quadrature (I/Q) modulator (QPSK modulator) 

The amplitude and phase of an optical carrier can be modulated by binary data 

simultaneously so that each n bits of the input data are mapped into one symbol (M) such 

that:  

                                                                    𝑛 = 𝑙𝑜𝑔2(𝑀)                                                (2.18) 

 This helps carry more information as compared to either amplitude or phase modulation 

alone. QPSK modulation, for instance, uses four symbols to carry the information (𝑀 = 4) 

and therefore the number of bits per symbol according to (2.18) is 𝑛 = 2 bits.  

QPSK can be achieved using two parallel MZMs embedded in MZI structure and 𝜋/2 

phase shifter as shown in Fig. 2.8. The input power is split  into two components. The 

BPSK signals constellations point A (Fig. 2.9a) and point B (Fig. 2.9b) are generated by 

the binary dual drive MZMs in the upper and lower paths. The BPSK in the lower arm is 

phase-shifted by π/2 generating the BPSK signal at point C as shown in Fig. 2.9c. The 
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BPSK signal in the upper path is combined with the π/2 phase-shifted signal, generating 

the QPSK signal as point D as illustrated in Fig. 2.9d.   

The electrical field transfer function for the QPSK modulator can be obtained from (2.15) 

as: 

                                
𝐸𝑜𝑢𝑡

𝐸𝑖𝑛
= 𝑐𝑜𝑠 (

𝑢𝐼(𝑡)

𝑉𝜋
𝜋) + 𝑗 𝑐𝑜𝑠 (

𝑢𝑄(𝑡)

𝑉𝜋
𝜋)                                                       (2.17)     

(a) (b) (c) (d) 

A 

𝑢𝐼(𝑡) 

−𝑢𝐼(𝑡) 
 
𝑢𝑄(𝑡) 

−𝑢𝑄(𝑡) 
 

𝐸𝑖𝑛(𝑡) 𝐸𝑜𝑢𝑡(𝑡) 

𝜋

2
 

B 

C 

D 

Fig. 2.9:  (a) signal constellation at point A; (b) signal constellation at point B; (c) signal constellation at point C; (d) signal constellation at point 

D. 

 

Fig. 2. 8:  I/Q modulator 
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The QPSK modulator with two MZM in push-pull configuration is the basic building block 

for all high speed optical transmitters.  

2.3. Gray coding 

The bits at the transmitter input should be mapped into M symbols so that any two adjacent 

symbols in the resulting signal constellation would differ in only one bit as illustrated in 

Fig. 2.10a. This bit mapping is called Gray code.  Gray code is important to minimize the 

BER during symbols recovery. Fig. 2.10 illustrates QPSK Gray coded and Non-Gray coded 

symbol constellations. For the Non-Gray coded constellation, the complementary symbols 

11 and 00 as well as 01 and 10 are next to each other. This would result in high BER since 

the detection errors usually take place between neighboring constellation points [89]. 

Therefore, the Gray coding minimizes the BER since the adjacent symbols differ in only 

one bit as illustrated.  

(a) (b) 

Fig. 2. 10:  (a) Gray coded QPSK constellation; (b) Non-Gray coded QPSK constellation. 
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2.4. Commercial MZM  

Commercial MZMs uses two set of electrodes as shown in Fig. 2.11. The RF port is used 

for the input modulating signal and the DC port is used for biasing the MZM at the required 

operating point. Having a DC biasing port is important to allow various modulation formats 

through the MZM. It also encounters for errors that occur during the manufacturing 

processes or during operational lifetime [90]. The MZM transfer function in (2.15) can be 

rewritten in terms of the DC bias voltage (𝑉𝑏) and the input signal to the RF port 𝑉𝑅𝐹(𝑡) as: 

                                    
𝐸𝑜𝑢𝑡(𝑡)

𝐸𝑖𝑛(𝑡)
 = cos ((𝑉𝑏 + 𝑉𝑅𝐹(𝑡))

𝜋

𝑉𝜋
)                                       (2.20) 

 

 The plot of the commercial MZM transfer function is shown in Fig. 2.12.  

To operate the commercial MZM as an intensity modulator for instance, 𝑉𝑏 should be set 

to ±
𝑉𝜋

2
, also called the quadratic point. At the same time, the peak to peak voltage of the 

RF input signal should be limited to  𝑉𝜋 to ensure linear operation. Similarly, to operate the 

RF port DC port 

Fig. 2.11: Commercial MZM 



34 

 

MZM as phase modulator, the DC biasing voltage need to be set to 𝑉𝜋, also called the null 

point, and the RF peak to peak voltage need to be limited to 2𝑉𝜋 

2.4.1. MZM errors due to arm’s length mismatch  

For unbiased operation, the optical signals in the interferometric arms of the MZM should 

have equal phase. In practice however, there is arm’s length mismatch due to wave guide 

material inhomogeneity, non-uniform refractive index profile, and manufacturing 

tolerances [91]. The arm’s length mismatch would inquire phase error (∆∅𝑚), which can 

be obtained in terms of the waveguide refractive index (n), differential length between the 

two arms (∆𝐿), and the optical signal wavelength as:  

                                                  ∆∅𝑚 =
2𝜋𝑛∆𝐿

𝜆
                                                             (2.21) 

The MZM transfer function in (2.15) can be represented in terms of  ∆∅𝑚 as: 

 

Null point  

Quadrature point  

Fig. 2.12: MZM transfer function 
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𝐸𝑜𝑢𝑡(𝑡)

𝐸𝑖𝑛(𝑡)
 = 𝑐𝑜𝑠 ((𝑉𝑏 + 𝑉𝑅𝐹(𝑡))

𝜋

𝑉𝜋
+ ∆∅𝑚)                                                         (2.22)                                       

It is clear from (2.22) that the error due to ∆∅𝑚 can be compensated by tuning 𝑉𝑏. 

2.4.2. MZM errors due to drift in the operating point  

One of the major problems associated with practical application of MZM is the drifting of 

the DC operating point over time. The drifting is caused by pyro-electric, photorefractive 

and photoconductive phenomena in LiNbO3 substrate [92]. Drifting in the operating point 

leads to a displacement of the transfer function, resulting in a performance deterioration. 

Since the drift in the operating point varies time, feedback is essential to stabilize the 

operating point via a bias control circuit. In the following subsections, we will briefly 

describe two simple and widely used bias control techniques.  

2.4.2.1. Bias control based on the output optical power of MZM  

In this technique, a photodetector (PD) is used to monitor the output power of the MZM as 

shown in Fig. 2.13. The output current from the PD is amplified using transimpedance 

RF port DC port 

Control 

circuit  

 

T
I

A
 

Fig. 2.13: Bias control based on change in output optical power. 
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amplifier (TIA) and then used as a feedback to drive a bias control circuit that is connected 

to the MZM DC bias voltage. The control circuit can be designed using a comparator that 

compares the average voltage from the TIA to the expected average voltage from the TIA 

under the drifting free scenario. Even though this technique is simple, the accuracy is 

questionable because the average output power from the MZM varies not only with the 

drift in the DC voltage, but also with the input optical power to the MZM [93].  

2.4.2.2. Bias control based on harmonic analysis 

 

This method focuses on detecting the drift in the operating point by analyzing the spectrum 

of the optical signal at the output of the MZM. It has been shown in [93] that under no 

biasing errors, the second harmonic of the output signal has minimum amplitude at the 

quadrature operating point (𝑉𝑏 = ±
𝑉𝜋

2
 ) as shown in Fig. 2.14. Meanwhile, the first 

harmonic has constant magnitude over the entire range of the biasing voltages as shown in 

 

First harmonic 

Second harmonic 

Fig. 2.14: Comparison between the power of first harmonic (dotted cure) and the second harmonic of the 

output optical power [93]. 
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Fig. 2.14. Therefore, the magnitude of the second harmonic can be used as an indicator of 

the drifting in the DC bias.  

2.5. Optical fiber 

 Optical fiber is the medium that connects the transmitter to the receiver. It is made of glass 

and has two concentric sections: core and cladding as shown in Fig. 2.15. The core is the 

part of the fiber in which light propagates while the cladding prevents the light from 

escaping. Light propagation in the fiber is based on the principles of total internal reflection 

which requires the core material to have higher refractive index than the cladding material.  

There are two types of optical fiber: multimode and single mode fibers. Multimode is 

characterized by its large core diameter (50 𝜇𝑚 𝑜𝑟 62.5 𝜇𝑚) which allows multiple light 

rays or modes to propagate. This type of fiber is used for local area networks (LANs) that 

operates at data rates less than 10 Gbps. Single mode fibers on the other hand have a core 

diameter that is small (less than 10 𝜇𝑚) compared to multimode fibers which allows only 

one mode to propagate. This type of fibers is used for wide area networks that operate at 

higher data rates. The following subsections review the main transmission impairments of 

single mode fiber. 

 Fig. 2. 15: Optical fiber structure. 
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2.5.1. Attenuation 

Attenuation is the degradation in the optical power as the light propagates through the fiber. 

It occurs mainly because of material absorption and Rayleigh scattering. In material 

absorption, the optical power converts to heat because of the molecular bonds vibration of 

the glass material. Atomic defects and impurities such as OH ions can cause optical signal 

absorption as well. Scattering on the other hand is caused by fluctuations in the density, 

orientation, and composition of the material. Rayleigh scattering increases in proportional 

to the inverse fourth power of the optical signal wavelength. Thus, doubling the wavelength 

would reduce the scattering losses by 16 times. Together, the absorption and scattering 

produce the attenuation curve for a typical glass optical fiber shown in Fig. 2.16. As can 

be seen, the attenuation is minimum at wavelength of 1550 nm and therefor it is the most 

widely used wavelength for long distance optical communications.  

Fig. 2. 16: Attenuation profile for standard single mode fiber [94]. 
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2.5.2. Chromatic dispersion (CD) 

Chromatic dispersion is the broadening of the optical pulses as they propagate down the 

fiber. CD occurs because the optical pulse travel down the fiber at different speeds for 

different wavelengths. The differential speed is caused by the change of fiber’s refractive 

index with wavelength. As a result, longer wavelength components of the signal travels 

faster than shorter wavelength and cause spreading to the optical pulse as shown in Fig. 

2.17. Differential group delay due to CD in single mode fiber that may result in overlapping 

of high speed pulses, causing inter-symbol interference (ISI) hence error during data 

recovery.  

The dispersion introduced in single mode fiber (D) can be calculated as function of fiber 

length (L), optical signal wavelength (𝜆), fiber refractive index (n), the variation of the 

refractive index with the square of the wavelength as:  

                                    𝐷 = −
𝐿

3×108 × 𝜆 ×
𝜕2(𝑛)

𝜕(𝜆2)
                                                          (2.23) 

The dispersion for typical standard optical fibers is known and can be used to compute the 

maximum reachable distance at a certain data rate. Fig. 2.18 shows the maximum reachable 

Fig. 2. 17: Pulse spreading due to chromatic dispersion (CD) [95]. 
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distance as a function of bit rates for the most common standard single mode fibers without 

dispersion compensation. As can be seen, the maximum allowable distance for the G.655 

operating at 100 Gbps is about 1 km. 

Long distance transmission at high bit rates is not feasible without dispersion 

compensation. In practice, there are several passive and active ways to compensate for CD 

using DSP techniques and forward error correction (FEC).  

 

2.5.3. Polarization mode dispersion (PMD) 

Polarization-mode dispersion refers to the pulse spreading caused by light propagating 

through the fiber at different speeds for different polarization, as illustrated in Fig. 2.19. 

This is related to fiber birefringence, where the refractive index of the fiber is polarization 

dependent due to variations in core shape and stress [97]. Like CD, PMD causes spreading 

Fig. 2. 18: Maximum allowable distance versus bit rate [96]. 
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to the optical pulse as it propagates down the fiber. The subsequent variation of this index 

as a function of wavelength leads to the group delay as a function of wavelength. The 

differential group delay (DGD) varies randomly as a function of frequency.  As the pulse 

broadening due to PMD widens, the pulse stream starts to overlap, causing ISI that 

degrades the BER performance. 

 In practice, a pulse spreading of 10% of the bit duration is considered acceptable [98]. 

Therefore, for 100 Gbps link, the pulse spreading should not exceed 1ps to insure good 

BER performance.  

2.6. Coherent optical receiver 

The main function of coherent optical receiver is to convert the signal from optical domain 

to electrical domain, perform ADC, and apply the necessary DSP techniques to recover the 

transmitted information. The main components of coherent optical receiver are heterodyne 

detector, ADC, and DSP blocks. 

Fig. 2. 19: Polarization mode dispersion (PMD) [98]. 
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2.6.1.   Heterodyne detector  

The schematic diagram of a heterodyne detector is shown in Fig. 2.20. As can be seen, the 

detector comprises two 3 dB optical couplers, continuous wave local oscillator (LO) laser, 

𝜋/2 phase shifter, and four photo detectors. The 3-dB optical couplers add a 180 degrees 

phase shift to either the received optical signal field or the LO field. Therefore, the electric  

 

fields incident on the photodiodes are given as: 

𝐸1 =
1

√2
(𝐸𝐿𝑜 + 𝐸𝑠)  , 𝐸2 =

1

√2
(𝐸𝐿𝑜 − 𝐸𝑠), 𝐸3 =

1

√2
(𝐸𝑠 + 𝑗𝐸𝐿𝑜), 𝐸4 =

1

√2
(𝐸𝑠 − 𝑗𝐸𝐿𝑜)   

The photo diode current from the detector can be found as function of photo diodes 

responsivity (𝑅), input signal power (𝑃𝑠), local oscillator power (𝑃𝑙𝑜), phase modulation 

angel (𝜃𝑠𝑖𝑔(𝑡)), local oscillator phases (𝜃𝑙𝑜(𝑡)), and the difference between input signal 

frequency and the local oscillator frequency (𝜔𝑖(𝑡) = 2π(𝑓𝑠 − 𝑓𝑙𝑜) as:  

Fig. 2. 20: Heterodyne detector 
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  𝐼𝐼(𝑡) = 𝐼𝐼1(𝑡) − 𝐼𝐼2(𝑡) = 𝑅√𝑃𝑠𝑃𝑙𝑜cos (𝜔𝑖(𝑡) + (𝜃𝑠𝑖𝑔(𝑡) − 𝜃𝑙𝑜(𝑡)))                              (2.24)            

𝐼𝑄(𝑡) = 𝐼𝑄1(𝑡) − 𝐼𝑄2(𝑡) = 𝑅√𝑃𝑠𝑃𝑙𝑜sin (𝜔𝑖(𝑡) + (𝜃𝑠𝑖𝑔(𝑡) − 𝜃𝑙𝑜(𝑡)))                         (2.25)         

Therefore, the complex photo diode current (𝐼𝑇(𝑡)) is obtained as: 

     𝐼𝑇(𝑡) = 𝐼𝐼(𝑡) + 𝑗𝐼𝑄(𝑡) =  𝑅√𝑃𝑠𝑃𝑙𝑜𝑒𝑗(𝜔𝑖(𝑡)+𝜃𝑠𝑖𝑔(𝑡)−𝜃𝑙𝑜(𝑡))                                                (2.26) 

2.6.2. Analog to digital converter (ADCs) 

The complex photo diode currents at the output of the balanced detectors in Fig. 2.20 are 

sampled at high rate and converted to discrete signals using ADCs. ADCs take in the analog 

current signal, sample it at high rate, resolve it into discrete levels (N), and assign  𝑘 bits to 

each level such that 𝑘 = 𝑙𝑜𝑔2𝑁.  ADCs should sample the received signal at the Nyquist 

rate which is higher than or equal to twice the symbol rate in order to avoid the Aliasing  

Effect [99]. Also, N should be high in order to avoid the quantization errors. For optimal 

performance, it is preferable to sample the input signal at rate above the Nyquist rate and 

increase the number of levels to a high number. However, this will lead to more complex 

hardware and high power consumption [22]. The state-of-the-art ADCs are capable of 

operating at rate of 65 Gbaud with a resolution of up to 8 bits [24].  

2.6.3. Digital signal processing (DSP)   

The digital signal at the output of ADC is further processed using DSP circuits for noise 

removal and data recovery.  DSP refers to various techniques for improving the reliability 

and accuracy of coherent optical communication links through the removal of channel 

impairments, such CD, and PMD as well as laser phase and frequency noise [100]. The use 
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of DSP in conjunction with coherent detection allows the preservation of full information 

of the incoming signal, which in return increases receiver sensitivity [101]. Fig. 2.21 shows 

the DSP block diagram. As can be seen, the signal at the output of the ADC is fed to the 

CD compensation block which focuses on eliminating the CD in digital domain using 

multiple techniques such as time domain least mean square adaptive filter, static time 

domain finite impulse response filter, and frequency domain equalizers [102]. The PMD is 

also removed in digital domain using adaptive filters such as the least mean square and the 

constant modulus algorithm filters. Carrier phase estimation algorithms track and remove 

the phase noise using different methods such as normalized least means square estimator, 

differential phase estimation, and the Viterbi-Viterbi (VV) estimators [100].  The decision 

circuit with the appropriate threshold levels   is used to recover the bits. The bits are 

decoded and converted to a serial bit stream at the output.  

2.7. Conclusion 

Coherent optical communication systems are comprised of three main components: 

transmitter, transmission media, and receiver. The transmitter uses MZM to generate 

Phase and frequency 

estimation   

Decision circuit   Decoder and P/S 

converter    

PMD 

compensation  
Input signal 

from ADC 

Output data 

 

CD 

compensation  

Fig. 2. 21: DSP block diagram. 
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higher order modulation format signals such as QPSK and 16-QAM. The signals are 

transmitted to the receiver through a single mode fiber where they encounters attenuation 

and dispersion. At the receiver, the signals are converted to electrical signals by means of 

heterodyne detection. The received signal errors are compensated for using DSP 

techniques.  
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CHAPTER 3: PROPOSED SCALABLE AND GRAY CODED 

OPTICAL M-ARY QAM TRANSMITTER DRIVEN BY 

BINARY ELECTRICAL SIGNALS  

3.1. Introduction 

Commercially available coherent fiber-optic systems provide a 100 Gbit/s transmission 

rate using PDM-QPSK at 25 Gbaud symbol rate. Higher-order modulation format such as 

16-QAM and 64-QAM will be necessary to accommodate the growing demand on the 

transmission rates. Several configurations for the 64-QAM transmitter have been 

investigated both in electrical and optical domains. In the electrical domain, transmitters 

that employ single optical I/Q modulator driven by multi-level electrical signals from high 

speed DACs and driving amplifiers have been presented [75]. Those configurations require 

high-resolution DACs to cope with the non-linearity associated with the Mach–Zender 

modulator, as well as the driving power amplifiers in order to generate high quality symbol 

constellations and eye diagrams. While the optical hardware is simple, requiring only one 

I/Q modulator, the achievable transmission rate and signal quality are limited in practice 

by the speed and resolution of the DACs [78]. The optical domain configurations, on the 

other hand, overcome the non-linearity and DACs limitations by employing multiple 

QPSK modulators that are driven by binary electrical signals [78–81]. However, those 

configurations are not easily scalable to higher-order modulation format and some would 

generate non-Gray coded symbol constellation [103], resulting in high error rate at the 

receiver. We propose a transmitter that eliminates the need for DACs and provides a 
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scalable design that could enlarge the data rate based on customer needs. It also provides a 

Gray coded constellation, thereby insuring delivery of digital data over coherent optical 

communication systems with the smallest error rate possible. 

This chapter describes principles of operation for our proposed design for 16-QAM and 

64-QAM transmitters. It also sheds light on the scalability of the transmitter design and 

investigates the electrical and optical techniques to provide Gray coded symbol 

constellation.  

3.2. Operating principles for 16-QAM transmitter  

Fig. 3.1 shows the block diagram of the 16-QAM transmitter that employs two tandem 

QPSK modulators. The input data stream is split into four binary data streams D1–D4. 

QPSK1 is driven by D1 and D2 while QPSK2 is driven by D3 and D4. Each QPSK 

comprises of a two-dual drive MZM modulator in push pull configuration as shown in Fig. 

3.2.  The optical carrier at the upper arm of SP1 is split into two components; one is 

𝜆 

Fig. 3. 1: Optical circuit diagram for 16-QAM. 



48 

 

modulated by MZM1 resulting in the BPSK1 signal constellation as shown in Fig. 3.3a, 

BPSK 1 

𝐷1 

−𝐷1 
 

𝐷2 

−𝐷2 
 

𝜋

2
 

BPSK 2 

BPSK 3  

Fig. 3.2:  I/Q modulator. 

upper arm of SP1  
QPSK signal  

QPSK modulator 

MZM 1 

MZM 2 

Fig. 3.3: (a) BPSK 1; (b) BPSK 2; (c) BPSK 3; (d) QPSK signal 

(a) (b) 

(c) (d) 
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and the other is modulated by MZM2 resulting in the BPSK2 signal as shown in Fig. 3.3 

b. BPSK2 is phase-shifted by π/2 generating BPSK3 signal as shown in Fig. 3.3c. BPSK2 

and BPSK3 are combined interferomitically to generate the Gray coded QPSK signal as 

illustrated in Fig. 3.3d.   

On the other hand, the optical signal in the lower arm of SP1 (Fig. 3.1) is shifted by π/4 

and combined interferometrically with the QPSK signal at point A (Fig. 3.1), generating 

the offset 4-QAM in the first quadrant (point B) as illustrated in Fig. 3.4a. The second 

QPSK modulator maps the offset constellation to the other quadrants, based on D3 and D4 

as illustrated in Table 3.1, generating square 16-QAM constellation (point C) as depicted 

in Fig. 3.4b.  

D4D3 Mapping of shifted 4-QAM 

00 Third quadrant 

01 Second quadrant 

10 Fourth quadrant 

11 First quadrant 

 

Table 3. 1: Mapping process 

(a) 

Fig. 3.4: (a) 4-QAM shifted to the first quadrant; (b) Non-Gray coded 16-QAM 

(b) 
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3.3. Generation of a Gray coded 16-QAM constellation  

As described in Chapter 2, in order to insure the lowest bit error rate possible at the receiver, 

it is important that the bit to symbol mapping at the transmitter is arranged such that all the 

adjacent symbols differ in only one bit, which is known as Gray coding. 

In the proposed transmitter, the two QPSK modulators are Gray coded and will 

produce constellation similar to Fig.3.3d where any two adjacent symbols differ in only 

one bit. When the Gray coded QPSK constellation at the output of QPSK1 is shifted to the 

first quadrant (Fig.3.4a) and mapped to the other quadrants, using QPSK2, we notice that 

the resulting 16-QAM constellation (Fig.3.4b) is not Gray coded. Symbols 0110 and 0101 

as well as 1001 and 1010 should be swapped per the arrows in Fig.3.4b in order to restore 

the Gray coded constellation.  

Gray coded constellation can be accomplished in electrical domain with a precoder that 

would check the two most significant bits, D3 and D4. If D3 ≠ D4, i.e., if the second QPSK 

modulator operates in the 2nd and 4th quadrants, then D1 and D2 are swapped so that the 

output of the precoder is D4 D3 D1 D2. If D3=D4, i.e., if the QPSK2 operates in the 1st 

and 3rd quadrants, the output of the precoder is D4 D3 D2 D1. Therefore, the input and 

output of the precoder would be related as shown in Table 3.2. Accordingly, the precoder 

can simply be implemented using one XOR gate and a switch as shown in Fig. 3.5a. The 

resulting symbol constellation from the precoder would be identical to Fig. 3.5b after 

applying the precoder. It should be clear that neither the Gray precoder design nor the 

selection of symbol rearrangements are unique.  For example, the off-diagonal symbols in 

the 1st and 3rd quadrants in Fig. 3.4b could be swapped instead.  
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Precoder input  Precoder output 

0000 0000 

0001 0001 

0010 0010 

0011 0011 

0100 0100 

0101 0110 

0110 0101 

0111 0111 

1000 1000 

1001 1010 

1010 1001 

1011 1011 

1101 1101 

1110 1110 

1111 1111 
 

Table 3. 2: logical table for 16-QAM precoder 

(a) 

(b) 

Fig. 3.5: (a) 16-QAM precoder; (b) Gray  coded 16-QAM. 

D2/D1 
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3.4. Alternative configuration for a Gray coded 16-QAM transmitter  

In the 16-QAM transmitter presented in section 3.2, the Gray coded constellation was 

achieved by precoding the binary data in the electrical domain using one XOR gate and 

one switch. In the alternative 16-QAM configuration, we eliminate the electrical domain 

precoding, and instead employ optical binary phase modulators in order to produce the 

Gray coded constellation. Fig.3.6 shows the block diagram of the proposed 16-QAM 

transmitter that employs two QPSK modulators and one phase modulator (PM) in tandem. 

The input data are split into four parallel data streams, D1, D2, D3, and D4.  D1, D2 drive 

QPSK1 while D3, D4 drive QPSK2. Fig. 3.7a shows the Gray coded constellation produced 

by QPSK1 at point A. The QPSK constellation at point A is shifted to the first quadrant at 

point B by combining it with the 𝜋/4 phase-shifted optical carrier. The offset constellation 

at point B depends on D1 through D4 as shown by the Table in Fig.3.6. If D1, D2 are the 

same (00 or 11) or D3, D4 are the same, the PM would have zero phase shift and the 

resulting constellation is as shown Fig. 3.7b. If D1, D2 are not the same (01 or 10) and D3-

 Fig. 3. 6:  Alternative configuration for 16-QAM transmitter. 
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D4 are also not the same, the PM rotates the off-diagonal symbols as shown in Fig. 3.7a 

by 180o, resulting in the offset constellation shown in Fig. 3.7c. QPSK2 then rotates the 

 

(a) (b) 

(c) (d) 

Fig. 3. 7:  (a) Output of QPSK1; (b) Offset constellation for D3, D4 the same; (c) Offset constellation for D3, D4 different; (d) Gray coded 

16-QAM output of QPSK2. 
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offset constellation in Fig. 3.7b or Fig. 3.7c to the four quadrants based on D3, D4, resulting 

in a Gray coded 16-QAM constellation as shown in Fig. 3.7d.  

It can be seen that the 16-QAM symbols have been Gray coded since any adjacent symbols 

differ in only one bit. 

3.5. Operating principles for 64-QAM transmitter 

The configuration for 16-QAM transmitter in Fig. 3.1 can be scaled up to 64-QAM by 

adding a third QPSK modulator in tandem, driven by the binary data D5 and D6 as shown 

in Fig. 3.8. Notice that D1-D4 are the outputs from the 16-QAM precoder as described in 

Section 3.3.  

The 16-QAM constellation (point C) would be shifted to the first quadrant (point D) using 

the π/4 phase shifted carrier and then be mapped to the other quadrants by means of QPSK3 

and D5, D6 to generate the 64-QAM signal (point E). The shifted 16-QAM will be mapped 

to the four quadrants based on the binary value of D5, D6 as illustrated in Table 3.2.  

 

 
Fig. 3. 8: Optical circuit diagram for 64-QAM. 
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The resulting 64-QAM constellation is shown in Fig. 3.9. 

 As can be seen, the symbols at the border between the four quadrants (inside the dashed 

box in Fig. 3.9) deviate from the proper Gray coded constellation. Similar to the 16-QAM, 

the Gray coded constellation can be restored using a precoder that would check the two 

most significant bits D5 and D6.  If D5 ≠ D6, i.e., if QPSK3 modulator operates in the 2nd 

and 4th quadrants, then D1 and D2 as well as D3 and D4 are swapped so that the output of 

Fig. 3. 9: Non-Gray coded 64-QAM. 

D6D5 Mapping of shifted 16-QAM 

00 Third quadrant 

01 Second quadrant 

10 Fourth quadrant 

11 First quadrant 

 

Table 3. 3: Mapping process 
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the precoder is D6 D5 D3 D4 D1 D2. If D5 = D6, i.e., if the third QPSK modulator operates 

in the 1st and 3rd quadrants, the precoder output is: D6 D5 D4 D3 D2 D1. The 64-QAM 

precoder can be implemented using one XOR gate and two switches as illustrated in Fig. 

3.10a. Fig. 3.10b displays the way that the output of the 64-QAM should look like after 

applying the precoder.  

Higher-order square M-QAM transmitters, can be configured in a similar manner by 

scaling the above design accordingly with N tandem QPSK modulators, where 𝑀 = 4𝑁, 

and 𝑁 − 1 nested precoders that consists of 𝑁(𝑁 − 1)/2 switches. Therefore, 265-QAM 

transmitter can be obtained by scaling up the 64-QAM design accordingly with the fourth 

tandem QPSK modulator as shown in Fig. 3.11.  Here again, the 265-QAM precoder would 

(a) (b) 

Fig. 3. 10: (a) 64-QAM precoder; (b) Gray coded 64-QAM constellation. 
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switch the 64-QAM binary symbol at the output of the 64-QAM precoder (D1 and D2, D3 

and D4, D5 and D6, respectively) into the 64-QAM transmitter in Fig. 3.8 if the fourth 

QPSK modulator operates in the 2nd or 4th quadrants according to the most significant bits 

D7 and D8. 

 

3.6. Conclusion 

We have proposed M-ary QAM optical transmitter driven by binary electrical signals. The 

design utilizes multiple QPSK modulators in tandem driven by binary electrical signals. It 

also provides a scalable configuration that can be scaled to any order of M-ary QAM and 

allows Gray coded symbol constellation to insure the lowest bit error rate possible.  

 

Fig. 3.11: Optical circuit diagram for 256-QAM. 
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CHAPTER 4: DESIGNING THE COUPLING RATIOS FOR 

PROPER CONSTELLATIONS AND ANALYZING THE 

IMPACT OF COUPLING AND PHASE ERRORS 

4.1. Introduction 

The coupling ratios for the proposed M-ary QAM transmitter should be set to the correct 

values in order to obtain proper constellations with equally spaced symbols. This chapter 

provides the design for the correct coupling ratios taking into consideration the insertion 

loss of the optical components. It also analyzes the transmitters by evaluating the impact 

of coupling ratio errors as well as the phase errors on the resulting constellation diagrams.  

4.2. Designing the coupling ratio for 16-QAM transmitter  

Fig.4.1 shows the optical circuit diagram for the proposed 16-QAM transmitter employing 

two QPSK modulators in push-pull configuration.  The four streams of binary data D1-D4 

are the outputs from the Gray precoder described in Chapter 3. The optical coupler or 

splitter (SP1) with coupling ratio 𝑆1 = 𝛼1/(1 − 𝛼1), where 𝛼1 is the percentage of power 

 
Fig. 4. 1: Optical circuit diagram for 16-QAM optical transmitter. 
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coupled to the upper arm of SP1, and the input power ratio to the combiner C1 (𝑃2/𝑃3) are 

crucial for achieving a proper 16-QAM constellation. 

SP1 splits the source optical carrier power 𝑃1 into two components. The 4-QAM signal 

constellation (point A) based on D1 and D2 is generated by QPSK1 in the upper arm with 

I/Q coordinate values (-1, 1) as shown in Fig. 4.2a. C1 combines the 4-QAM output signal 

power 𝑃2 at point A with the π/4 phase-shifted carrier power 𝑃3 at the output of SP1 in the 

lower arm, generating the offset 4-QAM in the 1st quadrant (point B) with I/Q coordinate 

values (1, 3) as illustrated in Fig. 4.2b. QPSK2 rotates the offset constellation at point B to 

the four quadrants based on D3 and D4, thus generating a square 16-QAM constellation 

(point C) with the I/Q coordinate values (-3, -1, 1, 3) as shown in Fig. 4.2c.  

The average power for the 4-QAM signal in Fig. 4.2a is 𝑃2 = (12 + 12) = 2.  Similarly, 

the average power for the 16-QAM signal in Fig. 4.2c is 𝑃4 = [(12 + 12) + (12 + 32) +

(32 + 12) + (32 + 32)]/4 = 10. In order to shift the 4-QAM constellation (Fig. 4.2a) to 

the first quadrant (Fig. 4.2b), the π/4 phase-shifted carrier must be 2√2  × 𝑒𝑗
𝜋

4, i.e., a 

 

(a) (c) (b) 

Fig. 4. 2: (a) 4-QAM; (b) 4-QAM shifted to the first quadrant; (c) 16-QAM. 
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carrier power of 𝑃3 = (2√2)2 = 8. Accordingly, the power ratio at the inputs of C1 should 

be set to  𝑃2/𝑃3 =1/4 in order to achieve a proper 16-QAM constellation. 

 Let 𝛽, K, and L denote, respectively, the insertion loss of each QPSK modulator, the π/4 

phase shifter, and the optical coupler/combiner. The goal is to design the coupling ratio 

that establishes 𝑃2/𝑃3 = 1/4 and takes into account the insertion loss of the optical 

components.  

From the optical circuit diagram in Fig. 4.1, the laser power 𝑃1  is split into two 

components: 𝑃1 (𝛼1𝐿) and 𝑃1 (1 − 𝛼1)𝐿 in the upper and lower arms of SP1 respectively. 

𝑃1 (𝛼1𝐿) is applied to QPSK1, generating a QPSK signal with a power of 𝑃2 = 𝑃1 𝛼1𝐿 𝛽. 

While 𝑃1 (1 − 𝛼1)𝐿 is shifted by π/4 obtaining 𝑃3 = 𝑃1 (1 − 𝛼1)𝐿𝐾. The power ratio 

𝑃2/𝑃3 can then be obtained as:   

                                                   
𝑃2

𝑃3
=

𝑃1 𝛼1𝐿 𝛽

𝑃1(1−𝛼1)𝐿𝐾
=

𝛼1𝛽

(1−𝛼1)𝐾
                                                          (4.1) 

Since 𝑃2/𝑃3 must be 1/4 for the proper 16-QAM constellation, the coupling ratio 

α1/(1 − α1) for SP1 can be determined from (4.1) as:  

                                                      𝑆1 =
𝛼1

1−𝛼1
=

1

4
(

𝐾

𝛽
)                                                                     (4.2) 

4.3. Effect of coupling ratio error  

Deviation from the correct 𝑆1 would introduce displacement to the shifted 4-QAM symbols 

thus distorts the targeted 16-QAM constellation. In practice, coupling ratio errors would 

occur during the fabrication process. For couplers fabricated using silicon-on-insulator 
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(SOI) technology for instance, the lithography and etching of SOI waveguide result in 

rough sidewalls of waveguides. The roughness leads to scattering and back reflections at 

the sidewalls, which in return cause error in the coupling ratio [88, 89].  

 Fig. 4.3 shows the 4-QAM, shifted 4-QAM, and the resulting 16-QAM constellations 

respectively for 10% increment in 𝑆1. As can be seen, the increment in 𝛼1 leads to 

increment in 𝑃2 (see Fig. 4.1) thus expands the QPSK symbols in Fig. 4.3a. The 

corresponding reduction in 𝑃3 with (1 − 𝛼1) would result in displacement of the shifted 4-

QAM closer to I axis as shown in Fig. 4.3b. The mapping of the displaced 4-QAM with 

QPSK2 would result in the distorted 16-QAM constellation as shown in Fig. 4.3c. Notice 

that the distances between the resulting symbols of the 16-QAM constellation are not equal.   

To find the coupling ratio value at which the change in 𝑆1 would have a minimum impact 

on 𝑃2/𝑃3 and thus on the resulting constellation diagrams, we take the derivative of 

(𝑃2/𝑃3) in (4.1) with respect to  𝛼1 as follows: 

 

Fig. 4. 3: Effect of 10% errors in S1 on: (a) 4-QAM; (b) 4-QAM shifted to the first quadrant; (c) 16-QAM. 
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𝜕(

𝑃2
𝑃3

)

𝜕𝛼1
=

(1−𝛼1)𝐾𝛽−(𝛼1𝛽(−𝐾))

(1−𝛼1)2𝐾2
=

(1−𝛼1)𝐾𝛽

(1−𝛼1)2𝐾2
+

𝛼1𝛽𝐾

(1−𝛼1)2𝐾2
                              (4.3)                                      

Simplifies to: 

                                                  
𝜕(

𝑃2
𝑃3

)

𝜕𝛼1
=

𝛽

(1−𝛼1)𝐾
+ (

𝛼1𝛽

(1−𝛼1)𝐾
)

1

1−𝛼1
                                            (4.4) 

Multiplying the term  
𝛽

(1−𝛼1)𝐾
 by 𝛼1/𝛼1 yields: 

                   
𝜕(

𝑃2
𝑃3

)

𝜕𝛼1
=

𝛼1𝛽

(1−𝛼1)𝐾
 (

1

𝛼1
) + (

𝛼1𝛽

(1−𝛼1)𝐾
)

1

1−𝛼1
                                                          (4.5) 

 Substituting  
𝜕(

𝑃2
𝑃3

)

𝜕𝛼1
  in (4.1) into (4.5) yields: 

                
𝜕(

𝑃2
𝑃3

)

𝜕𝛼1
=

𝑃2

𝑃3
(

1

𝛼1
) + (

𝑃2

𝑃3
)

1

1−𝛼1
= (

𝑃2

𝑃3
) (

1

𝛼1
+

1

1−𝛼1
) = (

𝑃2

𝑃3
) (

1

𝛼1(1−𝛼1)
)                   (4.6) 

Therefore,  

                                              
𝜕(

𝑃2
𝑃3

)

𝜕𝛼1
= (

𝑃2

𝑃3
) (

1

𝛼1(1−𝛼1)
)                                                      (4.7)  

Since 𝑃2/𝑃3 must be 1/4 for the proper 16-QAM constellation, the change of 𝑃2/𝑃3  with 

𝛼1  can then be determined as:  

                                               
𝜕(

𝑃2
𝑃3

)

𝜕𝛼1
= (

1

4
) (

1

𝛼1(1−𝛼1)
)                                                        (4.8)                                                            

Fig. 4.4 plots 𝜕(𝑃2/𝑃3)/𝜕𝛼1) as 𝛼1 changes from 0.01 to 0.99. As can be seen, the rate of 

change increases exponentially for values of 𝛼1 that are less than 0.3 or higher than 0.7. It 
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also shows that the rate of change is minimum and almost constant for 𝛼1 between 0.3 and 

0.7. We conclude that the design which results in  𝛼1 close to 0.5 would be less sensitive 

to the coupling ratio error.  

4.4. Effect of phase errors  

In order to obtain proper 16-QAM constellation from the 16-QAM transmitter in Fig. 4.5, 

the phase shift between 𝑃2  and  𝑃3   must be 𝜋/4. In practice however, phase shifters 

fabricated using LiNbO3 substrate would introduce biasing errors and thus phase errors 

due to the pyro-electric, photorefractive and photoconductive phenomena that take action 

in the LiNbO3 [89]. In addition, phase errors could occur due to the length mismatch 

between 𝐿1and 𝐿2 caused by various imperfections like waveguide non-uniform doping 

profiles, waveguide material inhomogeneity, and manufacturing tolerances [88]. The phase 

error (∆∅16𝑄𝐴𝑀) between 𝑃2   and 𝑃3   would rotate the optical carrier and displace the 

shifted 4-QAM symbols at point B as shown in Fig. 4.6a for instance when ∆∅16𝑄𝐴𝑀 = 

𝛼1 

𝜕(
𝑃2

𝑃3
)

𝜕𝛼1

 

Fig. 4. 4:  Rate of change of 𝑃2/𝑃3 with 𝛼1. 
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5 degrees. The displaced constellation would be mapped by QPSK2 resulting in the 

distortion 16-QAM constellation as shown in Fig. 4.6b.       

There are various techniques to compensate for phase errors. For instance, phase shifter in 

the arm  𝐿2 would adjust 𝑃3   and compensate for the phase errors ∆∅16−𝑄𝐴𝑀. Also, the 

𝐿1 

𝐿2 

Fig. 4. 6: (a) shifted 4-QAM for ∆∅16𝑄𝐴𝑀 = 5 𝑑𝑒𝑔𝑟𝑒𝑒𝑠.; (b) 16-QAM for ∆∅16𝑄𝐴𝑀 = 5 𝑑𝑒𝑔𝑟𝑒𝑒𝑠.  

(a) (b) 

Fig. 4. 5: Optical circuit diagram for 16-QAM optical transmitter. 
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techniques described in chapter 2 for MZM phase error detection and correction could be 

adapted to control the errors in 16-QAM transmitter. 

4.5. Designing the coupling ratio for 64-QAM transmitter  

The optical circuit diagram for the 64-QAM optical transmitter is shown in Fig 4.7. The 

coupling or power splitting ratios of SP1 and SP2, 𝑆1 = 𝛼1/(1 − 𝛼1) and 𝑆2 = 𝛼2/(1 −

𝛼2), are responsible for setting the correct ratio of the input power to the combiners C1 

(𝑃2/𝑃3) and C2 ( 𝑃4/𝑃5), in order to achieve a proper 64-QAM constellation with equally-

spaced symbols.  

The constellations in Fig. 4.8a, Fig. 4.8b, and Fig.4.8c are generated at different points in 

the 16-QAM transmitter as described in Section 4.2. Therefore, the average power for the 

4-QAM in Fig. 4.8a is 𝑃2 = 2.  Also, the average power for the 16-QAM signal in Fig. 

4.8c is 𝑃4 = 10. In order to shift the 4-QAM constellation (Fig. 4.8a) to the first quadrant 

Fig. 4. 7: Optical circuit diagram for 64-QAM. 
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(Fig. 4.8b), the π/4 phase-shifted carrier should have power of 𝑃3 = (2√2)2 = 8 .  

Similarly, the π/4 phase-shifted carrier of  4√2  × 𝑒𝑗
𝜋

4 , corresponding to a carrier power 

of 𝑃5 = (4√2)2 = 32, would be required to shift the 16-QAM constellation (Fig. 4.8c) to 

the first quadrant (Fig. 4.8d). Accordingly, the power ratios at the inputs to C1 and C2 

should be set to 𝑃2/𝑃3 = 1/4,  𝑃4/𝑃5 =1/3.2, respectively, in order to achieve a proper 64-

QAM constellation.   

 

(a) (c) (b) 

(e) 
(d) 

Fig. 4. 8: (a) 4-QAM; (b) 4-QAM shifted to the first quadrant; (c) 16-QAM; (d) 16-QAM shifted to the first quadrant; (e) 64-QAM. 
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Again, let  𝛽, K, and L denote, respectively, the insertion loss of each QPSK modulator, 

the π/4 phase shifter, and the optical couplers/combiners. The goal is to design the coupling 

ratios that establish the correct values for 𝑃2/𝑃3 and  𝑃4/𝑃5 and take into account the 

insertion loss of the optical components. 

From the optical circuit diagram in Fig. 4.7, the laser power 𝑃1  is split into two 

components: 𝑃1 (𝛼1𝐿) and 𝑃1 (1 − 𝛼1)𝐿 in the upper and lower arms of SP1 respectively. 

𝑃1 (𝛼1𝐿) is applied to QPSK1, generating a QPSK signal with a power of 𝑃2 = 𝑃1 𝛼1𝐿 𝛽. 

While 𝑃1 (1 − 𝛼1)𝐿 is shifted by π/4 and then applied to SP2 obtaining 𝑃3 = 𝑃1 (1 −

𝛼1)𝐿𝐾𝛼2𝐿 = 𝑃1 (1 − 𝛼1)𝛼2𝐿2𝐾 in the upper arm, and 𝑃5 = 𝑃1 (1 − 𝛼1)𝐿𝐾(1 − 𝛼2)𝐿 = 

𝑃1(1 − 𝛼1)(1 − 𝛼2)𝐿2𝐾 in the lower arm. The combination of 𝑃2 and 𝑃3 is applied to 

QPSK2, generating the 16-QAM signal with power 𝑃4 = (𝑃2 + 𝑃3)𝐿𝛽 = 𝑃1[𝛼1𝐿2𝛽2 +

(1 − 𝛼1)𝛼2𝐿3𝐾𝛽] .  

The power ratio 𝑃2/𝑃3 can then be obtained as:   

                                   
𝑃2

𝑃3
=

𝑃1 𝛼1𝐿 𝛽

𝑃1 (1−𝛼1)𝛼2𝐿2𝐾
=

𝛼1 𝛽

(1−𝛼1)𝛼2𝐿𝐾
                                               (4.9)         

Since 𝑃2/𝑃3 must be 1/4 for the proper 64-QAM constellation, the coupling ratio 

α1/(1 − α1) for SP1 can be determined from (4.9) as:  

                                        𝑆1 =
𝛼1

1−𝛼1
=

1

4
(

𝛼2𝐿𝐾

𝛽
)                                                           (4.10) 

Comparing (4.9) and (4.2), we notice that splitting the carrier power with SP2 for the 64-

QAM makes  𝑆1 dependent on 𝐿. 
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A similar calculation for the power ratio 𝑃4/𝑃5 yields: 

                                 
𝑃4

𝑃5
=

1

3.2
=

𝑃1[𝛼1𝐿2𝛽2+(1−𝛼1)𝛼2𝐿3𝐾𝛽]

𝑃1(1−𝛼1)(1−𝛼2)𝐿2𝐾
                                               (4.11) 

Dividing both the numerator and the denominator by (1 − 𝛼1)𝛼2𝐿3𝐾β results in: 

                                  
𝑃4

𝑃5
=

 (𝛼1𝛽)/((1−𝛼1)𝛼2𝐿𝐾)+1

(1−𝛼2)/(𝛼2𝐿𝛽)
=

𝑃2/𝑃3+ 1

(1−𝛼2)/(𝛼2𝐿𝛽)
                                  (4.12) 

Where we have used the expression for P2/P3 in (4.9) 

The coupling ratio α2/(1 − α2) for SP2 can then be determined as:  

                               
𝛼2

1−𝛼2
=

𝑃4

𝑃5
(

 1

1+𝑃2/𝑃3
)

1

𝛽𝐿
=

1

3.2
(

1

1+1/4
) (

1

𝛽𝐿
)                                     (4.13) 

Simplifying to: 

                                               𝑆2 =
α2

1−α2
=

1

4
(

1

βL
)                                                       (4.14) 

4.6. Effect of coupling ratios errors  

As described above, 𝑆1 and 𝑆2 are responsible for setting  𝑃2/𝑃3 = 1/4 and 𝑃4/𝑃5 =

1/3.2 respectively. Deviation from these ratios would result in a distorted 64-QAM 

constellation. Fig. 4.9 shows the constellation diagrams at points A, B, C, D, and E under 

presence of 10% increment in 𝑆1.  

The increment in 𝛼1 leads to increment in 𝑃2 (see Fig. 4.7) thus expands the QPSK symbols 

in Fig. 4.9a. The corresponding reduction in 𝑃3 with (1 − 𝛼1) would result in displacement 
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of the shifted 4-QAM closer to I axis as shown in Fig. 4.9b. The mapping of the displaced 

4-QAM with QPSK2 would result in the distorted 16-QAM constellation as shown in Fig. 

4.9c. The reduction in  𝑃3 with (1 − 𝛼1) would also lead to reduction in 𝑃5 which would 

displace the shifted 16-QAM closer to I axis as shown in Fig. 4.9d. QPSK3 would map the 

distorted 16-QAM to the other quadrants resulting in the distorted 64-QAM constellation 

as shown in Fig. 4.9e.  

 

(a) (b) (c) 

(d) (e) 

Fig. 4. 9: Effect of 10% error in S1 on: (a) 4-QAM; (b) 4-QAM shifted to the first quadrant; (c) 16-QAM; (d) 16-QAM shifted to the first 

quadrant; (e) 64-QAM. 
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 The change in 𝑆2 ,on the other hand, would displace the 16-QAM symbols and distort the 

64-QAM constellations as shown in Fig. 10, where 𝑆2 is increased by 10%. The increment 

in 𝛼2 leads to increment in 𝑃4 (see Fig. 4.7) thus expands the 16-QAM symbols as shown 

in Fig. 4.10a. The corresponding reduction in 𝑃5 with (1 − 𝛼2) would result in 

 

 

(a) (b) 

(c) (d) 

Fig. 4. 10: Effect of 10% error in S2 on: (a) 16-QAM, (b) 16-QAM shifted to the first quadrant; (c) 64-QAM. 

(d) 64-QAM for 10% error in S1 and S2. 



71 

 

displacement of the shifted 16-QAM closer to I axis as shown in Fig. 4.10b. The mapping 

of the displaced 16-QAM with QPSK3 would result in the distorted 64-QAM constellation 

as shown in Fig. 4.10c. Fig. 4.10d shows the example 64-QAM constellation under 

presence of 10% phase errors in both S1 and S2. As can be seen, the distortion is worse 

with the symbols being displaced across the quadrant boundaries. 

To find the coupling ratio values at which the change in 𝑆1 and 𝑆2 would have a minimum 

impact on 𝑃2/𝑃3 and thus on the resulting constellation diagrams, we take the derivative 

of (𝑃2/𝑃3) in (4.1) with respect to  𝛼1 and  𝛼2 as follows: 

                                       
𝜕(

𝑃2
𝑃3

)

𝜕𝛼2𝛼1
=  

−(𝛼1𝛽(−𝐾𝐿))

(1−𝛼1)2𝛼2
2𝐾2𝐿2 = 

𝛼1𝛽

(1−𝛼1)2𝛼2
2𝐿𝐾

                                        (4.15)                                      

Simplifies to: 

                                                    
𝜕(

𝑃2
𝑃3

)

𝜕𝛼1𝛼2
=

𝛼1𝛽

(1−𝛼1)𝛼2𝐿𝐾
(

1

1−𝛼1
) (

1

𝛼2
)                                          (4.16) 

Since 
𝑃2

𝑃3
=

𝛼1𝛽

(1−𝛼1)𝛼2𝐿𝐾
=

1

4
 we obtain  

                                             
𝜕(

𝑃2
𝑃3

)

𝜕𝛼1𝛼2
=

𝑃2

𝑃3
(

1

1−𝛼1
) (

1

𝛼2
) =

1

4
(

1

1−𝛼1
) (

1

𝛼2
)                                 (4.17) 

Therefore  

                                              
𝜕(

𝑃2
𝑃3

)

𝜕𝛼1𝛼2
=

1

4
(

1

1−𝛼1
) (

1

𝛼2
)                                                        (4.18)  
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Similarly, the values of  𝛼1 and 𝛼2  within which the change in  (𝑃4/𝑃5) would have 

minimum impact on the constellation diagram can be found by taking the derivative of 

(4.12) with respect to 𝛼1 and 𝛼2 as:  

                                                    
𝜕(

𝑃4
𝑃5

)

𝜕𝛼1𝛼2
=

(
1−𝛼2
𝛼2𝐿𝛽

)(
𝜕(

𝑃2
𝑃3

)

𝜕𝛼1𝛼2
)

(
1−𝛼2
𝛼2𝐿𝛽

)2
 = 

(
𝜕(

𝑃2
𝑃3

)

𝜕𝛼1𝛼2
)

(
1−𝛼2
𝛼2𝐿𝛽

)
                                             (4.19)                                                 

Substituting  𝜕(
𝑃2

𝑃3
)/𝜕𝛼1𝛼2 from (4.18) into (4.19) yields: 

  
𝜕(

𝑃4
𝑃5

)

𝜕𝛼1𝛼2
=

1

4
(

1

1−𝛼1
)(

1

𝛼2
)

(
1−𝛼2
𝛼2𝐿𝛽

)
=

1

4

((1−𝛼1)(
1−𝛼2

𝐿𝛽
)

=
𝐿𝛽

4(1−𝛼1)(1−𝛼2)
= (

1

16(1−𝛼1)(1−𝛼2)
)(4𝐿𝛽)           (4.20)      

Simplifying to: 

                                               
𝜕(

𝑃4
𝑃5

)

𝜕𝛼1𝛼2
= (

1

16(1−𝛼1)(1−𝛼2)
)(4𝐿𝛽)                                                (4.21) 

Substituting 4𝐿𝛽 from (4.14) into (4.21) results in 

                                    
𝜕(

𝑃4
𝑃5

)

𝜕𝛼1𝛼2
= (

1

16(1−𝛼1)(1−𝛼2)
)(

1−𝛼2

𝛼2
) =

1

16(1−𝛼1)𝛼2
                                 (4.22)     

Therefore 

                                                        
𝜕(

𝑃4
𝑃5

)

𝜕𝛼1𝛼2
=

1

16(1−𝛼1)𝛼2
                                                                (4.23) 

The 3D plots of (4.18) and (4.23) for 𝛼1 and 𝛼2 varying from 0.01 to 0.99 are shown in 

Fig. 4.11. As can be seen, 𝜕(𝑃2/𝑃3)/𝜕𝛼1𝛼2 as well as (𝑃4/𝑃5)/𝜕𝛼1𝛼2  decrease with the 

decrease in  𝛼1 and the simultaneous increases in 𝛼2. It is also clear that the power ratio 
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𝑃2/𝑃3 is more sensitive to the change in the coupling ratios as compared to  𝑃4/𝑃5 . Finally, 

the design which results in 𝛼1 < 0.3 and 𝛼2 > 0.5 would be less sensitive to the coupling 

errors.  

4.7. Effect of phase errors on the 64-QAM transmitter  

In order to obtain proper 64-QAM constellation from the transmitter in Fig. 4.12, the phase 

shift between 𝑃2  and  𝑃3   as well as  𝑃4   and 𝑃5  must be 𝜋/4. In practice however, the 

phase shifters biasing variation and length mismatch between the arms 𝐿1and 𝐿2 as well as 

𝐿3 and 𝐿4 would introduce phase errors. The phase error (∆∅16𝑄𝐴𝑀) between 𝑃2   and 𝑃3   

would rotate the optical carrier and displace the shifted 4-QAM symbols at point B, in Fig. 

4.12, causing distortion to the 16-QAM and 64-QAM constellations at points C and E  

respectively. The phase errors (∆∅64−𝑄𝐴𝑀) between 𝑃4   and 𝑃5   would similarly displace 

the shifted 16-QAM symbols at point D causing distortion to the 64-QAM constellation at 

𝜕(
𝑃2

𝑃3
)

𝜕𝛼1𝛼2

 

𝜕(
𝑃4

𝑃5
)

𝜕𝛼1𝛼2

 

 

(b) (a) 

Fig. 4. 11: 3D plots of (a) change in 𝜕(𝑃2/𝑃3)/𝜕𝛼1𝛼2  with 𝛼1𝛼2;(b) change in 𝜕(𝑃4/𝑃5)/𝜕𝛼1𝛼2  with 𝛼1𝛼2. 
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point E. Fig. 4.13 a show the symbol constellations at points B, D, and E for phase error 

∆∅16𝑄𝐴𝑀 = 5 degrees. The displacement of the QPSK symbols in Fig. 4.13a is due 

to  ∆∅16−𝑄𝐴𝑀 = 5 degrees that in turn distorts the 16-QAM symbols in each quadrant as 

well as the 64-QAM constellation as shown in Fig. 4.13b and Fig. 4.13c respectively. 

Similarly,  ∆∅64−𝑄𝐴𝑀 = 5 𝑑egrees would displace the 16-QAM symbols in each quadrant 

as shown in Fig. 4.14a which in turn distorts the 64-QAM constellation as shown in Fig. 

  

 

𝐿1 

𝐿2 

𝐿3 

𝐿4 

Fig. 4. 12: Optical circuit diagram for 64-QAM transmitter. 

(a) (b) (c) 

Fig. 4. 13: Effect of  ∆∅64−𝑄𝐴𝑀 = 5 degrees on: (a) shifted 16-QAM; (b) 64-QAM.  (c) 64-QAM for   ∆∅16−𝑄𝐴𝑀 =  ∆∅64−𝑄𝐴𝑀 = 5 𝑑𝑒𝑔𝑟𝑒𝑒𝑠 
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4.14b. It is clear that  ∆∅64−𝑄𝐴𝑀 causes constellation rotation around the center of 64-QAM 

constellation while    ∆∅16−𝑄𝐴𝑀 causes rotation around the center of the 16-QAM in each 

quadrant. This can be seen clearly in Fig. 4.14d where  ∆∅16−𝑄𝐴𝑀 =  ∆∅64−𝑄𝐴𝑀 =

5 degrees.  

 

4.8. Conclusion 

We introduced the coupling ratios design required for proper 16-QAM and 64-QAM 

constellations taking into consideration the insertion loss of the optical components. We 

also analyzed the effect of coupling ratio errors and phase errors on the resulting 

constellation diagrams. 

 

 

 

Fig. 4. 14: Effect of  ∆∅16𝑄𝐴𝑀 = 5 degrees on: (a) shifted 4-QAM; (b) 16-QAM at point C; (c) 64-QAM. 

(a) 
(b) (c) 
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CHAPTER 5: SIMULATION SETUP AND RESULTS 

5.1. Introduction 

The proposed configurations for the 16-QAM and 64-QAM transmitters have been 

constructed at 50 Gbaud in OptiSystem simulation software. The performance is evaluated 

under presence of additive white Gaussian noise (AWGN) as well as coupling and phase 

errors. This chapter describes the simulation setup and the obtained simulation results.    

5.2. Simulation setup for 16-QAM transmitter 

Fig. 5.1 shows the block diagram of the simulation setup for the back to back 16-QAM in 

OptiSystem. Each QPSK modulator is implemented using a sequence generator, two binary 

pulse generators, power splitter, two dual-drive MZM, 𝜋/2 phase shifter, and power 

combiner as shown in Fig. 5.2.  

 
 

 

 

Fig. 5. 1: Simulation setup for 16-QAM. 
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The sequence generator generates two parallel symbol sequences in-phase (I) and 

quadrature (Q) from the input binary data at the output of the precoder. Both I and Q 

components are applied to a binary pulse generator, driving amplifier, and electrical bias 

circuit to set the MZM driving voltage to 3V. Each of the MZM is biased at its null voltage 

of  𝑉𝜋 = 3𝑉. The 16-QAM precoder is implemented in a mapping circuit according to 

Table 5.1.  

The transmitter output is applied to the quadrature hybrid demodulator of the coherent 

receiver operating under AWGN as shown in Fig. 5.1. The hybrid demodulator is 

implemented using a set of 3 dB optical couplers, local oscillator laser, with frequency and 

phase equal to those of the CW optical carrier, and a balanced photo detection scheme as 

illustrated in Fig. 5.3. The output current from the photo detectors is amplified using TIA 

and applied to I/Q threshold detector circuit followed by symbol decoder. The binary 

output data are compared to the input data to determine the BER as illustrated in Fig. 5.1.  

 

 

 

 

 

Fig. 5. 2: QPSK implementation in OptiSystem. 
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Fig. 5. 3: Demodulator implementation in OptiSystem. 

Table 5.1: logic table for 16-QAM precoder 

Precoder input  Precoder output 

0000 0000 

0001 0001 

0010 0010 

0011 0011 

0100 0100 

0101 0110 

0110 0101 

0111 0111 

1000 1000 

1001 1010 

1010 1001 

1011 1011 

1101 1101 

1110 1110 

1111 1111 
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5.2.1. 16-QAM transmitter performance  

Equation (4.2) is used to design the required coupling ratio under the assumption that  𝛽 =

4.5 dB, K= 3 dB as follows: 

𝛼1

1 − 𝛼1
=

1

4
(

𝐾

𝛽
) =

1

4
(

10−0.3

10−0.45
) = 0.353 

Simplifying to  

𝛼1 = 0.353 − 0.353𝛼1  → 𝛼1 =
0.353

1.353
= 0.26 

Therefore, the coupling ratio required for proper 16-QAM constellation is 

𝛼1

1 − 𝛼1
≈

0.26

0.74
=

26

74
 

The simulation setup in Fig. 5.1 is configured to reflect the values assumed in the example 

design. Fig. 5.4 displays the results of the back-to-back simulation for the Gray coded 16-

QAM constellation at 14.5 dB Eb/No. As can be seen, the resulting symbol constellation 

 Fig. 5. 4: Constellation for proper 16-QAM. 
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 is proper as expected. Also, the in-phase and quadrature eye diagrams are clear and 

uniform, reflecting the high quality of the generated 16-QAM signal as shown in Fig. 5.5. 

(a) (b) 

Fig. 5. 5: (a) Eye diagram for I signal; (b) Eye diagram for Q signal. 

 
Fig. 5. 6: Symbol transitions. 
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Fig. 5.6 shows the example symbol transitions that are linear confirming that the QPSK 

modulators are biased in push-pull configuration.  

Fig. 5.7 compares the BER performance to the theoretical 16-QAM. As can be seen, the 

proposed design has BER characteristics identical to the theoretical expectations. 

5.2.2. Impact of coupling ratio errors on 16-QAM performance 

In practice, coupling ratio errors would occur during the fabrication process as described 

in Chapter 4. Since the coupling ratio, 𝛼1/(1 − 𝛼1), is responsible for setting the power 

ratio at the inputs of  combiner to the correct value, deviation from the correct ratio would 

produce constellation with unequally spaced symbols, resulting in higher BER. 

 
Fig. 5. 7: BER performance. 
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Fig. 5.8a and Fig. 5.8b display the constellation diagrams for ∓10% and ±10% coupling 

errors respectively (coupling ratios of 16/84 and 36/64). The collapse of the QPSK symbols 

in each quadrant in Fig. 5.8a is due to the decrement in 𝛼1 while the expansion of the 16- 

 QAM symbols is due to the corresponding increment of (1- 𝛼1) as explained in Chapter 

4. The opposite is true for the constellation diagram in Fig. 5.8b where 𝛼1/(1 − 𝛼1) =

36/64.  

Fig. 5.9 compares the BER performance at the correct coupling ratio (26/74) to the 

performance at the coupling ratios of 36/64 and 16/84. The plots show that the BER 

performance degrades due to incorrect coupling ratios as expected. 

Fig. 5.10 shows the simulation results of the BER versus the coupling ratio at 14.5 dB 

Eb/No. As can be seen, the BER is minimum at the correct coupling ratio of 26/74. The 

BER increases as the coupling ratio deviates from the correct value since the constellation 

points are no longer equally spaced.  

 

(a

(a) (b) 

Fig. 5. 8: (a) Symbol constellation at 16/84 coupling ratio; (b) Symbol constellation at 36/64 coupling ratio. 



83 

 

In practice however, the 26/74 coupler fabricated using SOI would exhibit an average error 

of ±2% [88] thus a coupling ratio of 28/72. This small deviation in the coupling ratio 

would have a minor impact on the BER performance as can be seen from Fig. 5.10. 

Fig. 5. 10: BER versus coupling ratio. 

 Fig. 5. 9: BER performance. 
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5.2.3. Impact of phase errors on 16-QAM performance  

As explained in Chapter 4, obtaining proper 16-QAM constellation from the transmitter 

requires a phase shift of 𝜋/4 between 𝑃2  and 𝑃3 . Since this is not practically possible, the 

phase error ∆∅16𝑄𝐴𝑀 would rotate the optical carrier and displace the shifted 4-QAM 

symbols, causing distortion to the 16-QAM constellation.  

Fig. 5.11 compares the 16-QAM constellations at 14.5 dB Eb/No with no phase errors to 

the constellation with ∆∅16𝑄𝐴𝑀 = 5 degrees. As can be seen, the displacement of the 

QPSK symbols in Fig. 5.11b (circle) is due to  ∆∅16−𝑄𝐴𝑀 = 5 degrees that in turn distorts 

the 16-QAM constellation.  

Fig. 5.12 displays the BER versus ∆∅16−𝑄𝐴𝑀 at 14.5 dB Eb/No. The graph shows that the 

BER reaches a minimum at zero phase errors and increases with the phase errors as 

 

(a) (b) 

Fig. 5. 11: (a) proper 16-QAM constellation; (b) Symbol constellation at   ∆∅16−𝑄𝐴𝑀 = 5 𝑑𝑒𝑔𝑟𝑒𝑒𝑠. 
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expected. It also indicates that a BER of 10-4 can be achieved for phase errors of ±7 degrees 

or less. The BER plots in Fig. 5.13 shows about 2 dB power penalty at 10-4 

for  ∆∅16−𝑄𝐴𝑀 = 7 degrees. 

 

Fig. 5. 13: BER performance. 

Fig. 5. 12: BER versus phase error. 

 ∆∅16−𝑄𝐴𝑀 
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5.3. 64-QAM simulation setup 

The simulation setup for the 64-QAM transmitter is obtained by scaling the 16-QAM with 

another QPSK modulator in tandem as can be seen from Fig. 5.14. Similar to the 16-QAM, 

the precoder is implemented using mapping circuit and the output from the 64-QAM 

transmitter is applied to the quadrature hybrid demodulator of the coherent receiver 

operating under AWGN. The quadrature output is applied to I/Q threshold detector 

followed by 64-QAM symbol decoder. The binary output data are compared to the input 

data to determine the BER.  

5.3.1. 64-QAM transmitter performance 

The 64-QAM transmitter is designed with the assumption that 𝛽 = 4.5 dB, K= 3 dB, and 

𝐿 =  1 dB. We start the design by using (4.14) to find 𝛼2 and then (4.10) to find 𝛼1  as 

follows: 

 Fig. 5. 14: Simulation setup for 64-QAM transmitter. 
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𝑆2 =
𝛼2

1 − 𝛼2
=

1

4
(

1

𝛽𝐿
) =

1

4
(

1

10−0.4510−0.1
) = 0.887 

Simplifying to  

𝛼2 = 0.887 − 0.887 𝛼2  → 𝛼2 =
0.887 

1.887 
= 0.47 

Therefore, the coupling ratio of SP2 required for proper 64-QAM constellation is 

𝑆2 =
𝛼2

1 − 𝛼2
=

0.47

0.53
=

47

53
 

 Now, the correct coupling ratios for 𝑆1 can be obtained from 4.10 as: 

𝑆1 =
𝛼1

1 − 𝛼1
=

1

4
(

𝛼2𝐿𝐾

𝛽
) =

1

4
(

0.47 × 10−0.1 × 10−0.3

10−0.45
) = 0.131 

Simplifying to  

𝛼1 = 0.131 − 0.131 𝛼2  → 𝛼1 =
0.131 

1.131 
≈ 0.12 

Therefore, the coupling ratio of SP1 required for proper 64-QAM constellation is 

𝑆1 =
𝛼1

1 − 𝛼1
=

0.12

0.88
=

12

88
 

The simulation setup in Fig. 5.14 is configured to reflect the values assumed in the example 

design.  

Fig. 5.15 displays the results of the back-to-back simulation for the Gray coded 64-QAM 

constellation at 18 dB Eb/No. As can be seen, the resulting symbol constellation is proper 
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as expected. Also, the in-phase and quadrature eye diagrams are clear and uniform, 

reflecting the high quality of the generated 64-QAM signal as shown in Fig. 5.16. 

 

Fig. 5.16: I and Q eye diagrams. 

 Fig. 5. 15: 64-QAM constellation. 
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Fig. 5.17 compares the BER performance of the proposed design to the theoretical 64-

QAM. The BER plots show that the performance with the correct coupling ratios is 

identical to the theoretical expectations. 

5.3.2. Effect of coupling ratio errors on 64-QAM performance 

The plots in Fig. 5.17 shows that the transmitter BER performance has been degraded when 

the coupling ratios deviate from the correct ratio. In [88] for example, 10/90 and 50/50 

couplers fabricated using SOI exhibited an average error of ±1.5% and ∓ 3.9%, thus a 

coupling ratio of 11.5/88.5 and 46.1/53.9 respectively. Since the correct values for S1 and 

S2 in the above example design are close to 10/90 and 50/50, we assume that fabricating 

these couplers with SOI technology would result in similar tolerance: S1 = 12/88 ± 1.5% 

and S2 = 47/53 ∓ 3.9%. Therefore, the coupling ratio values for SP1 and SP2 would be 

 
Fig. 5.17:  BER performance. 
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S1=3.5/86.5 and S2=43.1/56.9 respectively, which correspond to 𝛼1 = 0.135 and 𝛼2 =

0.431.  

Fig. 5.17 displays the simulation results using these values [110].  The plots show that there 

is about 1 dB power penalty at 10-4 BER due to the coupling ratio errors. Fig. 5.18 compares 

the 64-QAM constellations at 18 dB Eb/No. The improper symbol    

 

 (a)  

 (b)  

Fig. 5. 18: Symbol constellation for (a) S1=12/88, S2=47/53; (b) S1=13.5/86.5, S2=43.1/56.9. 
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constellation shown in Fig. 5.18b is due to the coupling errors. The clustering of the 

symbols in each quadrant is due to  𝛼1 being higher than the correct value and 𝛼2 being 

smaller than the correct value.  For examples, the increase in 𝑃2 with 𝛼1 expanded the 

QPSK symbols (e.g., inside the upper square in Fig. 5.18b). The corresponding reduction 

in 𝑃3 with (1 − 𝛼1)𝛼2 collapsed the 16-QAM symbols (e.g., inside the circle in Fig .5.18b). 

At the same time, 𝑃5 remained fairly constant with (1 − 𝛼1)(1 − 𝛼2) and therefore there 

was no noticeable change in the symbols at the centre of the 64-QAM constellation (e.g., 

inside the dashed square).  

 

BER 

Fig. 5. 19: BER performance vs. S1 and S2; inset: coupling ratios for BER < 10-4. 
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Fig. 5.19 displays a 3D plot of the BER performance versus the coupling ratios, S1 and S2, 

at 18 dB Eb/No. The graph shows that the BER reaches a minimum at the correct coupling 

ratios and increases as they deviate from the correct values as expected. The color map 

inset indicates that un-coded BER better than the 10-4 forward error correction (FEC)  

threshold can be achieved for coupling errors of 4% or less. 

5.2.3. Effect of phase errors on 64-QAM performance 

 In order to obtain proper constellation from the 64-QAM transmitter, the phase 

shifts ∆∅16𝑄𝐴𝑀 and ∆∅64−𝑄𝐴𝑀 must be equal to zero as described in Chapter 4. Since this 

is not the case in practice, we study the effect of phase error on the BER performance. 

 Fig. 5.20 compares the 64-QAM constellations at 18 dB Eb/No for different values of 

phase errors. Compared to the error free constellation in Fig. 5.20a, the displacement of the 

QPSK symbols in Fig. 5.20b (dashed circle) is due to  ∆∅16−𝑄𝐴𝑀 = 5 degrees that in turn 

distorts the 16-QAM symbols in each quadrant as well as the 64-QAM constellation. 

Similarly, the displacements of the 16-QAM symbols in Fig. 5.20c (dashed square) is due 

to   ∆∅64−𝑄𝐴𝑀 = 5 degrees which in turn distorts the 64-QAM constellation. While 

  ∆∅16−𝑄𝐴𝑀 causes rotation of the 16-QAM in each quadrant around the quadrant center,  

 ∆∅64−𝑄𝐴𝑀 causes rotation around the 64-QAM constellation center and therefore the same 

distortion pattern is obtained. The presence of both  ∆∅16−𝑄𝐴𝑀 and  ∆∅64−𝑄𝐴𝑀 would 

worsen the effects of phase errors as can be seen in Fig. 5.20d where   ∆∅16−𝑄𝐴𝑀 =

 ∆∅64−𝑄𝐴𝑀 = 5 degrees.    



93 

 

Fig. 5.21 displays a 3D plot of the BER versus ∆∅16−𝑄𝐴𝑀 and ∆∅64−𝑄𝐴𝑀 at 18 dB Eb/No. 

The graph shows that the BER reaches a minimum at zero phase errors and increases with 

the phase errors as expected. The color map inset indicates that a BER of 10-4 can be 

achieved for phase errors of ±2 degrees or less. The BER plots in Fig. 5.22 show about 1 

dB power penalty at 10-4 for  ∆∅16−𝑄𝐴𝑀 = ∆∅𝟔𝟒−𝑸𝑨𝑴 = 2 degrees. 

 

 

(a) (b) 

 

 

(c) (d) 

Fig. 5. 20: 64-QAM constellation for: (a) No phase errors; (b) ∆∅16−𝑄𝐴𝑀 = 5 𝑑𝑒𝑔𝑟𝑒𝑒𝑠 ; (c) ∆∅64−𝑄𝐴𝑀 = 5 𝑑𝑒𝑔𝑟𝑒𝑒 ; (d) ∆∅16−𝑄𝐴𝑀 =

∆∅64−𝑄𝐴𝑀 = 5 𝑑𝑒𝑔𝑟𝑒𝑒𝑠. 
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Fig. 5.21: BER performance vs. ∆∅16−𝑄𝐴𝑀 and ∆∅64−𝑄𝐴𝑀; inset: Phase errors for BER < 10-4. 

 Fig. 5. 22: BER performance. 
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5.4. Conclusion  

We analyzed the design and performance of a binary driven 16-QAM and 64-QAM optical 

transmitters. An example design demonstrated BER performance that was similar to the 

theoretical expectations. An analysis of the effect of coupling ratio errors as well as phase 

errors on the performance and constellation diagrams has been investigated. For 16-QAM, 

the simulation results under presence of additive white Gaussian noise (AWGN) 

demonstrated BER better than 10-4 and power penalty of about 2 dB for coupling ratio 

errors less than 10 % or phase errors within ±7  degrees. 64-QAM transmitter on the other 

hand demonstrated BER better than 10-4 and power penalty of about 1 dB for coupling ratio 

errors less than 4% or phase errors within ±2  degrees.  
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CHAPTER 6: CONCLUSION 

Coherent optical transmission refers to optical communication systems that apply 

higher order modulation format at the transmitter side and coherent detection using local 

oscillator laser and digital signal processing (DSP) at the receiver side. Using higher order 

modulation format such as M-ary QAM would allow better utilization of fiber bandwidth 

thus reduce the cost per bit of transmitted information. In this work, we have proposed 

scalable coherent optical M-ary QAM transmitter using tandem QPSK modulators driven 

by binary electrical signals. The main distinctive characteristics of the proposed design are 

as follows: 

• No need for DACs 

The proposed optical transmitters apply tandem QPSK modulators that are driven by binary 

electrical signals, thus eliminating the need for DACs. This allows less restriction on the 

linearity of both the driving amplifiers and the MZMs. Consequently, equally spaced high-

quality symbol constellation can be generated by biasing each QPSK modulator in push-

pull configuration resulting in linear transitions between the symbols and high quality eye 

diagrams. 

• Scalability  

The proposed design could be scaled on demand to accommodate the traffic growth by 

simply adding more QPSK modulators in tandem. Increasing the data rate of QPSK by 

twofold could be achieved using 16-QAM. Generating 16-QAM signal would require two 

QPSK modulators in tandem; each generates 4 symbols, therefore the overall number of 

symbols generated in this case is 4×4=16 as required. Accordingly, increasing the data rate 
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of QPSK by three or fourfold would require using 64-QAM and 256-QAM, which can be 

realized using 3 and 4 QPSK modulators in tandem respectively.  

• Noise tolerant  

The design uses Gray coding where any two adjacent symbols differ in only one bit.  This 

efficient coding would combat the noise generated by the nonlinear optical channel 

impairments as well as the phase noise of the optical carrier, insuring the lowest bit error 

rate possible during symbol recovery.  

We provided the design of the coupling ratios required for a proper 16-QAM and 64-QAM 

constellations considering the insertion loss of the optical components. Example designs 

have been simulated at 50 Gbauds using OptiSystem, and demonstrated high quality signal 

constellations and eye diagrams. It also has demonstrated BER performance similar to the 

theoretical expectations. We also analyzed the transmitter and evaluated its BER 

performance under presence of coupling and phase errors. We found that the errors would 

cause constellation distortion and degradation to the BER performance. For 16-QAM, The 

simulation results under presence of AWGN demonstrated BER better than 10-4 and power 

penalty of about 2 dB for coupling ratio errors less than 10 % or phase errors within ±7  

degrees. 64-QAM transmitter on the other hand demonstrated BER better than 10-4 and 

power penalty of about 1 dB for coupling ratio errors less than 4% or phase errors within 

±2  degrees. The presented performance analysis can be extended to higher-order 

modulation format such as 256-QAM and 1024-QAM. 

It is worthwhile to notice that the proposed transmitter only uses binary data and that 

restricts any type of signal conditioning which is common for spectral shaping since it is 
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necessary that the QPSK modulators be driven with non-square waveforms. While the 

single, multi-level I/Q modulator performs signal conditioning (e.g. by filtering) on the 

modulation waveforms for the in-phase and quadrature symbols, the proposed transmitter 

would perform signal conditioning on each of the (cascaded) QPSK symbol modulation 

waveforms that correspond to every 2 bits.  As an example, for 16-QAM the 2 least 

significant bits of the symbol would condition the first QPSK modulator and the 2 most 

significant bits of the symbol would condition the second QPSK modulator.  So, while the 

signal conditioning approach differs, we would expect the proposed transmitter to achieve 

symbol waveform shaping similar to the multi-level I/Q modulator.  This is an intriguing 

subject for future work because the ability to perform signal conditioning independently 

on every 2 bits of a QAM symbol may bring about certain flexibilities and advantages. 

This work has been published in multiple conferences and journals as follows: 

Material in Chapter 3 was published in the Frontiers in Optics, Optical Society of America 

conference, and IEEE Avionics and Vehicle Fiber-Optics and Photonics conference: 

▪ N. A. Albakay and L. Nguyen, "Scalable and Gray-coded optical M-ary QAM using 

QPSK modulators with binary electronic driving signals."  Frontiers in Optics, Optical 

Society of America, USA, Oct. 2016.   

▪ N. A. Albakay and L. Nguyen, "Square QAM transmitter using QPSK modulators 

driven by binary electrical signals." IEEE Avionics and Vehicle Fiber-Optics and 

Photonics Conference, USA, Nov. 2016.   
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Material in Chapter 4 was published in the Journal of Electronics Letters, as well as in 

Frontiers in Optics, Optical Society of America conference, and IEEE Avionics and 

Vehicle Fiber-Optics and Photonics Conference: 

▪ N. A. Albakay and L. Nguyen, "Optical 64-QAM transmitter using binary driven 

QPSK modulators" Journal of Electronics Letters. Apr. 2017.  

▪ N. A. Albakay and L. Nguyen, “Coupling ratios design and their impact on the 

performance of binary driven QAM transmitters." IEEE Avionics and Vehicle Fiber-

Optics and Photonics Conference, USA, Nov. 2017. 

▪ N. A. Albakay and L. Nguyen, " Designing the coupling ratios in a binary driven 64-

QAM transmitter” Frontiers in Optics, Optical Society of America, USA, Sep. 2017.   

Material in Chapter 5 was published in the IEEE Journal of Lightwave technology: 

▪ N. A. Albakay and L. Nguyen, "Design and performance analysis for a binary driven 

QAM transmitter," IEEE Journal of Lightwave Technology, July 2018. 

 

 

 

 

 

 

 



100 

 

REFERENCES 

[1]. DeLange, Owen E. "Wide-band optical communication systems: Part II—frequency-division 

multiplexing." Proceedings of the IEEE, Oct 1970. 

[2]. Okoshi T., and Kikuchi K. "Frequency stabilization of semiconductor lasers for heterodyne-type optical 

communication systems." Electronics letters, Feb 1980. 

[3]. Okoshi T., Kikuchi K, et al. "Computation of bit-error rate of various heterodyne and coherent-type 

optical communication schemes." Journal of optical communications, Sep 1981. 

[4]. Henry, and Charles. "Theory of the linewidth of semiconductor lasers." Journal of quantum electronics, 

Feb 1982. 

[5]. Yamamoto, and Yoshihisa. "Receiver performance evaluation of various digital optical modulation-

demodulation systems in the 0.5-10 µm wavelength region." Journal of quantum electronics, Nov 1980. 

[6]. Aspell, J., and Neal S. "Erbium doped fiber amplifiers for future undersea transmission systems." Journal 

of quantum electronics, Nov 1990. 

[7]. ITU Recommendation. "G. 694.1: Spectral grids for WDM applications: DWDM frequency 

grid." International telecommunications union, Feb 2002. 

[8]. Wu M., and Winston W. "Fiber nonlinearity limitations in ultra-dense WDM systems." Journal of 

lightwave technology, Jun 2004. 

[9]. Mizuochi, Takashi, et al. "A comparative study of DPSK and OOK WDM transmission over transoceanic 

distances and their performance degradations due to nonlinear phase noise." Journal of lightwave 

technology, Jun 2003. 

[10]. Kahn, Joseph M., and Keang P. "Spectral efficiency limits and modulation/detection techniques for 

DWDM systems." Journal of selected topics in quantum electronics, Mar 2004. 

[11]. Louchet, H., Anes H., and Klaus P. "Analytical model for the performance evaluation of DWDM 

transmission systems." Photonics technology letters, Sep 2003. 

[12]. Leng, L., Stulz, S., et al. "1.6-Tb/s (160 x 10.7 Gb/s) transmission over 4000 km of nonzero dispersion 

fiber at 25-GHz channel spacing." Photonics technology letters, Aug 2003. 

[13]. Van D., Jansen S., et al. "1.6-b/s/Hz spectrally efficient 40× 85.6-Gb/s transmission over 1,700 km of 

SSMF using POLMUX-RZ-DQPSK." Optical fiber communication conference, Mar 2006. 

[14]. Lizé, Yannick Keith, et al. "Simultaneous and independent monitoring of OSNR, chromatic and 

polarization mode dispersion for NRZ-OOK, DPSK and duo binary." Optical society of America 

conference, Mar 2007. 

[15]. Ehrhardt, A., Breuer, D., et al. "Field trial to upgrade an existing 10 Gbit/s DWDM link by 40 Gbit/s 

RZ-DQPSK channels." Transparent optical networks conference, Jun 2007. 

[16]. Watts, P. M., Waegemans, R. et al. "An FPGA-based optical transmitter using real-time DSP for 

implementation of advanced signal formats and signal predisortion." Optical communications 

conference, Sep 2006. 

[17]. Raybon, Greg, and Peter J. Winzer. "100 Gb/s challenges and solutions." Optical fiber 

communication/national fiber optic engineers conference, Feb. 2008. 

[18]. Tkach, Robert W. "Scaling optical communications for the next decade and beyond." Bell labs technical 

journal, Mar 2010. 

[19]. Winzer, Peter J. "High-spectral-efficiency optical modulation formats." Journal of lightwave 

technology, Dec 2012. 

[20]. Miyamoto, Y., et al. "Ultrahigh-capacity digital coherent optical transmission technology."  Nippon 

telegraph and telephone technical review, Jan. 2012. 

[21]. Infinera. "Coherent WDM technologies." white paper, Jun 2016.  

[22]. Kikuchi, Kazuro. "Fundamentals of coherent optical fiber communications." Journal of lightwave 

technology, Jan 2016.  

https://en.wikipedia.org/wiki/Nippon_Telegraph_and_Telephone
https://en.wikipedia.org/wiki/Nippon_Telegraph_and_Telephone


101 

 

[23]. Kikuchi, Kazuro. "Coherent optical communications: Historical perspectives and future directions." 

Springer Berlin Heidelberg, 2010. 

[24]. Reis, J., et al. "Technology options for 400G implementation." Optical internetworking forum white 

paper, Jul 2015. 

[25]. Savory, Seb J. "Digital signal processing for multilevel modulation formats." European conference on 

optical communication, Dec 2016. 

[26]. Berenguer, Pablo W., et al. "Nonlinear digital pre-distortion of transmitter components." Journal of 

lightwave technology, Apr 2016. 

[27]. Carena A., Jiang Y., et al. "Electronic dispersion pre-compensation in PM-QPSK systems over mixed-

fiber links."  The European conference on optical communication, Jan. 2014. 

[28]. Shen, T., Shun R., and Alan P. "Fiber nonlinearity compensation using extreme learning machine for 

DSP-based coherent communication systems."  Opto-electronics and communications conference, Jul 

2011. 

[29]. Ezra I., "Nonlinear compensation using backpropagation for polarization-multiplexed transmission." 

Journal of lightwave technology, Mar 2010. 

[30]. Rozental, Valery N., et al. "Digital-domain chromatic dispersion compensation for different pulse 

shapes: Practical considerations." Microwave and optoelectronics conference, Nov 2015.  

[31]. Mastropaolo, A. "On real-time implementation of 400 Gbps dual polarization 16-QAM coherent 

intradyne receiver."  International conference on photonics in switching, Sep 2015. 

[32]. Cai, J.X., Zhang, H. , et al. "200 Gb/s and dual wavelength 400 Gb/s transmission over transpacific 

distance at 6.0 b/s/Hz spectral efficiency." Journal of lightwave technology, Feb 2014. 

[33]. Lavigne, B. "400Gb/s trials on commercial systems using real-time bit-rate-adaptive transponders for 

next generation networks." Optical fiber communication conference, Mar 2015. 

[34]. Torres, P., Gutiérrez, R., and Tomkos, I. "Multi-format 800–1600 Gb/s coherent transceiver for inter-

data center interconnects over SMF." Transparent optical networks conference, Jul 2017. 

[35]. http://www.ciena.com/insights/what-is/What-Is-Coherent-Optics.html 

[36]. Akulova, A. "Advances in integrated widely tunable coherent transmitters." Optical fiber 

communication conference, Mar 2016. 

[37]. Koos, C., Vorreau, Koos, Christian, et al. "All-optical high-speed signal processing with silicon–

organic hybrid slot waveguides." Nature photonics journal, Apr 2009. 

[38]. Berenguer, P. Wilke, et al. " Nonlinear digital pre-distortion of transmitter components." Optical 

communication European conference, Mar 2015. 

[39]. A. Carena, Y. Jiang, P. Poggiolini, G. Bosco, V. Curri and F. Forghieri, "Electronic dispersion pre-

compensation in PM-QPSK systems over mixed-fiber links." European conference on optical 

communication, Jan 2014. 

[40]. Huang, Y., and Wu, D. "Nonlinear internal model control with inverse model based on extreme learning 

machine." Electric information and control engineering, May 2011.  

[41]. Shen, T., Shun, R., and Alan P. "Fiber nonlinearity compensation using extreme learning machine for 

DSP-based coherent communication systems."  Opto-electronics and communications conference, Jul 

2011. 

[42]. Ip, Ezra. "Nonlinear compensation using backpropagation for polarization-multiplexed 

transmission." Journal of lightwave technology, Mar 2010. 

[43]. Rozental, N., et al. "Digital-domain chromatic dispersion compensation for different pulse shapes: 

Practical considerations." Microwave and optoelectronics conference, Nov 2015.  

[44]. Laperle, Charles. "Advances in high-speed ADCs, DACs, and DSP for optical transceivers." Optical 

fiber communication conference and exposition and the national fiber optic engineers conference, Mar 

2013.  

[45]. Schmogrow, R., et al. "150 Gbit/s real-time Nyquist pulse transmission over 150 km SSMF enhanced 

by DSP with dynamic precision." Optical fiber communication conference, Mar 2012. 

http://www.ciena.com/insights/what-is/What-Is-Coherent-Optics.html


102 

 

[46]. Châtelain, B., et al. "A family of Nyquist pulses for coherent optical communications." Optics express, 

Apr 2012. 

[47]. Xie, C., and Greg R. "Digital PLL based frequency offset compensation and carrier phase estimation 

for 16-QAM coherent optical communication systems." European conference and exhibition on optical 

communication, Sep 2012. 

[48]. Ferreira, Ricardo M., et al. "Optimized carrier frequency and phase recovery based on blind Mth power 

schemes."  Photonics technology letters, Nov 2016. 

[49]. Savory, Seb J. "Digital coherent optical receivers: algorithms and subsystems."  Journal of selected 

topics in quantum electronics, Sep 2010.  

[50]. Taylor, Michael G. "Phase estimation methods for optical coherent detection using digital signal 

processing." Journal of lightwave technology, Apr 2009. 

[51]. Ip, Ezra, and Joseph M. Kahn. "Feedforward carrier recovery for coherent optical 

communications." Journal of lightwave technology, Sep 2007.  

[52]. Sakaguchi, J., Yoshinari, A., and Naoya W. "Seed lightwave distribution over 1600 km for 64QAM-

based coherent WDM optical networks with low DSP-complexity."  European conference on optical 

communication, Dec 2016. 

[53]. Winzer, Peter J. "Scaling optical fiber networks: challenges and solutions." Optics and photonics 

news, Mar 2015. 

[54]. Winzer, Peter J. "High-spectral-efficiency optical modulation formats." Journal of lightwave 

technology, Dec 2012. 

[55]. Nakazawa, M., Hirooka, T., et al.  "Ultrafast coherent optical transmission." Journal of selected topics 

in quantum electronics, 2012. 

[56]. Pincemin, Erwan, et al. "Challenges of 40/100 Gbps and higher-rate deployments over long-haul 

transport networks." Optical fiber technology journal, Oct 2011. 

[57]. Infinera. "Coherent WDM technologies." white paper, Jun. 2016.  

[58]. Gnauck, A., et al. "Spectrally efficient long-haul WDM transmission using 224-Gb/s polarization-

multiplexed 16-QAM." Journal of lightwave technology, Feb 2011. 

[59]. Mitchell, Matthew, et al. "Optical integration and multi-carrier solutions for 100G and beyond." optical 

fiber technology letters, Oct 2011. 

[60]. Bennett, G., et al. "A review of high-speed coherent transmission technologies for long-haul DWDM 

transmission at 100G and beyond."  Communications magazine, Oct 2014.  

[61]. Yang, Q., Abdullah, A., and William S. "Optical OFDM basics." Springer New York, 2011.  

[62]. Prasad, R. “OFDM for wireless communications systems.” Artech house, 2004. 

[63]. Sun, H., Kuang, W., and Kim R. "Real-time measurements of a 40 Gb/s coherent system." Optics 

express, Jan 2008.  

[64]. Ma, Y., et al. "1-Tb/s single-channel coherent optical OFDM transmission over 600-km SSMF fiber 

with subwavelength bandwidth access." Optics express, May 2009. 

[65]. Shieh, W. "OFDM for flexible high-speed optical networks." Journal of lightwave technology, May 

2011. 

[66]. Hsu, C., Chow, W., and Yeh, H. "Cost-effective direct-detection all-optical OOK-OFDM system with 

analysis of modulator bandwidth and driving power."  Photonics journal, Aug 2015.  

[67]. Sakamoto,T., Guo, L., and Naokatsu, Y. "Full-channel parallel measurement of 4x20-Gb/s all-optical 

OFDM signals by using loop-assisted coherent matched detector." European conference on optical 

communication, Sep 2016. 

[68]. Chandrasekhar, S., et al. "Transmission of a 1.2-Tb/s 24-carrier no-guard-interval coherent OFDM 

super channel over 7200-km of ultra-large-area fiber." European conference on optical communication, 

Jan 2009. 

[69]. Hillerkuss, D., et al. "Single source optical OFDM transmitter and optical FFT receiver demonstrated 

at line rates of 5.4 and 10.8 Tbit/s." Optical fiber communication conference, Mar 2010. 

https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=7&cad=rja&uact=8&ved=0ahUKEwjF2YGasJ_RAhXMSCYKHTIDDLsQFghEMAY&url=http%3A%2F%2Fwww.eurel.org%2Fhome%2FEvents%2FSC%2FPages%2FECOC.aspx&usg=AFQjCNHIqGp-Z4YulpJDVahb0CZuQyFBNQ&sig2=gp4xb3-EaEQew-uWZ1Swyw


103 

 

[70]. Armstrong, J. "Peak-to-average power reduction for OFDM by repeated clipping and frequency domain 

filtering." Electronics letters, Feb 2002.  

[71]. Nazarathy, M., et al. "Phased-array cancellation of nonlinear FWM in coherent OFDM dispersive multi-

span links." Optics express, Sep 2008.  

[72]. Dischler, R., and Fred B. "Measurement of nonlinear thresholds in O-OFDM systems with respect to 

data pattern and peak power to average ratio."  European conference on optical communication, Sep 

2008. 

[73]. Buyankhishig, Z., Tserenlkham, B., and Orgil, J. "Comparative study on high order optical modulation 

formats." Strategic technology journal, Jun 2013.  

[74]. Barbieri, A., et al. "OFDM versus single-carrier transmission for 100 Gbps optical 

communication." Journal of Lightwave Technology, Sep. 2010.  

[75]. Cvijetic, N. "OFDM for next-generation optical access networks." Journal of Lightwave Technology, 

Feb 2012. 

[76]. Gnauck, A., et al. "Generation and transmission of 21.4-Gbaud PDM 64-QAM using a novel high-

power DAC driving a single I/Q modulator." Journal of lightwave technology, Feb 2012.  

[77]. Sowailem, M., et al. "400-G Single carrier 500-km transmission with an InP dual polarization IQ 

Modulator."  Photonics technology letters, Feb 2016. 

[78]. Yamazaki, H., et al. "Optical modulator with a near-linear field response." Journal of lightwave 

technology, Aug 2016.  

[79]. Lu, Guo-Wei, Takahide Sakamoto, and Tetsuya Kawanishi. "Flexible high-order QAM transmitter 

using tandem IQ modulators for generating 16/32/36/64-QAM with balanced complexity in electronics 

and optics." Optics express, Mar 2013. 

[80]. Fresi, F., et al. "Reconfigurable silicon photonics integrated 16-QAM modulator driven by binary 

electronics."  Journal of selected topics in quantum electronics, Nov 2016.  

[81]. Lu, Guo-W. et al. "40-Gbaud 16-QAM transmitter using tandem IQ modulators with binary driving 

electronic signals." Optics express, Oct 2010. 

[82]. Fresi, F., et al. "Versatile low-complex 16-QAM optical transmitter driven by binary 

signals."  Globecom workshops, Dec 2012. 

[83]. Silfvast, T. "Laser fundamentals". Cambridge university press, 2004. 

[84]. Hitz, C. Breck, J and Jeff H. "Introduction to laser technology". John Wiley & Sons, 2012. 

[85]. Paschotta, R. Telle, H. and Kelle, U. “Solid-state lasers and applications." CRC Press, 2007.  

[86]. Kikuchi, K., et al. "Degradation of bit-error rate in coherent optical communications due to spectral 

spread of the transmitter and the local oscillator." Journal of lightwave technology, Dec 1984.  

[87]. Peucheret, C. "Direct and external modulation of light." Technical university of denmark, Nov 2009. 

[88]. Djordjevic, I., William R., and Bane V. "Fundamentals of optical communication." Springer, 2010. 

[89]. Morichetti, A. Canciamilla, et al, "Roughness induced backscattering in optical silicon waveguides," 

Physical review letters, Jan 2010. 

[90]. Agrell, E., et al. "Gray coding for multilevel constellations in Gaussian noise." IEEE Transactions on 

Information theory, Jan 2007. 

[91]. https://www.lasercomponents.com/de/?embedded=1&file=fileadmin/user_upload/home/Datasheets/lc

/applikationsreport/ixblue/introduction-to-modulator-bias-controllers.pdf&no_cache=1 

[92]. Kawanishi, T., Sakamoto, T., et al, "Ultra high extinction-ratio and ultra-low chirp optical intensity 

modulation for pure two-tone lightwave signal generation," Lasers and electro-optics conference on 

quantum electronics and laser science, May 2008. 

[93]. Svarny, J. "Bias driver of the Mach–Zehnder intensity electro–optic modulator, based on harmonic 

analysis." Advances in robotics, mechatronics and circuits, Mar 2014.  

https://www.lasercomponents.com/de/?embedded=1&file=fileadmin/user_upload/home/Datasheets/lc/applikationsreport/ixblue/introduction-to-modulator-bias-controllers.pdf&no_cache=1
https://www.lasercomponents.com/de/?embedded=1&file=fileadmin/user_upload/home/Datasheets/lc/applikationsreport/ixblue/introduction-to-modulator-bias-controllers.pdf&no_cache=1


104 

 

[94]. Fu, Y., Zhang, X. et al, "Mach-Zehnder: a review of bias control techniques for Mach-Zehnder 

Modulators in photonic analog links," Microwave magazine, Nov 2013. 

[95]. http://ece466.groups.et.byu.net/notes/smf28.pdf. 

[96]. http://www.thefoa.org/tech/ref/testing/test/CD_PMD.html. 

[97]. https://www.exfo.com/en/ "Pocket guide for chromatic dispersion at high bit rate". 

[98]. https://www.exfo.com/en/ "Pocket guide for PMD Issues in advanced very high-speed networks". 

[99]. Gregory L., "Testing polarization mode dispersion (PMD) in the field", JDSU, 2006. 

[100]. Laperle C., O’Sullivan M." Advances in high-speed DACs, ADCs, and DSP for optical coherent 

transceivers." Journal of lightwave technology, Feb 2014. 

[101].  Zhou X, Yu J. "Digital signal processing for coherent optical communication." Wireless and optical 

communications conference, May 2009. 

[102]. Yamazaki E, Tomizawa M, Miyamoto Y. "100-Gb/s optical transport network and beyond employing 

digital signal processing." IEEE communications magazine, Feb 2012. 

[103]. Roberts K, Beckett D., et al. "100G and beyond with digital coherent signal processing." IEEE 

Communications magazine, Jul 2010. 

[104]. Yamazaki, H., Goh, T., et al. “Flexible-format modulator with a lattice configuration", Journal of 

selected topics in optical quantum electronics, Jul 2013.  

[105]. Albakay N., and Nguyen L., "Square QAM transmitter using QPSK modulators driven by binary 

electrical signals," Avionics and vehicle fiber-optics and photonics conference, Nov 2016. 

[106]. Albakay N., and Nguyen L., "Scalable and Gray-coded optical M-ary QAM Using QPSK modulators 

with binary electronic driving signals," Frontiers in optics, optical society of America, paper JW4A.2, 

Oct 2016 

[107]. Albakay N., and Nguyen L., "Optical 64-QAM transmitter using binary driven QPSK modulators," 

Electronics Letters journal, Apr 2017. 

[108]. Albakay N., and Nguyen L., "Designing the coupling ratios in a binary driven 64-QAM transmitter," 

Frontiers in optics, optical society of America, Sep 2017. 

[109]. Albakay N., and Nguyen L., "Coupling ratios design and their impact on the performance of binary 

driven QAM transmitters," Avionics and vehicle fiber-optics and photonics conference, Nov 2017. 

[110]. Albakay N., and Nguyen L., "Design and performance analysis for a binary-driven QAM 

transmitter," Journal of lightwave technology, Nov 2018. 

 

http://ece466.groups.et.byu.net/notes/smf28.pdf
http://www.thefoa.org/tech/ref/testing/test/CD_PMD.html
https://www.exfo.com/en/
https://ieeexplore.ieee.org/document/8425722/
https://ieeexplore.ieee.org/document/8425722/

	University of Nebraska - Lincoln
	DigitalCommons@University of Nebraska - Lincoln
	12-2018

	Design and Analysis of Binary Driven Coherent M-ary Qam Transmitter for Next Generation Optical Networks
	Naji Albakay

	tmp.1543423420.pdf.qJQ2C

