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Vocal learning is an ability that has only evolved in a handful of taxa. Songbirds 

learn their songs, and some species have flexible learning in which they not only 

incorporate species-specific sounds, but heterospecific and/or environmental sounds as 

well. The functions of vocal mimicry are still unknown for many species and studying 

mimicry can teach us about the variation within the song learning process. In this thesis, I 

focused on five hypotheses on how mimicry could function in sexual selection. The 

repertoire size hypothesis suggests that selection for larger repertoire sizes allows 

mimicry to occur because imitation can increase repertoire size. The permissive learning 

hypothesis states that heightened song complexity requires a relaxed song template, 

which may allow passive use of mimicry. The learning and performance hypothesis 

suggests that learning ability and song or performance quality are honest signals of a 

singer’s quality and that listeners may focus on mimicry to assess individuals. The fourth 

and fifth hypotheses, which have received very little attention, are the structural function 

and acoustic function hypotheses, which suggest that mimicry has an as-yet-unknown 

structural or acoustic role in song, respectively. In these cases, mimetic accuracy does not 

matter; rather imitations and species-specific vocalizations are used in different ways. I 

explored these hypotheses using European starling (Sturnus vulgaris) song. Instead of 

testing the evolutionary functions of mimicry directly, I concentrated on the structural 



 

mechanics of mimicry in song. This approach allowed me to indirectly test whether 

mimetic and nonmimetic song components have the same functional effect. Chapter I is 

an overview of the more than 300 songbird species that are vocal mimics and shows that 

mimicry evolved repeatedly throughout the evolution of the songbird clade. The next 

three chapters are a detailed case study of the vocal mimicry of European starlings. In 

chapters II through IV, I use a combination of structural and acoustic analyses to 

emphasize the ways in which mimicry functions in starling song. I show that mimicry is 

treated differently from species-specific sounds, although in subtle, structural ways, and it 

remains unclear how important the inclusion of mimicry is to listeners. 
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INTRODUCTION 

Young songbirds must listen to the songs of adults, practice their imitation of 

these songs, and eventually produce a characteristic song of their own. A mentally-

challenging ability, song learning takes many forms and has led to great diversity and 

complexity in the songs of extant species (Brenowitz and Beecher 2005). Species vary in 

how permissive or discriminatory they are about what sounds constitute species-specific 

song. Some species have very flexible learning that allows them to imitate heterospecific 

and/or environmental sounds and incorporate these into their species-specific song. For 

the purposes of this thesis, these vocal mimics are all species that imitate or “appropriate” 

the sounds of other species (avian or nonavian) and/or inanimate objects, and use these 

sounds in their calls or songs (Dobkin 1979).  

Vocal mimicry is intriguing because it is not obvious why some species engage in 

imitation. Indeed, while the functions of mimicry are known for some species, the 

reasons for vocal imitation by many others are still unknown. Several reviews have 

proposed a variety of functional and causal hypotheses for mimicry (e.g. Baylis 1982, 

Kelley et al. 2008, Dalziell et al. 2014) and it is becoming increasingly clear that mimicry 

functions in different ways for different species. As such, studying mimicry in individual 

species can teach us much about the diverse song learning processes in the songbird 

clade.  

 

Sexual Selection Hypotheses for Mimicry 

This thesis will focus on five hypotheses for how mimicry functions in song and 

sexual selection. First, the repertoire size hypothesis suggests that large repertoires are 
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selected for (Beecher and Brenowitz 2005), which may drive individuals to use mimicry 

to increase their repertoire size (Kelley et al. 2008, Dalziell et al. 2014). In this 

hypothesis, repertoire size is either an honest signal of male quality, or a sexually-

selected ornament (Mountjoy and Lemon 1997). Mimicry can potentially supplement 

song repertoire. As such, one could have one of two expectations. First, individuals may 

achieve large repertoires by using a disproportionally large amount of mimicry in their 

songs. Alternatively, individuals who are incapable of producing large repertoires may 

use mimicry to increase their repertoire size. Some studies found that female starlings 

(Sturnus vulgaris) prefer males with larger repertoires (Mountjoy and Lemon 1996, Eens 

et al. 1991), although other studies did not (Gentner and Hulse 2000). Thus, it is still 

unclear whether repertoire size indicates quality in starlings (Mountjoy 1994, Mountjoy 

and Lemon 1997). Cuthill and Hindmarsh (1985) and Hindmarsh (1986) suggested 

starlings do not use mimicry to increase repertoire size, and therefore concluded that 

mimicry has no function in starling song.  

The idea that mimicry has no functional effect brings us to the second hypothesis. 

The learning mistakes hypothesis states that species with complex songs must have a 

relaxed song template that focuses on structure or song sequence and not on song content 

(e.g. Kelley et al. 2008, Dalziell et al. 2014, Cuthill and Hindmarsh 1985). In this case, 

individuals may incorporate sounds from the surrounding soundscape because there is no 

selection against imitation as long as structural song rules are upheld (Hindmarsh 1986, 

Aubin and Bremond 1983, Bremond 1968, Fletcher and Smith 1978). Because the 

inclusion of mimicry in this scenario is neutral and not maladaptive, I will refer to it as 

the permissive learning hypothesis. Both the repertoire size and permissive learning 
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hypotheses assume that mimicked components are treated no differently from species-

specific song components (e.g. Hindmarsh 1986). However, early studies were limited in 

scope and often only addressed mimicry indirectly. Hypotheses three, four, and five focus 

on alternative ways in which mimicry could have a sexual function in song.  

The learning and performance hypothesis is that learning ability and subsequent 

song quality or singing performance are honest signals of an individual’s quality. 

Adverse conditions early in life decrease immune function and quality of adults, which 

are often reflected in song learning ability and the physiological singing capabilities of an 

individual (e.g. Nowicki and Searcy 2004, Duffy and Ball 2002, Spencer et al. 2004). 

Furthermore, male vocal performance may affect territory size or female stimulation 

(Nottebohm 1972). As such, in species that mimic, mimetic accuracy – how well an 

imitated sound matches the sound produced by the model – and/or the use of many 

imitated sounds could allow assessment of individuals. Males vary in mimetic ability 

(Riegert and Juzlova 2017, Zann and Dunstan 2008) and physiological constraints limit 

what can be imitated (Gammon 2013, Zollinger and Suthers 2004, Dalziell et al. 2014, 

Podos et al. 2009). Therefore, either mimetic accuracy could serve as an honest indicator 

of male quality (Coleman et al. 2007) or mimicry is cognitively challenging and therefore 

mimetic repertoire size matters (Boogert et al. 2011, Dalziell et al. 2014, Dalziell and 

Magrath 2012). Male song sparrows (Melospiza melodia) that imitate many different 

models and do so accurately are preferred over singers that cannot (Beecher and 

Brenowitz 2005). Mating success was positively correlated with duration and quality of 

mimicry in the satin bowerbird (Ptilonorhynchus violaceus), while mimicry did not 

increase repertoire size (Loffredo and Borgia 1986).  
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The fourth hypothesis, which I have named the structural function hypothesis, is 

that mimicry serves a structural function different from that of species-specific sounds. 

For example, mimicry could be used to diversify song structure or emphasize important 

components in song. 

Finally, the acoustic function hypothesis is that mimicry serves a different 

acoustic function than that of species-specific sounds. For example, mimetic components 

could expand the acoustic range of song (such as in Northern mockingbirds, Mimus 

polyglottos, Gammon and Lyon 2017), or may introduce novel sounds (sexy or high 

performance syllables) that are difficult to produce and may therefore be preferred by 

listeners (Vallet and Kreutzer 1995, Podos 1996, Podos 1997, Ballentine et al. 2004, 

Dalziell et al. 2014). In both cases, mimicry could effectively add interest or complexity 

to songs, which may attract or stimulate females better than simpler songs (e.g. 

Kroodsma 1976).  

Both the structural and acoustic function hypotheses differ from the learning and 

performance hypothesis in that accuracy does not matter. Mimetic quality is less 

important than the emergence of a song quality normally rare or absent from species-

specific song. These alternative functions have not been considered in most studies of 

mimicry. 

 

Starling Background 

To explore these hypotheses, I focused on the European starling, which is an ideal 

species for studies of song learning. Starlings are hardy opportunists native to Europe and 

Asia and found across North America. There are many of them (at least 150 million in 
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the USA alone) and they are highly gregarious, forming large foraging and roosting 

flocks in the nonbreeding season, and breeding colonies in the spring (e.g. Hausberger 

1997). Males sing year-round from chosen nest cavities, which in America are holes in 

buildings and trees in urban parks and neighborhoods, allowing a researcher easy access 

to nests and recordings. Males are not shy and will broadcast sing for hours regardless of 

human presence. Starlings have two song types – whistle and warbling song – that serve 

different functions. Whistle song is used predominantly for social cohesion and tolerance, 

as well as intrasexual interactions (Hausberger 1997), while warbling song functions 

mainly in mate choice and reproductive stimulation of paired females (Eens et al. 1991). 

The presence of two disparate song types, as well as the complex sociality and the 

elaborate song of the starling, provide opportunities to address a variety of questions 

about song learning and mimicry.    

Whistle song is composed of simple, one-to-two note whistles separated by 

several seconds of silence. There are five universal species-specific themes that vary 

locally, with populations having distinct dialects (Adret-Hausberger 1986, Adret-

Hausberger and Güttinger 1984, Adret-Hausberger 1984, Hausberger 1997) that are 

stable across years (Adret-Hausberger et al. 1990) and recognizable to conspecifics 

(Adret-Hausberger 1982). Different themes are used in different social contexts (Adret-

Hausberger 1989, Hausberger 1997, Henry 1998): proportions sung of each theme vary 

based on population (Adret-Hausberger 1984), flock and roost size (Adret-Hausberger 

1982), level of sociality (Adret-Hausberger 1988), whether the population is captive or 

wild (Henry 1998), and season (Hausberger et al. 1995). Whistle dialects develop at 

breeding colonies and are thought to maintain social structure in large nonbreeding roosts 
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(Hausberger et al. 2008). In addition to the five themes, individuals sing individual 

themes unique to each singer, which may function as vocal signatures and may include 

mimicry (Adret-Hausberger and Güttinger 1984).  

The structure of warbling song is very different from whistle song. Warbling 

occurs in bouts of continuous song lasting about 30 seconds (Eens et al. 1989), separated 

by silence. A song bout is composed of four sections that are each made up of motifs 

(Eens et al. 1989, Gentner and Hulse 1998, Eens et al. 1991, Mountjoy and Lemon 1995, 

Hindmarsh 1984). A motif is a set of one to ten notes repeated as a discrete unit. A male’s 

repertoire size is the number of unique motifs he sings (e.g. Eens et al. 1989). Motifs are 

created through a mixture of improvisation, modification, and appropriation of sounds 

(Adret-Hausberger et al. 1989). Starlings are open-ended learners, which means that each 

male can add to or revise his repertoire from year to year and repertoire size may 

therefore indicate age and experience (Adret-Hausberger et al. 1989).  

Starling motifs are highly variable and very different from each other (Adret-

Hausberger and Jenkins 1988) but all have a quality distinctly starling (Adret-Hausberger 

et al. 1989). The first song section is whistle motifs, which may overlap with those used 

in whistle song. The second is composed of variable motifs, which are diverse, complex, 

and have a large frequency range. A variable motif is generally repeated a specific 

number of times, sometimes with minor variation, before the next motif is sung (Adret-

Hausberger and Jenkins 1988, Adret-Hausberger et al. 1990, Eens et al. 1989). Most of 

an individual’s mimetic repertoire is incorporated in the variable motifs (Eens et al. 1989, 

Eens et al. 1991). A third section, the rattle motifs, are characterized by rapid repetitions 

of clicking sounds and other notes. As the third section is not very distinct from the 
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second, I combined the two into “variable” motifs. Finally, a song bout ends with 

repeated terminal motifs of high frequency (e.g. Adret-Hausberger and Jenkins 1988, 

Böhner and Todt 1996). Not all types of motifs are included in every song bout; often 

song is interrupted before terminal motifs are sung (e.g. Eens et al. 1989, Eens et al. 

1991, Mountjoy and Lemon 1995). The quality and structure of motifs is distinct, such 

that a motif can easily be placed into the appropriate section of a song bout (Mountjoy 

and Lemon 1995). Furthermore, while no two warbling song bouts are identical (Adret-

Hausberger 1989), differences between individuals are obvious, as motifs are unique to 

an individual (Adret-Hausberger et al. 1989, Hausberger et al. 1995), and each has 

stereotyped sequences of motifs (Mountjoy and Lemon 1995). Thus, song content is 

unique to an individual, but the overall structure or arrangement is nonrandom and 

follows species-specific rules (Adret-Hausberger et al. 1989, Hausberger et al. 1995, 

Adret-Hausberger et al. 1990, Gentner and Hulse 2000). These rules are similar for both 

female and male warbling song, although females use song differently from males and 

only sing in the fall (Henry and Hausberger 2001). 

The focus of this thesis is the function/s of mimicry within the warbling song of 

male starlings. Male warbling song (henceforth simply “warbling song” or “song”) 

predominantly functions in mate attraction (Hindmarsh 1984, Cuthill and Hindmarsh 

1985, Eens et al. 1989, Hausberger et al. 1991, Eens et al. 1991) and female reproductive 

stimulation (Hausberger et al. 1995, Eens et al. 1991), although motifs may also be useful 

for individual recognition (Adret-Hausberger and Jenkins 1988, Adret-Hausberger et al. 

1990, Gentner and Hulse 2000, Gentner and Hulse 1998, but see Knudsen et al. 2010). 

Various findings support these conclusions. Male singing output increased nine-fold 
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when females were present but did not change when another male was introduced (Eens 

et al. 1990). Males direct warbling song at females (Eens et al. 1989), especially when 

soliciting extra-pair copulations (Eens et al. 1991). While playback of warbling song 

attracts females and males (Mountjoy 1994, Hausberger 1997), males do not respond 

vocally (Hausberger 1997). The only territorial, male-male interactions observed at nest 

boxes involved whistle song rather than warbling (pers. obs.). As such, warbling does not 

appear to be used aggressively. Finally, song bouts have less sequence variation during 

the breeding season (Adret-Hausberger and Jenkins 1988) and singing decreases after 

pairing (Hindmarsh 1984), which both demonstrate the sexual importance of song. 

Therefore, for the purposes of this thesis, song will be considered a sexual signal.  

 This thesis addresses the repertoire size, permissive learning, structural and 

acoustic function hypotheses, and briefly touches upon the learning and production 

hypothesis. Instead of testing the evolutionary functions of mimicry directly, I 

concentrated on the structural mechanics of how mimicry is used in song. This approach 

allowed me to indirectly test whether mimetic and nonmimetic song components have a 

similar function. 

 

Chapter Overview 

In chapter I, I take several steps back and give an overview of the evolutionary 

history of vocal mimicry in songbirds. I introduce song learning and vocal mimicry and 

explain what is known about mimicry by songbirds. I discuss how the evolution of vocal 

mimicry can be considered the emergence of permissiveness in learning and use 

phylogenetic tools to determine when mimicry evolved in songbirds. I also look at 
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differences in the proportion of mimetic species across continents. I found that more than 

300 species are vocal mimics and mimicry evolved repeatedly throughout the evolution 

of the songbird clade. This first chapter is meant as an extended introduction to mimicry 

to prepare the reader for chapter II through IV, which are a detailed case study of the use 

of vocal mimicry in song by European starlings. 

Chapter II gives necessary background information about what starling song is 

like, along with what sounds are mimicked and how mimicked sounds are incorporated 

into song. I also detail the extensive individual variation in song and mimicry. I focus on 

two sexual selection hypotheses for vocal mimicry: the repertoire size hypothesis and 

permissive learning hypothesis. I compare the relationships between repertoire size and 

mimetic and nonmimetic song components to determine whether mimicry is used to 

supplement song repertoire. I found that mimicry is not directly used to supplement song 

repertoire. While these findings are congruent with the permissive learning hypothesis, 

they also suggest that mimicry may function in different, as-yet-unknown, ways.  

Chapter III is an exploration of song structural complexity using network tools. 

Here, I focus on the structural function hypothesis by determining whether mimicry 

facilitates song structure. I describe starling song structure and compare mimetic to 

nonmimetic song components in two ways. First, I determine whether mimicry is used 

preferentially at points of structural diversity within song sequences. Then I explore 

whether there is a difference in how often mimetic and nonmimetic components are 

repeated, as repetition is an important structural feature of starling song. I found that 

mimetic song components are used differently from nonmimetic ones, in unexpected 

ways. Mimicry was used less often at structurally diverse sequences in song, but mimetic 
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components were repeated more often than nonmimetic ones. These findings indicate that 

mimicry is important in starling song, and that mimetic components are not simply 

mistakenly incorporated. 

The fourth and final chapter focuses on the potential acoustic functions of 

mimicry in song. Chapter IV is by necessity slightly more theoretical in that I do not 

experimentally test the learning and performance or acoustic function hypotheses. 

However, I use quantitative acoustic measurements to determine differences between 

mimetic and nonmimetic motifs. Furthermore, I compare the acoustic contrast in song 

sequences to learn whether mimicry expands sound diversity. I found that mimicry does 

widen acoustic parameters of starling song. However, sequences of mimetic motifs in 

song had less acoustic contrast than did nonmimetic sequences. As such, although 

mimicry has a functional effect, the syntactical rules governing European starling song 

constrain how mimicry can be used.  

My work uses novel techniques to expand our understanding of song structure, as 

well as the relationship between structure and mimicry. I show that mimicry is treated 

differently from species-specific sounds, although this is in subtle, structural ways, and it 

remains unclear how important the inclusion of mimicry is to listeners. Mimicry can 

function with more subtlety than previously considered. My thesis also demonstrates that 

the European starling is an excellent model for addressing questions about the functions 

of mimicry, as well as structural questions about song construction and composition.  
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CHAPTER I: EVOLUTIONARY ORIGINS OF VOCAL MIMICRY IN OSCINE 

SONGBIRDS1 

 

Abstract 

Vocal learning is an important behavior in songbirds, which learn their song. 

Some songbird species learn heterospecific sounds as well as conspecific vocalizations. 

The emergence of vocal mimicry is necessarily tied to the evolution of vocal learning, as 

mimicry requires the ability to acquire sounds through learning. I compiled a database of 

known vocal mimics and conservatively restricted the sample to 293 species from 40 

families. I then traced the evolutionary history of vocal mimicry across the avian 

phylogeny using ancestral trait reconstruction using a complete dataset of oscine 

passerines from three continents (North America, Europe, and Australia). I found that the 

common ancestor to oscine songbirds was unlikely to be a vocal mimic, suggesting that 

song learning evolved with mechanisms to constrain learning to conspecific models. 

Mimicry then evolved repeatedly within the songbird clade, either through relaxation of 

constraints on conspecific learning or through selection for active vocal mimicry. Vocal 

mimicry is likely ancestral in only a handful of clades and I detected many instances of 

independent origins of mimicry. My analysis underscores the lability of vocal mimicry in 

songbirds and also highlights the evolutionary flexibility of song learning mechanisms.  

 

Introduction 

 
1 First published with minor formatting differences as Goller, M. and Shizuka, D. 2018. 

Evolutionary origins of vocal mimicry in songbirds. Evolution Letters 2: 417-426. 
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Acoustic communication often plays a role in species recognition in animals (e.g. 

Emlen 1972, Claridge 1985, Hauber et al. 2001, Seddon 2005, Percy et al. 2006). For 

many species, acoustic signals are genetically encoded; individuals can produce species-

specific sounds without the need for learning (Jang and Gerhardt 2006, Jarvis 2006, 

Janek and Slater 2000). In others, species-specific vocalizations are learned by first 

perceiving acoustic information and then practicing imitating these acquired sounds 

(Marler 1976). Such vocal learning is a behavior found in select mammals (humans, bats, 

cetaceans, and elephants; e.g. Jarvis 2006, Crockford et al. 2004, Prat et al. 2015) and 

birds (hummingbirds, parrots, and songbirds; e.g. Bolhuis and Gahr 2006). Within birds, 

this ability evolved independently multiple times (Tyack 2007, Jarvis 2007, Slater 1989).   

Roughly half of the world’s avian species are oscine passerines (songbirds) that 

learn their song. In many species, young birds listen to the songs of adults to gain an 

acoustic template, fine-tune their imitation by comparing their practice songs to the 

template, and eventually produce a characteristic song of their own (much simplified; see 

Marler 1970a&b, Konishi 1965, Marler 1976, Soha 2017).  However, there is striking 

variation in the oscine learning program (e.g. Nottebohm 1972, Soha 2017). Brenowitz 

and Beecher (2005) identified five dimensions of variation that cause complexity in song 

learning: timing of learning, number of songs learned, fidelity of imitation, type of 

exposure, and level of constraint to species-specific models. The last dimension, level of 

constraint, ranges from species that learn only species-specific song components (highly 

constrained) to species that incorporate heterospecific and environmental sounds 

(unconstrained). In other words, a species can be discriminatory or permissive about what 

sounds it learns and incorporates into vocalizations.  
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Some highly permissive species, termed vocal mimics, readily learn not only 

species-specific sounds but also sounds produced by other species or inanimate objects 

(Marshall 1950, Kaplan 2003, Kelley et al. 2008). There are many potential functions and 

definitions of vocal mimicry, which have been the focus of study (reviewed in Marshall 

1950, Dobkin 1979, Baylis 1982, Hindmarsh 1986, Kelley et al. 2008, Dalziell et al. 

2015, Jamie 2017; see also Dalziell and Welbergen 2016). However, little is known about 

the roots of mimetic ability in songbirds. Here, we focus on the evolutionary origins of 

the predilection to mimic heterospecific sounds, combined with the ability to imitate 

them (‘descriptive definition’ of vocal mimicry; Baylis 1982).  

The emergence of vocal mimicry is necessarily tied to the evolution of vocal 

learning, as mimicry requires the ability to acquire sounds through learning. Therefore, 

we assume that vocal mimicry could not have evolved before vocal learning. However, 

there are two broad scenarios in which vocal mimicry could have arisen relative to the 

emergence of vocal learning. First, if vocal learning evolved due to selection for 

increased song repertoire (e.g. Nottebohm and Liu 2010), mimicry could have evolved as 

a mechanism to acquire more song components or as a byproduct of a broad acoustic 

template. The ability to mimic heterospecific sounds could then have been lost in lineages 

that evolved a narrow predisposition to learn only conspecific sounds. In this case, we 

would expect mimicry to align with the emergence of vocal learning and to be ancestral 

to all songbirds. Second, in an alternative scenario, vocal learning may have originally 

evolved with a strong bias toward acquisition of strictly species-specific sounds. Over 

time, the perceptual window for sound acquisition could have become more permissive in 

some lineages, allowing vocal mimicry. The emergence of permissiveness in song 
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learning could have arisen through relaxation of selection for narrow predispositions 

during song learning, or through strong selection for newly acquired functions (Dalziell 

et al. 2015).  

To determine which of these two scenarios was more likely, I traced the 

evolutionary history of vocal mimicry across the avian phylogeny using ancestral trait 

reconstruction. First, I compiled a database of known mimetic species to better 

understand global patterns of mimicry. Second, I focused on the phylogenetic pattern of 

the emergence of mimicry. By tracing the history of vocal mimicry on the songbird 

phylogeny, I determined when the trait is likely to have emerged. Third, I used my 

phylogenetic approach to suggest the types of questions about mimicry that should be 

tackled in the future.  

 

Methods 

Definition of vocal mimicry 

For the purposes of this study, I use a broad definition of vocal mimicry, which 

encompasses imitation of all types of non-conspecific sounds: other animals, 

anthropogenic (e.g. dog whistle, chainsaw) and environmental (e.g. water drip, leaves 

rustling) noises. I chose this general definition to allow analysis of the evolution of the 

ability to learn and produce ‘mimicked’ sounds. While information on vocalizations is 

available for many species, determining the functions of mimicry requires careful 

experimental studies that have only been conducted on a few species.  

 

Compiling the database 
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Data were compiled from a variety of primary and secondary sources. A 

preliminary search was done on Google Scholar. Then I expanded the search to various 

websites using search terms “mimic- “, “imitate- “, and “copy- “. Field guides and 

handbooks, including all volumes of the Handbook of the Birds of the World, were 

browsed manually for mention of vocal imitation or copying behavior. Sources without 

peer-review were verified whenever possible with an extensive search for corroborative 

scientific publications on each species on Google Scholar. If an account could not be 

verified, the species in question was not included in analysis. Scientific and common 

names were standardized using the IOC Bird List version 5.4 (Gill and Donsker 2015).  

 For every account of a mimetic species, presence and extent of vocal imitation 

were recorded. Each species was given a vocal imitation score of 0 (absence) or 1 

(presence) based upon documentation of observed mimetic ability. If no data were found 

to suggest presence of vocal imitation ability, the species was given a score of 0 (as in 

Garamszegi et al. 2007) in all database analysis (but see Phylogenetic analysis). 

Accounts for more than 100 mimic species gave no details of the extent of mimetic 

ability, and these species were therefore not included as mimics. 

When running analysis on my database, I only included what I term ‘flexible 

mimics’. Flexible mimics are species that imitate a wide variety of sounds, often having 

plastic repertoires and an extended period of song learning. In these species, mimetic 

ability is found in most individuals. I disregarded accounts of mimicry in brood parasites 

that learn the calls or songs of their host species (17 species of Vidua finches; e.g. 

DaCosta and Sorenson 2014). Although brood parasites are flexible in which species they 

imitate (Langmore et al. 2008, Madden and Davies 2006), in this case, they have merely 
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shifted their learning template from a conspecific to heterospecific tutor, and do not 

imitate a wider range of sounds (Kelley et al. 2008). Other species removed from analysis 

were species of which an individual or small number of individuals imitated a 

heterospecific in presumably unnatural scenarios, such as when brought together in 

captivity (e.g. bullfinches, zebra finches). Any accounts of a single individual imitating 

heterospecific song were also excluded, as this imitation most likely resulted from a 

learning mistake. In total, I excluded roughly 250 species from analysis.  

 

Database analysis 

I calculated proportions of mimetic species within avian families and across 

geographic regions using the full database of 293 flexible mimic species. I was especially 

interested in patterns of mimicry within families, and determined whether mimics were 

clumped within, or dispersed throughout, a family. As I used published accounts of 

mimicking species, I expected under-sampling of certain regions (Asia, Africa, South 

America) compared to other well-studied regions (North America, Europe, and 

Australia). To investigate this further, I compared the proportion of mimetic oscine 

species in each region. I used bird checklists from Avibase (excluding all accidental and 

introduced species) as the source for the total number of resident oscine species to allow 

comparison between regions (Lepage 2017). 

 

Phylogenetic analysis 

To determine the ancestral state (mimetic or non-mimetic) of oscine passerines, I 

conducted a phylogenetic analysis using the compiled database. To remain conservative 
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in my analysis and account for potential unknown mimic species, I only used oscines 

from North America, Europe, and Australia. I assumed the song of all oscine species 

from these regions has been described, as birds in these areas have been relatively well-

studied, and species not known to mimic could be confidently classified as ‘non-

mimetic’. This assumption was supported by the relatively high proportion of known 

mimics on these continents. This restricted my sample to 817 species, 130 of which were 

mimics, for core analyses. Vocal imitation scores were mapped onto phylogenetic trees 

taken from the global phylogeny of birds accompanying Jetz et al. (2012). The tree 

source was Hackett All Species: a set of 1000 trees with 9993 operational taxonomic 

units (OTUs) each. The discrete character of absence or presence of mimicry was mapped 

onto the phylogeny as a basic binary value. I then reconstructed the ancestral state for the 

basal ancestor of all species in the phylogeny. I reconstructed discrete ancestral states 

using the ER model, which estimates the marginal ancestral states based upon Bayesian 

likelihood. Stochastic character mapping was used to estimate the number of state 

changes across the phylogeny. All analyses were done on all 1000 trees using the R 

package phytools v. 0.5-38 (Revell 2012).  

To test the robustness of my result, I also ran ancestral state reconstruction on 

1000 trees with 3550 species. In this analysis, I included all flexible mimics from all 

geographic regions and labeled any other species as nonmimetic (mimicry absent). As 

such, some of the species classified as nonmimetic were most likely capable of mimicry. 

I compared the probability of mimicry being ancestral to oscines from both sets of 

analyses.    
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Results 

Database analysis 

Of the roughly 5,004 extant avian species and 115 families in the suborder Passeri 

(songbirds), 293 species (5.8%) from 40 families (34%) were classified as flexible 

mimics (Suppl. Table 1.1). Songbird families vary greatly in mimetic ability and number 

of mimicking species (Figure 1.1a&b). Of the 40 songbird families with at least one 

mimic, mimicry is rare (i.e., proportion of flexible mimics ≤ .10) in 26 families, or 65%. 

In six songbird families, roughly half the species have some level of mimetic ability 

(Artamidae, Dicruridae, Mimidae, Nicatoridae, Ptiliogonatidae, and Regulidae). In these 

cases, mimicry is spread across a family such that mimetic and nonmimetic species are 

often each other’s closest living relatives. Finally, mimicry is widespread and ubiquitous 

in three families (Atrichornithidae, Menuridae, Ptilonorhynchidae).  

 

Supplemental Table 1.1 Full database of global flexible mimics. (PDF, 178 KB) 
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Figure 1.1 Phylogeny of songbirds from North America, Europe, and Australia. 

a) Presence of mimicry is represented by white marks. Families are individually-colored 

and labeled for ease of reference. b) Mimetic ability is represented in red. Vocal mimicry 

evolved independently at least 86 times and was lost at least 25 times. 

 

 The proportion of oscine species capable of mimicry varied regionally as well. In 

the well-studied regions, roughly 15% of oscine species were mimetic (Table 1.1; North 
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America: 14.2%, Europe: 18.6%, Australia: 13.6%). The result for Australia is identical 

to what Marshall (1950) found 70 years ago. In contrast, only about 5% of oscines in 

other regions were mimetic (Asia: 5.1%, Africa: 6.8%, South America: 3.0%, Central 

America: 2.3%).  

Table 1.1 Proportion of known mimics on each continent. 

Region Known oscine mimics Total oscine species Proportion 

US + Canada 53 374 0.142 

Europe 40 215 0.186 

Australia + New Zealand 53 389 0.136 

Asia 102 2004 0.051 

Africa 98 1442 0.068 

South America 25 821 0.030 

Central America 12 531 0.023 

 

Phylogenetic analysis 

Based on phylogenetic analysis constrained to species found on my three focal 

continents (North America, Europe and Australia), the most recent common ancestor of 

all songbirds most likely did not have mimetic ability (probability of presence = 0.167  

.039). This was not substantially different from my estimate of ancestral mimetic ability 

based on the global database of mimics from all continents (probability of presence = 

0.185  0.003).  

Based on the focal dataset, I estimate that vocal mimicry evolved independently at 

least 86 times across bird taxa (Figure 1.1b), and was lost about 25 times. The ancestors 

of two songbird families – Mimidae and Menuridae – were very likely vocal mimics 

(probability > 0.75; Table 1.2). In Atrichornithidae, Corvidae, and Ptilonorhynchidae, it 

is unclear whether mimicry was ancestral or not (probability  0.5). Four families had a 

small likelihood of ancestral mimicry (Artamidae, Laniidae, Polioptilidae, Sturnidae; 
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close to 0.1), while all other oscine families did not have ancestors capable of mimicry 

(probability << 0.01, Suppl. Table 1.2).   

 

Table 1.2. Probabilities of the presence of vocal mimicry in the ancestor of select 

songbird families. 

Family 

Probability 

mimicry was 

present in ancestor 

Number of 

species 

included 

Total 

number of 

species 

Proportion of 

family in 

analysis 

Artamidae 0.111666  0.0634 14 24 0.58 

Atrichornithidae 0.539222  0.1183 2 2 1.00 

Corvidae 0.545074  0.1706 35 130 0.27 

Laniidae 0.173934  0.0755 9 33 0.27 

Menuridae 0.888148  0.1323 2 2 1.00 

Mimidae 0.939697  0.0173 10 34 0.29 

Polioptilidae 0.113447  0.0182 3 18 0.17 

Ptilonorhynchidae 0.545074  0.1706 10 20 0.50 

Sturnidae 0.180287  0.0311 6 123 0.05 

 

Supplemental Table 1.2. Probabilities of the presence of vocal mimicry in the ancestor of 

every songbird family in analysis. (PDF 63 KB) 

Discussion 

Mimetic ability is likely not ancestral to songbirds. Vocal mimicry has evolved 

numerous times and is currently widespread among extant species. One-third of songbird 

families contain at least one species that mimics, and the majority of species in some 

families is mimetic, indicating that mimicry may serve an important function in some 

clades. My phylogenetic analysis indicates that mimicry may have emerged at the base of 

some families, multiple times within other families, or never emerged in still other 

families. Mimicry appears to have been ancestral in two families (Mimidae and 

Menuridae), with probabilities of presence greater than 0.75. These families include well-

studied species in which functions of mimicry have been investigated. For example, the 
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male northern mockingbird, Mimus polyglottos, uses mimicked notes to expand the 

frequency bandwith of its song by around 40%, which may be particularly attractive to 

females (Gammon and Lyon 2017). In superb lyrebirds, Menura novaehollandiae, 

mimetic accuracy seems to be important, and may be used by females to choose between 

males (Dalziell and Magrath 2012).  

Although my dataset includes birds from most continents, regions with a long 

history of birdsong publication – North America, Europe, Australia – were 

overrepresented compared to South America, Africa, and Asia. Roughly 15% of oscine 

species in well-studied regions are mimetic (Table 1.1; for Australia, see also: Marshall 

1950). This is different from my conservative estimate of 5.8% of global oscine species 

as flexible mimics. If vocal mimicry is evenly distributed across all continents, I suspect 

that many avian vocal mimics have not been recognized or studied, primarily on the 

continents excluded from my phylogenetic analysis (i.e., South America, Africa and 

Asia). Some avian families found exclusively in less-studied regions may include 

mimetic species we know nothing about. 

To partially address the problem of the potentially large number of 

uncharacterized mimetic species on some continents, I limited my core phylogenetic 

analysis to the well-studied regions (North America, Europe, and Australia). However, 

this sampling scheme by necessity reduces the robustness of ancestral state estimation at 

the family level due to under-sampling of species in some families. Therefore, my 

estimates are limited based upon the proportion of species of each family included in 

analysis, and the quantitative estimates of ancestral states should be taken with caution.  
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The effect of under-sampling depends on the family and the proportion of species 

existing on the three focal continents. For example, my analysis indicates relatively high 

probabilities of ancestral mimicry in corvids and mimids, even though only 27% and 29% 

of species were included in my phylogenetic analysis, respectively. These families are 

well-known for their mimetic ability, and it is therefore unsurprising that mimicry may 

very well have been an ancestral trait. In other cases, the severe underrepresentation of 

families may have led to a low estimate of the presence of ancestral mimicry. For 

example, the family Sturnidae, represented by 6 of 123 species in my analysis, includes 

many well-known mimetic Asian mynah species that were excluded from analysis 

(Suppl. Table 1.1), or mimetic species that have not been described in the literature 

(Micronesian starling; Haldre Rogers, pers. comm.). Thus, a more detailed family-level 

analysis with better sampling may reveal that vocal mimicry is in fact ancestral to 

Sturnidae. Other families in which mimicry may be more widespread than estimated 

include Artamidae and Polioptilidae (with proportions  0.1), as well as Alaudidae and 

Vireonidae (with proportions  0.0 in my analysis).  

Underrepresentation of some families could also have led to exaggerated 

estimates of mimicry. For example, while some species of shrike (family Laniidae) are 

renowned for their mimicry, other species may have no mimetic ability. It is possible that 

my limited sample of shrikes may have included a disproportionately large number of 

mimics, and this could have inflated the estimate.  

My phylogenetic analysis indicates that vocal mimicry is likely not ancestral to 

oscine songbirds. As song learning probably evolved at some point early in the evolution 

of oscines (Nottebohm 1972, Nottebohm and Liu 2010), this implies that mimetic ability 
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did not evolve concurrently with the origin of song learning. Instead, my analysis 

supports the hypothesis that the ancestral songbird had a restricted song template that 

excluded non-species-specific sounds. Vocal flexibility may have been limited by 

constraints on template acquisition facilitating the learning of only conspecific sounds, 

and/or by restrictive sound production mechanisms. These restrictions and constraints on 

vocal mimicry would have lessened repeatedly and independently within the songbird 

clade.  

Given my results, the question becomes why and how restrictions on sensory 

recognition (song template) and/or sound production (syringeal function) became relaxed 

in some lineages. Here, I propose two hypotheses. In the first hypothetical scenario, 

species-specificity in both song recognition and production slowly relaxed over time in 

the absence of selection. At some point after song learning evolved, mimicry became 

possible and the imitation of heterospecific sounds became commonplace in many 

species, eventually gaining functional significance. Alternatively, permissiveness in 

imitation may have undergone repeated positive selection after the evolution of song 

learning. A proposed mechanism driving the evolution of vocal learning is mate choice 

based on song complexity or novelty (Nottebohm 1972, Jarvis 2004) as females of many 

species appear to prefer males singing more complex repertoires (e.g., canaries, 

Draganoiu et al. 2002; starlings, Mountjoy and Lemon 1996, Gentner and Hulse 2000; 

chaffinches, Leitao et al. 2005), and learning enhances complexity (Nottebohm 1972, 

Jarvis 2006). Similarly, Laiolo et al. (2011) suggest that mimicry increases song 

complexity and serves as an honest signal. As such, selection for vocal repertoire 

complexity or plasticity in vocal performance may have led to a less restricted song 
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learning template. As imitation became increasingly plastic, vocal learning would have 

broadened to include mimicry. Of the mimicking species used in my analysis, more than 

90% are likely using mimicry solely in song. It therefore seems likely that sexual 

selection played a role in the emergence of mimicry.  

Regardless of the presence or absence of selection pressures that led to mimicry, 

the trait is certainly very labile. Although flexibility in song template and production are 

both required, the imitation of heterospecific sounds emerged frequently, suggesting that 

many nonmimetic species are very close to attaining this ability. This is intriguing as it 

remains unclear what prevents nonmimetic oscines from mimicking heterospecific 

sounds. However, answering further questions about the emergence of mimicry requires 

comparative data of mimetic and nonmimetic species, as well as the careful study of the 

song of mimetic species. Only then can we begin to tackle detailed questions about the 

evolution of mimicry and its functions.  
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CHAPTER II: HOW EUROPEAN STARLINGS INCORPORATE MIMICRY 

INTO SONG 

 

Abstract 

 
Passerine (songbird) song learning systems take many forms and variation in 

learning ability is reflected in differential reproductive success. Over 300 species are 

capable of vocal mimicry, the learning and incorporation of heterospecific sounds into 

communication. It is still unclear why many of these species include mimicry in song. 

The repertoire size hypothesis suggests that selection for large repertoire size causes 

individuals to use imitation to supplement their repertoires. Another hypothesis, the 

permissive learning hypothesis, is that complex song requires a broader song learning 

template, thereby allowing accidental and passive acquisition of sounds from the 

soundscape. I used European starling (Sturnus vulgaris) song to test these hypotheses and 

determine whether mimetic sounds were incorporated into song in the same way as 

nonmimetic ones. I first determined how much variation existed between males in both 

mimetic and nonmimetic repertoire composition. I then determined how mimicry was 

incorporated into song units and whether males used mimicry to increase repertoire size. I 

found that a large amount of variation existed in how much, and what is, mimicked by 

males. Males copied an average of 12 different models; some sounds were imitated by all 

males, some only by one male. Some used mimicry extensively while others barely 

mimicked. Mimicked sounds were incorporated into song motifs in four distinct positions 

– as an entire motif, embedded into species-specific sounds, at the beginning, or at the 

end. Different heterospecific sounds were preferentially used in different positions within 

motifs. Finally, mimicry did not directly increase repertoire size; instead, increase in 
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repertoire size led to a greater number of mimicked motifs due to the larger overall 

number of motifs. Our findings align with the expectations from the permissive learning 

hypothesis, although it is unclear whether heterospecific sounds function in other ways 

not addressed here. Further study of the incorporation of mimicry in starling song is 

necessary to understand how mimicry functions in this species.  

Introduction 

 
Animal communication systems are diverse, ranging from simple cues to 

complex, multi-modal signals. Vocal learning, whereby individuals imitate acquired 

signals and modify them based on social feedback, has evolved in several taxa. 

Individuals of the 5,000 oscine passerine (songbird) species must learn song, an acoustic 

signal used in reproductive contexts. Songbird song learning systems take many forms 

(Brenowitz and Beecher 2005), and individual variation in learning ability is reflected in 

differential reproductive success. Within songbirds, over 300 species have greater 

flexibility in what they learn and incorporate heterospecific sounds into species-specific 

communication (Goller and Shizuka 2018). Studying these vocal mimics can provide 

unique insights into which sounds are acquired by song learning and how they are 

incorporated into song.  

Mimicking species vary in what they imitate and how they learn mimetic sounds. 

As songbird species are physiologically-constrained in what sounds they are capable of 

reproducing (Zollinger and Suthers 2004), some species imitate sounds that resemble 

species-specific vocalizations (Riegert and Juzlova 2017, Gammon 2014). Other species 

preferentially imitate alarm calls (icterine warbler, Hippolais icterina, Riegert and 

Juzlova 2017) or simple vocalizations (Robin chat, Cossypha spp., Ferguson et al. 2002; 
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European starling, Sturnus vulgaris, Hindmarsh 1984, 1986), although this is not true for 

all mimics. Similarly, it is still unclear whether mimics learn imitated sounds directly 

from conspecifics (Baylis 1982, Hindmarsh 1984), directly from heterospecific models - 

as in spotted bowerbirds (Chlamydera maculata, Kelley and Healy 2010), Albert’s 

lyrebirds (Menura alberti, Putland et al. 2006, Kelley et al. 2008), and icterine warblers 

(Riegert and Juzlova 2017) - or both (Adret-Hausberger et al. 1990). In this chapter, I 

focus on what is imitated to draw conclusions about how mimicry is used in birdsong.  

Potential functions of vocal mimicry have only been studied in a handful of 

species. We know that individuals of some species use mimicry in their calls - simple 

vocalizations with nonsexual functions - to steal food (fork-tailed drongos, Dicrurus 

adsimilis, Flower 2011), voice alarm (Brown thornbills, Acanthiza pusilla, Igic and 

Magrath 2013; Steller’s jays, Cyanocitta stelleri, Billings et al. 2017; phainopepla, 

Phainopepla nitens, Chu 2001; great bowerbird, Chlamydera nuchalis, Frith and Frith 

1990), attract prey (shrike Lanius spp., Heinroth and Heinroth 1958, Atkinson 1997), or 

attract heterospecific flock-mates (greater racket-tailed drongo, Dicrurus paradiseus, 

Goodale and Kotagama 2006). However, the functions of mimicry in song are more 

difficult to understand.  

Excellent reviews have been published suggesting various functional hypotheses 

for mimicry in song (see Kelley et al. 2008, Dalziell et al. 2014, Dobkin 1979, 

Garamszegi et al. 2007). Some hypotheses suggest that mimicry plays a role in a 

nonsexual context. For example, in studies of spotted bowerbird mimicry, Kelley and 

Healy (2010, 2011, 2012) found that neither conspecifics or heterospecifics were 

attracted to mimicry and individuals were 30 times more likely to mimic during nest 
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disturbance than at any other time. The authors hypothesized that spotted bowerbirds 

learn mimicry when they are alarmed and repeat these sounds during future alarming 

situations (Kelley and Healy 2012), similar to what Dalziell and Welbergen (2016) 

proposed for superb lyrebirds (Menura novaehollandiae). However, other nonsexual 

selection hypotheses have received little support and most mimicking species do not 

appear to use mimicry in this way (Garamszegi et al. 2007).  

Hypotheses on sexual selection as the ultimate motivation of vocal mimicry have 

found more support. This chapter will address two of the main sexual selection 

hypotheses: the repertoire size and permissive learning hypotheses. The repertoire size 

hypothesis suggests that larger repertoire size is preferred by females, and mimicry 

therefore occurs because it allows an individual to expand their repertoire (Dalziell et al. 

2014, Kelley et al. 2008). In this case, mimicry, per se, is not what is being selected for, 

but it may increase an individual’s repertoire size and therefore yield higher reproductive 

fitness. The permissive learning hypothesis suggests that species with complex songs 

must have a relaxed song learning template and therefore sometimes imitate sounds from 

the local soundscape on accident (Riegert and Juzlova 2017, Kelley et al. 2008). In this 

situation, mimicking heterospecifics is neither beneficial nor detrimental. A study on 

European songbirds concluded that mimicry in most species is simply a side effect of 

song learning and is therefore occurring passively (Garamszegi et al. 2007). However, 

they did find positive correlations between vocal mimicry and large brain size, song 

continuity, and age-dependent expression of repertoire size (Garamszegi et al. 2007), so it 

appears the answer is not so straightforward. In either of these hypotheses, mimetic 
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sounds should be treated the same as species-specific ones (Hindmarsh 1984, 1986, 

Baylis 1982).  

Mimicry provides a unique opportunity to track song learning. Tracing mimicked 

sounds within song is often easier than following the development and retention of 

species-specific sounds from early life. We can focus on the distinction between mimetic 

and nonmimetic categories instead of on a continuum of conspecific sounds. How 

different species learn songs, and to what extent song traits are genetically encoded, is 

highly variable and poorly understood (Love et al. 2019). However, a young songbird 

generally has innate predilections, apparently ancestral to the songbird lineage (Goller 

and Shizuka 2018), that limit its vocalizations to species-specific sounds (Marler 1976). 

In mimetic species, mimicked song components are not constrained by an individual’s 

predisposition to learn and produce conspecific sounds. If all sounds are treated the same 

by a mimicking species, the genetic constraints on song learning must be relaxed to 

include heterospecific sounds. This unrestricted sound selection, in which mimetic and 

nonmimetic sounds are incorporated in the same manner, is an expectation from both the 

repertoire size and permissive learning hypotheses. Alternatively, males may acquire and 

incorporate mimicked sounds very differently from how they utilize species-specific 

components. We know little about how individuals compare in their use of mimicry, or 

what effect mimicry has on the development of species-specific song. As even closely 

related species may have markedly different learning programs (Love et al. 2019), 

studying mimicry may allow a clearer understanding of what occurs during song 

learning. In this study, I compared mimetic and nonmimetic components of European 

starling song to learn about the relationship between mimicry and repertoire size.  
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In starlings, the significance of repertoire size is not fully understood. While 

males with larger repertoires were healthier (Mountjoy and Lemon 1996), better at novel 

foraging tasks (Boogert et al. 2008), were dominant and had higher immune responses 

(Spencer et al. 2003), female response to large repertoires was mixed. Mountjoy and 

Lemon found that females preferred males with larger, more complex repertoires (1991, 

1996) and Boogert et al. (2008) suggested repertoire size is an honest indicator of quality. 

However, in a different study, female starlings did not favor large repertoires, instead 

making decisions based on transition stereotypy (Gentner and Hulse 2000). If the 

repertoire size hypothesis is true for starlings, and large repertoires are important, males 

may use mimicry to supplement song repertoires. If this is the case, the assumption is that 

either males with relatively small or males with relatively large repertoires use 

proportionally more mimicry than males with intermediate repertoire sizes.  

European starlings are talented mimics that copy a wide range of avian and 

nonavian sounds (e.g. Thomson 1922, Chisholm 1932, Tretzel 1965, Hindmarsh 1984, 

1986). Starlings use a combination of invention, modification, and imitation to create 

their songs. Males that imitate the same sounds incorporate them differently into song 

(Adret-Hausberger and Jenkins 1988). Indirect findings from some studies of starling 

song led to the conclusion that mimetic sounds are used interchangeably with species-

specific sounds (e.g. Eens et al. 1989) and that mimicry serves no specialized function 

(Hausberger 1997). Other authors suggested that mimicry increases repertoire diversity 

and facilitates individual recognition (Adret-Hausberger and Jenkins 1988, Adret-

Hausberger et al. 1989, Hausberger et al. 1995, Gentner and Hulse 2000, but see Knudsen 

et al. 2010). Furthermore, there are other ways in which mimicry could function in song 
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that have not been addressed. It is therefore still unclear to what extent mimicry matters 

for starlings and a first step is understanding exactly how mimicry relates to repertoire 

size. This study is the first step in paring down potential functions of mimicry under the 

umbrella of sexual selection. 

 I analyzed wild European starling song to address three questions about individual 

variation and mimicry. First, how does song content vary among males? I expected songs 

to vary in content (e.g. motif composition and the types of sounds used) but to adhere to 

the structure of the species-specific song template. While previous studies have 

documented individual variation, populations differ in the sounds used, and I wanted to 

determine the song variation in my population. Second, how are mimetic sounds 

incorporated into starling song? To answer this question, I compared mimetic and 

nonmimetic motifs, and categorized the position of mimicry within song units. I wanted 

to understand how individuals in the study population were incorporating mimicry. Third, 

does mimicry increase repertoire size? If so, how? While both the repertoire size and 

permissive learning hypotheses suggest a correlation between mimicry and repertoire 

size, this has not been directly tested in starlings. If repertoire size is supplemented with 

mimicry (repertoire size hypothesis), I had two mutually exclusive expectations. First, 

individuals with smaller repertoires could use proportionally more mimicry than birds 

with larger repertoires. In this case, singers with few nonmimetic motifs would be 

increasing their repertoire by using more mimicry. Alternatively, males with the largest 

repertoires achieve this, in part, by using proportionally more mimicry. In turn, the 

permissive learning hypothesis suggests that either (1) there is no relationship between 

repertoire size and mimicry and the proportion of mimetic sounds should remain the 
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same regardless of repertoire size, or (2) individuals with larger repertoires should use 

more mimicry, as they potentially incorporate a greater diversity of sounds. Alternatively, 

any of these scenarios could indicate a different function of mimicry beyond repertoire 

size (e.g. structural, honest signal, etc…), which would require further research.  

Methods 

 
European starlings have two song types: whistle song and warbling song. Whistle 

song is composed of high-pitched whistles used for social identity and group cohesion in 

flocks (e.g. Hausberger et al. 2008, Hausberger 1997). Warbling song is used in mate 

attraction and female stimulation (e.g. Hindmarsh 1984, Cuthill and Hindmarsh 1985, 

Hausberger et al. 1991), and is the focus of this study. Song is composed of motifs. Each 

motif is a set of one to ten notes (discrete sounds that are the building blocks of birdsong 

and music) repeated as a discrete unit. Motifs are analogous to words and notes are the 

letters that compose each motif. A male’s repertoire size is the number of unique motifs 

he sings (e.g. Eens et al. 1989). Warbling song has a clear organizational structure of 

three sections containing different types of motifs (Figure 2.1). A song bout begins with 

several introductory whistle motifs, followed by a series of rambling, repeated, variable 

motifs, and concludes with a series of high-frequency, loud terminal motifs (e.g. Adret-

Hausberger and Güttinger 1984, Eens et al. 1989, Gentner and Hulse 1998, Gentner and 

Hulse 2000). Some authors divide variable motifs into variable and rattle motifs, but as 

these two sections are not always distinct, I chose to combine them.  
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Figure 2.1. Spectrogram of a 44-second warbling song bout. Each song bout is generally 

composed of three components: introductory whistle motifs, variable motifs, and terminal 

motifs. Song bouts may begin with variable motifs or truncate before terminal motifs. V1 

and V2 are examples of discrete units of song (motifs) that are repeated multiple times 

before the song transitions to the next motif. 

I recorded male starlings broadcast-singing outside their nest holes in Lincoln, 

Nebraska, using a Sennheiser omnidirectional microphone (ME 66 shotgun) and Marantz 

solid state recorder (PMD 661). I used nest site and vocal characteristics to identify 

individuals (as was confirmed in Hindmarsh 1984, Hausberger et al. 1991, Eens et al. 

1991, Adret-Hausberger 1982, Adret-Hausberger 1984). Song sampling occurred in the 

spring of three consecutive years: one male (2017), 11 males (2018), and seven males 

(2019). During this time, males sing incessantly before their first brood. Recording of 

each male occurred over consecutive days as weather permitted, such that I finished 

recording one male before moving on to the next. Most recordings were done in the 

morning from 0800 to 1100. Focal males were distributed across the city, with nest 

cavities separated by at least 20 meters. In this analysis, I included recordings from 19 

males for which I had at least 30 full song bouts. I chose 30 bouts because this was the 

most conservative suggestion from previous studies to sample a male’s full song 

repertoire (150 motifs, Adret-Hausberger et al. 1989; 15 song bouts, Böhner and Todt 
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1996; 15 minutes or 30 bouts, Hindmarsh 1984), and American individuals appear to 

have larger repertoires than European individuals (Europe: 17-55 motifs, Hausberger 

1997; USA: 60-80 motifs, Chaiken et al. 1993, Hausberger 1997; Figure 2.2). Full song 

bouts were interspersed with abbreviated whistle and terminal motif sequences, which 

were also recorded.  

 

Figure 2.2. Cumulative motif curve for the sampling of the song repertoire of five 

individuals. The asymptote indicates a majority of the repertoire was sampled. 

I used Praat (v. 6.0.23; Boersma and Weenink 2019) to view spectrograms of 

song. Using the annotation tool, I labeled all motifs in recordings by comparing them 

visually and acoustically, and compiled a vocabulary of motifs for each male (such as in 

Eens et al. 1989, Gentner and Hulse 1998, Palmero et al. 2012, Palmero et al. 2014). All 

motifs recorded – whether full song bout or abbreviated sequence – were annotated and 

incorporated into a male’s repertoire vocabulary. To ensure consistency in classification, 

I annotated all songs.  

I further classified motifs as mimetic or nonmimetic. A motif was considered 

mimetic if it contained at least one mimicked sound. I acoustically determined mimetic 
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sounds and visually confirmed the similarity by comparing them to spectrograms of 

suspected models (Hindmarsh 1984, Igic and Magrath 2013, Ferguson et al. 2002). 

Starlings are accurate mimics and models could be identified by an experienced birder 

(MG) with 94.5% repeatability (consistent reclassification of 205 out of a subset of 217 

motifs). All individuals generally imitated the same vocalization type from a given model 

(House sparrow: 80 of 84 imitations were of chirp; American robin: 80 of 89 imitations 

were of call) and I lumped all imitations by model for analysis.   

I also determined how each mimicked sound was incorporated into a motif. There 

were four position categories (Figure 2.3): at beginning (mimicked sound added to start 

of motif), at end (mimicked sound added as final note in motif), entire (mimicked sound 

is full motif), and integral (mimicked sound is embedded in motif and cannot be easily 

excised from other notes). I compared incorporation of mimetic sounds between males. 

 

Figure 2.3. Spectrographic examples of the four positions of mimicked sounds. Mimicry 

was included at the beginning (a; house sparrow), at the end (b; house sparrow), as the 

entire motif (c; ambulance siren), or integrated into the motif (d; northern flicker). 
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Variation in song composition 

I compared the number of mimetic and nonmimetic motifs in each male’s 

repertoire using a Wilcoxon signed-rank test. I then investigated the differences in the 

proportion of nonmimetic and mimetic whistle, variable, and terminal motifs. I did this 

with a generalized linear-mixed model using the package lme4 in R (v. 1.2-13, Bates et 

al. 2014) and posthoc Tukey tests. I also did a follow-up chi-squared test to compare the 

number of mimetic and nonmimetic variable motifs. 

 

Mimetic sounds 

I used several linear regression analyses to determine the relationship between 

number of models and number of uses per model, number of mimetic sounds and number 

of models, and to determine whether number of males using a model and the number of 

uses of that model were related. I used a second linear-mixed model to compare 

positioning of mimetic sounds with male as random effect. I investigated mimetic sound 

positioning between males and between models using single factor ANOVA in R, 

followed by posthoc Tukey tests.  

 

Mimicry and repertoire size 

I used linear regression to look at the relationships between repertoire size and 

number of mimetic motifs or nonmimetic motifs, number of models, and proportion of 

mimicry. Spearman’s rho was calculated to determine whether mimetic and nonmimetic 

motif number were correlated. After these analyses, I did a follow-up linear regression to 
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determine whether males with smaller repertoires were using the rarest models (those 

used in three or fewer motifs) more than males with larger repertoires. 

Results 

 
Variation in song composition 

A total of 15,000 recorded motifs from 600 song bouts were classified into 1,326 

unique motifs: 773 as nonmimetic and 553 as mimetic. Mean repertoire size per male was 

70 motifs (range: 34 to 127). The mean for nonmimetic motifs was 39 (range: 19 to 78) 

and 31 (range: 4 to 56) for mimetic motifs. All males sang song bouts composed of 

whistle, variable, and terminal motifs, though in different proportions. On average, 26% 

(range: 11 to 40%) of motifs were whistles, 54% (range: 36 – 75%) were variable, and 

20% (range: 9 to 43%) were terminal motifs.  

Repertoires were, on average, 56% nonmimetic (range: 30 to 88%). Male 

repertoires contained significantly more nonmimetic motifs than mimetic ones (41 versus 

29; p = 0.005, Z-value = -2.79, W-value = 21.5), although there was a lot of variation 

(Figure 2.4a). Some males had more mimetic than nonmimetic motifs, and two males had 

an equal number of the two categories.  

The proportion of motifs in the three song sections differed for nonmimetic and 

mimetic motifs. The mean nonmimetic motif proportional breakdown was 0.3 whistle, 

0.45 variable, and 0.25 terminal. The mimetic breakdown was less uniform across 

sections, with means of 0.22 whistle, 0.62 variable, and 0.16 terminal. The differences in 

the proportions between nonmimetic and mimetic categories were significant for all three 

song sections (p < 0.001). Whistle and terminal sections contained a significantly higher 

proportion of the nonmimetic repertoire than of the mimetic repertoire (p < 0.01 for 
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both). This pattern was true for number of nonmimetic whistle and terminal motifs as 

well (whistle motifs: df = 18, t-stat = 5.85, p < 0.001; terminal motifs: df = 18, t-stat = 

4.9, p < 0.001; Figure 2.4b). In contrast, the proportion of mimetic motifs was higher than 

that of nonmimetic motifs within the variable section of song (p < 0.005), although there 

was no difference in the number of variable motifs between the two categories (p = 0.49; 

367 nonmimetic versus 370 mimetic). There was a lot of individual variation in the 

breakdown of a male’s repertoire into the six types. Not all males included mimicry in all 

three song sections.  

 

Figure 2.4. a) Individual variation in the number of the six motif types (nonmimetic and 

mimetic whistle, variable, and terminal motifs), arranged by increasing repertoire size. 
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Breakdown of song varied between males, and not all males had all six types in their 

repertoire. Some males had more nonmimetic than mimetic motifs, while the opposite was 

true for other males, and two males had an equal number of nonmimetic and mimetic 

motifs. b) Boxplot of the number of nonmimetic and mimetic whistle, variable, and 

terminal motifs. There were significantly more nonmimetic whistle and terminal motifs 

than mimetic ones. There was no significant difference in number of variable motifs 

between the categories. 

Mimetic sounds 

There was a lot of variation across individuals in the number of models used, as 

well as the average number of uses of a specific model. Males imitated an average of 12 

models (range: 4 – 22). The average number of motifs that included a specific model, 

calculated as a mean based on the males imitating that model, was 2.7 motifs per male 

(range: 1 – 5.6). Males used an average of 32.2 mimetic sounds in their song (range: 4 – 

51). There was no relationship between the number of models a male imitated and the 

number of unique mimetic motifs that contained that model (p = 0.92, F = 0.011, t-stat = -

0.1, Figure 2.5). 

  

Figure 2.5. Relationship between number of models used by a male and the average uses 

of each model. Each point represents values for one male. Average uses ranged widely (1 
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to 5.6), as did number of models (4 to 22). There was no significant trend in the 

relationship. 

Certain models were incorporated into motifs by all or nearly all males and these 

models were used more often by each male (Figure 2.6, Table 2.1). For example, males 

used house sparrow 7.7 times (range 1 – 20; n = 19) and American robin 6.7 times (range 

0 – 13; n = 18). Some models were used by relatively few males (Common nighthawk, 

White-breasted nuthatch) or by only one male (Brown thrasher, human, walk signal). 

There was a positive relationship between number of models and number of mimetic 

sounds used by a male (p < 0.001, R2 = 0.63, t-stat = 5.4). Furthermore, as number of 

males imitating a model increased, the number of times that model was incorporated into 

motifs increased exponentially (R2 = 0.85). This was driven by a significant positive 

relationship between number of males using a model and the mean number of uses of that 

model; popular models were used more by all individuals (p < 0.001, F = 91.25, t-stat = 

9.55; Figure 2.6).  
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Figure 2.6. Positive relationship between number of males using a model and the number 

of uses of that model by every individual. The red line indicates the average number of 

uses of a model by an individual. This relationship was highly significant (p < 0.001, R2 

= 0.28). Both number of uses of a model and the number of males using a model were 

highly variable; however, all males used popular models more often. House sparrow was 

used by every male an average of 7.7 times. Other models were used only once by a 

single male (recess bell, Cedar waxwing) and others were used repeatedly by one male 

(human) or two males (House finch). 
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Table 2.1. Models imitated by males in this study. Table also indicates the number of 

motifs the model was used in (“motifs”), number of males using this model (“males”), 

and in how many motifs that model appeared in per male (“average uses per male”). 

 

 Mimetic sounds were incorporated into a motif in four ways. Mimicked sounds 

were used at the beginning (13) or ending (116) of a motif, as the entire motif (153), or 

embedded into it (“integral”, 342). An integral position was significantly most common 

(df = 54, t-value = 9.51, p < 0.001), while sounds used as entire motifs or motif endings 

were equally common (z-value = 1.12, p = 0.68). On average, males were twice as likely 

model motifs males average	use	per	male	(of	males	using)

recess	bell 1 1 1

CEDW 1 1 1

Unk.Sparrow 1 1 1

walk	signal 1 1 1

EATO 2 2 1

RWBL 2 2 1

WTSP 2 2 1

EABL 3 3 1

MALL 23 7 1.21

siren 5 4 1.25

WBNU 8 6 1.33

RTHA 8 5 1.6

GRCA 5 3 1.67

NOCA 7 4 1.75

Unk.Gull 11 6 1.83

motor 13 7 1.86

NOFL 25 13 1.92

COGR 2 1 2

EUCD 2 1 2

mechanical 2 1 2

RBWO 4 2 2

Unk.Frog 8 4 2

BHCO 10 5 2

CONI 12 6 2

KILL 18 9 2

EAME 26 13 2

BCCH 19 9 2.11

CANG 9 4 2.25

AMGO 36 15 2.4

AMCR 19 7 2.71

BRTH 3 1 3

human 3 1 3

BLJA 72 18 4

HOFI 9 2 4.5

AMRO 106 16 6.69

HOSP 146 19 7.68
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to embed mimicry within a motif (integral motifs) than to use a mimicked sound as the 

entire motif. Only half of the males used mimicry at the beginning of motifs, and this 

position was significantly less common than any other position (p < 0.003). Males did not 

significantly differ in their use of mimetic sounds in these four positions (df = 18, F = 

0.75, p = 0.74). However, models were used preferentially in different positions within a 

motif (df = 35, F = 2.71, p < 0.001; Figure 2.7). For example, House sparrow and 

American robin made up 80% and 78% of the mimicked sounds used at the beginning or 

ending of a motif, respectively. Sounds from a larger variety of models were integral to 

motifs, while different models were used as entire motifs (Eastern meadowlark, Blue jay, 

American goldfinch, Killdeer, ambulance siren). 

 

Figure 2.7. Number of mimicked sounds and positioning of these sounds for all models. 

Models are arranged based on number of males imitating that model (from 1 to 19). 

House sparrow and American robin were most common and were used in all four 

positions within motifs. Most mimicked sounds were not used at the beginning of motifs. 

Ambulance siren and Eastern meadowlark were often used as entire motifs. 

Abbreviations, following the four-letter bird banding codes (Pyle and DeSante 2003), are 

as follows: bell (school recess bell), BRTH (Brown thrasher), CEDW (Cedar waxwing), 

COGR (Common grackle), EUCD (Eurasian collared-dove), human (faint human 

conversation), mechanical (mechanical sound), sparrow (unknown sparrow chip), walk 
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signal (crosswalk walk signal), EATO (Eastern towhee), HOFI (House finch), RBWO 

(Red-bellied woodpecker), RWBL (Red-winged blackbird), WTSP (White-throated 

sparrow), EABL (Eastern bluebird), GRCA (Gray catbird), CANG (Canada goose), frog 

(unknown frog species), NOCA (Northern cardinal), siren (ambulance siren), BHCO 

(Brown-headed cowbird), RTHA (Red-tailed hawk), CONI (Common nighthawk), gull 

(unknown gull species), WBNU (White-breasted nuthatch), AMCR (American crow), 

MALL (Mallard), motor (motorized plane), BCCH (Black-capped chickadee), KILL 

(Killdeer), EAME (Eastern meadowlark), NOFL (Northern flicker), AMGO (American 

goldfinch), AMRO (American robin), BLJA (Blue jay), HOSP (House sparrow). 

 

Mimicry and repertoire size 

Repertoire size was positively correlated with number of mimetic motifs (p < 

0.001, R2 = 0.72, t-stat = 6.6; Figure 2.8) and number of models (p = 0.007, R2 = 0.35, f = 

9.32). However, nonmimetic motifs showed this same correlation (p < 0.001, R2 = 0.82, 

t-stat = 8.96). Number of mimetic and nonmimetic motifs were also positively, but 

weakly, correlated (rs = 0.518, p = 0.02). Males with large repertoires did not use 

proportionally more mimicry (linear regression: p = 0.43, R2 = 0.04, t-stat = 0.815). Two 

males with intermediate repertoire size had the largest proportion of mimicry in their 

repertoires. Individual repertoire size was not significantly related to the number of rare 

models used by that male (p = 0.43, R2 = 0.04, t-stat = 0.8) or the number of motifs 

incorporating these rare models each male sang (p = 0.41, R2 = 0.04, t-stat = 0.84). 
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Figure 2.8. a) Repertoire size is positively correlated with number of mimetic and 

nonmimetic motifs. The lines are parallel, indicating that the two relationships are 

congruent: birds with more mimetic motifs and nonmimetic motifs have significantly 

larger repertoires. b) Nonsignificant relationships between repertoire size and 

proportion of repertoire that is mimetic or nonmimetic. Males with larger repertoires do 

not use proportionally more mimicry. 

Discussion 

 
Variation in song composition 

Male starlings are highly variable in what they sing but follow universal rules in 

how they sing. All individuals sang the standard three sections - whistle, variable, 
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terminal motifs - of song, incorporating the most mimicry in the variable motifs (as found 

in Eens et al. 1989, Eens et al. 1991). However, the proportions of mimetic and 

nonmimetic whistle, variable, and terminal motifs, as well as the amount of mimicry, 

varied across males. There were also significant differences in the whistle-variable-

terminal motif breakdown between mimetic and nonmimetic categories across males. As 

mimicry was included in 12% to 70% of a male’s repertoire, and usage of mimicry 

varied, mimetic sounds may help distinguish individuals (e.g. Gentner and Hulse 2000).  

 

Mimetic sounds 

There was clear variation in the extent to which mimicry was incorporated by 

individuals into song. While there were individual differences in the number of models 

used as well as the number of times each model was integrated into motifs, there was no 

overall relationship between the two. Males that only imitated several models did not use 

these more often than males using many models. However, differences in the number of 

times a model was used (e.g. House sparrow was used ubiquitously, a recess bell was not) 

indicate that different mimicked sounds are treated differently in constructing motifs. 

Usage of mimicked sounds from a specific model increased with the number of males 

copying that model. One possible explanation for these observations is that social 

interaction, and the “popularity” of certain mimicked sounds, may influence 

incorporation of mimicked sounds. Once a sound is mimicked by many males, it may be 

shared between conspecifics and become ubiquitous in the population. Indeed, there is 

some evidence that starlings may selectively incorporate models to match the songs of 

neighboring males (Hindmarsh 1984). Males could listen to the mimicry of neighbors and 
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imitate the same models, or even imitate directly from neighbors. Similarly, starlings may 

use the distinction between familiar and unfamiliar motifs to recognize individuals 

(Gentner and Hulse 2000), and mimicry could help facilitate this process. The fact that 

female starlings also mimic (Pavlova et al. 2005) supports the idea that mimicry 

facilitates individual recognition (but see Knudsen et al. 2010).  

Alternatively, starlings may have innate biases or species-specific constraints on 

what types of sounds are imitated and how to incorporate mimicry into song. For 

example, imitated sounds from certain models were incorporated into motifs in the same 

way by all males. Males appeared to use mimicked sounds in a song section with motifs 

that were structurally similar, such as a siren as a whistle motif, or a house sparrow chirp 

to replace the clicks between variable motifs. Males also showed the same trends in how 

they incorporated mimetic sounds into motifs, strongly favoring integral positioning. 

Although there was some variation (only a subset of males added mimicry to the 

beginning of motifs), positioning does not seem to be as flexible as what sounds are 

mimicked. Similarly, which of a model’s sounds were imitated remained consistent 

across males. For a male to diversify his song, he would therefore have to imitate models 

that other males do not, such as the males that incorporated human speech, a recess bell, 

and a walk signal into their songs.  

Starlings may be flexible in what they imitate and how often they use the same 

sounds, but not in how they construct motifs. Two main factors in the incorporation of 

sounds were the number of times a mimetic sound was used and the number of models a 

male imitated. Most males with a relatively large number of mimetic motifs imitated 

many models and used each model multiple times. However, some males achieved a 
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large mimetic repertoire by either imitating many models and not using them often, or by 

repeatedly using a limited set of models. Some males did neither well. Across males, 

there was a tenfold difference in number of mimetic motifs. Variation in model and 

mimetic sound usage indicate that individuals can achieve large mimetic repertoires in 

different ways. Similarly, the range in mimetic diversity indicates that males are not all 

equally good at imitation or at embedding mimicked sounds into motifs.  

Individuals incorporated a mean number of 12 models into their songs. This is 

nearly twice the number of models per individual reported in a previous study of starlings 

in Europe (mean of seven models/male; Hindmarsh 1984). It remains unclear how males 

learn mimicked sounds and how they choose which sounds to incorporate. Males appear 

to preferentially imitate short, clear notes and often imitate abundant species (Hindmarsh 

1984). The combination of these two factors may explain imitation of many models, but 

does not explain why some abundant species with simple songs of tonal frequency 

sweeps (such as the Northern cardinal) were not imitated by most males. It also does not 

explain why several simple, clear sounds commonly heard throughout starling habitat, 

such as a crosswalk signal, were only imitated by one male. The species mimicked by 

most males (House sparrow, American robin) were common and encountered by all 

males in the study. However, other species equally common in the area (e.g. Common 

grackle, Northern cardinal) were only imitated by a few males. Clearly, exposure to 

potential models was not the only influence on the incorporation of mimicry into song.  

 

Mimicry and repertoire size 
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In this study, repertoire size was highly variable (spanning a fourfold difference in 

size). Males using more mimicry had larger repertoires. However, individuals with large 

repertoires incorporated more mimetic motifs simply because they used more motifs 

overall, not because their songs had proportionally more mimicry. The two males with 

the highest proportion of mimetic motifs had repertoires of intermediate size. Thus, 

increased mimicry did not directly cause increased repertoire size, but increase in 

repertoire size may incidentally lead to increased use of mimicked motifs. Furthermore, 

males with the smallest repertoires did not supplement their song by preferentially 

imitating rarely-used models. These results contradict the expectations from the 

repertoire size hypothesis and support the permissive learning hypothesis. All evidence 

from this study suggests that mimicked sounds are used the same way as species-specific 

ones in terms of repertoire size. The next two chapters will focus on determining whether 

mimetic and nonmimetic motifs are serving the same structural and acoustic functions in 

song.  

 

Significance 

 Many pieces in the mimicry puzzle are still missing. This study demonstrates that 

the flexible song learning and mimicry of the European starling is related to larger 

repertoires, but that mimicry does not directly increase repertoire size. Although many 

studies have focused on the repertoire size hypothesis as an explanation for mimicry 

(Kelley et al. 2008, Dalziell et al. 2014), directed studies may unravel intricacies within 

this learning process. Not only could mimicry have multiple functions, but there are 

many ways in which mimicry could be used to diversify song. It will be interesting to 
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learn whether mimicry (1) serves a role in other song factors, such as song structure or 

song quality, and/or (2) allows males to sing more acoustically diverse motifs. For 

example, northern mockingbirds use mimicry to increase the maximum frequency of their 

song (Gammon and Lyon 2017), which may be attractive to females, and incorporating 

mimetic sounds could allow starlings to similarly alter the acoustic quality of their songs. 

Mimicry could also have a social function, such as through facilitation of individual 

recognition (Adret-Hausberger and Jenkins 1988, Adret-Hausberger et al. 1989, 

Hausberger et al. 1995), and this could have important implications for a species as social 

as the starling.  

By studying how mimicry is used by individuals and species, we can expand our 

knowledge of the diversity of song learning systems. By studying mimicry, we can begin 

to understand how birds learn to sing, and what effects mimicry may have on the song 

development of a species. Vocal mimics are scattered throughout the songbird phylogeny 

and provide a unique system for studying learning (Goller and Shizuka 2018). As most 

studies of song learning have focused on a small number of model species (zebra finch, 

Taenopygia guttata; white-crowned sparrow, Zonotrichia leucophrys), it is important to 

study species with more elaborate songs to understand the full scope of the song-learning 

continuum.  
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CHAPTER III: SONG STRUCTURE AND VOCAL MIMICRY IN EUROPEAN 

STARLINGS 

 

Abstract 

 

Song is a form of communication crucial to territorial defense and mate attraction 

in songbirds. While song complexity varies widely, even species with elaborate songs 

have genetic constraints on song development that facilitate the formation of species-

specific song structure. Past studies have focused on one measure of song complexity - 

song repertoire size - as a correlate of reproductive success; however, other song factors 

may be more important. Species-specific structural rules may allow conspecifics to more 

easily observe differences in the songs of individuals, thereby quickly and reliably 

assessing potential mates and competitors. I used a network approach to describe the song 

of the European starling (Sturnus vulgaris) and to explore how song learning, specifically 

vocal mimicry, leads to variation in a complex song. This chapter addresses the structural 

function hypothesis, which suggests a subtle function of mimicry in song structure (the 

arrangement of song components and connections between them). I measured structural 

diversity within song bouts by quantifying transitions to/from motifs, as well as repetition 

of motifs and bout linearity. I then compared mimetic and nonmimetic motifs to 

determine whether mimicry served a specific role in song structure. I found that starlings 

sang fewer mimetic motifs at points of structural diversity within song bouts, but repeated 

mimetic motifs more often than nonmimetic ones. My results indicate that mimicked 

sounds may function differently in song structure than species-specific sounds, and that 

variation in song structure could provide important information to conspecifics. Studying 

the relationship between mimicry and the structural properties of complex songs may 
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allow us to understand the interaction between song development, mimicry, and 

reproductive fitness.    

 

Introduction 

Vocal communication is integral to the behavior and sociality of many animal 

species. In songbirds, song is a form of communication crucial to territorial defense and 

mate attraction. The structural complexity of song varies widely across species, from 

simple, stereotyped arrangements of several notes, to elaborate, variable hour-long 

displays of hundreds of notes (Brenowitz and Beecher 2005). Even among species with 

elaborate songs, constraints on song learning and development exist to facilitate 

emergence of appropriate song architecture (Marler 1997). However, our understanding 

of structure and syntax is limited, and it is still unclear how certain singing behaviors, 

such as vocal mimicry, affect or alter the structural properties of complex songs.  

Attempts have been made to compare song complexity of individuals within and 

across species. A longstanding assumption is that males with relatively complex songs 

are more reproductively successful than males with simpler songs (e.g. Soma and 

Garamszegi 2011). The most common measure of complexity in birdsong is repertoire 

size, although its usefulness as a metric has been mixed. Some studies have found a 

relationship between repertoire size and fitness (Reid et al. 2005), immune function (Pfaff 

et al. 2007), and cultural membership in a population (Creanza et al. 2016). However, 

other studies have found no indication that individuals pay attention to differences in 

repertoire size (Gentner and Hulse 2000a&b). These mixed results indicate that, although 

repertoire size variation is correlated with other individual differences in some species, 
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other song factors may be more important (Soma and Garamszegi 2011, Creanza et al. 

2016).  

There are other reasons why repertoire size may fall short as a useful measure of 

song complexity. First, repertoire size can be difficult to estimate accurately, especially in 

species that have relatively large repertoires (willow warbler, Phylloscopus trochilus, Gil 

and Slater 2000; Cassin’s vireo, Vireo cassinii, Hedley 2016). Unless the songs of many 

individuals are sampled to determine a good minimum sample size, repertoire size may 

be greatly under- or over-estimated, making the metric unreliable as a point of 

comparison. For example, if a male uses different parts of his repertoire on consecutive 

days, recording over one day may not yield full repertoire size. Second, it is difficult to 

quantify repertoire size in species with a vast number of song components (brown 

thrasher, Kroodsma and Parker 1977). Individuals may mix and match song components, 

or continuously improvise, generating a huge (potentially infinite) number of motifs. 

Third, repertoire is measured in various ways, which makes comparison difficult. For 

example, repertoire size could be reported as the number of unique motifs (Gil and Slater 

2000), notes (Catchpole and Slater 1995), strings of motifs or phrases (Hedley 2016), or 

song types (Verner 1975). This variation makes interspecific comparisons challenging. 

Fourth, and most biologically important, females do not appear to listen to the full 

repertoire of courting males before making a choice (Gentner and Hulse 2000a). Males of 

some species sing songs that last several minutes, and females paying attention to 

repertoire size would need to spend considerable time listening before making a choice. 

Instead, females may focus on song metrics other than repertoire size, such as accuracy of 
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learning (Creanza et al. 2016), structural stereotypy (Gentner and Hulse 2000a&b), 

diversity, or a combination of factors (Soma and Garamszegi 2011).   

There is a growing understanding that variation in song structure may encode 

information recognized by conspecifics. Pattern of song structure, or syntax, is the 

specific arrangement of song components and the transitions between them (Lachlan et 

al. 2013). General rules governing syntax of the song of a species appear to be innate, and 

therefore genetically regulated. Juvenile zebra finches tutored with randomized sequences 

arranged motifs in the same way, and used the same strings of sequences, as juveniles 

tutored by adult males (James and Sakata 2017). Similarly, many transitions between 

motifs were shared by males (Marsh wren, Cistothorus palustris, Verner 1975; Pacific 

wren, Troglodytes pacificus, Kroodsma 1980). There is also evidence that song structure 

and bout length vary based on social context and purpose (House finch, Haemorhous 

mexicanus, Ciaburri and Williams 2019) and with age (European starling, Sturnus 

vulgaris, Adret-Hausberger et al. 1990). Song structure may therefore encode information 

for listeners (Hedley 2016) and a balance of stereotypy and diversity in song is thought to 

be ideal for communication (Zipf’s law, Briefer et al. 2010, Palmero et al. 2012, Palmero 

et al. 2014).  

Even apparently complex songs with many components (i.e., large repertoire size) 

and much individual variation follow a few simple patterns in song structure. Common 

structural rules may be shared by singers of a species even when there is large variation 

in repertoire size (Gil and Slater 2000, Sasahara et al. 2012) and in the note types sung 

(Payne 1979). Species-specific structural rules allow conspecifics to quickly and reliably 

assess potential mates or competitors. One widespread rule is that transitions are 
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nonrandom such that certain song units appear more often together than apart (e.g. 

European starling, Gentner and Hulse 2000a&b; Canary, Serinus canaria, Cohen et al. 

2019; House finch, Ciaburri and Williams 2019; California thrasher, Toxostoma 

redivivum, Cody et al. 2016, Sasahara et al. 2012; House wren, Troglodytes aedon, 

Deslandes et al. 2014; Willow warbler, Gil and Slater 2000; Pacific wren, Kroodsma 

1980; Common nightingale, Luscinia megarhynchos, Weiss et al. 2014; Bengalese finch, 

Lonchura striata domestica, Okanoya 2004; Marsh wren, Verner 1975; Hermit thrush, 

Catharus guttatus, Roach et al. 2012; Spectacled warbler, Sylvia conspicillata, Palmero 

et al. 2012; Zebra finch, James and Sakata 2017; Cassin’s vireo, Hedley 2016; Indigobird 

species, Vidua spp., Payne 1979, Watts and Strogatz 1998). Another rule is that a small 

subset of the song units in an individual’s repertoire is used preferentially, while other 

units are rare (Palmero et al. 2012, Deslandes et al. 2014). This “core repertoire” (Gil and 

Slater 2000) may be composed of song units with particular qualities, such as a favored 

frequency or bandwidth (Draganoiu et al. 2002), which set those song units apart. Males 

of some species emphasize their core repertoire by repeating one song unit several times 

before moving to the next (Willow warbler, Gil and Slater 2000; European starling, 

Böhner and Todt 1996). In some species, certain phrases are always sung in sequence 

(stereotyped), while others are not (canary, Cohen et al. 2019; California thrasher, 

Sasahara et al. 2012).  

Recent studies have successfully used network analysis to describe variation in 

the structural functions of song components within complex songs. For example, specific 

song components in nightingale song are points of convergence or divergence in the song 

pathway (Weiss et al. 2014), and in both California thrashers (Cody et al. 2016) and 
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canaries (Cohen et al. 2019), phrases are sung at specific locations within a song bout. In 

nightingales, the song components with an unequal number of converging and diverging 

paths were the ones shared by males (Weiss et al. 2014), suggesting that specific 

components or positions in a song bout may be disproportionately important. It is unclear 

whether song components at transition hubs (points at which song may diverge into, or 

converge from, different paths) differ in some way from those only found in stereotyped 

(linear) sequences.  

The overarching goal of this chapter was to apply network approaches to 

characterize the structural rules underlying the highly complex song of the European 

starling, and to determine whether nonmimetic and mimetic sounds were used in different 

structural ways. I wanted to test the hypothesis that mimicry has a unique structural role 

in song, which is proposed under the structural function hypothesis. The starling, like the 

nightingale, sings a song of many components (in this case, motifs – sets of one to ten 

notes repeated as a discrete unit). Previous findings suggest that male song characteristics 

influence female choice (Eens et al. 1991) and that starling motifs serve different 

functions. For example, Adret-Hausberger and Jenkins (1988) found that certain motifs 

were only used in an introductory or conclusory context. They also found that 60% of 

motifs were repeated, and each motif was repeated a predictable number of times (Adret-

Hausberger and Jenkins 1988, Hausberger et al. 1995). These observations suggest that 

starling motifs have may have different functional effects and may be treated differently 

by listeners. Some studies have found that females choose males based on sequence 

stereotypy (Gentner and Hulse 2000a), although others emphasize the importance of 

repertoire size (Mountjoy 1994). For both male and female listeners, motifs in the second 
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half of song bouts are more important for individual recognition (Gentner and Hulse 

2000b, Knudsen et al. 2010). Females also showed preference for long song bouts, 

although they never listened to a full bout (Gentner and Hulse 2000a), indicating that 

song structure differs between long and short bouts. These results suggest that song 

structure is important; however, it is unknown how different motifs function within a 

song bout, or whether there are specific motifs that serve as transition hubs.  

The starling is a talented mimic that incorporates mimicked sounds into many of 

its motifs (e.g. Hindmarsh 1984). Across vocal mimic species, mimicry may increase 

song repertoire size (Dalziell et al. 2014), song diversity (Coleman et al. 2007) or serve 

another function. As starlings do not use mimicry to directly increase repertoire size 

(Chapter 2), I expected simply distinguishing between “mimetic” and “nonmimetic” 

motifs would uncover differences in the structural treatment of motifs. For example, 

males may use mimicry more at song transition hubs for emphasis or may repeat mimetic 

motifs more than nonmimetic ones. To explore what function mimicry may have in 

starling song structure, I first used network analysis to describe overall song features. 

Networks allow visualization of birdsong and the transitions between song units, and are 

a useful tool for quantitative comparisons. I focused on variation in the song structure of 

individual males. I then analyzed the differences between nonmimetic and mimetic 

motifs in two structural components: number of transitions leading to and from each 

motif, and repetitions of every motif. I hypothesized that mimicked sounds would be used 

preferentially at certain positions within a song bout (specifically at points of structural 

diversity) because mimicry is obvious and could add emphasis to important parts of song. 

I also hypothesized that if mimetic motifs served as emphasis within song bouts, they 
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would be repeated less often than nonmimetic ones. Finally, I plotted structural 

measurements against repertoire size to determine whether there was a relationship 

between diversity in song structure and the size of a male’s repertoire. I expected no 

association between structure and repertoire size. 

 

Methods 

I focused only on the warbling song of male starlings. Warbling song has a clear 

organizational structure of three sections containing different types of motifs: several 

introductory whistle motifs followed by a series of rambling, repeated, variable motifs, 

and concluding with a series of high-frequency, loud terminal motifs (Chapter 2; e.g. 

Adret-Hausberger and Güttinger 1984, Eens et al. 1989, Gentner and Hulse 1998, 

Gentner and Hulse 2000a&b). All recording methods and spectrogram analyses were the 

same as for Chapter 2.  

 

Network Analysis 

Transition networks have become a tool for disentangling the structural 

organization of complex songs (Marsh wren, Verner 1975; California thrasher, Sasahara 

et al. 2012, Cody et al. 2016; Common nightingale, Weiss et al. 2014). Transition 

networks are a type of network in which the nodes (circles) represent song motifs and the 

edges (lines) indicate transitions between motifs. This network therefore shows whether 

song units are arranged in a nonrandom manner. Motifs that are always sung in sequence 

will have stronger associations (thicker lines or edges between them) between them than 

motifs that appear randomly throughout a song bout. As such, a male’s most commonly 
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sung sequence will be displayed as the thickest line. Additionally, the number of 

transitions to (in-degree) and from (out-degree) each motif can yield information about 

song (Sasahara et al. 2012). For example, some motifs may be points of convergence or 

bottlenecks with high in-degree; preceded by a variety of motifs, but always followed by 

only one. Other motifs may be points of divergence or branching points leading to a 

variety of different motifs (high out-degree; Sasahara et al. 2012).  

I created transition networks using the package igraph in R (v. 3.6.0, Csardi and 

Nepusz 2006; R Core Team 2019) for the songs of 19 males. Each network was a 

composite of all song sequences from a male. I excluded any sequences shorter than five 

motifs to avoid potential bias from motifs only sung as isolated song. I calculated edge 

weights for each transition by dividing the number of a given transition, such as from 

motif A → motif B, by the total number of transitions in a male’s song. I then calculated 

weighted effective degrees for each motif (McDonald and Hobson 2018; Figure 3.1). 

Weighted effective degree was the reciprocal of the sum of edge weight proportions for a 

given motif (McDonald and Hobson 2018). For each motif, I calculated effective degrees 

separately for transitions to (effective in-degree) and from (effective out-degree) that 

motif. Effective in- and out-degree show the level of stereotypy in the pattern of 

transitions leading to and from a motif. Motifs with high effective degree are connected 

by many equally-weighted edges; there are many paths leading to and/or from that motif. 

Motifs have low effective degree when there are few paths leading to/from them, or when 

a minority of edges are disproportionately favored, such that they are only ever sung in 

specific sequences. The lowest possible effective in- or out-degree is zero (if a motif only 

ever starts or ends a song bout), while the highest possible effective degree values are 
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bounded by a male’s repertoire size. This method allowed me to capture the differences 

in the stereotypy of motif transitions without devaluing diversity in transition strengths 

for each motif.  

 

Figure 3.1. Effective in- and out-degree of nodes. Low effective in- and/or out-degree 

indicates a high likelihood that the transitions follow one path (thicker arrow or edge), 

resulting in a more stereotyped song. High effective in/out-degree yields a less 

stereotyped song. 

 

Linearity Index Scores 

The linearity index is another way to describe the structure of song sequences. 

Developed by Gil and Slater (2000) to describe willow warbler song, the linearity index 

score for starlings is calculated by dividing the number of unique motifs in a bout by the 

number of unique transition types within that song bout. The lower the linearity, the more 

syntactically complex the song. I calculated the linearity scores for all 1,069 song bouts. 

For this calculation, I included repetitions (such as motif A → motif A) as unique 

transitions. Therefore, any score equal to or higher than one indicates a linear song 

(highly stereotyped). I determined 1) how much variation there was between males, and 

2) whether the relationships between the linearity score and either mimetic or nonmimetic 

motifs differed. 

In-degree
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Low	effective	degree
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Motif Repetition 

 Since there are differences in the number of repetitions of different starling 

motifs, I wanted to investigate how this characteristic of song structure compared across 

males. I found the total count of each motif as well as the number of occurrences of each 

motif disregarding sequential repetitions (“appearances”). I also determined the mean 

number of repetitions per appearance for every motif. Only sequences longer than five 

motifs were included, and the values were used to determine whether different categories 

of motifs (such as from different song sections or mimetic versus nonmimetic) were used 

differently in song.  

 

Statistical Analysis  

First, I wanted to determine whether effective in- and out-degree differed between 

whistle, variable, and terminal motifs, and across mimetic and nonmimetic categories, as 

well as to determine a typical song bout’s structure. I ran a generalized linear mixed 

model in R using Satterthwaite’s method, with male as random effect, followed by 

posthoc ANOVA Type III and Tukey tests. I used a Spearman’s rank correlation to 

determine whether males were consistent in level of stereotypy across song sections. 

Second, I looked at individual variation in the song structure by comparing degree 

distributions for each male using an Anderson-Darling k-Sample test with the k-Samples 

package in R (Scholz and Zhu 2019). This is a nonparametric test that allowed me to 

determine whether males had different effective in- and out-degree distributions of their 

motifs. I used posthoc Tukey tests to determine how many males differed in either 
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effective in- or out-degree. To determine whether degree was related to repertoire size, I 

used linear regression to compare repertoire size and effective in- and out-degree for all 

males. 

I then compared effective degree differences tabulated across males between 

nonmimetic and mimetic categories of the three motif sections (whistle, variable, 

terminal motifs) using a linear mixed model. I also used a t-test to determine whether 

total effective degree (pooled effective in- and out-degree) differed between mimetic and 

nonmimetic motifs. 

I ran an ANOVA to determine whether males differed in song bout linearity 

scores. I used a linear regression to determine the relationship between linearity index 

scores and the number of both unique nonmimetic and mimetic motifs within song bouts. 

I wanted to know whether mimetic and nonmimetic motifs had different effects on 

linearity. I used a second linear regression to determine whether linearity increased or 

decreased as bout duration increased. 

Finally, I analyzed variation in motif repetition – repetitions per appearance, 

appearances, and counts of each motif. I used a linear mixed model with male as random 

effect, followed by posthoc ANOVA Type III, to determine differences in repetition data 

between mimetic and nonmimetic motif categories for whistle, variable, and terminal 

song sections. Another ANOVA was used to determine whether males differed in 

repetitions per appearance, appearances, and total counts. Linear regression was used to 

look at the relationship between mean repetitions per appearance and total effective 

degree values of motifs. 
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Results 

Differences in Structure of Song Sections 

The three sections of European starling song have different structure (Figure 3.2). 

The whistle section is nonlinear, with no clear pattern in motif sequence. Whistle motifs 

had significantly higher effective out-degree on average than the other two sections 

(mean whistle = 2.84, mean variable = 1.7, mean terminal = 1.97; ANOVA results: F-stat 

= 78.63, p < 0.001), and the pattern was the same for effective in-degree (mean whistle = 

2.53, mean variable = 1.89, mean terminal = 1.98; ANOVA results: F-stat = 22.72, p < 

0.001). The whistle section has higher average effective in- and out-degree because there 

are many equally-probable transitions between motifs, giving the overall structure a 

hairball-like appearance (Figure 3.2a). Whistle motifs had significantly higher effective 

out-degree than effective in-degree (mean out = 2.835, mean in = 2.53, t-stat = 3.27, p = 

0.001). The section therefore ends chaotically, with many whistle motifs feeding into the 

variable motifs section.  
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Figure 3.2. Song transition networks of the songs of three male European starlings. Each 

network is a composite of all song bouts sung by a male. Song bouts begin with whistle 

motifs (red; a) with a convoluted hairball structure, then continue into variable motifs 

(violet; b), which are nonrandomly arranged, and end in highly stereotyped terminal 

motifs (green; c). Diagrams of section structure are shown alongside the network in part 

A. Individuals vary along a gradient of how well their songs adhere to this structure, with 

distinct sectional differences in some networks (A), to increasingly indistinct sections as 

a male’s song repertoire increases (C). Singletons are motifs sung only once. The 

coordinates and distance between nodes are unimportant. 

 

 The variable section is characterized by motifs connected by a few, high-

probability transitions, although rare (“singleton”) motifs may cause deviations from the 

pattern (Figure 3.2b). As a result, variable motifs have lower effective in- and out-degree 

than whistle motifs. The differences between variable and terminal motifs in effective 
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out-degree (Tukey posthoc tests: z-value = -1.292, p = 0.4) and effective in-degree 

(Tukey posthoc tests: z-value = 0.49, p = 0.87) were not significant. However, variable 

motifs had significantly higher effective in-degree than out-degree (mean in = 1.89, mean 

out = 1.70, t-stat = -4.696, p < 0.001). Structurally, the variable motif network begins 

from many different transitions (from whistle motifs) and becomes more regimented as 

the songs transition into the terminal section. The variable motifs follow at least one 

pathway that appears more often than other transitional paths.  

The level of stereotypy of the terminal section varied across males. It was the 

most regimented for some males, whose song had a single stereotyped terminal sequence 

across song bouts (Figure 3.2A), but not for other males (Figure 3.2C). There was no 

difference in effective out- and in-degree for terminal motifs (mean out-degree = 1.97, 

mean in-degree = 1.98).  

Effective degree values from variable and terminal motif sections were correlated. 

Individuals singing a less stereotyped variable motif sequence (high effective out- and in-

degree) also had significantly less stereotyped terminal motif sequences (effective out-

degree: rs = 0.78, p < 0.0001; effective in-degree: rs = 0.69, p = 0.001). This association 

did not hold true when comparing whistle motifs to the other sections. 

 

Variation in Male Song Structure 

Song structure was not consistent across all males (Figure 3.2): the effective in- 

and out-degree distributions of the 19 males were significantly different in some cases 

(effective in-degree: AD = 70.69, p < 0.001; effective out-degree: AD = 83.9, p < 0.001). 

Effective in-degree for whistle motifs was the most similar across males (no significant 
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differences). Comparisons within all other categories (effective out-degree for the three 

song sections, effective in-degree for variable and terminal motifs) showed some 

significant differences between males (p < 0.001). Variable motifs had the most variation 

between males in mean effective in- and out-degree. Deviations in individual means from 

the mean combined effective degree was similar for whistle and variable motifs 

(coefficients of variation were 25.2 and 26.3, respectively), while variation for terminal 

motifs was slightly higher (coefficient of variation = 38.6).  

There was no significant relationship between mean effective in- or out-degree 

and repertoire size across males (effective in-degree: R2 = 0.003, F = 0.04, t-stat = 0.21, p 

= 0.84; effective out-degree: R2 < 0.001, F < 0.001, t-stat = -0.01, p = 0.99) and the three 

song sections (p > 0.2 for all comparisons). The variation in stereotypy was independent 

of repertoire size. 

 

Mimetic and Nonmimetic Motifs 

 In general, nonmimetic motifs had higher effective out- and in-degree than 

mimetic motifs (effective out-degree: nonmim = 2.18, mim = 1.85; t-stat = -3.78, p < 

0.001; effective in-degree: nonmim = 2.15, mim = 1.96; t-stat = -2.15, p = 0.03). These 

trends were driven by nonmimetic whistle motifs having significantly higher effective 

out-degree (nonmim = 3.02, mim = 2.45; t-stat = 2.6, p = 0.01). There were no significant 

differences in effective in-degree across sections. Together, these results mean that total 

effective degree was significantly higher for nonmimetic motifs than for mimetic motifs – 

nonmimetic motifs were found in less-stereotyped sections of song (nonmimetic mean: 

4.33, mimetic mean: 3.81; t-stat = 3.49, p < 0.001; Figure 3.3).  
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Figure 3.3. Boxplots of total effective degree for mimetic and nonmimetic motifs of each 

male. On average, nonmimetic motifs had greater effective in- and out-degree (and 

therefore total degree) than mimetic motifs, indicating that nonmimetic motifs were more 

likely to be in less-stereotyped sequences than mimetic motifs. 

 

Linearity Index Scores 

Males varied in the linearity (stereotypy) of their song bouts (Figure 3.4A). Some 

males had a lot of variation in linearity scores between song bouts, while the scores of 

other males were more consistent. Some differences in mean linearity between males 

were significant (mean linearity = 0.66, min = 0.33, max = 1.2, F-value = 5.295, p < 

0.001). Linearity was significantly negatively related to number of unique motifs in a 

bout, as would be expected, although the trend was weak (R2 = 0.11, t-stat = -11.32, p < 

0.001). The relationships between linearity and nonmimetic and mimetic motifs were 

both weak and effectively identical (nonmimetic: R2 = 0.07, t-stat = -9.16, p < 0.001; 

mimetic: R2 = 0.07, t-stat = -8.94, p < 0.001). As bout length increased, linearity 

decreased (R2 = 0.265, F-value = 385.6, t-stat = -19.64, p < 0.001; Figure 3.4B). 
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Figure 3.4. Linearity index scores. Variation in linearity scores across males (A) and the 

significant, negative relationship between bout length (measured as total number of 

motifs in bout) and the linearity score of each song bout (B). 

 

Repetitions 

Overall, variable motifs were repeated most often (mean = 1.94), followed by 

terminal motifs (mean = 1.611) and whistle motifs (mean = 1.275). These differences 

were significant (F = 92.78, p < 0.001; Figure 3.5a). Differences in number of 

appearances and total counts of motifs also were significant across song sections 

(variable > terminal > whistle; appearances: F = 18.41, p < 0.001; totals: F = 42.8, p < 

0.001). The whistle section is composed of singleton motifs that are rarely repeated. In 
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contrast, variable and terminal sections contain more repetition, and motifs from these 

sections also appear more across the song bouts of a male. Some males were significantly 

different in the repetition metrics (mean repetitions per appearance: F = 4.96, p < 0.001; 

number of appearances: F = 16.55, p < 0.001; total count of motifs: F = 10.64, p < 0.001; 

Figure 3.6). Combined effective degree was negatively correlated with repetitions by 

appearance (t value = -3.45, F = 11.93, p < 0.001). Males using more repetition sang song 

sequences that were more linear than those using less repetition. 

 

Figure 3.5. Mean repetitions per appearance divided into the three sections of a song 

bout (A) and further divided into mimetic and nonmimetic motifs (B). Variable motifs 
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were repeated significantly more than terminal motifs, which were also repeated 

significantly more than whistle motifs. 

 

Figure 3.6. Three-dimensional plot of the variation in repetition metrics across males. 

Mean repetitions per appearance, number of appearances, and count are shown for the 

whistle (red), variable (purple), and terminal (green) motifs of each male. Variable 

motifs had the greatest range, followed by terminal motifs, and then whistle motifs. 

 

Mimetic motifs were repeated significantly more often per appearance than 

nonmimetic motifs (nonmim = 1.61, mim = 1.84; F value = 25.7, p < 0.001). This pattern 

did not, however, hold true when comparing mimetic and nonmimetic motifs within 

whistle motifs (nonmim = 1.22, mim = 1.385, p = 0.27; Figure 3.5b), variable motifs 

(nonmim = 1.875, mim = 2.006, p = 0.34), or terminal motifs (nonmim = 1.55, mim = 

1.74, p = 0.31). Number of appearances was more uniform across sections, and there was 

no significant difference between mimetic and nonmimetic motifs (p = 0.48). Total 

counts of motifs were more variable, emphasizing the difference between core repertoire 

and rare motifs, and mimetic motifs had higher count (nonmim: 21.08, mim: 24.38; F 

value = 8.73, p = 0.003). Again, no differences within song sections between mimetic and 

nonmimetic motifs were significant.  
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Discussion 

Variation in Song Structure 

Marler (1970, 1997) proposed that each species has some song features – such as 

syntax, structure, or content – that are innate and help guide the song learning process. 

While previous studies of European starling song described the three song sections and 

gave basic information about motifs (e.g., Hindmarsh 1984, Adret-Hausberger and 

Jenkins 1988, Eens et al. 1989, Mountjoy and Lemon 1995), few details were given about 

structural or sequential variation. I found that some song bouts were perfectly linear 

while others were not. Additionally, each song bout began with a low level of stereotypy 

(the whistle motifs) that increased throughout the bout. Some males had a highly 

stereotyped ending sequence of terminal motifs while others had songs that never became 

stereotyped. This pattern resembles the song structure of at least one other species, the 

willow warbler. Willow warbler song is also composed of three structurally distinct 

sections (intro, middle, and end), although in this species the final section of song is the 

least stereotyped (Gil and Slater 2000). This difference in stereotypy across sections is 

interesting. Gentner and Hulse (2000a) suggested predictability of transitions (stereotypy) 

was more important to females than repertoire size or song content. Furthermore, females 

prefer long song bouts (Eens et al. 1991, Gentner and Hulse 2000a), which I found to be 

less linear. Bout length was positively related to immune function (Duffy and Ball 2002) 

and linearity may therefore provide information to females about male quality. It will 

take further study to understand exactly what females are focusing upon, whether on an 

increase in stereotypy within a song bout, reduced linearity in longer bouts, some other 
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structural feature present in long bouts but not in short bouts, or perhaps linearity (or lack 

thereof) within a given song section.  

Male starlings differed in key structural features, such as effective in- and out-

degree, motif repetitions, and use of individual motifs. This suggests that structure is 

somewhat plastic and that listeners may be able to differentiate individuals based on the 

overall structure of their songs. Song is perceived by listeners as a gestalt of 

characteristics. Because of this, individual singers potentially unable to perform all song 

features equally well may specialize in different song components and achieve acceptable 

or attractive songs in different ways. For example, the level of stereotypy within each 

song section (whistle, variable, or terminal motifs) varied from total stereotypy or 

linearity (all song bouts following a single sequence without deviation) to high diversity 

(no apparent transitional pattern). These differences may provide information of singer 

quality to listeners. Similarly, some males preferred repeating motifs while others used 

repetition less frequently. In both cases, listening for these differences would be easier 

and take less time than counting motifs to determine repertoire size. Interestingly, 

effective degree of motifs and repertoire size were unrelated, although motif appearances 

and total counts decreased with increasing repertoire size. Since repetitions were 

independent of repertoire size, this suggests that adding motifs leads to a proportionate 

decrease in both total count and number of appearances. As such, sequential stereotypy 

may be independent of repertoire size, supporting the idea that assessment of only one 

song parameter is too simplistic for studies of song variation. 

It is unclear what components of song structure conspecifics focus on, though 

there is evidence that song structure and stereotypy are more important than repertoire 
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size (Gentner and Hulse 2000a). Perhaps females focus on the stereotyped sequences in 

which males incorporate the most mimicry. Alternatively, females may favor males 

capable of singing appropriate species-specific motifs at points of convergence or 

divergence in a song sequence. In playback studies, male and female starlings selectively 

paid attention to specific cues throughout the song bout (Knudsen et al. 2010). In this 

study, nonlinear motifs with more than two transitions were more common than linear 

motifs, and it would be interesting to investigate whether listener attention differs 

between these categories. Given the structural diversity and complexity present in 

European starling song, I propose that song structure may be an important component of 

mate choice in this species. The variation present in the structural components 

highlighted here would be easier for conspecifics to assess than would comparing 

repertoire sizes of potential mates.  

 

Mimicry and Song Structure 

Contrary to my predictions, nonmimetic motifs had higher effective in- and out-

degree than did mimetic ones. In other words, mimetic motifs tended to emerge from or 

lead into more stereotyped (linear) sequences. Mimetic motifs were also repeated 

significantly more often in an appearance than were nonmimetic motifs. A similar pattern 

of low-degree song units being sung most frequently was found in house wrens 

(Deslandes et al. 2014). These findings contradict my hypothesis that mimicry was used 

to emphasize points of structural diversity within a song bout. There appears to be a 

tradeoff between high degree and repetition, but it is unclear what effect repetitions (and 

repetitions of mimicked sounds) have within a song bout. What is clear is that there are 
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differences in how nonmimetic and mimetic motifs are used structurally in song, and 

these categories of motifs may therefore serve different functions. 

The permissive learning hypothesis favored by some authors suggests that many 

mimicking species acquire imitations passively from the soundscape and treat them the 

same as species-specific sounds (Garamszegi et al. 2007). My findings contradict this 

hypothesis, as motifs including mimicry appear to have a different structural role than 

nonmimetic motifs. Why this is the case, and whether this is true of mimetic song 

components in other species, is unclear. Payne (1979) noted in passing that mimetic 

indigobird song units were longer and harder to distinguish than nonmimetic ones. 

However, very little is known about mimicry and song structure. My findings support the 

structural function hypothesis but there are many unanswered questions that will need to 

be addressed before we understand the importance of mimicry in starling song. Studying 

how differences in structural roles between mimetic and nonmimetic motifs affect 

starling reproductive success may help us understand how mimicry influences mate 

choice in other species. 

 

Importance of Song Structure 

Studies of the song of other species support the idea that song structure serves an 

important function in conspecific communication. In house finches, song structure varied 

based upon the social function of a song bout, with bouts used in counter-singing 

encounters having the most variation and sequential branching (Ciaburri and Williams 

2019). Palmero et al. (2012) found that although spectacled warbler song bouts vary in 

length, the balance of motif repetition and diversity was maintained. The existence of 
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common structural patterns across species (e.g., repetition of each motif, nonrandom 

transitions, positioning of motifs) hints at the evolutionary origins of song structure in 

songbirds. In canaries, specific neurons hold information about previously sung phrases 

and transitions, allowing an individual to know which phrase to sing next (Cohen et al. 

2019). Therefore, the ability of a male to sing a song with the correct structure may be 

correlated with normal brain development. In a different study, juvenile zebra finches 

with restricted diets did not learn song structure as well as properly nourished juveniles, 

although song complexity was not affected by treatment (Brumm et al. 2009). Finally, 

domesticated Bengalese finches sing nonlinear, clumped song sequences, while their wild 

ancestors sing linear, stereotyped songs (Okanoya 2004). Okanoya (2004) hypothesized 

that mutations selected against in the wild are expressed in captivity, allowing more 

complex song structure to develop. When combined, the findings from these three studies 

suggest that song structure conveys information to a listener about the singer’s history 

and may serve an important function in mate choice.  

Furthermore, studies of European starlings across continents also suggest the 

importance of song structure. American individuals had larger repertoires than European 

males (Hausberger 1997), and both American and European individuals mimic more than 

Australian males (Adret-Hausberger 1989). However, general structural rules of song 

appear to be conserved across continents. Although the song structure of European and 

Australian individuals needs to be studied in more detail, it appears that repertoire size 

may not be the most important measure of song diversity. Syntax and repertoire size may 

be regulated by different mechanisms and may give conspecifics different pieces of 

information. Although structure has only recently become a major focus in birdsong 
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research, studies of structural variation have already enhanced our understanding of 

birdsong diversity.  
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CHAPTER IV: VOCAL MIMICRY, ACOUSTIC TRAITS, AND CONTRAST 

WITHIN SONG SEQUENCES 

 

Abstract 

 
Various song characteristics are used by avian listeners to assess singer quality. 

One honest indicator of quality could be vocal mimicry. The acoustic function hypothesis 

suggests that mimetic sounds could be functioning acoustically in the songs of some 

mimicking species. I wanted to determine whether mimicry added acoustic diversity to 

song and whether positioning of mimicked sounds increased acoustic contrast in the 

songs of European starlings (Sturnus vulgaris). I quantified eight song metrics using the 

songs of 19 males and compared mimetic to nonmimetic motifs. Mimicry expanded the 

acoustic range of song in both frequency and amplitude. However, acoustic contrast 

between motifs within song sequences was lower for mimetic sections than for 

nonmimetic sections. Additionally, transition versatility within sequences was highest in 

sections without mimicry. These findings support the hypothesis that mimicry has 

acoustic function/s within starling song. Listeners could potentially use mimicry within 

song to assess singer quality. Additional study is required to determine whether mimicry 

has a similar function in the songs of other mimicking species. The acoustic structure of 

songs and the role of mimicry therein is a ripe avenue for understanding the relationship 

between song learning and mate choice. 

Introduction 

 
In songbirds, song is thought to function in mate attraction, mate choice, and 

territorial defense (e.g. Kroodsma and Byers 1991). As such, variation in song and 



 

96  

singing ability can allow females to compare males and demonstrate preferences. There is 

evidence suggesting that different song characteristics are important to the mating 

preferences of different species. For example, females of some species prefer greater 

song output and song rate (Nowicki and Searcy 2004). In this case, increasing song 

output and song rate is difficult and can therefore function as an honest indicator of 

singer quality (Nowicki and Searcy 2004). Male quality has also been found to be 

correlated with other characteristics, such as song duration, timing of singing, aesthetic 

quality of song, and extent of mimicry, in different species (Kroodsma and Byers 1991).  

Mimicry – the imitation of heterospecific and environmental sounds – could 

signal quality in a variety of ways. For example, male satin bowerbird (Ptilonorhynchus 

violaceus) quality appears to be reflected in mimetic accuracy (Coleman et al. 2007), as it 

seems to be in song sparrows (Melospiza melodia, Beecher and Brenowitz 2005). This 

relationship corresponds with the learning and performance hypothesis, which suggests 

that an individual’s ability to learn or produce mimicked sounds is important in mate 

choice (Coleman et al. 2007, Dalziell et al. 2014). This hypothesis has received some 

support but is often overlooked in species-specific studies of mimicry, as mimetic 

accuracy is relatively difficult to quantify. Alternatively, mimicry could be used in a 

different way, such as to (1) introduce novel sounds to a repertoire, (2) expand the 

acoustic range of an individual’s song, or (3) create contrast in song. These potential 

functions fall under the acoustic function hypothesis, which has not often been 

considered in studies of mimicry in birdsong.  

The incorporation of sounds that are unique or novel may give singers an 

advantage. “Sexy” or “special” syllables are unique sounds that are relatively difficult to 
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produce and may therefore be favored by females (Vallet et al. 1998) and/or serve 

important social functions in song (Gil and Gahr 2002). For example, female canaries 

(Serinus canaria) prefer a song syllable with a lot of frequency modulation, which may 

demonstrate the function of a male’s respiratory and motor control systems (Vallet et al. 

1998, Vallet and Kreutzer 1995). The quality of the Snarr note of water pipits (Anthus 

spinoletta) indicates the dominance rank of males (Rehsteiner et al. 1998). Listeners 

could use the difficulty of producing song or specific song components to assess singer 

quality (Leitao et al. 2006). Female swamp sparrows (Melospiza georgiana) prefer songs 

as close to the population maximum performance thresholds of frequency range and trill 

rate as possible (Ballentine et al. 2004). In mimicking species, mimicry could either 

introduce potential “sexy” syllables or allow individuals to sing more impressive songs.  

Similarly, mimicry may allow singers to expand the acoustic range of their songs. 

For example, mimicked sounds in Northern mockingbird (Mimus polyglottos) song 

extend song maximum frequency and therefore frequency bandwidth (Gammon and Lyon 

2017). Extending acoustic features in this way may yield a more attractive song. Hermit 

thrushes (Catharus guttatus) use songs of high or low frequency at different times of day 

(Roach et al. 2012), suggesting that song frequency parameters transmit information 

about singer quality. However, little is known about this potential function, and further 

study is needed.  

Finally, the presence of sufficient contrast in song may be important to listeners. 

Hartshorne (1956) postulated that singers must avoid reaching a monotony threshold in 

song to retain listener interest, and therefore should limit repetition and lack of versatility. 

While this anti-monotony hypothesis initially described song rate and diversity of song 
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types, it may be expanded to an expectation that females prefer songs that are more 

heterogeneous and less repetitive, as is true for zebra finches (Taenopygia guttata, 

Neubauer 1999) and chaffinches (Fringilla coelebs, Leitao et al. 2006). That is, females 

should prefer songs that are more “interesting”. In species that sing songs composed of 

strings of song units, heterogeneity may vary based on what these song units are, and 

how they are strung together. In mimicking species, incorporating mimetic sounds may 

allow individuals to increase diversity or contrast within their songs. For example, by 

alternating between nonmimetic and mimetic sounds, an individual could draw a 

listener’s attention and/or demonstrate singing prowess.  

As the metabolic cost of singing is not insignificant (Oberweger and Goller 2001), 

songs that are more demanding in any of these three ways – through the addition of novel 

sounds, increased acoustic range, or increased acoustic contrast – could potentially 

indicate male quality. As such, mimicry could possibly influence mate choice in songbird 

species. I wanted to determine whether mimicry plays an acoustic role in the songs of 

male European starlings. Several lines of evidence support this idea. Mimicked notes are 

not used to increase repertoire size (Chapter 2). Motifs incorporating mimicry were 

repeated more often than species-specific sounds, and mimicry was significantly 

associated with more stereotyped transitions, suggesting that mimicry serves a structural 

role in song (Chapter 3). Based on these findings, it appears that mimicry is used 

differently from species-specific sounds, and is not passively incorporated into song.  

To determine whether mimicry serves an acoustic function in starling song, I 

asked two questions. First, are there quantitative differences between mimetic and 

nonmimetic motifs? I expected that mimetic motifs would extend the amplitude and 
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frequency range of starling song. Second, if there are quantitative differences, do these 

differences create greater contrast in sequences? I hypothesized that transitions between 

mimetic and nonmimetic motifs would have greater contrast in acoustic features than 

transitions between either two mimetic or two nonmimetic motifs. In both cases, mimicry 

should increase the heterogeneity of a male’s song. 

 

Methods 

 
European starling warbling song is composed of motifs. Each motif can be 

thought of as analogous to words in human speech and is composed of a set of one to ten 

notes repeated as a discrete unit. Each male has a repertoire of species-specific and 

mimetic motifs that is distinct from that of other males. Song has a clear organizational 

structure of three sections containing different types of motifs: several introductory 

whistle motifs followed by a series of rambling, repeated, variable motifs, and concluding 

with a series of high-frequency, loud terminal motifs (e.g. Adret-Hausberger and 

Güttinger 1984, Eens et al. 1989, Gentner and Hulse 1998, Gentner and Hulse 2000). 

Starlings regularly incorporate mimicry in songs, and motifs with mimicked components 

comprise an average of 46% of the repertoire of unique motifs of an individual male 

(Chapter 2). Mimicked sounds can appear in any of the three motif sections; however, 

mimicry is overrepresented within the variable motif section of song (Chapter 2).  

 I used the same recordings and motif libraries as I did for Chapters 2 and 3 for 

each of the 19 males.  

 

Motif quantitative trait differences 
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I quantified eight acoustic traits for one exemplar of each motif, including 

minimum, maximum, and mean frequency, frequency range, mean and maximum 

amplitude, motif duration, and number of notes or components in each motif. The number 

of components in each motif were counted manually. Motif duration was found with 

manual selection of the motif in the analysis window of the program Praat (v. 6.0.23; 

Boersma and Weenink 2019). I filtered out as much background noise as possible for all 

motifs before measuring other acoustic features. Due to the complexity of starling motifs, 

the noise filter could not be stringently employed. I then used the ‘show pitch’ and ‘show 

intensity’ analysis tools in Praat to measure frequency and amplitude features of all 

motifs. To avoid measuring remaining background noise as much as possible, I often 

measured a motif using multiple steps. I did this by drawing analysis boxes around 

specific motif components, saving all the measurements within each box, and then pooled 

measurements across boxes to calculate means, minima, and maxima. Frequency range 

was calculated as the difference between maximum and minimum frequency of a motif.   

To determine the uniformity of my quantitative measurements, I measured 10 

replicates of a subset of 18 motifs. I then used the R package rptR (Stoffel et al. 2017; R 

Core Team 2019) to calculate repeatability, or intraclass correlation, of the eight song 

metrics for each motif (Table 4.1). Standard error was found using 1000 bootstrap 

iterations and zero permutations.   

 

Table 4.1. Repeatability of measurements of motif metrics across 10 replicates of 18 

motifs +/- standard error. All repeatability scores had a p-value less than 0.0001. 

mean frequency 0.591 +/- 0.095 

min frequency 0.374 +/- 0.095 
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max frequency 0.671 +/- 0.093 

frequency range 0.635 +/- 0.096 

mean amplitude 0.48 +/- 0.1 

max amplitude 0.492 +/- 0.1 

duration 0.741 +/- 0.074 

components 0.659 +/- 0.087 

 

 Once all traits were measured, I ran a linear mixed model with male as random 

effect with the package nlme (Pinheiro et al. 2019) in R, followed by ANOVA, to 

compare nonmimetic and mimetic motifs in all three song sections. This allowed me to 

determine whether mimetic motifs differed quantitatively from nonmimetic motifs. Final 

sample sizes were 224 nonmimetic whistles, 118 mimetic whistles, 365 nonmimetic and 

370 mimetic variable motifs, and 175 nonmimetic, and 82 mimetic, terminal motifs.  

 

Contrast within variable motif sequences 

I only used the longest, middle section of song (the variable motifs) for contrast 

analysis. Both the whistle and terminal motif sections are characterized by high 

frequency whistles, and mimicry is mostly added to the end of these motifs, instead of 

embedded within them (Chapter 2). As such, I focused on the variable motif section.  

Contrast within song sequences was measured in two ways. First, I calculated 

differences in all eight traits between adjacent motifs, such that I had four transition 

types: nonmimetic to nonmimetic, nonmimetic to mimetic, mimetic to nonmimetic, and 

mimetic to mimetic. In my analysis, I used the absolute value of all differences in 
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statistical tests to focus on the size of contrast, while using the true values for 

comparisons of the distributions. For contrast in max and mean frequency, max and mean 

amplitude, duration, and number of components, my sample sizes were: 2816 

nonmimetic – nonmimetic, 1704 nonmimetic – mimetic, 1909 mimetic – nonmimetic, 

and 2661 mimetic – mimetic. For contrast in minimum frequency and frequency range, 

the sample sizes were 2810, 1699, 1907 and 2662, respectively.  

Second, I calculated a transition versatility score (adapted from Gil and Slater 

2000) for each song bout. Transition versatility was the number of unique transitions 

divided by the total number of transitions, per bout. I excluded transitions between the 

same motif, such as motif A → motif A, from the numerator to keep scores between 0 

and 1.0. I then compared transition versatility to the number of unique nonmimetic and 

mimetic motifs in each bout. In total, I had transition versatility scores from 1,069 song 

bouts. 

 I determined the difference in contrast for all eight traits using a linear mixed 

model in R with male as random effect, followed by ANOVA and Tukey-HSD posthoc 

tests. I also compared distributions of contrast between the four transition types using 

Anderson-Darling tests in the R package kSamples (Scholz and Zhu 2019).  

 Finally, I determined the relationships between transition versatility score and 

either nonmimetic or mimetic motifs by using two linear mixed-effects models with male 

as random effect. I used the two models to determine the effects of number of unique, and 

total number of, nonmimetic and mimetic motifs in bouts. 

 

Results 
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Motif quantitative trait differences 

There were significant differences in motif traits of mimetic and nonmimetic 

motifs in all song sections, although the specific patterns differed across song sections 

(Table 4.2). In the whistle section, mimetic motifs had significantly higher mean and 

maximum frequency, as well as frequency range (Figure 4.1). In contrast, in the variable 

motif section, mimetic motifs had significantly lower mean frequency and significantly 

lower minimum frequency. Mimicry in this section decreased the song frequency and 

increased motif duration. Mimetic terminal motifs, like variable motifs, had lower 

minimum frequency and longer duration. In this section, mimicry also increased the 

frequency range of motifs. 

Mimetic motifs in all three sections were composed of significantly more 

components (notes).  

 

Table 4.2. Quantitative trait means for mimetic and nonmimetic motif categories in the 

three song sections. Bolded means are significantly different from the respective other 

mean in that category. 

 

 

song	section mimetic mean	freq min	freq max	freq freq	range mean	amp max	amp duration components

whistle no 3044.25 2289.40 3944.95 1655.54 65.32 74.15 0.69 1.49

yes 3517.84* 2475.60 4902.09* 2426.49* 65.93 75.32 0.78 2.32*

variable no 3956.60* 2667.98 5539.17 2871.19 58.20 69.67 0.67 2.98

yes 3793.16 2391.54* 5566.91 3175.37 59.22 71.16 0.72* 3.25*

terminal no 6573.43 4615.70 8057.58 3441.88 74.39 82.49 0.61 2.26

yes 6162.21 3909.03* 7994.27 4085.23* 73.68 82.96 0.74* 2.78*

*All	significance	at	p	<	0.01
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Figure 4.1. Mean differences in frequency range of nonmimetic and mimetic motifs of the 

three song sections. Frequency range was significantly higher in mimetic motifs for 

whistle and terminal motifs. 

 

Contrast within variable motif sequences 

The size of the difference in mean, minimum, and maximum frequency, 

frequency range, and mean amplitude was significantly highest in transitions between 

two nonmimetic motifs (Table 4.3, Figure 4.2).  

 

Table 4.3. Mean differences in the eight song metrics for the four transition types. 
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Figure 4.2. Boxplots of the difference in frequency (A) or amplitude (B) metrics for the 

four transition types: nonmimetic to nonmimetic, nonmimetic to mimetic, mimetic to 

nonmimetic, and mimetic to mimetic. 

 

Transitions between two nonmimetic motifs and two mimetic motifs had 

significantly different levels of contrast in all quantitative traits except for duration. The 

two types of heterogeneous transitions (between nonmimetic and mimetic motifs) 

differed in contrast of maximum frequency, frequency range, mean amplitude, duration, 

and number of components. Mimetic to nonmimetic motif transitions had the lowest 

contrast scores for four of the eight motif traits.  

transition	type min	freq mean	freq max	freq freq	range mean	amp max	amp duration components

mim-mim 1024.30 1029.24 1588.54 1881.11 7.51 7.48 0.23 1.05

mim-nonmim 949.79 1083.23 1499.50 1716.59 7.27 8.75 0.21 0.93

nonmim-mim 898.13 1034.95 1730.32 1971.54 8.38 7.99 0.24 1.05

nonmim-nonmim 1044.96* 1268.53* 1981.46* 1985.25* 9.41* 9.37 0.22 0.80

*significantly	different	from	all	other	transition	types	(p	</=	0.001	from	linear	mixed	model)
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The contrast distributions of the four transition types were significantly different 

for all eight traits (e.g. duration, with the largest p-value: F-value = 4.87, p = 0.002, 

through max frequency: F-value = 74.5, p < 0.0001; Figure 4.3). Transition types did not, 

therefore, only differ in the size of the difference in traits (absolute value) between 

adjacent motifs, but also in the direction of the difference (raw value). Transitions 

between mimetic motifs had less contrast than sequences of nonmimetic, species-specific 

motifs. The nonmimetic-nonmimetic difference distribution for maximum frequency 

(Figure 4.3A) had a trimodal shape.   
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Figure 4.3. Density distribution of the difference in max frequency (A) and mean 

amplitude (B) for the four transition types. Mimetic sequences have less contrast than 

nonmimetic ones. 

 

Contrary to our predictions, the transition versatility of song bouts was negatively 

related to the number of unique mimetic motifs in a bout (lme: t-value = -4.06, p < 0.01) 

but not to the number of unique nonmimetic motifs (lme: t-value = 1.06, p = 0.29). Thus, 
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as the number of unique mimetic motifs increased, the transition versatility decreased for 

a song bout (Figure 4.4). There was also less variation in transition versatility at high 

numbers of unique mimetic motifs (Figure 4.4B) than for nonmimetic motifs (Figure 

4.4A). Total number of nonmimetic or mimetic motifs (including repetitions of the same 

motif) had a significant negative effect on transition versatility (lme: nonmimetic – t-

value = -6.16, p = 0; mimetic – t-value = -3.81, p <0.01).  

 

Figure 4.4. Transition versatility scores for nonmimetic (A) and mimetic (B) motifs. 

There is less variation in transition versatility at high numbers of unique mimetic motifs 

than there is with many nonmimetic motifs. The trend in (B) is small but significant. 
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The acoustic function hypothesis emphasizes ways in which singers could use 

mimicry to develop attractive song. Three proposed ways in which mimicry could 

function are by (1) introducing novel sounds to the song repertoire, (2) expanding 

acoustic range, and/or (3) adding contrast. Although no inferences can be made about 

novel sounds, mimicry did allow males to increase their acoustic range. Mimetic and 

nonmimetic motifs in European starling song are acoustically different. Some of the 

pattern is clear. Four traits (maximum amplitude, frequency range, duration, and number 

of components) are all extended by mimicry, in all three song sections. As mimicry often 

takes the form of imitated notes attached to the end of motifs (Chapter 2), it makes sense 

that duration and number of components increase with mimicry.  

Variation in the other acoustic traits is less clear. Male starlings appear to also 

increase the loudness (amplitude) and vocal range (frequency range) of songs by 

incorporating mimicry. Mimicry in the variable and terminal motif sections lowered the 

minimum frequency and increased the maximum frequency of motifs. In the whistle 

section, mimicry instead led to greater mean frequency of song. Different acoustic 

features seem to be more important in different song sections, and mimicry may 

emphasize these differences. Furthermore, the fact that mimicry extends the acoustic 

range of song may yield additional advantages.  

Females of many species focus on specific aspects of a male’s singing behavior. 

In several studies, females have shown preferences for higher frequency (zebra finch, 

Ritschard et al. 2010; rock sparrow, Petronia petronia, Nemeth et al. 2012), amplitude 

(dusky warbler, Phylloscopus fuscatus, Forstmeier et al. 2002), and complexity 

(chaffinch, Leitao et al. 2006). Often, specific song characteristics may serve as honest 
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signals of male quality. For example, stress early in life negatively affects song learning, 

as well as adult body size and immune function (Nowicki and Searcy 2004), which may 

be reflected in a less-developed song. It will take further study to determine whether 

mimetically-extended frequency bandwidth of song, such as was found in this study, and 

in Northern mockingbirds (Gammon and Lyon 2017), makes the singer more attractive to 

female listeners.  

 Our results present a puzzling pattern with respect to the role of mimicry in 

increasing acoustic contrast in songs. Mimetic motifs expanded the overall acoustic range 

of the songs; however, at the level of transitions between two consecutive motifs, 

sequences that contained mimetic motifs showed reduced acoustic contrast. Furthermore, 

as the number of unique mimetic motifs increased, song versatility decreased in a song 

bout. Mimetic motifs “fit into” a song (created less contrast) than did nonmimetic, 

species-specific motifs. Thus, while mimetic motifs can expand the overall spectral range 

of notes, starlings do not structure their song to use mimicry to emphasize contrast. 

Indeed, it appears that starlings are using mimicry to decrease contrast within song bouts, 

which indicates that contrast may be something males attempt to minimize. These 

findings correspond with previous results showing that mimetic motifs are not necessarily 

used at key points within the song structure of starlings – e.g., at points of convergence or 

divergence within song sequences – although they are repeated more often than 

nonmimetic motifs (Chapter 3). Female starlings prefer long song bouts (Gentner and 

Hulse 2000), which are more linear or stereotyped than shorter bouts (Chapter 3). As 

such, they may also prefer reduced contrast between neighboring motifs within bouts. 

Therefore, mimetic motifs affect the overall properties of a starling’s motif repertoire, but 
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not the specific properties of a song sequence. This result suggests that the song learning 

template of starlings may be relatively rigid when it comes to structure.  

 Our study suggests that species-specific syntactical rules of complex songs may 

constrain how mimetic sounds can be used. While our interpretation of the anti-monotony 

hypothesis (Hartshorne 1956) suggests that songs that are more heterogeneous and 

“interesting” are preferable, song must still follow a set of species-specific guidelines. 

While preference shown by female Bengalese finches led to an increase in syntactical 

complexity of song, complexity was always bounded by what listeners perceived as song 

(Sasahara and Ikegami 2003). In swamp sparrows, females preferred regular syntax over 

innovative songs (Nowicki et al. 2001), and in many songbird clades, song diversity has 

decreased over time (Byers and Kroodsma 2009). Oropendola song versatility has 

remained relatively constant across evolutionary time, while peak frequency and 

frequency shift within songs have diverged across species (Price and Lanyon 2002). As 

there are constraints on song complexity, species-specific sounds may need to drive 

contrast within song bouts in European starlings, so that the song never becomes 

incomprehensible to listeners. Mimicry may then function within those bounds to 

increase the attractiveness of a singer.  
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CONCLUSION 

 

Marshall (1950) declared that vocal mimicry must have a purpose. The research 

presented in this doctoral thesis investigates the function of vocal mimicry from a variety 

of perspectives and lends support to this statement. In Chapter I, I showed that vocal 

mimicry is found across the oscine songbird phylogeny and independently evolved 

numerous times. In Chapter II, I found that mimicry does not directly increase repertoire 

size in European starlings. Furthermore, Chapters III and IV demonstrated that mimicked 

motifs function differently from nonmimetic sounds, both structurally and acoustically, in 

song. My findings also lend credence to the conclusion by Catchpole and Slater (2008) 

that the permissive learning hypothesis is too simplistic and allows the premature 

dismissal of potential alternative hypotheses for the functions of mimicry. 

A hindrance to understanding the evolution of vocal mimicry has been a narrow 

focus on its function for every species. My work details many possible dimensions of 

function of vocal mimicry (repertoire, syntax, acoustic properties, etc...) within one song 

type of one species. Instead of determining the specific function of mimicry by every 

mimetic species, we can use model systems such as starlings to pursue more detailed 

questions about mimicry and learning. For example, we could determine female starling 

responses to songs with different mimetic composition and measure reproductive fitness 

of the respective singers. We could also use starling mimicry to address important 

questions about learning in general. All birds hear many sounds and we have yet to 

understand (1) what sounds they end up incorporating into song, (2) how they do this, 

and (3) what or who they learn from. In other words, how do social interactions lead to 

the learning and retention of certain sounds over others? (Beecher and Burt 2004). West 
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et al. (2003) accurately described starlings as “vocal mirrors” that reflect sounds heard 

around them. Social interaction is necessary for individuals to develop appropriate songs, 

as song use is a skill that changes based on listener feedback (West et al. 2003). For this 

reason, starlings are one system in which mimicry could be used to begin to untangle the 

interplay between sociality and learning. 

Song learning has been central to the success and diversification of songbirds. 

Learning can allow greater precision and accuracy of the transmission of knowledge, lead 

to heightened complexity and variety, and allow easier transmission of information 

(Slater 1989). Learning is also closely tied to cognition (Whiten and van Schaik 2007) 

and song learning ability may potentially reflect other behaviors such as the foraging 

ability of an individual (Huber et al. 2001, Slagsvold and Wiebe 2011, Riebel et al. 

2012). As such, studying song learning can yield important information about songbird 

diversity and evolution, as well as cognition and individuality. 

This thesis emphasizes variation in the song of individuals. As in most aspects of 

biology, plasticity and variation shape the nature of song learning and mimicry (Mesoudi 

et al. 2016). Soha (2017) noted that there are multiple complementary ways in which 

song must be revised and shaped throughout the learning process. Additionally, multiple 

layers of learning are required (West et al. 2003). Individuals also vary in their tendency 

and ability to learn, as well as in their use of learning strategies (Mesoudi et al. 2016). As 

individuals’ past experiences, their condition, age, sex, and cultural background all shape 

learning (Mesoudi et al. 2016), studying individual differences will be key to discovering 

details about the song learning process.  
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West et al. (2003) asserted that (song) cultural evolution is a process that works 

on the individual rather than on isolated behaviors. A culture is a behavioral pattern 

shared by a group, which is reliant upon socially learned and transmitted information 

(Whiten and van Schaik 2007, Laland and Hoppitt 2003) as well as the persistence of that 

information (Boyd and Richerson 1996). Focusing on individual variation and experience 

instead of a single behavior is crucial to understanding how learning leads to the 

emergence of song culture (Whiten and van Schaik 2007). This is important because song 

learning is one of the few examples of cultural evolution in nonhuman animals (Boyd and 

Richerson 1996) and song culture can affect other aspects of biology integral to a bird’s 

success (Aplin 2018). For example, vocal traditions influence mating preferences 

(Freeberg et al. 2001), group-level organization (Cantor et al. 2015), and may mirror 

genetic or social adaptation to local conditions (Slater 1989, Laland and Hoppitt 2003). 

While song changes over time, it is still unclear how this occurs (Slater 1989), and 

limitations of the flexibility of song learning are also not yet understood (Ellers and 

Slabbekoorn 2003). Studying mimicry could be one way to trace the transformation of 

song and to further our understanding of learning and its integral role in songbird 

evolution. 
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APPENDIX I. Glossary of important terms 

 

Term Definition 

Acoustic function hypothesis Suggests that mimetic sounds could function 
acoustically in song. For example, mimicry could 
increase acoustic range or acoustic contrast in a 
song. 

Core repertoire The part of an individual's song repertoire that 
is sung most frequently. 

Effective degree (weighted) Measure of the stereotypy of the song 
sequences leading to and from a motif. 
Calculated as 1 / sum of edge weight 
proportions for a motif. High effective degree 
indicates low stereotypy (many paths leading to 
or from a motif), while low effective degree 
indicates one path is strongly favored. 

Learning and performance 
hypothesis 

An individual’s ability to learn or produce 
mimicked sounds is important to listeners. 

Linearity How well a song sequence follows one path. 

Linearity index The number of unique motifs in a bout divided 
by the number of unique transitions within that 
bout. The lower the linearity, the more 
syntactically complex (less stereotyped) the 
song. 

Motif Discrete unit of song composed of one to ten 
notes. Analogous to words in human speech. 
Generally repeated a specific number of times 
before song continues. 

Note A continuous sound that may or may not be 
combined with others to create motifs. 

Permissive learning hypothesis Increased song complexity requires a relaxed 
(permissive) song template that limits song 
structure and not content, allowing passive 
acquisition and inclusion of mimicked sounds. 

Point of convergence Position in a song sequence where multiple 
song paths come together; a bottleneck. 

Point of divergence Position in a song sequence where a linear song 
path diverges into multiple; a branching point. 

Repertoire size  In starlings, the number of unique motifs in a 
male's vocabulary. This number changes for 
individuals from year to year. 
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Repertoire size hypothesis Increased song complexity requires a relaxed 
(permissive) song template, which may allow 
passive acquisition of mimicked sounds. 

Sexy syllable A unique sound that is relatively difficult to 
produce, and is preferred by females and/or has 
a specific social function. 

Song bout One iteration of a male's song containing a 
subset of the motifs in his repertoire, and 
lasting about 30 - 60 seconds. 

Song content The makeup or composition of motifs - what 
types of notes compose a motif and what/how 
sounds are included.  

Song structure Arrangement of motifs and connections 
between them. Also referred to as syntax. 

Stereotypy The level of predictability of a song sequence; 
high stereotypy indicates high linearity - song 
almost always conforms to a specific path. 

Structural function hypothesis Suggests that mimetic sounds have a structural 
function in song different from that of species-
specific sounds, such as by diversifying song 
structure or emphasizing specific components. 

Transition hub Point of convergence or divergence within a 
song sequence. 

Transition versatility index Number of unique transitions in a bout divided 
by the total number of transitions in that bout; 
as transition versatility increases, the song 
becomes more complex. 
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