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A reduction ϕ of an ordered group (G,P ) to another ordered group is an order

homomorphism which maps each interval [1, p] bijectively onto [1, ϕ(p)]. We show

that if (G,P ) is weakly quasi-lattice ordered and reduces to an amenable ordered

group, then there is a gauge-invariant uniqueness theorem for P -graph algebras. We

also consider the class of ordered groups which reduce to an amenable ordered group,

and show this class contains all amenable ordered groups and is closed under direct

products, free products, and hereditary subgroups.
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Chapter 1

Introduction

Cuntz-Krieger algebras and their generalizations (Exel-Laca algebras, graph algebras,

higher-rank graph algebras, etc) are all, broadly speaking, the universal algebras gen-

erated by partial isometries whose range and source projections satisfy certain com-

binatorial relations. But defining these algebras by their universality comes at a cost,

since it becomes difficult to check if any particular collection of partial isometries (a

“representation”) is universal. Mathematicians responded with uniqueness theorems,

conditions on the representation which guarantee that it is universal. A classic exam-

ple is the gauge-invariant uniqueness theorem for graph algebras, which states that

so long as the canonical generators of the algebra are nonzero and there is a gauge

action (meaning an action α of the circle satisfying αz(Tγ) = zlength(γ)Tγ for any z ∈ T

and path γ in the graph), then any other representation of the graph is a quotient of

this representation. This construction and uniqueness theorem has been generalized

to higher rank graphs by Kumjian and Pask [15], where paths are given lengths in

Nk instead of N, and an action of Tk = Ẑk replaces the gauge action of T = Ẑ.

One might then ask that paths be allowed to have “lengths” in any positive cone

P of a group G. The first attempt at such a generalization was by Brownlowe, Sims,

and Vittadello [3], who studied P -graphs when (G,P ) is quasi-lattice ordered, but

surprisingly the authors construct a P -graph algebra which is not universal but co-



9

universal, meaning it is a quotient of any sufficiently large representation.

In Section 4 of this paper, we build on their work to show that if the grading group

(G,P ) is weakly quasi-lattice ordered and has a certain kind of quotient map called

a reduction such that the quotient is amenable, this algebra is both universal and

co-universal. This allows us to generalize the gauge-invariant uniqueness theorems

for graphs and k-graphs (such as [18, Theorem 2.2] or [15, Theorem 3.4]) to make a

gauge-invariant uniqueness theorem for P -graphs:

Theorem 4.4.2. Let (G,P ) be a weakly quasi-lattice ordered group which reduces to

an amenable ordered group, and let Λ be a finitely-aligned P -graph. Then there is

exactly one representation (up to canonical isomorphism) of Λ which is Λ-faithful,

tight, and has a gauge coaction of G. This representation is universal for tight repre-

sentations and co-universal for representations which are Λ-faithful and have a gauge

coaction by G.

This diagram provides a visual summary of the result:

Λ-faithful

gauge coacting

representations

tight

representations

C∗min(Λ)

C∗tight(Λ)

C∗min(Λ)

no gap if

(G,P ) reduces to

an amenable group

bigger

representations

smaller

representations
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We believe that the algebra generated by this simultaneously universal and co-

universal representation deserves the title of the Cuntz-Krieger algebra of the P -

graph.

The notion of a reduction of ordered groups is introduced in Section 3, culminating

in this theorem showing that several natural operations on ordered groups preserve

the existence of a reduction onto an amenable group:

Theorem 3.3.1. The class of ordered groups which have (strong) reductions onto

amenable groups contains all amenable ordered groups and is closed under hereditary

subgroups, finite direct products, and finite free products.

In Theorem 4.4.2, being reducible to an amenable group plays the role of amenabil-

ity in guaranteeing a unique representation, but by Theorem 3.3.1, this condition is,

in at least one sense, more robust than amenability. In particular, being reducible

to an amenable group is preserved under free products, whereas being amenable is

almost always destroyed by a free product (for instance if G and H contain copies of

Z, then G ∗H is not amenable).

The notion of being reducible to an amenable group is sufficiently robust that, as

corollary to Theorem 3.3.1, the important example (Z2 ∗Z,N2 ∗N) from the literature

([21, 3]) reduces to an amenable group. In Proposition 4.6.2, we use this fact in

combination with the results of [3] to show that every Kirchberg algebra in the UCT

class is stably isomorphic to the simultaneously universal and co-universal algebra of

a (N2 ∗ N)-graph.

Besides the results listed in Theorem 3.3.1, a great deal is not yet known about how

reductions interact with other group constructions. The limits of our understanding

are discussed in Section 3.3.
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We hope that this new approach will provide a useful tool for the analysis of P -

graphs and their algebras, and possibly have implications for product systems and

Fell bundles.
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Chapter 2

Background

2.1 Ordered Groups

Ordered groups have been studied in both a context of group theory and operator

theory, and we largely follow the conventions of [3] and [10, Chapter 32]. The reader

should note that other authors, such as [4], use the term “ordered group” to refer to

a group with a total order, but we follow the convention that the group has a partial

order.

Definition 2.1.1. A positive cone in a group G is a submonoid P such that P∩P−1 =

{1}.

A left-invariant partial order on a group G is a partial order ≤ such that for all

a, b, c ∈ G, a ≤ b if and only if ca ≤ cb.

Every left-invariant partial order on a group arises naturally from a positive cone

P by saying that a ≤ b if and only if a−1b ∈ P . We will say that an ordered group

(G,P ) is a group along with a positive cone, with the implication that the group takes

on a left-invariant partial order in this way.

A group is totally ordered if its partial order is a total order. This is equivalent to

the condition that P ∪ P−1 = G.
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Although our theory of reductions does not require any additional structure on

our ordered groups, the relators for a graph algebra will ask for an additional property

on our orderings from [10, Chapter 32]:

Definition 2.1.2. We say (G,P ) is weakly quasi-lattice ordered (WQLO) if whenever

x, y ∈ P have a common upper bound in P , they have a supremum (least common

upper bound), denoted x∨ y. Note that any upper bound of a positive element is itself

positive by transitivity.

While many mathematicians (including[3, 20, 22]) worked in the context of quasi-

lattice ordered groups, we have found that the slightly more general condition of

weak quasi-lattice order suffices. The condition of weak quasi-lattice order is also

friendlier than quasi-lattice order since it is entirely a property of the submonoid

P , and therefore one can “forget” the ambient group. The same is not true for

quasi-lattice order. For a more thorough introduction to quasi-lattice order, weak

quasi-lattice order, and their connections, the reader is directed to [10, Chapter 32].

Notation 2.1.3. In this work, we will make use of the following notation:

• N = {0, 1, 2, 3...} includes 0.

• Given a group G and subset S ⊆ G, 〈S〉 will denote the group generated by the

elements of S, and S∗ will denote the monoid generated by the elements of S.

• The identity element in a multiplicative group G will be denoted by 1G, or 1

if the group is clear from context. Less commonly we will denote the identity

element by e.

Example 2.1.4. Let G = Zk, and let P = Nk. Then (G,P ) is WQLO. Every

pair of elements p = (p1, ..., pk) and q = (q1, ..., qk) have a supremum p ∨ q =
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(max(p1, q1), ...,max(pk, qk)). (In fact, this ordering is a “lattice order”, meaning

any two elements have both a supremum and an infimum.)

Let G = Fk = 〈a1, ..., ak〉 be the free group on k generators, and let P = {a1, ..., ak}∗

be the free monoid generated by the generators of G. Then (G,P ) is WQLO, since

any p, q ∈ P have a common upper bound if and only if p ≤ q or q ≤ p, in which case

p ∨ q = max{p, q}.

Notation 2.1.5. Let (G,P ) be an ordered group. We use the following standard

notation for intervals: for a, b ∈ G, write

[a, b] := {g ∈ G|a ≤ g ≤ b}.

It is immediate that such an interval is nonempty if and only if a ≤ b. We will

most often be interested in intervals of the form [1, p] for some p ∈ P .

Definition 2.1.6. Let (G,P ) and (H,Q) be ordered groups. We say that ϕ : G→ H

is an order homomorphism if it is a group homomorphism with ϕ(P ) ⊆ Q. We will

write ϕ : (G,P )→ (H,Q) to denote an order homomorphism.

Order homomorphisms preserve both the group structure and the order structure,

as the following lemma shows:

Lemma 2.1.7. Let (G,P ) and (H,Q) be ordered groups, and ϕ : G → H a group

homomorphism. Then ϕ is an order homomorphism if and only if x ≤ y implies

ϕ(x) ≤ ϕ(y) for all x, y ∈ G.

In particular, if ϕ is an order homomorphism and p ∈ P , then ϕ([1, p]) ⊆ [1, ϕ(p)].

Proof. If ϕ is an order homomorphism and x ≤ y, then x−1y ∈ P , so ϕ(x−1y) =

ϕ(x)−1ϕ(y) ∈ Q. Thus ϕ(x) ≤ ϕ(y).
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Conversely, if ϕ is not an order homomorphism, then there is p ∈ P such that

ϕ(p) 6∈ Q. Then 1G ≤ p, and 1H = ϕ(1G) 6≤ ϕ(p), as desired.

For the “in particular”, if s ∈ [1, p], then 1 ≤ s ≤ p, so 1 = ϕ(1) ≤ ϕ(s) ≤ ϕ(p),

so ϕ(s) ∈ [1, ϕ(p)] as desired.

2.2 C∗-algebras

2.2.1 The Factors Through Theorem

The following result is an elementary notion from algebra, which we state here for

completeness since we will make frequent use of it:

Lemma 2.2.1 (Factors Through Theorem). Let A,B, and C be sets, let f : A→ B

and g : A→ C be functions, and suppose that f is surjective.

A B

C

f

g
∃h

1. Suppose that whenever f(a) = f(a′), then g(a) = g(a′). Then there is a “bonding

map” h : B → C such that h ◦ f = g. In particular, h is (well-)defined by

h(f(a)) = g(a) for all f(a) ∈ B.

2. If A,B, and C are groups, f and g are group homomorphisms, and ker f ⊆

ker g, then hypothesis of (1) that f(a) = f(a′) implies g(a) = g(a′) is satisfied.

Therefore, the conclusion of (1) is true.

3. If A,B,C have a binary operation · (respectively a unary operation ∗) which is

preserved by f and g, then · (respectively ∗) is also preserved by h.

Proof. For (1), for all b ∈ B, since f is surjective, there is some a ∈ A such that

f(a) = b. Now, define h(b) = g(a), which is well-defined since if there were some
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other a′ ∈ A with f(a′) = b, then g(a) = g(a′) by hypothesis. That is, we have

defined h by h(f(a)) = g(a), so h ◦ f = g.

For (2), if f(a) = f(a′), then a−1a′ ∈ ker f ⊆ ker g, so g(a) = g(a′), as desired.

For (3), let b1, b2 ∈ B. Since f is surjective, there is some a1, a2 ∈ A such that

f(a1) = b1, f(a2) = b2. Then

h(b1 · b2) = h(f(a1) · f(a2)) = h(f(a1 · a2)) = g(a1 · a2)

= g(a1) · g(a2) = h(f(a1)) · h(f(a2)) = h(b1) · h(b2)

and

h(b∗1) = h(f(a1)∗) = h(f(a∗1)) = g(a∗1) = g(a1)∗ = h(f(a1))∗ = h(b1)∗

as desired.

2.2.2 Universal Algebras

The following construction of a “universal algebra” is a slight simplification of the

one outlined by Blackadar in [2]. We state it here for completeness.

Lemma 2.2.2 (Construction of a Universal Algebra, [2]). Let G = {xα}α∈I denote

a set of formal symbols, G∗ = {x∗α}α∈I another set of formal symbols over the same

indexing set, and R a set of relators of the form p(xα1 , ..., xαn , x
∗
α1
, ..., x∗αn) = 0 where

p is some polynomial in 2n non-commuting variables and complex coefficients.

We define a representation of (G,R) to be a collection of elements {yα}α∈I in a

C∗-algebra that satisfy p(yα1 , ..., yαn , y
∗
α1
, ..., y∗αn) = 0 for each relator in R.
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Suppose that the relators on (G,R) imply that in any representation, the images

of the generators are partial isometries. Then there is a representation {zα}α∈I such

that for any other representation {yα}α∈I there is a surjective ∗-homomorphism π :

C∗({zα}α∈I)→ C∗({yα}α∈I) satisfying zα 7→ yα.

The existence of this surjective ∗-homomorphism is called the universal property

of C∗({zα}α∈I). We call this representation the universal representation and say that

C∗({zα}α∈I) is the universal algebra for (G,R).

Proof. Let F(G) denote the free ∗-algebra over C generated by C and G ∪ G∗ where

the ∗-map is given by (xα)∗ = x∗α and (x∗α)∗ = xα and extended to the entire algebra

via conjugate-linearity and (ab)∗ = b∗a∗. Note that any representation ϕ : xα 7→ yα

of (G,R) extends uniquely to a ∗-algebra homomorphism ϕ̄ : F(G)→ C∗({yα}α∈I).

For X ∈ F(G), let |||X||| = sup{‖ϕ̄(X)‖ : ϕ a rep. of (G,R)}. Note that since

(G,R) can be represented by the zero map, this supremum is bounded below by 0,

and since each generator must be represented by a partial isometry, the image of each

generator has norm 1, and thus the supremum is bounded above by the sum of the

absolute values of its C-coefficients. Thus |||X||| is a well-defined, non-negative finite

number.

Let J = {X ∈ F(G) : |||X||| = 0}, and note that J =
⋂

ϕ a rep.

ker ϕ̄ where the

intersection is taken over all representations. Thus J is the intersection of ∗-ideals, so

it is a ∗-ideal. Now let ψ : F(G) → F(G)/J denote the quotient map, and for all α,

let zα = ψ(xα). For any relator p(xα1 , ..., xαn , x
∗
α1
, ..., x∗αn) = 0 ∈ R, since this relator

is satisfied for every representation, then
∣∣∣∣∣∣p(xα1 , ..., xαn , x

∗
α1
, ..., x∗αn)

∣∣∣∣∣∣ = 0, and thus

p(xα1 , ..., xαn , x
∗
α1
, ..., x∗αn) ∈ J , so p(zα1 , ..., zαn , z

∗
α1
, ..., z∗αn) = 0. That is, the {zα}α∈I

satisfy the relators.

Now note that |||·||| is a C∗-seminorm, so the norm ‖X + J‖ := |||X||| is a well-
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defined C∗-norm on F(G)/J , and thus the completion of F(G)/J with respect to this

norm is a C∗-algebra. Thus ψ : xα → zα is a representation of (G,R).

Now, given any other presentation ϕ : xα 7→ yα, note that ker ϕ̄ = {X ∈ F(G) :

‖ϕ̄(X)‖ = 0} ⊆ {X ∈ F(G) : |||X||| = 0} = ker ψ̄, so by Lemma 2.2.1(2), there is a

function on the ∗-algebras generated by y and z given by yα 7→ zα, and by Lemma

2.2.1(3) applied to +,×, and ∗, this function is a ∗-homomorphism, so it extends to

a ∗-homomorphism π : C∗({zα}α∈I)→ C∗({yα}α∈I) as desired.

2.2.3 Conditional Expectations

We will also make frequent use of conditional expectations, whose definition we in-

clude here. For a more thorough treatment of conditional expectations, the reader is

directed to [23, Chapter III.3], where they are called projections of norm one.

Definition 2.2.3. Let C be a C∗-algebra, and D ⊆ C a C∗-subalgebra. We say a

conditional expectation or projection of norm one is a linear map Φ : C → D such

that:

• Φ is contractive, meaning ‖Φ(c)‖ ≤ ‖c‖ for all c ∈ C (and is thus continuous).

• Φ is idempotent, meaning Φ ◦ Φ = Φ.

• Φ(d) = d for all d ∈ D.

If additionally c > 0 implies Φ(c) > 0, we say Φ is faithful.

Example 2.2.4. In a matrix algebra Mn, there is a faithful conditional expectation

Φ given by “restricting to the diagonal”, meaning Φ([aij]) = [bij] where

bij =


aij if i = j

0 if i 6= j

.
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The following result is [24, Theorem 1] and is known as Tomiyama’s Theorem. It

says that a conditional expectation has some additional properties “for free”. Some

authors will define conditional expectations as requiring these properties, and some

will define them to only require the shorter list of conditions (as we have done here).

Theorem 2.2.5 (Tomiyama’s Theorem). If Φ : C → D is a conditional expectation,

then Φ is positive, meaning that x ≥ 0 implies Φ(x) ≥ 0. Furthermore, Φ is a

D-bimodule map, meaning Φ(d1cd2) = d1Φ(c)d2 for all d1, d2 ∈ D and c ∈ C.

2.2.4 Tensor Products

Here we will give a very brief introduction to the minimal tensor product. A more

thorough introduction can be found in [23, Chapter 4]. Throughout this paper, as

in much of the coaction literature, we will use unadorned ⊗ for the minimal tensor

product of C∗-algebras.

Definition 2.2.6. Given two vector spaces V and W , we let V �W denote the al-

gebraic tensor product of V and W , meaning the C-vector space spanned by formal

symbols {v⊗w : v ∈ V,w ∈ W} with the relations of linearity over either coordinate.

Let A and B be C∗-algebras. Then one can give A�B a ∗-algebra structure by

(a⊗ b)(a′ ⊗ b′) = (aa′)⊗ (bb′) and (a⊗ b)∗ = a∗ ⊗ b∗.

If π : A → B(H) and ρ : B → B(K) are representations of A and B on Hilbert

spaces H and K respectively, then there exists a ∗-algebra representation π ⊗ ρ :

A � B → B(H ⊗ K) satisfying [(π ⊗ ρ)(a⊗ b)] (h ⊗ k) = π(a)h ⊗ ρ(b)k for all a ∈

A, b ∈ B, h ∈ H, k ∈ K. The minimal norm on A�B is defined by
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∣∣∣∣∣
∣∣∣∣∣
n∑
i=1

ai ⊗ bi

∣∣∣∣∣
∣∣∣∣∣
min

= sup

{∣∣∣∣∣
∣∣∣∣∣
n∑
i=1

π(ai)⊗ ρ(bi)

∣∣∣∣∣
∣∣∣∣∣
}

where the supremum is taken over all representations π and ρ of A and B, respectively

(and this is indeed a norm which is minimal in an appropriate sense). Note that

‖a⊗ b‖min = ‖a‖ · ‖b‖ (that is, ‖·‖min is a “C∗-cross norm”). The minimal tensor

product A⊗min B is the C∗-algebra created by completing A� B with respect to this

norm. Since all of our tensor products will be minimal, we will henceforth write ‖·‖

for ‖·‖min and A⊗B for A⊗min B.

The following result will be used occasionally, and it is a minor variant of [6,

Lemma A.1]:

Lemma 2.2.7. Let ϕ : A→ C and ψ : B → D be ∗-homomorphisms of C∗-algebras.

Then there is a homomorphism ϕ⊗ ψ : A⊗B → C ⊗D satisfying (ϕ⊗ ψ)(a⊗ b) =

ϕ(a)⊗ ψ(b). If ϕ and ψ are nondegenerate (respectively, faithful), then so is ϕ⊗ ψ.

Proof. Consider C and D as subalgebras (respectively) of their multiplier algebras

M(C) and M(D), and therefore consider ϕ and ψ as mapping into M(C) and M(D),

respectively. By [6, Lemma A.1], there is a ∗-homomorphism ϕ ⊗ ψ : A ⊗ B →

M(C⊗D) satisfying (ϕ⊗ψ)(a⊗ b) = ϕ(a)⊗ψ(b), and if ϕ and ψ are nondegenerate

(respectively, faithful), then so is ϕ⊗ ψ.

It then suffices to show that ϕ⊗ψ maps into C ⊗D properly, instead of mapping

into M(C ⊗ D). But for all a ∈ A, b ∈ B, we have ϕ(a) ∈ C and ϕ(b) ∈ D, so

(ϕ⊗ψ)(a⊗ b) ∈ C⊗D for all a ∈ A, b ∈ B. Taking closed spans, we get that for any

x ∈ A⊗B, we have (ϕ⊗ ψ)(x) ∈ C ×D, as desired.
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2.3 Connections between Groups and C∗-Algebras

In this section we will remind the reader of some of the many connections between

groups and C∗-algebras, including group C∗-algebras, amenability, Fell bundles, grad-

ings, coactions, and actions. Our context is relatively simple since we are limiting our

attention to discrete groups.

2.3.1 Group C∗-algebras and Amenable Groups

The following discussion of group C∗-algebras and amenability is adapted from [5,

Chapter VII], to which the reader is directed for a more thorough treatment.

Definition 2.3.1. Let G be a discrete group. Then a representation of G in a C∗-

algebra is a collection of unitary operators {ug}g∈G such that uguh = ugh and u∗g = ug−1

for all g, h ∈ G.

Since these relators are all polynomials, then by Lemma 2.2.2 there is a represen-

tation of G which is universal for all representations. We denote it by {Ug}g∈G, and

call C∗(G) := C∗({Ug}g∈G) the full group C∗-algebra.

A particularly nice representation of a group G, called the left-regular representa-

tion of a group, comes from the natural action of G multiplying on itself. In particular,

let {eg}g∈G denote the standard orthonormal basis for `2(G), and define an operator

Lg by Lgeg′ = egg′ for g, g′ ∈ G. Then {Lg}g∈G is a representation of G in B(`2(G)).

We call C∗r (G) := C∗({Lg}g∈G) the reduced group C∗-algebra.

The left-regular representation is more commonly denoted by λ instead of L, but

our choice of notation will help avoid ambiguity with paths λ ∈ Λ later in the text.

Note that C∗(G) and C∗r (G) are the closed spans of {Ug}g∈G and {Lg}g∈G, respec-

tively.
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Famously, there are many equivalent definitions of amenability, but for our pur-

poses, this one is the most convenient:

Definition 2.3.2. By the universal property of C∗(G), there is a surjective ∗-

homomorphism πUL : C∗(G)→ C∗r (G) given by Ug 7→ Lg. We say that G is amenable

if and only if πUL is injective (and hence an isomorphism).

Readers more familiar with another definition of amenability may wish to read [5,

Theorem VII.2.5] which proves the equivalence of this definition with a more common

one.

The following remark summarizes some of the well-known results about amenabil-

ity of groups.

Remark 2.3.3. By [5, Proposition VII.2.3], for discrete groups amenability is pre-

served under:

1. Subgroups

2. Quotients

3. Direct Limits

4. Extensions (meaning that if 1 → N → G → H → 1 is a short exact sequence

of groups, with N and H amenable, then G is amenable).

5. Finite direct products (which is immediate from being closed under extensions).

Furthermore, by [5, Proposition VII.2.2], every abelian group is amenable. Every

finite group is amenable since C∗(G) and C∗r (G) have the same finite dimension |G|,

so by the rank-nullity theorem the surjective map πUL is injective.
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Notably, the free group on two generators is not amenable by [5, Example VII.2.4].

By the subgroup property, any group containing a free group on two (or more) gener-

ators is also not amenable.

2.3.2 Fell Bundles, Topologically Graded C∗-algebras, and Coactions

In this section, we will give a short introduction to Fell bundles, topologically graded

C∗-algebras, and coactions, and show some of the ways these closely-related structures

overlap. For a more detailed treatment, the reader is directed to [10, 9] for Fell

bundles, [10] for topological gradings, and [6, Appendix A] for coactions.

Throughout this section, all of our groups will be discrete, which simplifies some

definitions. The following is from [10, Definition 16.1]:

Definition 2.3.4. Let G be a discrete group. Let B = {Bg}g∈G be a collection of

Banach spaces, and write B for the disjoint union of the {Bg}g∈G, called the total

space. Suppose B has a binary operation · called multiplication, and an involution ∗

which satisfy the following properties for all g, h ∈ G and b, c ∈ B:

a. BgBh ⊆ Bgh,

b. Multiplication is bilinear from Bg ×Bh to Bgh,

c. Multiplication on B is associative,

d. ‖bc‖ ≤ ‖b‖ · ‖c‖,

e. (Bg)
∗ ⊆ Bg−1,

f. Involution is conjugate-linear from Bg to Bg−1,

g. (bc)∗ = c∗b∗,
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h. b∗∗ = b,

i. ‖b∗‖ = ‖b‖,

j. ‖b∗b‖ = ‖b‖2,

k. b∗b ≥ 0 in B1.

Then we say that B is a Fell bundle over G. We call each Bg a fiber.

The following is from [10, Definitions 16.2 and 19.2]:

Definition 2.3.5. Let A be a C∗-algebra, and let G be a (discrete) group. We say that

a (C∗-) grading for A is a collection {Ag}g∈G of linearly independent closed subspaces

such that
⊕

g∈GAg is dense in A, AgAh ⊆ Agh, and A∗g ⊆ Ag−1 for g, h ∈ G. Each

Ag is called a graded subspace or graded component.

If there is also a conditional expectation Φ : A→ Ae satisfying

Φ(a) =


a if a ∈ Ae

0 if a ∈ Ag for g 6= e

,

then we say that {Ag}g∈G is a topological grading.

Remark 2.3.6. It is straightforward to verify that if A is a topologically graded C∗-

algebra, then its graded components form a Fell bundle. Most of the Fell bundles we

will use arise in this way.

Remark 2.3.7. Given a Fell bundle B, one can construct a “reduced” and “full” cross

sectional algebra representing this bundle, respectively denoted C∗r (B) and C∗(B) (see

Definition 2.3 of [9] and the comment following it).

By [9, Theorem 3.3], if B is a topologically graded C∗-algebra, and B denotes

its associated Fell bundle, then there is a ∗-homomorphism L : B → C∗r (B) called
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the left-regular representation of the Fell bundle. Combining this result with their

Proposition 3.7, L is an isomorphism if and only if the conditional expectation from

the topological grading is faithful.

In a Fell bundle B, the full cross sectional algebra C∗(B) has a topological grading,

and the bundle is called amenable if its left-regular representation L : C∗(B)→ C∗r (B)

is injective (and hence an isomorphism). The reader may notice the parallel with our

definition of amenability for a group (Definition 2.3.2).

The following two results are respectively [9, Theorem 4.7] and [9, Proposition

4.2] :

Lemma 2.3.8. Let G be a discrete amenable group. Then every Fell bundle over G

is amenable.

Lemma 2.3.9. If B is an amenable Fell bundle, then all topologically graded C∗-

algebras whose associated Fell bundles coincide with B are isomorphic to each other.

Finally, we will give a brief introduction to coactions. The following is both the

simplest example of a coaction, and a necessary component of its definition.

Example 2.3.10. If G is a discrete group, then the operators {Ug⊗Ug}g∈G ⊂ C∗(G)⊗

C∗(G) are a representation of G. Therefore, by the universal property of C∗(G), there

is a ∗-homomorphism δG : C∗(G)→ C∗(G)⊗ C∗(G) given by Ug 7→ Ug ⊗ Ug.

Note that letting idG := idC∗(G), then (δG⊗ idG)◦δG = (idG⊗δG)◦δG, which can be

easily verified by checking that both send Ug 7→ Ug⊗Ug⊗Ug ∈ C∗(G)⊗C∗(G)⊗C∗(G).

The following definition of coactions for discrete groups is taken from [7, Section

2]:
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Definition 2.3.11. Let G be a discrete group. A coaction of G on a C∗-algebra A is

an injective, nondegenerate homomorphism δ : A→ A⊗C∗(G) satisfying the coaction

identity that (δ ⊗ idG) ◦ δ = (idA⊗δG) ◦ δ as maps from A into A⊗ C∗(G)⊗ C∗(G),

summarized in this diagram:

A A⊗ C∗(G)

A⊗ C∗(G) A⊗ C∗(G)⊗ C∗(G)

δ

δ δ⊗idG

idA⊗δG

In this context, nondegeneracy means that span [δ(A)(A⊗ C∗(G))] = A⊗ C∗(G).

We call the triple (A,G, δ) a cosystem.

If G is discrete, a cosystem has a nice topological grading as described in [20,

Proposition A.3]:

Lemma 2.3.12. Let (A,G, δ) be a discrete cosystem, and for g ∈ G let

Ag = {a ∈ A|δ(a) = a⊗ Ug}.

Then the collection {Ag}g∈G is a topological grading of A. We will write ΦA : A→

Ae for the conditional expectation.

Some coactions are particularly nice, having a condition called normality. There

are many definitions of normality, but we will find a definition depending on this

conditional expectation to be the most convenient:

Definition 2.3.13. We say a discrete coaction (A,G, δ) is normal if the conditional

expectation ΦA is faithful.

A more common definition of normality of a coaction (such as [6, Definition A.50]

or the comments preceding Definition 1.1 of [17]) is that the coaction is normal if and
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only if the map jA := (idA⊗πUL ) ◦ δ is injective. Our definition is proved equivalent

to the more common one in [17, Lemma 1.4].

For a coaction over a discrete amenable group, this property is automatic:

Lemma 2.3.14. Let (A,G, δ) be a cosystem. If G is amenable and discrete, then δ

is normal.

Proof. For a cosystem (A,G, δ) over an amenable group, by Lemma 2.3.12 there is a

topological grading {Ag}g∈G of A. By Remark 2.3.6, these graded components form

a Fell bundle B, and this Fell bundle is amenable by Lemma 2.3.8.

Since B is amenable, by Lemma 2.3.9, A ∼= C∗r (B). But for any Fell bundle,

C∗r (B) has a conditional expectation by [9, Proposition 2.9], which is faithful by [9,

Proposition 2.12].

Finally, we will show that coactions, topological gradings, and Fell bundles are

equivalent over amenable groups.

Lemma 2.3.15. Let G be an amenable group, and let A be a C∗-algebra. Then the

following are equivalent:

1. A has a coaction by G.

2. A has a topological grading {Ag}g∈G.

3. There is a Fell bundle B = {Bg}g∈G whose fibers are linearly independent closed

subspaces of A such that A ∼= C∗(B).

And under these conditions, the structures coincide in the sense that the fibers

{Bg}g∈G of the Fell bundle are equal to the graded components {Ag}g∈G, and the

graded components arise from the coaction via Ag = {a ∈ A : δ(a) = a⊗ Ug}.
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Proof. By Lemma 2.3.12, (1) implies (2).

To show that (2) implies (3), suppose that A has a topological grading {Ag}g∈G.

By Remark 2.3.6, these fibers form a Fell bundle. To see that the fibers are linearly

independent, fix a finite sum
n∑
i=1

agi where each agi ∈ Agi for some distinct gi ∈ G,

and suppose this sum equals 0. Then by [10, Corollary 19.6], there are contractive

linear maps Fg : A → Ag satisfying Fgj(
n∑
i=1

agi) = agj . But since 0 =
n∑
i=1

agi , then

for each gj, we have 0 = Fgj(
n∑
i=1

agi) = agj , so each summand is 0, so the graded

components are linearly independent. Finally, we must show that A ∼= C∗(B). By

Lemma 2.3.8, B is amenable, and by [10, Proposition 19.3], C∗(B) is a topologically

graded C∗-algebra. Since this amenable bundle coincides with the bundle in A, then

by Lemma 2.3.9, A ∼= C∗(B), as desired.

To see that (3) implies (1), suppose that B = {Bg}g∈G is a Fell bundle of lin-

early independent closed subspaces of A such that A ∼= C∗(B). Since G is amenable,

C∗(G) ∼= C∗r (G), and by Lemma 2.3.8, B is an amenable Fell bundle, so C∗(B) ∼=

C∗r (B). Combining these simplifications with [10, Proposition 18.7], there is an injec-

tive ∗-homomorphism δ : C∗(B) → C∗(B) ⊗ C∗(G) satisfying δ(bg) = bg ⊗ Ug for all

g ∈ G and bg ∈ Bg. It is routine to verify that this is a coaction, and that the graded

parts of this coaction coincide with the original Fell bundle B.

2.3.3 Coactions as Actions of the Dual Group

In this section we will show that if G is discrete and abelian, then a coaction by

G is equivalent to an action by its dual group Ĝ. For a non-abelian group, this

correspondence breaks down because there is no dual group.

First, we will remind the reader of actions by groups and dual groups. The
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following definition is well-known, and can be found for instance in the remarks

preceding Proposition 2.1 in [18]:

Definition 2.3.16. Given a locally compact group G, an action of G on a C∗-algebra

A is a strongly continuous homomorphism α : G → Aut(A), the group of automor-

phisms of A. (Here, strong continuity means that for all a ∈ A, the map g 7→ αg(a) is

continuous as a function from G to A.) The trio (A,G, α) is called a (C∗-dynamical)

system.

We will now define the dual group. A more detailed treatment of dual groups can

be found in [12, Chapter 1.7].

Definition 2.3.17. Given a abelian locally compact group G, we say that a character

of G is a continuous homomorphism χ : G → T, where T = {z ∈ C : |z| = 1}

denotes the unit circle in the complex numbers. The set of characters Ĝ forms an

abelian locally compact group called the dual group under the operation (χ1 ∗χ2)(g) :=

χ1(g)χ2(g) and the topology of uniform convergence on compacta.

Some examples of dual groups are that Ẑk ∼= Tk, R̂k ∼= Rk, and that if G is finite

and abelian then Ĝ ∼= G.

The following two theorems are well-known results about the duals of abelian

locally compact groups. They can be found in [12, Theorem 1.85] and [12, Theorem

1.88] respectively.

Theorem 2.3.18 (Pontryagin duality theorem). An abelian locally compact group is

naturally isomorphic to its double dual by the map g 7→ [χ 7→ χ(g)]. That is, G ∼= ̂̂
G.

Theorem 2.3.19. If G is a locally compact abelian group, then G is discrete if and

only if Ĝ is compact.
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We are now ready to prove the equivalence between coactions and actions by a

dual group.

Lemma 2.3.20. Let G be a discrete abelian group and let A be a C∗-algebra. Then

for every C∗-dynamical system (A, Ĝ, α), there is a unique cosystem (A,G, δ) which

satisfies

Ag = {a ∈ A : αχ(a) = χ(g) · a for all χ ∈ Ĝ}

for all g ∈ G. All cosystems by discrete abelian groups arise in this way.

Proof. Since G is abelian, it is amenable. Thus by Lemma 2.3.15, a cosystem is

equivalent to a topological grading whose graded components are the {Ag}g∈G. By [19,

Theorem 3], such a topological grading is equivalent to the desired group action.

2.4 Graphs and P -graphs

Definition 2.4.1. Let (G,P ) be an ordered group, and consider P as a category

with one object where the morphisms are the elements of P under their multiplication

structure. A P -graph is a countable category Λ along with a functor d : Λ→ P with

the unique factorization property: if λ ∈ Λ and p1, p2 ∈ P with p1p2 = d(λ), then

there exists unique λ1, λ2 ∈ Λ with λ = λ1λ2 and d(λ1) = p1 (and hence necessarily

d(λ2) = p2).

We refer to the morphisms of Λ as paths, and identity morphisms in Λ as vertices.

We let Λ0 denote the set of vertices in Λ, and for p ∈ P , we write Λp = {µ ∈ Λ :

d(µ) = p}. As is common in the literature, we identify the objects in Λ with the

identity morphism at those objects, so we will refer to an object v with its identity

morphism idv interchangeably. Given a path λ ∈ Λ, let r(λ) denote its range vertex
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and s(λ) its source vertex. We write the composition of paths “working backwards” so

that given α, β ∈ Λ, the product αβ is defined if and only if s(α) = r(β), in which case

s(αβ) = s(β) and r(αβ) = r(α). This can be summarized in the following diagram:

r(α)

s(α) = r(β) s(β)

α

β

αβ

Remark 2.4.2. The existence of the degree functor and the unique factorization

property gives several nice properties to the graph.

First, Λ0 = {λ ∈ Λ : d(λ) = 1G}, since for a vertex v, we have v2 = v, so

d(v)2 = d(v), so d(v) = 1G, and conversely if d(v) = 1G, then r(v)v = v = vs(v) are

two factorizations with the same degrees, so r(v) = v = s(v) and hence v is a vertex.

Second, having αβ = s(β) implies α = β = s(β), since then d(α)d(β) = d(s(β)) =

1, so d(α), d(β) ∈ P ∩ P−1 = {1}.

Finally, the category has both left- and right-cancellation. For left cancellation, if

αβ = αγ, then this provides two factorizations, so by the uniqueness of the factoriza-

tions, we have β = γ, and a nearly identical argument shows right-cancellation.

These properties together imply that a P -graph is a category of paths in the sense

of [22]. Our representation of a P -graph will be a special case of their representation

of a category of paths, and the reader is invited to compare our Definitions 2.5.2 and

2.5.5c to Theorems 6.3 and 8.2 of [22], respectively.

Definition 2.4.3. Let (G,P ) be an ordered group, let Λ be a P -graph. For α ∈ Λ,

we write αΛ = {αµ : µ ∈ Λ}.

We can give Λ a partial order ≤ by saying α ≤ β if there exists some α1 ∈ Λ such

that αα1 = β. That is, α ≤ β if and only if β ∈ αΛ.
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We say that α and β have a common extension if there is a µ ∈ Λ such that α ≤ µ

and β ≤ µ.

Given α, β ∈ Λ, we say that µ ∈ Λ is a minimal common extension of α and β if

µ is a common extension of α and β, and for all other common extensions ν, ν ≤ µ

implies ν = µ. We let MCE(α, β) denote the set of minimal common extensions of

α and β.

For general ordered groups, the ordering on Λ may be sufficiently poorly behaved

that there are no minimal common extensions, even if there are common extensions.

However, the humble hypothesis of weak quasi-lattice ordering on (G,P ) prevents

this catastrophe, and therefore will recur as a hypothesis in almost all results relating

to P -graphs. The following lemma is the main “entry-point” for the hypothesis of

weak quasi-lattice ordering into P -graphs:

Lemma 2.4.4. Let (G,P ) be an ordered group, let Λ be a P -graph, and α, β ∈ Λ. If

(G,P ) is weakly quasi-lattice ordered (WQLO), then:

1. Let MDCE(α, β) = {µ ∈ αΛ ∩ βΛ : d(µ) = d(α) ∨ d(β)} denote the set of

minimal degree common extensions. For every common extension λ of α and

β, there is a µ ∈MDCE(α, β) with µ ≤ λ.

2. MCE(α, β) = MDCE(α, β).

3. For every common extension λ of α and β, there is a µ ∈ MCE(α, β) with

µ ≤ λ.

4. αΛ ∩ βΛ =
⊔

µ∈MCE(α,β)

µΛ, where
⊔

denotes a disjoint union.

Proof. (1) Suppose that λ is a common extension of α and β, so λ = αα1 = ββ1.



33

Note that d(λ) ≥ d(α) and d(λ) ≥ d(β), so d(λ) ≥ d(α) ∨ d(β). Thus by fac-

torization, we may write λ = µµ1 where d(µ) = d(α) ∨ d(β). Now, d(µ) ≥ d(α),

so µ may be additionally factored as µ = α′α2, where d(α′) = d(α). Then we have

λ = αα1 = µµ1 = α′α2µ1, meaning we have two factorizations of λ whose initial

segments are of equal length d(α′) = d(α). Then by uniqueness of factorizations we

have α′ = α, so µ is an extension of α. Similarly, µ will be an extension of β, so µ is a

common extension of α and β of length d(α)∨ d(β), so µ ∈MDCE(α, β) as desired.

(2) If ν ∈ MCE(α, β), then by (1) there is some µ ∈ MDCE(α, β) with µ ≤ ν.

Then by minimality of ν, we have µ = ν, so ν ∈MDCE(α, β) and thus MCE(α, β) ⊆

MDCE(α, β).

Conversely, if µ ∈MDCE(α, β), suppose there were some ν ∈ Λ with α ≤ ν, β ≤

ν, ν ≤ µ. Then by (1), there would be some µ′ ∈ MDCE(α, β) with µ′ ≤ ν ≤ µ.

Then µ′ ≤ µ, so we may write µs(µ) = µ = µ′µ1 for some µ1 ∈ Λ, and since

d(µ) = d(α)∨d(β) = d(µ′), then by the uniqueness of the factorization we have µ = µ′.

Then µ = ν, so µ is “minimal” in the appropriate sense such that µ ∈ MCE(α, β).

Thus MDCE(α, β) = MCE(α, β).

(3) Immediately follows from (1) and (2).

(4) It is immediate that
⋃
µ∈MCE(α,β) µΛ ⊆ αΛ ∩ βΛ, and by (3) we have αΛ ∩

βΛ ⊆
⋃
µ∈MCE(α,β) µΛ, so it suffices to show the union is disjoint. To this end, if

µ, ν ∈ MCE(α, β) and λ ∈ µΛ ∩ νΛ, then we would have λ = µµ1 = νν1, but this

presents two factorizations with equal degrees d(µ) = d(α)∨ d(β) = d(ν), so we must

have µ = ν. Thus the {µΛ : µ ∈MCE(α, β)} are pairwise disjoint, as desired.

Remark 2.4.5. It should be noted that much of the literature (e.g. [3, Definition

2.3]) defines MCE(α, β) as we have defined MDCE(α, β), which the previous lemma

shows are equivalent. We have chosen to emphasize the definition arising purely from
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the category structure because later we will be considering a category as a P -graph and

as a Q-graph, and this definition clarifies that the category structure does not depend

on the choice of the grading (as long as one exists).

2.5 Representations of P -graphs and P -graph Algebras

Two additional notions will be needed in our study of P -graph algebras.

Definition 2.5.1. Let (G,P ) be a WQLO group, and let Λ be a P -graph. We say

that Λ is finitely-aligned if for all µ, ν ∈ Λ, MCE(µ, ν) is finite.

We say that a set A ⊆ Λ is exhaustive for a set B ⊆ Λ if for all β ∈ B there is

an α ∈ A such that α and β have a common extension.

We are at last ready to define our main object of study, the representations of

P -graphs in a C∗-algebra. The following definition is due to [3], with the slight

modification to apply to WQLO groups:

Definition 2.5.2. Let (G,P ) be a WQLO group and Λ a finitely-aligned P -graph. A

representation of Λ in a C∗-algebra B is a function t : Λ→ B, λ 7→ tλ such that:

(T1) tv = t∗v and tvtw = δv,wtv for all v, w ∈ Λ0 (here δ denotes the Kronecker delta).

That is, {tv : v ∈ Λ0} is a collection of pairwise orthogonal projections.

(T2) tµtν = tµν whenever s(µ) = r(ν).

(T3) t∗µtµ = ts(µ) for all µ ∈ Λ.

(T4) tµt
∗
µtνt

∗
ν =

∑
λ∈MCE(µ,ν)

tλt
∗
λ for all µ, ν ∈ Λ.

We denote by C∗(t) the C∗-algebra generated by the {tλ}λ∈Λ, and C∗(t) is called

a P -graph C∗-algebra or just P -graph algebra.
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We require that our graphs be finitely-aligned so that the expression in the (T4)

relator is a finite sum. The fact that an infinite sum of projections does not (usually)

converge in the norm topology is a perennial problem in the field of generalizing Cuntz-

Krieger algebras, and our solution is to limit our attention to the finitely-aligned case

where the issue does not arise.

We will often want to check the properties of C∗(t) on a dense spanning set, so the

following lemma is useful. This result is widely known (see for instance [3, Remark

5.2]).

Lemma 2.5.3. Let (G,P ) be a WQLO group, let Λ a finitely aligned P -graph, and

let t be a representation of a P -graph. Then C∗(t) = span{tαt∗β : α, β ∈ Λ}.

Proof. Fix some α, β, µ, ν ∈ Λ. If s(α) 6= s(β) or s(µ) 6= s(ν), then by the T1 relator

we have tαt
∗
β = 0 or tµt

∗
ν = 0 respectively, and in either case (tαt

∗
β)(tµt

∗
ν) = 0. If

instead s(α) = s(β) and s(µ) = s(ν), then

(tαt
∗
β)(tµt

∗
ν) = (tαt

∗
β)(tβt

∗
β)(tµt

∗
µ)(tµt

∗
ν) by T3 and T2

= (tαt
∗
β)

 ∑
λ∈MCE(β,µ)

tλt
∗
λ

 (tµt
∗
ν) by T4

=
∑

λ∈MCE(β,µ)

tα(β−1λ)tν(µ−1λ) by T2 and T3

where β−1λ denotes the unique path for which β(β−1λ) = λ, and similarly µ−1λ

denotes the unique path for which µ(µ−1λ) = λ.

This calculation shows that span{tαt∗β : α, β ∈ Λ} is closed under multiplication,

so it is a ∗-subalgebra of C∗(t), and it contains each tα since tα = tαt
∗
s(α). Thus
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span{tαt∗β : α, β ∈ Λ} is a C∗-subalgebra of C∗(t) containing all of the generators, so

C∗(t) = span{tαt∗β : α, β ∈ Λ}.

Example 2.5.4. As we have already seen with groups and Fell bundles, a simple

way of representing an object often comes from its own action on itself, and such

an example arises for representations of P -graphs as well. To define the left-regular

representation of a P -graph Λ, let H = `2(Λ), with the typical orthonormal basis

{eα}α∈Λ. (Kribs and Power call this the Fock space of Λ in their papers [13, 14].)

For µ ∈ Λ define a “forward shift by µ” operator Lµ by

Lµeα =


eµα if s(µ) = r(α)

0 if s(µ) 6= r(α)

and extending this linearly. A short computation on the inner product shows that L∗µ

is the “backwards shift by µ” operator, which is given by

L∗µeβ =


eα if there exists α with µα = β

0 if no such α exists

(noting that if such an α does exist, it is unique by left cancellation).

We will now show that {Lµ}µ∈Λ is a representation of Λ. The T1 and T2 relations

are immediate.

For the T3 relation, observe that

L∗µLµeα = L∗µ



eµα if s(µ) = r(α)

0 if s(µ) 6= r(α)

 =


eα if s(µ) = r(α)

0 if s(µ) 6= r(α)

= Ls(µ)eα
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as desired.

For the T4 relation, first note that

LµL
∗
µeα =


eα if α ∈ µΛ

0 if α 6∈ µΛ

.

Thus

LµL
∗
µLνL

∗
νeα =


eα if α ∈ µΛ ∩ νΛ

0 if α 6∈ µΛ ∩ νΛ

.

But since µΛ∩νΛ =
⊔
λ∈MCE(µ,ν) λΛ by Lemma 2.4.4(4), then if α ∈ µΛ∩νΛ there

exists a unique λ0 ∈ MCE(µ, ν) with α ∈ λΛ, so Lλ0L
∗
λ0
eα = eα, and LλL

∗
λeα = 0

for λ ∈MCE(µ, ν) \ λ0. Thus

∑
λ∈MCE(µ,ν)

LλL
∗
λeα = eα

when α ∈ µΛ ∩ νΛ, so LµL
∗
µLνL

∗
ν =

∑
λ∈MCE(µ,ν)

LλL
∗
λ as desired.

Thus {Lµ}µ∈Λ is a representation, as desired.

There are several additional properties that we will sometimes ask of our represen-

tation. In order, we will ask for our generators to be nonzero, that our representation

preserve its knowledge of the P -graded structure through a certain coaction called

a gauge coaction, and that our representation be “tight” in the sense of [8]. More

precisely:

Definition 2.5.5. Let (G,P ) be a WQLO group and Λ a finitely aligned P -graph.

We say that a representation t of Λ...
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a. is Λ-faithful if each tλ is nonzero.

b. has a gauge coaction if there is a G-coaction δ on C∗(t) such that

δ(tλ) = tλ ⊗ Ud(λ)

for all λ ∈ Λ.

c. is tight if whenever µ ∈ Λ and E ⊂ µΛ is finite and exhaustive for µΛ, we have

∏
α∈E

(tµt
∗
µ − tαt∗α) = 0.

(Recall that E is exhaustive for µΛ if for all ν ∈ µΛ, there is an α ∈ E such

that α and ν have a common extension.) This terminology is motivated by [8],

which defines a tight representation of a semilattice. We show in Appendix 1

that this notion of tight is equivalent to the one in [8].

d. canonically covers another representation s if there is a (necessarily surjective)

∗-homomorphism from C∗(t) to C∗(s) given by tλ 7→ sλ. In such a case, we

will write πts : C∗(t) → C∗(s) to denote the ∗-homomorphism, which we call

the canonical covering. The notation πts should hopefully be suggestive of t

“covering” s.

e. is canonically isomorphic to another representation s if there is an isomorphism

between C∗(s) and C∗(t) given by tλ 7→ sλ (i.e. if s and t canonically cover each

other).

It should be noted that the conditions (T1)-(T4) and tightness are all polynomial

relations of the form suitable for Lemma 2.2.2 (finite-alignment being necessary in
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the case of (T4)). However, Λ-faithfulness and the existence of a gauge coaction are

not polynomial relators in an obvious way.

Remark 2.5.6. The left-regular representation L from Example 2.5.4 is Λ-faithful.

However, this representation is as far from tight as possible: given µ ∈ Λ and

E ⊂ µΛ which is finite and exhaustive for µΛ,
∏
α∈E

(LµL
∗
µ − LαL∗α) = 0 if and only

if µ ∈ E (i.e. when one of the terms of the product is 0). To see this, note that if

α ∈ µΛ \ µ, then LαL
∗
αeµ = 0, so (LµL

∗
µ−LαL∗α)eµ = eµ, and thus taking the product

over α ∈ E ⊂ µΛ \ µ, we get that
∏
α∈E

(LµL
∗
µ − LαL∗α)eµ = eµ 6= 0.

We will show in Corollary 4.5.6 that L has a gauge coaction if (G,P ) has a strong

reduction to an amenable group.

Lemma 2.5.7. Let (G,P ) be a WQLO group, and let Λ be a finitely aligned P -graph.

One may apply Lemma 2.2.2 to the relators (T1)-(T4), so there is a representation

of Λ which is universal.

Proof. Observe that (T1) and (T3) together imply that the generators are partial

isometries. Also, all of the relators are polynomials in the generators (in the case of

(T4), we must note that the expression is finite since the graph is finitely aligned).

Thus there is a universal representation of Λ.

Definition 2.5.8. We call the universal representation of a P -graph Λ the Toeplitz(-

Cuntz-Krieger) representation of Λ. We will use T to denote this representation, and

write T C∗(Λ) or C∗(T ) for the algebra generated by it which we call the Toeplitz(-

Cuntz-Krieger) algebra of the graph.

Lemma 2.5.9. Let (G,P ) be a WQLO group, and let Λ be a finitely aligned P -graph.

1. Let Rep(Λ) denote the set of all representations of Λ up to canonical isomor-

phism. Then Rep(Λ) can be given a partial ordering ≥rep by saying that s ≥rep t
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if and only if s canonically covers t (and t ∼= s if and only if they are canonically

isomorphic).

2. There is a bijection Ψ from Rep(Λ) to ideals in T C∗(Λ) given by t 7→ kerπTt ,

which is order-reversing in the sense that t ≤rep s ⇐⇒ Ψ(t) ⊇ Ψ(s).

Proof. For (1), we must check the partial order properties of reflexivity, transitivity,

and antisymmetry.

Certainly each representation canonically covers itself by the identity map, so ≤rep

is reflexive.

If t ≤rep s and s ≤rep r, then there are canonical coverings πrs : C∗(r) → C∗(s)

and πst : C∗(s) → C∗(t). Then the composition πrt := πst ◦ πrs is a canonical covering

of t by r, so t ≤rep r, giving transitivity.

If t ≤rep s and s ≤rep t, then there are canonical coverings πst : C∗(s)→ C∗(t) and

πts : C∗(t) → C∗(s). Composing these maps in either direction shows that they fix

each generator, and therefore are the identity maps. Therefore πst and πts are inverses

and hence canonical isomorphisms.

Thus ≤rep is indeed a partial order, as desired.

For (3), it is certainly true that Ψ is a well-defined function from Rep(Λ) to

{ideals in T C∗(Λ)}.

We will first check that if s, t ∈ Rep(Λ), then t ≤rep s ⇐⇒ Ψ(t) ⊇ Ψ(s). If

t ≤rep s, then there is a canonical covering πst : C∗(s)→ C∗(t), and since πst ◦πTs = πTt ,

then Ψ(t) = ker πTt ⊇ πTs = Ψ(s). Conversely, if Ψ(t) ⊇ Ψ(s), then by Lemma

2.2.1 applied to πTt and πTs , there is a ∗-homomorphism πst : C∗(s) → C∗(t) with

πst ◦πTs = πTt so πst is a canonical covering and t ≤rep s. This completes the proof that

Ψ is order-reversing.
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Now to show that Ψ is a bijection, if Ψ(s) = Ψ(t), then by the above s ≤rep t and

t ≤rep s, so s ∼= t and hence Ψ is injective. For surjectivity, if J CT C∗(Λ) is an ideal,

represent Λ by λ 7→ Tλ + J . Then this representation has kernel J , so Ψ is surjective,

as desired.

As a consequence of this, representations have the order structure of the family of

ideals of an algebra, and in particular have a lattice order (where meet and join are

represented by intersection and addition of ideals).

Remark 2.5.10. Λ-faithfulness is a “largeness” condition in that if s ≤ t and s is

Λ-faithful, then so is t.

Tightness is a “smallness” condition in that if s ≤ t and t is tight, then so is s.

2.5.1 Gauge coactions and Coactionization

It may not be obvious what role “has a gauge coaction” plays: is it saying a repre-

sentation is “large” or “small”?

The following proposition is a tangled web of results, but it shows that the exis-

tence of a gauge coaction is properly considered a “largeness” condition: any repre-

sentation can be “lifted” (1) to have a gauge coaction (4), the lifted version covers

the original (2) and is the smallest gauge coacting representation to do so (6), and

they are isomorphic if and only if the original had a gauge coaction (5). We also sim-

plify the notion of a gauge coaction by showing that any homomorphism satisfying

tλ 7→ tλ⊗Ud(λ) is automatically a gauge coaction (3), and show that a representation

is Λ-faithful or tight if and only if its coactionization is (7).

Proposition 2.5.11. Let (G,P ) be a WQLO group, and let Λ be a finitely aligned

P -graph. Let t be a representation of Λ.
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1. There is a representation t′ of Λ given by t′λ = tλ ⊗ Ud(λ).

2. There is a canonical covering t′ 7→ t.

3. If there is a ∗-homomorphism δ : C∗(t)→ C∗(t)⊗ C∗(G) satisfying δ(tλ) = t′λ,

then δ is a coaction, and hence a gauge coaction.

4. t′ has a gauge coaction.

5. t is canonically isomorphic to t′ if and only if t has a gauge coaction.

6. If s ≤ t, then s′ ≤ t′, and in particular for any representation s, s′ is the

smallest gauge coacting representation that covers s.

7. t′ is Λ-faithful (respectively, tight) if and only if t is.

Due to these properties, we believe that t′ deserves to be called the coactionization

of t.

Proof. The proof of (1) is a routine confirmation of the T1-T4 relators, which we

include here. We have:

T1: t′vt
′
w = (tv ⊗ Ue)(tw ⊗ Ue) = tvtw ⊗ Ue = δv,wtv ⊗ Ue = δv,wt

′
v

T2: t′µt
′
ν = (tµ ⊗ Ud(µ))(tν ⊗ Ud(ν)) = (tµtν)⊗ Ud(µ)Ud(ν)

= tµν ⊗ Ud(µν) = t′µν

T3: t′µ
∗t′µ = (tµ ⊗ Ud(µ))

∗(tµ ⊗ Ud(µ)) = t∗µtµ ⊗ U∗d(µ)Ud(µ)

= ts(µ) ⊗ Ue = t′s(µ)

T4: t′νt
′
ν
∗t′µt

′∗
µ = (tν ⊗ Ud(ν))(tν ⊗ Ud(ν))

∗(tµ ⊗ Ud(µ))(tµ ⊗ Ud(µ))
∗

= (tνt
∗
νtµt

∗
µ)⊗ Ue =

∑
λ∈MCE(µ,ν)

tλt
∗
λ ⊗ Ue

=
∑

λ∈MCE(µ,ν)

t′λt
′
λ
∗

all as desired.
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For (2), let V denote the trivial representation of G (given by Vg = 1 ∈ C for

all g ∈ G). Then by the universal property of C∗(G), there is a covering map

πUV : C∗(G)→ C given by πUV (Ug) = Vg = 1.

Now by Lemma 2.2.7, there is a map idC∗(t)⊗πUV : C∗(t) ⊗ C∗(G) → C∗(t) ⊗ C

satisfying

(idC∗(t)⊗πUV )(t′λ) = (idC∗(t)⊗πUV )(tλ ⊗ Ud(λ))

= tλ ⊗ 1.

By identifying C∗(t) with C∗(t) ⊗ C in the natural way, this gives the desired

canonical covering.

For (3), we must check that δ is injective, nondegenerate, and satisfies the coaction

identity of Definition 2.3.11. To this end, note that if πt
′
t is the canonical covering

from the previous part, then πt
′
t ◦ δ = idC∗(t), so δ must be injective. To check

nondegeneracy, we must check that

span [δ(C∗(t))(C∗(t)⊗ C∗(G))] = C∗(t)⊗ C∗(G).

To this end, note that for all g ∈ G and µ, ν ∈ Λ,

δ(ts(µ))(tµt
∗
ν ⊗ Ug) = (ts(µ) ⊗ U1)(tµt

∗
ν ⊗ Ug) = tµt

∗
ν ⊗ Ug.

That is, {tµt∗ν ⊗ Ug : µ, ν ∈ Λ, g ∈ G} ⊆ δ(C∗(t))(C∗(t) ⊗ C∗(G)). But since

C∗(t) = span{tµt∗ν : µ, ν ∈ Λ} and C∗(G) = span{Ug}g∈G, then these simple tensors

have dense span C∗(t)⊗ C∗(G). Thus
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C∗(t)⊗ C∗(G) = span{tµt∗ν ⊗ Ug}µ,ν∈Λ,g∈G = span [δ(C∗(t))(C∗(t)⊗ C∗(G))]

as desired.

Finally, it suffices to check the coaction identity on each generator tµ. To this end,

((δ ⊗ idG) ◦ δ)(tµ) = (δ ⊗ idG)(tµ ⊗ Ud(µ))

= tµ ⊗ Ud(µ) ⊗ Ud(µ)

= tµ ⊗ δG(Ud(µ))

= ((idC∗(t)⊗δG)(tµ ⊗ Ud(µ))

= ((idC∗(t)⊗δG) ◦ δ)(tµ)

as desired.

For (4), recall that there is a coaction δG : C∗(G)→ C∗(G)⊗C∗(G) given by Ug 7→

Ug⊗Ug. By Lemma 2.2.7 we may define δ̄ : C∗(t)⊗C∗(G)→ C∗(t)⊗C∗(G)⊗C∗(G)

by δ̄ = idC∗(t)⊗δG. Let δ = δ̄ |C∗(t′). Then for λ ∈ Λ,

δ(t′) = δ(tλ ⊗ Ud(λ)) = tλ ⊗ δG(Ud(λ)) = tλ ⊗ Ud(λ) ⊗ Ud(λ) = t′λ ⊗ Ud(λ).

Thus by (3), δ is a gauge coaction of C∗(t′).

For (5), if t is canonically isomorphic to t′, then there is a homomorphism between

their C∗-algebras given by tλ 7→ t′λ = tλ ⊗ Ud(λ). By (3) this is precisely a gauge
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coaction.

For (6), if s ≤ t, recall that πts denotes the canonical covering. Then by Lemma

2.2.7 there is a ∗-homomorphism πt
′

s′ : C∗(t′) → C∗(s′) given by πt
′

s′ = πts ⊗ idC∗(G),

and it is immediate that this is a canonical covering. For the “in particular”, if s ≤ t

and t has a gauge coaction, then t ∼= t′ by (5), so s′ ≤ t′ ∼= t, and thus s′ ≤ t, as

desired.

For (7), observe that for a fixed λ ∈ Λ,

‖t′λ‖
2

=
∥∥tλ ⊗ Ud(λ)

∥∥2
= ‖t∗λtλ ⊗ 1‖ = ‖t∗λtλ‖ = ‖tλ‖2

so any t′λ is 0 if and only if tλ is 0. Thus t is Λ-faithful if and only if t′ is Λ-faithful.

For tightness, fix a µ ∈ Λ and finite E ⊂ µΛ which is exhaustive for µΛ. Then

∥∥∥∥∥∏
α∈E

t′µt
′
µ
∗ − t′αt′α

∗

∥∥∥∥∥ =

∥∥∥∥∥
(∏
α∈E

tµtµ
∗ − tαtα∗

)
⊗ 1

∥∥∥∥∥
=

∥∥∥∥∥∏
α∈E

tµtµ
∗ − tαtα∗

∥∥∥∥∥
and in particular

∏
α∈E

t′µt
′
µ
∗− t′αt′α

∗
= 0 if and only if

∏
α∈E

tµtµ
∗− tαtα∗ = 0, as desired.

Finally, note that property (3) says that the notion of coaction is dramatically

simplified when considering just gauge coactions. Indeed, the necessary and sufficient

condition to having a gauge coaction is that the map tλ 7→ tλ ⊗ Ud(λ) extends to a

∗-homomorphism on C∗(t).
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2.6 The Classical Gauge-Invariant Uniqueness Theorem

In this section we will introduce the gauge-invariant uniqueness theorem for directed

graphs (what we would call N-graphs), and explain how we hope to generalize it.

The following definitions and theorems are adapted from Chapters 1 and 2 of [18].

Definition 2.6.1. A directed graph is a tuple E = (E0, E1, r, s) where E0 and E1 are

countable sets, and r, s : E1 → E0 are functions. We think of E0 as the set of vertices

in our directed graph, E1 as our set of edges, and r and s as the range and source

maps for E1. We say a directed graph is row-finite if for each v ∈ V , |r−1(v)| <∞.

A Cuntz-Krieger E-family of a row-finite directed graph (E0, E1, r, s) is a collection

of operators {Pv}v∈E0 ∪ {Se}e∈E1 in a C∗-algebra such that {Pv}v∈E0 are a family of

pairwise orthogonal projections, and

(CK1) Ps(e) = S∗eSe for all e ∈ E1 and

(CK2) Pv =
∑
e∈E1

r(e)=v

SeS
∗
e whenever r−1(v) is nonempty.

The reader may wish to compare this definition to the definition of a representation

of a P -graph (Definition 2.5.2). Having done so, there are a few differences that we

will wish to reconcile.

Remark 2.6.2. Given a directed graph (E0, E1, r, s), for n > 1 we let En =

{(e1, e2, ..., en) : s(ei) = r(ei+1) for 1 ≤ i < n}. Then E∗ =
⋃
n≥0E

n forms

an N-graph in a natural way, where the operation is concatenation of tuples, and

d(e1, ..., en) = n. This N-graph is always finitely aligned, since for any N-graph,
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MCE(α, β) =


{α} if β ≤ α

{β} if α ≤ β

∅ otherwise

so |MCE(α, β)| ≤ 1 <∞.

Any Cuntz-Krieger E-family extends to a representation of E∗ by S(e1,e2,...,en) =

Se1Se2 ...Sen. In proving this, the (T1) and (T2) relators are immediate, the (T3)

relator follows rapidly from (CK1), and the (T4) relator follows from the expression

above for MCE(α, β).

One should note that the (CK2) condition is analogous to tightness, since for any

vertex v, r−1(v) is finite and exhaustive for vΛ, and since {SeS∗e}e∈r−1(v) are pairwise

orthogonal projections, then

∏
e∈r−1(v)

(PvP
∗
v − SeS∗e ) = 0 if and only if Pv =

∑
e∈E1

r(e)=v

SeS
∗
e .

In other words, the (CK2) condition is saying that the representation is tight in

the case that µ ∈ Λ0 and E ⊂ Λ1. Since every path in an N-graph can be uniquely

factored into paths of length 1, tightness in all cases is equivalent to this.

Due to this last point, readers should be aware that in the literature represen-

tations of directed graphs (and higher rank graphs) are what we would call tight

representations.

In the notation of [18], C∗(E) denotes the universal tight representation of E, and

if {Tv}v∈E0 ∪ {Qe}e∈E1 is a Cuntz-Krieger E-family, then πT,Q : C∗(E) → C∗(T,Q)

denotes the canonical covering.
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The foundational result we wish to generalize is this, as stated in [18, Theorem

2.2]:

Theorem 2.6.3 (Gauge Invariant Uniqueness Theorem for Graphs). Let E =

(E0, E1, r, s) be a row-finite directed graph, and suppose that {Tv}v∈E0 ∪ {Qe}e∈E1

is a Cuntz-Krieger E-family in a C∗-algebra B with each Qv 6= 0. If there is a contin-

uous action β : T→ AutB such that βz(Te) = zTe for every e ∈ E1 and βz(Qv) = Qv

for every v ∈ E0, then πT,Q is an isomorphism of C∗(E) onto C∗(T,Q).

Remark 2.6.4. The reader may recognize many of the hypotheses of Theorem 2.6.3

from our earlier list of terminology for representations (Definition 2.5.5). The state-

ment Qv 6= 0 for v ∈ E0 implies that Tµ 6= 0 for all µ ∈ E∗, so it is equivalent to our

Λ-faithfulness. The continuous action β is called a gauge action and is equivalent by

Lemma 2.3.20 to a gauge coaction. Also recall that tightness is a built-in hypothesis

in the representations considered in [18].

Therefore, we may restate Theorem 2.6.3 like so: for any N-graph, there is exactly

one Λ-faithful, tight, gauge coacting representation up to canonical isomorphism.

What we mean by a gauge invariant uniqueness theorem for P -graphs is a similar

statement: for any P -graph, there is exactly one Λ-faithful, tight, gauge coacting

representation up to canonical isomorphism.

We have already seen that in generalizing from N-graphs to P graphs, we needed

an additional hypothesis (finite alignment). We will see in Lemma 4.2.2 that such a

gauge invariant uniqueness theorem need not be true in general, so another hypothesis

is needed. We spend Chapter 3 developing this hypothesis on (G,P ), and then in

Chapter 4 prove a gauge invariant uniqueness theorem for P -graphs that satisfy this

new hypothesis.
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Chapter 3

Reductions of Ordered Groups

In this section we will develop the notion of a reduction of an ordered group. Roughly

speaking, a reduction occurs when a positive cone P in a group G does not carry

“enough” information about the group, and one is able to replace (G,P ) with some

(H,Q) while preserving the essential properties that will be required for a P -graph

(namely, the structure of intervals [1, p]). A special case of a reduction (called a

“strong reduction”) is when one can embed the positive cone P in another group H

such that this embedding extends to an order homomorphism from (G,P ) to (H,P ).

3.1 Definition and Basic Properties

Definition 3.1.1. An order homomorphism ϕ : (G,P )→ (H,Q) is a reduction if for

all p ∈ P , ϕ is a bijection between the interval [1, p] := {x ∈ P : 1 ≤ x ≤ p} and the

interval [1, ϕ(p)] := {y ∈ Q : 1 ≤ y ≤ ϕ(p)}.

We say that ϕ is a strong reduction if ϕ |P : P → Q is a bijection between P and

Q.

We say (G,P ) has a (strong) reduction to an amenable group or (strongly) reduces

to an amenable group if there is an amenable group H, a positive cone Q ⊂ H, and

a (strong) reduction ϕ : (G,P )→ (H,Q).
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Intuitively, a reduction is a map that preserves the order structure of (G,P )

“locally”, meaning on every interval. For strong reductions, the reader should think

of them as arising from embedding the positive cone P in two distinct groups (G,P )

and (H,P ) such that there is a homomorphism from one to the other taking P to

itself bijectively.

Example 3.1.2. Let G = 〈a, b〉, the free group on two generators. If P = {a, b}∗, then

define ϕ : (G,P )→ (Z,N) by ϕ(a) = ϕ(b) = 1, which is an order homomorphism.

Then ϕ is a reduction since, for example, it maps the interval [e, abba] =

{e, a, ab, abb, abba} bijectively onto the interval [ϕ(e), ϕ(abba)] = [0, 4] = {0, 1, 2, 3, 4}.

Since Z is amenable, then this shows that (G,P ) reduces to an amenable group.

However, ϕ is not injective even when restricted to P , as ϕ(a) = 1 = ϕ(b), so ϕ

is not a strong reduction.

It may not be immediately obvious from the definition that a strong reduction is

a reduction, so we will prove this as a short lemma:

Lemma 3.1.3. Let ϕ : (G,P )→ (H,Q) be a strong reduction. Then it is a reduction.

Proof. We must show that if ϕ is bijective as a map from P to Q, then it is bijective

from [1, p] to [1, ϕ(p)] for each p ∈ P . Fixing a p ∈ P , since [1, p] ⊂ P , then ϕ is

injective on [1, p], so it suffices to show it is surjective onto [1, ϕ(p)].

To this end, fix some q1 ∈ [1, ϕ(p)]. Since q1 ≤ ϕ(p), there is a q2 ∈ Q such that

q1q2 = ϕ(p). Now since q1, q2 ∈ Q and ϕ is a bijection from P to Q, there is a p1, p2 ∈

P such that ϕ(p1) = q1 and ϕ(p2) = q2. Then ϕ(p) = q1q2 = ϕ(p1)ϕ(p2) = ϕ(p1p2).

Since p1p2 ∈ P and ϕ is injective on P , then p1p2 = p, so p1 ∈ [1, p], and in particular

there is a p1 ∈ [1, p] such that ϕ(p1) = q1. That is, ϕ is a bijection from [1, p] onto

[1, ϕ(p)], as desired.
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We’ll now provide several alternative characterizations of being a reduction and a

strong reduction.

Proposition 3.1.4. Let ϕ : (G,P )→ (H,Q) be an order homomorphism. Then the

following are equivalent:

1. ϕ is a reduction in the sense of Definition 3.1.1.

2. dPQ := ϕ |P : P → Q is a functor that makes P into a Q-graph.

3. For all q ∈ Q, p ∈ P such that q ≤ ϕ(p), there exist unique p1, p2 ∈ P such that

p1p2 = p and ϕ(p1) = q.

4. For each nonempty interval [x, y] ⊂ G, ϕ is an order isomorphism between [x, y]

and [ϕ(x), ϕ(y)].

5. The following two statements together:

a) S ∩ kerϕ = {1} where S =
⋃
p∈P [1, p][1, p]−1.

b) For all p ∈ P , ϕ([1, p]) = [1, ϕ(p)].

Proof. Fix ϕ : (G,P ) → (H,Q) an order homomorphism. We will prove that (2) ⇒

(3)⇒ (1)⇒ (4)⇒ (2) and (1) ⇐⇒ (5).

(2⇒ 3) Fix q ∈ Q, p ∈ P with q ≤ ϕ(p) = dPQ(p). Then since P is a Q-graph, we

can uniquely factorize p as p = p1p2 where q = dPQ(p1) = ϕ(p1), as desired.

(3 ⇒ 1) Fix p ∈ P . By Lemma 2.1.7, ϕ([1, p]) ⊂ [1, ϕ(p)]. It then suffices to

show that if q ∈ [1, ϕ(p)], then there exists a unique s ∈ [1, p] with ϕ(s) = q. To

this end, if q ∈ [1, ϕ(p)], then by (3), there exists p1, p2 ∈ P such that p1p2 = p and

with ϕ(p1) = q. Then p1 ∈ [1, p], so p1 is such an s. If there were some p′1 ∈ [1, p]

with ϕ(p1) = ϕ(p′1), then by the former, there exists p′2 ∈ P with p′1p
′
2 = p, so by the
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uniqueness condition of (2), we have p′1 = p1 and p′2 = p2, and thus our p1 is unique,

as desired.

(1 ⇒ 4) Fix x, y ∈ G, and suppose the interval [x, y] = {z ∈ G : x ≤ z ≤ y}

is nonempty. Since this interval is nonempty, then x ≤ y, so 1 ≤ x−1y, and we will

write p = x−1y ∈ P . By left-invariance, x ≤ z ≤ y if and only if 1 ≤ x−1z ≤ x−1y,

so [x, y] = x[1, x−1y] = x[1, p]. By left-invariance, x[1, p] is order-isomorphic to [1, p],

and ϕ(x)[1, ϕ(p)] is order-isomorphic to [1, ϕ(p)], so it suffices to show that [1, p] is

order-isomorphic to [1, ϕ(p)]. By (1), ϕ is a bijection between [1, p] and [1, ϕ(p)], so

it suffices to show that s ≤ t ⇐⇒ ϕ(s) ≤ ϕ(t) for s, t ∈ [1, p]. The ⇒ direction

is immediate from Lemma 2.1.7. For the other direction, suppose s, t ∈ [1, p] and

ϕ(s) ≤ ϕ(t). Then ϕ(s) ∈ [1, ϕ(t)], and by (3), ϕ maps [1, t] surjectively onto [1, ϕ(t)],

so there exists some s′ ∈ [1, t] such that ϕ(s′) = ϕ(s). But s′ ∈ [1, t] ⊆ [1, p], and ϕ is

injective on [1, p], so s′ = s. Thus s ∈ [1, t], so s ≤ t.

(4 ⇒ 2) Certainly dPQ := ϕ |P is a functor from P to Q. It then suffices to check

unique factorization. To this end, suppose p ∈ P and q1, q2 ∈ Q with dPQ(p) = q1q2.

Then q1 ∈ [1, dPQ(p)] = [1, ϕ(p)], so by (4) there is a unique p1 ∈ [1, p] with q1 =

ϕ(p1) = dPQ(p1). Since p1 ≤ p, then p2 := p−1
1 p ∈ P . Thus p is uniquely factorized as

p = p1p2 with dPQ(p1) = q1.

(1 ⇒ 5a) Suppose that s ∈ S ∩ kerϕ. Then s = qr−1 where q, r ∈ [1, p] for some

p ∈ P . Then ϕ(r) = ϕ(s)ϕ(r) = ϕ(sr) = ϕ(q). By (1), ϕ |[1,p] is injective, so q = r

and thus s = qr−1 = 1, as desired. .

(1 ⇒ 5b) is immediate from the fact that ϕ is a bijection between the intervals

[1, p] and [1, ϕ(p)].

(5⇒ 1) Fix p ∈ P . By Lemma 2.1.7, ϕ([1, p]) ⊆ [1, ϕ(p)]. It then suffices to show

that if q ∈ [1, ϕ(p)], then there exists a unique s ∈ [1, p] with ϕ(s) = q. By (5b),

there exists at least one s ∈ [1, p] with ϕ(s) = q. Assume for the sake of contradiction
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that there were distinct s1, s2 ∈ [1, p] with ϕ(s1) = q = ϕ(s2). Then s1s
−1
2 ∈ kerϕ.

But since s1s
−1
2 ∈ [1, p][1, p]−1 ⊆ S, then by (5a) we have s1s

−1
2 = 1, so s1 = s2, a

contradiction of distinctness. Thus ϕ is bijective as a map from [1, p] to [1, ϕ(p)].

Lemma 3.1.5. Let (G,P ), (H,Q) be ordered groups, and ϕ : G → H a group

homomorphism. The following are equivalent:

1. ϕ is a strong reduction in the sense of Definition 3.1.1.

2. ϕ |P is an order isomorphism from P to Q.

Proof. (2⇒ 1) is immediate.

(1 ⇒ 2) Since ϕ |P is already a bijection, we must show that for p1, p2 ∈ P ,

p1 ≤ p2 ⇐⇒ ϕ(p1) ≤ ϕ(p2). The ⇒ direction is immediate from Lemma 2.1.7. For

the other direction, suppose that ϕ(p1) ≤ ϕ(p2). Then there is a q ∈ Q such that

ϕ(p1)q = ϕ(p2). Since ϕ is a surjection from P to Q, there exists a p ∈ P such that

ϕ(p) = q, and hence ϕ(p1p) = ϕ(p2). Since ϕ is injective on P , then p1p = p2, and

thus p1 ≤ p2, as desired.

While the theory of reductions of ordered groups can be entirely severed from the

amenability of the groups involved, it is perhaps unsurprising that a reduction to an

amenable group will allow us to do more interesting analysis of the C∗-algebras of

P -graphs that will appear in later sections.

The following example shows that the existence of a reduction to an amenable

group (or even a non-injective reduction!) depends on not just the group G, but also

the positive cone P .
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Example 3.1.6. Let G = 〈a, b〉, the free group on two generators. If P = {a, b}∗,

then we’ve seen that (G,P ) is an ordered group which reduces to an amenable group

via the map ϕ : (G,P )→ (Z,N) given by ϕ(a) = ϕ(b) = 1.

Suppose that (G,R) is a total ordering on a group (meaning that R∪R−1 = G in

addition to R∩R−1 = {1}). Then for any reduction ϕ, by Proposition 3.1.4(5), since

S =
⋃
r∈R[1, r][1, r]−1 = G, then kerϕ = kerϕ ∩G = {1}. That is, every reduction ϕ

is injective.

In particular, taking G = F2 and R a total ordering on G (such as the ordering

arising from the Magnus expansion given in [4, Section 3.2]), (F2, R) cannot reduce

to an amenable group since the range group of a reduction will always contain a copy

of F2.

Example 3.1.7. For any group (G,P ), idG is a reduction, so if G is amenable, idG

is a reduction to an amenable group.

Example 3.1.8. Let G = 〈a, b〉, the free group on two generators and P = {a, b}∗.

One can give a strong reduction of (G,P ) onto the amenable group H = BS(1, 2) =

〈c, t|tc = c2t〉. Let Q = {t, ct}∗, which is a positive cone in BS(1, 2), and let ϕ :

(G,P ) → (H,Q) by ϕ(a) = ct, ϕ(b) = t. Certainly ϕ is an order homomorphism.

Then one may verify that ϕ is bijective from P to Q in this way: if ϕ(p1) = ϕ(p2),

then write this word in H as citj. It must be that j is the length of p1 and the length

of p2, so p1 and p2 have equal length. Then, i will be the number that comes from

substituting 1 for a and 0 for b in the original word and interpreting the result as a

binary number. Two binary numbers with the same number of digits are equal if and

only if their digits are equal, so it must be that p1 = p2. Thus ϕ is injective on P ,

and hence bijective on P , meaning ϕ is a strong reduction.

The following result shows that reductions preserve weakly quasi-lattice order.
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Lemma 3.1.9. Let ϕ : (G,P )→ (H,Q) be a reduction. Then:

1. If (H,Q) is WQLO, then so is (G,P ).

2. If ϕ(P ) = Q and (G,P ) is WQLO, then so is (H,Q).

Proof. For (1), assume for the sake of contradiction that (H,Q) is WQLO but (G,P )

is not. Then there are x, y ∈ P with a common upper bound but no least common

upper bound. That is, there are upper bounds b1 > b2 > b3 > ... such that x, y ≤ bi

for all i ∈ N.

For all i ∈ N, since 1 ≤ x ≤ bi, then 1 ≤ bi. In particular, bi ∈ [1, b1] for all i ∈ N.

Also note that x, y ∈ [1, b1].

Now, since ϕ is a reduction, ϕ is an order isomorphism from [1, b1] to [1, ϕ(b1)], so

in Q, ϕ(b1) > ϕ(b2) > ... is a strictly decreasing sequence of common upper bounds

of ϕ(x) and ϕ(y). This contradicts the fact that (H,Q) is WQLO.

For (2), assume for the sake of contradiction that ϕ(P ) = Q and (G,P ) is WQLO

but that (H,Q) is not WQLO. Then there are z, w ∈ Q with a common upper bound

but no least common upper bound. That is, there are upper bounds c1 > c2 > c3 > ...

such that z, w ≤ ci for all i ∈ N.

For all i ∈ N, since 1 ≤ z ≤ ci, then 1 ≤ ci. In particular, ci ∈ [1, c1] for all i ∈ N.

Also note that z, w ∈ [1, c1].

Now, since ϕ(P ) = Q, there is some p ∈ P such that ϕ(p) = c1. Since ϕ is a

reduction, ϕ is an order isomorphism from [1, p] to [1, ϕ(p)] = [1, c1]. Let x, y, and

bi denote the unique elements in [1, p] such that ϕ(x) = z, ϕ(y) = w, and ϕ(bi) = ci

for all i ∈ N. Then in P , b1 > b2 > b3... is a strictly decreasing sequence of common

upper bounds of x and y. This contradicts the fact that (G,P ) is WQLO.
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Remark 3.1.10. There is a notion of amenability for semigroups, and (G,P ) may

strongly reduce to an amenable group even if neither G nor P is amenable as a group

or semigroup (respectively). For example, in (F2, P2), the free group on 2 generators

with positive cone P2 which is the free monoid on 2 generators, we will show that

(F2, P2) strongly reduces to (Z o Z,N o N), which is amenable, but F2 is famously not

amenable, and P2 is also not amenable as a semigroup.

The fact that P2 is not amenable but can be embedded in an amenable group has

been known for more than half a century. In [11], the author shows an embedding of

P2 into Z o Z2.

3.2 Constructions

In this section, we will show that the notion of “(strongly) reduces to an (amenable)

group” behaves well with the usual group theory constructions such as composition,

hereditary subgroups, direct products, and free products.

3.2.1 Composition

Lemma 3.2.1. A composition of (strong) reductions is a (strong) reduction. That

is, if ϕ : (G,P )→ (H,Q) and ψ : (H,Q)→ (F,R) are two (strong) reductions, then

ψ ◦ ϕ is a (strong) reduction.

Proof. Suppose ϕ : (G,P ) → (H,Q) and ψ : (H,Q) → (F,R) are two reductions.

Then we will show that ψ ◦ ϕ is a reduction.

Certainly, ψ ◦ϕ is an order homomorphism, so by Lemma 3.1.4 (3), we must show

that for all p ∈ P , ψ ◦ ϕ bijectively maps [1, p] onto [1, ψ(ϕ(p))].

To this end, we know that ϕ : [1, p] → [1, ϕ(p)] is bijective, and ψ : [1, ϕ(p)] →

[1, ψ(ϕ(p))] are bijections since ϕ and ψ are reductions, so therefore their composition
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is a bijection, as desired.

For the composition of strong reductions, if ϕ : (G,P )→ (H,Q) and ψ : (H,Q)→

(F,R) are two strong reductions, then ϕ maps P bijectively onto Q and ψ maps Q

bijectively onto R, so ψ ◦ ϕ maps P bijectively onto R, as desired.

3.2.2 Hereditary Subgroups

In the context of ordered groups, the “correct” notion of a subgroup is often a hered-

itary subgroups in the sense of [3, Corollary 5.6]. In this section we will remind the

reader of the definition and some basic results about the concept.

Definition 3.2.2. Given an ordered group (G,P ), if Q ⊆ P is a subsemigroup, we

say that Q is hereditary in P if p1, p2 ∈ P , p1p2 ∈ Q implies that p1, p2 ∈ Q.

If (G,P ) is an ordered group, we will say that (H,Q) is a hereditary subgroup if

H is a subgroup of G, Q is a subsemigroup of P ∩H, and Q is hereditary in P .

Lemma 3.2.3. Let (H,P ) be an ordered group, and Q ⊆ P a hereditary subsemi-

group. For the sake of clarity, let ≤P and ≤Q denote the orderings on G arising from

P and Q, respectively. Then for all q ∈ Q and p ∈ P , 1 ≤P p ≤P q if and only if

1 ≤Q p ≤Q q.

In particular, for q ∈ Q, the intervals [1, q]≤P and [1, q]≤Q are equal as sets.

Proof. Fix some q ∈ Q, p ∈ P .

Suppose 1 ≤P p ≤P q. Then p ∈ P and there exists an s ∈ P such that ps = q.

Since q ∈ Q and Q is hereditary, then this implies that p, s ∈ Q, so 1 ≤Q p ≤Q q, as

desired.

Suppose 1 ≤Q p ≤Q q. Then p ∈ Q and there exists an s ∈ Q such that ps = q.

Since Q ⊆ P , then 1 ≤P p ≤P q, as desired.
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The “in particular” part is immediate.

Lemma 3.2.4. Let (G,P ), (H,Q) be ordered groups, and ϕ : G → H a homomor-

phism. Let H ′ = ϕ(G), Q′ = ϕ(P ), and let ϕ′ denote the codomain restriction of ϕ

to the codomain H ′. Then the following are equivalent:

1. ϕ is a reduction.

2. (H ′, Q′) is a hereditary subgroup of (H,Q) and ϕ′ is a surjective reduction of

(G,P ) onto (H ′, Q′).

Proof. (1⇒ 2) If ϕ is a reduction, we will first show that Q′ = ϕ(P ) is a hereditary

subsemigroup of Q. If q = ϕ(p) ∈ ϕ(P ), and rr′ = q for some r, r′ ∈ Q, then

r ∈ [1, ϕ(p)], so by Proposition 3.1.4(3), there exists a unique s ∈ [1, p] such that

ϕ(s) = r. Then ϕ(s)r′ = ϕ(p), so r′ = ϕ(s−1p). Since s ≤ p, then there exists

s′ ∈ P such that ss′ = p, so r′ = ϕ(s′). Thus r, r′ ∈ ϕ(P ), so ϕ(P ) is a hereditary

subsemigroup of Q.

Since additionally H ′ < H and Q′ < Q ∩ ϕ(G), then (H ′, Q′) is a hereditary

subgroup of (H,Q).

To show that ϕ′ is a surjective reduction, it is immediately surjective since its

codomain was restricted to the image. Now fix a p ∈ P . Since ϕ is a reduction, then

by Proposition 3.1.4 (3), ϕ maps [1, p] bijectively onto [1, ϕ(p)]. By Lemma 3.2.3, we

have [1, ϕ(p)] = [1, ϕ′(p)] as sets, so ϕ′ maps [1, p] bijectively onto [1, ϕ′(p)]. Then by

Proposition 3.1.4 (3), ϕ′ is a reduction.

(2⇒ 1) Fix a p ∈ P . Since ϕ′ is a reduction, then by Proposition 3.1.4 (3), ϕ′ maps

[1, p] bijectively onto [1, ϕ′(p)]. By Lemma 3.2.3, we have [1, ϕ′(p)]≤Q′ = [1, ϕ(p)]≤Q
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as sets, so ϕ maps [1, p] bijectively onto [1, ϕ(p)]. Then by Proposition 3.1.4 (3), ϕ is

a reduction.

Lemma 3.2.5. Let (G,P ) be an ordered group and (H,Q) a hereditary subgroup of

(G,P ). Then the inclusion map i : (H,Q)→ (G,P ) is a reduction.

Proof. Observe that the inclusion map, restricted to its image, is the identity map,

and thus a surjective reduction. Then the inclusion map is a reduction by Lemma

3.2.4.

We can now conclude that “reduces to an amenable group” is closed under taking

hereditary subgroups.

Corollary 3.2.6. Let (G,P ) be an ordered group and (H,Q) a hereditary subgroup of

(G,P ). If (G,P ) reduces to an amenable group, then (H,Q) reduces to an amenable

group.

Proof. Let i : H → G denote the inclusion map, which by the previous lemma is a

reduction.

If ϕ : (G,P )→ (F,R) is a reduction to an amenable group, then ϕ ◦ i : (H,Q)→

(F,R) is a composition of reductions, and hence a reduction by Lemma 3.2.1. It has

amenable range, so it is a reduction to an amenable group.

3.2.3 Direct Products

Now, we’ll show that reductions respect direct products, which implies that “reduces

to an amenable group” is preserved under direct products.

First, let us check that direct products preserve WQLO:
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Lemma 3.2.7. Let (G,P ) and (H,Q) be ordered groups. Let P × Q denote the

submonoid of G × H generated by (the canonical copies of) P and Q. Then (G ×

H,P × Q) is an ordered group, and if (G,P ) and (H,Q) are WQLO, then so is

(G×H,P ×Q).

Proof. By definition, P × Q is a submonoid of G × H, and it is immediate that

P ×Q ∩ (P ×Q)−1 = (P ∩ P−1)× (Q ∩Q−1) = {1G} × {1H}, so (G×H,P ×Q) is

an ordered group.

If (G,P ) and (H,Q) are WQLO, then one may quickly confirm that given

(p1, q1), (p2, q2) ∈ P ×Q, their least upper bound is (p1 ∨ p2, q1 ∨ q2).

Lemma 3.2.8. For i = 1, 2, let (Gi, Pi) and (Hi, Qi) be ordered groups, ϕi : Gi → Hi

a homomorphism. Let G = G1 × G2, and similarly define P,H,Q. Then there is a

homomorphism ϕ : G → H given by ϕ(g1, g2) = (ϕ1(g1), ϕ2(g2)), and ϕ is an order

homomorphism (respectively, reduction or strong reduction) if ϕ1 and ϕ2 both are.

Proof. The existence of such a homomorphism is an elementary fact of group theory.

If ϕ1, ϕ2 are both order homomorphisms, then ϕ1(P1) ⊆ Q1 and ϕ2(P2) ⊆ Q2, so

ϕ(P1 × P2) ⊆ ϕ1(P1)× ϕ2(P2) ⊆ Q1 ×Q2, as desired.

If ϕ1, ϕ2 are both reductions, then we will use Proposition 3.1.4 (3) as our notion

of a reduction, so it suffices to show that for all p1 ∈ P1, p2 ∈ P2, [(1, 1), (p1, p2)] is

mapped bijectively onto [(1, 1), (ϕ1(p1), ϕ2(p2)]. But in (G1 × G2, P1 × P2), we have

that [(1, 1), (x1, x2)] = [1, x1]× [1, x2], so we know that ϕ = ϕ1×ϕ2 bijectively carries

[(1, 1), (p1, p2)] = [1, p1]× [1, p2] onto [(1, 1), (ϕ1(p1), ϕ2(p2))] = [1, ϕ1(p1)]× [1, ϕ2(p2)],

as desired.

If ϕ1, ϕ2 are both strong reductions, then ϕ1 and ϕ2 map P1 and P2 bijectively onto

Q1 and Q2 respectively, so for all q = (q1, q2) ∈ Q there is a unique p1 ∈ P1, p2 ∈ P2
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such that ϕ1(p1) = q1, ϕ2(p2) = q2, and hence p = (p1, p2) is the unique element of P

with ϕ(p) = q, so ϕ is a bijection from P to Q, as desired.

Corollary 3.2.9. If (G1, P1), (G2, P2) are ordered groups which reduce to amenable

ordered groups, then (G1 ×G2, P1 × P2) reduces to an amenable group.

Proof. For i = 1, 2, let ϕi : (Gi, Pi)→ (Hi, Qi) denote the reduction of (Gi, Pi) to an

amenable ordered group.

By the previous Lemma, we know that (G1×G2, P1×P2) reduces to (H1×H2, Q1×

Q2). Since H1 and H2 are amenable, then H1×H2 is amenable, so this is a reduction

to an amenable group.

3.2.4 Free Products

In this section we will show that the class of groups which have reductions to amenable

groups is closed under (finite) free products. That is, we will show that if (G,P ) and

(H,Q) reduce to amenable groups, then (G ∗H,P ∗Q) also reduces to an amenable

group.

This will consist of two steps, analogous to Lemma 3.2.8 and Corollary 3.2.9 from

the direct product case. A free product analogue of Lemma 3.2.8 is straightforward.

However, in the free product case, an analogue of Corollary 3.2.9 is more difficult,

since the free product of two amenable groups is almost never amenable. Therefore,

our second step is longer.

Given ordered groups (G1, P1) and (G2, P2), we denote by P1 ∗ P2 the submonoid

of G1 ∗ G2 generated by the naturally embedded copies of P1 and P2. First, we will

prove a lemma characterizing the order on (G1 ∗G2, P1 ∗ P2):
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Lemma 3.2.10. Let (G1, P1), (G2, P2) be ordered groups, and let (G,P ) = (G1 ∗

G2, P1 ∗ P2).

1. For p ∈ P , we may write p = p1p2...p2n where pi ∈ P1 if i is odd, and pi ∈ P2 if

i even, and pi 6= 1 for 1 < i < 2n.

2. This representation of p is unique. That is, there is exactly one such choice of

n and elements pi such that pi ∈ P1 if i is odd, and pi ∈ P2 if i even, and pi 6= 1

for 1 < i < 2n.

3. Given such a representation p = p1p2...p2n, we have [1, p] =
⋃2n
i=1Xi, where

Xi = p1...pi−1[1, pi].

4. Given such a decomposition [1, p] =
⋃2n
i=1Xi, if a ∈ Xi and b ∈ Xj for i < j,

then a ≤ b.

Proof. For (1), by definition every element of P can be written as a product of

elements of P1 and P2. If two consecutive elements are from the same Pi, they can

be combined, and if any intermediate term is a 1, it can be removed and the now-

consecutive terms combined. Finally, if necessary a term of 1 can be put at the

beginning or end of the expression to make the alternating product begin with a term

from P1 and end with a term from P2.

For (2), this representation is unique because of the Normal Form Theorem for

Free Products ([16, Chapter IV, Theorem 1.2]).

For (3), fix a p = p1p2...p2n. It is immediate that each Xi is a subset of [1, p], so

it suffices to show containment in the other direction. To this end, suppose q ∈ [1, p],

so q ∈ P and p = qr for some r ∈ P . Then writing q = q1...q2m and r = r1...r2k, we

have that p = p1p2...p2n = q1...q2mr1...r2k. We now have a few cases depending on

whether or not q2m and r1 are the identity.
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• q2m = 1, r1 = 1: Then p = p1p2...p2n = q1...q2m−1r2...r2k is the unique alternat-

ing presentation with nonidentity terms, so p1 = q1, p2 = q2, etc. In particular,

q = q1...q2m−1 = p1...p2m−1 ∈ X2m = p1...p2m−1[1, p2m].

• q2m 6= 1, r1 6= 1: Then p = p1p2...p2n = q1...q2mr1...r2k is the unique alternating

presentation with nonidentity terms, so p1 = q1, p2 = q2, etc. In particular,

q = q1...q2m = p1...p2m ∈ X2m = p1...p2m−1[1, p2m].

• q2m 6= 1, r1 = 1: Then p = p1p2...p2n = q1...(q2mr2)r3...r2k is the unique alter-

nating presentation with nonidentity terms, so p1 = q1, p2 = q2, etc, ending with

p2m = q2mr2. Thus q2m ∈ [1, p2m], so q = q1...q2m = p1p2...p2m−1q2m ∈ X2m =

p1...p2m−1[1, p2m].

• q2m = 1, r1 6= 1: Then p = p1p2...p2n = q1...q2m−2(q2m−1r1)r2...r2k is the

unique alternating presentation with nonidentity terms, so p1 = q1, p2 = q2,

etc, ending with p2m−1 = q2m−1r1. Thus q2m−1 ∈ [1, p2m−1], so q = q1...q2m−1 =

p1p2...p2m−2q2m−1 ∈ X2m−1 = p1...p2m−2[1, p2m−1].

In all four cases, q is in some Xi, so [1, p] =
⋃2n
i=1Xi, as desired.

For (4), note that for each y ∈ Xi, we have p1p2...pi−1 ≤ y ≤ p1p2...pi, so a ≤

p1p2...pi ≤ p1p2...pj−1 ≤ b, as desired.

We can now confirm that weak quasi-lattice order is preserved under free products.

Lemma 3.2.11. If (G1, P1) and (G2, P2) are ordered groups (respectively, WQLO

groups) then so is (G1 ∗G2, P1 ∗ P2).

Proof. If (G1, P1) and (G2, P2) are ordered groups, then by definition P1 ∗ P2 is a

submonoid of G ∗ H. We must now check that (P1 ∗ P2) ∩ (P1 ∗ P2)−1 = {1}, or

equivalently that if a, b ∈ P1 ∗ P2 with ab = 1, then a = b = 1. But if ab = 1,
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then by writing a = p1p2...p2n and b = q1q2...q2m as in the previous theorem, then

1 = ab = p1p2...p2nq1q2...q2m. By the Normal Form Theorem for Free Products ([16,

Chapter IV, Theorem 1.2], a reduced sequence in a free product can equal 1 if and

only if its length is 1, so all the pis and qis in the products must cancel with each

other. But since each term of the product is positive, they can only cancel if each

term is equal to 1. Thus a = b = 1, as desired, so (G1 ∗ G2, P1 ∗ P2) is an ordered

group.

If (G1, P1) and (G2, P2) are WQLO, we will check that (G1 ∗ G2, P1 ∗ P2) is

WQLO. To this end, fix some y1, y2 ∈ P1 ∗ P2 and suppose y1, y2 have some com-

mon upper bound y3 ∈ P1 ∗ P2. By part (1) of the previous lemma, we can write

y3 = p1p2p3...p2n−1p2n, where each pi ∈ P1 for i odd and pi ∈ P2 for i even. By part

(3) of that lemma, [1, y3] =
⋃2n
i=1Xi where Xi = p1...pi−1[1, pi]. Since y1, y2 ∈ [1, y3],

then y1 ∈ Xi, y2 ∈ Xj for some i, j ≤ 2n. Without loss of generality, suppose i ≤ j.

If i < j, then by part (4) of the previous Lemma, we have y1 ≤ y2, so y1∨ y2 = y2.

If i = j, then y1, y2 ∈ Xi = p1...pi−1[1, pi], so there are r1, r2 such that y1 =

p1...pi−1r1 and y2 = p1...pi−1r2 where r1, r2 ∈ P1 if i is odd, and r1, r2 ∈ P2 if i is even.

In either case, p1...pi−1(r1 ∨ r2) will be the supremum of y1 and y2.

We will now show that if two groups have a reduction, their free product reduces

to the free product of the reductions.

Lemma 3.2.12. For i = 1, 2, let ϕi : (Gi, Pi)→ (Hi, Qi) be a reduction. Then let

G = G1 ∗G2, P = P1 ∗ P2, H = H1 ∗H2, and Q = Q1 ∗Q2,

and let ϕ : G → H be the homomorphism satisfying ϕ |Gi= ϕi for i = 1, 2. Then
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ϕ : (G,P )→ (H,Q) is a reduction.

Proof. Certainly, ϕ is a homomorphism. By Proposition 3.1.4 (3), it suffices to show

that for all p ∈ P , the interval [1, p] is mapped bijectively onto [1, ϕ(p)].

Fix some p ∈ P , and then by Lemma 3.2.10, we may write p = p1p2...p2n where pi is

in P1 if i is odd, and in P2 if i is even. Then [1, p] =
⋃2n
i=1 Xi, whereXi = p1...pi−1[1, pi].

Now, for 1 ≤ i ≤ 2n, let qi = ϕ1(pi) if i is odd, and qi = ϕ2(pi) if i is even. Thus

ϕ(p) = q1...q2n. Note that for 1 < i < 2n, qi 6= 1 since pi 6= 1 and by Proposition

3.1.4 (4), both ϕ1 and ϕ2 send strictly positive elements to strictly positive elements.

Thus ϕ(p) = q1...q2n is the unique way to write ϕ(p) ∈ Q as an alternating

product of non-unit elements, so by Lemma 3.2.10, [1, ϕ(p)] =
⋃2n
i=1 Yi where Yi =

q1...qi−1[1, qi]. But since ϕ1 and ϕ2 are reductions, we know that each Xi is carried

bijectively to its Yi, so it suffices to explain why bijectivity is preserved when taking

the union of the Xi and Yis. It is immediate that the map from
⋃
Xi to

⋃
Yi is

surjective.

For injectivity, first note that for 1 ≤ i ≤ j ≤ n,

Yi ∩ Yj =


∅ j > i+ 1

{q1...qi} j = i+ 1

Yi i = j

and similarly,

Xi ∩Xj =


∅ j > i+ 1

{p1...pi} j = i+ 1

Xi i = j
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Then, if ϕ(s1) ∈ Yi and ϕ(s2) ∈ Yj for s1, s2 ∈ [1, p] such that ϕ(s1) = ϕ(s2),

either i = j so s1, s2 ∈ Xi and thus by injectivity on Xi we have s1 = s2, or j = i+ 1,

so ϕ(s1) = ϕ(s2) = q1...qi, so s1 = s2 = p1...pi. In either case, s1 = s2, so we have

injectivity of ϕ. Thus ϕ is bijective on [1, p] as desired, so it is a reduction.

This completes the first step, showing that if two groups have reductions to

amenable groups, their free product reduces to a free product of amenable groups.

Now comes the harder step: showing that a free product of amenable groups reduces

to an amenable group!

The key is a construction from group theory called a wreath product. Recall the

following definition of a wreath product:

Definition 3.2.13. Let G and H be groups. Let

GH = {f : H → G a function| supp(f) is finite}

where supp(f) = {h ∈ H : f(h) 6= 1}, and give GH a group structure by pointwise

multiplication. Note that GH is isomorphic to a direct sum of |H| copies of G, hence

the notation.

Give GH an action α : H → Aut(GH) by translation: [αh(f)] (h′) = f(h−1h′).

Then we define the (restricted) wreath product to be the semidirect product GoH :=

GH oα H, so there is a (split) short exact sequence:

1→ GH → G oH → H → 1.

The following remark establishes the basic properties of wreath products, and are

all routine to verify.
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Remark 3.2.14. For each g ∈ G and h ∈ H, let gδh denote the function in GH

given by gδh(h
′) =


g h = h′

1 h 6= h′
. Then there is a natural embedding of G into G oH

by g 7→ (gδ1H , 1H) and there is a natural embedding of H into G oH by h 7→ (1GH , h).

In a slight abuse of notation, we will write g or gδ1 for the embedded element of G in

G oH, and write h for the embedded element of H in G oH.

Now note that

[αh2(gδh1)] (h3) = gδh1(h−1
2 h3)

=


g h1 = h−1

2 h3

1 h1 6= h−1
2 h3

=


g h2h1 = h3

1 h2h1 6= h3

= gδh2h1(h3)

so unbinding the h3, we have that αh2(gδh1) = gδh2h1. Now,

h2(gδh1)h−1
2 = (1G, h2)(gδh1 , 1H)(1G, h

−1
2 )

= (1G, h2)(gδh1 , h
−1
2 )

= (1G, h2)(gδh1 , h
−1
2 )

= (αh2(gδh1), 1H)

= gδh2h1
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Since GH is generated by the gδh, then together (the embedded copies of) G and

H generate G oH.

Given P,Q positive cones in G,H, we let P o Q denote the monoid generated by

the naturally embedded copies of P and Q within G oH.

With these natural embeddings of G and H into G oH, by the universal property of

free products of groups, we get a homomorphism ϕ : G ∗H → G oH given by sending

(the naturally embedded copies of) G and H to (the naturally embedded copies of)

G and H. We will call this the natural homomorphism of G ∗ H into G o H. Since

G o H is generated by G and H, it is immediate that the natural homomorphism is

surjective. For the same reason, P ∗ Q will be mapped surjectively onto P o Q. We

will show later that ϕ : (G ∗H,P ∗Q)→ (G oH,P oQ) is a strong reduction.

Finally, note that every element of GH can be written as a (possibly empty) product

of a finite number of giδhi where each gi is nonunital and each hi is distinct, and this

presentation is unique up to a permutation of the giδhi. Note that the element giδhi

commutes with the element gjδhj as long as hi 6= hj. When f ∈ GH is written as

f = g1δh1 ...gnδhn where the hi are distinct, then

f(h) =



g1 if h = h1

g2 if h = h2

...

gn if h = hn

1 otherwise

.

Finally, we will remind the reader of this fact about amenability of wreath prod-

ucts:

Lemma 3.2.15. Let G and H be amenable groups. Then G oH is amenable.
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Proof. Recall that the class of amenable groups are closed under finite direct sums,

direct limits, and extensions.

From our definition of the wreath product, there is a short exact sequence

1→ GH → G oH → H → 1.

Recall also that GH is isomorphic to the direct sum of |H| copies of G. Thus GH

is a direct limit of {Gn}n∈N. Since amenable groups are closed under finite direct

sum and G is amenable by hypothesis, then each Gn is amenable, and since amenable

groups are closed under direct limit, then GH is amenable.

Also, H is amenable by hypothesis, so G oH is an extension of an amenable group

by an amenable group. Thus G oH is amenable.

Now, we will have two results that establish why ϕ : (G1 ∗ G2, P1 ∗ P2) → (G1 o

G2, P1 o P2) is a reduction.

Lemma 3.2.16. Let (G1, P1) and (G2, P2) be ordered groups, and let p = p1p2...p2n ∈

P1 o P2 be an element such that pi ∈ P1 for i odd and pi ∈ P2 for i even and pi 6= 1

for 1 < i < n. Then, as an element of P1 o P2 ⊂ GG2
1 o G2, p = (f, p≤2n) where

p≤2n = p2p4...p2n and
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f(h) =



p1 if h = 1G2

p3 if h = p2

p5 if h = p2p4

...

p2n−1 if h = p2...p2n−2

1 otherwise

Proof. By elementary algebra, we may rewrite the product p = p1p2p3...p2n as:

p = p1p2p3...p2n = p1(p2p3p
−1
2 )...(p2p4...p2n−2p2n−1p

−1
2n−2...p

−1
4 p−1

2 )(p2p4...p2n)

With the shorthand that p≤0 = 1H and p≤2i = p2p4...p2i for 1 ≤ i ≤ n, we then

have that

p =
[
(p≤0p1p

−1
≤0)(p≤2p3p

−1
≤2)(p≤4p5p

−1
≤4)...(p≤2n−2p2n−1p

−1
≤2n−2)

]
p≤2n.

Let f = (p≤0p1p
−1
≤0)(p≤2p3p

−1
≤2)(p≤4p5p

−1
≤4)...(p≤2n−2p2n−1p

−1
≤2n−2) be the bracketed

term, so then p is represented in GG2
1 oG2 by (f, p≤2n). It then suffices to show that

f assumes the values as claimed.

Recall that for i odd, pi is embedded as piδ1H , and for i even, pi is embedded

as an element of G2. By the calculation in the above remark, we then have that

p≤2ip2i+1p
−1
≤2i = p≤2i(p2i+1δ1H )p−1

≤2i = p2i+1δp≤2i
, so f = (p1δp≤0

)(p3δp≤2
)...(p2n−1δp≤2n−2

).

Note that p≤2i+2 = p≤2ip2i+2, and since p2i+2 > 1 for 0 ≤ i < n − 1, we have

that p≤2i < p≤2i+2 for 0 ≤ i < n − 1, and in particular the p≤2i are distinct (except
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possibly that p≤2n−2 = p≤2n).

Since the {p≤0, ..., p≤2n−2} are distinct, then by the above remark, we know that

f = (p1δp≤0
)(p3δp≤2

)...(p2n−1δp≤2n−2
)

is the unique representation of f as a product of giδhi (except possibly that the p1δp≤0

term is equal to 1), so

f(h) =



p1 if h = p≤0

p3 if h = p≤2

...

p2n−1 if h = p≤2n−2

1 otherwise

as desired.

Proposition 3.2.17. Let (G1, P1), (G2, P2) be two ordered groups. Let ϕ denote

the natural homomorphism from G1 ∗ G2 onto G1 o G2. If p, q ∈ P := P1 ∗ P2 and

ϕ(p) = ϕ(q), then p = q.

In particular, ϕ is a strong reduction of G1 ∗G2 onto G1 oG2.

Proof. Since p, q ∈ P , then by Lemma 3.2.10 we may write p = p1p2...p2n where pi is

in P1 if i is odd, and in P2 if i is even, and all pi 6= 1 for 1 < i < n. Similarly, we may

write q = q1q2...q2m where qi is in P1 if i is odd, and in P2 if i is even, and all pi 6= 1

for 1 < i < m.

Now, by the previous Lemma, we may write ϕ(p) = (fp, p≤2n) and ϕ(q) =

(fq, q≤2m) where p≤2i = p2p4...p2i, q≤2i = q2q4...q2i,
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fp(h) =



p1 if h = 1G2

p3 if h = p2

p5 if h = p2p4

...

p2n−1 if h = p2...p2n−2

1 otherwise

and fq(h) =



q1 if h = 1G2

q3 if h = q2

q5 if h = q2q4

...

q2m−1 if h = q2...q2m−2

1 otherwise

Since ϕ(p) = ϕ(q), then fp = fq, so p1 = q1. Furthermore, {p2, p2p4, ..., p2...p2n−2} =

supp(fp) \ {1} = supp(fq) \ {1} = {q2, q2q4, ..., q2...q2m−2}, and these sets are strictly

increasing sequences, so it must be that n = m and p2 = q2, p2p4 = q2q4, and

so on. By cancelling common terms, we get that p2i = q2i for 1 ≤ i < n. Re-

turning to our expressions for fp and fq, we can now compare their values at p2 =

q2, p2p4 = q2q4, etc to get that p3 = q3, p5 = q5, and so on. Finally, recall that

(fp, p≤2n) = ϕ(p) = ϕ(q) = (fq, q≤2n) so p≤2n = q≤2n and by cancelling the common

factor of p2...p2n−2 = q2...q2n−2, we have that p2n = q2n.

Thus for all 1 ≤ i ≤ 2n, we have that pi = qi, so p = q, as desired.

For the “in particular”, by Corollary 3.1.5 it suffices to show that ϕ is a bijection

of P1 ∗ P2 onto P1 o P2. It is immediate that ϕ is surjective, and by the previous part

of the proposition it must be injective. Thus ϕ is a bijection of P1 ∗ P2 onto P1 o P2,

so ϕ is a strong reduction as desired.

We have done the hard work already, so we may now reap our rewards:
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Proposition 3.2.18. Let (G,P ), (H,Q) be ordered groups, and suppose that G and

H are amenable. Then the natural homomorphism ϕ : (G∗H,P ∗Q)→ (G oH,P oQ)

is a strong reduction to an amenable group.

Proof. By Propositon 3.2.17, ϕ is a strong reduction. By Lemma 3.2.15, G o H is

amenable, so ϕ is a strong reduction to an amenable group.

And combining this with a previous result gives:

Corollary 3.2.19. The class of ordered groups which reduce to an amenable group

is closed under finite free products.

Proof. It suffices to check two-term free products. Suppose that (G1, P1) and (G2, P2)

are ordered groups with reductions ϕ1, ϕ2 to amenable groups (H1, Q1) and (H2, Q2)

respectively. Let G = G1 ∗G2, P = P1 ∗ P2, H = H1 ∗H2, and Q = Q1 ∗Q2.

Now by Lemma 3.2.12 there is a reduction ϕ of (G,P ) onto (H,Q). By Proposition

3.2.18, since (H,Q) is the free product of two amenable groups, then there is a strong

reduction ϕ′ : (H1 ∗H2, Q1 ∗Q2)→ (H1 oH2, Q1 oQ2) where H1 oH2 is amenable. Then

ϕ′ϕ : (G,P ) → (F,R) is a composition of reductions, hence a reduction by Lemma

3.2.1, and since its range is amenable, (G,P ) reduces to an amenable group.

3.3 Summary

To summarize our results on reductions to amenable groups:

Theorem 3.3.1. The class of ordered groups which have (strong) reductions onto

amenable groups contains all amenable ordered groups and is closed under hereditary

subgroups, finite direct products, and finite free products.
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Proof. If (G,P ) is an ordered group with G amenable, then idG : (G,P ) → (G,P )

is a reduction to an amenable group, so every amenable ordered group contains a

reduction to an amenable group.

We’ve seen that this class is closed under hereditary subgroups in Corollary 3.2.6,

direct products in Lemma 3.2.9, and free products in Corollary 3.2.19.

Corollary 3.3.2. Let G = Z2 ∗ Z and P = N2 ∗ N. Then (G,P ) strongly reduces to

an amenable group.

Proof. By Proposition 3.2.17, (Z2 ∗ Z,N2 ∗ N) strongly reduces to (Z2 o Z,N2 o N),

which is amenable by Lemma 3.2.15.

Although the theory we have developed gives a rich class of examples of groups

which reduce to amenable groups, there are still many open questions worthy of

exploration:

Question 3.3.3. Are there any ordered groups that reduce to an amenable group, but

do not strongly reduce to an amenable group?

Question 3.3.4. Is the class of ordered groups which reduce to amenable groups

closed under other group theoretic constructions (direct limits, HNN extensions, amal-

gamated free products, graph products, etc)?

For the latter question, we would conjecture that the answer is yes, and that this

should follow from this class being closed under quotients by “positive relators”:

Conjecture 3.3.5. Let (G,P ) be an ordered group. Let p1, p2 ∈ P be incomparable

(meaning p1 6≤ p2 and p1 6≥ p2), and let N denote the normal subgroup of G generated

by p1p
−1
2 . Then:
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a. If (G,P ) reduces to an amenable group, then (G/N,P/N) reduces to an amenable

group.

b. If (G,P ) strongly reduces to an amenable group, then (G/N,P/N) strongly

reduces to an amenable group.

Of these two sub-conjectures, (b) seems more plausible: one could imagine “car-

rying the quotient forward” into the reduction. However, attempting that in the case

of a non-strong reduction of (a) seems more difficult. For instance, we’ve seen that

(F2, P2) reduces to (Z,N), and taking p1 = ab, p2 = ba results in the relator ab = ba,

so F2/N ∼= Z2 and P2/N ∼= N2, but (Z2,N2) does not reduce to (Z,N) or any quotient

thereof. While (Z2,N2) reduces to a different amenable group (itself), it is not clear

in general how one would avoid this type of issue.
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Chapter 4

Gauge-Invariant Uniqueness for P -graphs

In this section, our goal is to prove a gauge-invariant uniqueness theorem for P -graphs:

there is exactly one representation of a P -graph which is Λ-faithful, tight, and has

a gauge coaction. However, we will show in Lemma 4.2.2 that the gauge-invariant

uniqueness theorem can fail in general, so we require an additional hypothesis. That

additional hypothesis is that (G,P ) can reduce to an amenable ordered group, and

we will prove a gauge-invariant uniqueness theorem for such P -graphs in Theorem

4.4.2.

4.1 A Co-Universal Algebra

In this section, we will prove a weaker form of a gauge invariant uniqueness theorem

which says that there is exactly one representation of a P -graph which is Λ-faithful,

tight, and has a normal gauge coaction. This result is a slight generalization of [3,

Theorem 5.3] to the context of weakly quasi-lattice ordered groups.

To prove this, we define and study the balanced algebra of a representation, cul-

minating in Theorem 4.1.15, which classifies the balanced algebras of a graph.

To give a brief summary of the argument:

1. Use the structure of “infinite paths” in Λ to construct a tight, Λ-faithful repre-
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sentation called the ultrafilter representation f .

2. For a representation t, we define the balanced algebra B(t) = span{tµt∗ν : d(µ) =

d(ν)} (Lemma 4.1.7). If there is a gauge coaction on t, there is a conditional

expectation Φt : C∗(t)→ B(t) which is given by

Φt(tµt
∗
ν) =


tµt
∗
ν if d(µ) = d(ν)

0 otherwise

,

and this conditional expectation is faithful if and only if the gauge coaction is

normal (Lemma 4.1.8). We define a balanced covering to be a map ψts : B(t)→

B(s) given by tµt
∗
ν 7→ sµs

∗
ν .

3. Recalling that T denotes the Toeplitz representation of Λ from Definition 2.5.8,

in Theorem 4.1.15 we show that kerψTt is generated by the “bolts” and range

projections it contains. Using this, we show in Lemma 4.1.16 that any tight

representation is balanced covered by any Λ-faithful representation.

4. In Lemma 4.1.21 we show that in the presence of appropriate coactions, we can

lift a balanced covering to a covering of the entire algebras.

5. Finally, we show in Theorem 4.1.22 that there is a unique tight, Λ-faithful

representation with a normal gauge coaction, and that this representation is

co-universal for Λ-faithful coacting representations in the sense of [3, Theorem

5.3].

4.1.1 The Ultrafilter Representation

In this subsection, we construct the ultrafilter representation f of a P -graph Λ, and

demonstrate that it is Λ-faithful and tight. This construction follows the one in [3,
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Section 3] and is included here for completeness.

Definition 4.1.1. Let (G,P ) be a WQLO group, and Λ a finitely aligned P -graph.

Recall that Λ has a partial order given by α ≤ β if β ∈ αΛ.

A filter of Λ is a nonempty subset U ⊆ Λ such that:

(F1) If µ ∈ U and λ ≤ µ, then λ ∈ U

(F2) If µ, ν ∈ U , there exists a λ ∈ U such that µ ≤ λ and ν ≤ λ.

Given a filter U , it is nonempty so it contains some µ. By F1, r(µ) ∈ U , and by

F2 since no distinct vertices have a common extension, then r(µ) is the only vertex

in U . Therefore, for any µ, ν ∈ U , r(µ) = r(ν), so we write r(U) for this unique

vertex.

A ultrafilter of Λ is a maximal filter. We denote the set of filters by Λ̂ and the set

of ultrafilters by Λ̂∞.

Lemma 4.1.2. Every filter is contained in an ultrafilter.

Proof. The proof is a standard Zorn’s Lemma argument: fix a filter U , and let Λ̂U =

{V ∈ Λ̂ : U ⊆ V }. We will show that Λ̂U contains a maximal element by Zorn’s

lemma, and that this maximal element of Λ̂U is also maximal in Λ̂.

To apply Zorn’s Lemma, we must check that Λ̂U = {V ∈ Λ̂ : U ⊆ V } is nonempty

and that chains in Λ̂U have an upper bound in Λ̂U . The former is immediate since

U ∈ Λ̂U . If C is a chain in Λ̂U , then let W =
⋃
V ∈C V , which we will show is a filter.

To check F1, if µ ∈ W and ν ≤ µ, then µ ∈ V for some V ∈ C, so ν ∈ V and thus

ν ∈ W . To check F2, if µ, ν ∈ W , then µ ∈ V1, ν ∈ V2 for some V1, V2 ∈ C. Since

C is a chain, either V1 ⊆ V2 or V2 ⊆ V1. Without loss of generality assuming the

former, we have that µ, ν ∈ V2, so there is some λ ∈ V2 ⊆ W with µ, ν ≤ λ as desired.
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Since W also contains U , then W ∈ Λ̂U , so by Zorn’s Lemma Λ̂U contains a maximal

element U∞.

Finally, we will show that U∞ is an ultrafilter, meaning that we will check that

U∞ is maximal in Λ̂. If it were not, there would be some V ) U∞ ⊇ U , but then we’d

have V ∈ Λ̂U , so U∞ was not maximal in Λ̂U , a contradiction. Thus U∞ is indeed

maximal in Λ̂, so U∞ ∈ Λ̂∞ as desired.

Lemma 4.1.3. Let U be an ultrafilter, and suppose µ ∈ U , E ⊂ µΛ, and that E is

exhaustive for µΛ. Then E ∩ U is nonempty.

Proof. We split into two cases: U is finite and U is infinite. If U is finite, it has a

greatest element ω by F2. Since µ ≤ ω, then ω ∈ µΛ, and since E is exhaustive

for µΛ there is some α ∈ E with MCE(α, ω) 6= ∅. That is, we can find some

β ∈ MCE(α, ω), so define U ′ = {ν : ν ≤ β}. Then U ′ is a filter containing U , and

since U was an ultrafilter then U ′ = U . Thus β ∈ U and by F1, α ≤ β ∈ U , as

desired.

Suppose instead that U is infinite. Since Λ is countable, so is U , so let give U an

enumeration U = {ν1, ν2, ...} and without loss of generality suppose µ = ν1. By the

F2 property, for each n ∈ N, we may choose an ηn such that ηn−1 ≤ ηn if n > 1 and

νi ≤ ηn for all 1 ≤ i ≤ n. Then in particular {ηn}n∈N is a rising sequence of elements

of U such that ηn ∈ µΛ for all n, and by the F1 property λ ∈ U if and only if λ ≤ ηn

for some n. Finally, we may assume that the sequence {ηn}n∈N is strictly increasing

by passing to a subsequence.

Now, for each ηn, since ηn ∈ µΛ and E is exhaustive is µΛ, there is an αn ∈ E

such that ηn has a common extension with αn. But E is finite, so one α ∈ E must

appear infinitely many times in the sequence {αn}n∈N. Thus there are infinitely many
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n with MCE(ηn, α) nonempty. Our goal now is to show that α ∈ U by constructing

a potentially bigger ultrafilter that contains α, but since U is already an ultrafilter it

must be that α is already in U .

To this end, for i ≤ j, if λ ∈ MCE(ηj, α), we can factorize λ = ζζ ′ where

d(ζ) = d(ηi) ∨ d(α), which implies ζ ∈ MCE(ηi, α), and therefore λ ∈ ζΛ for some

ζ ∈MCE(ηi, α). Thus

MCE(ηj, α) =
⋃

ζ∈MCE(ηi,α)

[MCE(ηj, α) ∩ ζΛ] .

Considering i as fixed but taking the union over all j ≥ i, we have that

⋃
j≥i

MCE(ηj, α) =
⋃
j≥i

 ⋃
ζ∈MCE(ηi,α)

[MCE(ηj, α) ∩ ζΛ]


=

⋃
ζ∈MCE(ηi,α)

(⋃
j≥i

MCE(ηj, α) ∩ ζΛ

)

Since infinitely many MCE(ηj, α) are nonempty and the sequence {ηn}n∈N is

strictly increasing, the lefthand side is infinite, and thus the righthand side must have

one of the terms
⋃
j≥iMCE(ηj, α)∩ζΛ being infinite. In particular, when i = 1, there

is some ζ1 such that MCE(ηj, α) ∩ ζ1Λ is infinite. Then we may repeat a version of

this argument: we have

⋃
j≥2

MCE(ηj, α) ∩ ζ1Λ =
⋃

ζ∈MCE(η2,α)

(⋃
j≥2

MCE(ηj, α) ∩ ζΛ ∩ ζ1Λ

)

so one of the terms
⋃
j≥2MCE(ηj, α) ∩ ζΛ ∩ ζ1 must be infinite, so we take ζ2 to

be the element of MCE(η2, α) giving that infinite term. Next, since ζ1 ≤ ζ2 then

ζ2Λ ∩ ζ1 = ζ2Λ, and we may repeat this process inductively.
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In this way we create a sequence {ζn}n∈N with ζn ∈MCE(ηn, α) and ζn−1 ≤ ζn for

all n. Finally, let U∞ = {λ : λ ≤ ζn for some n ∈ N}. Then it is immediate to verify

that U∞ is a filter. Furthermore, if λ ∈ U , then λ ≤ ηn for some n, so λ ≤ ηn ≤ ζn,

so λ ∈ U∞. That is, U ⊆ U∞, but U was an ultrafilter, so it must be that U = U∞.

Since α ≤ ζ1, then α ∈ U∞ = U , as desired.

In either case, we have shown that there is some α ∈ E ∩ U .

The following result is [3, Lemma 3.4]:

Lemma 4.1.4. Let (G,P ) be a WQLO group, Λ a finitely-aligned P -graph, λ ∈ Λ

and let U and V be filters. If r(U) = s(λ) and if λ ∈ V , we define

λ · U :=
⋃
µ∈U

{α ≤ λµ} and

λ∗ · V := {µ ∈ Λ : λµ ∈ V }

Then λ · U and λ∗ · V are filters and if U and V are ultrafilters, then so are λ · U

and λ∗ · V . Finally, λ∗ · (λ · U) = U and λ · (λ∗ · V ) = V .

We are now ready to define our Λ-faithful tight representation by letting Λ act by

translation on its set of ultrafilters:

Lemma 4.1.5. Let (G,P ) be a WQLO group, and Λ a finitely-aligned P -graph. For

λ ∈ Λ, define an operator fλ ∈ B(`2(Λ̂∞)) by

fλeU =


eλ·U if r(U) = s(λ)

0 otherwise

.
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Then f is a representation of Λ which is Λ-faithful and tight. We call f the

ultrafilter representation.

Proof. Defining the operators fλ as given above, a typical inner product argument

shows that f ∗λeV =


eλ∗·V if λ ∈ V

0 otherwise

.

To check the T1 operator, it is immediate that if v ∈ Λ0, then fv is a projection,

namely a projection onto the subspace spanned by the set of ultrafilters containing

v. To show that the {fv}v∈Λ0 are orthogonal, first note that this family commutes,

and fix distinct v, w ∈ Λ0. For any ultrafilter U , r(U) is the unique vertex contained

in U , so either v 6∈ U or w 6∈ U . In the former case, fwfveU = 0 and in the latter case

fvfweU = 0, so in either case fvfw = fwfv = 0.

The T2 operator is immediate.

The T3 operator is immediate from the previous lemma.

For the T4 operator, observe that fλf
∗
λ is projection onto the ultrafilters contain-

ing λ. Therefore, fµf
∗
µfνf

∗
ν is projection onto the ultrafilters containing µ and ν. By

the F2 and F1 properties, such an ultrafilter would contain some λ ∈MCE(µ, ν). In

fact, it would contain exactly one such term, since if it contained two distinct λ1, λ2 ∈

MCE(µ, ν), by the F2 property it would contain a common extension of λ1 and λ2,

but no such extension exists by the uniqueness of factorizations. Thus the set of ultra-

filters containing µ and ν is precisely the disjoint union of the ultrafilters containing

a λ ∈MCE(µ, ν). As operators, this is to say that fµf
∗
µfνf

∗
ν =

∑
λ∈MCE(µ,ν)

fλf
∗
λ .

Thus f is indeed a representation.

To show that f is Λ-faithful, fix some λ ∈ Λ. Since {s(λ)} is a filter, then by

Lemma 4.1.2, there is an ultrafilter U containing s(λ), in which case r(U) = s(λ).

Then, fλ · eU = eλ·U 6= 0, so fλ 6= 0.
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To show that f is tight, fix some µ ∈ Λ and E ⊂ µΛ which is finite and exhaustive

for µΛ. Let B =
∏
α∈E

(fµf
∗
µ − fαf ∗α) be the corresponding bolt (see Definition 4.1.10).

We’ll now show that for any ultrafilter U , BeU = 0, and this implies that B = 0 as

desired.

First, if U does not contain µ, then it also does not contain any of the α ∈ E, so

fµf
∗
µeU = 0 = fαf

∗
αeU , and thus BeU = 0.

If instead U does contain µ, by the previous lemma, then U contains one of the

α ∈ E.

Then, since µ, α ∈ U , fµf
∗
µeU = eU = fαf

∗
αU , so BeU =

∏
α∈E

(fµf
∗
µ − fαf ∗α)eU = 0.

We have now shown that BeU = 0 for all ultrafilters U , so B = 0 as an operator

in B(`2(Λ̂∞)). Thus f is tight.

Since the ultrafilter representation is Λ-faithful and tight, it is natural to ask if

it also has a gauge coaction. The answer is often no, as we will show in the next

example.

Example 4.1.6. Let (G,P ) be a WQLO group, and suppose that P is directed, mean-

ing that any two elements of P have a common upper bound. Examples of directed

positive cones include Nk and any total order. Then letting Λ = P , Λ itself is a filter,

so Λ is the unique ultrafilter. Thus Λ̂∞ = {Λ}, so the ultrafilter representation is

given by fµ = 1 for all µ ∈ Λ. In particular, the ultrafilter representation fails to have

a gauge coaction if there are distinct µ, ν ∈ Λ = P , since such a coaction δ cannot

send fµ = fν to the distinct elements fµ ⊗ Ud(µ) and fµ ⊗ Ud(ν).
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4.1.2 Balanced Algebras and Balanced Coverings

We will now discuss a particularly nice AF subalgebra of a P -graph algebra. Our

approach in this section mimics [3, Section 4], although we use slightly different

notation.

Lemma 4.1.7. Let (G,P ) be a WQLO group, Λ a finitely-aligned P -graph, and t a

representation of Λ. Then B(t) = span{tµt∗ν : d(µ) = d(ν)} is a closed ∗-subalgebra

of C∗(t). We call B(t) the balanced (sub)algebra.

Proof. It is immediate that B(t) is a closed ∗-invariant subspace, so it suffices to

check that it is closed under multiplication. To this end, suppose tµt
∗
ν , tαt

∗
β satisfy

d(µ) = d(ν) and d(α) = d(β). Then,

(tµt
∗
ν)(tαt

∗
β) = (tµt

∗
ν)(tνt

∗
νtαt

∗
α)(tαt

∗
β)

= (tµt
∗
ν)(

∑
λ∈MCE(ν,α)

tλt
∗
λ)(tαt

∗
β)

=
∑

λ∈MCE(ν,α)

tµ(ν−1λ)t
∗
β(α−1λ)

where ν−1λ denotes the unique path such that ν(ν−1λ) = λ and similarly α−1λ

denotes the unique path such that α(α−1λ) = λ. Then note that

d(µ(ν−1λ)) = d(µ)d(ν)−1d(λ) = d(λ) = d(α)d(β)−1d(λ) = d(α(β−1λ))

so the product is in B(t) as desired.
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In the following lemma, we rephrase Lemma 2.3.12 for the context of a gauge

coaction on a P -graph C∗-algebra:

Lemma 4.1.8. Let (G,P ) be a WQLO group, Λ a finitely-aligned P -graph, t a rep-

resentation of Λ and suppose t has a gauge coaction δ. Then there is a conditional

expectation Φt : C∗(t)→ B(t) such that

Φt(tµt
∗
ν) =


tµt
∗
ν if d(µ) = d(ν)

0 otherwise

.

Proof. Let A = C∗(t). For any µ, ν ∈ Λ, observe that δ(tµt
∗
ν) = tµt

∗
ν ⊗ Ud(µ)d(ν)−1 , so

tµt
∗
ν ∈ Ad(µ)d(ν)−1 . Then tµt

∗
ν ∈ Ae if and only if d(µ) = d(ν), so B(t) = Ae.

Let Φt : C∗(t)→ B(t) be the conditional expectation arising from Lemma 2.3.12.

If d(µ) = d(ν), then tµt
∗
ν ∈ Ae, and Φt fixes its range space, so Φt(tµt

∗
ν) = tµt

∗
ν . If

d(µ) 6= d(ν), then tµt
∗
ν ∈ Ag for g = d(µ)d(ν)−1 6= e, and by Lemma 2.3.12, Φt

vanishes on all Ag for g 6= e, so Φt(tµt
∗
ν) = 0, as desired.

Recall from Definition 2.3.13 that Φt is a faithful conditional expectation if and

only if δ is a normal coaction.

Definition 4.1.9. Let (G,P ) be a WQLO group, Λ a P -graph, and s, t two rep-

resentations of Λ. Let us say that a balanced covering is a (necessarily surjective)

∗-homomorphism ψts : B(t)→ B(s) given by

ψts(tµt
∗
ν) = sµs

∗
ν

for all µ, ν ∈ Λ with d(µ) = d(ν).
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If such a ∗-homomorphism exists, we will write t ≥bal s. It is immediate that ≥bal

is reflexive and transitive, but it may not be a partial ordering since it may not be

antisymmetric (that is, there may be two representations whose balanced algebras are

isomorphic, but which are not canonically isomorphic as representations). If t ≥bal s

and s ≥bal t, we will write t ∼=bal s, and say that their balanced algebras are canonically

isomorphic.

When there may be ambiguity between a balanced covering a canonical covering,

we will write ≥rep to clarify that we mean a canonical covering of the full P -graph C∗-

algebra. Note that a canonical covering gives rise to a balanced covering by restricting

the canonical covering to the balanced algebra. That is, t ≥rep s implies t ≥bal s. The

converse can fail, but we prove a partial converse in Lemma 4.1.21.

4.1.3 The Kernel of ψTt

This section is devoted to proving the following fact which is our Theorem 4.1.15:

letting T denote the Toeplitz representation from Definition 2.5.8, then for any rep-

resentation t, kerψTt is generated (as an ideal) by the “bolts” (see Definition 4.1.10)

and TµT ∗µ it contains. This is our analogue of [3, Theorem 4.9], although slightly

generalized to allow the kerψTt to contain TµT ∗µ .

This result is highly involved in the sense that the proof is many times longer than

the statement. The key to the argument is to show that the property “kerψTt ∩ A

is generated by the bolts and TµT ∗µ it contains” is preserved under direct limits, and

that this property is true for a dense collection of subalgebras A ⊆ B(T ). This will

take several lemmas to establish.

Definition 4.1.10. Let (G,P ) be a WQLO group, let Λ be a finitely aligned P -graph

and let t be a representation of Λ. We will say that a bolt in C∗(t) is an element of
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the form

∏
α∈E

(tµt
∗
µ − tαt∗α)

where µ ∈ Λ and E ⊂ µΛ is finite and exhaustive for µΛ. We say it is a proper bolt

if E ⊂ s(µ)Λ \ s(µ).

The term “bolt” comes from a tortured metaphor: a representation is tight if all

of its bolts are fastened down (i.e. equal to 0).

Lemma 4.1.11. Let (G,P ) be a WQLO group, let Λ be a finitely aligned P -graph,

and let t a representation of Λ.

Let {An}n∈N be an increasing sequence of subalgebras of B(T ), and let A =⋃
n∈NAn. Suppose that for each n ∈ N, kerψTt ∩ An is generated by the bolts and

TµT ∗µ it contains. Then kerψTt ∩ A is generated by the bolts and TµT ∗µ it contains.

Proof. Let J = kerψTt ∩A which is an ideal in A, and let I denote the ideal generated

by the bolts and TµT ∗µ contained in J . Certainly I ⊆ J , and it suffices to show I = J .

By [5, Lemma III.4.1],

J =
⋃
n∈N

(J ∩ An)

But note that J ∩An = kerψTt ∩A∩An = kerψTt ∩An, so J ∩An is generated by

the bolts and TµT ∗µ it contains. Such a bolt or TµT ∗µ is certainly in J ⊇ J ∩ An, and

thus J ∩ An ⊆ I, and taking the union and closure, we have

I ⊇
⋃
n∈N

(J ∩ An) = J

so I = J as desired.
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We will now build towards our dense family of subalgebras.

Definition 4.1.12. Let (G,P ) be a WQLO group, let Λ be a finitely aligned P -graph,

and let S ⊆ Λ. We will say that S is MCE closed if for all µ, ν ∈ S, MCE(µ, ν) ⊆ S.

We will say that S is substitution closed if for all µ, ν ∈ S with d(µ) = d(ν) and

s(µ) = s(ν), and for all α ∈ Λ, we have that µα ∈ S implies να ∈ S.

For S ⊆ Λ, we will write D(S) = {d(µ) : µ ∈ S}.

As we will see in the next lemma, the condition that S is MCE closed and sub-

stitution closed is the correct condition in order to make AS = span{TµT ∗ν : µ, ν ∈

S, d(µ) = d(ν)} a subalgebra of the balanced algebra.

Lemma 4.1.13. Let (G,P ) be a WQLO group and let Λ be a finitely-aligned P -graph.

For each S ⊆ Λ, let AS = span{TµT ∗ν : µ, ν ∈ S, d(µ) = d(ν)}. Then:

1. If S is MCE closed and substitution closed, then AS is a closed ∗-subalgebra of

B(T ).

2. If S is MCE closed and substitution closed, and D(S) = {d(µ) : µ ∈ S} contains

a minimal element m, then S ′ = {µ ∈ S : d(µ) 6= m} is MCE closed and

substitution closed.

3. Let S,D(S),m, and S ′ be as above. For any representation t of Λ, if µ, ν ∈

Λm∩S = {λ ∈ Λ∩S : d(λ) = m} with s(µ) = s(ν), then tµt
∗
ν ∈ ψTt (AS′) implies

that either tµ = 0 or there is a finite set E ⊂ µΛ ∩ S ′ which is exhaustive for

µΛ such that the bolt B =
∏
α∈E

(tµt
∗
µ − tαt∗α) is equal to 0.

Proof. (1): It is immediate that AS is a closed ∗-invariant subspace of B(T ). It then

suffices to check that it is closed under multiplication. If TµT ∗ν , TαT ∗β ∈ AS, then
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(TµT ∗ν )(TαT ∗β ) = (TµT ∗ν )
∑

λ∈MCE(ν,α)

TλT ∗λ (TαT ∗β )

=
∑

λ∈MCE(ν,α)

Tµ(ν−1λ)T ∗α(β−1λ).

Note that since S is MCE closed, then each λ ∈ MCE(ν, α) is in S, and since

S is substitution closed, then µ(ν−1λ), α(β−1λ) ∈ S. Thus (TµT ∗ν )(TαT ∗β ) ∈ AS, as

desired.

(2): Given µ, ν ∈ S ′, MCE(µ, ν) ⊆ S since S is MCE closed, and for λ ∈

MCE(µ, ν), we have d(λ) ≥ d(µ) 6= m, so d(λ) 6= m, so λ ∈ S ′. Similarly, given

µ, µα, ν ∈ S ′ with d(µ) = d(ν), we have that να ∈ S since S is substitution closed,

but d(να) = d(µα) 6= m, so να ∈ S ′. Thus S ′ is MCE closed, and substitution closed.

(3): Suppose that tµt
∗
ν ∈ ψTt (AS′) = span{tαt∗β : α, β ∈ S ′, d(α) = d(β)}. Then

there is an element of span{tαt∗β : α, β ∈ S ′, d(α) = d(β)} within a distance of 1 of

tµt
∗
ν , which is to say there are ci ∈ C and αi, βi ∈ S ′ with d(αi) = d(βi) such that

writing x = tµt
∗
ν −

n∑
i=1

citαit
∗
βi

, then ‖x‖ < 1.

Now, let y = tµt
∗
µx, we have ‖y‖ ≤ ‖tµ‖2 · ‖x‖ < 1, and

y = tµt
∗
µ

(
tµt
∗
ν −

n∑
i=1

citαit
∗
βi

)

= tµt
∗
ν −

n∑
i=1

citµt
∗
µtαit

∗
βi

= tµt
∗
ν −

n∑
i=1

∑
λ∈MCE(αi,µ)

citλtβ(α−1λ)

= tµt
∗
ν −

N∑
j=1

cjtλj tηj
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where the last line is simply relabelling the previous line. Note that the sum is still

indeed finite since Λ is finitely aligned. Also, since S is substitution closed and MCE

closed, then λj, ηj ∈ S for all j. Since d(λj) ≥ d(αi) 6= m and m was minimal, then

d(λj) 6= m and thus λj ∈ S ′. Also, λj is a common extension of µ and some αi, so

λj ∈ µΛ.

Now let E = {λ1, ..., λN}, which is finite and satisfies E ⊆ µΛ∩S ′ by our previous

remarks. Suppose for the sake of contradiction that E were not exhaustive for µΛ.

Then there would be some γ ∈ µΛ such that MCE(γ, λi) = ∅ for all αi ∈ E. Then,∥∥(tγt
∗
γ)y
∥∥ ≤ ‖tγ‖2 ‖y‖ < 1, and

(tγt
∗
γ)y = (tγt

∗
γ)(tµt

∗
ν −

N∑
j=1

cjtλj tηj)

= tγt
∗
γtµt

∗
ν

since each MCE(λi, γ) = ∅ for 1 ≤ i ≤ N . Next, since γ ∈ µΛ, then γ = µγ′ for

some γ′ ∈ Λ, so we may simplify this expression to

(tγt
∗
γ)(tµt

∗
ν) = tµγ′t

∗
γ′t
∗
µtµt

∗
ν = tµγ′t

∗
νγ′

which is a partial isometry. Since partial isometries have norm either 0 or 1, and

we’ve seen it has norm less than 1, we have that 0 = tµγ′t
∗
νγ′ , and since s(µγ′) =

s(µ) = s(ν) = s(νγ′), we have 0 = ts(µµ1) = ts(µ) = t∗µtµ = tµ, showing that either E

is exhaustive or tµ = 0, as desired.

Finally, we wish to show that B = 0, where B is the bolt B =
∏
λ∈E

(tµt
∗
µ − tλt∗λ).

To this end, we will make a similar argument that By is a partial isometry of norm

less than 1, so it must be 0. The latter is immediate: ‖By‖ ≤ ‖B‖ · ‖y‖ < 1. Now
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let us simplify the expression By:

By = B(tµt
∗
ν −

N∑
j=1

cjtλj tηj)

= Btµt
∗
ν −

N∑
j=1

cj

(
N∏
k=1

(tµt
∗
µ − tλkt∗λk)

)
tλj tηj)

= Btµt
∗
ν −

N∑
j=1

cj

(
N∏
k 6=j

(tµt
∗
µ − tλkt∗λk)

)(
(tµt

∗
µ − tλj t∗λj)tλj

)
tηj)

= Btµt
∗
ν −

N∑
j=1

0

= Btµt
∗
ν

where the main simplification occurs since (tµt
∗
µ − tλj t∗λj)tλj = tλj − tλj = 0.

Thus By = Btµt
∗
ν , so it is again a partial isometry of norm strictly less than 1,

and thus By = 0. Finally, since Btµt
∗
ν = 0, then

0 = (Btµt
∗
ν)(Btµt

∗
ν)
∗

= Btµt
∗
νtνt

∗
µB

= Btµt
∗
µB

and recalling that B is a subprojection of tµt
∗
µ, we have that 0 = B, completing the

proof of (3).

The next lemma shows that a sufficient collection of AS have the property that
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AS ∩ kerψTt is generated by the bolts and TµT ∗µ s it contains.

Lemma 4.1.14. Let (G,P ) be a WQLO group and let Λ be a finitely-aligned P -graph.

For each S ⊆ Λ which is MCE closed and substitution closed, let AS = span{TµT ∗ν :

µ, ν ∈ S, d(µ) = d(ν)}. Let t be a representation of Λ, and let ψTt : B(T ) → B(t)

be the balanced covering. If D(S) = {d(µ) : µ ∈ S} is finite, then kerψTt ∩ AS is

generated (as an ideal) by the bolts and TµT ∗µ s it contains.

Proof. Given a MCE-closed and substitution closed subset S ⊆ Λ, let JS denote

kerψTt ∩AS, which is an ideal in AS. Let IS denote the ideal in AS generated by the

bolts and TµT ∗µ s contained in JS. Then certainly IS ⊆ JS, and our claim is equivalent

to proving that JS/IS = 0.

We proceed by induction on |D(S)|. In the base case of |D(S)| = 0, the claim is

trivial since AS = JS = IS = 0.

In the inductive case, suppose that |D(S)| > 0, and that the claim is true for all

D′ with |D′| < |D(S)|. Since D(S) is finite, it has some minimal element m. First

consider the case where Sm = {µ ∈ S : d(µ) = m} is finite. Note that Sm is itself

substitution closed and MCE-closed and that AS = AS′ + ASm .

Fix some x+ IS ∈ JS/IS, in which case x ∈ JS. Since x ∈ JS ⊆ AS = AS′ +ASm ,

we may write x = xm + x′, where xm ∈ ASm and x′ ∈ AS′ . Additionally, since ASm

is finite dimensional, then we may write xm =
n∑
i=1

ciTµiT ∗νi where d(µi) = d(νi) = m

for all i. There are potentially many such representations of x + IS as xm + x′ + IS.

We will assume without loss of generality we have chosen the decomposition with the

fewest terms in the sum xm =
n∑
i=1

ciTµiT ∗νi , and our goal is to show that in fact there

are zero terms in the sum and thus xm = 0.

To this end, suppose for the sake of contradiction that xm =
n∑
i=1

ciTµiT ∗νi has a

nonzero summand, and without loss of generality that it is the first summand. That
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is, suppose c1Tµ1T ∗ν1
6= 0.

Now,

(Tµ1T ∗µ1
)x(Tν1T ∗ν1

) = (Tµ1T ∗µ1
)

(
n∑
i=1

ciTµiT ∗νi + x′

)
(Tν1T ∗ν1

)

= c1Tµ1T ∗ν1
+ (Tµ1T ∗µ1

)x′(Tν1T ∗ν1
).

Since x ∈ JS ⊆ kerψTt , by applying kerψTt to both sides, we have that

0 = citµ1t
∗
ν1

+ ψTt ((Tµ1T ∗µ1
)x′(Tν1T ∗ν1

))

so solving for tµ1t
∗
ν1

, we have

tµ1t
∗
ν1

= ψTt (
−1

c1

(Tµ1T ∗µ1
)x′(Tν1T ∗ν1

))

but x′ ∈ AS′ , and ASmAS′ ⊆ AS′ , so the righthand side is an element of ψTt(AS′). Now

by part (3) of Lemma 4.1.13, we have either tµ1 = 0 or there is a finite exhaustive

set E ⊂ µ1Λ with d(α) ∈ S \ {m} for all α ∈ E, and such that the bolt B =∏
α∈E

(tµ1t
∗
µ1
− tαt∗α) is equal to 0.

In the former case, Tµ1T ∗µ1
∈ IS, so taking y = c1(Tµ1T ∗µ1

)Tµ1T ∗ν1
= c1Tµ1T ∗ν1

, we

have y ∈ IS, so x+ IS = (xm − y) + x′ + IS is a decomposition with one fewer terms

in the sum xm − y, a contradiction. In the latter case,
∏
α∈E

(Tµ1T ∗µ1
− TαT ∗α ) is a bolt

in ker πTt , so B1 =
∏
α∈E

(Tµ1T ∗µ1
− TαT ∗α ) ∈ IS. Let y = c1B1Tµ1T ∗ν1

, and then we may

write x+ IS = xm − y + x′ + IS which will have zeroed out the c1Tµ1T ∗ν1
summand in

the xm term (while possibly adding more terms to the x′ part, which is acceptable),

again a contradiction.

In either case, we found a contradiction with xm being the representative with the
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fewest summands. Thus xm had no terms in its summation, and thus xm = 0. That

is to say, x = xm + x′ = x′, where x′ ∈ AS′ , and therefore x ∈ AS′ ∩ kerTt = JS′ . By

the inductive hypothesis, since D′ = {d(µ) : µ ∈ S ′} = D(S) \ {m} has fewer terms

than D(S), we have that JS′ = IS′ so x+ IS ∈ IS′ + IS = IS, so JS ⊆ IS, as desired.

Now in the case that Sm is not finite, we let Fn be an increasing sequence of finite

subsets of Sm with Sm =
⋃
Fn, in which case S ′∪Fn is MCE closed and substitution-

closed, so the previous case applies to AS′∪Fn . But AS =
⋃∞
n=1AS′∪Fn , and so the

general case follows from Lemma 4.1.11.

We can now add a second dash of Lemma 4.1.11 to get our desired result:

Theorem 4.1.15. Let (G,P ) be a WQLO group and let Λ be a finitely-aligned P -

graph. Let t be a representation of Λ, and ψTt : B(T )→ B(t) be the balanced covering.

Then kerψTt is generated (as an ideal) by the bolts and TµT ∗µ s it contains.

Proof. As above, for any S ⊆ Λ, let D(S) = {d(µ) : µ ∈ Λ}. Note that taking a

substitution preserves the degree of a path, and taking minimal common extensions

of paths can take joins of degrees (that is, replace paths of length p and q with paths

of length p ∨ q). Therefore, if F ⊆ Λ and S is the set of all paths in Λ obtained by

taking substitutions and MCEs of F , then D(S) ⊆ {p1 ∨ p2 ∨ ... ∨ pn : pi ∈ D(F )}.

In particular, if F is finite, then |D(S)| ≤ 2|F | <∞, so any finite F ⊆ Λ is contained

in a set S ⊆ Λ which is MCE closed and substitution closed and for which D(S) is

finite.

Since Λ is countable, we can enumerate the elements as λ1, λ2, .... For each n ∈ N,

let Fn = {λ1, ..., λn}, and let Sn denote the set of all paths in Λ obtained by taking

substitutions and MCEs of Fn.

Then Sn is substitution closed and MCE closed and by the above argument,

D(Sn) <∞. Therefore, by Lemma 4.1.14, kerψTt ∩ASn is generated by the bolts and
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TµT ∗µ it contains.

But recall that B(T ) = span{TµT ∗ν : d(µ) = d(ν)}, and for any µ, ν ∈ Λ with

d(µ) = d(ν), since we have an enumeration, there exists some m,n ∈ N with µ =

λm, ν = λn, so µ, ν ∈ Fmax(m,n) ⊂ Smax(m,n), so TµT ∗ν ∈ ASmax(m,n)
. Thus B(T ) =⋃

n∈NASn .

Then by Lemma 4.1.11, kerψTt ∩ B(T ) = kerψTt is generated by the bolts and

TµT ∗µ it contains.

The above result classifies ideals in the balanced algebra B(T ), and when combined

with the Factors Through Theorem (Lemma 2.2.1) shows that two balanced algebras

are isomorphic if and only if they have the same set of bolts and range projections

which are set equal to 0. We make use of this fact in the following lemma:

Lemma 4.1.16. Let (G,P ) be a WQLO group, Λ a P -graph, and let s and t be two

representations of (G,P ). Then

1. If t is tight and s is Λ-faithful, then t ≤bal s.

2. If t and s are both tight and Λ-faithful, then t ∼=bal s.

Proof. For the first claim, let T denote the universal representation of Λ. Then,

there are balanced coverings ψTs : B(T ) → B(s) and ψTt : B(T ) → B(t). We wish

to use the Factors Through Theorem (Lemma 2.2.1) to conclude there is a balanced

covering ψst : B(s) → B(t) given by sµs
∗
ν → tµt

∗
ν , which we can do if and only if

kerψTs ⊆ kerψTt .

By Theorem 4.1.15, kerψTs and kerψTt are generated by the bolts and TµT ∗µ they

contain. Since s is Λ-faithful, its kernel contains no TµT ∗µ (and possibly some bolts),

and since t is tight, its kernel contains every bolt (and possibly some TµT ∗µ ). Thus

kerψTs ⊆ kerψTt , so t ≤bal s as desired.
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For the second claim, by applying (1) twice, we have t ≤bal s and s ≤bal t, so

t ∼=bal s.

4.1.4 Normalizations of Coactions

We will now touch briefly on the normalization of a coaction. For a more thorough

introduction, the reader is directed to [6, Appendix A.7]

Remark 4.1.17. Given a discrete coaction (A,G, δ), define jA : A→ A⊗ C∗r (G) by

jA = (idA⊗πUL ) ◦ δ, which is a ∗-homomorphism.

Let An = jA(A) ∼= A/ ker jA. Then by Lemma A.55 and Definition A.56 of [6]

there is a coaction (An, G, δn) which is normal, and such that jA is δ-δn equivariant,

meaning that δn ◦ jA = (jA ⊗ idG) ◦ δ. We call (An, G, δn) the normalization of

(A,G, δ).

Note that [6] uses a definition of normality which is equivalent to ours, but not

identical. Readers may wish to read [17, Lemma 1.4] for a proof of the equivalence of

the two definitions.

The following lemma is analogous to Lemma 2.5.11 but refers to a “normalization”

process for representations instead of a “coactionization” process. Note that while

coactionization made the representation larger with respect to ≤rep, normalization

will make the representation smaller.

Lemma 4.1.18. Let (G,P ) be a WQLO group, and Λ a P -graph. Let t be a repre-

sentation of Λ with a gauge coaction δ. Then,

1. Let jA : C∗(t)→ C∗(t)n denote the quotient map taking the cosystem (C∗(t), G, δ)

to its normalization (C∗(t)n, G, δn), and for λ ∈ Λ let t̃λ := jA(tλ). Then t̃ is a

representation of Λ.
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2. There is a canonical covering t 7→ t̃.

3. The coaction δn on C∗(t̃) is normal and is a gauge coaction.

4. t is canonically isomorphic to t̃ if and only if δ is a normal coaction.

5. There is a balanced covering ψt
t̃

: B(t)→ B(t̃), which is a balanced isomorphism.

6. t̃ is Λ-faithful (respectively, tight) if and only if t is.

Definition 4.1.19. We call the representation t̃ the given in the previous lemma the

normalization of t.

Proof of 4.1.18. (1) The fact that t̃λ is a representation is immediate since it is the

image of a representation under a homomorphism.

(2) jA is a canonical covering.

(3) δn is normal by construction. To show it is a gauge coaction, recall from Defi-

nition A.56 and Lemma A.55 of [6] that the canonical covering jA is δ-δn equivariant,

meaning that δn ◦ jA = (jA ⊗ idG) ◦ δ. Then, for any µ ∈ Λ,

δn(t̃µ) = δn(jA(tµ))

= (jA ⊗ idG) ◦ δ(tµ)

= (jA ⊗ idG)(tµ ⊗ Ud(µ))

= t̃µ ⊗ Ud(µ)

as desired.
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(4) By [17, Lemma 1.4], a coaction is normal (in the sense of its conditional

expectation Φ being faithful) if and only if jA is injective, which is equivalent to jA

being a canonical isomorphism.

(5) The balanced covering ψt
t̃

exists because it is a restriction of the canonical

covering jA from part (2). Since it is a balanced covering, it is surjective, so it

suffices to show ψt
t̃

is injective. To this end, recall that ψt
t̃

= jA |B(t) and that

jA := (idA⊗πUL )◦δ. Now for x ∈ B(t) we have δ(x) = x⊗Ue, so jA(x) = ((idA⊗πUL )◦

δ)(x) = x⊗Le = x⊗1. Then since ‖·‖ is a C∗-cross norm, ‖jA(x)‖ = ‖x‖·‖1‖ = ‖x‖,

so x = 0 if and only if ψt
t̃
(x) = jA(x) = 0, as desired.

(6) Having proven (5), this is immediate: since tightness is a relation among

elements of the balanced algebra, t is tight if and only if t̃ is tight. Similarly, t is

Λ-faithful if and only if every tλ 6= 0 if and only if every t∗λtλ 6= 0, which is a relation

among elements of the balanced algebra, so t is Λ-faithful if and only if t̃ is.

Corollary 4.1.20. Let (G,P ) be a WQLO group, and let Λ be a finitely aligned

P -graph. For any Λ-faithful, tight representation t of Λ, the normalization of the

coactionization of t is a Λ-faithful, tight representation with a normal gauge coaction.

Proof. Recall that t′ denotes the coactionization of t as in Lemma 2.5.11 and let t̃′

denoting the normalization of t′ as in Lemma 4.1.18. By those two lemmas, t̃′ has a

normal gauge coaction, and since t is Λ-faithful and tight, so is t̃′.

4.1.5 The Co-Universal Algebra

The following result shows that a balanced covering extends to a covering of the entire

algebras in the context of a normal coaction:
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Lemma 4.1.21. Let (G,P ) be a WQLO group, let Λ be a finitely-aligned P -graph,

and let s and t be two representations of Λ. If s ≤bal t, s and t have gauge coactions,

and the gauge coaction on s is normal, then s ≤rep t.

Proof. Our argument will make use of several functions, organized according to the

following diagram (which will commute):

C∗(T ) C∗(t) B(t)

C∗(s) B(s)

πTt

πTs

Φt

∃πts
ψts

Φs

Here T denotes the universal representation of Λ, and πTt and πTs are the canonical

coverings of C∗(t) and C∗(s) respectively. We wish to show the existence of the

canonical covering πts. The algebras B(t) and B(s) are the balanced subalgebras

as in Lemma 4.1.7 and the maps Φt : C∗(t) → B(t) and Φs : C∗(s) → B(s) are

the conditional expectations arising from Lemma 4.1.8. From that lemma, these

conditional expectations satisfy

Φt(tµt
∗
ν) =


tµt
∗
ν if d(µ) = d(ν)

0 otherwise

and similarly Φs(sµs
∗
ν) =


sµs
∗
ν if d(µ) = d(ν)

0 otherwise

.

Also note that by Definition 2.3.13, Φs is faithful because the gauge coaction on

s is normal. Finally, ψts is the balanced covering that exists because t ≥bal s.

We will now verify that this diagram commutes. That is, we will show that

ψts ◦ Φt ◦ πTt = Φs ◦ πTs .
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Since C∗(T ) = span{TµTν : µ, ν ∈ Λ} and all the maps are linear and continuous,

it suffices to check that the two functions agree on each TµT ∗ν . To this end, we fix

some µ, ν ∈ Λ, and we have

ψts ◦ Φt ◦ πTt (TµT ∗ν ) = ψts ◦ Φt(tµt
∗
ν)

= ψts



tµt
∗
ν if d(µ) = d(ν)

0 otherwise



=


sµs
∗
ν if d(µ) = d(ν)

0 otherwise

= Φs(sµs
∗
ν)

= Φs ◦ πTs (TµT ∗ν )

as desired.

We will now show that kerπTt ⊆ kerπTs . To this end, suppose that x ∈ kerπTt .

Then x∗x ∈ kerπTt , so

0 = ψts ◦ Φt ◦ πTt (x∗x)

= Φs ◦ πTs (x∗x)

and since πTs (x∗x) ≥ 0 and Φs is faithful, then we must have that πTs (x∗x) = 0, so

πTs (x) = 0, and thus x ∈ kerπTs as desired.

Thus by Lemma 2.2.1 (the Factors Through Theorem), there exists a map πts

satisfying πTs = πts ◦ πTt , from which it is immediate that πts is a canonical covering.



101

Thus s ≤rep t.

Now we may prove the main theorem of this section, which is a slight generalization

of [3, Theorem 5.3] from the context of quasi-lattice ordered groups to weakly quasi-

lattice ordered groups. We have also rephrased the result:

Theorem 4.1.22. Let (G,P ) be a WQLO group, and let Λ be a finitely aligned P -

graph. If s is a Λ-faithful, tight representation with a normal gauge coaction, and t

is a Λ-faithful gauge-coacting representation, then s ≤ t.

In particular, there is a unique representation S of Λ which is Λ-faithful, tight,

and has a normal gauge coaction, and S ≤ t for any Λ-faithful gauge-coacting repre-

sentation t.

We write C∗min(Λ) for C∗(S), and call C∗min(Λ) the co-universal algebra of the

graph.

Proof. Suppose that s was a Λ-faithful, tight representation with a normal gauge

coaction, and that t was any Λ-faithful gauge-coacting representation. Since s is

tight and t is Λ-faithful, by Lemma 4.1.16, s ≤bal t. Then since s has a normal gauge

coaction and t has a gauge coaction, by Lemma 4.1.21, s ≤rep t.

To show the existence of such an S, recall that f denotes the ultrafilter represen-

tation from Lemma 4.1.5, which is Λ-faithful and tight by that lemma. By Corollary

4.1.20, S := f̃ ′ is a Λ-faithful, tight representation with a normal gauge coaction.

If t were another Λ-faithful, tight representation that had a normal gauge coaction,

then by the first part of the claim t ≤rep S and S ≤rep t, so t ∼=rep S. That is, S is

unique up to canonical isomorphism.
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4.2 The Tight Algebra

The following result is a relatively straightforward combination of the properties of

C∗min(Λ) and the construction of a universal algebra (Lemma 2.2.2).

Proposition 4.2.1. Let (G,P ) be a WQLO group, and Λ a finitely-aligned P -graph.

1. There is a tight representation T of Λ which is universal for tight representa-

tions. We will denote the algebra generated by this representation as C∗tight(Λ).

2. There is a canonical covering πTS : C∗tight(Λ)→ C∗min(Λ).

3. T is Λ-faithful.

4. T has a gauge coaction δ.

5. The gauge coaction δ on C∗tight(Λ) is normal if and only if πTS is an isomorphism,

in which case C∗tight(Λ) ∼= C∗min(Λ).

6. If δ is normal, there is a gauge-invariant uniqueness theorem of this form: if

t is another Λ-faithful, gauge coacting, tight representation, then C∗min(Λ) is

canonically isomorphic to C∗(t).

Proof. For (1), the relators (T1)-(T4) and the tightness condition are all polynomial

relations in the generators, and (T1) and (T3) together imply that all the generators

are partial isometries, so by Lemma 2.2.2, there is a universal C∗-algebra for such tight

representations. Let us denote this representation by T and the algebra it generates

by C∗tight(Λ).

For (2), by Theorem 4.1.22, the representation S which generates C∗min(Λ) is a

tight representation, so by the universality of T , there is a canonical covering πTS :

C∗tight(Λ) = C∗(T )→ C∗(S) = C∗min(Λ).



103

For (3), by Theorem 4.1.22(1), S is Λ-faithful, so each Sλ is nonzero, and since

πTS (Tλ) = Sλ, then each Tλ is nonzero as well.

For (4), let T ′ denote the coactionization of T given by Proposition 2.5.11. By

part (7) of that proposition, since T is tight, then T ′ is also tight, and therefore by

the universality of T , there is a canonical covering Tλ 7→ T ′λ = Tλ ⊗ Ud(λ), which is

the desired gauge coaction.

For (5), if S ∼= T , then the gauge coaction on T is normal since the gauge coaction

on S is normal. Conversely, if the gauge coaction on T is normal, then by the

uniqueness part of Theorem 4.1.22, the canonical covering πTS is an isomorphism.

For (6), suppose that δ is normal and t is a Λ-faithful gauge coacting, tight rep-

resentation. Then by the universality of C∗tight(Λ) = C∗(T ), T ≥rep t (here we are

using the partial order notation of Lemma 2.5.9). Similarly, by the co-universality of

C∗min(Λ) = C∗(S), t ≥rep S. Finally, by (5) since δ is normal, then T ∼= S. Putting

these together, we have that S ∼= T ≥rep t ≥rep S, so t ∼= S.

This is a pleasant result if δ is normal, but there are examples arising from non-

amenable groups where δ is not normal:

Lemma 4.2.2. Let (G,P ) be a group with a total ordering (meaning G = P ∪P−1 in

addition to P ∩ P−1 = {1}), and let Λ = P , thought of as a small category with one

object and with degree functor idP . Then any tight representation t of Λ = P extends

uniquely to a unitary representation t̄ of G by t̄g =


tg if g ∈ P

t∗g−1 if g ∈ P−1

.

Therefore, C∗tight(Λ) ∼= C∗(G), and in particular the gauge coaction on C∗tight(Λ)

is normal if and only if G is amenable.
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Proof. Let (G,P ) be a group with a total ordering, and let Λ = P , thought of as a

small category with the natural degree functor. Let t be a tight representation of P .

We will first show that tp is a unitary for each p ∈ P . For all p, q ∈ P , max(p, q) ≥

p, q, so p and q have a common extension. That is, every p ∈ P is exhaustive for P , so

by tightness, we have that 1 = tet
∗
e = tpt

∗
p for all p ∈ P . Since also tpt

∗
p = ts(p) = te = 1

by the (T3) relator, this says that the tps are unitaries.

Now, extend t to t̄ on all of G = P ∪ P−1 by t̄g =


tg if g ∈ P

t∗g−1 if g ∈ P−1

, or equiva-

lently t̄p = tp and t̄p−1 = t∗p for p ∈ P . We wish to show that t̄ is a representation of

all of G. To this end, it suffices to check that it is a group homomorphism, and since

it extends a representation of P , it suffices to check that multiplication is correct for

one element in P and one element in P−1.

To this end, suppose p, q ∈ P . We have several cases depending on which products

are positive. If 1 ≤ p−1q, then

t̄p−1 t̄q = t∗ptq = t∗ptptp−1q = tp−1q = t̄p−1q

and if instead 1 ≥ p−1q, then 1 ≤ q−1p, so

t̄p−1 t̄q = t∗ptq = (tqtq−1p)
∗tq = t∗q−1pt

∗
qtq = t∗q−1p = t̄p−1q

so in either case t̄p−1 t̄q = t̄p−1q.

For products the other way, if pq−1 ≥ 1, then

t̄pt̄q−1 = tpt
∗
q = tpq−1tqt

∗
q = tpq−1 = t̄pq−1

while if pq−1 ≤ 1, then qp−1 ≥ 1, so
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t̄pt̄q−1 = tpt
∗
q = tp(tqp−1tp)

∗ = tpt
∗
pt
∗
qp−1 = t∗qp−1 = t̄pq−1

so in either case t̄pt̄q−1 = t̄pq−1 . Thus t̄ is indeed a representation of G.

To show that t̄ is the unique extension of t to a unitary representation of G, observe

that if t̃ were another such representation, then for all p ∈ P , 1 = t̃pt̃p−1 = tpt̃p−1 , so

since tp is a unitary we get that t∗p = t̃p−1 , so t̃ = t̄.

Thus the algebra generated by the universal tight representation T is the algebra

generated by the universal group representation. That is, C∗tight(Λ) = C∗(G), and the

gauge coaction on C∗tight(Λ) is the standard coaction δG on C∗(G) given in Example

2.3.10.

Now for normality, by Lemma 2.3.14, if G is amenable, then all of its coactions

are amenable, and in particular δG is amenable. Conversely, if the gauge coaction

on C∗tight(Λ) ∼= C∗(G) is normal, then considering {CUg}g∈C as a topological grading

over G with conditional faithful expectation, by [9, Proposition 3.7], C∗(G) is natu-

rally isomorphic to C∗r ({CUg}g∈C) = C∗r (G), so the full and reduced C∗-algebras are

isomorphic and thus G is amenable.

Corollary 4.2.3. If (G,P ) = (F2, R) where R a total ordering on G such as the

Magnus expansion given in Section 3.2 of [4], then C∗tight(Λ) 6∼= C∗min(Λ). Since both

C∗tight(Λ) and C∗min(Λ) are Λ-faithful, tight, gauge coacting representations, there is

no gauge-invariant uniqueness theorem for this R-graph.

Proof. By the previous lemma, C∗tight(Λ) ∼= C∗(G), and by Proposition 4.2.1 C∗tight(Λ)

is a tight, Λ-faithful representation of Λ with a gauge coaction. Since G = F2 is not

amenable, the gauge coaction is not normal. But by part (5) of 4.2.1, since the gauge

coaction is not normal, then πTS is not an isomorphism, so C∗min(Λ) is another tight,
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Λ-faithful representation of Λ with a gauge coaction, but which is not canonically

isomorphic to C∗tight(Λ).

The reader may recognize the ordered group (F2, R) from Example 3.1.6 earlier in

this manuscript, where we used it as an example of an ordering that had no reduction

to an amenable group. This recognition may ignite a spark of hope: perhaps the

existence of a reduction to an amenable group prevents the obstruction seen in the

previous lemma and guarantees that δ is normal. We shall see in the next section

that this is indeed the case.

4.3 Reductions and Representations

In this section, we develop the notion that if (G,P ) reduces to (H,Q), then P -graphs

are Q-graphs and they have the same representations.

Remark 4.3.1. In this section, we will be considering a category Λ as a graph with

respect to more than one semigroup (ex: as a P -graph and as a Q-graph). In cases

where there may be confusion, we will write C∗min(Λ, P ) and C∗tight(Λ, P ) to indicate

the semigroup P , and so on for other semigroups.

First we will show that if Λ is a P -graph, and (G,P ) has reduction (H,Q), then

Λ is also a Q-graph in a natural way.

Lemma 4.3.2. Let (G,P ) be an ordered group, and let (H,Q) be a reduction of

(G,P ) with degree functor dPQ : P → Q. Then a P -graph Λ with degree functor dΛ
P is

also a Q-graph with degree functor d = dPQ ◦ dΛ
P .

Proof. Certainly, d maps Λ into Q, so, it suffices to check that Λ has unique factor-

ization with respect to d.
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Let λ ∈ Λ, and q ∈ Q satisfy q ≤ d(λ). We must show that there is a unique

α, β ∈ Λ such that λ = αβ and d(α) = q.

For existence, since dΛ
P (λ) ∈ P is a path of length dPQ(dΛ

P (λ)) = d(λ) ≥ q, then

by unique factorization of dPQ, there exist unique p, p1 ∈ P such that pp1 = dΛ
P (λ)

and dPQ(p) = q. Then p ≤ dΛ
P (λ), so by unique factorization of dΛ

P , there exist unique

α, β ∈ Λ such that αβ = pp1 and dΛ
P (α) = p. Then d(α) = dPQ(dΛ

P (α)) = dPQ(p) = q,

so the desired α, β exist.

For uniqueness, if α′, β′ ∈ Λ were two other paths with λ = α′β′ and d(α′) = q,

then dΛ
P (λ) = dΛ

P (α′)dΛ
P (β′) would be a factorization of dΛ

P (λ) where the first term has

degree dPQ(dΛ
P (α′)) = d(α′) = q, so by uniqueness of the factorization of dPQ, we have

that dΛ
P (α′) = p. Then by the uniqueness of the factorization dΛ

P , we have α′ = α, as

desired.

Next, we will show that whether Λ is regarded as a P -graph or a Q-graph, it has

the same representations.

Lemma 4.3.3. Let (G,P ) and (H,Q) be two WQLO groups, and Λ a small category

with two functors dΛ
P : Λ→ P and dΛ

Q : Λ→ Q such that Λ is a P -graph with respect

to dΛ
P and a Q-graph with respect to dΛ

Q. Then,

1. Λ is finitely-aligned as a P -graph if and only if it is finitely-aligned as a Q-graph.

2. The (T1)-(T4) relators are the same for Λ independently of being a P -graph or

a Q-graph.

3. A representation is tight independently of Λ being a P -graph or a Q-graph.

Proof. For (1), recall that MCE(µ, ν) depends only on the category structure of Λ

by definition, so it is finite regardless of the degree functor given to Λ.
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Similarly for (2) and (3), the T1-T4 and tightness relations as written only depend

on the category structure of Λ.

Corollary 4.3.4. Let (G,P ) and (H,Q) be two WQLO groups, and Λ a small cate-

gory with two functors dΛ
P : Λ → P and dΛ

Q : Λ → Q such that Λ is a finitely-aligned

P -graph with respect to dΛ
P and a finitely-aligned Q-graph with respect to dΛ

Q. Then

C∗tight(Λ, P ) is canonically isomorphic to C∗tight(Λ, Q).

Proof. Let a and b be the universal tight representations of Λ as a P -graph and

Q-graph, respectively, so that C∗tight(Λ, P ) = C∗(a) and C∗tight(Λ, Q) = C∗(b).

By the previous Lemma, both the aλs and the bλs satisfy the equivalent T1-T4

and tightness relators, so by their respective universal properties, there are canon-

ical covers taking aλ 7→ bλ and bλ 7→ aλ, which are inverses, and hence canonical

isomorphisms.

Lemma 4.3.5. Let ϕ : (G,P ) → (H,Q) be a reduction of WQLO groups. Let Λ be

a finitely-aligned P -graph, and t a representation of Λ. If t has a gauge coaction by

G, then it has a gauge coaction by H (when Λ inherits the structure of a Q-graph as

described in 4.3.2).

In particular, if δ is the gauge coaction by G, then ε := (idC∗(t)⊗ϕ̄)◦δ is the gauge

coaction by H, where ϕ̄ : C∗(G)→ C∗(H) is given by Ug 7→ Vϕ(g) .

Proof. First let us fix some notation. Let {Ug}g∈G and {Vh}h∈H denote the universal

unitary representations of G and H respectively, so that C∗(G) and C∗(H) are the

closed span of the Ug and Vh, respectively. Let δ denote the gauge coaction on C∗(t),

dΛ
P the degree function on Λ as a P -graph, and recall that the degree functor on Λ as

a Q-graph was dΛ
Q = ϕ ◦ dΛ

P .
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Then we have that g 7→ Vϕ(g) is a unitary representation of G, so by the universal

property of C∗(G), there is a ∗-homomorphism ϕ̄ : C∗(G) → C∗(H) given by Ug 7→

Vϕ(g). We will prove that there is a gauge coaction of H on C∗(t) given by ε :=

(idC∗(t)⊗ϕ̄) ◦ δ. First note that by Lemma 2.2.7, there is such a function ε, it is a

∗-homomorphism, and it maps C∗(t)→ C∗(t)⊗ C∗(H).

But now observe that

ε(tλ) = (idA⊗ϕ̄) ◦ δ(tλ)

= (idA⊗ϕ̄)(tλ ⊗ UdΛ
P (λ))

= tλ ⊗ Vϕ(dΛ
P (λ))

= tλ ⊗ VdΛ
Q(λ)

so by Proposition 2.5.11(3), ε is a gauge coaction by H, as desired.

4.4 Gauge-Invariant Uniqueness for Ordered Groups which

Reduce to Amenable Groups

The following is the mathematical core of our gauge-invariant uniqueness theorem:

Proposition 4.4.1. Let (G,P ) be a WQLO group and suppose there is a reduction

to an amenable group ϕ : (G,P )→ (H,Q). Then for any finitely-aligned P -graph Λ,

the following are canonically isomorphic:

a. C∗tight(Λ, P ).

b. C∗tight(Λ, Q).

c. C∗min(Λ, P ).
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d. C∗min(Λ, Q).

e. C∗(t), where t is any representation of Λ as a P -graph which is tight, Λ-faithful,

and which has a gauge coaction by G.

Proof. For the sake of abbreviation, let us denote the representations generating

C∗tight(Λ, P ), C∗tight(Λ, Q), C∗min(Λ, P ), and C∗min(Λ, Q) as A, B, C, and D, respectively.

Our argument is organized by the following diagram:

C∗(A) = C∗tight(Λ, P ) C∗(B) = C∗tight(Λ, Q)

C∗(C) = C∗min(Λ, P ) C∗(D) = C∗min(Λ, Q)

πAB

πAC πBD

πCD

All arrows here denote canonical coverings.

The map πAB exists and is an isomorphism by Corollary 4.3.4.

The maps πAC and πBD are the canonical coverings of Proposition 4.2.1(2). Since

H is amenable, then by Lemma 2.3.14 the gauge coaction by H on C∗tight(Λ, Q) is

normal, and so πBD is a canonical isomorphism by Proposition 4.2.1 (5).

Combining these two, we have that A ∼= B ∼= D.

The map πCD arises from the work established in the previous lemmas: by Lemma

4.3.5 C∗(C) carries a gauge coaction by H. Since also C is Λ-faithful by 4.1.22, then

by the minimality of C∗min(Λ, Q), there is a canonical covering πCD : C∗min(Λ, P ) →

C∗min(Λ, Q).

Now, with the order notation of Lemma 2.5.9, we have that A ≥rep C ≥rep D ∼=

B ∼= A, so A ∼= B ∼= C ∼= D. That is, (a.)-(d.) are canonically isomorphic.

For (e.), we have that A ≥rep t ≥rep C ∼= A by the respective universality and

co-universality of C∗(A) and C∗(C), so A ∼= t ∼= C.

One nice outcome is that this result is independent of the amenable group (H,Q)

and the reduction ϕ, and simply requires that one exist. In particular, we have a
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gauge-invariant uniqueness theorem for WQLO groups which have a reduction to an

amenable group:

Theorem 4.4.2. Let (G,P ) be a weakly quasi-lattice ordered group which reduces to

an amenable ordered group, and let Λ be a finitely-aligned P -graph. Then there is

exactly one representation (up to canonical isomorphism) of Λ which is Λ-faithful,

tight, and has a gauge coaction of G. This representation is universal for tight repre-

sentations and co-universal for representations which are Λ-faithful and have a gauge

coaction by G.

Proof. Let T be the universal tight representation as in Proposition 4.2.1 (1), so

C∗(T ) ∼= C∗tight(Λ). By that theorem, T is Λ-faithful, tight, and has a gauge coaction.

It is also universal for tight representations.

By Proposition 4.4.1, C∗(T ) ∼= C∗min(Λ), so T is co-universal for representations

which are Λ-faithful and have gauge coaction.

To see that T is the unique representation (up to canonical isomorphism) which is

Λ-faithful, tight, and has a gauge coaction, if there were such another representation t,

it would be covered by T (since t is tight, and T is universal for tight representations)

and it would cover T (since t is Λ-faithful and has a gauge coaction and T is co-

universal for such representations). Thus t ∼= T .

Remark 4.4.3. In the case that (G,P ) reduces to an amenable group, we believe that

the C∗-algebra generated by this unique Λ-faithful, tight, gauge coacting representation

deserves the title of the C∗-algebra of the graph. We will write C∗(Λ) for this algebra.
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4.5 Additional Results in the case of a Strong Reduction

In this section we will consider what further results can be provided about a P -graph

algebra under the assumption that (G,P ) strongly reduces to an amenable group.

Lemma 4.5.1. Let (G,P ) be a WQLO group, and suppose (G,P ) has a strong reduc-

tion to an amenable group. Then every gauge coaction on a finitely-aligned P -graph

is normal.

Proof. Let ϕ : (G,P ) → (H,Q) be the strong reduction where H is amenable. Fix

some finitely-aligned P -graph Λ and a representation s of Λ which has a gauge coac-

tion by G.

Then by Lemma 4.3.5, s has a gauge coaction by H. For sake of clarity, let

Φs and Ωs denote the conditional expectations on C∗(s) as in Lemma 2.3.12 which

respectively arise from its G-coaction and H-coaction.

By Lemma 2.3.14, since H is amenable, then Ωs is faithful. Our desired result is

that Φs is faithful.

To this end, it suffices to show that Ωs = Φs as maps on C∗(s), and since C∗(s) =

span{sαs∗β : α, β ∈ Λ} and both functions are continuous and linear, it suffices to

check that Ωs = Φs on a single term sαs
∗
β.

Recall that by Lemma 2.3.12, we have

Φs(sαs
∗
β) =


sαs

∗
β if d(α) = d(β)

0 if d(α) 6= d(β)

and
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Ωs(sαs
∗
β) =


sαs

∗
β if ϕ(d(α)) = ϕ(d(β))

0 if ϕ(d(α)) 6= ϕ(d(β))

.

But ϕ is a strong reduction, so for the positive elements d(α), d(β) ∈ P , we have

d(α) = d(β) if and only if ϕ(d(α)) = ϕ(d(β)).

Thus Ωs = Φs on each spanning element, so they are equal as functions, and thus

Φs is faithful, so s is normal.

Lemma 4.5.2. Let (G,P ) be a WQLO group with a strong reduction onto an amenable

group, let Λ be a P -graph, and let s be a representations of (G,P ). If s is Λ-faithful,

has a gauge coaction, and every proper bolt in s is nonzero, then s ∼= T .

Proof. Since T covers s, it suffices to show that kerπTs = 0.

To this end, consider the diagram

C∗(T ) B(T )

C∗(s) B(s)

ΦT

πTs ψTs

Φs

which commutes by a routine computation on the spanning elements TµT ∗ν .

Fix some x ∈ kerπTs = 0. Then πTs (x∗x) = 0, so

0 = Φs(π
T
s (x∗x)) = ψTs (ΦT (x∗x)).

Now by Theorem 4.1.15, since kerψTs is generated by the bolts and TµT ∗µ s it

contains, and by the hypotheses on s this kernel contains no proper bolts or TµT ∗µ ,

then we have kerψTs = 0, and thus ΦT (x∗x) = 0.

By Lemma 4.5.1, ΦT is faithful, so x∗x = 0 and thus x = 0. Thus ker πTs = {0},

as desired.
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Corollary 4.5.3. Let Λ be a finitely-aligned N2 ∗N-graph. Then any gauge coaction

by G = Z2 ∗ Z is automatically normal.

Proof. Recall that (Z2∗Z,N2∗N) strongly reduces to (Z2oZ,N2oN), which is amenable.

Then by Lemma 4.5.1, the gauge coaction is normal.

Lemma 4.5.4. Let (G,P ) be a WQLO group and suppose that (G,P ) has a strong

reduction to an amenable group. Let Λ be a finitely-aligned P -graph, and let t be a

representation of Λ. Then the following are equivalent:

1. t has a gauge coaction by G

2. There is a bounded linear map Φt : C∗(t)→ B(t) satisfying

Φt(tµt
∗
ν) =


tµt
∗
ν if d(µ) = d(ν)

0 if d(µ) 6= d(ν)

Proof. (1⇒ 2) If t has a gauge coaction, then such a map Φt exists by Lemma 4.1.8.

(2 ⇒ 1) If such a Φt exists, then by Theorem 19.1 and Definition 19.2 of [10],

writing Bg = span{tµt∗ν : d(µ)d(ν)−1 = g}, we have that B = {Bg}g∈G are linearly

independent and form a topological grading of C∗(t).

In particular, B is a Fell bundle, and we can form the cross-sectional algebra C∗(B)

as in Remark 2.3.7. Each graded component Bg is naturally embedded in C∗(B), so

for each λ ∈ Λ, let sλ denote the operator arising from embedding tλ ∈ Bd(λ) into

C∗(B).

But one may immediately check the T1-T4 relators to check that {sλ}λ∈Λ is a

representation of Λ in C∗(B). Note that since the {sλ}λ∈Λ generate each fiber Bg,

then they generate all of C∗(B), so C∗(B) = C∗(s).
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Our goal is now to show that s has a gauge coaction and that s ∼= t. For the

former, by [17, Proposition 3.3], there is a coaction δ on C∗(B) satisfying

δ(b) = b⊗ Ug for all b ∈ Bg, g ∈ G.

In particular, since sλ ∈ Bd(λ), then δ(sλ) = sλ ⊗ Ud(λ), so δ is a gauge coaction

on s.

Now we must show that s ∼= t. By [10, Theorem 19.5], since C∗(t) is a topologically

graded C∗-algebra, with grading B there is a commutative diagram of surjective ∗-

homomorphisms

C∗(B) = C∗(s) C∗r (B)

C∗(t)

L

πst ψ

where L denotes the regular representation from [10, Definition 17.6] (in that defini-

tion, this map is called Λ, but we have changed its name to avoid confusion with the

P -graph Λ).

Recall that C∗(B) is topologically graded with conditional expectation Φs. Since

G strongly reduces to an amenable group, then by Lemma 4.5.1, the gauge action s

is normal and thus the conditional expectation Φs is faithful. But by [10, Proposition

19.6], the kernel of the regular representation L is given by

ker(L) = {x ∈ C∗(B) : Φs(x
∗x) = 0}

and since Φs is faithful, then kerL = {0}. Since L is injective and L = ψ ◦ πts, then

πts is injective, so s ∼= t, so t has a gauge coaction as desired.
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The reader should note that if such a bounded linear map exists, then there is a

gauge coaction, so that bounded linear map is the conditional expectation of Lemma

2.3.12.

The next result shows that if you represent a P -graph on a Hilbert space in such

a way that the Hilbert space also has a “P -grading” which interacts with the grading

on Λ in a natural way, then this representation has a gauge coaction.

Lemma 4.5.5. Let (G,P ) be a WQLO group and suppose that (G,P ) has a strong

reduction to an amenable group. Let Λ be a finitely-aligned P graph. Let t be a

representation of Λ in B(H) for some Hilbert space H, and suppose that H =
⊕

p∈P Hp

such that tµHp ⊆ Hd(µ)p for all µ ∈ Λ, p ∈ P . Then t has a gauge coaction.

Proof. By Lemma 4.5.4, it suffices to show that there is a bounded linear map Φt :

C∗(t)→ B(t) satisfying

Φt(tµt
∗
ν) =


tµt
∗
ν if d(µ) = d(ν)

0 if d(µ) 6= d(ν)

.

For each p ∈ P , let Qp ∈ B(H) denote the projection onto Hp. Then define

Φt(x) =
∑
p∈P

WOT limit

QpxQp

which is bounded and converges in the weak operator topology because the {Qp}p∈P

are pairwise orthogonal projections. We then wish to show that

Φt(tµt
∗
ν) =


tµt
∗
ν if d(µ) = d(ν)

0 if d(µ) 6= d(ν)

for all µ, ν ∈ Λ.
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To this end, fix some q ∈ P , hq ∈ Hq, and x ∈ H. Then we have that

〈Φt(tµt
∗
ν)hq, x〉 =

∑
p∈P

WOT limit

〈Qptµt
∗
νQphq, x〉

= 〈Qqtµt
∗
νQqhq, x〉

= 〈Qqtµt
∗
νhq, x〉

since Qphq = 0 if p 6= q. Since our choice of x ∈ H was arbitrary, we may unbind the

x term, so we have shown that Φt(tµt
∗
ν)hq = Qqtµt

∗
νhq.

But note that tµt
∗
νhq ∈ Hd(µ)d(ν)−1q and q = d(µ)d(ν)−1q if and only if d(µ) = d(ν),

so

Φt(tµt
∗
ν)hq = Qqtµt

∗
νhq =


tµt
∗
νhq if d(µ) = d(ν)

0 if d(µ) 6= d(ν)

.

Since this is true for each q ∈ P and hq ∈ Hq, and the Hq span all of H, we may

unbind the hq to get that

Φt(tµt
∗
ν) =


tµt
∗
ν if d(µ) = d(ν)

0 if d(µ) 6= d(ν)

as desired.

Corollary 4.5.6. Let (G,P ) be a WQLO group and suppose that (G,P ) has a strong

reduction to an amenable group. Let Λ be a finitely-aligned P -graph. Then L ∼= T ,

where L denotes the regular representation of Λ and T denotes the Toeplitz represen-

tation of Λ.
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Proof. To show that L is universal, by Lemma 4.5.2 it suffices to show that L it is

Λ-faithful, has a gauge coaction, and that every proper bolt is nonzero. By Remark

2.5.6, L is Λ-faithful and its proper bolts are nonzero.

To show that L has a gauge coaction, we will appeal to Lemma 4.5.5. Recall that

L is a representation in B(`2(Λ)) by

Lµeα =


eµα if s(µ) = r(α)

0 if s(µ) 6= r(α)

.

Therefore, writing Λp = {µ ∈ Λ : d(µ) = p}, we can see that `2(Λ) =
⊕

p∈P `
2(Λp),

and a simple calculation shows that Lµ`
2(Λp) ⊆ `2(Λd(µ)p). Therefore, by Lemma

4.5.5, L has a gauge coaction.

Thus by by Lemma 4.5.2, L ∼= T .

The following result shows that if Λ has no “infinite paths”, then the ultrafilter

representation is the universal tight representation.

Lemma 4.5.7. Let (G,P ) be a WQLO group and suppose that (G,P ) has a strong

reduction to an amenable group. Let Λ be a finitely-aligned P -graph. Recall that Λ

has a partial order given by α ≤ β if β ∈ αΛ. Suppose that with respect to this partial

order, every chain in Λ has an upper bound in Λ. Then the ultrafilter representation

f of Λ is the universal tight representation of Λ.

Proof. By our gauge-invariant uniqueness theorem for P -graphs, it suffices to show

that f is Λ-faithful, tight, and has a gauge coaction. The former two properties are

shown in Lemma 4.1.5. It then suffices to use Lemma 4.5.5 to show that f has a

gauge coaction.
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To this end, we wish to show that the ultrafilters in f correspond to maximal

paths in Λ. More formally, for each path α ∈ Λ, let Uα = {µ ∈ Λ : µ ≤ α}. It is

straightforward to check that Uα is a filter, and that it is an ultrafilter if and only if

α is maximal. We wish to show that all ultrafilters in Λ are of the form Uα.

Fix some ultrafilter U . If U is finite, it must contain a maximal element α, in

which case U = Uα. If instead U is infinite, since U ⊆ Λ is countable, we may

enumerate U = {αn}n∈N. Inductively define a sequence {βn}n∈N ⊆ U by β1 = α1,

and for n > 1, let βn be a common upper bound of βn−1 and αn which is guaranteed

to exist by the F2 property of filters. Note that U =
⋃∞
n=1 Uβn .

Then {βn}n∈N is a chain in Λ, so by our hypothesis, it has an upper bound β ∈ Λ.

Then Uβ ⊇ Uβn for all n, and since U =
⋃∞
n=1 Uβn , then Uβ ⊇ U , and since U is an

ultrafilter, U = Uβ, as desired.

Therefore, we can partition the set of ultrafilters by the degree of their unique

maximal element. That is, writing Λ̂p
∞ = {Uα ∈ Λ̂∞ : d(α) = p}, we have Λ̂∞ =⊔

p∈P Λ̂p
∞, and therefore

`2(Λ̂∞) =
⊕
p∈P

`2(Λ̂p
∞).

Finally, a simple calculation shows that fµ`
2(Λ̂p

∞) ⊆ `2(Λ̂
d(µ)p
∞ ), so by Lemma 4.5.5,

f has a gauge coaction, as desired.

Example 4.5.8. Let G = BS(1, 2) = 〈c, t|tc = c2t〉, and let P = {c, t}∗. Note

that BS(1, 2) is amenable, and therefore has a strong reduction to an amenable group

(itself). Define a P -graph Λ as in this diagram:
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v1 v2

v3 v4 v5

t1

c1

t2

c2 c3

so Λ = {v1, v2, v3, v4, v5, c1, c2, c3, t1, t2, c2t1, c3c2, c3c2t1 = c1t2}, where the range and

source maps are as indicated in the diagram, the operation is concatenation of paths,

and the degrees are given by d(vi) = 1, d(ci) = c, d(ti) = t, and so on.

Since Λ is finite, all chains have an upper bound, so by Lemma 4.5.7, the ultrafilter

representation is the universal tight representation and the set of ultrafilters is in

bijection with the maximal paths in Λ. Thus Λ̂∞ = {v1, c1, t1, c2t1, c3c2t1 = t2c1}, so

C∗(f) is represented on a 5-dimension vector space and C∗(f) ⊆M5, the space of 5-

by-5 matrices. A direct calculation with respect to the basis {ev1 , ec1 , et1 , ec2t1 , ec3c2t1 =

et2c1} shows that

fv1 = E11

fc1 = E21

ft1 = E31

fc2t1 = E41

ft2c1 = E51

where Eij denotes the matrix consisting of all 0s except for a single 1 in the ith

row and jth column (a matrix unit). Since these matrix units generate M5, then

C∗(f) = C∗(Λ) = M5.

It is notable that the results in this section apply only to groups with strong reduc-
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tions, instead of any reduction. The only “bottleneck” for this is Lemma 4.5.1, which

says that gauge coactions are normal when (G,P ) strongly reduces to an amenable

group. We conjecture that a (non-strong) reduction to an amenable group would

suffice:

Conjecture 4.5.9. Let (G,P ) be a WQLO group, let Λ be a finitely aligned P -graph,

and suppose (G,P ) reduces to an amenable group. Then every gauge coaction on a

representation of Λ is normal.

Therefore, the other results in this section only require the hypothesis that (G,P )

reduces to an amenable group.

4.6 Applications to Kirchberg Algebras in the UCT Class

Definition 4.6.1. A C∗-algebra A is called a Kirchberg algebra if it is purely infinite,

simple, nuclear, and separable.

A C∗-algebra is said to be in the UCT class if it satisfies the hypotheses of the

universal coefficient theorem. (For a more thorough treatment, the reader is directed

to the introduction of [1]).

Proposition 4.6.2. Let A be a Kirchberg algebra in the UCT class. Then there is a

finitely aligned N2 ∗ N-graph such that A is stably isomorphic to C∗(Λ).

Proof. By [3, Corollary 6.3], there is a finitely aligned N2 ∗ N-graph Λ such that A

is stably isomorphic to C∗min(Λ). But since N2 ∗ N strongly reduces to an amenable

group by Corollary 3.3.2, then C∗min(Λ) = C∗(Λ) by the gauge-invariant uniqueness

theorem for P -graphs (Theorem 4.4.2). Thus A is stably isomorphic to C∗(Λ).
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Chapter 5

Appendix 1: Tight Representations

In this section, our goal is to justify our use of the term “tight” in the context of

representations of P -graphs by showing that a representation is tight in the sense of

Definition 2.5.5(c) if and only if it corresponds to a tight representation of a semilattice

in the sense of Exel’s definition in [8].

In this section, we fix (G,P ) a WQLO group, Λ a finitely-aligned P -graph, and

t : Λ→ C∗(t) a representation. We will often write qλ = tλt
∗
λ.

It can be easy to be confused about what symbols denote paths, sets of paths,

and sets of sets of paths. To avoid confusion, we will try to stick to the convention

that greek letters like α denote paths in Λ, lower case letters (and µΛ where µ ∈ Λ)

denote subsets of Λ, and capital letters denote collections of subsets.

5.1 Background

Recall the following definition of the tightness from 2.5.5(c), slightly modified to keep

with our notation for this section:

Definition 5.1.1. A representation t of a graph Λ is tight if for every µ ∈ Λ and

finite z ⊆ µΛ which is exhaustive for µΛ, we have that
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∏
α∈z

(qµ − qα) = 0

where qλ = tλt
∗
λ.

This condition was referred to a tightness before, but in this section will be referred

to as H-tightness to avoid confusion.

The following terminology is from [8, Section 2]:

Definition 5.1.2. In [8]’s context, a partially ordered set contains a smallest element,

denoted 0. A semilattice is a partially ordered set where for all x, y ∈ X, the set

{z ∈ X : z ≤ x, y} has a maximum element, denoted x ∧ y. That is, x ∧ y is the

infimum of x and y, and every two elements have an infimum (although it may be 0).

Given, x, y ∈ X, we say x and y are disjoint and write x ⊥ y if there is no nonzero

z ∈ X with z ≤ x, y. Otherwise we say that x and y intersect, and write x e y.

Definition 5.1.3. Let E be a semilattice. Given finite X, Y ⊆ E, let EX,Y denote

the subset of E given by

EX,Y = {z ∈ E : z ≤ x ∀x ∈ X, z ⊥ y ∀y ∈ Y }.

Given any subset F ⊆ E, we shall say that a subset Z ⊆ F is a cover for F if,

for every nonzero x ∈ F there exists z ∈ Z such x and z have a common extension.

Definition 5.1.4. Let σ : E → B be a representation of a semilattice E in a Boolean

algebra B. We shall say that σ is tight if for every finite subsets X, Y ⊆ E and for

every finite cover Z for EX,Y , one has that

∨
z∈Z

σ(z) ≥
∧
x∈X

σ(x) ∧
∧
y∈Y

¬σ(y).
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Since the reverse inequality is always true, tightness is equivalent to equality in

this expression.

To avoid confusion with H-tightness, we will refer to this notion of tightness as

E-tightness.

5.2 Building our Semilattice

We’ll now define our semilattice E and develop its basic properties.

Remark 5.2.1. Given Λ, let E(Λ) = {
⋃n
i=1 αiΛ : αi ∈ Λ} denote the collection

of finite unions of αΛs, ordered under containment. When Λ is clear from context,

we will write E for E(Λ). The empty set serves as the zero element for E, and two

elements a, b of E have a least lower bound a∩b, which is also in E by finite alignment

of Λ. Thus E is a semilattice.

Recall that Λ is given a partial ordering ≤ by α ≤ β if and only if β = αα1. Note

that α ≤ β if and only if βΛ ⊆ αΛ.

For a ∈ E, we let m(a) = {α ∈ a : α minimal in a} denote the set of maximal

elements of a (with respect to the ordering on Λ). For any a ∈ E, we may write a =⋃n
i=1 αiΛ for some αi ∈ Λ, so it follows that m(a) ⊆ {αi}ni=1, so m(a) is finite. Note

also that m(a) is empty if and only if a is empty. Finally, note that a =
⋃
α∈m(a) αΛ.

So in this way, m provides a unique representation of each element of E, and provides

a bijection between E and the set of finite, pairwise incomparable subsets of Λ.

If t be a representation of Λ, let qα = tαt
∗
α for all α ∈ Λ, and let Bt ⊆ C∗(t) be

the Boolean algebra generated by 1 and {qα : α ∈ Λ}, where qα ∧ qβ = qαqβ.

Finally, given such a representation t, define σt : E → Bt by
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σt : a =
⋃

α∈m(a)

αΛ 7→
∨

α∈m(a)

tαt
∗
α =

∨
α∈m(a)

qα.

When the representation t is clear from context, we will write σ and B for σt and Bt,

respectively.

5.3 Technical Lemmas

Lemma 5.3.1 (Intersection Criterion). If a, b ∈ E, then ae b if and only if there are

α ∈ m(a), β ∈ m(b) such that α e β (in the sense of having a common extension in

Λ).

Proof. Observe that a∩ b =
⋃
α∈m(a),β∈m(b) αΛ∩βΛ, so the lefthand side is nonempty

if and only if one of the terms on the righthand side are nonempty. But αΛ ∩ βΛ is

nonempty if and only if α has a common extension with β.

Lemma 5.3.2. Let Z be a finite cover of EX,Y . Then there is another finite cover

Z ′ of EX,Y such that every element of Z ′ is of the form αΛ, and
∨
z∈Z z =

∨
z′∈Z′ z

′.

Proof. Let B = m(
⋃
z∈Z z) and let Z ′ = {βΛ : β ∈ B}. Then by construction B and

hence Z ′ are finite sets, and by our initial remark on m, we know that
⋃
z∈Z z =

∨
z∈Z z

can be reconstituted from its minimal elements in the sense that
∨
z∈Z z =

∨
z′∈Z′ z

′.

It then suffices to show that Z ′ is a cover of EX,Y . To first show that it is contained

in EX,Y , we know that if βΛ ∈ Z ′, then β ∈ B, so β must be minimal in some z0 ∈ Z.

Then for all x ∈ X and y ∈ Y , βΛ ≤ z0 ≤ x, and βΛ ∧ y ≤ z0 ∧ y = 0, so βΛ ≤ x

and βΛ ⊥ y for all x ∈ X, y ∈ Y . Thus Z ′ ⊆ EX,Y .

To show it covers, fix some nonzero w ∈ EX,Y . Then since Z covers EX,Y , there is

a z ∈ Z such that z e w. Then by the intersection criterion, there is a µ ∈ m(z), ν ∈
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m(w) such that µ e ν. Since µ ∈ m(z), then µΛ ≤
⋃
β∈B βΛ, so there is some β ∈ B

with β ≤ µ. Then β e ν, so βΛ e w. Thus Z ′ is a finite cover.

Lemma 5.3.3. Let X, Y ⊆ E be finite sets. Then there is a finite set Y ′ ⊆ E such

that EX,Y = EX,Y ′ and Y ′ ⊆ EX,∅.

Proof. By the remark in [8] following Definition 2.5, we may assume without loss of

generality, that X = {x}, a singleton. Let Y ′ = {y∧x : x ∈ X} which is finite. Then

by construction, y′ = y ∧ x ≤ x for all y′ ∈ Y ′, so Y ′ ⊆ EX,∅. It then suffices to show

that EX,Y = EX,Y ′ .

If w ∈ EX,Y , then w ≤ x and for all y ∈ Y , w ⊥ y, so w ∧ y = 0, and thus

w ∧ y′ = w ∧ y ∧ x = 0 for all y′ ∈ Y ′. Thus w ∈ EX,Y ′ .

Conversely, if w ∈ EX,Y ′ , then w ≤ x and for all y′ ∈ Y , w ⊥ y′, so w ∧ y ∧ x = 0.

But w ≤ x, so w ∧ y ∧ x = (w ∧ x) ∧ y = w ∧ y = 0, so w ∈ EX,Y .

Thus EX,Y = EX,Y ′ as desired.

Lemma 5.3.4. Let µ ∈ Λ and B ⊆ µΛ be finite. Then qµ =
∨
β∈B qβ if and only if

0 =
∏
β∈B

(qµ − qβ).

Proof. The result follows from a chain of equivalences:

qµ =
∨
β∈B

qβ

0 = qµ −
∨
β∈B

qβ by subtraction

0 =
∧
β∈B

(qµ − qβ) by De Morgan’s laws

0 =
∏
β∈B

(qµ − qβ) by definition of
∧

.
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5.4 The Proof of Equivalence

Here we prove the following proposition. The main interest is the equivalence of the

first and last criteria, and the middle statements are there to ease the proof.

Proposition 5.4.1. If t is a representation of Λ, and σ = σt is the associated repre-

sentation of the semilattice E = E(Λ), then the following are equivalent:

1. σ is a tight representation in the E-sense.

2. σ is a tight representation in the E-sense when Y = ∅.

3. σ is a tight representation in the E-sense when Y = ∅ and X = {µΛ}.

4. t is a tight representation in the H-sense.

Proof. Certainly (1)⇒ (2)⇒ (3). We will prove four non-obvious directions: (3)⇒

(4), (4)⇒ (3), (3)⇒ (2) and (2)⇒ (1).

(3) ⇒ (4) Fix some µ ∈ Λ. We wish to show that if B ⊆ µΛ is exhaustive, then

ZB = {βΛ : β ∈ B} is a finite cover of E{µΛ},∅. In particular, given such an exhaustive

B, if w ∈ E{µΛ},∅ is nonzero, then taking α ∈ m(w), α ∈ w ≤ µΛ, so α ∈ µΛ, so since

B is exhaustive there is a β ∈ B such that α e β, and by the intersection criterion,

βΛ e w. Thus ZB covers.

Then by (3), we have that
∨
z∈ZB σ(z) = σ(µΛ) and substituting σ(z) = σ(βΛ) =

qβ and σ(µΛ) = qµ, we have

∨
β∈B

qβ = qµ
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which is equivalent to H-tightness by Lemma 5.3.4.

Given such an exhaustive B, if w ∈ E{µΛ},∅ is nonzero, then taking α ∈ m(w),

α ∈ w ≤ µΛ, so α ∈ µΛ, so since B is exhaustive there is a β ∈ B such that α e β,

and by the intersection criterion, βΛ e w. Thus ZB covers.

(4) ⇒ (3) Fix some µ ∈ Λ. We wish to show that if Z ⊆ E{µΛ},∅ is a finite

cover, then BZ =
⋃
z∈Zm(z) is a finite exhaustive subset of µΛ. In particular, given

α ∈ µΛ, we have that αΛ ∈ E{µΛ},∅, so there is z ∈ Z such that z e αΛ. Then by the

intersection property, there is a β ∈ m(z) such that β eα. Thus BZ is exhaustive for

µΛ, as desired.

Then, by (4), and Lemma 5.3.4, we have that

qµ =
∨
β∈BZ

qβ.

Substituting σ(µΛ) = qµ and σ(βΛ) = qβ, then regrouping the terms on the right,

we have that

σ(µΛ) =
∨
β∈BZ

σ(βΛ)

=
∨
z∈Z

∨
β∈m(z)

σ(βΛ)

=
∨
z∈Z

σ(
∨

β∈m(z)

βΛ)

=
∨
z∈Z

σ(z)

as desired.

(3 ⇒ 2) Let X ⊆ E and let Z be a finite cover of EX,∅. By the remark in
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[8] following Definition 2.5, we may assume without loss of generality that X is a

singleton, since otherwise we may replace X with {xmin} where xmin =
∧
x∈X x.

Let Z be a finite cover of EX,∅. By Lemma 5.3.2, we may assume without loss of

generality that Z = {β1Λ, ..., βnΛ} for some β1, ..., βn ∈ Λ. Let B = {β1, ...βn} and

A = m(x).

Now, for each α ∈ A and β ∈ B, let Zα,β = {γΛ : γ ∈ MCE(α, β)}. Note that

Zα,β is finite and γΛ ∈ Zα,β is in αΛ ∩ βΛ.

We wish to show that for fixed β ∈ B,
⋃
α∈A Zα,β is a cover for E{βΛ},∅ and for

fixed α ∈ A, that
⋃
β∈B Zα,β is a cover for E{αΛ},∅. Each is a finite union of finite sets,

hence finite, and is contained in the appropriate space. It then suffices to show that

they are covering.

For the former set, fix some nonzero w ∈ E{βΛ},∅. Since w is nonzero, there is

some µ ∈ m(w). Then µΛ ≤ w ≤ βΛ ≤ x, so µΛ ∧ x = µΛ < ∞, so µΛ e x, and

thus there is α ∈ m(x) such that µ e α. That is, α and µ have a common extension

ν. Since β is a prefix of µ, then ν is a common extension of α and β as well. Thus

some prefix of ν is a γ ∈ MCE(α, β), so ν is a common extension of both γ and µ.

That is, γΛ e w, and γΛ ∈ Zα,β. Thus
⋃
α∈A Zα,β is a cover for E{βΛ},∅, as desired.

For the latter set, fix some nonzero w ∈ E{αΛ},∅. Then we know that w ≤ αΛ ≤ x,

so w ∈ EX,∅, and because Z is a cover, there is some βΛ ∈ Z with w e βΛ. Then

by the intersection criterion, there is a µ ∈ m(w) such that µ e β. That is, µ and

β have a common extension ν. However, α ≤ µ as w ∈ E{αΛ},∅, so ν is a common

extension of β and α, and thus has a prefix which is some γ ∈ MCE(β, α). Thus ν

is a common extension of µ and γ, so w e γΛ, and γΛ ∈ Zα,β. Thus
⋃
β∈B Zα,β is a

cover for E{αΛ},∅, as desired.

Now, using (3), the fact that these two sets cover gives us that
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σ(βΛ) =
∨

γ∈
⋃
α∈A Zα,β

σ(γΛ)

=
∨
α∈A

∨
γ∈MCE(α,β)

σ(γΛ)

and

σ(αΛ) =
∨

γ∈
⋃
β∈B Zα,β

σ(γΛ)

=
∨
β∈B

∨
γ∈MCE(α,β)

σ(γΛ)

Finally, using the fact that x =
⋃
α∈A αΛ, we have that

σ(x) =
∨
α∈A

σ(αΛ)

=
∨
α∈A

∨
β∈B

∨
γ∈MCE(α,β)

σ(γΛ)


=

∨
β∈B

∨
α∈A

∨
γ∈MCE(α,β)

σ(γΛ)


=

∨
β∈B

σ(βΛ)

=
∨
z∈Z

σ(z)

which is the E-tightness condition for EX,∅.

(2 ⇒ 1) Let X, Y ⊆ E be finite, and let Z be a finite cover of EX,Y . By Lemma

5.3.3, we may assume that Y is a subset of EX,∅. Let Z ′ = Z ∪ Y . We claim that Z ′
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is a finite cover of EX,∅. In particular, given w ∈ EX,∅, if w ⊥ y for all y ∈ Y , then

w ∈ EX,Y , so w e z for some z ∈ Z ⊆ Z ′. If instead w 6⊥ y for some y, then w e y for

some y ∈ Y ⊆ Z ′.

Then by (2), we know that

∨
z′∈Z′

σ(z′) =
∧
x∈X

σ(x)

and meeting with
∧
y∈Y ¬σ(y), we have that

( ∨
z′∈Z′

σ(z′)

)
∧
∧
y∈Y

¬σ(y) =
∧
x∈X

σ(x) ∧
∧
y∈Y

¬σ(y)

Simplifying the lefthand side, we have that

( ∨
z′∈Z′

σ(z′)

)
∧
∧
y∈Y

¬σ(y) =

(∨
z∈Z

σ(z) ∨
∨
y′∈Y

σ(y′)

)
∧
∧
y∈Y

¬σ(y)

=

(∨
z∈Z

σ(z) ∧
∧
y∈Y

¬σ(y)

)
∨

(∨
y′∈Y

σ(y′) ∧
∧
y∈Y

¬σ(y)

)

=

(∨
z∈Z

σ(z) ∧
∧
y∈Y

¬σ(y)

)

=
∨
z∈Z

(
σ(z) ∧

∧
y∈Y

¬σ(y)

)

Now, for a fixed z ∈ Z, y ∈ Y , and for any α ∈ m(z), β ∈ m(y), we have that

α ⊥ β, so qαqβ = 0. Then σ(αΛ)∧¬σ(βΛ) = qα(1−qβ) = qα, so σ(z)∨¬σ(y) = σ(z).

Thus
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∨
z∈Z

(
σ(z) ∧

∧
y∈Y

¬σ(y)

)
=
∨
z∈Z

σ(z)

so by transitivity,

∨
z∈Z

σ(z) =
∧
x∈X

σ(x) ∧
∧
y∈Y

¬σ(y)

as desired. This completes the proof that (2) implies (1).
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