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 Allergenic peanut proteins are highly resistant to digestion and are detectable by 

immunoassays after gastrointestinal digestion.  The application of liquid 

chromatography-tandem mass spectrometry (LC-MS/MS) methods for in vivo detection 

of peptides originating from allergenic food proteins has not been thoroughly studied.  

The aim of this work was to develop an in vivo detection method for peanut proteins in 

serum using LC-MS/MS.  The method(s) were validated by analyzing subject serum 

collected after peanut consumption.   

 Three de-complexation strategies were evaluated including (1) MS acquisition 

settings (i.e. inclusion, exclusion lists), (2) commercial depletion kits, and (3) organic 

solvent fractionation by discovery LC-MS/MS.  Overall, none of these approaches were 

successful.  No improvements occurred to peanut peptide detection using inclusion and 

exclusion lists.  The commercial depletion kits removed abundant serum proteins, 

however, they simultaneously depleted peanut proteins.  The fractionation method was 

efficient in reducing sample complexity, but demonstrated variable peanut protein 

fractionation. 



  

 Due to unsuitable de-complexing strategies, we evaluated non-depleted serum by 

targeted MS, including parallel reaction monitoring (PRM), multiple reaction monitoring 

(MRM), and MRM cubed (MRM3).  We identified 10 peanut peptides, representing the 

major peanut allergens.  The limit of detection (LOD) of the sera-peanut model matrix 

(10:1 (w/w)) was similar for PRM and MRM, with detection at 1.0 ppm peanut protein 

(4.0 ppm peanut).  The MRM3 method did not provide improvements to LOD.   

Following development of typical targeted methods, we re-investigated PRM with 

increased protein loading (600 µg).  Peanut peptides were detected in two subject sera 

(sera 1, 2) at two different time points (60, 120 minutes, respectively).  However, robust 

method development was unsuccessful, requiring further investigations in methodology.  

 Lastly, the intermolecular arrangements of peanut seed storage proteins were 

evaluated by offline size-exclusion chromatography (SEC) with discovery LC-MS/MS.  

Gaussian modeling was used to determine the native MW of proteins, isoforms, and 

complexes.  The combination of Gaussian modeling and discovery LC-MS/MS of SEC 

fractions was a highly effective separation and identification tool.   
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CHAPTER 1: LITERATURE REVIEW 

INTRODUCTION 

Proteomics is the study of proteins, their interactions within a biological system 

(e.g. structure, function), and their relative abundances (Cravatt et al., 2007).  The field of 

proteomics research is vast and expanded significantly due to advancements in protein 

biochemical techniques, and in mass spectrometry (MS) instruments and methods 

(Gillette and Carr, 2013).  Proteins, composed of amino acids, are important 

macromolecules required for many routine and critical body functions including 

molecular transport (e.g. oxygen), immune responses, cell growth and repair, and reaction 

catalysts (e.g. enzymes) (Berg et al., 2002).  Foods are an essential source of proteins, as 

well as other macromolecules (e.g. carbohydrates, lipids, minerals), and the sole source 

for essential amino acids, which must be consumed through an individual’s diet (Shewry, 

2007; Tessari et al., 2016).  Unfortunately, for individuals diagnosed with a food allergy 

or sensitivity, consumption of certain food proteins can be detrimental to an individual’s 

health as some allergenic food proteins are highly thermostable and resistant towards 

digestion, characteristics contributing to their allergenic behavior (Bannon, 2004). 

Food allergens have been studied using a suite of molecular biology and protein 

biochemistry techniques including enzyme-linked immunosorbent assays (ELISA), 

immunoblotting, polymerase chain reaction (PCR), and digestibility assays (Koppelman 

and Hefle, 2006).  ELISAs have been the primary method used in routine testing of 

allergenic food proteins, however recently, mass spectrometry methods have been 

developed for detection of allergenic food proteins (Croote and Quake, 2016; Koppelman 
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and Hefle, 2006; Monaci et al., 2015).  The adoption of mass spectrometry in food 

allergen detection provides numerous benefits compared to ELISA methods, including 

multiplexing, identification of specific peptide and protein sequences, elucidation of 

protein modifications, and individual protein quantification (Croote and Quake, 2016; 

Monaci et al., 2015).  MS offers numerous advantages however, these methods have not 

yet been routinely established and still require significant time for method development 

(Croote and Quake, 2016; Johnson et al., 2011).   

Food allergies are individualistic reactions to food proteins affecting previously 

sensitized individuals, and have demonstrated an increasing prevalence over time 

(Sicherer et al., 2010; Turner et al., 2015).  To better understand mechanisms of 

sensitization and allergic reactions, it is important to understand the uptake and transport 

of allergenic food proteins across the gut barrier and their subsequent interactions with 

the immune system (Reitsma et al., 2014).  Previous studies have established in vivo 

detection of allergenic food proteins at very low concentrations, primarily by 

immunoassays (Baumert et al., 2009; Husby et al., 1985, 1986; JanssenDuijghuijsen et 

al., 2017; Schocker et al., 2016).  However, in vivo detection has yet to be established 

using MS methods due to low analyte concentration, analyte conformation after gastric 

digestion and uptake, complexity of sera proteome, and sensitivity of mass spectrometers 

(JanssenDuijghuijsen et al., 2017; Reitsma et al., 2014). 

Our aim within this section is to establish an understanding of the current 

literature and knowledge of in vivo uptake of allergenic food proteins, particularly peanut 

proteins, and the application of mass spectrometry in the study of food allergens.  Peanut 

proteins are considered one of the most potent allergenic foods, and several studies have 
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focused on the in vivo detection using a multitude of protein chemistry techniques 

(Baumert et al., 2009; JanssenDuijghuijsen et al., 2017; Schocker et al., 2016).  The 

advancements achieved in mass spectrometry have expanded the available proteomic 

tools for allergenic protein studies, and as such, are the primary focus of this work.   

 

FOOD SENSITIVITIES  

Food sensitivities, including both food allergies and food intolerances, are 

collectively referred to as individualistic reactions to foods (Taylor and Baumert, 2012).  

These sensitivities only affect a small subset of the population, but can have severe 

impacts on an individual’s quality of life (Stensgaard et al., 2017; Warren et al., 2016).  

Individuals commonly misidentify food intolerances as food allergies, whose mechanism 

is distinctly different and involves an immunologically-mediated response (Sloan and 

Powers, 1986; Taylor and Baumert, 2012).  When properly diagnosed, the symptoms 

associated with various food sensitivities are easily distinguishable (Sloan and Powers, 

1986; Taylor and Baumert, 2012).  Recognition of the characteristic symptoms associated 

with each sensitivity, immune or non-immune mediated mechanisms, is critical for 

accurate diagnosis and dietary management since many individuals adopt modified 

dietary practices to avoid consumption of offending food(s) (Mazzocchi et al., 2017; 

Taylor and Baumert, 2012).  

Food intolerances are non-immunologically mediated reactions and the 

predominant food sensitivity individuals experience (Guandalini and Newland, 2011; 

Sampson and Eigenmann, 1999).  Individuals with food intolerances are generally able to 

tolerate larger doses of a causative food before exhibiting severe symptoms (Taylor and 
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Baumert, 2012).  In contrast, low doses of allergenic food proteins can elicit 

immunologically mediated reactions in previously sensitized individuals (Hefle et al., 

2001; Taylor and Baumert, 2012).  Generally, individuals experiencing allergic reactions 

exhibit more severe symptoms, including anaphylaxis, a distinguishing feature of 

immunologically mediated reactions (Chinthrajah et al., 2015; Taylor and Baumert, 

2012).  However, for a majority of individuals, these causative foods, classified as 

allergens, do not cause adverse reactions (i.e. allergy, intolerance) and pose no imminent 

health threat (Taylor et al., 1992).  

 

 Food Intolerances 

Food intolerances are non-immunologically mediated reactions caused by toxins, 

metabolic or pharmacological agents, or other unknown agents originating within foods 

or food additives (Boyce et al., 2010).  These types of reactions may include 

gastrointestinal or absorption disorders, and, are commonly present in pediatric patients 

due to their under-developed immunological systems, however, these intolerances are 

most often outgrown (Sampson and Eigenmann, 1999).  Food intolerances can be 

classified into three categories including, (1) anaphylactoid reactions, (2) metabolic food 

disorders, and (3) food idiosyncrasies (Lemke and Taylor, 1994; Taylor and Baumert, 

2012).   
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 Anaphylactoid Reactions 

Anaphylactoid reactions are clinically identical to true food allergies presenting 

many of the same symptoms and mediators, but, are non-immunologically (i.e. IgE) 

mediated responses (Sampson, 2009).  In these reactions, eliciting food substances 

initiate the release of mediators from mast cells and basophils, identical to mediators of 

an allergic reaction (Lemke and Taylor, 1994; Taylor and Baumert, 2012).   

 

 Metabolic Food Disorders 

Metabolic food disorders are metabolic deficiencies of a particular food substance 

or food derived chemical, and are genetically inherited sensitivities (Taylor and Hefle, 

2002).  Lactose intolerance and favism are two well-characterized disorders, with distinct 

mediating mechanisms which are discussed in detail in subsequent paragraphs (Taylor 

and Hefle, 2002). 

Lactose intolerance is the inability to digest lactose, the primary cow’s milk sugar, 

due to a deficiency in the hydrolytic enzyme β-galactosidase (i.e. lactase) (Suarez and 

Savaiano, 1997).  The disaccharide, lactose, is hydrolyzed by β-galactosidase, to its 

constituent monosaccharides, glucose and galactose, and transported across the small 

intestine for metabolic energy (Suarez and Savaiano, 1997).  A deficiency in β-

galactosidase results in the passage of non-digested lactose to the large intestine where 

bacteria metabolize the disaccharide substrate into carbon dioxide, water, and dihydrogen 

(H2) (Kocian, 1988; Taylor and Hefle, 2002).  Individuals suffering from lactose 

intolerance exhibit mild localized gastrointestinal (GI) symptoms including gastric and 

abdominal cramping, flatulence, and diarrhea (Bayless et al., 1975; Suarez and Savaiano, 
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1997).  Many lactose intolerant individuals can safely consume small amounts of dairy 

products without experiencing significant symptoms (Lemke and Taylor, 1994; Taylor 

and Hefle, 2002).   

Favism, another example of a metabolic food disorder, is caused by a lack of 

erythrocytic glucose-6-phosphate dehydrogenase (G6PDH), the most prevalent 

worldwide enzymatic deficiency (Taylor, 2014).  The consumption of fava beans or 

inhalation of Vicia faba pollen, which contain the oxidants vicine and convicine, results 

in damage to erythrocytic membranes in individuals lacking G6PDH (Mager et al., 1980; 

Marquardt et al., 1997).  G6PDH maintains the concentrations of glutathione (GSH) and 

nicotinamide dinucleotide phosphate (NADPH) in erythrocytes, preventing erythrocyte 

membrane oxidation (Taylor, 2014; Taylor and Hefle, 2002).  Symptoms occur within 5 – 

24 hours of ingestion causing fatigue, abdominal pain, nausea, fever, chills, hemolytic 

anemia, or more severe symptoms including hemoglobinuria, jaundice, and renal failure 

(Taylor, 2014; Taylor and Hefle, 2002). 

 

 Idiosyncratic Reactions to Foods 

Food idiosyncrasies are adverse reactions to food additives involving unknown 

mechanisms and capable of causing mild to severe, and potentially life threatening 

symptoms (Guandalini and Newland, 2011; Taylor and Hefle, 2002; Taylor et al., 1989).  

Sulfite induced asthma is a principal example of an idiosyncratic reaction and has been 

elucidated by double blind placebo controlled food challenge (DBPCFC) (Taylor et al., 

2014).   
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Sulfites, the causative agent in sulfite induced asthma, are naturally present in 

foods due to fermentation or as a food additive to inhibit browning (enzymatic and non-

enzymatic), prevent microbial growth, inhibit oxidation, or as an aid in bleaching and 

dough conditioning (Bush and Montalbano, 2014; Taylor and Hefle, 2002; Taylor et al., 

2014).  Individuals diagnosed with asthma are more likely to develop sensitivities to 

sulfites, however not all asthmatics suffer from this sensitivity (Taylor et al., 2014).  An 

estimated 5% of adult asthmatics have sulfite sensitivities, and individuals with severe 

asthma are more likely to develop sulfite sensitivities (Bush and Montalbano, 2014).  As 

a result, sulfites must be labeled in order to protect those sulfite sensitive individuals 

(Taylor et al., 2014).   

 

 Food Hypersensitivities 

Food hypersensitivity reactions are abnormal immunological responses to food or 

environmental proteins (e.g. pollen, dust, mold, animal dander) and categorized into four 

classes (I, II, III, and IV) based on their immunological mechanisms (Gell and Coombs, 

1975; Sampson, 1991; Taylor and Hefle, 2002).  Food hypersensitivities encompass two 

different types of immunologically mediated mechanisms, immediate hypersensitivity 

(type I) and delayed hypersensitivity (type IV) (Taylor and Baumert, 2012).  Other 

hypersensitivity (allergic) reactions include type(s) II: antibody-dependent cytotoxic 

reactions and III: antigen-antibody complex mediated (Sampson, 1991).  The primary 

focus of this section will be on delayed- and immediate-type hypersensitivity reactions.   

Allergic reactions, including food and environmental reactions, are classified as 

type I, IgE-mediated, immediate hypersensitivity reactions (Gell and Coombs, 1975; 
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Sampson, 1991; Taylor and Hefle, 2002).  Food allergies are caused by naturally 

occurring proteins in foods, generally present in high abundances (Bush and Hefle, 

1996).  Only a handful of foods are known to cause over 90% of reported reactions, and, 

are commonly known in the US as ‘the Big 8.’ (Bush and Hefle, 1996).  ‘The Big 8’ 

includes peanuts, tree nuts, fish, shellfish, milk, egg, soy, and wheat (Hefle et al., 1996).  

Allergy to other fruits and vegetables have been reported, however, these reactions are 

often milder in elicited symptoms and localized to the oral cavity (Hefle et al., 1996).  

These food proteins are labile towards heat, processing, and gastric enzymes resulting in 

their rapid degradation (Amat Par et al., 1990; Hefle et al., 1996).  Any protein is capable 

of eliciting an allergic reaction however, these reactions are rare in occurrence (Hefle et 

al., 1996).   

Factors influencing the development of IgE mediated reactions include genetic 

pre-disposition, increase in GI tract permeability, premature birth, viral gastroenteritis 

(Taylor and Hefle, 2006).  A study of monozygotic and dizygotic twins revealed the 

identical twins (i.e. monozygotic) are likely to develop allergy to the same food, 

illustrating the role of genetic heredity (Lack et al., 1999; Sicherer et al., 2000).  Other 

studies have demonstrated the importance of gastrointestinal barrier permeability in 

relation to food allergy and other atopic disorders (Chambers et al., 2004; Nunes et al., 

2016; Samadi et al., 2018).  Several studies have demonstrated an increase in 

permeability of the gastrointestinal barrier in allergic individuals, allowing an increased 

molecular transport of intact allergenic food proteins into circulation (Li et al., 2006; 

Samadi et al., 2018; Yu et al., 2001).  
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Cell-mediated reactions are classified as type IV, and are delayed hypersensitivity 

reactions (Gell and Coombs, 1975; Sampson, 1991; Taylor and Hefle, 2002).  These 

reactions generally cause localized inflammation to eliciting foods (Taylor and Hefle, 

2002).   

 

 Delayed-Type Hypersensitivity  

Delayed hypersensitivity reactions are non-IgE, cell-mediated immune responses 

whose mechanism(s) is not well understood (Taylor and Baumert, 2012; Taylor and 

Hefle, 2006).  Cell-mediated reactions are caused by the interaction of food antigens with 

sensitized, tissue bound T-cells, causing the release of inflammatory mediators 

(Sampson, 1991; Taylor and Hefle, 2002).  Affected individuals may experience 

symptoms 6 – 24 hour after ingestion which generally involve tissue inflammation 

localized to the gastrointestinal tract (Jones and Burks, 2008; Lemke and Taylor, 1994).  

Other resulting symptoms may include weight loss, anemia, bloating, diarrhea, or chronic 

fatigue (Taylor and Hefle, 2002).   

Celiac disease (celiac sprue, non-tropical sprue, or gluten-sensitive enteropathy) is 

the most commonly well-known cell-mediated immune response (Taylor and Hefle, 

2006).  The consumption of gluten containing grains (e.g. wheat, barley, rye, spelt, 

triticale) causes an inflammatory response in the intestine leading to development of a 

malabsorption syndrome (Rubio-Tapia and Murray, 2008; Taylor and Hefle, 2001).  

Nutrient malabsorption results from the gluten-initiated damage to the mucosal lining of 

the small intestine (Rubio-Tapia and Murray, 2008; Taylor and Hefle, 2001).  A 
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multitude of symptoms including inflammation, bloating, diarrhea, anemia, fatigue, and 

weight loss ensue (Rubio-Tapia and Murray, 2008).  

 

 Immediate-Type Hypersensitivity and Food Allergies 

Food allergies are classified as immediate-type hypersensitivity reactions, and are 

IgE-mediated responses to proteins naturally present in foods (Taylor and Baumert, 2012; 

Taylor and Hefle, 2002; Yu et al., 2017).  These abnormal immunological responses to 

foods can cause a multitude of symptoms affecting the cutaneous, gastrointestinal, 

respiratory, or even systemic reactions (Taylor and Hefle, 2002; Yu et al., 2017).  For a 

majority of individuals, no adverse health effects occur during the regular consumption of 

allergenic foods however, for individuals diagnosed with a food allergy, consumption of 

allergenic foods may cause detrimental and potentially life-threatening health 

consequences (Taylor and Hefle, 2002).  The immune system contains five antibody 

isotypes (IgA, IgD, IgE, IgG, IgM), each with their own specific functions (Murphy, 

2012).  IgE antibodies are responsible for elicitation of allergic reactions, in both food 

and environmental (e.g. pollen, dust, animal dander, mold) allergies (Taylor and Hefle, 

2002).  In non-atopic individuals, interactions with allergenic food proteins are mitigated 

by IgG and IgA antibodies, and do not elicit an immune response (Valenta et al., 2015).  

However, for pre-disposed individuals, interactions with allergenic proteins cause 

antigen-presenting cells (dendritic cells, B-cells), to induce T-helper 2 cells (Th2) which 

then produce cytokines (IL4, IL13) and initiate class switching to IgE for a particular 

allergen (Romagnani, 1997; Vercelli and Geha, 1992).   
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IgG4, a subtype of IgG, may have important roles in tolerance in certain 

individuals (Chinthrajah et al., 2016).  In subjects participating in oral immunotherapy 

(OIT) or epicutaneous immunotherapy (EPIT), investigators reported an increase in IgG4 

binding after completing the OIT in peanut allergic individuals (Koppelman et al., 2019; 

Vickery et al., 2013).   

 

 Allergenic Protein Sensitization 

IgE mediated immune responses involve two phases, a sensitization phase and an 

elicitation phase, illustrated in Figure 1-1 (Taylor and Hefle, 2002).  The sensitization 

phase, an asymptomatic process, initiates the production of allergen-specific IgE 

antibodies by B-cells after initial exposure to an allergenic protein (Mekori, 1996; Taylor 

and Hefle, 2006).  These allergen specific IgE antibodies bind to the surfaces of tissue 

mast cells and circulating basophils (Mekori, 1996; Taylor and Baumert, 2012).  Upon 

subsequent exposure to an allergenic protein, the allergenic epitopes crosslink surface 

bound IgE receptors (FcεRI) on mast cells and basophils (Rivera et al., 2008; Stone et al., 

2010).  Antigenic crosslinking signals effector cell degranulation, histamine release, and 

other physiological mediators associated with allergic responses (Rivera et al., 2008; 

Stone et al., 2010). 
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The onset of IgE-mediated symptoms is rapid, occurring within minutes to hours 

after ingestion of the causative food (Taylor and Hefle, 2006).  Pre-formed histamine, the 

key physiological mediator, is responsible for immediate occurring symptoms including 

inflammation, pruritus, urticaria, and dermatitis (Stone et al., 2010; Taylor and Hefle, 

2006).  A myriad of symptoms affecting multiple organ systems may occur, as described 

in Table 1-1.  Anaphylaxis is the most severe symptom associated with food allergies 

affecting multiple organ systems (respiratory, cardiovascular, cutaneous, and 

gastrointestinal) (Taylor and Hefle, 2006).  Anaphylaxis develops rapidly upon exposure, 

and may result in fatality if epinephrine is not quickly administered (Taylor and Hefle, 

2002).  Due to the vast array of potential symptoms, sensitized individuals will often 

Figure 1-1. Reaction mechanism of an IgE mediated allergic response.  

Figure from Taylor and Baumert, 2012. 
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experience a combination of symptoms rather than all potential symptoms (Taylor and 

Hefle, 2002).  The overall reaction severity is influenced by an individual’s sensitization, 

the amount of protein ingested, and the length of time since last exposure (Asero et al., 

2007; Taylor and Hefle, 2002).  

System affected Symptom 

Cutaneous Angioedema 

 Dermatitis or eczema 

 Pruritus 

 Urticaria 

Gastrointestinal Abdominal cramping 

 Diarrhea 

 Nausea 

 Vomiting 

Generalized Anaphylaxis 

Respiratory Asthma 

 Laryngeal edema 

 Rhinitis 

 

 

 Allergenic Food Proteins 

Allergenic food proteins are classified based upon their route of sensitization as 

either class 1 or class 2 allergens (Sampson, 2003).   

Class 1 allergens are oral allergens and sensitize via the gastrointestinal tract (e.g. 

peanut, egg, milk) (Han et al., 2012; Valenta et al., 2015).  Oral allergens are able to elicit 

systemic reactions, stable towards heat and acid treatments, resistant to proteolytic 

degradation, and generally water-soluble (Breiteneder and Ebner, 2000; Sampson, 1999, 

Table 1-1. Symptoms associated with IgE mediated allergic reactions 

(Adapted from Taylor and Baumert, 2012) 
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2003).  Class 1 allergens are able to both sensitize and elicit allergic reactions, and 

considered as ‘complete food allergens’ (Wang, 2009).  Class 2 allergens or inhalant 

allergens are the result of sensitization via the respiratory tract and the primary cause of 

oral-allergy syndrome (OAS).  (Nowak-Wegrzyn, 2007).  Exposure to pollen protein(s) 

leads to cross-sensitization to class 2 food allergens, due to high homology between 

pollen and class 2 allergens (e.g. apple, peach, celery) (Han et al., 2012; Nowak-

Wegrzyn, 2007; Sampson, 2003).  Class 2 food allergens are unable to sensitize, but 

capable of eliciting allergic reaction due to cross-reactivity (Wang, 2009; Yagami et al., 

2000).  The class 2 allergens are highly susceptible to heat and proteolysis, degrading 

conformational epitopes, making these proteins difficult to isolate and study (Nowak-

Wegrzyn, 2007; Sampson, 2003).  Symptoms of OAS are localized to the oropharyngeal 

area presenting mild symptoms, due to rapid protein degradation by heat and digestive 

enzymes in oral mucosa (Nowak-Wegrzyn, 2007; Vieths et al., 2002).   

In the United States, an estimated 7.6% of children and 10.8% of adults are 

diagnosed with a food allergy (Gupta et al., 2018, 2019).  In children, the most common 

allergies are peanut, milk, shellfish, and tree nuts (Gupta et al., 2018).  The most common 

allergies in adults are to shellfish, peanut, milk, tree nut, and fish (Gupta et al., 2019).  

Peanut proteins are one of the most extensively studied food allergens due to their high 

prevalence rates in both children and adults.  Currently, an estimated 2.2% of children 

and 1.8% of adults are diagnosed with a peanut allergy, and nearly all individuals are 

sensitized to multiple peanut proteins (Ara h 1, 2, 3, or 6) (Gupta et al., 2018, 2019). 
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 Diagnosis of Food Allergy 

To properly diagnose an IgE mediated food allergy, individuals should seek 

clinical diagnosis by a physician, as self-diagnosis is often unreliable (Taylor and Hefle, 

2002).  The combination of rapid symptom onset, symptoms originating from multiple 

organs, and anaphylaxis strongly suggests an IgE mediated reaction (Chinthrajah et al., 

2015).  In order to establish a true food allergy, physicians must confirm presence of IgE 

to the suspected food or ingested material (Taylor and Hefle, 2002).   

Food allergies are generally diagnosed using a combination of tools, including 

patient clinical history, oral food challenges, and laboratory tests (skin, blood tests) 

(Chinthrajah et al., 2015; Sicherer and Sampson, 2010).  Understanding the patient 

clinical and dietary history is an important component in establishing the implicated 

foods in relation to the time of ingestion and onset of symptoms (Chinthrajah et al., 

2015).  Physicians utilize several laboratory diagnostic methods for food allergy 

including skin prick tests (SPT), analysis of serum, and component resolved diagnostic 

(CRD) tests (Chinthrajah et al., 2015).  Various factors can impact SPT accuracy 

including the protein extract composition, skin prick site (e.g. arm, back), elapsed time 

before reading results, variability in result measurements, and individual patient 

differences (Bernstein et al., 2008; Sicherer and Wood, 2013).  Determination of specific 

IgE by in vitro serum immunoassays may also be performed (Hamilton and Franklin 

Adkinson, 2004).  CRD diagnosis, which identifies peptides originating from an 

allergenic protein, are used to assess the level of IgE binding to peptides or protein 

fragments, and have recently been adopted as a diagnostic tool in OAS diagnoses 
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(Chinthrajah et al., 2015).  All the diagnostic tests described (SPT, serum analyses, CRD) 

only demonstrate sensitization (Chinthrajah et al., 2015; Sicherer and Sampson, 2010).   

Ideally, an oral food challenge is performed to truly demonstrate allergenic 

reactivity and confirm results of laboratory tests (Bock et al., 1988).  The gold standard 

for diagnosing true food allergy is the double blind placebo controlled food challenge 

(DBPCFC) in which both participating parties (e.g. physician and subject) are unbiased to 

testing materials (Chinthrajah et al., 2015; Sampson, 1988).  During a DBPCFC, 

increasing doses of an allergenic food, most often within a matrix vehicle, is fed to a 

patient in a blinded manner (Bock et al., 1988; Sampson et al., 2014).  If a DBPCFC 

cannot be administered due to patient concerns, an alternative open food challenge or 

single-blind food challenge may be performed (Chinthrajah et al., 2015).  Additional 

factors useful in diagnosing food allergy include a thorough understanding of family 

history, dietary history, suspected causative foods, elapsed time before symptoms began, 

the type and severity of symptoms, and if other medications or alcohol were ingested 

prior to elicitation of symptoms (Chinthrajah et al., 2015).  Once diagnosed with a food 

allergy, individuals are advised to practice avoidance diets since no cure has been 

established (Taylor and Baumert, 2012).  Avoidance diets can be difficult to manage due 

to potential cross-contamination of products during manufacturing, leaving the 

consumers to rely on adequate labeling (Taylor and Baumert, 2012).   

 

PEANUT PROTEINS 

Peanuts (Arachis hypogaea) are leguminous plants known for their high protein 

density and oil contents (Becker and Jappe, 2014; Sebei et al., 2013).  Peanuts contain 
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25% protein by weight, are generally consumed after roasting and found in other 

prepared food products (e.g. peanut butter, snack products, baked confections) 

(Koppelman et al., 2016; Oerise et al., 1974; Sebei et al., 2013).  Peanuts are the most 

diagnosed food allergy, with 2.5% of children diagnosed, whereas only 1.8% of adults 

are diagnosed with peanut allergy (Gupta et al., 2011, 2017, 2019).  Furthermore, the 

prevalence of peanut allergy has increased in children from 0.4% in 1997 to 1.4% in 2010 

(Sicherer et al., 2010).  Peanuts are considered one of the most important food allergens 

due to its high prevalence, severity, and potency (Blanc et al., 2009; Klemans et al., 2013; 

Koppelman et al., 2005).  Several varieties of peanuts (Virginia, Spanish, Valencia, and 

Runner) commonly produced in the US today, exhibit highly similar protein contents and 

compositions (Koppelman et al., 2016).  Individual allergenicity is largely unaffected by 

the peanut varietal as shown by a comparison of protein profiles and IgE-binding 

capacities among varietals (Koppelman et al., 2016).  For these reasons and public health 

interest, peanuts have been a major research focus of the allergen community and were 

chosen for this study.  

 

 Major Allergenic Peanut Proteins 

Peanuts have been cultivated for thousands of years, originating in South America 

in modern day regions of Bolivia, Brazil, and Paraguay (Becker and Jappe, 2014; 

Gregory et al., 1980).  A. hypogaea is the modern day cultivated peanut species 

expressing an allotetraploid genome and is the resultant product of two diploid ancestral 

species, A. duranensis and A. ipaensis (Bertioli et al., 2019; De Carvalho Moretzsohn et 

al., 2004; Gregory et al., 1980).  The major allergenic peanut proteins of A. hypogaea are 
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seed storage proteins, whose function is to provide a reservoir of amino acids during 

plant growth (Dunwell et al., 2004; Müntz, 1998; Mylne et al., 2014; Shewry et al., 

1995).  At present, 17 peanut proteins have been identified as allergens by Nomenclature 

Sub-Committee (World Health Organization/International Union of Immunological 

Sciences), and of these, four (Ara h 1, 2, 3, and 6) are considered major allergens.  Peanut 

proteins are classified by solubility according to Osborne fractionation (saline soluble 

globulins, water soluble albumins, or alcohol soluble prolamins) and sedimentation 

coefficient(s) (e.g. 11S, 7S, 2S) (Branlard and Bancel, 2007; Breiteneder and Ebner, 

2000; Osborne, 1907).  The major allergenic peanut proteins Ara h 1 and 3 are classified 

within the cupin superfamily, whereas Ara h 2 and 6 are classified in the prolamin 

superfamily (Mueller et al., 2014). 

 

 Cupin superfamily 

Ara h 1 (7S vicilin) and Ara h 3 (11S legumin) are both classified as cupins due to 

their similar conserved β-barrel structures (Dunwell, 1998).  The cupins characteristically 

exhibit a bicupin structure due to the presence of two structural domains (Dunwell et al., 

2004; Mills et al., 2002).  These structural commonalities confer high thermal stability 

and resistance to gastric digestion, a trait common among allergenic proteins (van Boxtel 

et al., 2008; Koppelman et al., 1999, 2010; Maleki et al., 2000).  Although Ara h 1 and 3 

exhibit similar structural conformations, the two proteins only share 22% sequence 

identity based on alignments (data not shown).  Cupins characteristically denature due to 

extensive heating (70 – 95°C) leading to the formation of large aggregates (van Boxtel et 

al., 2008; Koppelman et al., 2003; Yamauch et al., 1991). 
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 Ara h 1  

Ara h 1, the 7S vicilin, has a monomeric molecular weight of 64.5 kDa, and 

readily associates into a trimer (~193.5 kDa) stabilized by non-covalent forces (e.g. 

electrostatic, hydrophobic, disulfide bonds) (van Boxtel et al., 2006; Burks et al., 1991; 

Schmitt et al., 2010).  Ara h 1 is highly susceptible to heating (>80°C) leading to the 

forming higher order molecular structures (MW ~500–600 kDa), particularly with an 

increase in secondary structures (e.g. β-sheets) (van Boxtel et al., 2006; Chruszcz et al., 

2011; Koppelman et al., 1999).  Ara h 1 is glycosylated at residues 521 – 523, with a 

single glycosylation site (NAS), similar to other 7S vicilins (e.g. pea, soybean), and is 

readily purified with concanavalin-A by lectin binding chromatography (Van Ree et al., 

2000)   

Ara h 1 is translated as a pre-pro-protein and undergoes two cleavage events prior 

to producing mature Ara h 1 (Hurlburt et al., 2014).  The signal peptide (amino acids 1-

25), responsible for directing the protein to the storage vacuole, is cleaved off after 

protein transport (Coleman et al., 1985; Hurlburt et al., 2014).  Following translocation, 

the N-terminal peptide sequence (amino acids 26-84) undergoes cleavage by proteases in 

the vacuole, resulting in the mature Ara h 1 protein (Aalberse et al., 2019; Hurlburt et al., 

2014).  Within the N-terminal peptide region, three IgE binding epitopes exist, with two 

of these determined as major epitopes (Aalberse et al., 2019; Burks et al., 1997; Wichers 

et al., 2004).  The existence of allergenic proteins or epitopes present in other N-terminal 

regions was similarly demonstrated for English walnuts (Jugulus regia) (Downs et al., 

2014).  Aalberse (2019) recently demonstrated the N-terminal peptide strongly binds IgE 
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from allergic patient serum, thus it should be considered as a distinct allergenic molecule 

and sensitizing protein (Aalberse et al., 2019).  The purified Ara h 1 is truncated on its N-

terminal side, lacking this pro-peptide region (Wichers et al., 2004).  Assays utilizing 

purified Ara h 1 will not include this N-terminal peptide and may therefore lead to 

insufficient results (Wichers et al., 2004).   

 

 Ara h 3 

Ara h 3 was initially identified as a 14 kDa protein however, through the use of 

cDNA cloning, it was later determined to exist as a 60 kDa monomer (Eigenmann et al., 

1996; Rabjohn et al., 1999).  The 14 kDa protein, originally identified as Ara h 3, was 

characterized as a breakdown product of the N-terminal region (Rabjohn et al., 1999).  

Further analysis of the amino acid sequence revealed Ara h 3 is highly homologous to 

other 11S globulin proteins found in soy and pea (Rabjohn et al., 1999).  Ara h 3 is 

known to act as a trypsin inhibitor, exhibiting highly homologous N-terminal regions to 

putative trypsin inhibitor proteins (Dodo et al., 2004).   

Similar to other 11S seed storage proteins, Ara h 3 associates into hexameric 

complexes (~360 kDa) composed of two aggregated trimers (Shewry et al., 1995).  To 

achieve its characteristic hexameric conformation, Ara h 3 is initially translated as a ‘pre-

pro-globulin’ and must undergo post-translational processing (Koppelman et al., 2003).  

The translated Ara h 3 precursor protein is sent to the storage vacuole, where it associates 

into trimers (Guo et al., 2008; Rabjohn et al., 1999).  Endopeptidase cleavage at the 

flexible loop region produces acidic and basic subunits covalently linked together by a 
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disulfide bond (Koppelman et al., 2003).  Each subunit represents a cupin domain, 

yielding the mature Ara h 3 protein (Piersma et al., 2005; Scott et al., 1992).   

Ara h 3 exists as multiple protein fragments at 14, 25, 42, and 45 kDa under 

protease inhibited extraction conditions (Koppelman et al., 2003).  The N-terminal acidic 

chain is present in two MW bands on a reducing gel at 12 kDa and 42-45 kDa (Piersma et 

al., 2005).  The C-terminal, or basic chain, exists as a 25 kDa fragment (Piersma et al., 

2005).   

As observed in other 11S globulins, Ara h 3 exists as multiple isoforms encoded 

by multi-gene families (Mouzo et al., 2018; Piersma et al., 2005; Yan et al., 2005).  These 

genes are located on one or more chromosomes and present in highly homologous gene 

clusters (Mouzo et al., 2018; Piersma et al., 2005; Yan et al., 2005).  The many isoforms 

of Ara h 3 produced from multiple genes, generating a variety of gene products, and 

potential truncation(s) at the N- and C-termini generates a larger probability of sequence 

isoform variants (Bertioli et al., 2019).  The contribution that each isoform makes to 

overall allergenicity is still unknown, due to the challenge of purifying individual protein 

isoforms.   

Rabjohn and co-workers identified four IgE-binding epitopes in Ara h 3, all 

located within the acidic subunit (Rabjohn et al., 1999).  Jin and co-workers demonstrated 

these epitopes are all solvent exposed owing to their allergenicity (Jin et al., 2009).  Many 

IgE epitopes are not fully elucidated since many of these epitope studies have been 

performed on recombinant proteins, however the recombinant versions lack the inherent 

variation present in naturally produced Ara h 3 (Piersma et al., 2005). 
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 Prolamins 

The 2S albumins, Ara h 2 and 6, are considered the most potent elicitors of 

allergic reactions in peanuts (Flinterman et al., 2007; Klemans et al., 2013; Peeters et al., 

2007).  These proteins exhibit strong similarity, sharing 59% sequence identity, and 

similar tightly bound structures (Koppelman et al., 2005).  Together, the 2S albumins 

were determined as potent allergens by histamine degranulation studies and rat basophil 

leukemia cell-based immunoassays (Blanc et al., 2009;; Zhuang and Dreskin, 2013).  Ara 

h 2 and Ara h 6 are considered strong clinical predictors of peanut allergy as determined 

by in vitro measurements (Klemans et al., 2013; Koppelman et al., 2005; McDermott et 

al., 2007).  When combined for diagnostic testing, Ara h 6 and Ara h 2 can effectively 

predict peanut allergy with 85% specificity (Koid et al., 2013).   

In peanuts, the 2S albumin proteins are present as monomers, in contrast to most 

other 2S albumins, which exist as heterodimers (Burks et al., 1992; Shewry et al., 1995; 

Suhr et al., 2004).  Both Ara h 2 and Ara h 6 exhibit similar structures of tightly coiled 

helices stabilized by four or five disulfide bonds, respectively, which imparts high 

stability against thermal treatments and gastric digestion (Hazebrouck et al., 2012; 

Mueller et al., 2011; Sen et al., 2002).  Digestibility studies using both gastric and 

intestinal proteases demonstrate the peanut 2S albumins retain their internal secondary 

structures (Apostolovic et al., 2016; Astwood et al., 1996; Koppelman et al., 2010; 

Lehmann et al., 2006; Sen et al., 2002; Suhr et al., 2004).  Another digestibility study 

demonstrated the N- and C-termini of peanut 2S albumins are the most susceptible to 

proteolysis (Apostolovic et al., 2016).  Both Ara h 2 and 6 are capable of generating 
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large, stable fragments after digestion with proteolytic enzymes pepsin and chymotrypsin 

(Apostolovic et al., 2016).  These digestive resistant peptides (DRP) demonstrated similar 

IgE binding and secondary structures to the intact protein (Apostolovic et al., 2016).  

 

 Ara h 2 

Ara h 2 exists in two isoforms, Ara h 2.01 (16.3 kDa) and 2.02 (18 kDa) (Chatel 

et al., 2003).  The slightly larger isoform, Ara h 2.02, has a 12 amino acid insert 

beginning at residue 71 (Apostolovic et al., 2016; Chatel et al., 2003).  Comparison of 

IgE binding between the two isoforms indicated increased IgE binding to Ara h 2.02, 

which has an additional copy of the peptide sequence DPYSPS (Chatel et al., 2003; Hales 

et al., 2004).  This inserted peptide sequence has been attributed to increased IgE binding 

(Albrecht et al., 2009; Stanley et al., 1997). 

As previously described, Ara h 2 exists as a tightly bound coil, stabilized by four 

disulfide bonds conferring thermal and digestion resistance (Mueller et al., 2011).  

Several studies have reported the presence of digestion-resistant peptides (DRP) from 

Ara h 2 (Koppelman et al., 2010; Sen et al., 2002).  Sen and co-workers described native 

Ara h 2 produces a stable 10-kDa peptide fragment after in vitro digestion with three 

gastroduodenal proteases (pepsin, chymotrypsin, trypsin) (Sen et al., 2002).  These larger 

peptide fragments are capable of eliciting allergic reactions, as demonstrated by IgE 

binding to DRPs (Apostolovic et al., 2016), and have been detected in human serum and 

breast milk after consumption (Baumert et al., 2009; Bernard et al., 2014).  
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Ara h 2 is a strong clinical predictor for peanut allergy, and shows frequent post-

translational modifications of proline residues, attributed to its potency (Blanc et al., 

2009; Kulis et al., 2012; Li et al., 2010).  Bernard and co-workers demonstrated increased 

IgE binding to hydroxylated prolines in Ara h 2 (Bernard et al., 2015).  They reported IgE 

binding was strongest to hydroxylated prolines of linear Ara h 2 epitopes, whereas IgE 

binding was noticeably weaker to peptides lacking hydroxyproline residues (Bernard et 

al., 2015).  The presence of hydroxyproline residues with increased IgE binding indicates 

the relevance of Ara h 2 as a highly potent and severe allergen with consequent 

usefulness for clinical diagnostics (Bernard et al., 2015).   

 

 Ara h 6 

Ara h 6 (14.5 kDa) is highly homologous to Ara h 2 both in sequence (59% 

homology) and structure, with nearly identical α-helical regions (Apostolovic et al., 2013; 

Koppelman et al., 2005).  Five disulfide bridges stabilize the tightly coiled helices (Suhr 

et al., 2004).  Two isoforms exist for Ara h 6, with only minor sequence differences 

(Bernard et al., 2007).  Ara h 6 exhibits similar seroprevalence to Ara h 2, with both 

thought to elicit severe reactions in sensitized individuals (Codreanu et al., 2011; 

Flinterman et al., 2007).  Both in vivo (SPT, basophil degranulation) and in vitro (IgE 

immunoblots) tests were used to establish Ara h 6 as a major allergen, which was not 

initially considered (Koppelman et al., 2005; Peeters et al., 2007).  Presence of a post-

translationally cleaved Ara h 6 has demonstrated clinical reactivity to a polyclonal 

antibody when extracted from four different peanut cultivars (de Jong et al., 2018).  Post 

translational cleavage for Ara h 6 differs compared to other plant species in which most 
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2S albumins are synthesized as one precursor peptide and then cleaved into two chains 

and exist as heterodimer (de Jong et al., 2018; Shewry et al., 1995).   

 

 Minor Peanut Allergens 

There are several other peanut proteins which are considered minor peanut 

allergens, and important clinically, but not as prevalent as the major peanut allergens 

previously described.  In an allergic population, minor allergens are defined as proteins 

which bind serum IgE in less than 50% of allergic subjects (Matricardi et al., 2016; 

Mueller et al., 2014).  

All other IUIS identified peanut allergens (Ara h 5, Ara h 7-17) are considered 

minor allergens (Mueller et al., 2014).  Ara h 7 and Ara h 9 are classified as prolamins 

(Kleber-Janke et al., 1999).  Ara h 7 shares a similar structure to Ara h 2 and 6 whereas 

Ara h 9 is an nsLTP (non-specific lipid transfer protein) (Kleber-Janke et al., 1999; 

Krause et al., 2009).  Ara h 5 and 8 are categorized as Class 2 allergens, causing cross 

reactivity with inhalant allergens (Becker et al., 2018).  Ara h 5 is similar to Bet v 2, 

whereas Ara h 8 is cross-reactive to Bet v 1 (Asarnoj et al., 2012; Mittag et al., 2004).  

Ara h 8 has hydrophobic regions similar to Bet v 1, known to bind lipids and prevent 

protein digestion (Petersen et al., 2014).   

Ara h 10 and 11 are oleosins existing in association with oil bodies (Pons et al., 

2002; Schwager et al., 2015).  These proteins are generally present as multimeric 

conformations, either as dimers or oligomers (Schwager et al., 2015).  Oleosins are 
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generally underrepresented in commercially prepared extracts which generally use 

aqueous extractions (Schwager et al., 2015). 

The defensins, Ara h 12 and 13, are cysteine rich proteins responsible for 

protection against pathogenic fungi, and exist as dimers (Sagaram et al., 2011). 

 

DIGESTION, ABSORPTION, AND TRANSPORT PROCESSES OF PROTEINS 

Unlike most dietary proteins, which are thought to be degraded into individual 

amino acids, di-, or tripeptide fragments; allergenic food proteins may remain largely 

intact as large peptide or protein fragments after gastric digestion (Chambers et al., 2004; 

Wickham et al., 2009).  These partially digested macromolecules are transported across 

the gut epithelium and enter into circulation where they are capable of eliciting an 

allergic reaction in sensitized individuals (Miner-Williams et al., 2014).  However, these 

specific transport processes for larger allergenic protein fragments are less understood 

due to a lack of in vivo detection methods for allergenic food proteins in human blood. 

Evidence of intact, or largely intact, dietary food proteins entering the 

bloodstream, particularly allergenic proteins, has been reported for ovalbumin, β-

lactoglobulin, and the peanut 2S albumin proteins, Ara h 2 and 6 (Baumert et al., 2009; 

Husby et al., 1985, 1986; JanssenDuijghuijsen et al., 2017; Paganelli and Levinsky, 

1980).  Initial investigations focusing on the uptake of allergenic proteins indicated some 

of the ingested protein (ovalbumin) remained intact and detectable by immunoassay 

following size separation chromatography (Husby et al., 1985).  Likewise, recent 

investigations focused on peanut, a highly prevalent and potent food allergen, have 
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demonstrated detectable peanut proteins, Ara h 2 and 6, in human serum by 

immunoassays (Baumert et al., 2009; JanssenDuijghuijsen et al., 2017).  Immunoassay 

detection methods are challenging due to the low abundance of target analytes and 

potential interactions with other matrix proteins and consequently, may not be the most 

suitable method for in vivo protein detection due to their limited analytical targets and 

dependence on antibody-antigen binding (JanssenDuijghuijsen et al., 2017).  However, 

improvements to in vivo detection methods has been challenging due to the unknown 

state of allergenic proteins after consumption, gastrointestinal digestion, and transport in 

vivo.  Here, we will examine the properties of allergenic proteins after consumption and 

the process of transportation  

 

 Digestion of Dietary Proteins 

Dietary protein, a vital macromolecule for human health and nutrition, is mostly 

digested in the gastrointestinal tract for rapid nutrient absorption (Erickson and Kim, 

1990; Miner-Williams et al., 2014).  Contrastingly, allergenic food proteins, which are 

highly resistant to digestion, remain intact or partially intact after gastric digestion 

(Astwood et al., 1996; Bannon, 2004).  The purpose of digestion is to reduce food 

particle size, primarily within the oral cavity and stomach, allowing the release and 

absorption of vital nutrients into systemic circulation (Kong and Singh, 2008).  As a 

result, digested dietary protein is readily absorbed for nutritional and metabolic processes 

(Kong and Singh, 2008).   

Gastrointestinal digestion is broadly described in three phases, the (1) 

intraluminal phase, (2) small intestinal phase, and (3) transport and absorption phase 
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(Erickson and Kim, 1990).  The first stage of digestion begins in the mouth, the 

beginning of the digestive tract, where food is mixed with saliva and reduced in particle 

size (Kong and Singh, 2008).  Saliva, a mixture of water, electrolytes, mucus, and 

enzymes, is responsible for solubilizing the food bolus for transport to the stomach 

(Untersmayr and Jensen-Jarolim, 2006).  The oral mucosa is the first potential site of 

antigen uptake during digestion (Dirks et al., 2005; Untersmayr and Jensen-Jarolim, 

2006).  Dirks et al., 2005 evaluated blood samples by histamine release assays from 

subjects who were instructed to chew raw peanuts but to not swallow the food material.  

The collected blood samples triggered mast cell activation and histamine release, 

supporting protein absorption can occur as early as the oral mucosa in the digestive tract 

(Dirks et al., 2005). 

The food bolus then travels through the esophagus and into the stomach, where it 

encounters gastric juices composed of mucus, hydrochloric acid (HCl), and other 

proteases (Untersmayr and Jensen-Jarolim, 2006).  The bicarbonate containing mucus 

layer is responsible for providing protection to the gastric mucosal lining (Allen and 

Flemström, 2005).  HCl reduces the stomach pH, activating pepsinogen autocatalysis 

producing active pepsin, the primary stomach protease (Erickson and Kim, 1990).   

After partial protein digestion in the stomach, the food bolus enters the small 

intestine where pancreatic digestion occurs (Erickson and Kim, 1990).  Here, alkaline 

pancreatic juices containing proteolytic enzymes (trypsin, chymotrypsin, elastase, and 

carboxypeptidase) are secreted as inactive zymogens from the pancreas (Erickson and 

Kim, 1990).  The acidic food bolus activates the pancreatic enzymes by decreasing the 

pH of the alkaline small intestine to pH 6.0 – 6.5, while simultaneously deactivating the 
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gastric proteases (Erickson and Kim, 1990; Rune and Viskum, 1969).  Trypsin is a key 

digestive enzyme activated by action of enteropeptidase, an enzyme located in the 

duodenal enterocytes (Erickson and Kim, 1990; Rinderknecht, 1993).  Activation of 

trypsin initiates a signaling cascade activating the remaining pancreatic enzymes with 

different cleavage sites (Matthews, 1975).  The pancreatic digestion phase is fundamental 

for production of short polypeptides and free amino acids necessary for rapid protein 

absorption (Erickson and Kim, 1990).  During the last portion of gastric digestion, the 

intestinal brush border peptidases act upon remaining peptides and produce a mixture of 

di- and tripeptides, as well as free amino acids for transport across the intestinal 

epithelium (Erickson and Kim, 1990).  

Gastric digestion and transit time takes approximately two hours (Untersmayr and 

Jensen-Jarolim, 2006).  The rate of digestion is influenced by several factors including 

the food matrix, chemical and physical properties of the food(s), and other physiological 

processes occurring within the GI tract (Kong and Singh, 2008).   

 

 Dietary Protein Absorption 

Protein absorption has been studied using both in vitro and in vivo assays.  

Several in vitro studies have used Ussing chambers, requiring small sections of intestinal 

tissue (ex vivo), mimicking small intestinal environment and absorption (Reitsma et al., 

2014).  Cell lines, including Caco-2 and HT-29, have also been utilized in many protein 

absorption studies (Reitsma et al., 2014).  Ideally, in vivo studies are the most relevant 

method for studying protein absorption, however few studies focused on in vivo protein 

uptake (Husby et al., 1985, 1986; Paganelli and Levinsky, 1980).  The gastrointestinal 
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tract, where a majority of absorption occurs consists of several systems working in 

sequence to absorb dietary molecules including proteins (Samadi et al., 2018).  Here, we 

review the gastrointestinal environment and absorption mechanisms for both sensitized 

and non-sensitized individuals.   

 

 Organization of the Gastrointestinal Barrier  

In order to understand gastric transport and behavior of allergenic proteins, we 

must first understand the complex structure of the small intestine, where a majority of 

digestion occurs (Kong and Singh, 2008).  The intestinal epithelium consists of multiple 

structured, yet differentiated layers working collectively to prevent uptake of harmful 

antigens whilst allowing absorption of nutritive molecules (Gigante et al., 2011; Heyman, 

2005; Reitsma et al., 2014).   

In healthy individuals, a tight monolayer of intestinal epithelial cells is formed, 

preventing passage of undesired molecules (Samadi et al., 2018).  The surface of the 

epithelium is highly folded and organized into villi and crypts resulting in an increased 

surface area of the intestinal lumen (Peterson and Artis, 2014; Samadi et al., 2018).  Four 

types of intestinal epithelial cells (IECs) are generated from intestinal epithelial stem cells 

including absorptive enterocytes, mucus producing goblet-cells, anti-microbial secreting 

Paneth cells, and enteroendocrine cells (Bevins and Salzman, 2011; Peterson and Artis, 

2014; Samadi et al., 2018).  Upon cell differentiation, the enterocytes form a barrier 

preventing passage of larger molecules by simultaneous producing tight junction proteins 

and additional membrane proteins connecting enterocytes on their apical sides (Heyman, 

2005; Samadi et al., 2018).  Other compounds including secretive IgA, mucus, and α-
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defensins, further prevent the absorption of harmful molecules across the intestinal 

epithelium (Samadi et al., 2018).  Figure 1-2 illustrates the organization of intestinal 

epithelium (Samadi et al., 2018). 
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Figure 1-2. Structure of gastrointestinal epithelium.  Adapted from Samadi et al., 2018 

 

 

The mucosal immune system is located immediately below the intestinal 

epithelium and contains a significant number of immune cells (Samadi et al., 2018).  It is 

the primary organ system involved in oral tolerance acquisition and the development of 

food allergy (Berin and Shreffler, 2016).  The intestinal epithelial cells is responsible for 

regulating intestinal permeability and contributes significantly to mucosal immune 

responses (Samadi et al., 2018).  The gastrointestinal epithelium functions to protect the 

mucosal immune system from harmful substances from the external environment (Berin 

and Sampson, 2013).  Within the intestinal mucosca, the antigen-presenting cells and 
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macrophages respond to microbiota and other molecules signaling secretion of 

immunoregulatory cytokines (Berin and Sampson, 2013).   

The mucosal immune system is made up of several immune cells including, 

CD4+, CD8+ regulatory and effector T cells, B-cells (antibody secreting), dendritic cells, 

macrophages, and eosinophils (Berin and Sampson, 2013).  A key challenge of the 

mucosal immune system is differentiating between harmful and harmless molecules 

during protein uptake (Berin and Sampson, 2013) 

 

 Transport of Digested Proteins, Peptides, and Amino Acids 

The route of allergenic protein transport and introduction into the immune system 

may play key roles in sensitization.  Previous in vitro studies have utilized cell culture 

lines, model digestive systems, or animal models to assess allergenic protein absorption, 

but the most effective way to study protein absorption is by in vivo studies (Reitsma et 

al., 2014).  The sensitization route and initial protein exposure may therefore influence 

reaction severity, the probability of sustained sensitization, or tolerance acquisition.  

Following gastrointestinal digestion, 70% of proteins exist as small oligopeptides, 

with the remainder present as free amino acids (30%). (Binder and Reuben, 2009; 

Goodman, 2010).  Free amino acids and peptides are transported from the small intestinal 

to the portal blood via absorptive enterocytes (Erickson and Kim, 1990; Goodman, 2010).  

Free amino acids are transported via multiple transport systems, with most amino acid 

uptake utilizing active transport systems (Schultz and Curran, 1970).  The amino acid 

transport systems have broad and shared substrate specificities, allowing for the transport 
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of multiple amino acids while utilizing several transport systems for individual amino 

acids (Binder and Reuben, 2009; Goodman, 2010).  In instances when amino acid 

concentrations are high in the small intestine, and not requiring active transport, 

facilitated or simple diffusion processes are additionally used (Erickson and Kim, 1990; 

Goodman, 2010).   

Oligopeptides are transported independent of the amino acids, occurring primarily 

through the PEPT1 transporter, the major peptide transporter (Devlin, 2006).  Amino 

acids are more efficiently absorbed when transported in the form of peptides (Erickson 

and Kim, 1990).  PEPT1 is an active H+ coupled transport process, utilizing the 

electrogenic difference between the luminal brush border (pH 6) and the enterocytic 

cytoplasm (pH 7) facilitating oligopeptide uptake (Steel and Hediger, 1998).  The PEPT1 

has broad substrate specificity for di- and tri-peptides capable of transporting ~400 

dipeptides and 8000 tripeptides (Daniel, 2004; Goodman, 2010).  Di- and tri-peptides 

absorbed by enterocytes at the brush border membrane, are hydrolyzed by intracellular 

peptidases (Erickson and Kim, 1990; Goodman, 2010).  However, Shimizu et al., 2004 

estimated approximately 10% of proteins are able to traverse the epithelial barrier intact 

using various peptide transport mechanisms (Shimizu, 2004).   

 

 Protein Transport Routes  

In non-sensitized, healthy individuals, the absorption of dietary proteins occurs 

via the absorptive enterocytes (i.e. transcytosis), where proteins travel from the intestinal 

lumen to the portal blood (circulation) (Reitsma et al., 2014). 
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Sensitized individuals, who exhibit immune-mediated responses to allergenic 

proteins, may demonstrate different protein absorption mechanisms.  Para-cellular 

transport and transport via mast cells (transcellular transport) are the key pathways for 

protein transport in sensitized individuals, concluded from a thorough literature review 

conducted by Reitsma et al., 2014.  Para-cellular transport is regulated by tight junctions 

allowing only small, generally hydrophilic compounds to be absorbed (Heyman, 2005).  

The integrity of tight junctions in sensitized individuals is reduced due to abundance of 

mast cells, which increases the amount of absorbed intact dietary protein (Berin et al., 

1998).  Proteins transported via the para-cellular route do not encounter lysosomal 

degradation in the enterocyte, and remain intact (non-degraded) after transport across the 

gut epithelium (Shimizu, 2004).   

Transcellular transport involves a variety of mechanisms including carrier-

mediated transport, endocytosis, or passive diffusion (Reitsma et al., 2014).  Carrier-

mediated transport for proteins has not been well described in the literature, however 

carrier-mediated transport of peptides (di- and tri-peptides) and amino acids are present in 

the small intestine and were previously discussed.  Endocytosis, the primary transcellular 

pathway used, involves several intestinal cell types including enterocytes, M cells, and 

mast cells (Reitsma et al., 2014).  During endocytosis, proteins are endocytosed by a 

specific cell (e.g. enterocyte) and transported across the intestinal barrier in small vesicles 

(Reitsma et al., 2014).  During transport, proteins are degraded by lysosomes, although a 

minor amount of protein may remain intact or partially intact (Reitsma et al., 2014; So et 

al., 2000).   

 



36 

 Normal Responses to Food Proteins and Oral Tolerance 

During the normal course of digestion, nearly all food proteins (90%) are digested 

into peptides or constituent amino acids and do not cause immunologically mediated 

responses (Heyman and Desjeux, 1992).  The remaining un-degraded proteins (~10%) 

cross the intestinal epithelium intact, as evidenced by detection of allergenic food 

proteins in serum (Baumert et al., 2009; Husby et al., 1985; JanssenDuijghuijsen et al., 

2017; Shimizu, 2004).  In healthy individuals, these intact antigens are sampled by 

immune cells after digestion, ultimately resulting in a state of acquired immune tolerance 

(Chehade and Mayer, 2005).  This acquired immune tolerance (e.g. oral tolerance) is 

caused by the production of IgG, IgM, or IgA antibodies that bind intact dietary proteins 

(Chehade and Mayer, 2005; Ko and Mayer, 2005).  Oral tolerance is immunologically 

defined as clonal anergy, a process resulting in no active response of the immune system 

(Ko and Mayer, 2005).   

A failure of oral tolerance results in development of IgE antibodies and a state of 

sensitization (Chehade and Mayer, 2005; Pelz and Bryce, 2015; Wambre and Jeong, 

2018).  In infants, whose immune systems are immature, the exposure to digestively 

stable allergenic food proteins has been suspected to cause sensitization (Sicherer and 

Sampson, 2006).  However, recent evidence suggests early introduction of allergenic 

foods could prevent the development of food allergies in children (Du Toit et al., 2015).   

Acquiring oral tolerance, or loss of sensitivity to a particular food, mitigates a 

food allergy, and some individuals may even naturally acquire tolerance over time and 

eventually outgrow an allergy (Wood, 2003).  Tolerance acquisition is dependent on the 

causative allergen but most often, children outgrow allergies to milk, wheat, soy, and egg 
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(Wood, 2003).  Allergy to peanuts, tree nuts, and shellfish are generally not outgrown and 

sustained into adulthood (Chinthrajah et al., 2015).  IgE antibodies directed against 

conformational epitopes, such as in milk and egg proteins, are generally outgrown 

(Sicherer and Sampson, 2010).  Whereas, IgE antibodies directed against linear or 

sequential epitopes, such as in peanuts or tree nuts, are associated with persistent allergy 

(Järvinen et al., 2001).  Several immunological factors are involved in the process of 

tolerance acquisition, however the complete mechanism is not yet fully understood (Ko 

and Mayer, 2005; Strobel and Mowat, 1998)  

The state of an antigen during absorption, either as a soluble or an intact 

particulate (insoluble) molecule influences tolerance acquisition (Ko and Mayer, 2005).  

Soluble antigens are more tolerated than particulate antigens, as particulate antigens have 

been shown to induce an immune response (Brandtzaeg, 2002; Sampson, 1999).  

Encapsulated ovalbumin, a particulate antigen, when exposed only at level of the gut 

associated lymphoid tissue (GALT), induced an immunologically mediated response, 

whereas soluble ovalbumin protein ingested orally did not induce an immune mediated 

response (Jain et al., 1996a , 1996b).  Soluble antigens are largely absorbed by IECs, 

which are present in high abundance in the intestinal epithelium (Ko and Mayer, 2005).  

M cells, located above Peyer’s patches, absorb particulate antigens through expressed 

surface receptors for particulate antigens (Ko and Mayer, 2005).  Dendritic cells (DCs), 

localized to the Peyer’s patches, intestinal lamina propria, and mesenteric lymph nodes, 

act as key antigen presenting cells (APCs) capable of direct antigen sampling by 

intercalating IEC’s, without disrupting the epithelial barrier (Ko and Mayer, 2005; 

Rescigno et al., 2001).  The overall factors contributing to antigenic protein uptake and in 
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acquiring tolerance between sensitized and non-sensitized individuals is largely 

unknown.   

Food allergic individuals may participate in immunotherapy protocols to re-

establish oral tolerance and achieve desensitization (Wang and Sampson, 2011).  Several 

types of immunotherapy protocols have been developed including oral immunotherapy 

(OIT), sublingual immunotherapy (SCIT), and epicutaneous immunotherapy (EPIT) 

(Koppelman et al., 2019; Sicherer and Sampson, 2010; Wang and Sampson, 2011).  

Gaining an understanding of how individuals are sensitized will help the development of 

immunotherapy protocols. 

 

 In vivo Detection of Allergenic Food Proteins 

In vivo detection of dietary protein, particularly those classified as major 

allergens, has been reported in serum, saliva, and breast milk, for several allergenic 

proteins including ovalbumin, β-lactoglobulin, and the peanut 2S albumin proteins (Ara h 

2 and 6) (Baumert et al., 2009; Husby et al., 1985; JanssenDuijghuijsen et al., 2017; 

Paganelli and Levinsky, 1980).  Initial investigations evaluated ovalbumin for dietary 

protein uptake and indicated a portion of the ingested protein remained intact and 

detectable by immunoassay following size separation chromatography (Husby et al., 

1985). 

In many cases, detection by ELISA methods is challenging due to the low 

abundance of target analytes (allergenic protein) and potential interactions with other 

endogenous serum proteins (JanssenDuijghuijsen et al., 2017).  As a result, 
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immunoassays may not be the most suitable choice for in vivo protein detection due to 

their limited specificity and reliance on antibody-antigen binding.  Immunoassays are the 

most commonly used analytical method for detection of allergenic food proteins and rely 

on antibody recognition of epitopes present on an allergenic protein (Immer and Lacorn, 

2015).  However, if antigenic epitopes are unable to be detected, this could lead to under 

estimations of the true allergenic protein concentration in vivo.  Recent evidence has 

described in vivo interactions occurring between peanut proteins (e.g. antigen) and 

endogenous serum immunoglobulins (IgG) preventing recognition of the antigenic 

epitopes by immunoassay capture antibodies (JanssenDuijghuijsen et al., 2017).  There is 

an imperative need for improved analytical methods, which are not reliant on antigen-

antibody binding and offers comparable sensitivity to immunoassays.   

 

PRINCIPLES OF MASS SPECTROMETRY 

The growing importance of MS in clinical medicine has enabled investigations of 

protein biomarkers and other biologically relevant sera proteins (Gillette and Carr, 2013).  

Recently, MS has been implemented in food allergen detection, providing an alternative 

method for protein quantification in complex food matrices (Monaci et al., 2018).  Food 

allergens are typically present in low concentrations, but remain readily detectable by 

LC-MS/MS methods (Monaci et al., 2018).  Immunoassays are the most commonly 

established technique for detection of allergenic food proteins, however recent 

advancements in serum and food allergen proteomics, as well as mass spectrometers (e.g. 

sensitivity, resolution, mass accuracy, duty cycle) has enabled clinical investigations of in 
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vivo allergenic proteins (Gillet et al., 2016; Immer and Lacorn, 2015; Mann and Kelleher, 

2008). 

In bottom-up proteomics, mass spectrometers detect protein-derived peptides 

from biological samples by measuring the mass-to-charge ratio (m/z) of gas phase ions 

with high sensitivity (Lane, 2005).  Historically, MS methods are used to determine the 

relative abundance and absolute abundance of proteins, with the former being the most 

predominantly employed method (Lane, 2005; Monaci et al., 2018).  Recently, many 

quantifiable, relative and absolute, targeted methods (e.g. parallel reaction monitoring 

(PRM), multiple reaction monitoring (MRM) have been developed and implemented in 

food allergen detection (Monaci et al., 2018).   

 

 MS Instrument Design 

The overall purpose of a mass spectrometer is to identify the mass-to-charge 

ratios of ions in the gas phase (Aebersold and Mann, 2003; Savaryn et al., 2016).  In 

principle, mass spectrometers consist of three primary components including the ion 

source, mass analyzer, and detector (Aebersold and Mann, 2003).  The analytes are 

ionized, entering into the gas phase through various ionization methods including 

electrospray ionization (ESI), atmospheric pressure chemical ionization (APCI), and 

matrix-assisted laser desorption ionization (MALDI) (Aebersold and Mann, 2003; Lane, 

2005).  The mass analyzer, the key component of any MS platform, measures the mass-

to-charge (m/z) ratio of gaseous phase ions (Aebersold and Mann, 2003).  Lastly, the 

detector is responsible for determining the abundance of each m/z identified by the mass 

analyzer (Aebersold and Mann, 2003).   
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Most often, the type of mass analyzer is used to describe, or often name, various 

MS platforms (Savaryn et al., 2016).  Several types of mass analyzers have been 

developed including linear ion traps (LIT), quadrupole mass filters (QMF), quadrupole 

ion traps (QIT), high-resolution Orbitraps, time-of-flight (TOF), and Fourier transform 

ion cyclotron resonance (FT-ICR) (Aebersold and Mann, 2003; Savaryn et al., 2016).  

For the purposes of this review, we will focus on the instrumentation of high-resolution 

Orbitraps and triple quadrupole (quadrupole mass filters), as these instrument types were 

utilized in our studies.   

 

 Orbitrap Instruments 

The Orbitrap, the predominant instrument used for PRM experiments, offers 

major advancements over previous instrument platforms including higher mass accuracy 

(compared to ion traps), increased sensitivity and dynamic range (compared to time-of-

flight), and with a smaller footprint (compared to FT-ICR) (Eliuk and Makarov, 2015).  

The Orbitrap is based on a Kingdon trap, where an electrostatic field is established in an 

enclosed can by placing a wire along its axis (Eliuk and Makarov, 2015; Kingdon, 1923).  

The Orbitrap itself consists of three electrodes including two outer cup shaped electrodes, 

which face each other and an additional spindle shaped central electrode (Eliuk and 

Makarov, 2015; Zubarev and Makarov, 2013).  Ions enter the Orbitrap and due to the 

electric fields traveling in a circular manner around the central electrode creating a 

digitized image current (e.g. in time).  The image current is processed by an ‘enhanced 

Fourier Transformation’ algorithm (e.g. in frequency) and ultimately converted to a mass 

spectrum (Michalski et al., 2011; Zubarev and Makarov, 2013).   
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The Q-Exactive (QE) platform is a hybrid design pairing a QMF with an Orbitrap 

mass analyzer (Michalski et al., 2011).  The QMF allows for rapid isolation of selected 

m/z ions during targeted acquisitions (Michalski et al., 2011).  The addition of an S-lens, 

immediately following injection from the ion source, improves ion filtering (Michalski et 

al., 2011; Zubarev and Makarov, 2013).  The QE platform is equipped with a C-trap and 

a higher energy collisional dissociation (HCD) cell, where ion fragmentation occurs 

(Michalski et al., 2011).  The C-trap is a large ion storage device, separate to the Orbitrap 

analyzer, where ions are collected in ‘packets’ and shuttled between the HCD cell and 

Orbitrap analyzer (Eliuk and Makarov, 2015; Liebler and Zimmerman, 2013).   

 

 Triple Quadrupole Instruments (QQQ) 

Triple quadrupole (QQQ) instruments, as their name implies, consist of three 

quadrupoles.  The first and third quadrupole act as mass filters for precursor and fragment 

ions, respectively, with the second quadrupole acting as the collision cell (Croote and 

Quake, 2016; Yost and Enke, 1978).  The first and third quadrupoles are used for ion 

selection providing two stage mass filtering, and increased sensitivity (Lange et al., 

2008).  When used in MRM mode, QQQ instruments are non-scanning, and only acquire 

spectral data for selected transitions, improving overall sensitivity by up to two orders of 

magnitude compared to scanning type acquisitions (PRM, Full scan data-dependent 

acquisitions (DDA)) (Domon and Aebersold, 2010; Lange et al., 2008). 
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 MS Data Acquisition 

Two types of MS acquisitions, top-down or bottom-up, are predominantly used in 

proteomic studies (Chait, 2006; Monaci and Visconti, 2009).  Top-down methods 

measure the masses of intact proteins, wherein the intact protein mass and corresponding 

fragment masses are measured (Catherman et al., 2014).  Consequently, analytical 

samples do not require enzymatic digestion (Catherman et al., 2014).  For the purposes of 

our studies, we utilized bottom-up methods, which will be the primary focus of this 

section.  Top-down methods have been thoroughly reviewed elsewhere (Catherman et al., 

2014; Toby et al., 2016).  

Bottom-up methods measure digested peptide fragments after proteins undergo 

enzymatic digestion generating smaller peptide fragments (Yates, 1998; Zhang et al., 

2013).  Protein samples are reduced, alkylated, and enzymatically digested generally by 

trypsin (Zhang et al., 2013).  Trypsin has predictable cleavage sites at C-terminal arginine 

(R) and lysine (K) amino acids, except after a proline (P), allowing peptide masses to be 

accurately determined (Aebersold and Mann, 2003; Zhang et al., 2013).   

In bottom-up experiments, using tandem MS, instruments are coupled with liquid 

chromatography system (LC, therefore LC-MS/MS), wherein the digested peptides are 

partially separated by a stationary chromatographic matrix and organic mobile phase 

gradient (Croote and Quake, 2016).  This additional level of peptide separation provides 

improvements to overall sensitivity and detection within a single chromatographic run 

(Croote and Quake, 2016).  Following chromatographic separation, peptides are ionized 

and desorbed into the gas phase when using ESI (Catherman et al., 2014; Croote and 

Quake, 2016; Zhang et al., 2013).   
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Peptide sequences are determined by comparing the parent ions detected on the 

acquired mass spectra to a theoretical enzymatically digested in silico mass spectral 

database generated from protein sequences in the database (Zhang et al., 2013).  The 

amino acid sequence of peptides is determined/confirmed from the fragment ions 

detected in the mass spectra (MS2) resulting from the collision-induced dissociation 

(CID; QTRAP) or higher-energy C-trap dissociation (HCD; QExactive) of the isolated 

parent ion (Gillet et al., 2016).  In order for peptides to be identified, the peptide 

sequences must be present in the protein sequence database (Gillet et al., 2016).  Peptides 

are identified based upon the quality of peptide-spectrum matches and the false discovery 

rate (Gillet et al., 2016).  The false discovery rate (FDR), is calculated by comparing the 

acquired data against the actual database and the decoy database using same analysis 

conditions (Gillet et al., 2016).  The decoy database may be generated by performing an 

in silico digestion of the reversed amino acid sequences from the sequence database 

(Gillet et al., 2016). 

 

 MS Acquisition Methods 

MS methods vary depending on the type of experiment an investigator chooses to 

conduct.  All instruments are able to perform discovery mode (DDA) experiments and 

targeted MS methods (e.g. Orbitraps), however some instruments (e.g. QQQ) are better 

suited for targeted experiments.  Differences between instrument sensitivity, resolution, 

and scan speed affect overall detection in each given experiment.   
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  Discovery Methods 

Thousands of peptides and proteins can be identified using discovery MS and 

often referred to as ‘shotgun’ or ‘bottom-up’ proteomic methods (Domon and Aebersold, 

2010).  The sheer number of proteins identified by MS easily surpasses the number of 

proteins identifiable by traditional affinity assays (Domon and Aebersold, 2010).  

Affinity-binding assays rely on the analyte binding, which are highly specific and not 

easily multiplexed, presenting a significant challenge in elucidating multiple proteins in a 

matrix (Monaci et al., 2015).   

In discovery acquisitions (DDA), peptides for experimental monitoring do not 

need to be pre-determined (Domon and Aebersold, 2010).  DDA provides a minimally 

biased peptide sampling strategy wherein ions are selected for fragmentation based on 

abundance following TopN selection, where N is often between 10 and 20 ions (Eliuk 

and Makarov, 2015).  However, discovery methods generally exhibit poorer overall 

sensitivity due to the inherent variability among protein samples and stochastic ion 

sampling (Gillette and Carr, 2013; Lange et al., 2008).   

 

 Targeted Acquisition Methods 

Targeted MS methods, such as PRM and MRM, have been implemented for food 

allergen detection and in some in vivo studies focused on allergenic proteins (Hands et 

al., 2020; Monaci et al., 2015; Mose et al., 2019).  Targeted MS methods can monitor 

multiple pre-determined peptides and transitions using their specific m/z values and 

chromatographic retention times (Lange et al., 2008; Picotti and Aebersold, 2012).  In 

comparison to discovery MS, targeted MS provides an alternative for detection of low 
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abundance proteins, which may not be sampled in abundance driven discovery 

acquisitions (Liebler and Zimmerman, 2013).  In addition, targeted MS methods are 

highly sensitive due to minimized background interferences (Domon and Aebersold, 

2010).  A well-developed targeted method encompasses pre-selected transitions, stable 

peptide elution times, and detectable fragment ion intensities (Domon and Aebersold, 

2010).  Consequently, targeted MS methods have been quickly adopted in food allergy 

research (e.g. clinical, industry) (Monaci et al., 2018). 

 

 Multiple Reaction Monitoring (MRM) 

MRM is considered the most robust and reproducible method for targeted peptide 

detection and, has been routinely implemented for routine protein analytical 

measurements (James and Jorgensen, 2010).  MRM methods reduce background noise 

due to narrow selective mass windows for transitions (Lange et al., 2008).  As a result, 

MRM methods are quantifiable over a broad dynamic range spanning five orders of 

magnitude (Lange et al., 2008).   

As with any targeted MS experiment, MRM methods rely entirely on suitably 

selected peptide targets and transitions (Rauniyar, 2015).  In traditional MRM, only one 

fragmentation step is performed, where the parent ion is fragmented producing daughter 

ions (Figure 1-3) (Lange et al., 2008; Yost and Enke, 1978).  During a quantifiable MRM 

assay 3 – 5 transitions per peptide are monitored for a given protein (Picotti and 

Aebersold, 2012).  Quadrupole mass analyzers are lower-resolution compared to others 

(time-of-flight, Orbitrap), but in QQQ instruments, they offer high selectivity, sensitivity, 

and optimized duty cycles (Abbatiello et al., 2010; Sherman et al., 2009).  MRM methods 



47 

are considered the ‘gold standard’ for quantification in targeted proteomics, and a 

suitable replacement for quantifiable immunoassays due to their high specificity for 

selected transitions (Addona et al., 2009; Lange et al., 2008). 

 

 MRM Cubed (MRM3) 

In complex matrices, MRM methods may not achieve the desired limit of 

detection in samples with complex matrices and low analyte concentrations.  Co-isolation 

of ions with similar m/z values and other matrix interferences may still hinder detection 

of low abundance compounds by using MRM alone (Ronsein et al., 2015).  In certain 

instrument platforms, like a QTRAP instrument, a secondary fragmentation step, MRM3 

(“MRM cubed”), can improve selectivity, sensitivity and the signal-to-noise ratio (Von 

Bargen et al., 2013).  In MRM3, the previous fragment ion (MS2), is fragmented an 

additional time resulting in a secondary fragment ions (MS3) (Figure 1-3) (Korte and 

Brockmeyer, 2016).  This additional fragmentation step has demonstrated up to a 30-fold 

increase in signal intensity, while significantly reducing baseline noise (Hunter, 2010; 

Korte and Brockmeyer, 2016).  MRM3 has been successful in quantifying proteins and 

peptide biomarkers from non-depleted serum or plasma (Fortin et al., 2009; Jeudy et al., 

2014).  The QTRAP 6500+ has the capability to perform MRM3, wherein the third 

quadrupole (Q3) acts as a linear ion trap (LIT) which captures and fragments the MS2 

ions (Korte and Brockmeyer, 2016).  The 3rd mass analyzer has the capability to record a 

full scan spectrum of fragment ions or capture pre-defined m/z values for MS3 ions 

(Korte and Brockmeyer, 2016).
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Figure 1-3. Comparison of MRM and MRM3 acquisition methods.  

Image adapted from Sciex (Plomley). 
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 Parallel Reaction Monitoring (PRM) 

Parallel reaction monitoring methods (PRM) are an alternative targeted 

acquisition method providing high sensitivity, resolution, and accurate quantification 

with isotopically labeled peptides (e.g. heavy peptides) (Rauniyar, 2015).  Due to 

instrument design improvements (e.g. injection, dynamic range, sensitivity, and 

resolution), PRM methods are frequently conducted on time-of-flight (TOF) or Orbitrap 

type instruments (Peterson et al., 2012).  In a PRM method, the selected precursor 

peptides (MS1) are fragmented and all resulting fragment ions (MS2) are recorded in 

parallel (Figure 1-4) (Ronsein et al., 2015).  As a result, pre-selection of transitions 

(precursor-fragment ion pairs) are not required since all transitions are monitored 

(Ronsein et al., 2015).  PRM methods have a broad dynamic range with quantification 

spanning four orders of magnitude (Peterson et al., 2012).  The benefit of high-resolution 

selection allows for distinction between isobaric ions and reductions in background noise 

interferences (Gallien et al., 2013; Rauniyar, 2015). 

In some cases, the monitoring of multiple fragment ions from a given precursor in 

PRM methods are more informative than traditional MRM (Ronsein et al., 2015).  By 

monitoring all fragment ions, the transition ratios can confirm detection of specific 

peptides (Peterson et al., 2012).  PRM methods provide less method development time, 

less complex data analysis, and statistically similar quantification results (Doerr, 2012; 

Duncan et al., 2009; Peterson et al., 2012; Sherman et al., 2009).    

To improve sensitivity in some cases, PRM methods can be further multiplexed 

(‘msx’), wherein the fragment ions are co-isolated and fragmented together (Sidoli et al., 

2016; Wilson and Vachet, 1996).  The simultaneous fragmentation of different m/z ions 
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reduces overall duty cycle times, increases signal-to-noise ratios and sample throughput 

(Sidoli et al., 2016; Wilson and Vachet, 1996).  The combination of these instrument and 

method components allows development of various combinations of LC-MS/MS 

methods producing highly sensitive and robust MS acquisition methods.  

 

 

 

Figure 1-4. Comparison of PRM and MRM acquisition methods.  Image 

adapted from Zhou and Yin, 2016. 
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 Quantifiable MS Methods 

The aim of many MS proteomic studies is to characterize and potentially quantify 

targeted proteins of interest (Domon and Aebersold, 2010).  Several methods have been 

developed for estimating protein abundances, including both relative and absolute 

quantification methods.   

 

 Relative Quantification 

Relative quantification is achieved by either label-free or labeling methods of 

peptide or protein analytes (metabolic, chemical) (Liebler and Zimmerman, 2013; 

Lindemann et al., 2017).  Label-free quantification is a very cost effective and high-

throughput quantification strategy, allowing for comparison of a suite of proteins 

(Lindemann et al., 2017).  Protein quantification is determined by spectral counting or by 

comparison of the peak area from a selected precursor-peptide signal intensity 

(Bantscheff et al., 2007; Lindemann et al., 2017).  Alternatively, protein quantification 

can occur through labeling methods including both metabolic and chemical labeling 

(Bantscheff et al., 2007).  Metabolic labeling techniques include stable isotope labeling of 

amino acids in cell culture (SILAC) or 15N labeling (Lindemann et al., 2017).  Chemical 

labeling based on in vitro chemical reactions between peptides and reagents produce a 

heavy labeled peptide mixture (Lindemann et al., 2017).  Other chemical labeling 

methods includes isobaric tags for relative and absolute quantification (iTRAQ) or 

tandem mass tags (TMT), which label peptide or proteins following digestion 

(Lindemann et al., 2017; Ross et al., 2004).    
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 Absolute Quantification 

True quantification, the gold standard for peptide quantification, is determined by 

labeled synthetic peptides, such as AQUA (Absolute Quantification) peptides (Gerber et 

al., 2003).  Synthetically prepared peptides contain isotopically labeled amino acids 13C 

and 15N resulting in a predictable mass shift, and these labeled heavy peptides behave 

identically to their light (unlabeled) counterparts (Gerber et al.; 2003; Lindemann et al., 

2017).  To quantify proteins, the concentrations of synthetically labeled peptides can be 

directly compared to the signal intensity of its equivalent light peptide (Lindemann et al., 

2017). 

MRM methods offer an absolute quantification method by the addition of 

isotopically labeled peptides (Lange et al., 2008).   

 

 

CONCLUSIONS  

Peanut allergies have increased in prevalence and become a health concern for 

many individuals.  Peanuts are potent allergens causing severe reactions to those affected.  

Due to the extensive interest in peanut proteins and their allergenic properties, numerous 

studies have been published regarding digestive stability and uptake (Apostolovic et al., 

2016; Baumert et al., 2009; JanssenDuijghuijsen et al., 2017; Koppelman et al., 2010).  

The illustrated digestive and thermal stability are key factors in the severity of allergic 

reactions to peanuts with the 2S albumins considered the most potent peanut allergens. 
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Several factors influence the development of food allergies, ultimately causing 

modification(s) in absorption of these allergenic proteins.  We suspect different 

mechanisms are suspected to be involved in allergenic protein absorption; however, in 

vivo testing has yet to be established to further demonstrate these effects.  Furthermore, 

diagnostic testing still relies on a DBPCFC’s.   

Overall improvements in both immunoassay detection methods and the 

understanding of allergenic protein behavior, particularly for peanut, has recently been 

established.  However, the detection of exogenous food proteins in serum remains 

challenging.   

Mass spectrometry is a powerful analytical tool with great sensitivity capable of 

detecting multiple protein targets simultaneously.  Mass spectrometry has been used in 

other in vivo studies for low protein detection, but only been applied for in vivo detection 

of allergens in a handful of studies.  Targeted acquisition methods, MRM, MRM3 and 

PRM, offer individual advantages to the detection of low abundance proteins due to their 

increased selectivity and sensitivity.   

A thorough understanding of the molecular and structural properties of individual 

peanut allergens will enhance our understanding of allergenic protein uptake and 

transport processes.  The route(s) of protein uptake, as well the overall rate, may provide 

better insights into an allergic reaction, and particularly those mechanisms which differ 

greatly between sensitized and non-sensitized person.   
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CHAPTER 2: EVALUATION OF DE-COMPLEXING STRATEGIES FOR IN 

VIVO DETECTION OF FOOD PROTEINS IN HUMAN SERUM USING MASS 

SPECTROMETRY 

 

ABSTRACT  

Food allergy is a serious and potentially life-threatening condition, caused by the 

ingestion of allergenic foods.  The proteins of allergenic foods are resistant to thermal 

treatment and gastric digestion, and may enter into circulation as intact or partially intact 

molecules (Baumert et al., 2009; Dirks et al., 2005; Husby et al., 1985; 

JanssenDuijghuijsen et al., 2017).  Food allergy prevalence rates have increased over the 

past decade, and in particular, peanut allergy has increased 20% since 2010 (Gupta et al., 

2017; Jackson et al., 2013; Kotz et al., 2011; Lieberman et al., 2018; Rinaldi et al., 2012; 

Sicherer et al., 2010).  In efforts to understand this increasing prevalence rate, it is 

important to understand in vivo protein transport and sensitization; however, limited 

studies exist focusing on allergenic protein uptake and allergenic protein characteristics 

following uptake. 

Detection of peanut proteins in human body fluids (serum, breast milk, saliva) has 

been observed at very low levels by immunoassay(s) with poor overall recoveries in 

comparison to the amount of protein consumed (Baumert et al., 2009; 

JanssenDuijghuijsen et al., 2017).  The specific aim of this chapter is to evaluate multiple 

serum de-complexation strategies, with the overall objective of developing an in vivo 

discovery LC-MS/MS acquisition method for peanut proteins in serum.  Shotgun LC-
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MS/MS is able to identify multiple peanut proteins and other serum proteins within a 

single sample, making it a highly advantageous and informative method.  

Initial analyses of subject serum collected after peanut consumption were negative 

for peanut peptides when evaluated by a standard LC-MS/MS discovery acquisition 

method.  These subject serum samples were collected and analyzed in studies conducted 

by Baumert et al., 2009.  These subject sera samples were previously determined positive 

by immunoassay, indicating our current discovery LC-MS/MS method is not sufficiently 

sensitive (Baumert et al., 2009).  As a result, we began our studies by evaluating various 

de-complexation strategies for removal or separation of abundant serum proteins.   

A variety of de-complexing strategies, including four commercial depletion kits, 

an organic solvent fractionation method, and modified MS acquisition settings 

(exclusion, inclusion lists) were evaluated using a model incurred matrix of human serum 

and raw peanut extract (10:1 (w/w) protein) with detection by discovery LC-MS/MS.   

Commercial depletion kits, targeting the abundant serum proteins, co-depleted 

peanut proteins from the model matrices as determined by SDS-PAGE and LC-MS/MS.  

The commercial depletion kits demonstrated a lack of specificity and simultaneously 

removed peanut proteins from the analytical matrices, peanut or sera-peanut.  We then 

evaluated an organic fractionation technique to decrease sample complexity prior to LC-

MS/MS analysis.  This cost-effective de-complexation strategy was useful in decreasing 

sample complexity, however, we observed variability in fractionation patterns of 

immunoglobulins and peanut proteins, dependent on individual sera (e.g. sensitized or 

non-sensitized).  Evaluations of MS acquisition settings, inclusion and exclusion lists, for 

specified peptides (i.e. m/z events) were largely unsuccessful.   
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Overall, each de-complexation strategy was successful in their described 

functionality of depleting, fractionating, or including or excluding of specific mass events 

but, were largely unsuccessful.  We suggest evaluating non-depleted serum for future in 

vivo analyses since de-complexation strategies are unfit for in vivo detection of allergenic 

proteins in serum.   

 

INTRODUCTION 

Peanut allergy, is the most prevalent allergy in children and third most prevalent 

in adults (Gupta et al., 2018, 2019).  It is a highly severe and potent allergy, which can be 

elicited by trace amounts of peanut protein in the most sensitive individuals (Klemans et 

al., 2013; Sicherer and Sampson, 2007).  Peanut allergens have been widely studied due 

to their severity, prevalence, and ability to retain allergenicity into adulthood as most 

children do not outgrow peanut allergy (Wood, 2003).  Together, peanuts and tree nuts 

account for a majority of anaphylactic cases reported (Sicherer and Sampson, 2007; 

Sicherer et al., 2010).  Due to its continued increasing prevalence, and limited 

immunotherapy treatments, peanut allergy is a major public health concern.   

It is suspected that proteins must enter into circulation in an immunologically 

reactive form in order to elicit an allergic reaction (Heyman, 2005).  In peanuts, the 2S 

albumins contribute to overall allergenicity and potency, due to their thermostability and 

resistance to gastric digestion (Sen et al., 2002; Suhr et al., 2004).  The 2S albumins and 

their tightly coiled helices resist digestion and retain secondary structural conformations 

(Apostolovic et al., 2016).  Consequently, Ara h 2 and 6 are clinically relevant proteins 

for peanut allergy diagnosis based on effector-cell assays (Blanc et al., 2009; Kulis et al., 
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2012).  These proteins are capable of desensitization in a mouse model, further 

demonstrating their clinical relevance (Kulis et al., 2012; Zhuang and Dreskin, 2013).  In 

combination, these peanut allergen characteristics enhances their ability to retain 

conformation and traverse the gastrointestinal barrier largely intact.   

Previous studies have predominantly utilized immunoassay methods, which are 

highly selective for pre-determined antigenic targets (antigen-antibody capture), for in 

vivo allergenic protein(s) measurement (Koppelman and Hefle, 2006).  These in vivo 

studies demonstrated multiple analytical targets including Ara h 2, Ara h 6, or their 

digestive resistant peptide (DRP) fragments, were present in human serum and breastmilk 

after consumption (Baumert et al., 2009; JanssenDuijghuijsen et al., 2017).  Baumert et 

al., 2009 described detection of a digestion resistant peptide of Ara h 2 in healthy adult 

serum and saliva using an inhibition ELISA to the DRP-Ara h 2 (Baumert et al., 2009).  

Schocker et al., 2016 coupled immunoaffinity capture antibody and LC-MS/MS and 

inhibition ELISA for detection of Ara h 2 in breastmilk (Schocker et al., 2016).  More 

recently, Ara h 6 was detected in subject serum collected after peanut consumption by 

commercial ELISA (JanssenDuijghuijsen et al., 2017).  One key challenge when using 

ELISA methods is the unknown nature of allergenic proteins after uptake, which may be 

modified during digestion and unrecognizable by capture antibodies (Reitsma et al., 

2014).   

To further complicate matters of detection, the human serum proteome is a 

dynamic and dense protein matrix (60 – 80 mg protein/ml serum) spanning twelve orders 

of magnitude (Adkins et al., 2002; Anderson and Anderson, 2002).  Only a few dozen 

proteins account for the majority (99%) of serum protein content whereas thousands of 
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proteins contribute to the remaining 1% (Anderson and Anderson, 2002; Pieper et al., 

2003).  The lesser abundant proteins are of significant clinical interest due to their 

potential impacts on human health and disease (Roche et al., 2009).  

Due to the inherent complexity of serum, numerous depletion techniques have 

been developed to remove the majorly abundant serum proteins (e.g. serum albumin, 

immunoglobulins).  Depletion methods selectively remove protein by immunoaffinity, 

dye binding, or other physico-chemical methods, and most often targeting multiple 

proteins (Gianazza and Arnaud, 1982; Leatherbarrow and Dean, 1980).  Although 

effective, there is potential of co-elution of low abundant proteins during depletion of the 

target proteins (Roche et al., 2009).  Removal of the abundant serum proteins inherently 

decreases sample complexity, improving overall detection of lesser abundant proteins, 

including biomarkers or, for our purposes, allergenic food proteins.  The objective of this 

study was to evaluate a variety of de-complexing strategies for removal of abundant 

serum proteins.   

The utilization of discovery LC-MS/MS allows for the simultaneous identification 

of serum proteins involved in IgE-mediated reactions (Gillet et al., 2016).  We would be 

able to identify proteins upregulated during an immunologically mediated response 

(Gillet et al., 2016), making discovery MS an advantageous method for improving our 

understanding of the mechanisms associated with allergenic protein uptake.   
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MATERIALS AND METHODS 

 Reagents 

 All reagents used were of analytical grade for all experiments.  All reagents used 

for LC-MS/MS sample preparations and analyses were of MS grade.   

 

 Preparation of Peanut Flours 

Raw and roasted peanut extracts were prepared at two extraction buffer 

concentrations, 0.1 and 0.01 M phosphate buffered saline (PBS).  The prepared raw 

peanut extracts were used as positive controls in subsequent LC-MS/MS method 

developmental experiments.   

Raw red-skin peanuts (Wor-Fung blanched peanuts, distributor K.N.T.C, South El 

Monte, CA 91733, USA), purchased locally, were used to prepare raw peanut flour.  

Peanut skins were removed and peanuts were washed five times with distilled water and 

air-dried.  Raw peanuts were ground in a Magic Bullet (Homeland Housewares, LLC) 

blender.  Ground peanuts were defatted (1:5 w/v peanut:hexane) three times, filtered, and 

air-dried.  The prepared, defatted raw peanut flour was ground once more as described 

previously.   

Roasted peanut extracts were prepared from partially defatted (12%) light roasted 

peanut flour purchased from Golden Peanut Company (Alpharetta, GA, USA).   

Raw and roasted peanut flours were extracted 1:50 (w/w) in 0.1 or 0.01 M PBS in 

a 60°C sonicating water bath for 20 minutes, followed by centrifugation (3,500 x g) at 

10°C for 10 minutes (Beckman GS-15R centrifuge).  The supernatants (aqueous phase) 
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were removed and clarified by centrifugation (17,000 x g) for 10 minutes (Thermo 

Scientific™ Sorvall Legend Micro 17).  Clarified extracts were pooled and centrifuged 

(3,500 x g, 10 minutes, 10°C) (Beckman GS-15R centrifuge) to achieve a homogenous 

extraction solution.  Extracts were dialyzed using 3500 MWCO dialysis cassettes 

(Thermo Scientific™ Slide-A-Lyzer™ Dialysis Cassettes, Cat. No. 66330, Pierce 

Biotechnology, Rockford, IL, USA) overnight at room temperature to 0.1 or 0.01 M PBS, 

respectively, with two buffer exchanges.  Dialyzed samples were stored in 1 mL aliquots 

at -20°C until needed for further analysis.   

Peanut extracts were characterized by reducing SDS-PAGE and protein 

concentration was determined by 2D Quant Kit (GE Healthcare Bio-Sciences, Prod. No. 

80648356, Piscataway, NJ).  The 2D Quant assay determines the protein concentration by 

precipitation followed by re-suspension in a copper ion solution (GE Healthcare).  

Triplicate extracts were evaluated by the 2D Quant kit for protein concentration.   

SDS-PAGE was performed under reducing conditions using NuPAGE Bis-Tris 

Mini Gels 4-12% (1.0 mm, 12 wells) and constant voltage (200V) for 40 minutes in an 

XCell SureLock Mini Cell Electrophoresis System (Invitrogen Life Technologies).  Raw 

and roasted peanut extracts were diluted (1.5x) in 4 x concentrated Laemmli buffer and 

1% β-mercapto-ethanol (BME).  Extracts were reduced by heating at 95°C for 5 minutes.  

Samples (20 µL) were loaded into each gel well.  Precision Plus Protein Dual Xtra 

Standards (Bio-Rad) were used as the molecular weight (MW) standard.  Gels were 

stained overnight in Coomassie Brilliant Blue R-250 (Bio-Rad) stain.  Gels were de-

stained (Coomassie Brilliant Blue R-250 destaining solution, Bio-Rad), rehydrated, and 

imaged.   
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Unless otherwise noted, raw peanut extracts were used for preparation of model 

matrices in all subsequent experiments.   

 

 Preparation of Model Matrices for Discovery LC-MS/MS Method 

Development 

Subject serum were collected before (baseline) peanut consumption by Baumert et 

al., 2009 for immunoassay evaluation.  Subject sera was then collected after peanut 

consumption at specified time points (0.5, 1, 2, 3, 4, 6, 8, and 24 hours).  Subjects were 

instructed to consume 25 g roasted peanut flour, administered in capsules with 0.83 g 

roasted peanut flour per capsule.  According to Baumert et al., 2009, venous blood (10 

mL) was collected using a heparin lock inserted into an arm vein.  Blood was processed 

into serum and stored at -20°C.  Serum was stored long-term at -80°C for use in later 

studies.   

Baseline serum was used in preparation of model-matrices.  Serum and raw 

peanut extract (1.34 µg/µL) were individually diluted 10-fold in 0.01 M PBS, and 

combined, 10:1 (w/w) serum:peanut.  Model matrices were prepared to achieve the 

desired protein amount (µg) for the subsequent experiments described below.  Control 

samples (sera, peanut) were individually and equivalently prepared to the model matrices 

by mixing with 0.01 M PBS to the desired protein amount.  Samples were vortexed to 

mix and incubated on ice (30 minutes) until needed for further analysis. 
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 Discovery LC-MS/MS Acquisition Method Optimization  

Using the serum-peanut matrix, and equivalently prepared individual serum and 

peanut extract controls, we optimized the LC-MS/MS acquisition settings to enhance 

detection of low abundant peptides.   

 

 In-Solution Reduction, Alkylation, and Trypsin Digestion for LC-MS/MS 

Analysis of Model Matrices 

An in-solution trypsin digestion from Thermo Scientific™ (Thermo Scientific™ 

In-Solution Tryptic Digestion and Guanidination Kit, 89895, Pierce Biotechnology, 

Rockford, IL, USA) was modified for sample preparation.  The serum-peanut matrix was 

diluted to 2 µg/µL, and 8 µL were taken for tryptic digestion.  Proteins were diluted with 

50 mM ammonium bicarbonate and reduced with 100 mM dithiothreitol at 95°C for 5 

minutes.  Reduced samples were alkylated with 100 mM iodoacetamide, in the dark at 

room temperature for 20 minutes.  Trypsin (100 ng/µL made in 5 mM acetic acid) was 

added and incubated for 3 hours at 37°C.  A second addition of trypsin was added and 

continued to digest overnight at 30°C, achieving a final enzyme:protein ratio 1:50 (w/w).  

Digestion was stopped by freezing samples.  Digests were de-salted using C18 spin 

columns (Pierce C18 spin columns, Thermo Scientific™, Rockford, IL, USA) according 

to the manufacturer’s instructions, and eluted in 70% acetonitrile.  De-salted peptides 

were dried to completion under a vacuum by centrifugal evaporation (Jouan RC-10.10; 

RCT-90; Winchester, VA, USA).  Peptides were re-suspended to 0.2 µg/µL in 0.1% 

formic acid, 5% acetonitrile.  Re-suspended peptides were injected (5 µL) for LC-

MS/MS.   
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 LC-MS/MS Acquisition using DDA 

Peptide digests (5 µL) were chromatographically separated using an UltiMate 

3000RSL® liquid chromatography (UPLC) system (Thermo ScientificTM) equipped with 

a Hypersil Gold C18 1.9 μm, 100 x 1 mm reversed phase column (Thermo ScientificTM) 

with a pre-column (20 x 2.1 mm reversed phase, 1.9 µm, Thermo ScientificTM) set at 

35°C. Mobile phase A contained 0.1% (v/v) formic acid in water and mobile phase B 

contained 0.1% (v/v) formic acid in acetonitrile.  Peptides were separated using a linear 

gradient of 2 – 40% mobile phase B over 70 minutes at a flow rate of 60 µL/min.  

Following the gradient elution, the column was washed (60 µL/min) for 5 minutes at 98% 

mobile phase B, followed by 100% methanol for 5 minutes (60 µL/min).  The separation 

column was re-equilibrated at 2% mobile phase B (180 µL/min) for 15 minutes.  The 

flow rate was reduced to 60 µL/min prior to the next sample injection.  

DDA were performed on a Thermo Q Exactive PlusTM Hybrid Quadrupole-

OrbitrapTM mass spectrometer (Thermo ScientificTM) operating in positive ion mode.  The 

MS acquisition settings adjusted were dynamic exclusion time, MS2 fill time (Ctrap fill 

time), Top N acquisition, peptide charge states for MS2 acquisition(s), and automatic 

gain control (AGC) target.  The settings described in Table 2-1 were optimized to 

improve detection of low abundant proteins.   

Survey scan mass spectra (400 – 1400 m/z) were acquired at a nominal resolution 

of 70,000 FWHM (200 m/z) and an AGC target of 3e6.  Fragmentation spectra were 

acquired at a nominal resolution of 70,000 FWHM, normalized collisional energy (NCE) 

set at 27, and an AGC target of 1e5.  The electrospray ionization settings were as follows: 
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sheath gas 15 AU, spray voltage 3500 V, capillary temperature 320°C, S-lens RF level 

60.   

Each method, described in Table 2-1, was evaluated sequentially for each 

analytical sample (1) sera, (2) peanut, and (3) sera-peanut. 

 

Method 

Dynamic 

exclusion 

(seconds) 

TopN Charges 
MS2 fill 

time (msec) 

1 3 10 1, 2, 3, 4, 5, 6 60 

2 30 20 2, 3 60 

3 20 20 2, 3, 4 240 

 

 

 

 

 LC-MS/MS Data Analysis 

Data were analyzed using PEAKS version 8.5 (Bioinformatics Solutions Inc., 

Waterloo, Ontario, Canada) software against two publically available databases from 

UniProt, (1) Homo sapiens and (2) Arachis hypogaea.  Protein identifications were made 

by searching a (A) sequence database of peanut (Arachis hypogaea, taxon identifier 

3818), and (B) sequence database of human (Homo sapiens, taxon identifier 9606) as 

available in UniProt on 08/31/2016.  Mass spectral data were normalized for the total ion 

current (TIC) and semi-quantified using label-free quantification.  The following criteria 

Table 2-1. Discovery LC-MS/MS acquisition settings for 

improvement in detection of low abundance peptides. 
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were used for protein identification: no missed tryptic cleavages, fixed modification of 

carbamidomethylation of cysteine; variable modifications of methionine, oxidation, and 

hydroxylation of proline; parent mass error tolerance 2 ppm, fragment error tolerance 

0.02 Da; and an FDR set to 1%.   

 

 Initial Evaluation of Subject Serum Samples and Model Matrices of Sera-

Peanut Matrix 

Initial in vivo evaluations for peanut protein in serum were conducted by Baumert 

et al., 2009 by competitive immunoassay.  The 60 minute time point was selected for 

initial discovery LC-MS/MS evaluations due to the high reported concentration by DRP-

specific ELISA (Baumert et al., 2009).  Over a 24 hour consumption period, the average 

absorption reported was 131 ng DRP-Ara h 2/mL serum.   

 

 In-Solution Reduction, Alkylation, and Trypsin Digestion of Subject Sera 

Samples  

Subject sera (baseline, 60-minute) were prepared for LC-MS/MS analysis using 

the in-solution trypsin digestion, as described previously (page 80).  Alternatively, after 

de-salting, peptides were eluted in 50% (v/v) acetonitrile, and then dried to completion 

under a vacuum by centrifugal evaporation (Jouan RC-10.10; RCT-90; Winchester, VA, 

USA).  Peptides were re-solubilized in 0.1% formic acid, 5% acetonitrile to a final 

concentration of 0.5 µg/µL.  Peptide digests were injected (2 µL) in duplicate for LC-

MS/MS acquisitions.   
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 LC-MS/MS Acquisition Settings 

Data dependent acquisitions (DDA) were performed using the optimized 

discovery method, method 3, as previously described (page 81).   

 

 LC-MS/MS Data Analysis 

Data were analyzed using PEAKS version 8.5 (Bioinformatics Solutions Inc., 

Waterloo, Ontario, Canada) software, as previously described (page 82).   

 

 Development of Exclusion and Inclusion Lists  

 

A. Exclusion List Development 

Data collected from baseline serum samples used in the preceding experiment 

were analyzed for use in the exclusion list.  The optimized LC-MS/MS chromatographic 

method and acquisition settings were used to generate the exclusion list previously 

described.  Acquired data were analyzed using PEAKS version 8.5 (Bioinformatics 

Solutions Inc., Waterloo, Ontario, Canada) against the publically available Homo sapiens 

(taxon identifier 9606) database (UniProt) as available on 8/31/2016, using the previously 

described data analysis settings (page 82).  The most abundant identified H. sapiens m/z 

events were selected (top 5,000 events) and collated into an exclusion list included in the 

LC-MS/MS acquisition methodology.  These selected m/z’s were cross-referenced 
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against the generated peanut data to eliminate identical m/z’s.  Charge states of 1+, 5 to 

9+ were excluded from acquisition.   

 

B. Inclusion List Development 

We similarly investigated inclusion lists in combination with the LC-MS/MS 

acquisition workflow.  The inclusion lists were developed and applied in the same 

manner as exclusion lists.   

Inclusion lists were generated by obtaining spectral data from duplicate digestions 

of sera-peanut (prepared with baseline sera) and peanut (alone).  Sera-peanut (10:1 

(w/w)) and an equivalent volume of peanut were enzymatically digested and prepared for 

LC-MS/MS analysis.  Analytical samples were prepared in a volumetrically equivalent 

manner, insuring comparability.  The same in-solution trypsin digestion protocol and de-

salting protocol were followed as described in the previous section, (page 83).  Digests 

were re-suspended in 0.1% formic acid, 5% acetonitrile to a concentration of 0.5 µg/µL.  

The optimized LC-MS/MS chromatographic method and acquisition settings were used 

to generate the inclusion list.  Digested and re-suspended samples were injected (2 µL) in 

duplicate.   

Inclusion lists were evaluated against a tryptic digest of subject serum (60 

minutes), collected after consumption (Baumert et al., 2009).  Only those parent ions with 

2, 3, or 4+ charge states were included.   
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C. Exclusion and Inclusion List Evaluation 

The prepared exclusion and inclusion lists were evaluated against subject serum 

samples (Baumert et al., 2009) collected after peanut consumption (60 minutes) and 

prepared for analysis as described previously (page 83).  The standard LC-MS/MS 

acquisition workflow was used for evaluation of each individual list, exclusion and 

inclusion, as well as the use of the two lists together (page 81; method 3).  Only those 

parent ions with 2, 3, or 4+ charge states were included.  Digested and re-suspended 

samples were injected (2 µL) in duplicate.   

 

D. LC-MS/MS Data Analysis 

All data for exclusion and inclusion lists were analyzed using PEAKS version 8.5 

(Bioinformatics Solutions Inc., Waterloo, Ontario, Canada) against the appropriate 

database, as previously described (page 84).  For exclusion lists, the top 5,000 serum 

specific m/z events were used.  For inclusion lists, all peanut specific m/z events, up to 

the top 5,000 identifications, were included in an inclusion list. All data analysis 

parameters remained unchanged from those previously described (page 82).  

 

 Evaluation of Commercial Depletion Kits  

The following commercial depletion kits (1) Pierce Top2 Abundant Depletion 

spin columns (albumin, IgG), (2) PureProteome Albumin magnetic beads (albumin), (3) 

Pierce albumin depletion kit (cibacron dye binding), and (4) BioVision Protein G 

Sepharose (IgG depletion), were evaluated for removal of targeted serum proteins.  Table 
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2-2 describes the mechanisms employed and serum proteins targeted by each depletion 

method.   

Depletion kits were evaluated for target protein specificity using two key criteria 

(1) effective depletion of targeted serum proteins and (2) absence of depletion of peanut 

proteins (e.g. peanut proteins remain in depleted analytical samples).  A model matrix of 

human serum and (raw) peanut extract (10:1 (w/w) protein) were analyzed for specific 

protein removal.  The serum and peanut extract were individually diluted 10-fold prior to 

combining. Control samples were prepared using equivalent volumes of (a) serum or (b) 

peanut extract, substituted with 0.01 M PBS for each removed matrix component.  
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Depletion kit Manufacturer 
Targeted 

proteins 

Depletion 

mechanism 

Maximum 

protein load 

(µg) 

Pierce Top2 

Abundant Depletion 

columns 

Pierce 
Albumin, 

IgG 

Resin, spin 

columns, anti-HSA, 

anti-IgG 

600 µg sera 

protein 

PureProteome 

Albumin Magnetic 

Beads 

EMD 

Millipore 
Albumin anti-HSA 

1:30 (v/v) 

serum:depletion 

slurry 

Pierce Albumin 

Depletion Kit 
Pierce Albumin 

Immobilized 

Cibacron blue dye 

agarose resin 

2,000 µg (2 

mg) human 

serum albumin 

BioVision Protein G 

Sepharose 
BioVision IgG 

Protein G 

conjugated to 

Sepharose beads 

1:2 (v/v) 

serum:resin 

 

 

 Pierce™ Top2 Abundant Depletion Spin Columns (albumin, IgG) 

The Pierce Top2 Abundant Depletion spin columns were evaluated for removal of 

albumin and IgG from serum.  The depletion spin columns contained immobilized anti-

human serum albumin and anti-IgG antibodies for protein removal.  Samples were 

depleted according to manufacturer’s instructions, described as follows.  The prepared 

analytical samples, serum-peanut, serum, and peanut, were applied to depletion spin 

columns (10 µL).  Spin columns were mixed using an end-over-end mixer for 30 minutes 

at room temperature.  After mixing, depleted serum was eluted into a collection tube and 

centrifuged for 2 minutes at 1,000 x g (Thermo Scientific™ Sorvall Legend Micro 17).  

Table 2-2. Commercial serum depletion kits for evaluation in de-complexing 

strategies 
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Depleted samples were prepared for LC-MS/MS analysis as previously described (page 

80).   

Control, non-depleted samples were simultaneously prepared.  During depletion, 

the original sample volume is diluted after mixing with the depletion resin slurry.  

Therefore, non-depleted samples were prepared equivalently by diluting non-depleted 

samples (serum-peanut, serum, peanut) in 0.01 M PBS to the same volume.  Non-

depleted controls were prepared for LC-MS/MS as described below.  

 

i. In-Solution Reduction, Alkylation, and Trypsin Digestion for LC-

MS/MS Analysis  

All samples, depleted and non-depleted, were prepared for LC-MS/MS analysis, 

as previously described (page 80).  However, during this experiment, 4 µL of each 

sample (maximum 10 µg protein) were diluted to a final concentration of (0.5 µg/µL) 

with 50 mM ammonium bicarbonate (ABC).  Following de-salting, peptides were eluted 

in 50% acetonitrile and dried.  Peptides were re-solubilized in 5% acetonitrile, 0.1% (v/v) 

formic acid to a maximum concentration of 0.25 µg/µL prior to injection on LC-MS/MS.  

DDA analysis was conducted by injecting samples (2 µL) in duplicate, with a maximum 

protein load of 500 ng on column, using the previously optimized method (page 84). 
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ii. Modification of Salt (NaCl) Concentration of Pierce Top2 Albumin 

Depletion Kit 

To reduce potential binding of peanut proteins to the depletion matrix, we 

evaluated the elution buffer salt concentration (NaCl) for recovery of peanut proteins 

using the Pierce Top2 Abundant Depletion spin columns.  After depletion, samples were 

eluted in 0.01 M PBS, 0.15 NaCl, 0.02% azide, pH 7.4.  To assess column binding 

specificity, the peanut only matrix was evaluated identically to the previously described 

methodology (Pierce™ Top2 Abundant Depletion Spin Columns (albumin, IgG)).  The 

salt (NaCl) concentration(s) of the kit elution buffer, (0.01 M PBS, 0.15 M NaCl, 0.02% 

azide, pH 7.4) were prepared at the 0.15, 0.25, 0.50, 0.75, 1.00 M NaCl.  Depleted eluates 

were evaluated for the presence of peanut proteins by discovery LC-MS/MS, as described 

previously (pages 80).  SDS-PAGE was not performed on these samples.   

 

iii. LC-MS/MS Data Analysis 

Acquired data were processed using PEAKS version 8.5 (Bioinformatics 

Solutions Inc., Waterloo, Ontario, Canada).  Protein identifications were made by 

searching a (a) sequence database of peanut (Arachis hypogaea, taxon identifier 3818), 

and (b) sequence database of human (Homo sapiens, taxon identifier 9606) as available in 

UniProt on 8/31/2016.  Mass spectral were normalized for the total ion current (TIC) and 

semi-quantified using label-free quantification.  The following criteria were used for 

protein identifications: no missed tryptic cleavages, fixed modification of 

carbamidomethylation of cysteine; variable modifications of methionine, oxidation, and 
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hydroxylation of proline; parent mass error tolerance 2 ppm, fragment error tolerance 

0.02 Da; FDR 1%; charge states of +2, +3, and +4.   

 

 PureProteome™ Albumin Magnetic Beads 

PureProteome™ Albumin Magnetic Beads (LSKMAGL10, EMD Millipore, 

Billerica MA, USA), were evaluated in a similar manner to the previously described 

depletion kit (Pierce Top2 Abundant Depletion Columns).  Depleted and non-depleted 

samples (serum-peanut, serum, and peanut) were evaluated for specific removal of 

albumin and recovery of peanut proteins by discovery LC-MS/MS.  The PureProteome™ 

Magnetic Beads bind albumin by immunoaffinity capture.  The anti-albumin antibodies 

are coupled to magnetic beads, facilitating efficient separation of bound albumin and 

capture antibodies.  Following incubation and separation, the unbound sample fraction, or 

depleted fraction, was removed and prepared for LC-MS/MS.   

Control (non-depleted) samples were prepared in a volumetrically equivalent 

manner by diluting samples in 0.01 M PBS to the same volume as depleted samples.  The 

maximum concentration of the non-depleted samples was 2.1 µg/µL.   

Tryptic digestion was performed, in a volumetrically equivalent manner using the 

previously described protocol (page 80) modified in-solution trypsin digestion (Thermo 

Scientific™, 89895) by diluting a maximum of 10 µg protein in 50 mM ammonium 

bicarbonate to a maximum concentration of 0.6 µg/µL.  All protein samples were 

reduced, alkylated, trypsin digested, and de-salted, as described previously (page 80).  

Following de-salting peptides were eluted in 50% acetonitrile and dried (page 83).  
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Peptides were re-suspended in 0.1% formic acid, 5% acetonitrile.  A total of 2 µL of each 

sample, maximum 600 ng protein, was injected onto the analytical column for DDA 

analysis using the previously developed acquisition method (page 84).  Data were 

analyzed as previously described (page 90). 

 

 Pierce™ Albumin Depletion Kit 

The Pierce™ Albumin Depletion Kit (85160, Pierce Biotechnology, Rockford, 

IL, USA) depletes albumin by immobilized Cibacron Blue dye agarose resin.  This 

depletion kit was evaluated using the same model matrices (serum-peanut, serum, peanut) 

as described previously (Pierce™ Top2 Abundant Depletion spin columns).   

Albumin depletion resin, spin columns, and binding/wash buffer (0.025 M Tris, 

0.075 M NaCl; pH 7.5) were provided with the kit.  Following the manufacturer’s 

instructions, spin columns were equilibrated by applying albumin depletion resin (400 

µL) followed by binding/wash buffer (200 µL).  After column equilibration, 50 µL of 

each analytical sample was applied and incubated for two minutes, and centrifuged 

(12,000 x g, 1 minute; Thermo Scientific™ Sorvall Legend Micro 17).  The flow-through 

was retained and reapplied to the column.  This process of sample application and 

centrifugation was repeated four times on the flow-through fractions to ensure albumin 

removal.  Depleted eluates were retained for discovery LC-MS/MS analysis.  Non-

depleted (control) samples were prepared equivalently, by diluting control samples in 

0.01 M PBS to the same final volume as depleted samples.   
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i. In-Solution Reduction, Alkylation, and Trypsin Digestion for LC-

MS/MS Analysis  

Depleted and non-depleted samples were prepared in duplicate using the 

previously described digestion methodology (page 80), and evaluated by discovery LC-

MS/MS (page 84).  Samples were prepared in a volumetrically equivalent manner 

allowing all digests to be prepared identically.  In total, 12 µL (maximum 30 µg protein) 

were used for digestion, and trypsin digestion parameters were adjusted for a 30 µg total 

protein digest.  Following de-salting peptides were eluted in 50% acetonitrile and dried to 

completion (page 83).  Prepared digests were re-suspended in 0.1% formic acid, 5% 

acetonitrile to a maximum final concentration of 0.5 µg/µL.  Discovery LC-MS/MS runs 

were conducted by injecting (2 µL) in duplicate.  Data analysis parameters for all 

depletion kits are described on page 90.  

 

ii. Modification of Salt (NaCl) Concentration of Pierce™ Albumin 

Depletion Kit 

We additionally evaluated the effect of salt concentration on depletion efficacy 

and recovery of peanut proteins in eluates.  To do so, the salt (NaCl) concentration of the 

kit elution buffer (0.025 M Tris, 0.075 M NaCl; pH 7.5) was evaluated at 0.5, 0.6, 0.7, 

0.8, 0.9, 1.0, 2.0 M Tris-NaCl concentrations.  For this experiment, serum-peanut and 

peanut (control) samples were analyzed.  The depleted eluates were evaluated for the 

presence of peanut proteins visually by SDS-PAGE, as described below.  LC-MS/MS 

analysis was not conducted on these samples.   
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iii. Modification of Binding/Wash Buffer pH of Pierce™ Albumin 

Depletion Kit 

We evaluated the effect of pH of the binding/wash buffer (0.025 M Tris, 0.075 M 

NaCl; pH 7.5) for depletion efficacy and recovery of peanut proteins in eluates.  The pH 

levels evaluated include 3.5, 4.0, 4.5, 5.0, 5.5, 6.0, 6.5, 7.0, and 7.5.  The buffer pH was 

adjusted by preparing in-house solutions of 0.025 M Tris, 0.075 M NaCl at their 

respective pH’s.  Depleted samples eluted with their respective pH buffers were 

evaluated by SDS-PAGE, as described below.  LC-MS/MS was not performed on these 

samples.   

 

iv. SDS-PAGE of Pierce™ Albumin Depletion Kit (NaCl, pH) 

Depleted eluates, prepared at modified NaCl concentrations or pH levels, were 

evaluated for the presence of peanut proteins using 1D-gel electrophoresis.  SDS-PAGE 

was performed using NuPAGE Bis-Tris Mini Gels 4-12% (1.0 mm, 12 wells) under 

reducing conditions and constant voltage (200V) for 40 minutes in an XCell SureLock 

Mini Cell Electrophoresis System (Invitrogen Life Technologies).   

Fifteen microliters of NaCl sample eluates and 22.5 µL of pH level eluates were 

diluted in 4 x concentrated Laemmli buffer and 1% β-mercapto-ethanol (BME).  All 

samples were reduced by heating for 5 minutes at 95°C and 20 µL each were loaded into 

each gel well.  Precision Plus Protein Dual Xtra Standards (Bio-Rad) were used as the 

molecular weight (MW) standard.  Gels were stained using Coomassie Brilliant Blue R-

250 (#1610436, Bio-Rad) stain, followed by de-staining, rehydration, and imaging 

(Coomassie Brilliant Blue R-250 Destaining solution, #1610438, Bio-Rad).  
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 BioVision Protein G-Sepharose (IgG Depletion) 

We evaluated depletion of IgG, in efforts to decrease sample complexity prior to 

LC-MS/MS analysis for peanut proteins in serum.  IgG depletion studies were performed 

in a similar manner as those described previously.  However, for this depletion 

experiment, we used a commercially available serum (ImmunO, human serum sterile, MP 

Biomedicals LLC, Solon, OH, USA) for preparation of the matrix samples.  Equivalently 

prepared samples of sera-peanut, sera, and peanut (60 µL) were added to 40 µL Protein 

G-Sepharose (BioVision 6511) resin and 200 µL binding buffer (0.01 M PBS, pH 7.4).  

Samples were incubated at 4°C for two hours in an end-over-end rotator.  After 

incubation, depleted sample(s) (80 µL) were removed.  The remaining resin was washed 

three times with binding buffer (200 µL), removing only 150 µL during the final wash in 

order to keep the Protein-G resin suspended.   

Control, non-depleted, samples were prepared similarly by diluting controls with 

0.01 M PBS to the same final concentration of IgG depleted samples.   

IgG depleted and non-depleted (control) samples were evaluated by SDS-PAGE 

on an equal weight basis under reducing conditions using NuPAGE Bis-Tris Mini Gels 4-

12% (1.0 mm, 12 wells) (Invitrogen Life Technologies).  Depleted and non-depleted 

samples were diluted with 4 x Laemmli buffer with 1% β-ME and reduced at 95°C for 5 

minutes.  Equal weights of protein(s) were prepared and loaded into each gel well.  In 

summary, 11 µg serum protein, 1 µg peanut protein, and 12 µg combined sera-peanut 

were loaded for both depleted and non-depleted controls for equivalent comparisons.  1D 

electrophoresis was conducted as previously described (page 94).   
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 Organic Solvent Fractionation  

We investigated the use of organic solvent fractionation as a method for sample 

de-complexation.  Here, we separated our analytical sample by solubility into three 

soluble fractions and an insoluble pellet.  Using this methodology, we are able to retain 

the entirety of the sample (serum, serum-peanut) while reducing background 

interferences.   

Our methodology was adapted from a previously published method by Liu et al., 

2014.  One volume serum was combined with ten volumes isopropanol (IPA) with 1% 

trichloroacetic acid (TCA) by weight.  Commercially prepared serum (ImmunO, human 

serum sterile, MP Biomedicals LLC, Solon, OH, USA) was used for our model matrix 

samples.  As conducted before, samples of serum, peanut, and serum-peanut samples 

were prepared in a volumetrically equivalent manner.  Samples were fractionated and 

evaluated by SDS-PAGE and LC-MS/MS using the optimized methodology for detection 

of low abundance peptides (page 83).  Samples were vortexed for 2 minutes, followed by 

centrifugation (Beckman GS-15R centrifuge) at 1,500 x g at 5°C for 5 minutes.  The 

supernatants were removed and retained for analysis.  The remaining pellets were re-

suspended in methanol (200 µL) and centrifuged (Thermo Scientific™ Sorvall Legend 

Micro 17) at 1,500 x g for 2 minutes at room temperature.  The supernatant was removed 

and retained.  Due to the volatile and evaporative nature of the two retained supernatants, 

isopropanol-TCA and methanol, the collected supernatants were dried in a centrifugal 

evaporator (Jouan RC-10.10; RCT-90; Winchester, VA, USA) and re-suspended prior to 
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downstream analyses.  Control samples were prepared identically and not subjected to 

organic solvent fractionation.   

 

 SDS-PAGE of Organic Fractionated Samples  

SDS-PAGE (NuPAGE Bis-Tris Mini Gels 4-12% (1.0 mm, 12 wells) (Invitrogen 

Life Technologies)) was conducted on all fractions for each sample using equal protein 

loading as determined by 2D quant.  Each fraction was diluted with 4 x Laemmli buffer 

with 1% β-ME and reduced by heating at 95°C for 5 minutes.  In summary, 0.6 µg peanut 

protein, 7 µg serum protein, and 7.6 µg total protein (sera-peanut) in each respective 

sample were loaded into gel wells.  1D electrophoresis was conducted as previously 

described (page 94)  

 

 In-Solution Reduction, Alkylation, and Trypsin Digestion for LC-MS/MS 

Analysis  

Each fraction was analyzed to determine protein (peanut and serum) fractionation 

patterns by LC-MS/MS on an equal protein weight basis, as determined by 2D quant.  

Control samples (sera-peanut, sera, peanut) were equivalently prepared (10:1 w/w).  In 

total, 20.3 µL of each sample were fractionated as described above.  The supernatants 

were dried under vacuum by centrifugal evaporation (Jouan RC-10.10; RCT-90; 

Winchester, VA, USA), followed by re-suspension in 5% acetonitrile to a final volume of 

31.5 µL.  Control, non-fractionated liquid samples, were also prepared to a final 

concentration of 5% acetonitrile in 31.5 µL total sample volume (0.9 µg/µL for sera-
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peanut, the most concentrated sample).  Tryptic digestion was performed based on 30 µg 

total protein in digestion.  Following re-suspension and dilution the samples were diluted, 

reduced, alkylated, and trypsin digested, and de-salted (C18) as described previously 

(page 80).  Following de-salting peptides were eluted in 50% acetonitrile and dried to 

completion.  Samples were re-suspended in 0.1% formic acid, 5% acetonitrile to a 

maximum peptide concentration of 1 µg/µL.  Re-suspended peptides were injected (1 µL) 

in duplicate for discovery LC-MS/MS analysis using the previously described LC-

MS/MS method (page 84).  Data were analyzed as previously described (page 82).  

 

 Evaluation of Multiple De-Complexation Methods (Organic Solvent 

Fractionation and IgG Depletion) 

We investigated the combination of two de-complexation techniques, organic 

solvent fractionation and IgG depletion.  Evidence of IgG interactions with peanut 

proteins was recently published (JanssenDuijghuijsen et al., 2017).  Therefore, our aim 

was to incorporate IgG depletion in combination with organic solvent fractionation to 

decrease sample complexity, improving likelihood of peanut protein detection by 

discovery LC-MS/MS analysis.   

For this study, we prepared two replicates of the same model samples (sera-

peanut, sera, peanut).  The first set were used as controls and not de-complexed (e.g. no 

IgG depletion or fractionated).  The second set of samples were IgG depleted followed by 

fractionation.  SDS-PAGE was not performed on these samples.  Samples were evaluated 

by LC-MS/MS using the previously described detection method (page 84).  
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 Preparation of Matrix Samples 

A set of volumetrically equivalent control samples (sera-peanut, sera, peanut) 

were prepared as described previously (page 86).  These samples were not IgG depleted 

or fractionated.   

A set of samples for de-complexation were prepared in a volumetrically 

equivalent manner (sera-peanut, sera, peanut; 10:1 (w/w)), for IgG depletion and organic 

solvent fractionation.   

The aim of these evaluations was to assess the impact of IgG on peanut detection, 

by determining recovery of peanut.  To do so, we prepared an IgG depleted serum sample 

using the same methodology as previously described (page 95).  Following serum IgG 

depletion, the peanut extract was added in a volumetrically equivalent manner to controls.  

IgG depletion and fractionation were performed as previously described in their 

appropriate methodology sections (95, 96). 

 

 IgG Depletion and Organic Solvent Fractionation 

Samples (sera, sera-peanut) were IgG depleted as previously described.  We 

evaluated serum (non-depleted), IgG depleted serum with peanut extract, and serum-

peanut.  We analyzed commercial serum and serum collected from peanut allergic 

subjects.  The subject clinical allergenicity characteristics are described in Supplementary 

Table 2-1.  All sample preparations were subjected to IgG depletion prior to organic 

solvent fractionation.   



100 

Following IgG depletion, samples were fractionated using the previously 

described organic solvent fractionation protocol, (1) serum, (2) IgG-depleted serum-

peanut, and (3) serum-peanut.  The same fractions were collected as previously described 

(page 96), (1) isopropanol-TCA supernatant, (2) methanol supernatant, and (3) pellet. 

Following sample preparation, all control (e.g. liquid) samples and dried 

supernatants were diluted or re-solubilized to 5% acetonitrile to a final volume of 31.5 

µL.  Tryptic digestion (maximum 30 µg protein in digestion) and de-salting (C18) were 

performed on all samples as previously described (page 80).  Following de-salting 

peptides were eluted in 50% acetonitrile and dried to completion.  Digested samples were 

re-suspended (v/v) with 0.1% formic acid, 5% acetonitrile to a concentration of 0.5 

µg/µL.  Samples were injected (2 µL) in duplicate for LC-MS/MS analysis.   
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RESULTS AND DISCUSSION 

 Evaluation of the Peanut Flours Preparation 

Raw and roasted peanuts were extracted in two PBS buffer concentrations, 0.01 

and 0.1 M.  Protein concentrations of each extract were determined by 2D Quant assay.  

The results of the protein concentration determination reflect the observations from the 

SDS-PAGE (Table 2-3).  For both peanut preparations, raw and roasted, extraction in 

0.01 M PBS yielded the most protein, which will be used in subsequent experiments of 

this chapter.  Visualization of the SDS-PAGE gel indicated more protein was extracted 

under 0.01 M PBS in both raw and roasted preparations (Figure 2-1).   

Roasted peanut extracts were also prepared however, thermal processing 

negatively affects the solubility of peanut proteins, particularly Ara h 1, which aggregates 

at high temperatures (>85°C) (Koppelman et al., 1999).  Although Ara h 1 is less 

extractable in roasted peanuts, it is still present in the peanut seed and exposed to the 

immune system upon consumption.  In order to represent all major allergenic proteins, 

raw peanuts were prepared and used in method evaluations.

 

 

 

 

 

Peanut 

preparation 
Concentration 

PBS (M) 
Average 

µg/µL 
Standard 

deviation 
Raw 0.01 2.07 ±0.13 

 0.1 1.10 ±0.44 
Roasted 0.01  0.54 ±0.27 

 0.1  0.39 ±0.08 

Table 2-3. Protein concentrations of peanut extracts prepared in 0.1 

or 0.01 M PBS determined by 2-D Quant assay (GE Healthcare). 
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Figure 2-1. Evaluation of peanut protein extracts by reducing SDS-PAGE. 

Lane (1) Protein marker standard, (2) raw peanut extracted in 0.1 M PBS, (3) 

raw peanut extracted in 0.01 M PBS, (4) roasted peanut extracted in 0.1 M 

PBS, (5) roasted peanut extracted in 0.01 M PBS 
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 Discovery LC-MS/MS Acquisition Method Optimization 

A trypsin digested serum sample, prepared identically to the model matrix sample 

(sera-peanut), was used for evaluation of LC-MS/MS acquisition methods.  During LC-

MS/MS method development, a number of MS acquisition settings can be optimized to 

improve sensitivity and detection of low abundance target peptides.  A series of 

instrument acquisition settings including dynamic exclusion time (seconds), MS2-fill 

time (msec), TopN acquisition, and MS1 peptide charge states (Table 2-1) were 

evaluated.  All other instrument parameters were kept the same.   

.  

 

Method #MS2 # peptide spectra # peptides # proteins 

1 9392 1706 385 133 

2 4238 731 498 206 

3 9276 1569 909 323 

 

 

 

Figure 2-2 illustrates the relative abnundance of peanut peptides detection by each 

method.  Table 2-4 contains the number of MS2 spectra, peptide spectra, individual 

peptides, and individual proteins identified.  Method 1, included the Top10 MS 1 ion 

selection method, 3 s dynamic exclusion times 60 ms MS2 fill time and parent ions 

(MS1) with +1 to +5 charges, does not provide adequate ion filtering prior to detection by 

Table 2-4.  Results of discovery LC-MS/MS acquisition settings 

for improvement of detection of low abundance peptides and 

proteins. 
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the MS (Table 2-4).  Method 1 reported the highest number of MS2 spectra and peptide 

spectra; and reported the least amount of peptides and proteins identified.  In Method 2, 

parent ion charges of 2, 3+ were monitored, and dynamic exclusion time was increased.  

This resulted in more peptides and proteins identifications, while also reporting lower 

numbers of MS2 and peptide spectra (Table 2-4).  Lastly, Method 3, monitored parent 

ions, 2, 3, 4+, had a decreased dynamic exclusion time (20 msec), and an increased MS2 

fill time (120 msec).  This method identified the most peptides and proteins, while 

reporting nearly similar figures of MS2 and peptide spectra than Method 1 (Table 2-4).  

For these reasons, we chose Method 3 for use in all subsequent discovery experiments.  

 

Figure 2-2. Optimization of LC-MS/MS discovery methods.  For each 

method (x-axis), the relative abundance of individual peanut peptides are 

shown. 
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 Evaluation of Subject Serum Samples and Model Matrices of Sera-

Peanut Matrix 

Initial analyses of subject serum collected after peanut consumption (Baumert et 

al., 2009) were negative for peanut using an initial discovery LC-MS/MS method (data 

not shown).  The lack of detection of peanut proteins is unsurprising since the expected in 

vivo concentration of peanut after consumption is estimated at extremely low 

concentrations.   

The subject serum used in our study were previously determined positive by 

competitive immunoassay developed to detect DRP-Ara h 2 (Baumert et al., 2009).  They 

reported an average detection of 131 ng/mL of DRP-Ara h 2 over a 24-hour period after 

consumption (Baumert et al., 2009).  A second study conducted by JanssenDuijghuijsen 

et al., 2017 analyzed collected serum after feeding trials using an Ara h 6 sandwich 

ELISA.  Here, they reported an average of 0.3 ng/mL Ara h 6, equivalent to 6 ng total 

peanut protein/mL (JanssenDuijghuijsen et al., 2017).  Based on these two studies, and 

our results, the current LC-MS/MS method and sample preparation protocols are not 

sufficiently sensitive for in vivo peanut detection.   

These extremely low (ng/mL) concentrations are similar to the concentration of 

cytokines which have been detected at very low levels ranging from 1-100 pg/mL (0.001 

– 0.1 ng/mL) by the use of antibody capture and subsequent LC-MS/MS (Anderson and 

Anderson, 2002; Schweitzer et al., 2002).  The use of antibody capture methods are 

beneficial in decreasing background noise, and would likely produce methods with 

similar sensitivities to current ELISAs.  However, we would not be able to assess changes 

in protein structure, conformation, or free antigen.  Due to the anticipated low 
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concentrations of our target analytes (e.g. peanut proteins), we employed de-

complexation strategies to improve overall detection.   

 

 Inclusion and Exclusion Lists 

The MS instrument used within this chapter was the Thermo Q Exactive Plus™ 

Hybrid Quadrupole-Orbitrap™ MS (Thermo Scientific™) which has the ability to 

exclude selected m/z events by using an exclusion list.  An exclusion list is a useful tool 

capable of excluding specified m/z events.  Since serum is a protein rich matrix, it 

generates a substantial number of serum specific m/z events that are recorded by the MS.  

If a parent m/z (MS1) ion is defined in the exclusion list; this identified ion is excluded 

from fragmentation (Koelmel et al., 2017).  We evaluated the use of exclusion lists in 

combination with discovery LC-MS/MS acquisitions.  As such, we applied this 

methodology to our model serum-peanut sample matrix and subject serum samples 

(baseline, 60 minute).   

During the initial DDA acquisitions of baseline serum, we used a ‘Top20’ data 

acquisition method in which the twenty most abundant parent ions from MS1 are 

collected for MS2 fragmentation, and, consequently the less abundant ions are not 

recorded during a particular acquisition scan.  By excluding the most abundant m/z 

events identified in the standard LC-MS/MS acquisition workflow, we anticipate 

improved detection of lower abundance peptides, and in particular peanut peptides in 

subject serum.  
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  Exclusion List Evaluation 

An exclusion list of serum specific m/z values was generated from LC-MS/MS 

data of baseline (0 hour) serum samples.  All peptides included in the exclusion lists met 

the following criteria: 

Exclusion list peptide criteria:  

1. Charge states of 2, 3, or 4+ 

2. The top 5,000 serum identified m/z’s based on signal intensity 

3. Identified within the chromatographic gradient 

4. Serum specific m/z values 

 

The top 5,000 serum specific m/z values were included in the exclusion list.  

Serum specific m/z values were identified using PEAKS from the UniProt Homo sapiens 

database.  Subject serum collected after peanut consumption (60 minutes), or ‘active’ 

serum, were analyzed with the generated exclusion list.  Acquired data were compared to 

a peanut database (UniProt, Arachis hypogaea).  No positive peanut peptides were 

detected in subject serum when analyzed with an exclusion list (data not shown).   

 

 Inclusion List Evaluation 

The inclusion lists for peanut specific peptides were generated in the same manner 

as exclusion lists using prepared digested samples of peanut and sera-peanut.  We 

identified 23 peanut proteins and 143 unique peanut peptides.  All identified peanut 
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specific m/z values were compiled into an inclusion list included during acquisition.  No 

positive peanut identifications were made when the inclusion list was included in the 

analysis of ‘active’ subject serum (60 minutes post consumption) (data not shown).   

 

 Evaluation of Combined Exclusion and Inclusion Lists 

The overall aim of combining exclusion and inclusion lists was to reduce 

detection of the highly abundant serum proteins, which largely saturate the MS signal 

detector.  We hypothesized using both ion selection techniques together would improve 

instrument sensitivity.   

No positive peanut protein identifications were made when using the combination 

of inclusion and exclusion lists, paired with LC-MS/MS (data not shown).  This suggests 

other de-complexation strategies are necessary to detect peanut proteins in serum.  In 

many instances the use of inclusion or exclusion lists yields positive results with other 

complex matrices (e.g. human embryonic stem cells, characterization of human plasma 

lipidome), however, we found these tools to be unsuccessful, likely due to the complexity 

of the serum matrix (Bendall et al., 2008; Koelmel et al., 2017).  Although we are able to 

exclude the most abundant (top 5,000) parent m/z events (MS1), this was not sufficient to 

identify peanut peptides in serum.  Secondly, the pairing of a serum m/z exclusion list 

with a peanut m/z inclusion list was still unable to detect peanut peptides.   

Serum is a protein rich matrix exhibiting vast diversity among its constituent 

proteins (Anderson and Anderson, 2002).  Due to this extreme diversity, it is likely that 

the low abundance serum proteins share similar sequence(s) and charge(s) to peanut 
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specific peptides.  In order to obtain a comprehensive serum proteome, a mass 

spectrometer must be able to detect both the highly abundant proteins (e.g. albumin, 

immunoglobulins) down the to the lowest abundance serum proteins (e.g. cytokines, 

interleukins) (Anderson and Anderson, 2002).  Serum proteins span ten orders of 

magnitude (Anderson and Anderson, 2002), whereas the Q Exactive mass spectrometer 

has a detectable range spanning only four orders of magnitude (Eliuk and Makarov, 

2015).  Therefore, in order to achieve detection at concentrations beyond the dynamic 

range of the MS instrument, an analytical method which enhances detection of low 

abundance peptides is needed.   

For the first part of this chapter, we chose to first optimize the instrument scan 

settings of discovery methods.  Detection by DDA methods is desirable because it allows 

other human proteins to be monitored during allergenic protein uptake.  Another 

advantage of using shotgun methods is the ability to track overall changes in protein 

profiles using the acquired full-scan data, allowing the potential identification of 

biomarkers associated with consumption of allergenic proteins.   

Overall, adjusting MS acquisition settings was not sufficient for detection of 

peanut proteins in serum.  Due to the complexity of serum, and limitations of the 

instrument’s dynamic range, further de-complexation methods are needed.   

During this set of studies, we routinely injected approximately 500 ng of protein 

(10:1 sera:peanut) on a micro-flow HPLC column (100 mm x 1.0 mm, 1.9 um).  This 

total amount of protein has been suitably detected in both discovery and targeted assays 

of complex food matrixes, as determined by preliminary studies performed prior to the 

beginning of this dissertation.  We will use the optimized discovery method, Method 3, 
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for our evaluations of detection.  Consequently, we began our studies by evaluating 

various de-complexation strategies, with an overall objective to reduce sample 

complexity prior to LC-MS/MS analysis in order to detect peanut proteins in serum.   

 

 Evaluation of Commercial Depletion Kits  

To evaluate the utility of various de-complexation strategies, we prepared a model 

matrix of baseline subject serum (0 hour), collected by Baumert (2009) spiked with a raw 

peanut extract.  Since the anticipated in vivo concentration(s) of peanut protein are 

expected to be extremely low, we opted to use a high concentrated spiked model matrix 

(10:1 (w/w) serum:peanut) to robustly evaluate these de-complexation strategies.  This 

model matrix, sera-peanut, was prepared to mimic the final analytical sample matrix (i.e. 

serum) collected from individuals after consuming peanut.  The sera-peanut matrix was 

used for evaluations throughout this chapter.   

Commercial depletion kits were evaluated on a case-by-case basis, and we 

summarize the results of all evaluated depletion kits here (Figures 2-3 to 2-6).  Each kit 

selected for this study utilized different depletion mechanisms.  All selected kits 

successfully removed their specified targeted serum proteins (Figures 2-4; 2-6).  

However, three out of the four commercial depletion kits (Pierce™ Top2, 

PureProteome™ Albumin, Pierce™ Albumin) either, partially or entirely removed peanut 

proteins in peanut containing samples (sera-peanut, peanut), as detected by loss of peanut 

peptides identified by PEAKS label-free quant.  The IgG depletion kit (BioVision) was 

the only kit that exhibited high specificity and did not remove peanut proteins.  For 

selected kits (Pierce™ Top2, Pierce™ Albumin) whose properties were adjusted (i.e. salt, 
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pH), no improvement in the recovery of peanut proteins (in serum matrix background or 

absence of sera matrix background).  For this section, we will primarily discuss the 

results of the PureProteome™ Albumin depletion kit since many extraneous studies and 

evaluations were performed using this kit.  Depletion figures for Pierce™ Albumin 

(Figures 2-3, 2-4) and PureProteome™ Albumin (Figures 2-5, 2-6) are shown below.  No 

figures are shown for Pierce™ Top2, due to poor label-free quantification (LFQ) results, 

and lack of robust peptide detection.  Data for the Pierce™ Top2 kits were evaluated 

visually.  LFQ requires three unique peptides for quantification, however, three unique 

peptides could not be determined among evaluated matrix samples.  Additionally, 3-fold 

less protein was used for Pierce Top2 digestions in comparison to other kits evaluated, 

another potential factor for poor peptide detection.  
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Figure 2-3:  Depletion of peanut proteins in (A) peanut only and (B) sera-

peanut matrices by the Pierce™ Albumin Depletion kit. The top 10 unique 

peanut proteins are represented in order of relative abundance.  Open 

symbols represent non-depleted samples; closed symbols represent 

depleted samples.   
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The Pierce™ Top2 and PureProteome™ Albumin kits are antibody based 

depletion kits (anti-human serum albumin; anti-IgG).  Antibody based methods are highly 

specific; however we observed removal of peanut proteins (Figure 2-5), strongly 

suggesting cross-reactivity between kit antibodies and peanut proteins.  Commercially 

developed depletion kits are largely designed to increase detection of endogenous 

proteins in human serum such as cytokines, peptide biomarkers, hormone peptide, and 

lipoproteins (Pisanu et al., 2018).  Therefore, we cannot insure specificity against 

exogenous food proteins.  
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Figure 2-4:  Depletion of serum proteins in sera-peanut matrix by Pierce 

Albumin Depletion kit. The top 10 peanut proteins are represented in relative 

abundance, determined by label-free quant. Open symbols represent non-

depleted samples; closed symbols represent depleted samples.  Inset 

demonstrates depletion of albumin only within this matrix using the same 

depletion kit. 
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Figure 2-5:  Depletion of peanut proteins in (A) peanut only and (B) 

sera-peanut matrices by the PureProteome Albumin Depletion kit. The 

top 10 peanut proteins are represented, determined by label-free quant.  

Open symbols represent non-depleted samples; closed symbols represent 

depleted samples.  
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Figure 2-6:  Depletion of serum proteins sera-peanut matrix by PureProteome 

Albumin Depletion kit. The top 10 peanut proteins are represented by relative 

abundance, determined by label-free quant.  Open symbols represent non-

depleted samples; closed symbols represent depleted samples.  Inset 

demonstrates depletion of albumin only within this matrix using the same 

depletion kit. 
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The Pierce™ Albumin depletion kit utilizes immobilized Cibacron blue dye resin, 

and binds albumin through electrostatic or hydrophobic interactions (Gianazza and 

Arnaud, 1982; Travis and Pannell, 1973).  Since peanut proteins were simultaneously 

removed during depletion, we modified the properties of selected depletion kits to reduce 

peanut protein removal by the matrix depletion.  The salt concentrations of the 

wash/elution buffers of two kits Pierce™ Top2 Abundant Depletion spin columns and 

Pierce™ Albumin depletion were modified to assess recovery of peanut proteins.  For 

both commercial kits, we observed no improvements in the recovery of peanut proteins at 

varying concentrations of salt in the wash and elution buffers.  In fact, when peanut alone 

was applied to each respective depletion column, no peanut protein was recovered at the 

various salt concentrations evaluated (Figure 2-7).  We then evaluated the proteins bound 

to the column matrix by heating columns (95°C, 5 minutes) after adding a solution of 4 x 

concentrated Laemmli buffer and 5% β-mercapto-ethanol.  SDS-PAGE analysis of the 

aqueous phase revealed peanut proteins were primarily bound to the depletion column 

matrix (data not shown).  This binding pattern was observed in both peanut and sera-

peanut matrices.  This suggests a high rate of non-specific binding to abundant proteins 

through antibody and dye-binding mechanisms.   
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The protein binding interactions, both antibody binding and Cibacron dye-binding 

(Pierce™ Albumin Depletion), could not be disrupted by modifying the salt 

concentrations (Figure 2-7).  The concentration of salt influences protein-surface or 

protein-protein binding properties by altering the binding affinities of proteins (Tsumoto 

et al., 2007).  Cibacron dye-binding is an affinity based method, but is relatively non-

Figure 2-7. Evaluation of Pierce™ Albumin Depletion kit wash and elution buffer 

with modified NaCl concentrations by reducing SDS-PAGE.  Lane (1) Protein marker 

standard, (2) raw peanut extract (0.01 M PBS), (3) column flow through, lanes (4-12) 

column flow through with wash buffer concentrations 0.075, 0.10, 0.15, 0.20, 0.25, 

0.30, 0.35, 0.40 M NaCl, respectively  
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specific and has been described to bind other serum proteins including lipoprotein, 

antithrombin III, interferon, and other serum polypeptides (Gianazza and Arnaud, 1982; 

Thompson et al., 1975).   

We further evaluated the Pierce™ Albumin depletion kit (Cibacron dye binding) 

by adjusting the pH and assessing recovery of peanut proteins by SDS-PAGE (Figure 2-

8).  No changes in elution of peanut proteins were observed at any pH level.  This further 

suggests non-specific binding by the depletion matrix.  By modifying the pH, we altered 

the ionic strength, which can influence protein-binding affinities and therefore protein 

elution from the depletion matrix. 

Our aim was to disrupt interactions occurring between peanut proteins and 

capture antibodies.  Decreasing the pH creates an increasingly acidic environment 

causing changes to the antigen-antibody binding properties, protein conformation, and 

partial denaturation (Hinderling and Hartmann, 2005; Kochansky et al., 2008).  In the 

biological system evaluated, reducing the pH alone was not sufficient to disrupt the 

protein-binding interactions occurring between peanut, serum, and the depletion matrix.
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Figure 2-8. Evaluation of Pierce Albumin Depletion kit wash and elution 

buffer with modified pH by reducing SDS-PAGE.  Lane (1) Protein marker 

standard, (2) raw peanut extract (0.01 M PBS), (3) column flow through, 

lanes (4-12) column flow through with wash buffer pH 7.5, 7.0, 6.5, 6.0, 

5.5, 5.0, 4.5, 4.0, 3.5, respectively.  
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BioVision IgG depletion kits were successful in removing IgG from serum, while 

not co-depleting peanut proteins.  Protein G, is a bacterial produced protein, and binds the 

Fc region of immunoglobulins with high affinity, and has been widely used for IgG 

purification, with kits for IgG depletion readily available (Björck and Kronvall, 1984).   

Due to the specificity of protein-G, we hypothesized protein-G would remove 

IgG-peanut complexes, free IgG, and other IgG-serum complexes.  JanssenDuijghssen et 

al., 2017 demonstrated in vivo interactions occurring between exogenous peanut proteins 

and endogenous IgG antibodies.  We investigated removal of IgG using Protein-G 

Sepharose as a means to co-isolate IgG-peanut complexes from non-allergic patient 

serum.  No LC-MS/MS data were acquired for IgG depletion experiments.  SDS-PAGE 

was used to evaluate fractions from Protein-G Sepharose IgG depletion (Figure 2-9).  In 

each panel, the non-depleted matrix is depicted in the first lane following the protein 

marker (lanes 2, 6, 10).  The unbound fractions (lanes 3, 7, 11) represent the analyzed 

matrix after IgG depletion (e.g. serum post IgG depletion).  The bound fractions (lanes 4, 

8, 12) represent those proteins bound by Protein G Sepharose (e.g. depleted proteins from 

matrix).  IgG was successfully removed from serum containing matrices (sera-peanut and 

serum alone) (lanes 3, 7).  Peanut proteins were not depleted from the peanut containing 

samples (sera-peanut and peanut alone) (lanes 8, 12).  Here, we observed the suspected 

IgG-peanut complexes were not depleted by Protein G Sepharose, as demonstrated by the 

absence of peanut proteins in lane 4, the bound fraction from the serum-peanut matrix.  

This suggests these complexes are unable to be removed from the serum matrix.  Oda et 

al., 2003 reported a change in IgG conformation occurs upon antigen binding, resulting in 

the inability of Protein G Sepharose to bind complexed IgG, similar to our results (Oda et 
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al., 2003).  Additional interactions with albumin or other endogenous proteins could also 

be influencing peanut behavior and overall detection.  Due to the lack of peanut proteins 

present in the protein-G sepharose fraction following depletion (Lanes 4, 8, 12), it is 

evident IgG-peanut complexes were not effectively depleted.  We suspect protein G is 

only able to remove free IgG. 
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Figure 2-9. Evaluation of BioVision Protein G Sepharose IgG depletion by SDS- 

PAGE of prepared matrices (A) serum incurred with raw peanut, (B) serum, (C) 

raw peanut. Lanes (1, 5, 9) Protein marker standard (kDa), (2) sera-peanut matrix 

(non-depleted), (3) Unbound sera-peanut after IgG depletion, (4) Bound depleted 

fraction from serum-peanut, (6) serum (non-depleted), (7) Unbound serum after 

IgG depletion, (8) Bound depleted fraction from serum (10) peanut (non-depleted) 

(11) Bound peanut after IgG depletion  (12) Unbound depleted fraction from 

peanut.  
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Allergenic proteins induce specific antibodies including IgG1, IgG4, and IgE 

(Aalberse et al., 2009; Jutel and Akdis, 2011).  The antibody isotype IgG4 is induced 

after extended and repeated exposures to allergenic proteins, typically in low doses.  

These repeated, low-dose exposures, as performed in immunotherapy treatments, do not 

generally elicit a full immunological response (Aalberse et al., 2009; Jutel and Akdis, 

2011).  Interactions between allergenic food proteins and IgG antibodies, the 

predominant antibody class, have been reported in both allergic and non-allergic patients 

(JanssenDuijghuijsen et al., 2017; Murphy, 2012; Platts-Mills et al., 2001; Wachholz and 

Durham, 2004).  For allergic patients undergoing immunotherapy, an increase in 

prevalence of IgG4 antibodies has been attributed to the acquiring of tolerance (Platts-

Mills et al., 2001; Wachholz and Durham, 2004).  This suggests non-symptomatic IgG-

food protein interactions preclude IgE-food protein binding events (Platts-Mills et al., 

2001; Wachholz and Durham, 2004). 

Reported interactions between endogenous IgG antibodies and allergenic food 

proteins (peanut, Ara h 6), in non-allergic individuals, resulted in reduced detection by 

immunoassay (JanssenDuijghuijsen et al., 2017).  To understand the overall role of IgG 

concentration on tolerance, more studies need to be conducted.  We show similar findings 

to reports by Oda et al., 2003 and JanssenDuijghuijsen et al., 2017.  Furthermore, 

interactions between allergenic food proteins and endogenous antibodies (IgG) prevents 

adequate detection of exogenous peanut proteins, a key problem for in vivo analysis of 

allergenic food proteins using ELISA.  However, during LC-MS/MS sample preparation, 

these complexes are disrupted due to reduction and trypsin digestion generating peptides.  

Using this approach, IgG depletion is not advantageous for LC-MS/MS since IgG-peanut 
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complexes are unable to be removed.  Therefore, our serum matrix remains relatively 

complex, but only by removing a small amount (i.e. free IgG) of protein.   

 

 Organic Solvent Fractionation 

Organic solvent fractionation methods were investigated as an alternative to 

depletion methods in order to retain serum composition.  The most abundant serum 

protein, albumin, is soluble in organic solvents (e.g. isopropanol, ethanol, methanol) and 

is readily fractionated from serum (Liu et al., 2014; Michael, 1962).  Samples for 

evaluation were fractionated into three fractions, (1) isopropanol-TCA, (2) methanol, or 

(3) pellet precipitate and were analyzed by LC-MS/MS and SDS-PAGE.  The primary 

goal of TCA organic fractionation is to enrich peanut protein relative to all other proteins 

in the sample.   

The organic solvent fractionation patterns of serum, peanut, and sera-peanut, and 

their non-fractionated controls (stocks) are shown in Figure 2-10.  A comparison of 

fractionation patterns, shows a majority of the albumin protein is removed (MW band 

66.5 kDa) into the isopropanol-TCA fraction.  The albumin is not entirely removed, with 

some remaining in the precipitated fraction (Figure 2-10).   

We analyzed the fractionation patterns in more detail based on relative 

abundance.  Depending on the matrix background, peanut proteins demonstrated different 

fractionation patterns (Figure 2-11).  In the absence of a serum background, the peanut 2S 

albumins, Ara h 2 and Ara h 6, primarily fractionated into fraction 1, the isopropanol-

TCA fraction.  Whereas in the presence of a serum background (serum-peanut), these 



125 

proteins primarily fractionated into fraction 2, the methanol fraction.  The cupin proteins, 

Ara h 1 and 3 exhibited similar fractionation patterns (Figure 2-11).  In the absence of a 

serum background, the cupins fractionated largely into the fraction 2, whereas in the 

presence of a serum background, Ara h 1 fractionated largely into the precipitate. 

The organic solvent fractionation method works well to remove albumin from the 

serum matrix and reduce its complexity.  However, this de-complexation strategy is 

largely non-specific, and dependent upon protein solubility.   
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Figure 2-10. Evaluation of organic fractionation patterns by reducing SDS-PAGE of 

prepared matrices (A) serum, (B) incurred matrix serum-peanut, (C) raw peanut. Lanes 

(1, 5, 9) Protein marker standard (kDa), (2) unfractionated serum, (3) serum in 

isopropanol-TCA supernatant, (4) serum in pellet precipitate, (6) unfractionated serum-

peanut, (7) serum-peanut in isopropanol-TCA supernatant, (8) serum-peanut in pellet 

precipitate, (10) unfractionated peanut, (11) peanut in isopropanol-TCA supernatant, 

(12) peanut in pellet precipitate.  



127 

 

 

 

Figure 2-11. Evaluation of organic solvent fractionation by discovery LC-MS/MS in 

(A) Ara h 1 (Q6PSU3), (B) Ara h 3 (A1DZF0), (C) Ara h 2 (Q6PSU2-4), (D) Ara h 6 

(Q647G9) in model samples serum-peanut or peanut.  
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 Evaluation of Multiple De-Complexation Methods (Organic Solvent 

Fractionation and IgG Depletion) 

Our aim in combining two de-complexing strategies, IgG depletion and organic 

solvent fractionation, was to improve detection of peanut proteins in serum.  We 

hypothesized the removal of IgG followed by organic solvent fractionation will greatly 

reduce the background and potential interferences.   

For this set of experimental results, we will focus on the fractionation patterns of 

(1) the experimental control model matrix (sera-peanut) compared to (2) IgG depleted 

sera followed by the addition of raw peanut extract (IgG depleted sera with peanut spike), 

prepared with commercially prepared human serum (ImmunO).  Based on our previous 

results, IgG-peanut complexes are not removed during IgG depletion.  Therefore, we 

would expect only free IgG to be removed from our sera-peanut sample.  To further 

assess the effect of IgG depletion on our model samples, we depleted serum of IgG 

followed by adding an equivalent volume peanut extract to the IgG depleted serum.  

Prepared samples were then fractionated using our organic solvent method and analyzed 

as before by discovery LC-MS/MS.   

Comparison of the sera-peanut matrix before and after IgG depletion indicate no 

noticeable differences in fractionation patterns in an allergic individual’s serum for all 

major allergenic peanut proteins monitored. (Figure 2-12).
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Figure 2-12.  Evaluation of organic solvent fractionation of IgG depletion of 

serum-peanut matrix and no depletion of serum incurred with peanut by 

discovery LC-MS/MS 
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We observed differences in fractionation patterns based on the presence of 

absence of IgG.  In the control sera-peanut samples with commercially prepared serum, 

the comparison of the relative abundance profiles of each peanut protein in each fraction 

is presented in Figure 2-13.  In the sera-peanut matrix, Ara h 2 fractionates primarily in 

fraction 2, and is second most abundant in fraction 1.  Ara h 6 was predominantly 

abundant in fraction 2, similar to Ara h 2, however, it was second most abundant in the 

precipitate.  The cupin proteins (Ara h 1, Ara h 3), fractionated predominantly into 

fraction 2 and secondarily fractionated into the precipitate.   

After IgG depletion and the addition of peanut extract to the depleted sera, we 

observed shifts in the fractionation patterns of peanut proteins (Figure 2-13).  Ara h 2 

fractionated largely into fraction 1, the isopropanol-TCA fraction, and then into fraction 

2, the methanol fraction.  This pattern differs from the sera-peanut matrix, where Ara h 2 

abundance was highest in fraction 2.  Ara h 6 was most abundant in fraction 2 and the 

precipitate.  This differs slightly compared to the sera-peanut control which was 

predominantly present in fraction 2 and second most abundant in fraction 1, illustrating a 

shift in fractionation of Ara h 6 due to IgG (Figure 2-13D).  For the cupin proteins, Ara h 

1 was present largely in fraction 2 and the precipitate, exhibiting no shift in fractionation 

compared to the sera-peanut matrix.  We observed Ara h 3 was present predominantly in 

fraction 2 and second most abundant in fraction 1.  This pattern is slightly different than 

the sera-peanut pattern, in which case Ara h 3 was detected largely in fraction 2 and the 

precipitate (Figure 2-13B).   
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Overall, depletion of IgG from serum followed by the addition of peanut extract, 

demonstrates a fractionation pattern more similar to peanut (alone) and less similar to 

sera-peanut, the model matrix.   

We then performed this same experiment of IgG depletion and organic solvent 

fractionation using allergic subject serum.  Evidence of different IgG profiles between 

allergic and non-allergic individuals has been published in the literature (Aalberse et al., 

1983; Platts-Mills et al., 2001; Rowntree et al., 1987). 

We analyzed peanut allergic subject serum of (1) control, sera-peanut matrix and 

(2) IgG depleted sera followed by the addition of peanut (IgG depleted serum-peanut 

spike) (Figure 2-14).  We compared the fractionation profiles of peanut allergens from 

the UniProt database.  Data are represented by normalized abundance (e.g. the total 

identified peak area).  The IgG depleted allergic sera with peanut extract addition, 

demonstrated a noticeably different fractionation pattern compared to the experimental 

control, sera-peanut.   

In the sera-peanut controls, the prolamins, Ara h 2 and Ara h 6 exhibited identical 

fractionation patterns.  Ara h 2 fractionated predominantly into fractions 1 and 2.  Ara h 6 

fractionated equally into fractions 1 and 2.  Whereas Ara h 1 and Ara h 3 fractionated 

largely into the precipitate.   

In the IgG depleted-peanut spiked samples, Ara h 2 fractionated largely into 

fraction 1 and secondarily into fraction 2.  Ara h 6 fractionated equally into fraction 1 and 

fraction 2.  Overall, we observed no differences in fractionation patterns of the 2S 

albumins dependent upon the presence or absence of IgG.  Both, Ara h 1 and Ara h 3 
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fractionated largely into fraction 2.  The fractionation pattern differs greatly from the 

sera-peanut control matrix.   
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Figure 2-13. Evaluation of organic solvent fractionation of  IgG depleted serum 

(commercial) with peanut spike (post depletion) and serum (commercial)-peanut extract 

by discovery LC-MS/MS in (A) Ara h 1 (P43237), (B) Ara h 3 (Q0GM57), (C) Ara h 2 

(Q6PSU2), (D) Ara h 6 (A5Z1R0) in model samples serum-peanut or peanut. 



134 

 

  

Figure 2-14. Evaluation of organic fractionation of IgG depleted serum (allergic) with 

addition of peanut extract (post depletion) and allergic serum(allergic)-peanut matrix 

by discovery LC-MS/MS in (A) Ara h 1 (P43237), (B) Ara h 3 (Q0GM57), (C) Ara h 

2 (Q6PSU2), (D) Ara h 6 (A5Z1R0) 
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The fractionation patterns between allergic and commercially prepared serum, 

differ due to the presence or absence of IgG.  The commercially prepared serum is a pool 

of serum, which has undergone filtration prior to purchase.  The commercial serum is not 

guaranteed to be selected from non-allergic individuals.   

We did not analyze baseline serum using this experiment, however upon review, 

this would be a suitable comparison for evaluation of these two de-complexation 

strategies.  However, we can illustrate the differences in fractionation in allergic subjects 

compared to the commercial sera, indicating IgG may have a prominent role in response 

to allergenic food proteins (Chinthrajah et al., 2016; Koppelman et al., 2019; Vickery et 

al., 2013).   

Initial evaluations of the sera-peanut matrix before and after IgG depletion 

showed no difference in fractionation patterns.  We anticipate this is due to the 

functionality of the IgG depletion not able to remove IgG-peanut complexes and/or only 

removing free IgG.  Therefore, we chose to not include the fractionation patterns of IgG 

depleted sera-peanut.   

We analyzed several patient serum samples (allergic and non-allergic) incurred 

with peanut using TCA fractionation (data not shown), which indicated differences in 

fractionation patterns of peanut proteins in various sera samples.  In order to understand 

differences in fractionation patterns and the role of IgG in individual sera, we would need 

to profile many patients, if one exists.  Due to the individualistic variability of patient 

serum, and its influence on protein fractionation, we determined this method is unsuitable 

for monitoring low abundance peanut proteins in serum.  
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CONCLUSIONS 

Discovery LC-MS/MS methods lack sufficient sensitivity to detect consumed 

allergenic peanut proteins at low concentrations in vivo.  In these methods, the most 

abundant (e.g. top 10, top 20) precursor ions are selected and fragmented for MS/MS 

analysis in stochastic manner (Gillette and Carr, 2013).  Consequently, protein abundance 

significantly influences data-dependent acquisitions and low abundance proteins may not 

be routinely sampled and remain undetected (Domon and Aebersold, 2010; Gillette and 

Carr, 2013).  MS instruments often have necessary levels of sensitivity required for low 

detection, however, a high signal-to-noise ratio from a complex sample (e.g. serum) 

affects overall detection (Gillette and Carr, 2013).   

We investigated multiple strategies to de-complex serum prior to LC-MS/MS 

analysis, including optimizing MS acquisition settings, as previously discussed, and 

physical serum de-complexation strategies.  The use of exclusion and inclusion lists did 

not yield positive results for peanut detection.  The commercial depletion kits 

successfully reduced sample complexity, however, were not successful for our 

experiment due to the co-depletion of exogenous peanut proteins in serum.  IgG depletion 

was highly specific, however, provided little utility to achieving our overall aim.  IgG 

complexes (IgG-peanut) are unable to be depleted and therefore, we are only able to 

deplete free, unbound IgG.  One of the main limitations of commercial depletion columns 

is their limited binding capacity.  The maximum load of protein for the Pierce™ Top2 

Abundant Depletion spin columns is 600 µg, equivalent to 7.5 – 10 µl non-depleted 

serum.  Working within this limitation and the known concentration of peanut after 

consumption (131 ng DRP-Ara h 2/ml serum), we would need to achieve detection of 
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13.1 ng Ara h 2 (262 ng total peanut protein) by discovery LC-MS/MS, assuming 

complete absorption and no experimental losses. Lastly, the organic solvent fractionation 

yielded variable results between sera types (commercial, peanut-allergic), and was further 

complicated by the addition of IgG depletion.  Due to inter-subject variability in 

fractionation, these methods were not fit for the purposes of our study.   

Each of the de-complexation strategies evaluated reduced the sample complexity 

and total protein by selective protein removal, improving the signal-to-noise ratios (S/N) 

and low abundance protein detection.  Ideally, the employed depletion strategy is specific 

to serum proteins only, however this was not the case based on the results presented.   

Based on our results, we suggest development of a targeted MS method for 

detection of peanut proteins in non-depleted serum.  Due to the sampling limitations of 

discovery LC-MS/MS methods, targeted methods are a suitable alternative for achieving 

detection.  Targeted methods, including MRM and PRM, have been successfully 

employed for specific analyte detection, overcoming shortcomings of shotgun methods.  

Targeted methods provide good sensitivity, reproducibility, and capable of quantification 

(Lange et al., 2008).   

In supplement to targeted LC-MS/MS methods, we suggest using non-depleted 

serum for further investigations due to the co-isolation of peanut proteins by commercial 

depletion methods and variability of peanut protein fractionation by organic solvent 

methods.  The use of non-depleted serum ensures peanut proteins remain in the subject 

serum sample.  However, detection of low abundance proteins in serum remains 

challenging due to the depth and complexity of the human serum proteome, which will be 

addressed by implementing targeted methods. 
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CHAPTER 3: DEVELOPMENT OF TARGETED MASS SPECTROMETRY 

METHODS FOR IN VIVO DETECTION OF PEANUT PROTEINS IN HUMAN 

SERUM 

 

ABSTRACT  

 Due to the complexity of human serum and the substantial number of peptides 

generated after trypsin digestion, discovery MS is not ideal.  Therefore, targeted methods 

(PRM, MRM), will be used instead.  The aim of this chapter was to develop a targeted 

MS method to detect allergenic peanut proteins in non-depleted serum.  To maintain 

sample integrity, non-depleted serum will be analyzed to mitigate any losses of critically 

relevant protein targets.  

The model samples described in Chapter 2 (page 79) were used for targeted LC-

MS/MS method development.  Peanut protein targets, representing the major allergenic 

proteins, were selected using discovery driven peptide selection.  Targeted LC-MS/MS 

methods, PRM, MRM, and MRM3, were developed sequentially based on the required 

level of sensitivity using our model samples (sera-peanut, sera, peanut).  Sample 

preparation, method chromatography, MS acquisition settings were further modified to 

improve detection in subject sera.   

Peptide targets were selected using discovery MS for the development of PRM 

and MRM methods.  We evaluated a sera-peanut matrix and observed similar LODs 

using both PRM and MRM methods.  The LOD for PRM in the sera-peanut matrix was 

800 pg peanut protein (1.0 ppm peanut protein, 4.0 ppm peanut).  The MRM LOD was 

peptide dependent.  For Ara h 1, Ara h 2, and Ara h 6 the LOD was 1240 pg peanut (1.53 
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ppm peanut protein, 6.11 ppm peanut).  For Ara h 3, the LOD was 3730 pg peanut 

protein (4.58 ppm peanut protein, 18.3 ppm peanut).  The LOD for the MRM3 method 

was variable and inconsistent due to the lack of specific secondary fragment ions for 

detection.   

We further optimized the PRM method by injecting more protein for analysis.  

Overall, the PRM methods were the optimal methods to use, and were able to detect 

peanut peptides in serum on multiple occasions.  However, due to a lack of robust 

detection, these methods are not yet optimal.  Further work is required to develop a 

robust targeted detection method for in vivo detection of allergenic proteins.   

The targeted methods were successful in detecting peanut proteins in the model 

matrices.  Evaluation of subject sera samples determined positive by Ara h 6 ELISA, 

were evaluated using each of the targeted MS methods, but no reproducible positive 

detections were observed.  However, we were able to confidently detect multiple peptides 

in several instances from different subject sera and at different time points, suggesting 

our methodology is a probable candidate for routine evaluation.   

 

INTRODUCTION  

The prevalence of food allergies has been increasing in Western countries (Nwaru 

et al., 2014; Sicherer et al., 2010).  Consequently, there has been a steady increase of 

peanut allergy prevalence, the most prevalent food allergy being in children (Nwaru et 

al., 2014; Sicherer et al., 2010; Venter et al., 2010).  Peanuts are highly potent allergens, 

and can elicit reactions with ingestion of low doses in sensitized individuals (Clarke et 

al., 1998; Hourihane et al., 2017; Koppelman et al., 2004).  There is further evidence 
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these ingested peanut proteins are present in serum, breast milk, and saliva, however 

overall detection was very low (Baumert et al., 2009; JanssenDuijghuijsen et al., 2017b; 

Schocker et al., 2016).  The method of protein uptake, particularly intact proteins, has 

been described in several reviews but has not been fully elucidated (Chehade and Mayer, 

2005; Reitsma et al., 2014;).  The role of allergenic protein absorption likely influences 

sensitization mechanisms.  In order for an allergic reaction to occur, the allergenic food 

proteins must cross-link IgE specific antibodies in an immunologically intact form (Stone 

et al., 2010; Taylor and Baumert, 2012;).  It has been suggested the transport and 

absorptive mechanisms employed differs between allergic (atopic) and non-allergic 

(healthy, non-atopic) subjects (Reitsma et al., 2014).  In sensitized individuals, there is a 

decrease is the tight junction barrier function due to the presence of mast cells, which 

consequently increases the transport of non-degraded or partially degraded allergenic 

protein (Berin et al., 1998).  Therefore, much focus has been placed on development of 

an in vivo detection method to gain understanding in uptake and sensitization.   

Several studies have focused on detection of peanut proteins in vivo, primarily by 

ELISA methods and more recently by LC-MS/MS (Baumert et al., 2009; Hands et al., 

2020; JanssenDuijghuijsen et al., 2017b).  ELISAs have been the primary methods of 

choice for studying in vivo uptake, however these methods need additional confirmatory 

methods to demonstrate antibody-binding specificity (Hands et al., 2020).   

LC-MS/MS methods, which are used as an alternative to ELISAs, remain 

challenging due to complexity of human serum.  Therefore, the comprehensive 

elucidation of low-abundance proteins by LC-MS/MS remains challenging to do the 

broad dynamic range and few proteins accounting for a majority of abundance (Kumar 
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Dey et al., 2019).  There is limited literature published regarding in vivo detection of 

allergenic food proteins, further, a majority of these studies utilize ELISA methods 

(Baumert et al., 2009; JanssenDuijghuijsen et al., 2017a; JanssenDuijghuijsen et al., 

2017b; Schocker et al., 2016).  Recently, two studies have employed the use of LC-

MS/MS methods to monitor the uptake of peanut proteins (Hands et al., 2020; Mose et 

al., 2019).  Hands et al., (2019) developed an MRM detection method for peanut proteins 

spiked into commercial human serum.  Additionally, Hands et al., (2020) used depletion 

(MARS Hu-6) to remove majorly abundant serum proteins prior to MRM analysis.  

However, in this study, no subject serum collected after peanut consumption were 

analyzed using the developed method.  Mose et al., 2019 evaluated multiple MS methods 

(MRM, GeLC MS/MS using discovery MS, and SWATH) with spiked model matrix 

(serum with Ara h 2) and subject serum collected after peanut consumptions.  They 

reported positive detection using MS methods for the spiked matrix samples (serum-Ara 

h 2), but were unable to achieve detection with subject samples collected after 

consumption (Mose et al., 2019).  However, subject sera demonstrated reactivity through 

basophil-histamine release assays of subject serum after ingestion (Mose et al., 2019).  

This is suggestive that peanut proteins are present in vivo (i.e. serum) in an 

immunologically reactive form, but not readily detectable by the bottom-up LC-MS/MS 

methods.   

Due to the ineffectiveness of depletion kits, as presented in Chapter 2, 

investigators have adopted methods utilizing non-depleted serum and targeted MS 

methods (Fortin et al., 2009; Kumar Dey et al., 2019; Percy et al., 2013).  Fortin et al., 

2009 demonstrated detection of protein biomarkers at ppm concentration levels in non-
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depleted serum using MRM3.  Kumar Dey et al., 2019, investigated profiling non-

depleted serum to aid in determining biomarker targets for Alzheimer’s disease using an 

LC-MS3 (TOMAHAQ) method.  Targeted MS methods are beneficial for their sensitivity 

to pre-selected peptides, improving an instrument’s dynamic range, reducing interfering 

background noise, and ability to easily multiplex (Picotti and Aebersold, 2012; Ronsein 

et al., 2015).  Targeted MS methods are able to detect individual allergenic protein 

sequences provided within a database.  For targeted methods, it is critical to have a robust 

peptide selection method, especially in complex matrices to prevent false positive 

identifications (Sherman et al., 2009). 

In our investigations, we utilized three different targeted MS methods to increase 

sensitivity, for detection of allergenic proteins in vivo.  PRM based mass spectrometry 

utilizes high resolution-accurate mass (HR-AM) instruments, and is highly specific since 

all product fragment ions are analyzed in parallel.  The HR-AM analyzer enables in PRM 

scans the capability to distinguish between co-isolated ions, by determining each ion’s 

fragmentation patterns (Duncan et al., 2009; Peterson et al., 2012; Sherman et al., 2009).  

MRM methods have been the gold-standard quantification method due to their high 

selectivity, sensitivity, reproducibility, and quantifiable accuracy for peptide detection 

(Addona et al., 2009; Lange et al., 2008).  MRM3 methods provide an additional level of 

sensitivity, and are able to quantify low abundance peptides in non-depleted serum 

(Fortin et al., 2009).   

The objective of this chapter is to develop a series of targeted MS methods, in 

order of increasing sensitivity, PRM, MRM, and MRM3, for unique peanut peptide 

targets selected by DDA selection process.  We anticipate needing high levels of 
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sensitivity with corresponding low levels of detection based on the currently available in 

vivo protein absorption data.  In this chapter, subject serum collected by 

JanssenDuijghuijsen et al., 2017b, which was determined positive by an Ara h 6 ELISA, 

were evaluated by the targeted methods developed.  Ara h 6, a preferential immunoassay 

target due to its digestive stability, was detected at extremely low concentrations (0.3 

ng/mL Ara h 6) in human serum (JanssenDuijghuijsen et al., 2017b).  Ara h 6 only 

accounts for ~6% of the total peanut protein; therefore the estimated protein 

concentration of peanut in serum is expected to be greater (6 ng peanut protein/mL) 

(JanssenDuijghuijsen et al., 2017b; Koppelman et al., 2016).  Given the unknown 

concentrations of peanut proteins in serum, the level of detection required by MS 

methods is largely unknown.  We developed the targeted methods in the following order, 

PRM, MRM, and MRM3, with each method ideally providing improvements to 

sensitivity.   

 

MATERIALS AND METHODS  

 

 Reagents 

 All reagents used were of analytical grade for all experiments.  All reagents used 

for LC-MS/MS sample preparations and analyses were of MS grade.   

 

 Discovery Identification of Peanut Peptide Targets 

For initial data-dependent acquisitions, samples were prepared on an equal protein 

basis.  All samples prepared will have the same amount protein present in the sera-peanut 
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matrix sample as is present in their individual component samples (peanut or serum 

alone); non-depleted samples were prepared as described in Chapter 2 (page 79). 

 

 Sample Preparation and In-Solution Reduction, Alkylation, and Trypsin 

Digestion for Discovery LC-MS/MS 

Initial identifications of unique peanut peptides were determined experimentally 

by discovery LC-MS/MS of (1) non-depleted serum, (2) raw peanut extract, and (3) an 

incurred matrix of non-depleted serum and raw peanut extract (10:1 (w/w)), as described 

previously in Chapter 2 (page 79).   

However, for model matrices prepared in this chapter, we used commercially 

available human serum (human serum sterile, ImmunO, MP Biomedicals) and raw peanut 

extract (0.01 M PBS), combined at a 10:1 w/w ratio, with a maximum of 30 µg protein 

for trypsin digestion.  This incurred serum-peanut matrix will serve as our model system 

for all subsequent stages of MS method development, unless otherwise noted.  Control 

samples were prepared using equivalently. 

Samples were evaluated by discovery LC-MS/MS using a standard in-solution 

reduction, alkylation, and trypsin digestion protocol modified from Thermo™ In-

Solution Trypsin Digestion and Guanidination, as previously described (page 80). 

 

 Discovery LC-MS/MS Acquisition Method 

We used the optimized discovery acquisition developed in Chapter 2, using the 

same instrument platform and equipment (page 84).  All instrument parameters remained 
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the same, except, the UPLC column was equipped with a Javelin™ Direct-Connection 

Column Filter, 2.1 mm (Thermo Scientific™), a Hypersil Gold aQ C18 1.9 μm, 20 × 2.1 

mm pre-column (Thermo Scientific™) and a Hypersil Gold C18 1.9 μm, 100 × 1 mm 

analytical reversed phase column (Thermo Scientific™).   

 

 Data Analysis 

Acquired discovery data were evaluated using a peanut database (Arachis 

hypogaea, taxon identifier 3818) downloaded from UniProt (8/31/2016) and PEAKS 

version 8.5 software (Bioinformatics Solutions; Cheriton et al., 2019) for identification of 

unique proteotypic peanut peptides, as previously described (page 82), however the 

parent mass tolerance was set to 5 ppm.  Label-free quantification was performed to 

quantify peptide abundance and data were normalized to TIC. 

 

 Peptide Selection 

Peptides identified using discovery MS were selected for evaluation as candidate 

PRM targets.  The following criteria were used to evaluate peptides: (1) selected peptide 

sequences must be unique and attributable to peanut protein(s); (2) selected peptides must 

be absent from sera only data; (3) candidate peptides must originate from a multiply 

charged precursor ion (2+, 3+, or 4+); (4) contain 5 – 20 amino acid residues; (6) have 

tryptic cleavage sites; (7) no miscleavage events; and (8) absent of any post-translational 

modifications (PTMs) other than carbamidomethylation, a product of alkylation (Korte et 

al., 2016; Rauniyar, 2015).  Peptides must be present in relatively high abundances in 
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both the peanut and serum-peanut matrices.  If peptides were detected at multiple charge 

states both charge states were included in preliminary target selection.  Once all candidate 

peptides were identified by the above listed criteria, the inclusion list was further refined.  

Of the peptides identified, only those detected within the top 10% of all identified 

candidate peptides by signal abundance were included for further evaluation in PRM 

method development. 

 

 PRM Method Development 

The PRM method was developed by evaluating peptides selected by discovery 

LC-MS/MS.  Due to the large number of peptides included, we divided the peptides into 

two inclusion lists based on retention times; target list A and target list B.  Peptides were 

ranked according to retention times, and split between the two lists, by selecting every 

other peptide based on retention time. 

 

 MS Method Settings for PRM Evaluation 

Once peptides were designated to the appropriate inclusion list, we evaluated 

peptide performance against the same set of samples, sera-peanut matrix, peanut, and 

serum.  Samples were prepared identically as those previously described using the same 

instrument platform and chromatography in the discovery LC-MS/MS experiment.  In 

total, 52 peptides from the four major allergenic peanut proteins (Ara h 1, Ara h 2, Ara h 

3, Ara h 6) were identified (described in detail in results section, page 171).  These 

peptides divided into two inclusion lists, with a maximum of 27 and 26 peptides in each 
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list, respectively.  Peptides in the initial inclusion list(s) were not scheduled.  Scheduling 

reduces background interferences by only scanning for specific m/z events during a 

defined time window (e.g. peptide retention time).  LC method run time was 113 minutes, 

with PRM scan time of 73 minutes (2 – 75 minutes).  MS acquisition settings were set as 

follows: MS2 resolution was set to 140,000; AGC target 1e6; maximum IT 500 ms; loop 

count 30; isolation window 1.6 m/z with an isolation offset set to 0.0 m/z; NCE set to 27.  

Instrument gas and source settings for PRM acquisitions were identical to those 

previously described (page 81).  

 

 PRM Optimization and Evaluation of Selected Target Peptides 

The PRM peptide list was refined by adjusting the chromatographic gradient to 5 

– 50% mobile phase B (0.1% formic acid in acetonitrile).  All instrument and gas settings 

were kept the same as previously described (page 151). 

The same set of prepared matrix samples was injected using PRM acquisition.  

The target list was reduced to 19 target peptides after the last series of peptide 

evaluations.  Peptides were then combined into a single inclusion list, with the loop count 

set to 20.  We included peptide retention times with +/- 1.5 minutes of the mean 

calculated peptide retention time. 

The method sensitivity (limit of detection) was evaluated by preparing serum 

incurred with serially diluted peanut protein.  The volume of serum used in each model 

sample remained constant while the peanut extract was serially diluted.  The 

concentrations of each peanut extract are described in Table 3-1.  An equivalent volume 
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from each peanut extract was added to sera, to maintain equal sample volume(s).  

Samples were prepared for LC-MS/MS by digestion, de-salting (C18), and re-suspension, 

as previously described for model samples (page 79).  Samples were injected in 

duplicate.  We evaluated both (1) sera-peanut matrices and (2) peanut, without the matrix 

background, at decreasing concentrations of peanut protein.   
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ratio of sera:peanut 
ng peanut 

protein injected 

ppm peanut 

protein in 

original sample 

10:1 80 110 

100:1 8 11.0 

500:1 1.6 2.20 

1,000:1 1.1 1.10 

2,000:1 0.40 0.56 

5,000:1 0.16 0.22 

10,000:1 0.08 0.11 

 

 

 Data Analysis of PRM Methodology 

i. Peptide Selection 

PRM data were analyzed using Skyline v20 software (Maclean et al., 2010).  

Parent ions were selected by the PRM method and fragmented, therefore we evaluated 

the transitions of each parent (MS1) ions.  Peptides with six or more detectable 

transitions were retained for further evaluation as target peptides.  We evaluated y- or b-

ions only and removed other ion products from analyses.  

The settings used to analyze PRM data in Skyline were set to match the 

acquisitions method parameters with an ion match tolerance set to 0.7 m/z, and a method 

match tolerance set to 0.055 m/z 

Transitions, y1, y2, b1, and b2, were removed, as were, transitions which were not 

detected.  Transitions which were positive in sera (alone) were removed.  The transition 

ratio pattern in sera-peanut samples must be identical to peanut (alone), with similar 

recorded retention times.  Peptides were ranked by summed peptide peak area.  The top 5 

Table 3-1.  Dilution series of peanut in serum for evaluation 

of PRM method sensitivity.   
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peptides, for each major allergenic peanut protein, which meet the above described 

criteria were included further evaluation. 

 

ii. Peptide Selection and Refinement 

Peptides were evaluated using Skyline, as previously described in the previous 

section (page 154).  The retention time stability was evaluated and the scanning windows 

were adjusted for their mean observed retention time, if vastly different from previous 

analyses.  Peptides must have three robust transitions, which meet the above criteria in 

order to remain included as target candidate peptide.  The dilution series was evaluated 

for robust peptide detection at each level.  The LOD was assessed in a qualitative manner 

by observing lack of transition detection, shifts in retention time, and poor peak shape.  
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 MRM 

 

 Instrument Settings and Method Optimization 

Since we anticipated needing high levels of sensitivity and low-level peptide 

detection, we developed an MRM method using the optimized targets and 

chromatographic settings determined during PRM method development.   

MRM analysis was performed on a SCIEX QTRAP 6500+, a triple quadrupole 

mass spectrometer coupled with a Shimadzu Nexera II UHPLC (binary pump) with a 

Hypersil Gold uHPLC column (100 x 2.1 mm, 1.9 µm) equipped with a filter (Javelin™ 

Direct-Connection Column Filter, 2.1 mm (Thermo Scientific™).  The PRM 

chromatographic method was directly transferred.  Peptide scheduling was re-evaluated 

on the QTRAP instrument platform.  Mobile phases were as follows: A was 0.1% formic 

acid in water, B was 0.1% formic acid in acetonitrile.  To accommodate the larger 

column, the flow rate was increased to 300 µL/min and column oven temperature was set 

to 40°C.  Low mass (<1000 m/z) acquisition setting was used.  

The following instrument settings were optimized for MRM peptide detection in 

order they are listed: vertical probe position set to 8, horizontal probe position set to 6, 

curtain gas (CUR) set to 30, ion spray voltage (IS) of 5500, temperature (TEM) 300°C, 

ion source gas 1 (GS1) at 40, ion source gas (GS2) at 50, and collision gas (CAD) set to 

high. 
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For optimization, we infused mobile phase A (0.1% formic acid in water) buffer 

and observed the responses for each gas setting.  Once all acquisition settings were 

optimized, a peanut sample was injected for validation. 

 

 MRM Peptide Target Selection and Evaluation 

To evaluate selected peptide targets, we injected (2 µL) the model samples, sera, 

peanut, and sera-peanut, (0.5 µg/µL) as performed in previous experiments.  Initial 

peptide targets determined by PRM were included for evaluation as MRM targets.  We 

included the top six transitions for each selected peptide for evaluation by MRM. 

The peptide dependent instrument settings, collision energy (CE), dwell time, and 

declustering potential (DP) were optimized to maximize sensitivity for the MRM method.  

Peptide dependent settings are generally determined by direct infusion of synthesized 

isotopically labeled peptide(s).  However, the instrument settings were optimized by a 

direct infusion of tryptically digested raw peanut extract, prepared in the same manner as 

previously described to a final peptide concentration of (0.5 µg/µL), similarly to von 

Bargen et al., 2013.   

Peptide retention times were determined on the QTRAP platform using an 

Enhanced MS scan.  Replicate injections (2 µL) of digested peanut extract (0.5 µg/µL) 

were performed to determine mean retention time.  The mean retention time ± 45 seconds 

were included. 
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 MRM Method Sensitivity Determination 

We similarly analyzed the same two prepared dilution series, (1) sera-peanut and 

(2) peanut, to determine MRM method LOD (Table 3-2).  MRM data were analyzed 

using Skyline software following the same criteria described for PRM analyses (Maclean 

et al., 2010). 

The settings used to analyze MRM data in Skyline were set to match the 

acquisition method parameters with an ion match tolerance set to 0.5 m/z, and a method 

match tolerance set to 0.6 m/z.  The LOD was assessed in a qualitative manner by 

observing lack of transition detection, shifts in retention time, and poor peak shape.  
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ratio of sera:peanut 
ng peanut 

protein injected 

ppm peanut 

protein in 

original sample 

10:1 93.3 115 

50:1 18.7 22.9 

250:1 3.7 4.58 

750:1 1.2 1.53 

1,250:1 0.75 0.92 

3,750:1 0.25 0.31 

6,250:1 0.15 0.18 

31,250:1 0.03 0.04 

 

 MRM3 

 

 Instrument Setting Optimizations 

MRM3/MS3 ions were determined using direct infusion of a tryptically digested 

peanut extract prepared as described previously (page 80).  A total amount of 30 µg 

peanut protein were digested, and re-suspended to a concentration of 0.5 µg/µL prior to 

infusion.  The digested peanut sample was infused at a rate of 20 µL/min.  This flow rate 

provided suitable detection of all MRM transitions.   

Selection of MRM3 product ions, or tertiary fragment ions, was determined by 

evaluating parent ions (MS1) used in MRM experiments.  The determination of MRM3 

transitions is an iterative process and must be determined experimentally using the 

MRM3 Optimization Script within the instrument software, Analyst.   

Table 3-2.  Dilution series of peanut in serum for evaluation 

of MRM and MRM3 method sensitivity.   
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For each individual peptide, the parent (MS1) ion m/z was input into the MS3 

Optimization Script.  MS1 ion selection settings were set with an ion mass tolerance of 

±2 Da, a scan rate of 1,000 Da/sec, and the MS1 must not be below 10% of the total ion 

current, using an Enhanced Resolution (ER) scan.  DP is determined during the Q1 

Multiple Ion scan using a ramp from 0 – 100 V, with increment measurements of 5 V.  

The Enhanced Product Ion (EPI) scans for MS2 selection recorded the top-5 MS2 

product ions, at a scan rate of 1,000 Da/sec, mass range of 225 – 1,000 m/z, CE set at 40, 

with a collisional energy spread (CES) set to 25.  MS/MS/MS (MS3) scan rate was set to 

1,000 Da/sec, with Q0 trapping, a fixed fill time of 100 ms, and a mass range of 100 to 

1000 m/z.  The optimized MS2 excitation energy (AF2) are determined within the MS3 

Script.  All stages of ion selection are performed iteratively with continuous infusion of 

the peanut sample (20 µL/min). 

Identification of secondary product ions (MS3) was difficult for many peptides.  

In order to have multiple peptide targets for MRM3, we investigated using non-

fragmented MS2 peptide ions as MS3 targets.  To do so, the MS2 m/z value was input for 

both the MS2 and MS3 m/z’s.  

 

 MRM3 Cycle Time Optimization 

During an MRM3 method, scheduling is not possible within the software.  To 

circumvent this problem, we divided our experiment into eight periods, wherein scans for 

each respective target occurred within a defined period.  Without scheduling, the method 

has high cycle times, greatly impacting sensitivity.   



161 

 

 MRM3 Peptide Target Selection 

MS3 fragmentation spectra of tertiary product ions will be recorded and assessed 

manually.  For inclusion as an MRM3 target, the ions must have good signal intensity, y- 

or b-ion(s) originating from MS2 fragment ion sequence, and absent from non-specific 

MS3 fragmentation events (e.g. loss of NH3 or H2O ions) (Korte and Brockmeyer, 2016).  

The LOD was assessed in a qualitative manner by observing lack of transition detection, 

shifts in retention time, and poor peak shape.   

 

 MRM3 Method Evaluation 

The selected tertiary product ions were evaluated for uniqueness against our 

model analytical samples, sera, peanut, and sera-peanut.  The LOD for MRM3 was 

performed as previously described using two dilution series of (a) peanut and (b) sera-

peanut, according to Table 3-2.  The chromatographic separation of peptides is unaffected 

by the implementation of a second stage MS fragmentation, and no changes were made to 

the chromatographic settings.  Peptide scheduling will be added for MRM3 acquisitions 

to achieve decreased cycle times.  MRM3 data were analyzed by Analyst software.  

Skyline software is incompatible for analysis of MRM3 data files, due to the addition of 

an ion trap scan for MRM3 detection.   
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 Evaluation of Subject Serum Samples by MRM and MRM3 

We evaluated subject samples previously determined positive by Ara h 6 specific 

sandwich ELISA (JanssenDuijghuijsen et al., 2017b) using our developed MRM and 

MRM3 methods.  We evaluated two subject sera at baseline (0 hour) and their highest 

measured two selected time points, 60 and 120 minutes.  Complete ELISA results and 

subject characteristics are described in the original publication.  A positive control (blank 

subject sera-peanut 100:1 (w/w)), was prepared.  Following each analytical sample, a 

blank sample consisting of re-suspension solution was injected.  We performed this 

experiment twice, on two separate occasions.  The subject serum was collected from 

healthy individuals who regularly consume peanuts and are not allergic to peanuts 

(JanssenDuijghuijsen et al., 2017b). 

 

 Optimization of High-Resolution PRM Acquisitions 

Following investigations of multiple targeted methods, PRM, MRM, and MRM3, 

we re-investigated the use of high-resolution PRM methods.  Due to the specificity 

required for detection of low abundance serum-proteins, we anticipate the need for high-

resolution acquisitions.  Confirmation using MRM and MRM3 methods was 

unconvincing, even though peanut specific transitions were monitored.  Likely, the 

potential number of interfering serum ions factored into this lack of detection.  We have 

approached this section in the same manner as previously described targeted methods.  

Our aim was to analyze the maximum level of protein for detection of peanut proteins in 

sera using the previously developed PRM method.  We calculated the amount of serum 
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necessary to achieve detection, based on the calibration curves from initial PRM studies 

and estimated concentrations of peanut in serum from JanssenDuijghuijsen et al., 2017b.   

Serum used in this set of experiments was collected and analyzed using ELISA by 

JanssenDuijghuijsen et al., 2017b.  Blood was collected from patients into serum 

separator tubes at the define time points following ingestion (30, 60, 120, 240, 360 

minutes).  Collected blood was allowed to clot (room temperature, 20 minutes, in the 

dark), followed by centrifugation (2000 x g, 10 minutes, room temperature), ultimately 

producing serum.  Serum was stored at -80°C (JanssenDuijghuijsen et al., 2017b).   

 

 Evaluation of Large Scale Digestion Methodology 

We prepared a larger volume (45 µL) of our model matrix, non-depleted 

commercial serum (MP Biomedicals) with peanut extract (50:1 (w/w)) for LC-MS/MS 

analysis.  Commercial serum was initially used to evaluate the optimal amount of 

digested protein to be injected and separated on the liquid chromatography column.   

To accommodate the increased amount of digested protein, we modified the 

previously developed in-solution trypsin digestion procedures from Chapter 2 (page 80).  

Commercial and subject (baseline) serum (80 µg/µL) were diluted (45 µL) to 10 µg/µL 

with acetonitrile and water to achieve a final concentration of 5% acetonitrile at the end 

of digestion.  Samples were mixed with ammonium bicarbonate (50 mM) and reduced by 

adding dithiothreitol (100 mM), followed by heating at 95°C for either, (A) 5 minutes or 

(B) 20 minutes.  Alkylation was performed with iodoacetamide (100 mM) at room 

temperature in the dark for 20 minutes.  Trypsin (Pierce™ Trypsin Protease, MS Grade, 
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90057) was added at two enzyme:protein ratios, either 1:50 or 1:100 (w/w) 

enzyme:protein.  Trypsin (1 µg/µL in 5 mM acetic acid) was added to reduced and 

alkylated protein samples, and allowed to digest for 3 hours at 37°C.  A second addition 

of trypsin was added, resulting in a final enzyme:protein ratio of 1:50 or 1:100 (w/w), 

respectively, and incubated overnight at 30°C.  The digestion was stopped by freezing 

samples.  The remaining tryptic digests were de-salted using Strata-X 33 µm polymeric 

reversed phase 10 mg/1 mL columns (Phenomenex, Aschaffenburg, Germany).  Columns 

were conditioned with 100 % methanol and equilibrated with 5% acetonitrile, 0.1% 

formic acid.  Digested peptides were loaded into equilibrated columns and washed twice 

with 5% acetonitrile and 0.1% formic acid.  Peptides were eluted from columns by 70% 

methanol, 0.1% formic acid (500 µL).  The elution step was repeated once.  De-salted 

peptides were dried under vacuum by centrifugal evaporation Jouan RC-10.10; RCT-90; 

Winchester, VA, USA.  Peptides were re-suspended to 80 µg/µL in 5% acetonitrile, 0.1% 

formic acid.  Modified digestion and reduction procedures were evaluated by SDS-

PAGE. 

 

 SDS-PAGE Evaluation of Digestion Methodology 

Samples for SDS-PAGE were taken at various time points, 0, 3, 18, and 24 hours, 

and after de-salting and re-suspension procedures.  SDS-PAGE was conducted under 

reducing conditions using NuPAGE Bis-Tris Mini Gels 4-12% (1.0 mm, 12 wells) and 

constant voltage (200V) for 40 minutes in an XCell SureLock Mini Cell Electrophoresis 

System (Invitrogen Life Technologies).  Non-digested serum (e.g. control) was diluted 

22-fold prior to SDS-PAGE sample preparation, to a concentration of 3.6 µg/µL.  
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Aliquots taken during digestion, diluted control serum (10 µL), and re-suspended peptide 

digests after de-salting (12 µL) were combined with 4 x concentrated Laemmli buffer and 

1% β-mercapto-ethanol (BME).  Due to peptide re-suspension following de-salting and 

solvent evaporation, different volumes were required to maintain equal protein loading of 

each sample.  Reduction occurred by heating all samples for 5 minutes at 95°C.  Samples 

(10 µL) were loaded into each gel well.  Precision Plus Protein Dual Xtra Standards (Bio-

Rad) were used as the molecular weight (MW) standard.  Gels were stained, overnight, in 

Coomassie Brilliant Blue R-250 (Bio-Rad) stain. Gels were then de-stained (Coomassie 

Brilliant Blue R-250 Destaining solution, Bio-Rad), rehydrated, and imaged.   

 

 Evaluation of Protein Loading by PRM 

The following section describes the optimized in-solution trypsin digestion 

procedure from our previous evaluations.  Commercial serum (80 µg/µL) was combined 

with raw peanut extract (50:1 (w/w)).  The matrix samples, sera-peanut (45 µL), were 

diluted to 10 µg/µL with acetonitrile:water achieving a final concentration of 5% 

acetonitrile at the end of digestion.  Samples were digested and de-salted as previously 

described (page 163) using a longer incubation time for reduction (95°C for 20 minutes) 

and a 1:100 (w/w) enzyme:protein ratio.  A third aliquot of trypsin, at equal volume to 

previous trypsin aliquots, was added following overnight digestion to insure complete 

protein digestion, resulting in a final 1:67 final enzyme:protein ratio.  Samples were 

incubated at 30°C for 3 hours following the third addition of trypsin.  Following de-

salting, peptides were re-suspended into two separate volumes of 5% acetonitrile, 0.1% 

formic acid to a final concentration of either (A) 11.5 µg/µL or (B) 52.4 µg/µL, ranging 
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from 11 – 1100 µg protein, chromatographically separated, and evaluated by PRM.  PRM 

method is described in detail below.  Injections were performed in increasing order of 

protein, and a blank sample (5% acetonitrile, 0.1% formic acid) was injected between 

analytical samples.  

We optimized the amount of protein loading primarily at two protein load levels, 

first, at 600 µg with Sigma sera and subject serum collected by JanssenDuijghuijsen et 

al., 2017b.  We secondly evaluated a higher protein load up to 3000 µg with baseline 

subject serum.   

Then, we evaluated active subject serum at baseline and selected time points 

(baseline (0), 30 60, 120, 240, 360 minutes) were evaluated using the same sample 

preparation parameters, the retention times and loop count were adjusted according to the 

amount of protein loaded.   

At each of these protein levels, we evaluated serum collected at all time points 

(baseline, 30, 60, 120, 240, and 360 minutes) collected by JanssenDuijghuijsen et al., 

2017b.  At the higher amounts of protein injected, we monitored column pressures during 

chromatography and blank injection cleaning methods.   

 

 LC-MS/MS Analysis of Increased Protein Loading by PRM 

Peptide digests were chromatographically separated using an UltiMate 3000RSL® 

liquid chromatography (UPLC) system (Thermo ScientificTM) equipped with a Hypersil 

Gold C18 1.9 μm, 100 x 2.1 mm, 1.9 µm reversed phase column (Thermo ScientificTM) 

attached with an in-line filter cartridge (1 mm ID, 0.2 μm) (Thermo Scientific™), and a 
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column oven temperature maintained at 35°C.  Mobile phases were as follows, (A) 0.1% 

(v/v) formic acid in water, (B) 0.1% (v/v) formic acid in acetonitrile, (C) 1:1:1:1 

acetonitrile, isopropanol, methanol, water, and (D) was 100% methanol.   

The separation column was equilibrated at 7.5% mobile phase B for 7.5 minutes.  

Peptides were separated using a linear gradient of 7.5 – 25% mobile phase B over 20 

minutes at a flow rate of 300 µL/min.  Following the gradient elution, the column was 

washed using the same flow rate for 3 minutes at 98% mobile phase B, followed by 

100% mobile phase D for 3 minutes.  The separation column was re-equilibrated for 4 

minutes.   

The total protein load was evaluated using the optimized PRM method as 

previously described, using the same equipment and instrumentation.  However, in these 

experiments, the javelin and pre-column were replaced with an inline filter cartridge.  In 

summary, peptides were separated using a Hypersil GOLD Vanquish (100 x 2.1 mm, 1.9 

μm particle) (Thermo Scientific™) separation column with an inline filter cartridge (1 

mm ID, 0.2 μm) (Thermo Scientific™).  Peptide retention times were input to the 

inclusion list, and monitored for stability after each protein level injection.  If peptide 

retention times demonstrated shifts, the retention time windows were adjusted iteratively.   

The column pressures were monitored during both chromatographic separation, 

blank injections, and cleaning methods in all higher protein injections.  
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 Data Analysis of Optimized PRM Methodology 

Peanut peptide detection was evaluated for intensity and retention time stability.  

Shifts in retention time due to protein load were recorded and evaluated in Skyline 

(Maclean et al., 2010).   

 

 Evaluation of Subject Serum Samples with Higher Protein Loads 

We evaluated subject samples previously determined positive by Ara h 6 specific 

sandwich ELISA (JanssenDuijghuijsen et al., 2017b) using our developed MRM and 

MRM3 methods.  Subject serum numbers 2 and 7, as identified in the original manuscript, 

were selected for PRM evaluation, but hereafter, the sera samples are referred to as 

subject sera 1 and 2, respectively.  The evaluated sera included the baseline (0 minutes) 

and their highest measured absorption time points, 60 and 120 minutes.  ELISA results 

and subject characteristics are described in the original publication (JanssenDuijghuijsen 

et al., 2017b).   

Subject sera (40 µL) were enzymatically digested and de-salted as previously 

described (page 163).  Peptides were re-suspended to 30 µg/µL in 7.5% acetonitrile, 

0.1% formic acid in water.  Each digest was injected (20 µL) in duplicate and analyzed 

using the optimized PRM method as previously described (page 162) and analyzed by 

Skyline using the same analysis parameters (page 154) 
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 Optimization of Chromatography Methodology for Higher Protein Loads 

Due to the increased protein requiring chromatographic separation, more robust 

cleaning procedures were required.  Two column wash methods were injected after each 

analytical sample.  The first column wash method consisted of an isocratic flow of 100% 

mobile phase C (1:1:1:1: methanol:acetonitrile:isopropanol:water) (300 µL/min) for 20 

minutes.   

The second wash phase utilized the same mobile phases as previously described 

(page 81).  The column was equilibrated (300 µL/min) for 7.5 minutes at 7.5% mobile 

phase B, followed by a linear gradient from 7.5 to 98% mobile phase B.  Mobile phase B 

was maintained at 98% for 8 minutes.  The column was washed (300 µL/min) with 100% 

mobile phase C for 5 minutes, followed by 100% mobile phase D (300 µl/min) for 5 

minutes.  The column was re-equilibrated (300 µl/min) at 7.5% mobile phase B for 12 

minutes.   

 

 Multiple Injections 

In order to load higher amounts of protein on the liquid chromatography column, 

we needed to maintain a consistent concentration of re-suspended peptides prior to 

analysis by LC-MS/MS.  To do so, the peptide concentration was maintained at < 20 

µg/µL, and, we injected each sample multiple times to achieve the desired amount or 

protein load.  Baseline subject serum was combined with peanut extract (50:1 (w/w)) to 

monitor protein loading.  Other key parameters monitored included chromatographic 

pressures during samples and blank injections, protein recovery, transition ratios, and 

peptide retention time stability.   
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Multiple, repeated injections of a single peptide sample were injected for 

chromatographic separation.  The column flow was maintained at the equilibration 

settings until all protein was successfully injected onto the column.  Once all injections 

were performed, the chromatographic gradient began.  Individual injection methods were 

written in order to load protein on column before beginning chromatographic elution.  

The same, previously described mobile phases, were used (page 169).  The column 

loading injection methods included injection parameters and an isocratic solvent flow 

(7.5% mobile phase B).  The final injection included the parameters for chromatographic 

elution and MS acquisition.  Optimized loop count and retention times for increased 

protein loading were used.  After each analytical sample injection (i.e. serum sample), the 

column was cleaned by injections of blank samples (mobile phase C) using the optimized 

column cleaning methods described above.   

 

 Serum Time Course Evaluation using Multiple Injections and Heavy 

Labeled Peptides  

We ultimately evaluated the subject sera (JanssenDuijghuijsen et al., 2017b) 

samples which we determined were positive.  The ten selected peanut peptide targets, 

with their corresponding heavy peptides, were monitored by PRM LC-MS/MS.  AQUA 

peptide standards (Thermo Scientific™) were synthesized with a heavy isotope labeled 

13C(6)15N(4) C-terminal arginine or 13C15N(2) C-terminal lysine with 

carbamidomethylation (+57.02 Da) of cysteine residues.  Peptides were synthesized to 

97% purity, as determined by LC-MS/MS.   
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Peptide concentration was determined by calculating the heavy to light ratios of 

peptide peak areas.   

 

 Subject Serum Injections with Heavy Peptides for Quantification 

Subject sera 1 and 2, (JanssenDuijghuijsen et al., 2017b) were analyzed (600 µg) 

or (2800 µg) using the multiple injection protocol and PRM acquisition with heavy 

peptides.  The loop count was modified for inclusion of heavy peptides.  We additionally 

evaluated multiple injections for recovery of heavy peptides.  A mix of heavy labeled 

peptides were prepared in an equimolar manner.  Heavy peptides were injected (8 µL) to 

achieve 100 fmol (12.5 fmol/µL individual heavy peptide) of each heavy peptide for LC-

MS/MS evaluation.  The previously described chromatographic wash methods were 

included after each sample injection (page 169).   

 

 Data Analysis 

All data were analyzed using Skyline v 20 (Maclean et al., 2010) (page 154), as 

previoulsy described.  

 

RESULTS AND DISCUSSION 

 

 Discovery Identification of Peanut Peptide Targets 

The identification of unique peanut peptides from discovery mass spectra allowed 

us to generate a list of candidate peptides.  This list of candidate peptides was further 
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refined in subsequent developmental phases.  Peptides identified as candidate peptide 

targets met the criteria described in the methods section (page 150).  In total, 52 

candidate peptides were identified from discovery data, representing each major 

allergenic protein family (Figure 3-1).  We identified 20 – Ara h 1 peptides, 6 – Ara h 2 

peptides, 19 – Ara h 3 peptides, and 7 – Ara h 6 peptides.  The variation in number of 

peptides per protein detected are as anticipated.  The prolamin proteins, Ara h 2 and Ara 

h 6, have much shorter protein sequences than the cupins, Ara h 1 and Ara h 3.  As such, 

we would expect few unique peanut peptides to be detected in the shorter protein 

sequences, Ara h 2 and Ara h 6.  

 

 

 

Figure 3-1. The relative abundance of the top peanut peptide targets 

identified by discovery LC-MS/MS. 
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By selecting peptide targets using an experimental workflow, we were able to 

confirm the presence of target peptides in a sample matrix, an advantage over in silico 

peptide selections.  Similar workflows using discovery MS for peptide identification for 

monitoring in targeted acquisitions (e.g. PRM, MRM) has been successfully reported by 

other investigators (von Bargen et al., 2013; Korte et al., 2016a; Korte et al., 2016b).   

Peanuts are typically consumed after roasting, a process known to induce protein 

aggregation, particularly for Ara h 1 (Koppelman et al., 1999; Schmitt et al., 2010).  The 

heating induced aggregation reduces protein solubility and consequently, overall 

extractability (Koppelman et al., 1999; Schmitt et al., 2010).  As a result of reduced 

solubility, these aggregated proteins are not efficiently extracted in saline buffer.  

However, these proteins remain present in the food matrix and are exposed to the 

immune system after digestion alongside other peanut proteins.  To identify all potential 

unique peanut allergens, all proteins should therefore be included in peptide selections.  

By using a raw peanut extract, we were able to identify unique Ara h 1 peptides alongside 

other major allergenic peanut peptides.  The incurred matrix (serum-peanut) was prepared 

at high concentrations of peanut, concentrations greater than the expected in vivo levels, 

to ensure uniqueness of selected peanut peptides in a serum matrix background.  It is 

critical to evaluate each matrix component individually (peanut, serum) as well as in the 

presence of a matrix background, to eliminate any co-eluting peptide events which may 

be produced in matrix combination.  Secondly, we have chosen to use commercially 

available human serum as a representative of healthy human adults, which is ultimately 

our final sample population.   
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 PRM  

The peptide targets identified in discovery were verified in a targeted PRM 

method, to confirm their detectability.  The same samples were analyzed, and the peptide 

acceptance criteria were unchanged.  After peptide evaluation using PRM acquisition, we 

reduced our number of targets to 26 peptides.  The chromatographic gradient was 

modified to improve peptide separation and detection.  We modified the organic:aqueous 

solvent gradient by adjusting the total percentage aqueous solvent throughout the course 

of the run.  The time of the gradient was modified, affecting the overall slope.  In cases 

where some peptides were not able to be adequately separated, the peptides with the 

highest abundance were retained for further evaluations.  After chromatographic 

optimizations, we ultimately selected 13 peanut peptide targets, 4 – Ara h 1, 1 – Ara h 2, 

4 – Ara h 3, and 3 – Ara h 6 peptides were selected.  The optimal retention times were 

determined and included during PRM acquisitions for the 12 selected peptides (Figure 3-

2).   
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Figure 3-2. Relative abundance of the selected twelve 

peanut peptides by PRM detection at 0.80 ng peanut 

protein in a sera-peanut model matrix. 
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A dilution series of peanut peptides in sera background (sera-peanut) were 

evaluated by the optimized PRM method and 12 selected peptides (Table 3-3).  The best 

peptide for each protein (Ara h 1, Ara h 2, Ara h 3, Ara h 6) are described in Figure 3-3.  

Each individual dilution curves is located in Supplementary Figures 3-1 to 3-9.  Each 

sample contained the same amount of serum protein and decreasing amounts of peanut 

protein (Table 3-1).  The dilution series reported detection of all 12 peptides, with a 

minimum of three transitions per peptide. We were able to detect 0.80 ng peanut protein 

using the PRM method in a serum matrix (790 ng serum protein) (Figure 3-2).  In the 

dilution series of peanut, lower limits of detection were observed in the peanut only 

matrix, than when in a non-depleted sera matrix.   

Table 3-4 lists the individual limit of detection for each peptide.  Protein 

composition values were determined by Koppelman et al., 2016, and were used here to 

convert total peanut protein to specific peanut protein (e.g. Ara h 1).  Based on the 

published data, we estimated the total protein composition at 18% Ara h 1, 6% Ara h 2, 

70% Ara h 3, and 6% Ara h 6 (Koppelman et al., 2016).   

In a comparison of the peanut and sera-peanut matrices, the limit of detection was 

generally lower in the sera-peanut matrix for most peptides.  One Ara h 1 peptide had a 

lower detection limit in peanut alone.  Only this one peptide had a lower detection limit 

in peanut alone.  
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Figure 3-3.  Relative abundance of the top three summed transitions for the 

best performing peptide(s) of (A) Ara h 1, (B) Ara h 2, (C) Ara h 3, (D) Ara h 

6 peptides, as detected by PRM, at decreasing quantities of peanut protein in a 

constant amount of serum.  Blue lines represent sera-peanut, where sera 

remains unchanged.  Black lines represent peanut only, in the absence of a 

sera background.   
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Protein Peptide 
Peptide 

Reference 
Name 

m/z RT 

Ara h 1 GTGNLELVAVR GTGN 564.8222++ 23.3 
 NNPFYFPSR NNPF 571.2749++ 23.5 
 DLAFPGSGEQVEK DLAF 688.8383++ 20.5 
 EGALMLPHFNSK EGAL 448.5641+++ 15.5 

Ara h 2 NLPQQCGLR NLPQ 543.2797++ 17.2 

Ara h 3 TANDLNLLILR TAND 628.3721++ 26.0 
 SPDIYNPQAGSLK SPDI 695.3541++ 20.8 
 QIVQNLR QIVQ 435.7614++ 17.6 
 AHVQVVDSNGNR AHVQ 432.5532+++ 13.9 
 WLGLSAEYGNLYR WLGL 771.3910++ 24.9 

Ara h 6 CDLDVSGGR CDLD 489.7191++ 16.6 
 ELMNLPQQCNFR ELMN 775.3661++ 23.2 
 VNLKPCEQHIMQR VNLK 413.9644++++ 18.7 

 

 

Table 3-3. Peanut peptides evaluated by PRM. 
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In the sera-peanut matrix, Ara h 3 was consistently detectable at 280 pg Ara h 3 

(400 pg peanut protein).  In the sera-peanut matrix, Ara h 2 had a lower detection limit of 

24 pg Ara h 2 (400 pg peanut protein).  Ara h 6 had a lower detection limit in the sera-

peanut matrix of 47.4 pg Ara h 6 (790 pg total peanut protein).   

The overall limit of detection for all peptides was concluded to be 790 pg peanut 

protein, which is equivalent to 1.0 ppm peanut protein (4.0 ppm total peanut) for the 

PRM method.  

 

 MRM  

The MRM settings were optimized for peptide detection and are described in the 

materials and methods section.  The top six transitions reported in the PRM evaluations 

in both peanut and sera-peanut were evaluated for initial detection by MRM.  Transitions 

were not scheduled during this initial evaluation.  We determined the four best transitions 

for each peptide for the MRM method.   

The CE for each peptide, a key fragmentation setting, was first determined by 

evaluating the relative abundance reported by the selected top four peptide transitions by 

MRM.  This is typically performed using heavy peptides and direct infusion, however 

due to the uncertainty of our peptide status following gastric digestion, we evaluated the 

CE using our model samples (peanut, sera-peanut).   

Following transition selection and retention time determinations, we evaluated the 

detection limit for MRM.  Figure 3-6 and Table 3-5 demonstrate the peptide LODs for 
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MRM.  Not all peptides included in the PRM method were suitable for MRM analysis, 

therefore fewer peptides were evaluated by MRM.  In our final method, we were able to 

detect 4 – Ara h 1, 1 – Ara h 2, 4 – Ara h 3, and 1 – Ara h 6 peptides.  The peptides 

QIVQ, VNLK, CDLD were not detectable by the MRM method.  The peptides, (QIVQ, 

CDLD), exhibited poor linearity and relative abundance during PRM method 

development.  

Peptides, and their transitions, included in the MRM LOD evaluations are 

described in Table 3-6.  We monitored a minimum of two transitions per peptide in this 

evaluation.  In general, the detection limits were relatively similar to the PRM detection 

limits.  Similarly, in the sera-peanut matrix, generally equal or lower limits of detection 

were observed for nearly all peptides.  The best performing peptides were Ara h 2 

(NLPQ) and Ara h 6 (ELMN) with detection at 15 pg Ara h 2 or 74.4 pg Ara h 6.   

One Ara h 3 peptide (WLGL) had a noticeably higher (13100 pg Ara h 3) 

detection limit in the peanut only matrix for two of its five identified transitions (Table 3-

7).  Since there are five identified transitions for this peptide, these transitions can be 

removed from the method.  Interestingly, when in the sera-peanut matrix, this peptide 

(WLGL) exhibits detection at 2600 pg Ara h 3, demonstrating an increased solubility in a 

serum matrix, observed in both PRM and MRM acquisitions.  Since serum is ultimately 

the anticipated background matrix, we chose to include this peptide for evaluations.   

Figure 3-4 describes the relative abundance of serially diluted peanut in the 

presence and absence of a sera matrix, as detected by MRM.  Overall, each transition was 

detected similarly in both matrices and exhibited linearity over the course of the dilution 

series.   
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Protein pg peanut protein LOD ppm peanut protein 
LOD 

ppm peanut 
LOD 

Ara h 1 1240 1.53 6.11 

Ara h 2 1240 1.53 6.11 

Ara h 3 3730 4.58 18.3 

Ara h 6 1240 1.53 6.11 
 

Table 3-5. MRM detection limit table determined by the dilution series.   

Table 3-6.  MRM peptide transitions, parent and fragment ion m/z. 
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Figure 3-4.  Relative abundance of (A) Ara h 1, (B) Ara h 2, (C) Ara h 3, (D) Ara h 6 

peptides, as detected by MRM, at decreasing quantities of peanut protein in a constant 

amount of serum.  Each colored line represents individual transitions for a given peanut 

protein.  Solid lines represent sera-peanut matrix, dashed lines represent peanut matrix, 

in the absence of sera background.   
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 MRM3 

Many of the MS2 peptide fragments had non-specific mass losses, largely 

attributed to –NH3 or –H2O losses.  To provide the most sensitive detection method, we 

enabled Q0 trapping.  Interestingly, a peptide that produces a good MS2 fragment is not 

always able to fragment again, producing secondary fragment ions, MS3 ions.  Product 

ions were manually evaluated against a predicted fragment masses derived from each 

MS2 peptide.  MRM3 transitions were determined using an automated script available in 

Analyst.  The top five resulting product ions were evaluated for fragmentation patterns.  

We were able to identify six true MS3 fragment ions from Ara h 1, Ara h 2, and Ara h 3.  

No MS3 ions were identified from Ara h 6.  These ion fragments are considered ‘true 

MS3’ targets, as they did not have any non-specific mass losses (e.g. –NH3, –H2O).   

Due to the challenge of identifying ‘true MS3’ fragments, we assessed ion 

detection without the additional fragmentation step, but rather, used the non-fragmented 

m/z again for detection by MRM3 in the linear ion trap of the third quadrupole.  Using 

this approach, we were able to detect all peptides included in the MRM method.  With the 

combination of both non-fragmented peptides and MS3 fragmented (‘true’) peptides, we 

were able to generate an MRM3 method for all major allergenic peanut proteins (Table 3-

8).  We included 18 non-fragmented peptide transitions in the MRM3 methodology 

(Table 3-8).  In total, 24 peptide transitions were included in the final MRM3 

methodology (Table 3-8).  In order to keep cycle times low, we divided the MRM3 

acquisition method into eight periods.  Without dividing the method into eight periods, 

the cycle time for all the MRM3 transitions would have been very long and reducing 

overall ion detection.  
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We evaluated the dilution series of the MRM3 method using the same dilutions as 

described in the MRM method.  As depicted in Figure 3-5, peptides were more readily 

detected in the sera-peanut matrix, than in peanut alone.  These results are consistent with 

previous dilution series’ results (PRM, MRM).  The dilution series was performed using 

all 24 identified targets.  

Table 3-8.  MS3 peanut peptide targets for monitoring. 
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For certain peptides, there was a distinct difference in the reported abundances 

among transitions.  The limit of detection results were highly variable using the MRM3 

method, with some peptides performing much better than others.  Figure 3-5 

demonstrates detection of serially diluted peanut in the presence and absence of serum.  

The prolamin peptides, Ara h 2 (NLPQ) and Ara h 6 (ELMN) exhibited low levels of 

detection at 1.8 – 74 pg Ara h 2 and 45 pg Ara h 6 (Figure 3-5 B and D, respectively).  

The best performing Ara h 3 peptide (SPDI) ranged from 21 – 525 pg Ara h 3 (Figure 3-5 

C).  We observed a lack of linearity in some MRM3 analyzed peanut peptides, indicating 

these peptides may not be suitable as MRM3 targets.  The Ara h 3 peptide, SPDI, 

demonstrates high linearity and suitably sensitive detection.  Contrastingly, a different 

Ara h 3 peptide, TAND exhibited poor linearity, and was less sensitive than SPDI (Figure 

3-5 C).   

Determination of true MS3 fragments was challenging due to the lack of tertiary 

product ions.  Some MS2 peptide targets fragmented more readily than other peptides.  

As such, peptides which make excellent MS2 targets, are not always suitable MS3 

targets.   

In summary, we observed no consistent LOD measurements between peptides of 

the same protein family.  However, the Ara h 3 peptide, SPDI, exhibited sufficient 

sensitivity and linearity with its true MS3 peptide fragment ions.  We were able to detect 

30 pg peanut protein by this peptide, equivalent to 0.04 ppm peanut protein (0.15 ppm 

peanut).  It is critical to note this observed sensitivity was in a prepared model matrix.  If 

this peptide exists in serum following gastric digestion, it would be a suitable target for 

low detection monitoring.  Furthermore, peanut peptides which have previous in vivo 
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peanut protein detections have been accomplished by ELISA’s targeting the prolamins, 

Ara h 2 and Ara h 6, which are known to remain partially intact following digestion.   
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Figure 3-5. Relative abundance of (A) Ara h 1, (B) Ara h 2, (C) Ara h 3, 

(D) Ara h 6 peptides, as detected by MRM3, at decreasing quantities of 

peanut protein in a constant amount of serum.  Each colored line represents 

individual transitions for a given peanut protein.  Solid lines represent sera-

peanut matrix, dashed lines represent peanut matrix, in the absence of sera 

background. 
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To assess any potential differences between MRM3 peptide transitions, we 

evaluated the ‘true MS3’ fragments only using our optimized methodology (Figure 3-6).  

The results do not show any improvements in overall detection compared to the MRM 

method.  The Ara h 2 peptide, NLPQ, and the Ara h 3 peptide, SPDI, both demonstrate 

good linearity and similar detection in both peanut and sera-peanut matrices.  In 

comparison to the acquisition method which included both ‘true MS3’ fragment ions and 

the non-fragmented MS2 ions, this analysis using only the ‘true MS3’ ions showed no 

improvements in peptide detection.   

However, the limit of detection does not show any improvements, therefore using 

the ‘true’ secondary peptide fragments may not be a suitable method for low detection of 

peanut proteins in serum.   

Overall, for the MRM3 acquisitions, detection of non-fragmented MS2 transitions 

was more successful than detection of secondary fragment ions (MS3) in the model sera-

peanut matrices. 
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 Evaluation of Subject Sera Samples by MRM and MRM3 

Subject sera samples (serum 1, serum 2) at baseline (0 minutes) and selected time 

points (60, 120 minutes) were evaluated using MRM and MRM3 methods.  We evaluated 

two individual subjects (JanssenDuijghuijsen et al., 2017b), determined previously 

positive by an Ara h 6 ELISA.  In this experiment, we injected 600 µg total protein for 

evaluation.  However, no positive peanut detections were made in subject serum by either 

MRM or MRM3.   
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Figure 3-6.  Relative abundance of the dilution series while monitoring 

true secondary fragment ions (MS3 ions).  
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One key problem with these evaluations was the use of commercially prepared 

serum.  Commercial serum is prepared from a pool of subject serum which has been 

passed through a 0.1 micron filter and sterilized.  Commercially prepared serum is likely 

slightly less concentrated than a single subject serum, and as a result, the subject serum 

samples exhibit a lower signal-to-noise ratio due to poor peak isolation.   

Another key issue impacting these experimental results was the individual 

dilution of serum and raw peanut extract prior to enzymatic digestion for LC-MS/MS 

analysis.  By diluting the analytical matrix components, this may ultimately be less 

representative of serum following the consumption of peanut.  Although we observed 

LODs for the MRM and some MRM3 peptides to previously published ELISA results 

(JanssenDuijghuijsen et al., 2017b), we were unable to replicate these results using our 

current methodology.   

 

 Optimization of High-Resolution PRM  

In order to load more protein for LC-MS/MS analysis, we optimized the reduction 

and trypsin (digestive enzyme) concentrations.  We increased the reduction incubation 

time to 20 minutes.  We simultaneously evaluated the trypsin concentration at 

enzyme:substrate ratios of 1:50 and 1:100 (w/w).   

In our final method, we were able to detect ten peptides robustly including, 4 – 

Ara h 1, 1 – Ara h 2, 4 – Ara h 3, 2 – Ara h 6 peptides.  The peptides QIVQ, CDLD were 

poorly detected in the previous PRM study, and not detectable by MRM, therefore we 

chose to remove them from our methodology.   
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The experiments described within this section were conducted using a sera-peanut 

matrix prepared with subject serum as it is the most representative preparation material 

for evaluating experimental conditions since it has not been filter sterilized.  For all sera-

peanut model matrices prepared for evaluations in the following sections, we used 

baseline subject serum.   

SDS-PAGE indicated the current digestion protocol is sufficient for digestion of 

serum proteins (Figure 3-7).  Secondly, the SDS-PAGE demonstrates, the modified 

digestions were also suitable for digestion procedures.  Numerous peptides were 

visualized <10 kDa, and a majority of these peptides gradually decreased in intensity 

after 24 hours of digestion.  To conserve trypsin, we opted to use the 1:100 w/w ratio, 

since no differences in overall digestion patterns were observed by SDS-PAGE.   
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 Evaluation of Protein Loading for analysis by PRM 

In this series of experiments, we reduced the number of PRM targets to the 10 

best performing peptides, which are readily detectable and able to be separated 

chromatographically into distinct peaks (Table 3-9). 

Protein Peptide m/z 

Ara h 1 DLAFPGSGEQVEK 688.8383++ 

Ara h 1 GTGNLELVAVR 564.8222++ 

Ara h 1 NNPFYFPSR 571.2749++ 

Ara h 1 EGALMLPHFNSK 448.5641+++ 

Ara h 2 NLPQQCGLR 543.2737++ 

Ara h 3 SPDIYNPQAGSLK 695.3541++ 

Ara h 3 WLGLSAEYGNLYR 771.3910++ 

Ara h 3 TANDLNLLILR 628.3721++ 

Ara h 6 VNLKPCEQHIMQR 413.9644++++ 

Ara h 6 ELMNLPQQCNFR 775.3661++ 

  

In our optimized PRM methodology and acquisition settings, we changed the 

chromatographic column to a larger column (100 x 2.1 mm, 1.9 um) to facilitate 

increased protein loading.   

We first evaluated a protein load of 600 µg for detection of peanut peptides in 

serum.  In our preliminary studies, we determined 600 µg of protein was suitable for 

loading due to stable peptide retention times and peak area recovery.  Beyond a 600 µg 

protein load, we observed greater shifts in retention times.  Figure 3-8 demonstrates 

peanut peak area of the top 3 abundant peptide transitions per each increasing amount of 

protein injected.  

Table 3-9.  PRM peptide targets monitored with increased 

protein loading.  
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Figure 3-8.  Peak area of top 3 transitions per peptide for each amount of 

protein evaluated; each major allergenic peanut proteins are represented.  

(A) Ara h 1, DLAF; (B) Ara h 2, NLPQ; (C) Ara h 3 SPDI; (D) Ara h 6, 

ELMN. 
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 Evaluation of Subject Samples with an Increased Protein Load  

Two subject sera (serum 1, serum 2), at baseline, 60, and 120 minutes, were 

evaluated at a 600 µg load for PRM analysis.  The experiment was performed twice, on 

two separate occasions.  A positive control, (blank subject sera-peanut 100:1 (w/w)), was 

additionally evaluated.   

We observed detection of peanut proteins in subject 1 at 60 minutes post-

consumption, in both individual analytical injections by PRM with a 600 µg total protein 

load.  We detected four peanut peptides (SPDI, VNLK, WLGL, TAND), with four 

detectable transitions for SPDI, VNLK, WLGL and four detectable transitions for TAND 

(Figure 3-9; Supplementary Table 3-1).  The peptide elution times and fragment ion 

tolerance values were within the acceptance criteria.   

We also observed detection of peanut proteins in subject 2 at 120 minutes in both 

individual analytical injections.  The same peptides (SPDI, VNLK, WLGL, TAND) 

detected in subject serum 1 (60 minutes) were also detected in subject serum 2 (120 

minutes).  For all detected peptides, five transitions were observed, except for VNLK, 

which had four detectable transitions.  The peptide elution times and fragment ion 

tolerance values were within the acceptance criteria.   

The peptide transition ratios are illustrated in Figure 3-9.  The same peptide 

transitions were detected in each individual subject serum at two time points.  We 

detected between 5-8 points across the peaks.  Although, it is preferred to have 

approximately 10-15 points across the peak for quantification, this was convincing 

evidence of peanut peptide detection in serum.  Since we did not evaluate these samples 

with a peptide standard, we are unable to accurately quantify the amount of peanut 
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protein detected.  Further, we were able to detect multiple peptides from different 

proteins, strengthening the evidence that these proteins remain detectable in vivo. 

One additional key factor which must be taken into consideration is the serum 

was collected from healthy subjects.  The rate of uptake of allergenic food proteins is 

suggested to differ between sensitized and non-sensitized individuals (Reitsma et al., 

2014; Samadi et al., 2018).
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Figure 3-9. Peanut peptide transition patterns detected in 

human serum collected after peanut consumption; (A) 

Subject sera 1 collected 60 minutes after consumption; (B) 

Subject sera 2 collected 120 minutes after consumption.    
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The QExactive+ offers high mass accuracy detection of fragment ions, which is 

beneficial in detection of low abundant peptides (Domon and Aebersold, 2010; Gallien et 

al., 2013).   

We then evaluated the entire time course (0, 30, 60, 120, 240, and 360 minutes) of 

the positive subject serum 1 and 2, to determine the overall absorption.  Evaluation of 

individual absorption curves indicated no positive detection of peanut peptides.  This is 

unexpected since we previously reported positive detection for these same subject sera 

using the same experimental conditions and PRM acquisition methodology.  Upon further 

evaluation of the collected data, we observed gradual increases in pressure over the 

course of sequence injections.  The increased pressure suggests a slight column blockage 

due to an accumulation of protein on the column that are not removed by the current 

cleaning protocols following chromatographic separation, and prior to injection of the 

subsequent sample.  Consequently, we developed improved cleaning methods of the 

separation column to facilitate higher protein loading.   

Upon re-evaluation, we again observed no positive detection of peanut in the 

same set of subject sera.  However, the pressure of the column was largely stabilized and 

no cumulative increases in pressure were observed (data not shown).   

 

 Multiple Injections  

Following the evaluation of an entire serum time course and improvements to 

cleaning procedures, we wanted to again evaluate increased loading since detection in the 

serum time course samples was unsuccessful.  The event of duplicate detection in 
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separate subject samples with a robust transition pattern was convincing evidence that 

peanut peptides were detectable in serum.  However, detection was not robust or 

reproducible, which led us to the assumption that by loading more protein, while 

maintaining a clean column after each injection, we would be able to robustly detect 

peanut peptides.   

The concentration of all serum samples was maintained the same (<20 µg/µL).  In 

preliminary studies, at peptide concentrations >20 µg/µL we observed precipitation in re-

suspended sample digests, after being frozen and thawed.  One freeze-thaw cycle resulted 

in opaque particles, which were extremely challenging to re-solubilize prior to injection.  

There was a significant reduction in detection of peanut peptides prepared at 

concentrations >20 µg/µL.  For all sample digests < 20 µg/µL, the detectable area for 

peanut peptides were comparable.  Given our experimental limitations, we developed an 

alternative injection method, wherein the same sample, from the same vial, was injected 

repeatedly onto the separation column.  Once the desired amount of protein was injected 

onto the column, gradient elution began.  The theoretical binding capacity of the 

separation column was calculated by determining the volume of cylinder (V=π•r2•h), 

resulting in cm3 unit or mL.  Knowing that the separation column has an 11% carbon 

load, we assumed the percentage carbon load is equivalent to peptide binding capacity. 

We then multiplied the carbon load (11%) by the total calculated column volume, 

resulting in a total binding capacity of 38.09 mg protein.  We reduced the calculated 

value by a factor of 10 as a margin of safety, resulting in a total estimated binding 

capacity of 3.809 mg protein.  
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In our experiments we tested up to 3 mg of protein injected (sera-peanut), using 

our multiple injection protocol.  Using the cleaning protocols described previously, we 

observed no drastic shifts in pressure over the method run and no subtle increases in 

pressure throughout the sequence run.   

 

 Multiple Injections with Isotopically Heavy Labeled Peptides and Subject 

Serum Samples 

Isotopically heavy labeled peptides were added to subject serum samples prior to 

PRM evaluations.  We injected 2800 µg (2.8 mg) of protein for evaluation.   

 We were able to observe detection of heavy peptides in all samples, which eluted 

at the predicted retention times of the light peptides.  We observed no positive detection 

of peanut peptides in the increased loaded samples, even with stable pressures within the 

expected ranges and peptide retention times, observed.   

 Due to the lack of detection at the increased load of protein on column, we 

suspect high loading is not beneficial to achieving peanut protein detection.  It is more 

likely, peanut peptides are detectable between 600 – 2800 µg protein, with the inclusion 

of optimized cleaning methods and heavy peptides.   

 One key difference between the two protein loading amounts, 600 and 2800 µg, 

were the number of injections.  Detection observed at 600 µg protein load was performed 

in one injection, whereas in the higher protein load (2800 µg), multiple injections were 

performed.  Although according to our preliminary investigations, we determined the 

multiple injections were sufficient and did not show significant decreases in peak area.  
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CONCLUSIONS 

Throughout Chapter 2 and Chapter 3, we evaluated two sera collections.  In sera 

collected by Baumert et al., 2009, the proteins were encapsulated, and digestion 

assumingly began once the capsules reached the stomach.  The serum samples collected 

in this manner, are useful in a research and proof of concept studies, but, are less 

representative of our final sample matrix, serum collected following consumption.   

The second set of subject serum evaluated was collected from individuals who 

consumed roasted peanuts (100 g light roasted peanuts within 10 minutes).  In these 

serum samples, the peanut material was exposed to the entire gastrointestinal tract and 

collected after consumption, making these sera samples more representative of the 

ultimate anticipated matrix.   

 Regardless of the form or the administration method, we were unable to robustly 

detect peanut proteins in serum.  We were able to detect four peanut peptides, from 

multiple peanut proteins (Ara h 1, Ara h 3, and Ara h 6) in two subjects, at two serum 

time points collection using a targeted method at a significantly larger protein injection 

than typical proteomic methods.  These subject sera also reported positive detection for 

Ara h 6 by JanssenDuijghuijsen et al., 2017b.  We were unable to reproduce these results 

by injecting more protein for analysis.  This is suggestive there is a median range where 

these proteins are detectable, likely between 600 – 2000 µg protein.  Utilization of 

thorough and validated cleaning procedures following each sample injection, will likely 

improve robust detection   
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 The utilization of targeted methods was highly advantageous in comparison to 

depletion methods and discovery LC-MS/MS.  We evaluated three different targeted 

methods, however, we were only able to achieve detection once we increased our 

analytical protein injections to 600 µg.  PRM methods with their high-resolution are the 

ideal instrument platform to use for in vivo detection of peanut proteins.  PRM methods 

allow for comparison of peptide transition ratios, which is an additional confirmatory step 

for detection at extremely low peptide concentrations.  By increasing our injections 2 and 

3-fold by the use of multiple injections we were still unable to detect peanut peptides, 

suggesting a direct increase in protein load is not equivalent to recording an identical 

increase in peptide detection.  The additional use of heavy peptides during these multiple 

injection experiments also demonstrated we were able to detect the heavy peptides at 

consistent ratios, indicating the multiple injections were adequate and did not suffer from 

significant signal losses.  It is probable that the S/N ratio was acceptable for detection of 

peptides at 600 µg, however, this must be further evaluated in order to develop a routine 

analytical method.  
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CHAPTER 4: INTERMOLECULAR ASSOCIATION OF PEANUT ALLERGENS 

AND THE IMPACT OF THERMAL PROCESSING 

 

ABSTRACT 

The expression patterns and sequences of peanut proteins are well studied, 

however, the intermolecular arrangements of seed storage proteins in plants are largely 

unstudied.  These protein arrangements may have implications to food allergy 

sensitization, elicitation, and protein behavior during gastrointestinal digestion.   

To study peanut protein intermolecular arrangements, we used size-exclusion 

chromatography (SEC) with offline mass spectrometry (MS) to detect and quantify 

peptides.  Raw and roasted peanuts (Arachis hypogaea) were extracted in conditions 

designed to maintain native (TBS) or denatured protein conformations (GuHCl). Native 

MW of proteins were determined using Gaussian modelling allowing for the analysis of 

isoforms and complexes.  Bottom-up analysis of SEC fractions, and Gaussian modelling 

for native MW determination, proved an effective offline separation technique.  Most 

proteins elute as expected, however we noted several exceptions.  Ara h 3 exists as an 

oligomer, but at an equilibrium between trimers or hexamers.  Some of the prolamins 

(Ara h 2 and 6) eluted at higher MWs than expected, alongside the cupins (Ara h 1 and 

3).  We additionally characterized post-translationally processed Ara h 1 into two, distinct 

and unassociated forms 

The analytical workflow presented, and automated assignment of MW using 

Gaussian fitting, allows for the study of protein conformation in complex protein 

mixtures.  
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INTRODUCTION 

The sequences and expression patterns of individual allergenic peanut proteins 

have been well-studied (Burks et al., 1998; Chruszcz et al., 2011; Koppelman et al., 2005, 

2016).  However, the intermolecular associations between peanut seed storage proteins, 

which are deposited in seed storage vacuoles, a high-density and low water environment, 

are not well-understood (Müntz, 1998).  These molecular arrangements of peanut 

allergens may have implications for food allergen sensitization and behavior during 

gastric digestion.  Furthermore, the impact of food processing on these molecular 

arrangements is unknown.   

Peanut allergens have been extensively studied, due to their severe potency and 

high prevalence rates of sensitization (van Boxtel et al., 2008; Koppelman et al., 2004; 

Gupta et al., 2019; Maleki et al., 2000a).  The major peanut allergens (Ara h 1, 2, 3, and 

6) are seed storage proteins, which provide a reservoir of amino acids for use during plant 

germination and growth (Shewry et al., 1995).  During seed storage protein translation 

the proteins are ultimately deposited in the storage vacuoles where they form protein 

bodies, however, the arrangements of seed storage proteins within these protein bodies is 

unknown (Shewry et al., 1995).  Therefore, the aim of our study was to assess 

arrangements of these peanut seed storage proteins.   

Ara h 1 and 3 are globulin proteins belonging to the cupin superfamily (Burks et 

al., 1995b; Kleber-Janke et al., 1999; Rabjohn et al., 1999;).  Ara h 1 is classified as a 7S 

vicilin with a monomeric molecular weight of 63.5 kDa that associates into a 180 kDa 

trimer (Maleki et al., 2000b; van Boxtel et al., 2006).  The 7S vicilin (Ara h 1) is 
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translated as a pre-pro-protein, which undergoes two post-translational proteolytic 

cleavage events to produce mature Ara h 1.  In this process, the signal peptide (~25 

amino acids) is cleaved first, followed by a secondary cleavage of the subsequent 53 – 59 

amino acids of the N-terminal sequence (de Jong et al., 1998; Wichers et al., 2004).  As a 

result, mature Ara h 1 exists as a truncated sequence compared to the full length sequence 

(Burks et al., 1995b).  Ara h 3, the 11S legumin, is a 60 kDa monomer that associates as a 

hexamer (360 kDa) composed of two homo-trimers (Koppelman et al., 2003; Jin et al., 

2009).  Recent elucidation of the peanut genome has allowed characterization of the 

many Ara h 3 isoforms in peanuts (Bertioli et al., 2019).  Ara h 3 contains acidic and 

basic subunits which remain associated until they undergo gastrointestinal digestion 

(Marsh et al., 2008).  It appears the acidic subunit is more allergenic than the basic 

subunit (Marsh et al., 2008).   

The 2S albumins, Ara h 2 and 6, belong to the prolamin superfamily and are 

highly homologous proteins sharing 59% sequence identity and a common conserved 

disulfide stabilized alpha helical protein core structure (Koppelman et al., 2005; Moreno 

and Clemente, 2008).  These structural characteristics confer thermal stability and 

resistance towards gastric digestion, contributing to the severe allergenic potency of Ara 

h 2 and 6 (Blanc et al., 2009; Flinterman et al., 2007; Klemans et al., 2013).   

Raw peanuts typically undergo thermal processing (e.g. roasting, boiling, frying, 

blanching) prior to consumption, likely influencing structural arrangement(s) and 

conformation (Beyer et al., 2001; Guillon et al., 2016; Zhang et al., 2016).  Roasting, in 

particular, induces protein denaturation and aggregation causing reduced protein 

solubility in aqueous buffer systems (e.g. TBS, PBS etc.) (Kopper et al., 2005; Schmitt et 
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al., 2010).  Reports of increased allergenicity have been attributed to thermal processing 

due to increased epitope and IgE binding sites (Beyer et al., 2001; Mondoulet et al., 

2005).  Furthermore, the formation of oligomeric structures due to thermal processing, 

may also contribute to reported increases in allergenicity (Maleki et al., 2000a). 

Peanut allergy is one of the most prevalent food allergies, with current estimates 

at 2% of children and 0.6% of adults diagnosed with peanut allergy, and, nearly all 

individuals are sensitized to multiple peanut proteins (Ara h 1, 2, 3, or 6) (Gupta et al., 

2011; Sicherer et al., 2010).  The cumulative dose of allergenic protein dictates individual 

sensitization and overall reaction severity (Ballmer-Weber et al., 2015; Turner et al., 

2016).  Individuals who are only sensitized to Ara h 2 and 6, reported more severe 

reactions than those sensitized to Ara h 1 and 3, and as such, the prolamins (Ara h 2, 6) 

are predictors of reaction severity (Koppelman et al., 2004; Kukkonen et al., 2015). The 

molecular arrangement(s) and initial presentation of these allergenic proteins to the 

immune system are suspected to influence sensitization and reaction severity, therefore 

understanding the molecular arrangements of these peanut proteins is important.   

Our aim was to study the intermolecular associations between peanut proteins 

using size-exclusion chromatography (SEC) coupled with offline discovery liquid 

chromatography tandem mass spectrometry (LC-MS/MS) to detect and quantify peptides 

in individual size fractions.  SEC is an established technique used for separation of 

proteins and protein complexes based on their molecular radii in which large proteins 

elute rapidly and smaller proteins elute more slowly (Fekete et al., 2014).  We analyzed 

raw and roasted peanuts in the presence or absence of chaotropic reagents to solubilize 

heavily aggregated material, which is absent from most studies.  The mass spectrometry 
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(MS) data were analyzed against our peanut database derived from the peanut genome 

(Bertioli et al., 2019), allowing us to distinguish between peanut protein isoforms.  The 

combination of SEC with offline LC-MS/MS offers a data-rich method allowing us to 

describe detailed intermolecular associations of seed storage proteins. 

 

MATERIALS AND METHODS 

 Reagents 

All reagents for protein preparation (defatting, extraction) and size exclusion 

chromatography were of analytical reagent grade.  All reagents for MS sample 

preparation and analyses were of MS grade.   

 The following reagents were used during gel filtration protein preparations: 

hexane, deionized distilled water, tris-buffered saline (Tris-HCl, NaCl), GuHCl (GuHCl, 

Tris-HCl, EDTA), acetone. 

 The following reagents were used during LC-MS/MS sample preparation and data 

acquisition: water, acetonitrile (ACN), ammonium bicarbonate (ABC), dithiothreitol 

(DTT), iodoacetamide (IAA), trypsin, formic acid (FA), methanol (MeOH), and acetic 

acid. 

 

 Sample Preparation 

 Raw peanuts (var. Runner) were obtained from the Golden Peanut Company 

(Alpharetta, GA).  Peanuts (25 g) were roasted in a conventional oven (Groen 

Combination oven, Model No. CC10-E) at 160°C for 13.5 minutes.  All peanuts (raw, 
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roasted) were ground into a powder under liquid nitrogen in a freezer mill (Spex 6850 

CentriPrep Freezer/Mill (Metuchen, NJ) followed by manual grinding with a mortar and 

pestle until a fine powder was achieved.  Ground peanut powder was defatted twice in 

hexane (1:20 w/v) and allowed to dry overnight at room temperature.   

  

 Protein Extraction 

 Peanut proteins were extracted (1:25 w/v) by mixing 0.5 g defatted peanut powder 

with 12.5 mL of extraction buffer either (a) tris buffered saline (TBS, 50 mM Tris-HCl, 

150 mM NaCl, pH 7.4) or (b) guanidine hydrochloride (GuHCl, 5 M GuHCl, 50 mM 

Tris, 5 mM EDTA) in a sonicating water bath for 20 minutes at room temperature (20°C).  

Extracts were clarified by centrifugation (3500 x g, 10°C, 10 minutes).  The 

supernatant(s) were removed and dialyzed overnight using 3.5 kDa molecular weight cut 

off (MWCO) dialysis tubing (Snakeskin dialysis tubing, 3.5K MWCO, 16 mm ID; Prod. 

No. 88424, ThermoScientific™, Rockford, IL, USA) against the appropriate extraction 

buffer at room temperature.  The dialysates were filter sterilized using 0.2 µm syringe 

filters (Fisherbrand, Cat. No. 09-719C).  Protein concentrations were determined by 2D 

Quant protein assay (GE Healthcare, 80648356).  The protein fractions extracted in TBS 

represent soluble proteins, whereas proteins extracted in GuHCl, a chaotropic buffer, 

represent the total peanut protein composition.   
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 Size Exclusion Chromatography (SEC) 

 Peanut protein solutions (1.5 mg/mL TBS extracts, 5 mg/mL GuHCl extracts) 

were applied to a Superdex 200 column (16 x 600 mm) (HiLoad 16/600 Superdex 200 

prep grade) attached to the AKTA Avant 25 chromatography system (GE Healthcare Life 

Sciences NJ, USA) and monitored at 214 and 280 nm.  For all extracts, the column was 

equilibrated and eluted with TBS at a 1 mL/min flow rate.  All SEC extracts were 

analyzed in duplicate.  Fractions were collected by volume (4 mL).  The SEC column 

was calibrated by using the molecular weight markers: cytochrome c (12.4 kDa), 

carbonic anhydrase (29 kDa), albumin (66 kDa), alcohol dehydrogenase (150 kDa), beta-

amylase (200 kDa), and blue dextran (2000 kDa) (Gel Filtration Molecular Weight 

Markers Kit for Molecular Weights 12,000–200,000 Da; MWGF200, Sigma-Aldrich, St. 

Louis, MO, USA).  Blue dextran was used to determine column void volume.   

  

 Sample Preparation for LC-MS/MS 

 Following gel filtration separation, and protein quantification (by 2D quant assay 

(GE Healthcare, ID)), aliquots (200 µL – determined to be less than 30 µg), the fractions 

obtained from TBS extracts (raw and roasted peanut) were precipitated with acetone. 

Aliquots of fractions obtained from GuHCl extracts were also precipitated with acetone, 

but the aliquot volume was limited by the maximum fraction concentration found, such 

that the maximum total protein precipitated was 30 µg.  As such, 45 µL – raw peanut and 

30 µL – roasted peanut were used.  Precipitation was conducted by adding four volumes 

of -20°C acetone to each aliquoted fraction(s) and incubated for 2 hours at -80°C.  After 

incubation, samples were centrifuged (16,000 x g, 10 minutes, 5°C) and the supernatant 
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was removed.  The precipitated pellet was washed twice, with 7.5 volumes of chilled (-

20°C) 4:1 acetone:water, followed by centrifugation at (16,000 x g, 10 minutes, 5°C) and 

dried.   

 Acetone precipitated protein fractions were prepared for enzymatic digestion 

using a modified in-solution trypsin digestion protocol (In-Solution Tryptic Digestion and 

Guanidination Kit, ThermoScientific, Rockford, IL, USA).  Protein pellets were re-

solubilized in 31.5 µL of 15% (v/v) acetonitrile followed by an addition of 45 µL of 50 

mM ammonium bicarbonate.  Samples were then reduced by the addition of 4.5 µL of 

100 mM dithiothreitol and heated at 95°C for 5 minutes.  Following reduction, 9 µL of 

100 mM iodoacetamide was added to and incubated in the dark at room temperature for 

20 minutes.  Proteins were digested with 300 ng trypsin (100 ng/µL in 5 mM acetic acid) 

at 37°C for 3 hours followed by a second addition of 300 ng trypsin with overnight 

incubation at 30°C.  Peptide digests were desalted using C-18 spin columns (Pierce C-18 

spin columns, ThermoScientific, Rockford, IL, USA) according to manufacturers’ 

instructions, eluted in 50% (v/v) acetonitrile, and dried under a vacuum by centrifugal 

evaporation (Jouan RC-10.10; RCT-90; Winchester, VA, USA).  Peptides were re-

solubilized in 50 µL of 5% (v/v) acetonitrile, 0.1% (v/v) formic acid prior to injection on 

LC-MS/MS.   

 

 LC-MS/MS Separation and Acquisition 

 Tryptic digests (2 µL injection) were chromatographically separated using an 

UltiMate 3000RSL® liquid chromatography (UPLC) system (Thermo ScientificTM) 

equipped with a Hypersil Gold C18 1.9 μm, 100 x 1 mm reversed phase column (Thermo 



217 

ScientificTM) with a pre-column (20 x 2.1 mm reversed phase, 1.9 µm, Thermo 

ScientificTM) set at 35°C. Mobile phase A contained 0.1% (v/v) formic acid in water and 

mobile phase B contained 0.1% (v/v) formic acid in acetonitrile.  Peptides were separated 

using a linear gradient of 2 – 40% mobile phase B over 70 minutes at a flow rate of 60 

µL/min.  Data dependent acquisitions (DDA) were performed on a Thermo Q Exactive 

PlusTM Hybrid Quadrupole-OrbitrapTM mass spectrometer (Thermo ScientificTM) 

operating in positive ion mode using a top-20 method.   

 Survey scan mass spectra (400 – 1400 m/z) were acquired at a nominal resolution 

of 70,000 FWHM (200 m/z) and an AGC target of 3e6.  Fragmentation spectra were 

acquired at a nominal resolution of 70,000 FWHM with normalized collisional energy 

(NCE) set at 27 and dynamic exclusion of 20 seconds, AGC target of 1e5, and a 

maximum inject time of 240 ms.  The electrospray ionization settings were as follows: 

sheath gas 15 AU, auxiliary gas flow 4.2 AU, spray voltage 3500 kV, capillary 

temperature 320°C, S-lens RF level 60.   

  

 Data Analysis 

 Acquired mass spectral data were analyzed using PEAKS version 8.5 

(Bioinformatics Solutions Inc., Waterloo, Ontario, Canada).  Identification and label-free 

quantification of proteins were performed using a custom database derived from the 

peanut genome (Bertioli et al., 2019; Marsh et al., 2020).  Peptides were selected to 

represent allergen protein families as described in Marsh et al., (2020).  Data were 

analyzed using the following criteria: 5 ppm parent ion mass tolerance, FDR 1%, parent 

ion charge states 2, 3, 4+, and normalized to original extract volume.  For each allergen 
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protein family, three selected peanut peptides were chosen due to their presence in 

multiple isoforms.  Peptides unique to allergen isoforms were also chosen for individual 

isoform quantification.  Data were normalized to original SEC sample volume.  Data 

presented in this manuscript were analyzed using allergen protein families, unless 

otherwise noted.  In order to determine the observed peptide MW, we applied Gaussian 

curve fitting (nonlinear regression) to determine the mean elution time.  We then 

calculated the MW based upon the determined elution time using the standard curve 

generated from the MW markers.   

 

RESULTS 

 Determination of Mean Protein Elution with Gaussian Distribution 

Fitting 

In order to determine the observed (e.g. calculated) protein MW, we applied a 

Gaussian curve fit to the elution profile of identified peptides corresponding to specific 

peanut proteins using PRISM.  Generally, chromatographic peaks exhibit symmetrical 

Gaussian shapes (Le Vent 1995; Uversky 1993).  This distribution is a theoretical curve 

fit to the SEC chromatographic data, which determines the mean elution time, standard 

deviation, and amplitude for individual peptides along the Gaussian fitted curve.  We 

were further able to determine the molecular weight of the identified peptides with 

excellent precision between observed MWs for each protein.  However, since we do not 

know the true value of our protein MWs, we are unable to determine the accuracy of our 

observed MWs.  Using the mean protein elution time, we are able to determine the 

observed (e.g. calculated) protein MWs by inference from our standard curve.   
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 Peanut Protein Elution 

By pairing offline SEC with LC-MS/MS, we identified a majority of the peanut 

peptides present within our genomically derived peanut database.  The observed elution 

time(s) for these peanut specific peptides (Table 4-1), determined by a Gaussian fitted 

curve, were used to calculate the protein MWs and hereafter referred to as observed MW.  

The results presented describe the elution profile of raw peanuts extracted in TBS (saline 

extractions), unless otherwise noted.  In the GuHCl extractions, nearly all the protein 

eluted in the aggregate fraction(s) with a large MW unit.   

The major allergenic peanut proteins, Ara h 1, 2, 3, and 6, eluted predominantly 

as expected and were present as either monomers or large oligomers (Figure 4-1).  The 

cupins, Ara h 1 and 3, were predominantly present as oligomers whereas Ara h 2 and 6, 

the majorly allergenic prolamins, were present as monomers.  The minor peanut 

allergens, Ara h 7 and 8 eluted as monomers whereas as Ara h 9, 10, and 11 eluted as 

octamers and most likely associated with the cupins (Figure 4-1).  Peanut peptides 

derived from the same parent protein (e.g. Ara h 2) should elute identically resulting in 

the same calculated MW.  However, in several instances, we observed unexpected elution 

profiles due to differences in individual protein isoforms (e.g. Ara h 3), post-translational 

cleavage of proteins (e.g. Ara h 1), and intermolecular associations between proteins, 

each of which are described in further detail in the following sections. 
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Figure 4-1. Observed MWs of TBS extracted peanut 

proteins with each point representing a single peptide  
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Table 4-1. Elution of raw peanut proteins extracted in TBS detected by shared 

peptides. Calculated MWs were determined by Expasy. Observed MWs 

determined by Gaussian modeling.   
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 Differences in Elution of Ara h 3 Isoforms 

We identified 21 individual Ara h 3 isoforms in our genomically derived peanut 

protein database, and grouped isoforms into families based on shared identical peptide 

sequences (Bertioli et al., 2019; Marsh et al., publication in progress).  A table of shared 

peptides among Ara h 3 isoforms are listed in Table 4-1.  As shown in Figure 4-2, we 

demonstrate Ara h 3 exists largely as an oligomer (178 – 280 kDa) in aqueously extracted 

raw peanuts (Figure 4-3 and Table 4-2).  We observed Ara h 3 exists as a mixture of 

trimer and hexamer. Additionally, Ara h 3 isoforms appeared to distribute between trimer 

and hexamer differently, as evidenced by calculated MWs that could not be explained by 

primary sequence alone (Figure 4-3).   

The expected monomeric MW of each Ara h 3 isoform was determined using the 

known isoform sequence, removing known signal peptides if present, and molecular 

weight determination using Expasy, compute pI/MW tool which calculated the MW 

based on entered peptide sequence(s) (https://web.expasy.org/compute_pi/) (ExPASy: 

SIB Bioinformatics Resource Portal).  The number of subunits was calculated using the 

ratio of observed MW versus expected MW determined by SEC elution and LC-MS/MS.  

As an example, the expected monomeric MW of Ara h 3.01/11 is 71 kDa, and was 

observed to aggregate into a trimer (246 kDa) (Figure 4-2).  Contrastingly, Ara h 3.09/14, 

with an expected monomeric MW of 45 kDa, was determined to be existing as a hexamer 

(280 kDa).  The determined number of subunits was between 3 and 6 subunits with many 

of the Ara h 3 isoforms calculated to exist between four or five subunits, assuming the 

aggregates are composed of identical monomers.  We suspect these aggregates may exist 

https://web.expasy.org/compute_pi/
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as a mixture of peanut proteins, such as Ara h 3 associating with Ara h 6.  This is 

suggestive of a mixed ratio of oligomeric states, between the trimeric and hexameric 

arrangements, and could exist in an equimolar state between the oligomeric states.  No 

differences in MW were determined for isoforms of Ara h 1, 2, and 6.  
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Figure 4-2. Observed MWs of TBS extracted Ara h 3 proteins detected by 

unique peptides. 
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Protein Peptide m/z charge 
monomeric 

MW 
(Expasy) 

Gaussian 
determined 
MW (kDa) 

Calculated 
number of 
subunits 

Arah3_1_02 R.ISSANSLTFPILR.W 709.90 2 71 250 3.5 
Arah3_2_02 K.GVMEIVVTGC(+57.02)R.A 610.81 2 49 230 4.7 
Arah3_2_02 K.AGSDAFDWVAIK.T 640.32 2 49 230 4.7 
Arah3_2_02 K.TSDNPIINTLAGELSLVR.A 957.02 2 49 230 4.7 
Arah3_3_06 R.GLSILVPAER.R 527.82 2 49 180 3.7 
Arah3_4_06 K.FFVPPSQQSLR.A 653.35 2 58 240 4.1 
Arah3_5_06 K.SQSDNFEYVAFK.T 717.83 2 58 230 4.0 
Arah3_5_06 R.GENESEEEGAIVTVK.G 795.88 2 58 240 4.1 
Arah3_7_06 R.GEEQENEGNNIFSGFAQEFLQHAFQVDR.E 1080.83 3 57 270 4.7 
Arah3_7_06 R.QGGEENEC(+57.02)QFQR.L 741.31 2 57 270 4.7 
Arah3_7_06 R.ILNPDEEDESSR.S 702.32 2 57 270 4.7 
Arah3_9_06 R.LTAEEAINLK.K 551.31 2 44 230 5.2 
Arah3_9_06 K.LVALEPSK.R 428.76 2 44 230 5.2 
Arah3_9_06 K.TVAESLGIDMGIAGK.V 731.38 2 44 230 5.2 
Arah3_10_06 K.FFVPPSQQSPR.A 645.34 2 58 230 4.0 
Arah3_10_06 R.GENESEEEGAIVTVR.G 809.88 2 58 250 4.3 
Arah3_10_06 K.TDSRPSIANLAGENSVIDNLPEEVVANSYGLPR.E 1166.59 3 58 270 4.7 
Arah3_13_16 K.SPDEEEEYDEDEYAEEER.Q 1131.92 2 58 210 3.6 
Arah3_13_16 K.FFVPPFQQSPR.A 675.35 2 58 240 4.1 
Arah3_13_16 R.AGQEQENEGGNIFSGFTSEFLAQAFQVDDR.Q 1097.83 3 58 270 4.7 
Arah3_14_16 K.LVALEPTK.R 435.77 2 44 230 5.2 
Arah3_14_16 R.LTAEEAISLK.K 537.81 2 44 230 5.2 
Arah3_14_16 K.TVAESLDIDMGIAGK.V 760.39 2 44 280 6.4 
Arah3_15_16 R.FYIAGNTEDEHGEGGR.E 876.59 2 48 220 4.6 
Arah3_15_16 K.NIVMVEGGLDVVRPEPGSR.A 56.77 4 48 230 4.8 
Arah3_15_16 K.LPILADLQLSAER.G 480.28 3 48 230 4.8 
Arah3_16_16 R.FYLAGNQEQEFLR.Y 807.9 2 57 260 4.6 
Arah3_16_16 R.FQVGQDDPSQQQQDSHQK.V 700.65 3 57 270 4.7 
Arah3_16_16 R.ILSPDEEDESSR.S 688.81 2 57 270 4.7 
Arah3_17_16 R.QILQNLR.G 442.77 2 58 240 4.1 
Arah3_17_16 R.GENESDEQGAIVTVR.G 802.38 2 58 250 4.3 
Arah3_18_16 R.IDSEGGFIETWNPK.S 796.88 2 50 220 4.4 
Arah3_19_16 K.GGLSILVPPEWR.Q 662.37 2 49 230 4.7 
Arah3_20_16 R.VFDEELQEGHVLVVPQNFAVAGK.S 1263.16 2 58 260 4.5 
 

 

 

 

Table 4-2. Unique Ara h 3 peptides for Gaussian MW determinations 
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 Post Translational Cleavage of Ara h 1 N-Terminal Sequence 

The Ara h 1 gene product is processed into two forms, the N-terminal region (pre-

pro) protein and the mature Ara h 1 product (Hurlburt et al., 2014; Wichers et al., 2004).  

We observed evidence of post-translational processing of Ara h 1 by identifying N-

terminal peptides present as distinct monomeric molecular entities from our raw peanut 

extracts (Figure 4-3).  Peptides (Table 4-3; Figure 4-4) associated with the N-terminal 

region were identified at 12 kDa, independent from the mature Ara h 1 peptides as a 

distinct molecule (Figure 4-3).  This type of processing has been observed in certain tree 

nuts and other legumes (Downs et al., 2014; Marcus et al., 1999).  
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Figure 4-3. Determined MW of Ara h 1 peptides plotted by 

beginning residue of amino acids. 
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Accession Peptide sequence(s) m/z z 
Calculated 
MW (kDa) 

Observed 
MW 

(kDa) 

Ara h 1.01/02  
(unique 
peptides) 

GTGNLELVAVR 564.82 2 

62 210 NTLEAAFNAEFNEIR 869.92 2 

SFNLDEGHALR 629.81 2 

Ara h 1.01/02  
(N-terminal 
peptides) 

K.TENPC(+57.02)AQR.C 552.27 2 

9.2 11 R.C(+57.02)LQSC(+57.02)QQEPDDLK.Q 812.85 2 

R.C(+57.02)VYDPR.G 405.18 2 

 

 

 

 

 

>Arah1_2_19 
MRGRVSPLMLLLGILVLASVSATHAKSSPYQKKTENPCAQRCLQSCQQEPD
DLKQKACESRCTKLEYDPRCVYDPRGHTGTTNQRSPPGERTRGRQPGDY
DDDRRQPRREEGGRWGPAGPREREREEDWRQPREDWRRPSHQQPRKI
RPEGREGEQEWGTPGSHVREETSRNNPFYFPSRRFSTRYGNQNGRIRVLQ
RFDQRSRQFQNLQNHRIVQIEAKPNTLVLPKHADADNILVIQQGQATVTV
ANGNNRKSFNLDEGHALRIPSGFISYILNRHDNQNLRVAKISMPVNTPGQ
FEDFFPASSRDQSSYLQGFSRNTLEAAFNAEFNEIRRVLLEENAGGEQEER
GQRRWSTRSSENNEGVIVKVSKEHVEELTKHAKSVSKKGSEEEGDITNPIN
LREGEPDLSNNFGKLFEVKPDKKNPQLQDLDMMLTCVEIKEGALMLPHF
NSKAMVIVVVNKGTGNLELVAVRKEQQQRGRREEEEDEDEEEEGSNREV
RRYTARLKEGDVFIMPAAHPVAINASSELHLLGFGINAENNHRIFLAGDKD
NVIDQIEKQAKDLAFPGSGEQVEKLIKNQKESHFVSARPQSQSQSPSSPEK
ESPEKEDQEEENQGGKGPLLSILKAFN 

Figure 4-4.  Ara h 1 protein sequence.  Italicized letters represent signal 

peptide; underlined letters represent N-terminal (‘prepro’) peptide.  

Calculated MWs were determined by Expasy. Observed MWs determined by 

Gaussian modeling. 

Table 4-3. Shared and N-terminal peptides used for Ara h 1 

protein elution from TBS extractions. 
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 Intermolecular Associations between Peanut Proteins 

The prolamins, Ara h 2, 6, and 7 exist predominantly as monomers, but we 

observed the elution of the prolamins in higher MW containing fractions (Figure 4-5).  

The elution profiles of each individual prolamin peptide demonstrate a small proportion 

(1.5%) of the prolamin peptides were present in the cupin containing fractions (170 - 320 

kDa), suggesting an association between prolamin (Ara h 2, 6, 7) and cupin peanut 

proteins (Ara h 1, 3).  Nearly all of the identified prolamin peptides eluting in higher MW 

fractions were predominantly cysteine-containing peptides.  This is interesting because 

work with purified proteins has suggested Ara h 2 and 3 are cross-reactive, however in 

light of our observations, this may not be the case (Bublin et al., 2013; Smit et al., 2015).  

This elution behavior was also observed in roasted peanut extracts as well; suggesting the 

co-elution of prolamins with cupins is not solely attributed to thermal processing.   
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Figure 4-5. Elution profiles of prolamin peptides 

extracted in TBS (Ara h 2, Ara h 6).  Individual points 

represent a single peptide.  Panel (A) shows the entire 

elution profile.  Panel (B) shows the elution profile during 

a 50-70 minute window, highlighted in Panel (A). 
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 Effect of Thermal Processing 

We additionally analyzed a set of roasted peanuts to evaluate any changes in 

molecular arrangements due to thermal treatment.  Roasted peanut were prepared from 

the same raw peanut starting material and roasted as described in Methods section.  We 

observed a clear increase in calculated MWs for roasted peanuts (Figure 4-6).  Thermal 

processing likely induces aggregation causing changes in the conformation of the peanut 

proteins.  Some proteins, particularly Ara h 1, underwent significant aggregation and 

were poorly extracted under aqueous conditions. However, when we extracted roasted 

peanut proteins under chaotropic conditions (e.g. GuHCl), we were able to recover Ara h 

1 (data not shown), supporting thermally induced protein aggregation of Ara h 1.  As 

expected, Ara h 2 and 6 were largely present as monomers in roasted peanuts.
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Figure 4-6. Observed peptide MWs in raw and roasted peanut 

proteins extracted in TBS. 
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DISCUSSION 

Proteins in the foods we eat are often poorly characterized, and the overall protein 

contents unknown.  In many cases, limited sequence information is available for 

individual foods.  Protein conformation in foods is important for understanding overall 

digestibility and allergy, for some foods, and is nearly entirely unstudied.  The 

combination of SEC with offline, bottom-up proteomics based-LC-MS/MS and semi-

automated MW calculation is a powerful and surprisingly precise technique.  Our 

described methodology is able to identify multiple isoforms with exceptional protein 

coverage.  The use of the recently derived genomic peanut database, describing all 

potential peanut isoforms, further enhanced protein characterization.  By extracting raw 

peanuts in TBS, we were able to assess the arrangements of the soluble major seed 

storage proteins.  The majority of the peanut proteins behave as expected, however we 

observed several interesting anomalies, providing insight into previously suspected 

peanut protein behavior(s).   

Ara h 3 is known to exist in many isoforms, but not all isoforms have been fully 

elucidated in publically available databases.  Using our methodology, we detected 80% 

(17/21) individual isoforms with exceptional peptide coverage.  Purification of each Ara 

h 3 isoform would be a massive undertaking, but using our methodology, we were able to 

demonstrate the presence of multiple, individual Ara h 3 isoforms, and their observed 

MWs.  We determined Ara h 3 to exist as an oligomer, but specifically as a mixture of 

monomers based on the number of calculated subunits present for each isoform (Table 4-

2).  Since a majority of the Ara h 3 conformations were composed of four or five 

subunits, it is likely that Ara h 3 exists in a state of equilibrium between the trimeric and 
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hexameric arrangements.  These mixed aggregates may be composed of one individual 

Ara h 3 isoform, or more likely, various Ara h 3 isoforms.  The individual isoform 

potency is unknown; however, it is likely all isoforms contribute to an individual’s 

overall reaction severity. Furthermore, the potential mixed aggregates, composed of 

several Ara h 3 isoforms will additionally influence reaction severity. 

Similar to other studies of allergenic protein post-translational processing, the N-

terminal region of Ara h 1 exists as a distinct protein molecule due to post-translational 

processing (Aalberse et al., 2019; Downs et al., 2014).  This N-terminal cleavage pattern 

has been previously described, but lack of association with the mature protein is novel 

(Wichers et al., 2004).  The cleaved N-terminus has distinct physicochemical properties 

distinct to the mature Ara h 1 protein, and could potentially act as an independent 

sensitization molecule (Aalberse et al., 2019).  Similar to our findings, Aalberse et al., 

(2019) determined the pro-peptide to be present as an individual molecule.  According to 

the IUIS repository, the N-terminal region, or Ara h 1 propeptide, demonstrates allergenic 

activity without the mature Ara h 1 present, and is therefore recognized as an allergen 

(IUIS designation: Ara h 1.0101 (26-84)).  (Aalberse et al., 2019; Burks et al., 1995a).  

A minor proportion of the prolamins (Ara h 2, Ara h 6), which are small, 

monomeric proteins, eluted uncharacteristically in cupin containing fractions.  Previous 

studies of purified proteins have suggested Ara h 2 and Ara h 3 are cross-reactive, 

however in light of our observations this may not be the case (Bublin et al., 2013; Smit et 

al., 2015).  Due to their structural arrangements, individuals may be co-sensitized to both 

prolamins and cupins simultaneously.  In both peanut preparations, raw and roasted, we 

observed identical elution patterns of the prolamins first, predominantly as monomers and 
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secondly, as a subset co-eluting as oligomers with the cupins.  Prolamin peptides co-

eluting in the same fraction as the cupins were predominantly cysteine-containing 

peptides, which may be indicative of interactions between the proteins.  These protein 

arrangement characteristics between prolamins and cupins may be indicative of 

sensitization patterns among peanut allergic individuals.   

Prior to consumption, peanuts generally undergo some type of thermal processing 

(e.g. boiling, roasting, add one more), inducing protein aggregation by disrupting 

intramolecular forces causing structural and conformational shifts (Schmitt et al., 2010; 

Koppelman et al., 1999).  These structural shifts lead to aggregation by exposing the 

hydrophobic groups to the solvent phase where they interact with other matrix 

components or proteins (Hebling et al., 2012).  Other chemical interactions occur 

between peanut proteins and/or peanut proteins and a food matrix.  We observed a 20-

fold decrease in Ara h 1 protein recovery after roasting, which is unsurprising as Ara h 1 

is highly susceptible to heating (> 80°C) readily forming higher molecular arrangements 

(MW 500 - 600) (van Boxtel et al., 2006; Chruszcz et al., 2011; Koppelman et al., 1999).  

Several studies have suggested roasting causes protein aggregation and co-elution of 

peanut proteins (e.g. prolamins and cupins) however, based on our results, it is apparent 

these associations exist as a product of plant protein synthesis.   

Most often, peanuts are consumed after roasting and possess a different 

intermolecular protein arrangement than native raw peanuts.  Regardless of processing 

steps, an individual’s immune system is exposed to all peanut proteins present in the 

seed.  This has been suspected to be a cause of poly-sensitization as most individuals are 

sensitized to multiple peanut proteins.  However, diagnostic materials may not be 
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representative of the entire peanut seed.  In preparation of diagnostic materials, such as 

skin prick tests (SPT), it is important to consider protein arrangements, type (raw, 

roasted), and extraction conditions.  Generally, individuals who undergo SPT’s are only 

exposed to the soluble proteins present in the prepared test extract.  Understanding these 

intermolecular arrangements in different peanut preparations, will better inform clinicians 

and researchers.    

Improving our knowledge of the intermolecular associations of complex proteins 

is important in understanding sensitization patterns and overall protein behavior.  Most 

allergic individuals are sensitized to multiple peanut proteins presenting varying degrees 

of reaction severity, which is often attributed to roasting (or other thermal treatments). 

 

CONCLUSIONS 

To study intermolecular arrangements of peanut proteins, pairing SEC with 

offline LC-MS/MS, and automated MW calculation generated thousands of identified 

peptides detected across the SEC column.  The combination of these techniques in one 

comprehensive methodology, allowed for the remarkably precise derivation of native 

protein MWs and multiple determinations of individual peptides.  The use of automated 

MW determinations by Gaussian modeling further enhances the study of protein 

conformations, isoforms, and complexes.  This methodology can be readily applied to 

basic protein research for studying interactions, and would be particularly helpful in 

characterizing allergenic foods as well as biopharmaceuticals. 
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SUPPLEMENTARY 

 

CHAPTER 2 

 

 

 

 

 

 

  

 
  

SPT 

(AU) 
IgE (ISU) 

ICAP IgE 

(kUa/L) 

Patient ID Dilution 
Other 

atopy 
Peanut Ara h 1 Ara h 3 Ara h 2 Ara h 6 Peanut Peanut 

PN2060 1:20 yes 9.0 51.7 27.1 64.5 76.0 224 53.0 

PN2073 1:50 yes 35 60.4 15.1 31.3 64.5 141 

 

575 

 

PN2075 1:20 yes 20 50.2 14.5 24.0 50.2 378 
72.5 

 

DD 1:20 no 15 57.7 5.71 18.4 21.3 
n.d. 

 
85.5 

PN2079 1:50 no 12 96.7 58.2 98.5 124.3 173 
787 

 

Pool 1:50 n.a. n.a. 53.4 15.2 39.3 76.5 251 n.d. 

Supplementary Table 2-1. Peanut allergic subject characteristics and 

serology.  Dilution value represents serum dilution prior to serologic 

measurements.  SPT indicates the value for skin prick test, IgE (ISU) 

represents, ICAP represents the Immunocap measured responses.  
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CHAPTER 3 

 

 

 

Supplementary Figure 3-1.  Relative abundance of individual Ara h 1 

peptides (A-D) at decreasing quantities of peanut protein in a constant 

amount of serum in PRM.  Blue lines represent sera-peanut matrices; 

black lines represent peanut only in the absence of a sera background.   



242 

 

 

  

Supplementary Figure 3-2.  Relative abundance of individual (A) Ara h 2 and 

(B-D) Ara h 6 peptides at decreasing quantities of peanut protein in a constant 

amount of serum in PRM.  Blue lines represent sera-peanut matrices; black lines 

represent peanut only in the absence of a sera background.   
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Supplementary Figure 3-3.  Relative abundance of individual Ara h 3 peptides 

(A-D) at decreasing quantities of peanut protein in a constant amount of serum in 

PRM.  Blue lines represent sera-peanut matrices; black lines represent peanut 

only in the absence of a sera background.   
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Supplementary Figure 3-4.  Relative abundance of individual Ara h 1 peptides (A-D) 

at decreasing quantities of peanut protein in a constant amount of serum in MRM. 

Transitions are represented by different colored lines.  Solid lines represent sera-peanut 

matrices; dashed lines represent peanut only in the absence of a sera background. 
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Supplementary Figure 3-5.  Relative abundance of individual (A) Ara h 2 (B) Ara 

h 6 peptides at decreasing quantities of peanut protein in a constant amount of serum 

in MRM. Transitions are represented by different colored lines.  Solid lines represent 

sera-peanut matrices; dashed lines represent peanut only in the absence of a sera 

background. 
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Supplementary Figure 3-6.  Relative abundance of individual Ara h 3 peptides (A-

C) at decreasing quantities of peanut protein in a constant amount of serum in 

MRM. Transitions are represented by different colored lines.  Solid lines represent 

sera-peanut matrices; dashed lines represent peanut only in the absence of a sera 

background. 
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Supplementary Figure 3-7.  Relative abundance of individual Ara h 1 peptides (A-D) at 

decreasing quantities of peanut protein in a constant amount of serum in MRM3. 

Transitions are represented by different colored lines.  Solid lines represent sera-peanut 

matrices; dashed lines represent peanut only in the absence of a sera background. 
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Supplementary Figure 3-8.  Relative abundance of individual (A) Ara h 2 (B) Ara h 6 

peptides at decreasing quantities of peanut protein in a constant amount of serum in 

MRM3. Transitions are represented by different colored lines.  Solid lines represent sera-

peanut matrices; dashed lines represent peanut only in the absence of a sera background. 
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Supplementary Figure 3-9.  Relative abundance of individual Ara h 3 peptides (A-

C) at decreasing quantities of peanut protein in a constant amount of serum in 

MRM3.  Transitions are represented by different colored lines.  Solid lines represent 

sera-peanut matrices; dashed lines represent peanut only in the absence of a sera 

background. 
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Supplementary Table 3-1.  List of peptide transitions detection in 

positive subject sera samples (subject 1, 2). 
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