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Abstract

Chemical weed control remains a widely used component of integrated weed management
strategies because of its cost-effectiveness and rapid removal of crop pests. Additionally,
dicamba-plus-glyphosate mixtures are a commonly recommended herbicide combination to
combat herbicide resistance, specifically in recently commercially released dicamba-tolerant
soybean and cotton. However, increased spray drift concerns and antagonistic interactions
require that the application process be optimized to maximize biological efficacy while
minimizing environmental contamination potential. Field research was conducted in 2016,
2017, and 2018 across three locations (Mississippi, Nebraska, and North Dakota) for a total of
six site-years. The objectives were to characterize the efficacy of a range of droplet sizes
[150 µm (Fine) to 900 µm (Ultra Coarse)] using a dicamba-plus-glyphosate mixture and to
create novel weed management recommendations utilizing pulse-width modulation (PWM)
sprayer technology. Results across pooled site-years indicated that a droplet size of 395 µm
(Coarse) maximized weed mortality from a dicamba-plus-glyphosate mixture at 94 L ha–1.
However, droplet size could be increased to 620 µm (Extremely Coarse) to maintain 90% of
the maximum weed mortality while further mitigating particle drift potential. Although
generalized droplet size recommendations could be created across site-years, optimum
droplet sizes within each site-year varied considerably and may be dependent on weed
species, geographic location, weather conditions, and herbicide resistance(s) present in the
field. The precise, site-specific application of a dicamba-plus-glyphosate mixture using
the results of this research will allow applicators to more effectively utilize PWM sprayers,
reduce particle drift potential, maintain biological efficacy, and reduce the selection pressure
for the evolution of herbicide-resistant weeds.

Introduction

Chemical weed control remains a widely used component of integrated weed management
strategies because of its cost effectiveness and rapid removal of crop pests (Matthews et al.
2014). However, the complexity of the pesticide application process (Ebert et al. 1999) has
contributed to inefficient and improper applications (Grisso et al. 1989; Ozkan 1987). Current
application recommendations have focused on increasing spray droplet size, as it reduces
downwind spray drift deposits (Alves et al. 2017a; Bueno et al. 2017; Vieira et al. 2018). The
need to reduce drift, specifically with dicamba and glyphosate herbicides, was established as a
result of the crop response that can occur on exposed susceptible crops (Alves et al. 2017b;
Egan et al. 2014; Johnson et al. 2006). Although increasing spray droplet size reduces particle
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drift potential, negative herbicide efficacy effects on target weed
species have been reported (Wolf 2002).

Previous research demonstrated reductions in control across
multiple herbicides and weed species related to increases in
droplet size (Ennis and Williamson 1963; Knoche 1994; Lake
1977; McKinlay et al. 1972, 1974). Reduced biological efficacy due
to increased herbicide droplet sizes were exacerbated in envir-
onments with abnormally difficult-to-control weed species
(Jensen et al. 2001). Additionally, several systemic herbicides,
including two forms of dicamba [3,6-dichloro-o-anisic acid,
N,N-bis-(3-aminopropyl)methylamine and diglycolamine salts],
had efficacy reductions when droplet size increased (Butts et al.
2018b; Meyer et al. 2016a; Prasad and Cadogan 1992). Dicamba
efficacy was also influenced by interactions between droplet size
and sprayer speed, carrier volume, and weed species (Butts et al.
2018b; Creech et al. 2016; Meyer et al. 2016a, 2016b). Conversely,
glyphosate had greater absorption and translocation with Coarse
droplets (Feng et al. 2009). Glyphosate efficacy on several winter
annual grasses was not affected by spray droplet size; therefore, an
Ultra Coarse spray classification was recommended to reduce
particle drift while maintaining biological efficacy (Ferguson et al.
2018).

Droplet size impacts on systemic herbicide efficacy are con-
voluted, especially when considering herbicide mixtures such as
dicamba plus glyphosate; however, site-specific weed manage-
ment strategies can assist with more effectively using optimum
droplet sizes (Tian et al. 1999; Wilkerson et al. 2004). Addition-
ally, alternative optimization efforts must be identified moving
into the future of agriculture, and the development and imple-
mentation of precision agriculture techniques should be one of
the primary research focal points (Westwood et al. 2018).

Pulse-width modulation (PWM) sprayers provide an alter-
native method to optimize pesticide applications, as they allow for
factors such application pressure and spray droplet size to be
maintained across a range of sprayer speeds while variably con-
trolling flow. Flow is controlled by pulsing an electronically
actuated solenoid valve placed directly upstream of the nozzle
(Giles and Comino 1989). The solenoid valves are typically pulsed
on a 10-Hz frequency (10 pulses s–1), and the relative proportion
of time each valve is open (duty cycle) determines the flow rate.
This system allows real-time flow rate changes to be made
without manipulating application pressure as in other variable-
rate spray application systems (Anglund and Ayers 2003), and
PWM solenoid valves buffer some negative impacts observed with
other rate controller systems (Luck et al. 2011; Sharda et al. 2011,
2013). Furthermore, PWM sprayers are capable of producing up
to a 10:1 turndown ratio in flow rate with no pressure- or nozzle-
based changes, thus creating more flexible options for pesticide
applicators (Giles et al. 1996; GopalaPillai et al. 1999). Application
pressure–based variable-rate flow control devices have slow
response time and affect nozzle performance—specifically droplet
size (Giles and Comino 1989). In contrast, research has shown
that PWM duty cycle has little to no effect on droplet size when
using non-venturi nozzles (Butts et al. 2019a; Giles et al. 1996).
Additionally, when PWM sprayers were operated at or above a
40% duty cycle, minimal to no negative impacts were observed on
spray pattern and coverage (Butts et al. 2019b; Mangus et al. 2017;
Womac et al. 2016, 2017). Therefore, it is feasible with a PWM
sprayer to sustain an optimum herbicide droplet size and spray
pattern throughout an application in which efficacy could be
maximized and particle drift minimized, especially within site-
specific scenarios.

Dicamba-plus-glyphosate mixtures are a commonly recom-
mended herbicide combination to combat herbicide resistance,
specifically in recently commercially released dicamba-tolerant
soybean [Glycine max (L.) Merr.] and cotton (Gossypium
hirsutum L.). However, an antagonistic reaction between dicamba
and glyphosate in a mixture was identified, as translocation of
both herbicides out of the treated leaf were reduced compared to
applications of either herbicide alone (Ou et al. 2018). In other
research, the dicamba-plus-glyphosate mixture produced smaller
droplet sizes, greater driftable fines (droplets< 100 µm), and
increased downwind spray drift compared to a dicamba-only
spray solution (Alves et al. 2017b). Additionally, a 2016 survey
from Missouri showed that further education efforts in synthetic
auxin application are required to enable applicators to efficiently
and accurately apply growth regulator products (Bish and Bradley
2017). Therefore, if the dicamba-plus-glyphosate mixture is to be
recommended moving forward, specific application practices
must be identified and followed to optimize the application by
maximizing efficacy while simultaneously mitigating spray drift
potential.

The objectives of this research were to (1) characterize the
influence of spray droplet size on the efficacy of a dicamba-plus-
glyphosate mixture and (2) create novel application recommen-
dations using an optimum droplet size to mitigate particle drift
potential without compromising efficacy of a dicamba-plus-
glyphosate mixture. The precise, site-specific application of this
herbicide mixture will allow applicators to more effectively utilize
PWM sprayers and reduce the selection pressure for the evolution
of herbicide-resistant weeds.

Materials and Methods

Experiment Design and Establishment

Field trials were conducted in 2016, 2017, and 2018 in a fallow
environment across three states (Mississippi, Nebraska, and
North Dakota) for a total of six site-years to evaluate the droplet
size effect on the efficacy of dicamba plus glyphosate (Table 1).
The trials were randomized complete block experimental designs
replicated a minimum of three times spatially. This research was
conducted using methods similar to previous droplet size research
(Butts et al. 2018b). Treatments consisted of six targeted droplet
sizes (150, 300, 450, 600, 750, and 900 µm) determined from the
Dv0.5 of the measured droplet size distribution. The Dv0.5 para-
meter represents the droplet diameter such that 50% of the spray
volume is contained in droplets of smaller diameter. One non-
treated control per site-year was used for comparison, providing a
total of seven treatments. The herbicide mixture of dicamba
(Clarity®, 0.48 kg ae L–1; BASF, Research Triangle Park, NC
27709) plus glyphosate (Roundup WeatherMAX®, 0.54 kg ae L–1;
Monsanto Co., St. Louis, MO 63167) was applied POST to weeds
at least 15 cm tall at 0.28 kg ae ha–1 dicamba plus 0.87 kg ae ha–1

glyphosate with a carrier volume of 94 L h–1. To eliminate con-
founding effects and permit evaluation of treatments solely on the
herbicide, no additional adjuvants were tank-mixed into the
solution.

Treatments were applied using a PinPoint® PWM research
sprayer (Capstan Ag Systems, Inc., Topeka, KS 66609). The
benefits of using a PWM sprayer in this research were two-fold.
First, PWM allows spray output to become independent from
nozzle orifice size, sprayer speed, and application pressure.
Therefore, the application process was simplified and

Weed Technology 67

https://www.cambridge.org/core/terms. https://doi.org/10.1017/wet.2018.118
Downloaded from https://www.cambridge.org/core. University of Nebraska Lincoln, on 08 Oct 2019 at 18:32:41, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/wet.2018.118
https://www.cambridge.org/core


standardized for operators across a range of spray environments.
Second, as previous research highlighted that PWM duty cycle
had a minimal effect on droplet characteristics (Butts et al. 2018a,
2019) and spray pattern (Butts et al. 2019b), a nozzle type, orifice
size, and application pressure combination could be selected to
provide a consistent droplet size treatment while maintaining the
appropriate spray output (94 L ha–1) throughout an application.

Nozzle type, orifice size, and application pressure required to
create droplet size treatments were determined through droplet
size measurements made using a Sympatec HELOS-VARIO/KR
laser diffraction system with the R7 lens (Sympatec Inc.,
Clausthal, Germany) in the low-speed wind tunnel at the
Pesticide Application Technology Laboratory in North Platte, NE
(Table 2). Creech et al. (2015) and Henry et al. (2014) provide in-
depth details regarding the low-speed wind tunnel at the Pesticide
Application Technology Laboratory, and Butts et al. (2019a)
provides an illustration for further clarification of wind tunnel
construction and operation. Only non-venturi nozzles (Wilger
Industries, Ltd., Lexington, TN 38351) were used in this research,
for two reasons: (1) Only non-venturi nozzles are recommended

for use on PWM systems (Butts et al. 2019a; Capstan Ag Systems
Inc. 2013), and (2) nozzle designs were kept similar (flat-fan, non-
venturi, straight flow path) to eliminate confounding spray
characteristic factors. Spray classifications were assigned in
accordance with ASABE S572.1 (ASABE 2009).

Data Collection

Each collaborating university collected data from their respective
sites. Visible-injury estimation proportions were recorded
approximately 28 d after treatment for entire plots. At the time of
application, 10 individual weeds per plot were marked. At 28 d
after treatment, marked plants were individually evaluated for
mortality (alive or dead), and the total number of dead plants was
divided by 10 to provide mortality proportion measurements for
each plot. The individual weeds were then clipped at the soil
surface, harvested, and dried at 55 C to constant mass. The dry
plants were pooled into one dry biomass measurement per plot,
and the result was then divided by 10 for average weed dry-shoot
biomass per plant measurements.

Table 2. Nozzle type, orifice size, and application pressure combinations for each dicamba-plus-glyphosate droplet size (Dv0.5) treatment.a

Nozzleb Application pressure Target droplet size Actual droplet size Standard error Spray classificationc

kPa ____________________________________________µm____________________________________________

ER110015 345 150 154 0.33 F

SR11004 241 300 298 0.69 M

DR11003 255 450 453 0.54 VC

UR11004 276 600 600 0.62 EC

UR11006 207 750 749 4.37 EC

UR11010 193 900 917 1.24 UC

aTarget droplet sizes were the designed droplet size treatments used in data analysis. Actual droplet sizes were the experimentally measured droplet sizes from spray solution, nozzle, and
application pressure combinations. Actual droplet sizes were within 2.7% of the target droplet sizes.
bFlat fan, non-venturi nozzles; Wilger Industries Ltd., Lexington, TN 38351, USA.
cSpray classifications determined using ASABE S572.1, where F= Fine, M=Medium, VC= Very Coarse, EC= Extremely Coarse, and UC=Ultra Coarse.

Table 1. Site-year, GPS coordinates, weed species, average application weather conditions, and data collected to understand the impact of droplet size on
herbicide efficacy of dicamba plus glyphosate.

Application weather conditions

Year Location GPS coordinates
Weed
speciesa

Wind
speed

Air
temperature

Relative
humidity

Visible-injury
estimations Mortality

Weed dry
biomass

m s–1 C %

2016 Dundee, MS 34.54°N, 90.47°W AMAPA 0.9 33 55 Xb X X

2016 Prosper, ND 47.00°N, 97.12°W Multiplec 3.1 27 44 X

2017 Dundee, MS 34.54°N, 90.47°W AMAPA 2.2 32 65 X X X

2017 Brule, NE 41.16°N, 102.00°W KCHSC 4.5 31 38 X X X

2017 Fargo, ND 46.93°N, 96.86°W CHEAL 3.6 24 35 X X

2018 North Platte,
NE

41.05°N, 100.75°W Multipled 2.7 27 57 X X X

aAMAPA, Amaranthus palmeri S. Wats., Palmer amaranth; KCHSC, Bassia scoparia (L.) A.J. Scott, kochia; CHEAL, Chenopodium album L., common lambsquarters.
bAn “X” indicates that the respective response variable data were collected from the respective site-year.
cMultiple weed species from the 2016 Prosper, ND, site-year included: CHEAL, Chenopodium album L., common lambsquarters; AMARE, Amaranthus retroflexus L., redroot pigweed; and
SETPU, Setaria pumila (Poir.) Roem. & Schult., yellow foxtail.
dMultiple weed species from the 2018 North Platte, NE, site-year included: KCHSC, Bassia scoparia (L.) A.J. Scott, kochia; and ERICA, Erigeron canadensis L., horseweed.
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Statistical Analyses

Generalized additive modeling (GAM) analysis was conducted in
R 3.5.0 statistical software using the mgcv package to model spray
droplet size with each respective response variable to provide an
estimate of the optimum spray droplet size for weed control
(Crawley 2013). To meet model assumptions, visible-injury esti-
mation and mortality proportions were analyzed using a beta
distribution as the data were bound between 0 and 1, and weed
dry-biomass per plant data were subjected to a natural log
transformation. Back-transformed data are presented for clarity.
Models consisted of one smoothed variable (droplet size)
(Equation 1).

Response variable � s Target droplet sizeð Þ [1]

Data were pooled across site-years to provide overall droplet
size recommendations; however, GAM analysis was also con-
ducted for data on individual site-years to assess droplet size
efficacy implications in a site-specific weed management sce-
nario. Models were used to predict the droplet size for max-
imum weed control, and the droplet size at which 90% of
maximum weed control was attained for drift mitigation
recommendations.

Results and Discussion

Individual site-year information, including GPS coordinates,
weed species, weather conditions at the time of application, and
data collected are presented in Table 1. Visible-injury estimation,
weed mortality, and weed dry-biomass per plant data were
collected from six, four, and five site-years, respectively.
Additionally, droplet sizes discussed throughout the Results and
Discussion refer to the Dv0.5 measurement (average droplet size)
of the droplet size distribution.

Pooled Site-Years

The GAM models for visible-injury estimation proportion,
mortality proportion, and dry-weed biomass per plant
response variables across pooled site-years are presented in
Figure 1. The model smooth-term estimated degrees of

freedom (edf) and deviance explained for each response
variable are presented in Table 3. A smooth-term edf of
1.000 is equal to a linear model with model fluctuation
increasing as the smooth-term edf increases. The explained
deviance provides an estimate of the discrepancy between
model predicted estimates and actual observations, with a
larger percentage indicating a smaller discrepancy and overall
better model fit.

Pooled site-years GAM models for visible-injury estimation
and mortality response variables had smooth-term edf values
> 1.000, indicating models were more complex (more fluc-
tuation) than a linear regression (Table 3) (Figure 1). Con-
versely, the weed dry-biomass per plant response variable GAM
model was linear (smooth-term edf= 1.000), but droplet size
was not a good predictor of weed dry biomass per plant, as the
explained deviance was 0%. The average deviance explained of
the GAM models across response variables was 6.25%, meaning
that< 7% of the model variation could be explained by droplet
size. The droplet size that maximized weed control ranged from
395 to 900 µm (Coarse to Ultra Coarse), depending on the
response variable (Table 4). However, for visible injury esti-
mations and weed dry-biomass per plant response variables, the
model slope was relatively flat as droplet size increased, and
90% of the maximum weed control could still be achieved with
a droplet size of 900 µm (Ultra Coarse). A more severe droplet
size penalty was observed for the weed mortality response
variable, as 90% of weed control could only be maintained with
a 620-µm (Extremely Coarse) droplet size. Therefore, to achieve
complete plant death and reduce additional weed seeds from
replenishing the seedbank, a 620-µm (Extremely Coarse) dro-
plet size would be recommended across site-years to maintain
90% of the maximum weed control while reducing particle drift
potential.

The differences observed in predicted droplet sizes for max-
imum weed control across response variables could be attributed
to the method in which visible-injury estimations are made,
especially with dicamba, and the lack of correlation between weed
biomass and plant death (Norsworthy et al. 2018). The weed
species present across the Mississippi (Palmer amaranth,
Amaranthus palmeri S. Wats.) and Nebraska [kochia, Bassia
scoparia (L.) A.J. Scott] site-years were glyphosate-resistant (data
not shown); therefore, dicamba provided the only effective her-
bicide site of action within these applications. When visibly
assessing plots for dicamba injury, it was not uncommon to see
similar plant damage and biomass accumulation across a range of
droplet sizes. However, upon closer inspection of mortality, the
plants sprayed with greater droplet sizes were often still alive,
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Figure 1. Visible-injury estimation proportion, mortality proportion, and weed dry
biomass per plant 28 d after treatment as affected by droplet size were pooled across
six, four, and five site-years, respectively, and predicted using generalized additive
models (GAM). The gray-shaded area indicates the 95% confidence limits.

Table 3. Generalized additive model (GAM) smoothing parameters and
deviance explained for each response variable across pooled site-years.

Response variable
Site-
years

Smooth-term
edfa

Deviance
explained

%

Visible-injury estimations 6 2.666 11.50

Mortality 4 2.133 7.25

Weed dry biomass per
plant

5 1.000 0.00

aSmooth-term estimated degrees of freedom (edf) provides an estimate of the model
fluctuation. A smooth-term edf of 1.000= linear model.
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leading to decreased weed control as droplet size increased. This
research supports the conclusion that care should be taken in
future herbicide research, especially with dicamba, to determine
weed mortality as opposed to strictly observing visible-injury
symptoms or weed biomass to fully evaluate herbicide
effectiveness (Norsworthy et al. 2018).

The reduction in efficacy for dicamba-plus-glyphosate mix-
tures across droplet size treatments when evaluated using weed
mortality may be attributed to an antagonism between the two
herbicides. Previous research in kochia showed that when

dicamba plus glyphosate were tank-mixed, translocation of both
herbicides out of the treated leaf was reduced compared to
applications of either herbicide alone (Ou et al. 2018). Therefore,
if dicamba-plus-glyphosate mixtures continue to be recom-
mended in areas in which herbicide resistance is a primary con-
cern, applications should be optimized, including using a droplet
size between 395 and 620 µm (Coarse to Extremely Coarse) when
applied at 94 L ha–1, to limit the negative consequences of the
antagonistic reaction. Future research should investigate the
influence of carrier volume on a dicamba-plus-glyphosate

Table 4. Predicted droplet sizes based on a generalized additive model (GAM) to achieve maximum weed control and 90% of maximum weed control to enhance
drift mitigation efforts for each response variable across pooled site-years.

Droplet size

Response variable Site-years Maximum weed control Spray classificationa 90% of maximum weed control Spray classificationa

µm µm

Visible-injury estimations 6 500 VC 900 UC

Mortality 4 395 C 620 EC

Weed dry biomass per plant 5 900 UC 900 UC

aSpray classifications determined using ASABE S572.1, where C= Coarse, VC= Very Coarse, EC= Extremely Coarse, and UC=Ultra Coarse.

Table 5. Generalized additive model (GAM) smoothing parameters and deviance explained within individual site-years for each response variable to investigate the
plausibility of site-specific weed management.

Response variable Site Year Weed speciesa Smooth-term edfb Deviance explained

%

Visible-injury estimations Dundee, MS 2016 AMAPA 1.596 8.25

Prosper, ND 2016 Multiplec 4.695 92.60

Dundee, MS 2017 AMAPA 1.000 0.17

Brule, NE 2017 KCHSC 1.982 21.10

Fargo, ND 2017 CHEAL 4.549 97.20

North Platte, NE 2018 KCHSC 3.266 68.30

North Platte, NE 2018 ERICA 1.000 24.60

Mortality Dundee, MS 2016 AMAPA 1.000 0.84

Dundee, MS 2017 AMAPA 2.390 27.40

Brule, NE 2017 KCHSC 3.188 58.80

North Platte, NE 2018 KCHSC 2.417 28.20

North Platte, NE 2018 ERICA 1.322 14.10

Weed dry biomass per plant Dundee, MS 2016 AMAPA 1.000 1.99

Dundee, MS 2017 AMAPA 1.371 13.70

Brule, NE 2017 KCHSC 1.901 13.90

Fargo, ND 2017 CHEAL 2.307 36.00

North Platte, NE 2018 KCHSC 1.056 2.70

North Platte, NE 2018 ERICA 1.000 5.54

aAMAPA, Amaranthus palmeri S. Wats., Palmer amaranth; KCHSC, Bassia scoparia (L.) A.J. Scott, kochia; CHEAL, Chenopodium album L., common lambsquarters; ERICA, Erigeron canadensis L.,
horseweed.
bSmooth-term estimated degrees of freedom (edf) provides an estimate of the model fluctuation. A smooth-term edf of 1.000= linear model.
cMultiple weed species from the 2016 Prosper, ND, site-year included: CHEAL, Chenopodium album L., common lambsquarters; AMARE, Amaranthus retroflexus L., redroot pigweed; and
SETPU, Setaria pumila (Poir.) Roem. & Schult., yellow foxtail.
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mixture, as increasing spray carrier volume may buffer the impact
of increasing droplet size on the resulting biological efficacy
(Butts et al. 2018b).

Although this research was conducted in a fallow environ-
ment, similar results could be expected within a cropping-system
scenario, as previous research demonstrated similar spray cov-
erage at the bottom of a soybean canopy across a range of droplet
sizes (Legleiter and Johnson 2016). Therefore, the droplet size
effect on dicamba-plus-glyphosate mixture efficacy observed in
this research must be due to variables other than spray coverage,

such as droplet impaction efficiency, retention, absorption, and
translocation.

Site-Specific Weed Management

Prior to field trial establishment, it was hypothesized that
identifying and applying an optimum herbicide droplet size
would be more appropriate as a site-specific management
strategy. Additionally, previous research highlighted the poten-
tial need for a site-specific weed management approach if an
optimum droplet size is to be utilized, as different weed species
each had a unique response to applications of dicamba and
glyphosate made with differing nozzle types (Meyer et al. 2015).
Therefore, each respective site-year was analyzed separately to
determine if the deviance explained for each GAM model could
be improved and optimum droplet size predictions made more
robust.

The GAM model smooth-term edf values and deviance
explained for each respective site-year and response variable are
presented in Table 5. The complexity of individual site-year
models varied from a linear relationship (smooth-term edf=
1.000) to very complex, high-fluctuation relationships (smooth-
term edf= 4.695). Additionally, the average deviance explained
for individual site-year models across response variables was
28.63%, indicating that more than a quarter of the model varia-
bility could be explained from the droplet size treatment. This is a
marked improvement (four-fold) compared to the pooled site-
year model average deviance explained (approximately 7%);
therefore, optimizing dicamba-plus-glyphosate mixture applica-
tions with a specific droplet size should be implemented using a
site-specific approach.
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Figure 2. Visible-injury estimation proportion, mortality proportion, and weed dry
biomass per plant generalized additive models (GAM) for the 2017 Brule, NE, site-year
to assess the plausibility of site-specific weed management strategies. The gray-
shaded area indicates the 95% confidence limits.

Table 6. Predicted droplet sizes based on a generalized additive model (GAM) to achieve maximum weed control and 90% of maximum weed control to enhance
drift mitigation efforts within individual site-years for each response variable to investigate the plausibility of site-specific weed management.

Droplet size

Response variable Location Year Weed speciesa
Maximum weed

control
Spray

classificationb
90% of maximum
weed control

Spray
classificationb

µm µm

Visible-injury estimations Dundee, MS
Prosper, ND
Dundee, MS
Brule, NE
Fargo, ND
North Platte, NE
North Platte, NE

2016
2016
2017
2017
2017
2018
2018

AMAPA
Multiple
AMAPA
KCHSC
CHEAL
KCHSC
ERICA

610
325
900
370
765
460
150

EC
M
UC
C
EC
VC
F

855
900
900
900
900
660
530

UC
UC
UC
UC
UC
EC
VC

Mortality Dundee, MS
Dundee, MS
Brule, NE
North Platte, NE
North Platte, NE

2016
2017
2017
2018
2018

AMAPA
AMAPA
KCHSC
KCHSC
ERICA

150
580
410
460
150

F
EC
C
VC
F

900
705
570
680
245

UC
EC
EC
EC
F

Weed dry biomass per plant Dundee, MS
Dundee, MS
Brule, NE
Fargo, ND
North Platte, NE
North Platte, NE

2016
2017
2017
2017
2018
2018

AMAPA
AMAPA
KCHSC
CHEAL
KCHSC
ERICA

150
900
425
495
900
150

F
UC
C
VC
UC
F

485
900
620
735
900
405

VC
UC
EC
EC
UC
C

aAMAPA, Amaranthus palmeri S. Wats., Palmer amaranth; KCHSC, Bassia scoparia (L.) A.J. Scott, kochia; CHEAL, Chenopodium album L., common lambsquarters; ERICA, Erigeron canadensis L.,
horseweed.
bSpray classifications determined using ASABE S572.1, where F= Fine, M=Medium, C=Coarse, VC= Very Coarse, EC= Extremely Coarse, and UC=Ultra Coarse.
cMultiple weed species from the 2016 Prosper, ND, site-year included: CHEAL, Chenopodium album L., common lambsquarters; AMARE, Amaranthus retroflexus L., redroot pigweed; and
SETPU, Setaria pumila (Poir.) Roem. & Schult., yellow foxtail.
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An example of the site-specific GAM model approach, the
2017 Brule, NE, site-year, is presented in Figure 2. Similar to the
pooled site-year analysis, a severe reduction in weed mortality was
observed as droplet size increased past a critical point, whereas
visible-injury estimations had a relatively flat slope, resulting in a
minimal droplet size impact. Optimum droplet size predictions
for each site-year and response variable are presented in Table 6.
Droplet size predictions to maximize weed control varied widely
across site-years and response variables from 150 µm (Fine) to
900 µm (Ultra Coarse). However, in general across individual site-
years and response variables, an Extremely Coarse (570 µm) to
Ultra Coarse (900 µm) spray classification maintained 90% of
maximum weed control and would assist with particle drift
mitigation efforts.

The wide array of predicted optimum droplet sizes across site-
years is probably due to convoluted droplet size interactions and
diverse weed structures influencing droplet retention on varied
leaf surfaces. Previous research demonstrated greater impaction
and retention efficiency on vertical leaf surfaces with finer dro-
plets in the presence of horizontal winds (Lake 1977); however,
coarser droplets had greater impaction efficiency on horizontal
leaf surfaces (Spillman 1984). Unfortunately, droplet adhesion
was reduced with increasing droplet size, as droplets bounced or
shattered upon impact (Forster et al. 2005). Therefore, a complex
interaction between droplet size, plant architecture, and leaf
structure influences droplet retention and thereby herbicidal
efficacy (Massinon et al. 2017; Nairn et al. 2013).

The primary weed species in Mississippi and North Dakota
were Palmer amaranth and common lambsquarters (Chenopo-
dium album L.), respectively. That both Palmer amaranth and
common lambsquarters have flat, horizontal leaf surfaces helps to
explain the coarser optimum droplet size of 900 µm corroborating
findings from Spillman (1984). Conversely, the primary weed
species in Nebraska were kochia and horseweed (Erigeron
canadensis L.), which have a much smaller and narrower leaf
structure paired with relatively vertical plant architecture, com-
pared to Palmer amaranth and common lambsquarters. There-
fore, smaller droplet sizes were required to achieve 90% of
maximum weed control across measured response variables for
the Nebraska site-years compared to the Mississippi and North
Dakota site-years, validating Lake’s (1977) findings.

Additional differences in optimum droplet sizes were observed
between the kochia and horseweed populations within the 2018
North Platte, NE, site-year, further supporting the conclusion that
optimum herbicide droplet sizes differ among weed species
(Figure 3). Overall, the dicamba-plus-glyphosate mixture pro-
vided less control of horseweed and required smaller droplet sizes
to maintain 90% of maximum weed control compared to kochia.
This difference in weed control can be attributed to weed height
and density, as horseweed tended to be taller and denser than
kochia within the respective site-year (data not shown).

The results of the site-specific analysis corroborated previous
research in which it was recommended that each herbicide and
weed species interaction required a tailored, site-specific approach
to maximize efficacy (Butts et al. 2018b; Creech et al. 2016; Meyer
et al. 2015). Future research should holistically investigate the
influence of weather conditions, weed species, geographic loca-
tion, herbicide antagonism, and herbicide resistance paired with
droplet size to create more robust models and fully optimize spray
applications. Additionally, as previously stated, future research
should investigate the role of carrier volume as it relates to the
efficacy of a dicamba-plus-glyphosate mixture across a range of
droplet sizes. A greater volume of spray solution would provide
more droplets for potential impaction on the weed leaf surface,
thereby potentially increasing herbicide efficacy; however, pre-
vious research has highlighted the variable effects of carrier
volume on efficacy (Butts et al. 2018b).

This research identified across a broad geographic setting and
diverse weed spectrum that mixture applications of dicamba plus
glyphosate should utilize a 620-µm (Extremely Coarse) droplet
size when applying with a carrier volume of 94 L ha–1, as weed
mortality would be maintained, the addition of weed seeds to the
soil seedbank would be reduced, and particle drift potential
would be simultaneously mitigated. However, more precise
applications could be achieved by applying the optimum her-
bicide droplet sizes in a site-specific approach. Approximately
25% of the model variability could be explained from the droplet
size treatment when analyzed using the site-specific approach as
opposed to< 10% when analyzed in a pooled site-year analysis.
Generally, 90% of maximum weed control across individual site-
years was achieved, with droplet sizes ranging from 570 µm
(Extremely Coarse) to 900 µm (Ultra Coarse). These differences
in optimum droplet sizes across individual site-years were
probably due to weed species plant structure and leaf archi-
tecture; however, numerous other factors such as weather con-
ditions at application, geographic location, herbicide
antagonism, and herbicide resistance played a significant role in
final herbicidal efficacy (Kudsk 2017). Finally, to effectively
reduce particle drift potential from future herbicide applications,
researchers must identify and implement alternative drift
reduction strategies other than increasing spray droplet size to
avoid weed control losses and mitigate the evolution of
herbicide-resistant weeds.
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