

26

Figure 4.3: Data preprocessing tool

27

classification and preprocessing tools. Features is the same as when trained the clas-

sifier. The first seven days of popularity data for a section of increased, decreased

or unchanged popularity and the classifications are any one of these three options

of popularity. Popularity is defined in Equation 4.1 Example training datasets are

shown in Table 4.1. During data preprocessing it became obvious different data tiers

have different access patterns. This is leveraged using separate classifiers for each

data tier.

popularity = log(n cpu hours ∗ n accesses) (4.1)

Class Day 1 Day 2 Day 3 Day 4 Day 5 Day 6 Day 7
increasing 2.3 5.2 8.9 6.6 7.4 8.0 9.1
decreasing 10.5 4.2 8.4 2.4 3.1 2.8 1.4
unchanged 0.0 1.1 2.1 0.0 0.3 1.3 1.2

Table 4.1: Example machine learning training data for trend classifier

4.2.3 Average Popularity Regression

Predicting a dataset will become popular is a good start but is not sufficient to accu-

rately balance the system. To balance the system, each replica needs to have about

the same amount of accesses and CPU hours per gigabyte. Therefore, it is important

to not only classify general popularity trends, but also estimate how popular a dataset

will be during the upcoming weeks.

To do this we implemented a regressor. The reason for this choice was the accuracy

of the regressor. Training a dataset popularity model for all datasets in the whole

system and for their whole time span is inefficient and hard to accurately train.

Many datasets are rarely used and may have next to no accesses for months at a

time. Training a classifier on all this data is not useful for estimating increasing

28

and decreasing popularity. Furthermore, data popularity in a scientific data grid

environment can be sporadic. We wanted to train the classifier to not predict increased

popularity for short spikes of popularity. This is because in a data grid environment

network capacity is limited. Creating replicas for short spikes of popularity is a waste

of network resources. By using our first classifier we try to eliminate a large amount

of the datasets which have no change in popularity or simply have a short spike and

should not be considered for replication. Such behavior is called so called overfitting

and is a common issue in machine learning [8]. This makes it much more possible

to build an accurate model for those cases where a dataset is in fact increasing in

popularity and will stay popular for some time.

The average popularity regressor is trained by taking the average dataset popu-

larity for the following week after an increase or decrease. A log function is applied

to the values to keep a consistency of scale with the features which are the same

as in the trend classifier. The algorithm used is a Bayesian Ridge Regression al-

gorithm [8]. Based on our tests the SVM based algorithms can be very powerful

in classification problems while Bayesian probability based algorithms are better for

solving time-series regression problems. The accuracy of the average popularity re-

gressors is presented in Section 5.1.

Both machine learning algorithms are implemented using the scikit-learn toolkit

for Python [46].

4.3 Rocker Board

Rocker Board module is the system balancing algorithm. The algorithm uses informa-

tion produced in the other two main modules and makes the final decisions on which

datasets should be replicated and which replicas can be deleted. Furthermore, the

29

rocker board algorithm does site selection for suggested replications and deletions. In

short, the rocker board algorithm makes sure the data grid is balanced for improved

resource utilization

The idea of the rocker board algorithm is simple and, as the name implies, is based

on the a rocker board. A rocker board is a simple balancing tool consisting of a circular

board balancing on top of a hemisphere (See Figure 4.4). The goal is to balance the

rocker board such that no part of the actual board touches the ground. The problem

being that if too much force is put on one side the board starts tipping and quickly

reaches the ground unless appropriate adjustments are made to redistribute the force

across the board. This concept can be applied to a data grid too. The goal is to

distribute jobs across the system such that one site does not get overloaded. This

could happen if several very popular datasets only have a few replicas on the same

sites. These sites become overloaded with jobs and the system starts tipping until

finally jobs are put in a queue, one part of the board is now touching the ground. For

a visual description see Figure 4.5.

Figure 4.4: Rocker board

The strategy of the rocker board algorithm is to rank all datasets based on popu-

larity predictions. The predictions are then mapped to a suggested number of replicas.

30

Figure 4.5: Two popular datasets have only one replica at the same site. All users
submit jobs to these datasets and that site becomes overloaded while computational
resources on the other two sites are not used at all.

Based on the suggested number of replicas the rocker board algorithm will create and

delete replicas to achieve these values.

The beauty of this algorithm is that the popularity rankings can be based on any

kind of data and works for both past, current and future data. If there is no historical

data to train a machine learning classifier the rocker board algorithm can still be used

on the current status of the system. If, however, prediction data exists the algorithm

will balance the system before it has even started tipping. Anyone who has ever

stood on a rocker board knows that once it starts tipping it takes a lot more effort

to balance it again rather then when you are just standing on it when it is already

balanced. By predicting popularity the system can be kept balanced making data

available to users as it is needed instead of as a reaction to lack of data.

31

4.3.1 Dataset Rankings

Dataset rankings are calculated based on the popularity data from the popularity

prediction module. Popularity values are normalized based on dataset sizes as we

are trying to balance the system in terms of number of accesses and CPU hours

per gigabyte. These new popularity values are then mapped into the discrete range

(min replicas,max replicas). min replicas and max replicas can be set in the con-

fig file following the policy neutrality principle.

From this, dataset rankings are the suggested changes in number of replicas cal-

culated as suggested replicas − current replicas. These rankings are used in the

selection process where the highest ranked datasets are selected and suggested for a

new replica. The selection process keeps going until max(rank) ≤ 0 or the maxi-

mum allowed gigabytes of transfers per day is reached. The full selection algorithm

is shown in Algorithm 1, the site selection part is described in Section 4.3.2.

Algorithm 1 Replica Selection

1: procedure replicaSelection(dataset rankings)
2: subscriptions← []
3: subscribed gb← 0
4: while subscribed gb < max gb do
5: dataset name← max(dataset rankings)
6: if dataset rank < 1 then
7: break
8: end if
9: site name← getSite()
10: subscriptions← (dataset name, site name)
11: subscribed gb← subscribed gb + dataset size
12: updateSiteRankings()
13: dataset rankings[dataset name]← dataset rankings[dataset name]− 1
14: end while
15: return subscriptions
16: end procedure

The deletion selection is very similar to the replication process. The dataset

32

with the lowest ranking is selected and one of the replicas is deleted based on the

site selection algorithm. The procedure is continued until all sites are below a certain

threshold. If no sites are above the recommended threshold no replicas will be deleted.

The deletion algorithm is shown in Algorithm 2. Once again the site selection is

described in Section 4.3.2.

Algorithm 2 Replica Deletion

1: procedure deletionSelection(dataset rankings)
2: deletions← []
3: site name← getSite()
4: while site name do
5: dataset name← min(dataset rankings)
6: deletions← (dataset name, site name)
7: updateSiteRankings()
8: dataset rankings[dataset name]← dataset rankings[dataset name] + 1
9: if dataset name have minimum replicas then
10: delete dataset rankings[dataset name]
11: end if
12: site name← getSite()
13: end while
14: return deletions
15: end procedure

4.3.2 Site Rankings

To control sites the system manager keeps two limits in terms of storage utilization.

The soft limit is the site utilization goal. However, when the rocker board algorithm is

creating new replicas it can fill sites up to the hard limit. This forces out unpopular

replicas by pushing new popular replicas to the sites. If a site is above the soft

threshold the rocker board algorithm will delete unpopular replicas until the storage

utilization is below the soft threshold.

For replica selection, sites are ranked based on three criteria:

33

• Popularity: The popularity is a simple sum of popularity per gigabyte for all

datasets at the site times the total storage in gigabytes used by those datasets.

• Performance: Performance is the maximum number of available CPUs divided

by the total storage at the site.

• Available storage: Is a safety guard to make sure sites are not filled above

the hard limit. If the site is filled above the hard limit this term becomes 0,

otherwise it is 1.

The popularity metric is the metric used for system site balance. The performance

component makes sure that not all sites are assumed equal, some sites have a lot more

CPUs per gigabyte than other sites, which needs to be taken into consideration. The

final rank is calculated according to Equation 4.2. The equation is inverted because

sites are selected using weighted random selection where higher values are more likely

to be chosen.

rank =
performance ∗ available storage

popularity
(4.2)

As we can see in Algorithm 1, after each replica selection site rankings are recal-

culated to make sure a site with unpopular data is not selected continuously.

For deletion selection the sites are ranked in a different way. The idea is that

the replication algorithm will take care of accurately distributing data to balance the

system. The cleaning procedure is simply used to make sure sites are not above their

soft limit. If the selection algorithm did a good job, popular datasets should have

been distributed to unpopular sites, meaning there are replicas at the site that can be

deleted. As the site is cleaned up to go below the soft limit the lowest ranked datasets

at sites above the threshold will be selected. Because of this the site rankings for the

34

deletion selection is simply the amount of data above the soft limit for each site. If

it is not above the soft limit the site will not be considered for deletions; as soon as

a site ends up below the limit it will be removed from the rankings.

The rocker board algorithm is evaluated in Section 5.2

35

Chapter 5

Evaluation

This chapter is divided into two main sections. In Section 5.1 we evaluate the per-

formance and accuracy of the classification and regression algorithms used to predict

data popularity. In Section 5.2 we evaluate the performance of our rocker board

algorithm and the dynamic data manager implemented for the CMS experiment.

5.1 Popularity Prediction

This section evaluates the accuracy of several popularity prediction algorithms. We

implemented two classifiers and two regressors and compared the performance of these

on test data generated from the CMS experiment using our data preprocessing tool.

One of the problems we had was a small amount of training data. This is a common

problem when training machine learning algorithms, as was the case in this work. At

the beginning of May 2015 Run2 started at CERN. In the beginning analysis activity

was spiking for certain data tiers to slow down significantly after two months. See

Figure 5.1. We decided not to use data from before August 2015 to get more accurate

training data, by this time usage patterns had settled down somewhat. Furthermore,

36

a lot of datasets are used so little and sporadically that when usage increase is detected

it will already be unpopular again. We here talk about a couple of days of usage.

These datasets are of no use when generating training data of increasing popularity,

only to teach classifiers that such short spikes in popularity should be considered

unchanged popularity.

To see the impact of increasing training data we ran the classifier on 60% up to

100% of all our training data sets. The results are shown in Figure 5.2. We still think

our results were good but believe the accuracy could be increase even more with an

increase of training data.

5.1.1 Data Preprocessing Tool

The visual popularity data classification tool ended up having a huge impact on our

work. At first, we had problems generating good training data using automated

mathematical models. Having this visual tool made it possible for us to intuitively

generate more accurate training data for the machine learning algorithms. However,

this wasn’t the only improvement we got from this tool. When classifying datasets

we noticed that different data tiers had specific usage patterns. See Figure 5.3 for

example. This insight made us realize that we could make more powerful classifiers

and regressors by training a distinct classifier and regressor for each data tier. It also

led to some ideas for future work which is further discussed in Chapter 6.

5.1.2 Popularity Trends

Accurately predicting popularity trends in a data grid is one of the main goals of this

thesis. To evaluate our popularity trend classifiers we generated a dataset of known

classifications using the visual preprocessing tool from Section 4.2.1. A general rule

37

widely used in machine learning is to use 80% of the data for training and 20% for

testing. The first classifier is a Support Vector Classifier (SVC). The full implemen-

tation is described in Section 4.2.2. The second is a Naive Bayes classifier using a

Gaussian distribution (GaussianNB). We ran two sets of tests on both classifiers.

The first kept the number of accesses and number of CPU hours per day as separate

features, while the second combined them using multiplication. Due to the massive

amount of accesses and CPU hours of some datasets all of these values were reduced

by applying a log base ten operation. The results are shown in Figure 5.4 and 5.5.

From this data we can conclude the following:

• For our data the SVC is by far the superior classifier over the GaussianNB

classifier which performs significantly worse and was therefore not used in the

final design.

• Some data tiers such as MINIAODSIM and MINIAOD are much easier to pre-

dict usage patterns for than other data tiers. From this we can see the effec-

tiveness of splitting up the classifiers between data tiers.

• Keeping the number of accesses and the number of CPU hours separate was

0.7% more accurate than combining the two as one feature. However, as we

show in the next section, the performance of combining the number of accesses

and the number of CPU hours as one feature proved to be significantly better

in the popularity regressor. To keep consistency we used the combined single

feature in the classifier as well.

5.1.3 Average Popularity

To perform system balancing some sort of estimate of the expected popularity is

required. Without actual values the trend prediction itself becomes almost pointless.

38

We once again used one regressor based on Support Vector Machines and one based

on Bayesian probability. The first one is a Support Vector Regressor (SVR) while the

second is a Bayesian Ridge Regressor (BRR). Evaluation of regressors is based on the

coefficient of determination (R2) of the prediction [45]. The maximum and optimal

score is 1 making a score as close as possible to 1 desired. We tested both regressors

the same way as we tested the classifiers. We first ran the tests keeping the number

of accesses and the number of CPU hours separate. After that we compared the

results to combining the number of accesses and the number of CPU hours. Results

are shown in Figures 5.6 and 5.7. Unlike the classifier, the regressors had significant

difference in accuracy between the two different features, combining CPU hours and

accesses as one feature proved to be much more accurate. Because of this we combined

the number of accesses and the number of CPU hours and used that measurement as

the feature in both the classifier and regressor in the final design. For the regressor

the Bayesian probability based method significantly outperformed the Support Vector

Machine approach. Using accesses and CPU hours as a combined feature the Bayesian

Ridge Regressor had an average score of 0.943, while the Support Vector Regressor

only had an average score of 0.445.

5.2 System Balance

In this section we evaluate our rocker board algorithm. The goal was to better balance

the system to decrease user job queue times. However, queue times are heavily

dependent on the scheduling algorithm. In our case this is outside of our control as

this is done by CRAB. Because job scheduling was outside the scope of this thesis, this

metric was not an accurate measurement of the performance of our work. Instead, we

focused on measuring the system balance based on old popularity data from the CMS

39

experiment. We ran our algorithm once a week on old popularity data and recorded

the changes in data replicas. For each week we calculated the average popularity

per gigabyte on each site in the grid. The popularity was normalized based on site

performance.

The simulation starts on an unbalanced system and is then balanced for 90 days

by the rocker board algorithm. Figure 5.8 shows the ratio of standard deviation and

average site popularity. The ratio is to account for changes in total data usage. For a

perfect balancing algorithm the result would approach 0. The expected result was to

see a decrease in standard deviation compared to average site popularity. This would

imply data usage is getting more balanced over the system as a whole. As we can

see in Figure 5.8, this is in fact what did happened in the general case. However, the

results show significant fluctuation. This is most likely due to popularity predictions

being too reactive to an increase or decrease in popularity. We can in Figure 5.9

see that in fact the LHE data tier had a large spike in number of accesses which

quickly reduced down to almost no accesses just as the system balance decreased. In

Chapter 6 we further discuss future work to improve popularity predictions.

40

Total	CPU	Time	[h]
Po
pu
la
rit
y

Se
le
ct
	a
n	
ar
ea
	b
y	
dr
ag
gi
ng
	a
cr
os
s	
th
e	
lo
w
er
	c
ha
rt

1	
-	
R
E
C
O

2	
-	
LH

E
3	
-	
D
oe
sN

ot
A
pp
ly

4	
-	
U
S
E
R

5	
-	
A
O
D
S
IM

6	
-	
G
E
N
-S
IM
-R
E
C
O

7	
-	
A
O
D

8	
-	
M
IN
IA
O
D
S
IM

9	
-	
G
E
N
-S
IM

10
	-
	M
IN
IA
O
D

11
	-
	G
E
N
-S
IM
-R
A
W

12
	-
	R
A
W

13
	-
	u
nk
no
w
n

14
	-
	G
E
N

15
	-
	D
ou
bl
eP

ho
to
nG

un
16
	-
	G
E
N
-S
IM
-R
A
W
-R
E
C
O

17
	-
	h
2m

u_
gg
h

18
	-
	R
A
W
-R
E
C
O

19
	-
	d
0P

lu
sk
2p
i_
P
U
_1
0M

_P
IS
A

20
	-
	d
0P

lu
sk
4p
i_
P
U
_1
0M

_P
IS
A

A
pr
	'1
5

M
ay

	'1
5

Ju
n	
'1
5

Ju
l	'
15

A
ug
	'1
5

S
ep
	'1
5

O
ct
	'1
5

N
ov

	'1
5

0M10
M

20
M

30
M

40
M

Figure 5.1: CPU hours consumed in the CMS Experiment before and after Run2
started in May 2015. Source [21]

41

Ac
cu

ra
cy

 (%
)

0

25

50

75

100

% of training sets
60 70 80 90 100

MINIAODSIM AODSIM GEN-SIM-RAW MINIAOD GEN-SIM-RECO LHE

Figure 5.2: Accuracy of Support Vector Machines as number of training sets increase

42

Figure 5.3: While generating training data using the visual preprocessing tool we
noticed some data tiers had very specific usage pattern. The LHE data tier shown
above for example tended to have very short bursts of popularity.

43

Ac
cu

ra
cy

 (%
)

0

25

50

75

100

Data Tiers
MINIAODSIM AODSIM GEN-SIM-RAW MINIAOD GEN-SIM-RECO LHE

SVC Average = 90.5 Support Vector Classifier Gaussian NB GaussianNB Average = 69

47.9

66.2

79.5

64.3

76.679.2
85.4

90.992.389.389.4
95.8

Figure 5.4: Accuracy of SVC and GaussianNB with accesses and CPU hours as
separate features

Ac
cu

ra
cy

 (%
)

0

25

50

75

100

Data Tiers
MINIAODSIM AODSIM GEN-SIM-RAW MINIAOD GEN-SIM-RECO LHE

SVC Average = 89.8 Support Vector Classifier Gaussian Naive Bayes Gaussian NB Average = 69.9

47.9

72.7
79.5

67.9
76.675

85.4
90.992.389.387.2

93.8

Figure 5.5: Accuracy of SVC and GaussianNB with accesses and CPU hours as a
combined feature

44

D
at

a
Ti

er
s

MINIAODSIM

AODSIM

GEN-SIM-RAW

MINIAOD

GEN-SIM-RECO

LHE

Prediction Score (Optimal is 1)
-0.2 0.1 0.4 0.7 1

0.181

0.662

0.612

0.734

0.464

0.542

-0.139

0.238

0.463

-0.009

0.086

0.242

Support Vector Regressor Bayesian Ridge Regressor

Figure 5.6: Score of Support Vector Regressor and Bayesian Ridge Regressor with
accesses and CPU hours as separate features where optimal score is 1. SVR average:
0.147, BRR average: 0.533

D
at

a
Ti

er
s

MINIAODSIM

AODSIM

GEN-SIM-RAW

MINIAOD

GEN-SIM-RECO

LHE

Prediction Score (Optimal is 1)
-0.2 0.1 0.4 0.7 1

0.978

0.938

0.91

0.943

0.969

0.922

0.79

0.399

0.419

0.416

0.359

0.292

Support Vector Regressor Bayesian Ridge Regressor

Figure 5.7: Score of SVR and Bayesian Ridge Regressor with accesses and CPU hours
as combined a feature where optimal score is 1. SVR average: 0.445, BRR average:
0.943

45

(s
td

 d
ev

 s
ite

 p
op

)/(
av

g
si

te
 p

op
)

0

0.375

0.75

1.125

1.5

Date (week)
2015-09-01 2015-09-15 2015-09-29 2015-10-13 2015-10-27 2015-11-10

y = -0.0165x + 1.251
R² = 0.4832

Site Ratio Trendline

Figure 5.8: Ratio of standard deviation and average site popularity normalized based
on site performance and storage capacity.

46

Nu
m
be
r	o
f	A
cc
es
se
s

Popularity
Select	an	area	by	dragging	across	the	lower	chart

1	-	LHE
2	-	MINIAODSIM
3	-	AODSIM
4	-	MINIAOD
5	-	GEN-SIM-RECO
6	-	GEN-SIM-RAW

7.	Sep 14.	Sep 21.	Sep 28.	Sep 5.	Oct 12.	Oct 19.	Oct 26.	Oct
0M

1M

2M

3M

4M

Figure 5.9: Total number of accesses for all data tiers. Source [21]

47

Chapter 6

Conclusions and Future Work

Dynamic data management in data grids is a new concept that is becoming more

popular. In this thesis we describe and develop a general framework for dynamic data

management in scientific data grids using a layered architecture. Following common

standards suggesting highly generic implementations of data grid components, we

created important ground work for a flexible and generic dynamic data manager in a

data grid environment.

The middleware data manager allows for grid specific data collection without hav-

ing to remodel the dynamic data manager and local data storage interface. The use of

common grid authentication methods allows for easy addition of grid services making

it highly flexible. The data analysis module provides data popularity prediction using

machine learning techniques. A generic implementation makes it easy to implement

more powerful machine learning algorithms for optimal grid specific performance.

System balancing is done using a novel balancing algorithm called rocker board. This

algorithm emulates a person balancing on a rocker board for better load balancing

and utilization of Grid resources.

In the future, we want to further investigate the performance of different machine

48

learning algorithms and increase the amount of training data for better popularity

prediction. In particularly we want to better train the trend classifier to not react

on short bursts of increase or decrease in popularity. Furthermore we believe sur-

veying physicists could prove useful for developing even more accurate usage models.

Finally, we are planning on expanding the work to include a web interface for easier

monitoring.

Initial data placement and disk cleaning was not in the scope of this work. Some

work is currently being done, though not yet published, on estimating general dataset

popularity for the CMS experiment. This work would be of great interest to use in

an initial data placement algorithm. We are also looking at the work done by the

LHCb experiment on completely removing datasets from disk automatically.

In the past the experiments at the LHC at CERN have developed many grid ser-

vices separately. However, recent effort has been done to combine efforts in grid ser-

vice development. We believe a collaboration between the ATLAS, CMS, and LHCb

experiments different dynamic data managers could lead to significant improvements.

It is the hope of the author that the general framework developed in this thesis can

help making such collaborations a reality.

49

Bibliography

[1] Georges Aad, E Abat, J Abdallah, AA Abdelalim, A Abdesselam, O Abdinov,

BA Abi, M Abolins, H Abramowicz, E Acerbi, et al. The ATLAS experiment

at the CERN large hadron collider. Journal of Instrumentation, 3(08):S08003,

2008.

[2] Anzar Afaq, Andrew Dolgert, Yuyi Guo, Chris Jones, Sergey Kosyakov, Valentin

Kuznetsov, Lee Lueking, Dan Riley, and Vijay Sekhri. The CMS dataset book-

keeping service. In Journal of Physics: Conference Series, volume 119, page

072001. IOP Publishing, 2008.

[3] Bill Allcock, Joe Bester, John Bresnahan, Ann L Chervenak, Carl Kesselman,

Sam Meder, Veronika Nefedova, Darcy Quesnel, Steven Tuecke, and Ian Foster.

Secure, efficient data transport and replica management for high-performance

data-intensive computing. In Mass Storage Systems and Technologies, 2001.

MSS’01. Eighteenth IEEE Symposium on, pages 13–13. IEEE, 2001.

[4] A Augusto Alves Jr, LM Andrade Filho, AF Barbosa, I Bediaga, G Cernicchiaro,

G Guerrer, HP Lima Jr, AA Machado, J Magnin, F Marujo, et al. The LHCb

detector at the LHC. Journal of instrumentation, 3(08):S08005, 2008.

[5] Julia Andreeva, S Belov, A Berejnoj, C Cirstoiu, Y Chen, T Chen, S Chiu,

MDFD Miguel, A Ivanchenko, B Gaidioz, et al. Dashboard for the LHC experi-

50

ments. In Journal of Physics: Conference Series, volume 119, page 062008. IOP

Publishing, 2008.

[6] Thomas Beermann, Graeme Andrew Stewart, and Peter Maettig. A Popularity

Based Prediction and Data Redistribution Tool for ATLAS Distributed Data

Management. PoS, page 004, 2014.

[7] Thomas Alfons Beermann. A study on dynamic data placement for the AT-

LAS Distributed Data Management system. Technical report, ATL-COM-SOFT-

2015-012, 2015.

[8] Christopher M Bishop. Pattern recognition and machine learning. springer, 2006.

[9] Kenneth Bloom, Tommaso Boccali, Brian Bockelman, Daniel Bradley, Sridhara

Dasu, Jeff Dost, Federica Fanzago, Igor Sfiligoi, Alja Mrak Tadel, Matevz Tadel,

et al. Any Data, Any Time, Anywhere: Global Data Access for Science. arXiv

preprint arXiv:1508.01443, 2015.

[10] Mike Bostock. D3.js: Data-Driven Documents. http://d3js.org/.

[11] Yonny Cardenas, Jean-Marc Pierson, and Lionel Brunie. Uniform distributed

cache service for grid computing. In Database and Expert Systems Applications,

2005. Proceedings. Sixteenth International Workshop on, pages 351–355. IEEE,

2005.

[12] S Chatrchyan, G Hmayakyan, V Khachatryan, AM Sirunyan, W Adam, T Bauer,

T Bergauer, H Bergauer, M Dragicevic, J Erö, et al. The CMS experiment at

the CERN LHC. Journal of Instrumentation, 3(08):S08004, 2008.

[13] Ann Chervenak, Ian Foster, Carl Kesselman, Charles Salisbury, and Steven

Tuecke. The data grid: Towards an architecture for the distributed manage-

51

ment and analysis of large scientific datasets. Journal of network and computer

applications, 23(3):187–200, 2000.

[14] M Cinquilli, D Spiga, C Grandi, JM Hernàndez, P Konstantinov, M Mascheroni,

H Riahi, and E Vaandering. CRAB3: Establishing a new generation of services

for distributed analysis at CMS. In Journal of Physics: Conference Series, vol-

ume 396, page 032026. IOP Publishing, 2012.

[15] Nicholas Coleman. Distributed policy specification and interpretation with clas-

sified advertisements. In Practical Aspects of Declarative Languages, pages 198–

211. Springer, 2012.

[16] CMs Collaboration. CMS Collaboration. http://cms.web.cern.ch/content/

cms-collaboration.

[17] NRENaissance Committee et al. Realizing the Information Future:: The Internet

and Beyond. National Academies Press, 1994.

[18] Corinna Cortes and Vladimir Vapnik. Support-vector networks. Machine learn-

ing, 20(3):273–297, 1995.

[19] Jeffrey Dean and Sanjay Ghemawat. MapReduce: simplified data processing on

large clusters. Communications of the ACM, 51(1):107–113, 2008.

[20] Alvise Dorigo, Peter Elmer, Fabrizio Furano, and Andrew Hanushevsky. Xrootd-

a highly scalable architecture for data access. WSEAS Transactions on Comput-

ers, 1(4.3), 2005.

[21] CMS Experiment. PopDB: CMS Popularity Service. https://cmsweb.cern.

ch/popdb/popularity/dataTier.

52

[22] Jeroen Famaey, Tim Wauters, and Filip De Turck. On the merits of popularity

prediction in multimedia content caching. In Integrated Network Management

(IM), 2011 IFIP/IEEE International Symposium on, pages 17–24. IEEE, 2011.

[23] Ian Foster and Carl Kesselman. Globus: A metacomputing infrastructure toolkit.

International Journal of High Performance Computing Applications, 11(2):115–

128, 1997.

[24] Ian Foster, Carl Kesselman, and Steven Tuecke. The anatomy of the grid: En-

abling scalable virtual organizations. International journal of high performance

computing applications, 15(3):200–222, 2001.

[25] Jerome Friedman, Trevor Hastie, and Robert Tibshirani. The elements of sta-

tistical learning, volume 1. Springer series in statistics Springer, Berlin, 2001.

[26] Wolfgang Hoschek, Javier Jaen-Martinez, Asad Samar, Heinz Stockinger, and

Kurt Stockinger. Data management in an international data grid project. In

Grid ComputingGRID 2000, pages 77–90. Springer, 2000.

[27] MI Jordan and TM Mitchell. Machine learning: Trends, perspectives, and

prospects. Science, 349(6245):255–260, 2015.

[28] Massimo Lamanna. The LHC computing grid project at CERN. Nuclear Instru-

ments and Methods in Physics Research Section A: Accelerators, Spectrometers,

Detectors and Associated Equipment, 534(1):1–6, 2004.

[29] Neal Leavitt. Will NoSQL databases live up to their promise? Computer,

43(2):12–14, 2010.

53

[30] Ming Lei, Susan V Vrbsky, and Xiaoyan Hong. An on-line replication strategy

to increase availability in data grids. Future Generation Computer Systems,

24(2):85–98, 2008.

[31] T Maeno, K De, and S Panitkin. PD2P: PanDA dynamic data placement for

ATLAS. In Journal of Physics: Conference Series, volume 396, page 032070.

IOP Publishing, 2012.

[32] Tadashi Maeno. PanDA: distributed production and distributed analysis system

for ATLAS. In Journal of Physics: Conference Series, volume 119, page 062036.

IOP Publishing, 2008.

[33] FH Barreiro Megino, M Cinquilli, D Giordano, E Karavakis, M Girone, N Magini,

V Mancinelli, and D Spiga. Implementing data placement strategies for the CMS

experiment based on a popularity model. In Journal of Physics: Conference

Series, volume 396, page 032047. IOP Publishing, 2012.

[34] MongoDB. MongoDB: NoSQL Database. https://www.mongodb.org/.

[35] MongoDB. PyMongo: MongoDB API. https://api.mongodb.org/python/

current/.

[36] Ekow Otoo and Arie Shoshani. Accurate modeling of cache replacement policies

in a data grid. In Mass Storage Systems and Technologies, 2003.(MSST 2003).

Proceedings. 20th IEEE/11th NASA Goddard Conference on, pages 10–19. IEEE,

2003.

[37] Python. ConfigParser: Python module. https://docs.python.org/2/

library/configparser.html.

54

[38] Python. distutils: Python module. https://docs.python.org/3/library/

distutils.html.

[39] Python. logging: Python module. https://docs.python.org/2/library/

logging.html.

[40] Python. Python: Programming Language. https://www.python.org/.

[41] Python. threading: Python module. https://docs.python.org/2/library/

threading.html.

[42] Python. unittest: Python module. https://docs.python.org/2/library/

unittest.html.

[43] Kavitha Ranganathan and Ian Foster. Identifying dynamic replication strategies

for a high-performance data grid. In Grid ComputingGRID 2001, pages 75–86.

Springer, 2001.

[44] J Rehn, T Barrass, D Bonacorsi, J Hernandez, I Semeniouk, L Tuura, and Y Wu.

PhEDEx high-throughput data transfer management system. Computing in High

Energy and Nuclear Physics (CHEP) 2006, 2006.

[45] scikit learn. Regressor score function in scikit-learn. http://scikit-learn.

org/stable/modules/generated/sklearn.linear_model.BayesianRidge.

html#sklearn.linear_model.BayesianRidge.score.

[46] scikit learn. scikit-learn: Machine Learning in Python. http://scikit-learn.

org.

[47] Douglas Thain, Todd Tannenbaum, and Miron Livny. Distributed computing in

practice: The condor experience. Concurrency-Practice and Experience, 17(2-

4):323–356, 2005.

