12-10-2013

FLUORINATION OF AROMATIC RING SYSTEMS

Stephen G. DiMagno
University of Nebraska - Lincoln, sdimagno1@unl.edu

Follow this and additional works at: https://digitalcommons.unl.edu/chemfacpub

Part of the Analytical Chemistry Commons, Medicinal-Pharmaceutical Chemistry Commons, and the Other Chemistry Commons

DiMagno, Stephen G., "FLUORINATION OF AROMATIC RING SYSTEMS" (2013). Faculty Publications -- Chemistry Department. 118.
https://digitalcommons.unl.edu/chemfacpub/118

This Article is brought to you for free and open access by the Published Research - Department of Chemistry at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Faculty Publications -- Chemistry Department by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln.
This disclosure relates to reagents and methods useful in the synthesis of aryl fluorides, for example, in the preparation of \(^{18}\text{F}\) labeled radiotracers. The reagents and methods provided herein may be used to access a broad range of compounds, including aromatic compounds, heterocyclic compounds, amino acids, nucleotides, and synthetic compounds.
References Cited

OTHER PUBLICATIONS

Ross, “Direct no-carrier added 18F-labelling of arenes via nucleophilic substitution on aryl(2-thienyl)iodonium salts,” Institute of Nuclear Medicine, Julich, Germany, Thesis, 2006, 10 pages (table of contents).

MTEB-I-F Decomposition in Acetonitrile at 90°C

FIG. 1
MTEB-I-F Decomposition in Benzene at 90°C

FIG. 2
ID Proton NMR before heating
FIG. 4

F19
140°C 25min
1 FLUORINATION OF AROMATIC RING SYSTEMS

CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a National Stage application under 35 U.S.C. §371 and claims the benefit under 35 U.S.C. §119(a) of International Application No. PCT/US2009/061308, having an International Filing Date of Oct. 20, 2009, which claims priority to U.S. Provisional Applications Ser. Nos. 61/107,156, filed on Oct. 21, 2008, and 61/236,037, filed on Aug. 21, 2009, both of which are incorporated by reference in their entirety herein.

FEDERALLY SPONSORED RESEARCH OR DEVELOPMENT

The U.S. Government has certain rights in this invention pursuant to Grant No. CHE-0717562 awarded by the National Science Foundation.

TECHNICAL FIELD

This disclosure relates to reagents and methods useful in the synthesis of aryl fluorides, for example, in the preparation of 18F-labeled radiotracers. The reagents and methods provided herein may be used to access a broad range of compounds, including aromatic compounds, heteroaromatic compounds, amino acids, nucleotides, and synthetic compounds.

BACKGROUND

Aryl fluorides are structural moieties in natural products as well as a number of therapeutically important compounds, including positron emission tomography (PET) tracers and pharmaceuticals. Therefore methods and reagents for producing such aryl fluorides, for example efficient methods for producing aryl fluorides, are desirable.

SUMMARY

Provided herein are methods of preparing substituted aryl and heteroaryl ring systems using diaryliodonium compounds and intermediates. For example, diaryliodonium salts and diaryliodonium fluorides, as provided herein, can undergo decomposition to prepare an aryl fluoride.

For example, provided herein is a method for making a compound of Formula (1):

Ar\(^2\)−X

wherein Ar\(^2\) is an aryl or heteroaryl ring system; and X is a moiety wherein the pKa of the acid H−X is less than 12. In one embodiment, the method includes reacting in a polar solvent a compound MX, wherein M is a counter ion and X is as defined in Formula (1), and a compound of Formula (2):

Ar\(^1\)−Y

wherein Ar\(^1\) is an electron rich aryl or heteroaryl ring system; Y is a leaving group; and Ar\(^2\) and X are as defined above. Following reaction, the polar solvent can be removed from the reaction mixture and the remaining mixture can be combined with a nonpolar solvent and heated. In another embodiment, a solution comprising a nonpolar solvent, a compound MX, and a compound of Formula (2) can be heated to provide a compound of Formula (1).

In some embodiments, the nonpolar solution of the reaction mixture of MX and a compound of Formula (2) can be filtered prior to heating. The filtration step can remove any insoluble material (e.g., insoluble salts) that remain in the reaction mixture. In some embodiments, the solvent can be removed from the filtrate prior to heating (i.e., the residue can be heated neat).

In further embodiments, the nonpolar solution of the reaction mixture of MX and a compound of Formula (2) can be filtered prior to heating, the nonpolar solvent can be removed (e.g., by evaporation), and the heating of the sample can be performed in a different solvent.

In some embodiments, X can be chosen from fluoride, chloride, bromide, iodide, triflate, trifluoroacetate, benzoate, acetate, phenoxide, thiocyanate, cyanate, and stabilized enolates. For example, X can be chosen from fluoride, chloride, bromide, iodide, triflate, trifluoroacetate, benzoate, acetate, phenoxide, thiocyanate, cyanate, and stabilized enolates. In some embodiments, X is fluoride. In some embodiments, X is a radioactive isotope, for example, X can be a radioactive isotope of fluoride (e.g., 18F).

The methods described herein can be used to prepare fluorinated aryl or heteroaryl ring systems (e.g., a radiolabeled fluorinated aryl or heteroaryl ring system). For example, provided herein is a method of preparing a compound of Formula (3):

Ar\(^2\)−F

wherein Ar\(^2\) is an aryl or heteroaryl ring system. In one embodiment, the method includes reacting in a polar solvent a compound MF, wherein M is a counter ion, and a compound of Formula (2), as described above. Following reaction, the polar solvent can be removed from the reaction mixture and the remaining mixture can be combined with a nonpolar solvent and heated. In another embodiment, a solution comprising a nonpolar solvent, a compound MF, and a compound of Formula (2) can be heated to provide a compound of Formula (3).

In some embodiments, the nonpolar solution of the reaction mixture of MF and a compound of Formula (2) can be filtered prior to heating. The filtration step can remove any insoluble material (e.g., insoluble salts) that remain in the reaction mixture. In some embodiments, the solvent can be removed from the filtrate prior to heating (i.e., the residue can be heated neat).

In further embodiments, the nonpolar solution of the reaction mixture of MF and a compound of Formula (2) can be filtered prior to heating, the nonpolar solvent can be removed (e.g., by evaporation), and the heating of the sample can be performed in a different solvent.

Ar\(^2\) is an electron rich aryl or heteroaryl ring system. For example, Ar\(^2\)=H can be more easily oxidized than benzene. In some embodiments, the moiety Ar\(^2\) can be substituted with at least one substituent having a Hammett \(\sigma\) value of less than zero. For example, the substituent can be chosen from: −(C\(_7\)_alkyl, −(C\(_7\)_alkyl), −(C\(_7\)_alkyl), (C\(_7\)_alkyl), (C\(_7\)_alkyl), (C\(_7\)_alkyl).
alkynyl, \(-\text{O}(\text{C}_1\text{-ClO})\text{alkyl}, \quad \text{C}(\text{O})\text{-O}(\text{C}_1\text{-ClO})\text{alkyl},
\text{aryl, and heteroaryl. In some embodiments, } \text{Ar}^1 \text{ can be:}

\[
\begin{align*}
\text{R}^1 & \quad \text{R}^2 & \quad \text{R}^3 \\
\text{aryl} & \quad \text{heteroaryl}
\end{align*}
\]

wherein \(\text{R}^1, \text{R}^2, \text{R}^3, \text{R}^4, \text{R}^5\) are independently chosen from: \(\text{H}, \quad \text{-(C}_1\text{-ClO})\text{alkyl}, \quad \text{-(C}_1\text{-ClO})\text{haloalkyl}, \quad \text{(C}_2\text{-ClO})\text{alkenyl}, \quad \text{(C}_2\text{-ClO})\text{alkynyl}, \quad \text{-O}(\text{C}_1\text{-ClO})\text{alkyl}, \quad \text{-C}(\text{O})\text{-O}(\text{C}_1\text{-ClO})\text{alkyl}, \quad \text{aryl, and heteroaryl, or two or more of } \text{R}^1, \\
\text{R}^2, \text{R}^3, \text{R}^4, \text{and } \text{R}^5 \text{ come together to form a fused aryl or heteroaryl ring system.}
\]

\(\text{Ar}^2\) is an aryl or heteroaryl ring system. In some embodiments, \(\text{Ar}^2\) is chosen from a phenylalanine derivative, tyrosine derivative, tryptophan derivative, histidine derivative, and estradiol derivative. In some embodiments, \(\text{Ar}^2\) is chosen from:

\[
\begin{align*}
\text{OMe} & \quad \text{CN} & \quad \text{MeO} & \quad \text{OMe} \\
\text{Me} & \quad \text{OMe} & \quad \text{CF}_3
\end{align*}
\]
wherein each of p^1, p^2 and p^5 are independently a nitrogen protecting group, or p^1 and p^2 come together to form a single nitrogen protecting group; each of p^3, p^4, and p^7 are independently an alcohol protecting group, or p^3 and p^4 come together to form a single oxygen protecting group; and p^5 is a carboxylic acid protecting group.

Also provided herein is a method of making a compound of Formula (6):

wherein each of p^1 and p^2 are independently a nitrogen protecting group, or p^1 and p^2 come together to form a single nitrogen protecting group; each of p^4, and p^5 are independently an alcohol protecting group, or p^3 and p^4 come together to form a single oxygen protecting group; and p^5 is a
carboxylic acid protecting group. In one embodiment, the method includes reacting in a polar solvent a compound MF, wherein M is a counter ion, and a compound of Formula (7):

\[
\begin{align*}
\text{Ar}^1 & \quad \text{Y} \\
p^1 & \quad p^2 & \quad p^3 & \quad p^4 & \quad p^5 \\
\text{Op}^4 & \quad \text{Op}^3
\end{align*}
\]

wherein \(\text{Ar}^1\) is an electron rich aryl or heteroaryl ring system; Y is a leaving group; and \(p^1, p^2, p^3, p^4\) and \(p^5\) are as defined above. Following reaction, the polar solvent can be removed from the reaction mixture and the remaining mixture can be combined with a nonpolar solvent and heated. In another embodiment, a solution comprising a nonpolar solvent, a compound MF, and a compound of Formula (7) can be heated to provide a compound of Formula (6).

In some embodiments, the nonpolar solution of the reaction mixture of MF and a compound of Formula (7) can be filtered prior to heating. The filtration step can remove any insoluble material (e.g., insoluble salts) that remain in the reaction mixture. In some embodiments, the solvent can be removed from the filtrate prior to heating (i.e., the residue can be heated neat).

In further embodiments, the nonpolar solution of the reaction mixture of MF and a compound of Formula (7) can be filtered prior to heating, the nonpolar solvent can be removed (e.g., by evaporation), and the heating of the sample can be performed in a different solvent.

In the methods described above, Y can be any leaving group, for example, Y can be, for example, triflate, mesylate, nonaflate, hexaflate, tosylate, nosylate, brosylate, perfluoroalkyl sulfonate, tetraphenylborate, hexafluorophosphate, trifluoroacetate, tetrafluoroborate, perchlorate, perfluoroalkyl carboxylate, chloride, bromide, or iodide. M can vary depending on the nature of the X moiety. In some embodiments, M can be potassium, sodium, cesium, complexes of lithium, sodium, potassium, or cesium with cryptands or crown ethers, tetrasubstituted ammonium cations, or phosphonium cations.

The nonpolar solvent used in the methods described herein can be, for example, benzene, toluene, o-xylene, m-xylene, p-xylene, ethyl benzene, carbon tetrachloride, hexane, cyclohexane, fluorobenzene, chlorobenzene, nitrobenzene, or mixtures thereof. In some embodiments, the nonpolar solvent comprises benzene. In some embodiments, the nonpolar solvent comprises toluene.

The polar solvent used in the methods described herein can be, for example, acetonitrile, acetone, dichloromethane, ethyl acetate, tetrahydrofuran, dimethylformamide, 1,2-difluorobenzene, benztotriazolide or mixtures thereof.

Heating of the reaction mixture can include heating at a temperature ranging from about 25°C to about 250°C. In some embodiments, the heating can occur for from about 1 second to about 25 minutes. In some embodiments, the heating is accomplished by a flash pyrolysis method, a conventional heating method, or by a microwave method.

In some embodiments, the compound of Formula (2) is chosen from:

\[
\begin{align*}
\text{Ar}^1 & \quad \text{Y} \\
p^1 & \quad p^2 & \quad p^3 & \quad p^4 & \quad p^5 \\
\text{Op}^4 & \quad \text{Op}^3
\end{align*}
\]

wherein each of \(p^1\) and \(p^2\) are independently a nitrogen protecting group, or \(p^1\) and \(p^2\) come together to form a single nitrogen protecting group; each of \(p^3\), and \(p^4\) are independently an alcohol protecting group, or \(p^3\) and \(p^4\) come together to form a single oxygen protecting group; and \(p^5\) is a carboxylic acid protecting group. For example, the compound of Formula (2) can be:
wherein each of P_1^I and P_2^I are independently a nitrogen protecting group, or P_1^I and P_2^I come together to form a single nitrogen protecting group; each of P_3^I, and P_4^I are independently an alcohol protecting group, or P_3^I and P_4^I come together to form a single oxygen protecting group; and P_5^I is a carboxylic acid protecting group. In some embodiments, the compound of Formula (2) can be:

In some embodiments, the compound of Formula (2) is chosen from:
wherein each of P3 and P4 are independently an alcohol protecting group.

In some embodiments, the compound of Formula (1) or Formula (3) is chosen from:

wherein each of P1 and P2 are independently a nitrogen protecting group, or P1 and P2 come together to form a single nitrogen protecting group; each of P3 and P4 are independently an alcohol protecting group, or P3 and P4 come together to form a single oxygen protecting group; and P5 is a carboxylic acid protecting group.
In some embodiments, the compound of Formula (1) or Formula (3) is chosen from:

wherein each of p^3 and p^4 are independently an alcohol protecting group.

In some embodiments, the compound of Formula (1) or Formula (3) can be:

wherein each of p^1 and p^2 are independently a nitrogen protecting group, or p^1 and p^2 come together to form a single nitrogen protecting group; each of p^3, and p^4 are independently an alcohol protecting group, or p^3 and p^4 come together to form a single oxygen protecting group; and p^5 is a carboxylic acid protecting group. For example, the compound of Formula (1) or Formula (3) can be:

In some embodiments, the compound of Formula (7) can be:

For example, the compound of Formula (7) can be:

In some embodiments, the compound of Formula (6) can be:
Also provided herein is a method for making a compound of Formula (1) that can include heating a mixture comprising a nonpolar solvent and a compound of Formula (5):

\[
\text{Ar}^1 \begin{array}{c} X \\ \text{Ar}^2 \end{array}
\]

wherein \(\text{Ar}^1\) is an electron rich aryl or heteroaryl ring system; and \(\text{Ar}^2\) and \(X\) are as defined for Formula (1). In some embodiments, the reaction mixture is filtered (i.e., to remove insoluble material) prior to heating. In some embodiments, the reaction mixture is filtered and the nonpolar solvent is removed and the resulting residue is dissolved in a polar solvent prior to heating. In some embodiments, \(X\) is \(F\) (e.g., \(^{18}\)F).

Also provided herein is a method for making a compound of Formula (3) that can include heating a mixture comprising a nonpolar solvent and a compound of Formula (4):

\[
\text{Ar}^1 \begin{array}{c} F \\ \text{Ar}^2 \end{array}
\]

wherein \(\text{Ar}^1\) is an electron rich aryl or heteroaryl ring system; and \(\text{Ar}^2\) is as defined for Formula (3). In some embodiments, the reaction mixture is filtered (i.e., to remove insoluble material) prior to heating. In some embodiments, the reaction mixture is filtered and the nonpolar solvent is removed and the resulting residue is dissolved in a polar solvent prior to heating.

Further provided herein is a compound of Formula (8):

\[
\text{Ar}^1 \begin{array}{c} p^1 \quad N \quad p^2 \\ \text{Ar}^2 \quad \text{OP}^3 \quad \text{OP}^4 \end{array}
\]

wherein \(\text{Ar}^1\) is an electron rich aryl or heteroaryl ring system; each of \(p^1\) and \(p^2\) are independently a nitrogen protecting group, or \(p^1\) and \(p^2\) come together to form a single nitrogen protecting group; each of \(p^3\) and \(p^4\) are independently an alcohol protecting group, or \(p^3\) and \(p^4\) come together to form a single oxygen protecting group; and \(p^5\) is a carboxylic acid protecting group. In some embodiments, the compound of Formula (8) is:

A compound of Formula (6) is also provided. The compound can be prepared using any of the methods described herein.

The details of one or more embodiments of the invention are set forth in the accompanying drawings and the description below. Other features, objects, and advantages of the invention will be apparent from the description and drawings, and from the claims.

DESCRIPTION OF DRAWINGS

FIG. 1 shows the decomposition of MTEB-I-F in acetonitrile at 90°C.

FIG. 2 shows the decomposition of MTEB-I-F in benzene at 90°C.

FIG. 3 details the \(^1\)H NMR of 6-Fluoro-L-DOPA.

FIG. 4 details the \(^{19}\)F NMR of 6-Fluoro-L-DOPA.

DETAILED DESCRIPTION

Definitions

Unless defined otherwise, all technical and scientific terms used herein have the same meaning as is commonly understood by one of ordinary skill in the art to which this disclosure belongs. All patents, applications, published applications, and other publications are incorporated by reference in their entirety. In the event that there is a plurality of definitions for a term herein, those in this section prevail unless stated otherwise.

As used herein, the singular forms “a,” “an,” and “the” include plural referents unless the context clearly dictates otherwise.

In general, the term “aryl” includes groups having 5 to 14 carbon atoms which form a ring structure and have an aromatic character, including 5- and 6-membered single-ring aromatic groups, such as benzene and phenyl. Furthermore,
the term "aryl" includes polycyclic aryl groups, e.g., tricyclic, bicyclic, such as naphthylene and anthracene.

The term "heteroaryl" includes groups having 5 to 14 atoms which form a ring structure and have an aromatic character, including 5- and 6-membered single-ring aromatic groups, that have from one to four heteroatoms, for example, pyrrole, furan, thiophene, thiazole, isothiazole, imidazole, triazole, tetrazole, pyrazole, oxazole isoxazole, pyridine, pyrazine, pyridazine, and pyrimidine, and the like. Furthermore, the term "heteroaryl" includes polycyclic heteroaryl groups, e.g., tricyclic, bicyclic, such as benzoxazole, benzo[d]oxazole, benzo[d]thiazole, benzoimidazole, benzothiophene, methylenedioxyphenyl, quinoline, isoquinoline, naphthidine, indole, benzo[1,2-b:4,5-b']dioxin, purine, benzo[1,2-b:4,5-b']diazepine, indazole, or indoline.

The term "substituted" means that an atom or group of atoms is replaced by another. For aryl and heteroaryl groups, the term "substituted", unless otherwise indicated, refers to any level of substitution, namely mono, di, tri, tetra, or penta substitution, where such substitution is permitted. The substituents are independently selected, and substitution may be at any chemically accessible position.

The compounds provided herein may encompass various stereochemical forms and tautomers. The compounds also encompass diastereomers as well as optical isomers, e.g., mixtures of enantiomers including racemic mixtures, as well as individual enantiomers and diastereomers, which arise as a consequence of structural asymmetry in certain compounds. Separation of the individual isomers or selective synthesis of the individual isomers is accomplished by application of various methods which are well known to practitioners in the art.

The term "electron rich", as used herein, refers to an aryl or heteroaryl ring system which is more easily oxidized than benzene. For example the aryl or heteroaryl ring system may be substituted with one or more substituents having a Hammett value of less than zero.

The term "fluorine" unless explicitly stated otherwise includes all fluorine isotopes. Multiple fluorine isotopes are known, however, only 19F is stable. The radioisotope 18F has a half-life of 109.8 minutes and emits positrons during radioactive decay. The relative amount of 18F present at a designated position in a compound of this disclosure will depend upon a number of factors including the isotopic purity of 19F labeled reagents used to make the compound, the efficiency of incorporation of 18F in the various synthesis steps used to prepare the compound, and the length of time since the 18F has been produced. When a position is designated specifically as 18F in the methods and compounds of the present disclosure, the position is understood to have at least about 0.01%, at least about 0.1%, at least about 1%, at least about 2%, at least about 3%, at least about 4%, at least about 5%, at least about 10%, at least about 15%, at least about 20%, at least about 25%, at least about 30%, at least about 35%, at least about 45%, at least about 50%, at least about 55%, at least about 60%, at least about 65%, at least about 70%, at least about 75%, at least about 80%, or at least about 85% 18F incorporation at that site.

Methods of Preparing Substituted Aryl and Heteroaryl Ring Systems

Provided herein are methods of preparing substituted aryl and heteroaryl ring systems using diaryliodonium compounds and intermediates. For example, diaryliodonium salts and diaryliodonium fluorides, as provided herein, can undergo decomposition to prepare an aryl fluoride.

For example, provided herein is a method for making a compound of Formula (1):

$$\text{Ar}^2-X$$

wherein Ar^2 is an aryl or heteroaryl ring system; and X is a moiety wherein the pKa of the acid $H-X$ is less than 12. In some embodiments, a compound of Formula (1) can be prepared as shown in Scheme 1.

In some embodiments, the method can include reacting in a polar solvent a compound MX wherein M is a counter ion and X is as defined in Formula (1), and a compound of Formula (2):

$$\text{Ar}^1-Y$$

wherein Ar^1 is an electron rich aryl or heteroaryl ring system; Y is a leaving group; and Ar^2 and X are as defined above in Formula (1). The polar solvent can then be removed from the reaction mixture. The remaining mixture can then be combined with a nonpolar solvent and heated to produce a compound of Formula (2).

In some embodiments, the nonpolar solution of the reaction mixture of MX and a compound of Formula (2) can be filtered prior to heating. The filtration step can remove any insoluble material (e.g., insoluble salts) that remain in the reaction mixture. In some embodiments, the solvent can be removed from the filtrate prior to heating (i.e., the residue can be heated neat).

In further embodiments, the nonpolar solution of the reaction mixture of MX and a compound of Formula (2) can be filtered prior to heating, the nonpolar solvent can be removed (e.g., by evaporation), and the heating of the sample can be performed in a different solvent.

Substituted aryls and heteroaryls which are prepared using the methods described herein can have an X moiety which includes any moiety in which the pKa of $H-X$ (i.e., the conjugate acid of X) is less than about 12. In some cases, X is a radioactive isotope (e.g., 18F, 123I, 131I) and compounds having 32P and 33P). In some embodiments, X can be chosen from halide, aryl carboxylate, alkyl carboxylate, phosphate, phosphonate, phosphonite, azide, thiocyanate, cyanate, phenoxide, triflate, trifluoroethoxide, thiolates, and stabilized enolates. For example, X can be fluoride, chloride, bromide, iodide, trifluoroacetate, benzoate, and acetate. In some embodiments, X is fluorido. In some embodiments, is a radioactive isotope of fluoride (e.g., 18F).

Y can be any suitable leaving group. In some embodiments, Y is a weakly coordinating anion (i.e., an anion that coordinates only weakly with iodine). For example, Y can be the conjugate base of a strong acid, for example, any anion for...
which the pKa of the conjugate acid (H-Y) is less than about 1. For example, Y can be triflate, mesylate, nonaflate, hexaflate, toluene sulfonate (tosylate), nitrophenyl sulfonate (nosylate), bromophenyl sulfonate (brosylate), perfluoroalkyl sulfonate (e.g., perfluoro C_{2-10} alkyl sulfonate), tetraphenylborate, hexafluorophosphate, trifluoroacetate, perfluoroalkylcarboxylate, tetrafluoroborate, perchlorate, hexafluorostibate, hexachlorostibate, chloride, bromide, or iodide. In some embodiments, a slightly more basic leaving group such as acetate or benzoate may be used.

The counter ion M can be any suitable cation for the desired X. The choice of the source of X, and accordingly M, is readily within the knowledge of one of ordinary skill in the art. For example, M can be chosen from an alkali metal, alkaline earth metal and transition metal salts such as, for example, calcium, magnesium, potassium, sodium and zinc salts. Metal cations may also be complexed to cryptands or crown ethers to enhance their solubility and to labilize the X moiety. M can also include organic salts made from quaternized amines derived from, for example, N,N’ dibenzylethlenediamine, chloroprocaine, choline, diethanolamine, ethylenediamine, meglumine (N-methylglucamine) and procaine. In some embodiments, M can be a lithium, sodium, potassium, or cesium with cryptands or crown ethers, a tetra substituted ammonium cation, or phosphonium cation. When X is fluoride, the choice of fluoride source is also readily within the knowledge of one of ordinary skill in the art. A variety of fluoride sources can be used in the preparation of the fluorinated aryl and heteroaryl compounds as provided herein, including but not limited to NaF, KF, CsF, tetrabutylammonium fluoride, and tetramethylammonium fluoride. In certain instances the choice of fluoride source will depend on the functionality present on the compound of Formula (2).

The methods described above can be useful in the preparation of fluorinated aryl and heteroaryl ring systems. For example, the methods can be used to prepare a compound of Formula (3):

\[
\text{Ar}^2 - F
\]

wherein \(\text{Ar}^2 \) is an aryl or heteroaryl ring system. In particular, the methods can be used to prepare radiolabeled fluorinated aryl and heteroaryl ring systems (e.g., PET radiotracers). In some embodiments, the method can include reacting in a polar solvent a compound MF and a compound of Formula (2). The polar solvent can then be removed from the reaction mixture. The remaining mixture can then be combined with a nonpolar solvent and heated to produce a compound of Formula (3).

In some embodiments, the method can include heating a mixture comprising a nonpolar solvent, a compound MF, and a compound of Formula (2). The polar solvent can then be removed from the reaction mixture. The remaining mixture can then be combined with a nonpolar solvent and heated to produce a compound of Formula (3).

In some embodiments, the method can include heating a mixture comprising a nonpolar solvent, a compound MF, and a compound of Formula (2). The polar solvent can then be removed from the reaction mixture. The remaining mixture can then be combined with a nonpolar solvent and heated to produce a compound of Formula (3).

In some embodiments, the method can include heating a mixture comprising a nonpolar solvent, a compound MF, and a compound of Formula (2). The polar solvent can then be removed from the reaction mixture. The remaining mixture can then be combined with a nonpolar solvent and heated to produce a compound of Formula (3).

In some embodiments, the method can include heating a mixture comprising a nonpolar solvent, a compound MF, and a compound of Formula (2). The polar solvent can then be removed from the reaction mixture. The remaining mixture can then be combined with a nonpolar solvent and heated to produce a compound of Formula (3).
In some embodiments, the compound of Formula (6) is:

![Chemical structure](image)

Accordingly, the compound of Formula (7) can be, for example:

![Chemical structure](image)

In some embodiments, the compound of Formula (7) can be:

![Chemical structure](image)

In some embodiments, the compound of Formula (7) can be:

![Chemical structure](image)

The moiety ArI can be an electron-rich aryl or heteroaryl ring system. For example, in some embodiments, ArI—H is more easily oxidized than benzene. In some embodiments, ArI can be substituted with at least one substituent having a Hammett σp value of less than zero (see, for example, “A survey of Hammett substituent constants and resonance and field parameters”, Corwin Hansch, A. Leo, R. W. Taft Chem. Rev., 1991, 91 (2), pp 165-195). For example, ArI can be substituted with at least one of -(C1-C10)alkyl, -(C1-C10)haloalkyl, -(C2-C10)alkenyl, -(C2-C10)alkynyl, -O-(C1-C10)alkyl, -CO-(C1-C10)alkyl, aryl, and heteroaryl. In some embodiments, ArI is:

![Chemical structure](image)

wherein R1, R2, R3, R4, and R5 are independently chosen from: H, -(C1-C10)alkyl, -(C1-C10)haloalkyl, -(C2-C10)alkenyl, -(C2-C10)alkynyl, -O-(C1-C10)alkyl, -CO-(C1-C10)alkyl, aryl, and heteroaryl, or two or more of R1, R2, R3, and R5 come together to form a fused aryl or heteroaryl ring system.

In some embodiments, ArI is the same as ArII. In some embodiments, ArI is more easily oxidized than ArII.

In some embodiments, ArI can be substituted with a solid support. A “solid support” may be any suitable solid-phase support which is insoluble in any solvents to be used in the process but which can be covalently bound (e.g., to ArI or to an optional linker). Examples of suitable solid supports include polymers such as polystyrene (which may be block grafted, for example with polyethylene glycol), polyacrylamide, or polypropylene or glass or silicon coated with such a polymer. The solid support may be in the form of small discrete particles such as beads or pins, or as a coating on the inner surface of a reaction vessel, for example a cartridge or a microfabricated vessel. See, for example, U.S. Patent Application No. 2007/0092441.

In some embodiments, the solid support is covalently bound to ArI through the use of a linker. A “linker” can be any suitable organic group which serves to space the ArI from the solid support structure so as to maximize reactivity. For example, a linker can include a C1-20 alkyl or a C1-20 alkoxy, attached to the solid support, for example, a resin by an amide ether or a sulfonamide bond for ease of synthesis. The linker may also be a polyethylene glycol (PEG) linker. Examples of such linkers are well known to those skilled in the art of solid-phase chemistry.

The methods described herein can be used with a variety of aryl and heteroaryl ring systems. As is well understood by one of skill in the art, to carry out efficient nucleophilic substitution of the aryl and heteroaryl ring systems described herein, it is necessary that ArI be more easily oxidized (i.e., more electron rich) than ArII. Within that boundary, however, the ArI moiety can be any aryl or heteroaryl ring system in which substitution by X (e.g., F such as 18F) is desired. For example, ArI can be a phenylalanine, tyrosine, typtophan, or histidine derivative, and an estradiol derivative. In some embodiments, ArI is chosen from:
wherein each of P_1, P_2 and P_6 are independently a nitrogen protecting group, or P_1 and P_2 come together to form a single nitrogen protecting group; and each of P_4, P_5, P_7 are independently an oxygen protecting group, or P_4 and P_5 come together to form a single oxygen protecting group. In some embodiments, A_{2} is an electron rich aryl or heteroaryl ring system.

Protecting groups can be a temporary substituent which protects a potentially reactive functional group from undesired chemical transformations. The choice of the particular protecting group employed is well within the skill of one of ordinary skill in the art. A number of considerations can determine the choice of protecting group including, but not limited to, the functional group being protected, other functionality present in the molecule, reaction conditions at each step of the synthetic sequence, other protecting groups present in the molecule, functional group tolerance to conditions required to remove the protecting group, and reaction conditions for the thermal decomposition of the compounds provided herein. The field of protecting group chemistry has been reviewed (Greene, T. W.; Wuts, P. G. M. Protective Groups in Organic Synthesis, 2.sup.nd ed.; Wiley: New York, 1991).

A nitrogen protecting group can be any temporary substituent which protects an amine moiety from undesired chemical transformations. Examples of such protecting groups include, but are not limited to allylamine, benzylamines (e.g., benzyamine, p-methoxybenzylamine, 2,4-dimethoxybenzylamine, and tritylamine), acetylamide, trifluoroacetamide, trifluoracetamide, pent-4-ename, phthalimides, carbamates (e.g., methyl carbamate, t-butyl carbamate, benzyl carbamate, allyl carbamates, 2,2,2-trichloroethyl carbamate, and 9-fluorenlymethyl carbamate), imines, and sulfonamides.

An oxygen protecting group can be any temporary substituent which protects a hydroxyl moiety from undesired chemical transformations. Examples of such protecting groups include, but are not limited to esters (e.g., acetyl, t-butyl carbonyl, and benzyl), benzyl (e.g., benzyl, p-methoxybenzyl, and trityl), carbonates (e.g., methyl carbonate, allyl carbonate, 2,2,2-trichloroethyl carbonate and benzyl carbonate) ketals, and acetals, and ethers.
In some embodiments, a compound of Formula (2), as provided herein, can be chosen from:

wherein:
each of \(p^1 \) and \(p^2 \) are independently a nitrogen protecting group, or \(p^1 \) and \(p^2 \) come together to form a single nitrogen protecting group;
each of \(p^3 \) and \(p^4 \) are independently an oxygen protecting group, or \(p^3 \) and \(p^4 \) come together to form a single oxygen protecting group, and \(p^5 \) is a carboxylic acid protecting group. For example, a compound of Formula (2) can be:
In some embodiments, a compound of Formula (1) or Formula (3) can be chosen from:

(wherein:
each of \(p^3 \) and \(p^4 \) are independently an alcohol protecting group.

In other embodiments, a compound of Formula (2) is chosen from:

(wherein each of \(p^1 \) and \(p^2 \) are independently a nitrogen protecting group, or \(p^1 \) and \(p^2 \) come together to form a single nitrogen protecting group; and each of \(p^3 \) and \(p^4 \) are independently an alcohol protecting group, or \(p^3 \) and \(p^4 \) come together to form a single oxygen protecting group, and \(p^5 \) is a carboxylic acid protecting group. For examples, a compound of Formula (1) or Formula (3) can be:
In some embodiments, a compound of Formula (1) or Formula (3) can be:

- O
 - t-Bu
 - O
 - N
 - O
 - Me

In some embodiments, a compound of Formula (1) or Formula (3) can be:

- O
 - N
 - O
 - F
 - 30

In some embodiments, a compound of Formula (1) or Formula (3) can be chosen from:

- O
 - N
 - F
 - 60

A nonpolar solvent can be any solvent having a dielectric constant of less than about 10. For example, a nonpolar solvent can be chosen from benzene, toluene, o-xylene, m-xylene, p-xylene, ethyl benzene, carbon tetrachloride, hexane, cyclohexane, fluorobenzene, chlorobenzene, nitrobenzene, and mixtures thereof. In some embodiments, the nonpolar solvent comprises benzene. In some embodiments, the nonpolar solvent comprises toluene. In some embodiments, the nonpolar solvent comprises cyclohexane. In some embodiments the nonpolar solvent is a mixture, for example a mixture of cyclohexane and toluene.

A polar solvent is a solvent having a dielectric constant greater than about 10. In some embodiments, the polar sol-
vent is a polar aprotic solvent, such as acetonitrile, acetone, dichloromethane, ethyl acetate, tetrahydrofuran, dimethylformamide, 1,2-difluorobenzene, benzotri fluoride, and mixtures thereof. In some embodiments, the polar aprotic solvent is acetonitrile.

Heating may be accomplished by conventional means (e.g., heating bath, oven, heat gun, hot plate, Bunsen burner, heating mantle, and the like), by the use of a microwave, or by flash pyrolysis. Typically, the reaction mixture is heated at a temperature ranging from about 25 °C to about 250 °C (e.g., between about 80 °C to about 200 °C, 100 °C to about 200 °C, about 120 °C to about 170 °C, about 120 °C to about 160 °C, about 120 °C to about 150 °C, and about 150 °C to about 150 °C). In some embodiments, the reaction mixture is heated to about 140 °C. Heating can occur for any time necessary to complete the reaction. For example, heating can occur for from about 1 second to about 25 minutes (e.g., about 2 seconds, about 5 seconds, about 10 seconds, about 30 seconds, about 1 minute, about 90 seconds, about 2 minutes, about 3 minutes, about 5 minutes, about 8 minutes, about 10 minutes, about 12 minutes, about 15 minutes, about 20 minutes, and about 24 minutes). In some embodiments, heating can occur for from about 1 second to about 15 minutes.

Further provided herein is a method of making a compound of Formula (1) that includes heating a mixture comprising a nonpolar solvent and a compound of Formula (5):

\[
\text{Ar}^1 - \text{X} - \text{Ar}^2
\]

wherein \(\text{Ar}^1 \) is an electron rich aryl or heteroaryl ring system; and \(\text{Ar}^2 \) and \(X \) are as defined for Formula (1). In some embodiments, the method may include filtering the mixture prior to heating. Filtering, as described above, can remove insoluble materials such as insoluble salts. In another embodiment, the method can include, prior to heating, filtering the mixture, removing the nonpolar solvent, and subsequently heating a solution of the remaining reaction mixture and a polar solvent.

As described above, the methods described herein can be used to prepare fluorinated (e.g., \(^{18}\text{F}\)) aryl and heteroaryl ring systems. Accordingly, further provided herein is a method for making a compound of Formula (3) that includes heating a mixture comprising a nonpolar solvent and a compound of Formula (4):

\[
\text{Ar}^3 - \text{F} - \text{Ar}^4
\]

wherein \(\text{Ar}^3 \) is an electron rich aryl or heteroaryl ring system; and \(\text{Ar}^4 \) is as defined for Formula (3). In some embodiments, the method may include filtering the mixture prior to heating. Filtering, as described above, can remove insoluble materials such as insoluble salts. In another embodiment, the method can include, prior to heating, filtering the mixture, removing the nonpolar solvent, and subsequently heating a solution of the remaining reaction mixture and a polar solvent.

In the methods described herein, a pressure tube or other reinforced closed system can be used in instances where the desired temperature is above the boiling point of the solvent utilized.

The reaction can be conducted in the presence of an inert gas such as nitrogen or argon. In some embodiments, steps are taken to remove oxygen and/or water from the reaction solvent and starting materials. This can be accomplished by a number of methods including distillation of solvents in the presence of agents that react with and/or sequester water and under an atmosphere of inert gas; and purging the reaction vessel with an inert gas.

The methods described herein can be used when MX (e.g., MF) is reacted in an amount ranging from about 1 picomole to about 10 millimoles (e.g., about 1 picomole to about 5 millimoles; about 1 picomole to about 1 millimole; about 1 picomole to about 500 micromoles; about 1 picomole to about 50 micromoles; about 1 picomole to about 1 micromole; about 1 picomole to about 100 nanomoles; about 1 picomole to about 1 nanomole; about 1 picomole to about 100 picomoles; about 1 picomole to about 10 picomoles; about 1 picomole to about 1 picomole; about 1 picomole to about 100 nanomoles; about 1 picomole to about 1 nanomole; about 1 picomole to about 100 picomoles; about 1 picomole to about 10 picomoles). In some embodiments, MX is reacted in the sample in an amount of less than about 10 millimoles. In many cases, the compound of Formula (2) is used in an excess when compared to the amount of MX present in the sample. In some embodiments, the reaction mixture having MX further contains additional compounds which may be present in an excess compared to MX. For example, the additional compounds may be present in more than one million fold excess compared to MX.

Compounds

Diarylidonium compounds, for example, compound of Formula (2), (4), (7) and (8), are further provided herein. For example, a compound of Formula (8) is provided,

\[
\begin{align*}
\text{Ar}^1 & - \text{N} - \text{Ar}^2 \\
& - \text{O} - \text{p}^4 - \text{Ar}^3
\end{align*}
\]

wherein \(\text{Ar}^1 \) is an electron rich aryl or heteroaryl ring system; each of \(\text{p}^1 \) and \(\text{p}^2 \) are independently a nitrogen protecting group, or \(\text{p}^1 \) and \(\text{p}^2 \) come together to form a single nitrogen protecting group; each of \(\text{p}^3 \) and \(\text{p}^4 \) are independently an alcohol protecting group, or \(\text{p}^3 \) and \(\text{p}^4 \) come together to form a single oxygen protecting group; and \(\text{p}^5 \) is a carboxylic acid protecting group. In some embodiments, the compound of Formula (8) can be:
In some embodiments, a compound of Formula (8) can be:

The diaryliodonium compounds of Formula (2), (4) and (7) can be prepared from commercially available starting materials using various methods known to those of ordinary skill in the art. The method used for synthesizing the compounds will depend on the electronics and functionality present in of M. Potentially reactive functional groups present in M can be masked using a protecting group prior to the synthesis of the diaryliodonium compound. The particular method employed for preparing the diaryliodonium compounds will be readily apparent to a person of ordinary skill in the art. For example, the compounds can be made using the following generic reactions as shown in Scheme 2.

For compounds that bear sensitive functionality on the accepting group, organometallic reagents that feature more covalent (more stable) C-M bonds can be used. For example, organometallic compounds including tin, boron, and zinc. If there is no functional group incompatibility, more basic organometallic reagents (organolithium, Grignard, etc.) can be used to prepare the diaryliodonium salts.

Persons skilled in the art will be aware of variations of, and alternatives to, the processes described which allow the compounds defined herein to be obtained.

It will also be appreciated by persons skilled in the art that, within certain of the processes described, the order of the synthetic steps employed may be varied and will depend inter alia on factors such as the nature of other functional groups present in a particular substrate, the availability of key intermediates, and the protecting group strategy (if any) to be adopted. Clearly, such factors will also influence the choice of reagent for use in the said synthetic steps.

The skilled person will appreciate that the diaryliodonium compounds described could be made by methods other than those herein described, by adaptation of the methods herein described and/or adaptation of methods known in the art, for example US 2007/0092441, or using standard textbooks such as “Comprehensive Organic Transformations—A Guide to Functional Group Transformations”, R C Larock, Wiley-VCH (1999 or later editions) and Science of Synthesis, Volume 31a, 2007 (Flouwen-Weyl, Thieme).

It is to be understood that the synthetic transformation methods mentioned herein are exemplary only and they may be carried out in various different sequences in order that the desired compounds can be efficiently assembled. The skilled chemist will exercise his judgment and skill as to the most efficient sequence of reactions for synthesis of a given target compound.

As exemplified in the examples below, certain diaryliodonium fluorides can be prepared by H₂SO₄ catalyzed electrophilic aromatic substitution of the aromatic fluoride precursor with ArI(OAc), followed by ion exchange. The desired diaryliodonium fluoride is formed by reacting the resulting diaryliodonium salt with a fluoride source, such as tetrabutylammonium fluoride, as illustrated in Scheme 3 shown below.

Diaryliodonium fluorides can also be prepared by the reaction of the corresponding tributylstannanyl derivative of the aromatic fluoride precursor with p-MeOPhI(OH)(OTs), followed by ion exchange, and reaction of the resulting diaryliodonium salt with a fluoride source, such as tetrabutylammonium fluoride, as illustrated in Scheme 4.
The choice of fluoride source is readily within the knowledge of one of ordinary skill in the art. A variety of fluoride sources can be used in the preparation of the diaryliodonium fluorides as provided herein, including but not limited to NaF, KF, CsF, tetrabutylammonium fluoride, and tetramethylammonium fluoride. In certain instances the choice of fluoride source will depend on the functionality present on the aromatic fluoride precursor.

Further provided are compounds of Formula (1) and Formula (4) which are prepared by the methods described herein. For example, a compound of Formula (6) is provided, wherein the compound is prepared as described above.

EXAMPLES

General Methods

Tetramethylammonium fluoride (TMAF, Aldrich) and diphenyliodonium nitrate were dried at 60-80°C in a drying pistol (charged with P2O5) under dynamic vacuum for one week. Hexabutylditin and tributyltin chloride (Aldrich) were distilled into flame-dried storage tubes under dry nitrogen. Acetonitrile and acetonitrile-d3 were refluxed with P2O5, benzene and benzene-d6 were refluxed with CaH2, overnight and distilled directly into flame-dried storage tubes under dry nitrogen. All glassware, syringes, and NMR tubes were oven dried (140°C) for more than 24 hours before they were transferred into the glove box for use. All other reagents were purchased from commercial sources and were used as received. All NMR experiments were performed using a Bruker Avance 400 MHz NMR spectrometer.

Example 1

Preparation of p-methoxyphenyliodonium diacetate

2.34 g (10 mmol) p-iodoanisole was dissolved in 90 mL of glacial acetic acid. The solution was stirred, heated to 40°C and 13.6 g (110 mmol) sodium perborate tetrahydrate was added gradually over an hour. The reaction mixture was kept at 40°C for 8 hours before being cooled to room temperature. Half of the acetic acid (~45 mL) was removed and 100 mL of DI water was added. 3x40 mL dichloromethane was used to extract the aqueous solution. The combined organic layers were dried over sodium sulfate and solvent was evaporated to give 2.25 g (64%) of p-methoxyiodonium diacetate, which was dried in vacuo and used without further purification.
synthesis of bis(p-methoxyphenyl)iodonium hexafluorophosphate from the corresponding arylidonium diacetate and anisole. (77.9%)

Example 6
Preparation of 2-methoxyphenyl-4'-methoxyphenyliodonium hexafluorophosphate

2-methoxyphenyl-4'-methoxyphenyliodonium hexafluorophosphate was synthesized according to the procedure described for the synthesis of bis(p-methoxyphenyl)iodonium hexafluorophosphate from the corresponding arylidonium diacetate and anisole. (83.3%)

Example 7
Preparation of 3-cyanophenyl-4'-methoxyphenyliodonium hexafluorophosphate

3-cyanophenyl-4'-methoxyphenyliodonium hexafluorophosphate was synthesized according to the procedure described for the synthesis of bis(p-methoxyphenyl)iodonium hexafluorophosphate from the corresponding arylidonium diacetate and anisole. (73.7%)

Example 8
Preparation of 2,6-dimethoxyphenyliodonium hexafluorophosphate

2,6-dimethoxyphenyliodonium hexafluorophosphate was synthesized according to the procedure described for the synthesis of bis(p-methoxyphenyl)iodonium hexafluorophosphate from the corresponding arylidonium diacetate and anisole. (86.6%)

Example 9
Preparation of 2,6-dimethoxyphenyltributyltin

2,6-dimethoxyphenyltributyltin was synthesized in a similar fashion as described in the procedure for the synthesis of 3,4-dimethoxyphenyltributyltin from the corresponding bromo precursor. (76.2%)

Example 10
Preparation of 3,4-dimethoxy-2-(2-phthalimido)phenyltributyltin

3,4-dimethoxy-2-(2-phthalimido)phenyltributyltin was synthesized in a similar fashion as described in the procedure for the synthesis of 3,4-dimethoxyphenyltributyltin from the corresponding bromo precursor. (20%)

Example 11
Preparation of 2-Bromo-4,5-dimethoxyl-(2-phthalimidoethyl)benzene

2-Bromo-4,5-dimethoxyl-(2-phthalimidoethyl)benzene: Under N₂ protection, 1.085 g (5 mmol) 4-bromoveratrole and 289 mg (5 mol %) Pd(O)(PPh₃)₄ was dissolved in 15 mL of dry toluene, the solution was transferred into a storage tube equipped with a Teflon Chemcap Seal, and 3.19 g (5 mmol) hexabutylditin was added. The tube was sealed, heated to, and kept at 120°C for 48 hours. The reaction mixture was allowed to cool to room temperature, and diluted with 15 mL hexane. 15 mL of saturated aqueous KF solution was added and the mixture was stirred for 30 minutes followed by filtration through celite. The organic layer was separated; solvent was removed to provide the crude product as a yellow oil. The crude was purified by column chromatography (hexane/dichloromethane 98/2, basic aluminum) to give 1.69 g (79.1%) pure 3,4-dimethoxyphenyltributyltin.

Example 12
Preparation of 3,4-dimethoxyphenyltributyltin

3,4-dimethoxyphenyltributyltin: Under N₂ protection, 1.085 g (5 mmol) 4-bromoveratrole and 289 mg (5 mol %) Pd(O)(PPh₃)₄ was dissolved in 15 mL of dry toluene, the solution was transferred into a storage tube equipped with a Teflon Chemcap Seal, and 3.19 g (5 mmol) hexabutylditin was added. The tube was sealed, heated to, and kept at 120°C for 48 hours. The reaction mixture was allowed to cool to room temperature, and diluted with 15 mL hexane. 15 mL of saturated aqueous KF solution was added and the mixture was stirred for 30 minutes followed by filtration through celite. The organic layer was separated; solvent was removed to provide the crude product as a yellow oil. The crude was purified by column chromatography (hexane/dichloromethane 98/2, basic aluminum) to give 1.69 g (79.1%) pure 3,4-dimethoxyphenyltributyltin.

Example 13
Preparation of 3,4-dimethoxy-2-methylphenyltributyltin

3,4-dimethoxy-2-methylphenyltributyltin was synthesized in a similar fashion as described in the procedure for the synthesis of 3,4-dimethoxyphenyltributyltin from the corresponding bromo precursor. (76.2%)

Example 14
Preparation of 3,4-dimethoxy-2-(2-phthalimido)phenyltributyltin

3,4-dimethoxy-2-(2-phthalimido)phenyltributyltin was synthesized in a similar fashion as described in the procedure for the synthesis of 3,4-dimethoxyphenyltributyltin from the corresponding bromo precursor. (20%)

Example 15
Preparation of 3,4-dimethoxyphenyl-4'-methoxyphenyliodonium hexafluorophosphate

3,4-dimethoxyphenyl-4'-methoxyphenyliodonium hexafluorophosphate: Under N₂ protection, 352 mg (1 mmol)
p-methoxyphenyliodonium diacetate was dissolved in 1.5 mL of dry acetonitrile. The solution was combined with a solution of 190 mg (1 mmol) tosylic acid monohydrate in 1.5 mL of dry acetonitrile. After addition of 427 mg (1 mmol) 3,4-dimethoxyphenyltributyltin, the mixture was allowed to react at room temperature for 2 hours. 10 mL of water was added to the reaction mixture followed by extraction with 3x5 mL hexanes. The water layer was treated with 502 mg (3 mmol) NaPF₆. The white precipitation was taken up in dichloromethane and recrystallization with diethylether/dichloromethane provided 370 mg (71.7%) 3,4-dimethoxyphenyl-4'-methoxyphenyliodonium hexafluorophosphate.

Example 19

Preparation of Phenyl-4-methoxyphenyliodonium fluoride

Phenyl-4-methoxyphenyliodonium fluoride was synthesized in a similar fashion as the procedure described for 2-methoxyphenyl-4'-methoxyphenyliodonium fluoride from corresponding hexafluorophosphate. (96%)

Example 20

Preparation of 3-cyanophenyl-4'-methoxyphenyliodonium fluoride

3-cyanophenyl-4'-methoxyphenyliodonium fluoride was synthesized in a similar fashion as the procedure described for 2-methoxyphenyl-4'-methoxyphenyliodonium fluoride from corresponding hexafluorophosphate. (25%)

Example 21

Preparation of 3,4-dimethoxy-2-methylphenyl-4'-methoxyphenyliodonium hexafluorophosphate

3,4-dimethoxy-2-methylphenyl-4'-methoxyphenyliodonium hexafluorophosphate was synthesized in a similar fashion as 3,4-dimethoxyphenyl-4'-methoxyphenyliodonium hexafluorophosphate from p-methoxyphenyliodonium diacetate and the corresponding aryl tin precursor. (75%)

Example 22

Preparation of 2,6-dimethoxyphenyl-4'-methoxyphenyliodonium fluoride

2,6-dimethoxyphenyl-4'-methoxyphenyliodonium fluoride was synthesized in a similar fashion as the procedure described for 2-methoxyphenyl-4'-methoxyphenyliodonium fluoride from corresponding hexafluorophosphate. (15%)

Example 23

Preparation of 50 fluoride

2-methoxyphenyl-4'-methoxyphenyliodonium fluoride

2-methoxyphenyl-4'-methoxyphenyliodonium fluoride was synthesized in a similar fashion as the procedure described for 2-methoxyphenyl-4'-methoxyphenyliodonium fluoride from corresponding hexafluorophosphate. (90%)

Example 24

Preparation of 3,4-dimethoxy-2-methylphenyl-4'-methoxyphenyliodonium fluoride

3,4-dimethoxy-2-methylphenyl-4'-methoxyphenyliodonium fluoride was synthesized in a similar fashion as the procedure described for 2-methoxyphenyl-4'-methoxyphenyliodonium fluoride from corresponding hexafluorophosphate. (80%)
Example 25

Preparation of 3,4-dimethoxy-2-(2-phthalimidoethyl)phenyl-4'-methoxyphenyliodonium fluoride

3,4-dimethoxy-2-(2-phthalimidoethyl)phenyl-4'-methoxyphenyliodonium fluoride was synthesized in a similar fashion as the procedure described for 2-methoxyphenyl-4'-methoxyphenyliodonium fluoride from corresponding hexafluorophosphate. (45%)

Example 26

Preparation of Bis(p-methoxyphenyl)iodonium fluoride

Bis(p-methoxyphenyl)iodonium fluoride: To a mixture of 454 mg (1 mmol) Bis(p-methoxyphenyl)iodonium trifluoroacetate and 262 mg (1 mmol) anhydrous TBAF was added 1 mL of dry tetrahydrofuran (THF). The solution was allowed to stand for 1 hour, the white precipitate was collected and washed with 3x0.5 mL THF.

Calculated yield: 288.7 mg (80.2%)

Example 27

Diaryliodonium fluoride Decomposition

In a glove box, 0.5 mL dry d₆-benzene was added to 0.02 mmol of the diaryliodonium fluoride, the solution/mixture was transferred to a J-Young NMR tube. The tube was heated to and kept at 140°C for 5-15 minutes. The resulting solution was analyzed by NMR and GC for product determination.

Observed yields of thermal decompositions of the diaryliodonium fluorides prepared above are described in Table 1.

TABLE 1

<table>
<thead>
<tr>
<th>Entry</th>
<th>Diaryliodonium fluoride</th>
<th>Yield of total fluoroaromatics</th>
<th>Yield of ArF</th>
<th>Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>77% (94%)</td>
<td>57% (80%)</td>
<td>benzene, 140°C, 15 min</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>99% (94%)</td>
<td>86% (80%)</td>
<td>benzene, 140°C, 18 min</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>82% (80%)</td>
<td>40% (48%)</td>
<td>benzene, 140°C, 15 min</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>47% (44%)</td>
<td>19% (17%)</td>
<td>benzene, 140°C, 15 min</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>91% (88%)</td>
<td>77% (74%)</td>
<td>benzene, 140°C, 15 min</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td>90% (92%)</td>
<td>78% (82%)</td>
<td>benzene, 140°C, 11 min</td>
</tr>
</tbody>
</table>
TABLE I-continued

<table>
<thead>
<tr>
<th>Entry</th>
<th>Diaryliodonium fluoride</th>
<th>Yield of total fluoro aromatics</th>
<th>Yield of ArF</th>
<th>Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td></td>
<td></td>
<td>89% (90%)</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
<td>95% (92%)</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
<td></td>
<td>80%</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
<td>60%</td>
<td></td>
</tr>
</tbody>
</table>

(*) determined by GC
*benzene chemistry led to the formation of 3-fluoroanisole

Examples 28

Impact of Additional Salts on F-MTEB

The effect of salt present in solution during the decomposition of (3-cyano-5-((2-methylthiazol-4-yl)ethynyl)phenyl) (4-methoxyphenyl)iodonium triflate (Ar-MTEB-OTf) was examined at 90°C. Each solvent was tested in the absence of salt, presence of 1 equivalent of salt, and presence of 2 equivalents of salt. The preparation of each reaction condition is summarized below. A TMAF stock solution of 3.3 mg/mL in dry, degassed acetonitrile was prepared for addition to each reaction tube.

Acetonitrile No Salt

Iodonium triflate precursor (0.004 g, 6.6 μmol) was dissolved in 0.38 mL of dry, degassed acetonitrile, under nitrogen atmosphere, with 18 μL of TMAF (6.6 μmol) stock solution. Next, 0.4 mL of dry, degassed benzene was added to the residue and passed twice through 0.22 μm PTFE membrane filter. The solution was again subjected to vacuum to remove solvent and the remaining residue was dissolved in 0.4 mL of
The mixture was then placed in a silicon oil bath and monitored at 90°C. The reaction mixture was placed in silicon oil bath and monitored at 90°C.

Under nitrogen atmosphere, iodonium triflate precursor (0.004 g, 6.6 μmol) was dissolved in 0.38 mL dry, degassed d3-acetonitrile and combined with 18 μL of TMAF (6.6 μmol) stock solution. The acetonitrile was removed by vacuum and the remaining residue was redissolved in 0.4 mL dry, degassed d3-benzene. The solution was passed twice through 0.22 μm PTFE filter, sealed under nitrogen, and monitored in silicon oil bath at 90°C.

Benzene No Salt
Under nitrogen atmosphere, iodonium triflate precursor (0.004 g, 6.6 μmol) was dissolved in 0.38 mL dry degassed acetonitrile and combined with 18 μL of TMAF (6.6 μmol) stock solution. The acetonitrile was removed by vacuum and the remaining residue was redissolved in 0.4 mL dry, degassed d3-benzene. The solution was sealed under nitrogen and monitored in silicon oil bath at 90°C.

Acetonitrile+1 eq. TMAOTf

Under nitrogen atmosphere, iodonium triflate precursor (0.004 g, 6.6 μmol) was dissolved in 0.38 mL dry, degassed d3-acetonitrile and combined with 18 μL of TMAF (6.6 μmol) stock solution. The acetonitrile was removed by vacuum and the remaining residue was redissolved in 0.4 mL dry, degassed d3-benzene. The reaction mixture was sealed under nitrogen and monitored in silicon oil bath at 90°C.

Benzene No Salt
Under nitrogen atmosphere, iodonium triflate precursor (0.004 g, 6.6 μmol) was dissolved in 0.38 mL dry degassed acetonitrile and combined with 18 μL of TMAF (6.6 μmol) stock solution. The acetonitrile was removed by vacuum and the remaining residue was redissolved in 0.4 mL dry, degassed d3-benzene. The solution was sealed under nitrogen and monitored in silicon oil bath at 90°C.

Preparation of [18F]-MTEB with Salt Removal
[18F]TBAF was dried twice with MeCN at 90°C. under reduced pressure (~10 mm Hg). Ar-MTEB-OTf (2 mg) was dissolved in MeCN (300 μL) and added to the vial containing the dried [18F]TBAF. The reaction mixture was stirred at 90°C and the MeCN was evaporated under reduced pressure (~10 mm Hg). The remaining residue was re-dissolved in 2 mL of dry benzene, passed through 0.22-mm syringe filter, and heated to 100°C for 20 minutes (radiochemical yield (RCY)~70%, determined by radio-HPLC and radio-TLC).

Preparation of [18F]-MTEB with Salt Removal
[18F]TBAF was dried twice with MeCN at 90°C. under reduced pressure (~10 mm Hg). Ar-MTEB-OTf (2 mg) was dissolved in MeCN (300 μL) and added to the vial containing the dried [18F]TBAF. The reaction mixture was stirred at 90°C and the MeCN was evaporated under reduced pressure (~10 mm Hg). The remaining residue was re-dissolved in 2 mL of dry benzene, passed through 0.22-mm syringe filter, and heated to 130°C for 20 minutes (radiochemical yield (RCY)~90%, determined by radio-HPLC and radio-TLC)

Preparation of [18F]-6-Fluoro-L-DOPA

Fluorinations of Radiofluorination of MTEB under Conventional Conditions
For each reaction the iodonium fluorite precursor Ar-MTEB-OTf (2 mg) was dissolved in 300 μL of either acetonitrile, DMF, or DMSO.

Preparation of Kryptofix 222/K2CO3 18F source: A mixture of 50-100 μL of [18O]H2O with [18F]fluoride+15 μL of 1 M K2CO3 (aq)+800 μL CH3CN was heated for 3 minutes in a microwave cell at 20 W. The mixture was treated with 800 μL of CH3CN and heated again. Excess solvent was removed under a stream of dry nitrogen at 80°C.

Run 1: A solution of Ar-MTEB-OTf (2 mg) in 300 μL DMF was added to the dried Kryptofix 222/K2CO3 18F source and heated in a microwave (50 W, 1.5 min). No detectable radio-

labeled MTEB was seen by radio-TLC. Additional microwave heating for 3 or 6 minutes resulted in no 18F-MTEB.

Run 2: A solution of Ar-MTEB-OTF (2 mg) in 300 μL DMSO was added to the dried Kryptofix 222/K2CO3 18F source and heated in a conventional oil bath at 120°C for 15 minutes. No detectable radio labeled MTEB was seen by radio-TLC. Further heating for 15 or 30 minutes resulted in the formation of no detectable 18F-MTEB.

For runs 3 and 4, a solution of [18F]TBAF was prepared by addition of TBAOH to the [18O]H2O solution containing [18F]fluoride. Drying was performed in vacuo. The resulting solid was treated with 800 μL of CH3CN and dried by heating to 80°C under a stream of dry nitrogen.

Run 3: A solution of Ar-MTEB-OTF (2 mg) in 300 μL DMSO was added to the [18F]TBAF and heated in at 150°C oil bath for 15 minutes, 30 minutes, and one hour. No detectable radio labeled MTEB was seen by radio-TLC.

Run 6: A solution of Ar-MTEB-OTF (2 mg) in 300 μL DMSO was added to the [18F]TBAF and heated in at 120°C oil bath for 15 minutes, 30 minutes, and one hour. A yield of 6.3% of radio labeled MTEB was seen by radio-TLC.
Example 33

General Procedure for the Preparation of Fluorinated Aryl Amino Acids and Their Derivatives

The appropriate (4-methoxyphenyl)aryl iodonium triflate (2-3 mg) is dissolved in 300 μL of dry acetonitrile and added to a vial containing dry [18F]TBAF. The solution is warmed to 90°C. and the solvent is removed under reduced pressure. Dry toluene or benzene (500 μL) is added to the residue and the solution is passed through a 0.22 μm PTFE membrane filter and heated (in a sealed vessel) to 130°C. for 20 minutes. The solvent is removed under reduced pressure and the residue is treated with 48% HBr (500 μL) and heated at 140°C. for 8 minutes to remove the protecting groups. The 18F-fluoro-L-DOPA is purified by reverse phase chromatography.

Example 34

Preparation of 6-Fluoro-L-DOPA

The precursor Ar-LDOPA-OTf (20 mg) was dissolved in 0.7 mL of dry CD3CN and treated with one equivalent of TMAF. The solvent was removed and the residue was dissolved in 0.7 mL of d6-benzene, placed in an NMR tube equipped with a PTFE valve, and heated at 140°C. for 20 minutes. 1H and 19F NMR spectra (FIGS. 3 and 4) indicated that the yield of the reaction was 85% and that the yield of 4-fluoroanisole was approximately 1%.

Example 35

Deprotection of 6-Fluoro-L-DOPA

The solvent was removed from the reaction mixture containing crude 6-fluoro-L-DOPA (Example 34). The residue was dissolved in 1 mL of 48% aqueous HBr and the solution was heated to 140°C. for 10 minutes. The solution was neutralized with sodium bicarbonate and the water was evaporated. 1H and 19F NMR spectra (D2O) were identical to the authentic standard, as was confirmed by adding independently obtained 6-fluoroanisole to the NMR tube.

A number of embodiments of the invention have been described. Nevertheless, it will be understood that various modifications may be made without departing from the spirit and scope of the invention. Accordingly, other embodiments are within the scope of the following claims.

What is claimed is:

1. A method for making a compound of Formula (3):
 \[\text{Ar}^2 - \text{F} \]
 wherein:
 \(\text{Ar}^2 \) is an aryl or heteroaryl ring system;
 the method comprising reacting in a polar solvent a compound MF, wherein M is a counter ion, and a compound of Formula (2):

 \[\text{Ar}^1 \equiv \text{Y} \equiv \text{Ar}^2 \]

2. A method for making a compound of Formula (3):
 \[\text{Ar}^2 - \text{F} \]
 wherein:
 \(\text{Ar}^1 \) is an electron rich aryl or heteroaryl ring system;
 \(\text{Y} \) is a leaving group; and
 \(\text{Ar}^2 \) is as defined above;
 removing the polar solvent from the reaction mixture; and
 heating a solution comprising the remaining mixture and a nonpolar solvent.

3. A method for making a compound of Formula (3):
 \[\text{Ar}^2 - \text{F} \]
 wherein:
 \(\text{Ar}^1 \) is an aryl or heteroaryl ring system;
 the method comprising heating a mixture comprising a nonpolar solvent, a compound MF, wherein M is a counter ion, and a compound of Formula (2):
4. A method for making a compound of Formula (3):

\[\text{Ar}^2 - F \]

wherein:

\(\text{Ar}^2 \) is an aryl or heteroaryl ring system;

the method comprising reacting in a nonpolar solvent a compound \(\text{MF} \), wherein \(M \) is a counter ion, and a compound of Formula (2):

\[\text{Ar}^1 - \text{Ar}^2 \]

wherein:

\(\text{Ar}^1 \) is an electron rich aryl or heteroaryl ring system;

\(Y \) is a leaving group; and

\(\text{Ar}^2 \) is as defined above;

filtering the reaction mixture to remove insoluble material;

and

heating the filtrate.

5. The method of any one of claims 1-4, wherein \(\text{Ar}^1 - \text{H} \) is more easily oxidized than benzene.

6. The method of any one of claims 1-4, wherein \(X \) is a radioactive isotope.

7. The method of any one of claims 1-4, wherein \(\text{Ar}^1 \) is substituted with at least one substituent having a Hammett \(\sigma_p \) value of less than zero.

8. The method of claim 7, wherein the substituent is chosen from:

\(-\text{(C}_1-\text{C}_{10})\text{alkyl}, \quad -(\text{C}_1-\text{C}_{10})\text{haloalkyl}, \quad (\text{C}_2-\text{C}_{10})\text{alkenyl}, \quad (\text{C}_2-\text{C}_{10})\text{alkynyl}, \quad -\text{O}-(\text{C}_1-\text{C}_{10})\text{alkyl}, \quad -(\text{C}_1-\text{C}_{10})\text{aryl}, \text{and heteroaryl}.\)

9. The method of any one of claims 1-4, wherein the \(F \) is a radioactive isotope of fluorine.

10. The method of any one of claims 1-4, wherein \(\text{Ar}^1 \) and \(\text{Ar}^2 \) are the same.

11. The method of any one of claims 1-4, wherein \(\text{Ar}^1 \) is:

\[\text{Ar}^1 \]

wherein:

\(R^1, R^2, R^3, R^4, \) and \(R^5 \) are independently chosen from: H, \(-\text{(C}_1-\text{C}_{10})\text{alkyl}, \quad -(\text{C}_1-\text{C}_{10})\text{haloalkyl}, \quad (\text{C}_2-\text{C}_{10})\text{alkenyl}, \quad (\text{C}_2-\text{C}_{10})\text{alkynyl}, \quad -\text{O}-(\text{C}_1-\text{C}_{10})\text{alkyl}, \quad -(\text{C}_1-\text{C}_{10})\text{aryl}, \text{and heteroaryl}.\)

12. The method of any one of claims 1-4, wherein \(\text{Ar}^2 \) is chosen from a phenylalanine derivative, tyrosine derivative, typtophan derivative, histidine derivative, and an estradiol derivative.
wherein:

each of p_1, p_2 and p_6 are independently a nitrogen protecting group, or p_1 and p_2 come together to form a single nitrogen protecting group;

each of p_3, p_4 and p_7 are independently an alcohol protecting group, or p_3 and p_4 come together to form a single oxygen protecting group; and

p_5 is a carboxylic acid protecting group.

14. The method of any one of claims 1-4, wherein the nonpolar solvent is chosen from: benzene, toluene, o-xylene, m-xylene, p-xylene, ethyl benzene, carbon tetrachloride, hexane, cyclohexane, fluorobenzene, chlorobenzene, nitrobenzene, and mixtures thereof.

15. The method of claim 14, wherein the nonpolar solvent comprises benzene.

16. The method of claim 14, wherein the nonpolar solvent comprises toluene.

17. The method of any one of claims 1-4, wherein the heating comprises heating at a temperature ranging from about 25°C to about 250°C.

18. The method of claim 17, wherein the heating occurs for from about 1 second to about 25 minutes.

19. The method of claim 17, wherein the heating is accomplished by a flash pyrolysis method, a conventional heating method, or by a microwave method.

20. The method of any one of claims 1 and 2, wherein the mixture comprising the nonpolar solvent is filtered prior to heating.

21. The method of any one of claims 1 and 3, wherein the polar solvent is chosen from: acetonitrile, acetone, dichloromethane, ethyl acetate, tetrahydrofuran, dimethylformamide, 1,2-difluorobenzene, benzotrifluoride and mixtures thereof.

22. The method of any one of claims 1-4, wherein Y is chosen from triflate, mesylate, nonaflate, hexaflate, tosylate, nosylate, brosylate, perfluoroalkyl sulfonate, tetraphenylborate, hexafluorophosphate, trifluoroacetate, tetrafluoroborate, perchlorate, perfluoroalkylcarboxylate, chloride, bromide, and iodide.

23. The method of any one of claims 1-4, wherein M is chosen from: potassium, sodium, cesium, complexes of lithium, sodium, potassium, or cesium with cryptands or crown ethers, tetrasubstituted ammonium cations, and phosphonium cations.

24. The method of any one of claims 3 and 4, wherein the insoluble material comprises insoluble salts.

25. The method of any one of claims 3 and 4, wherein the solvent is removed from the filtrate prior to heating.

26. The method of any one of claims 1-4, wherein the compound of Formula (2) is chosen from:
27. The method of any one of claims 1-4, wherein the compound of Formula (3) is chosen from:

wherein:
each of p^1 and p^2 are independently a nitrogen protecting group, or p^1 and p^2 come together to form a single nitrogen protecting group;
each of p^3 and p^4 are independently an alcohol protecting group, or p^3 and p^4 come together to form a single oxygen protecting group; and
p^5 is a carboxylic acid protecting group.

28. The method of any one of claims 1-4, wherein the compound of Formula (2) is chosen from:

29. The method of any one of claims 1-4, wherein the compound of Formula (3) is chosen from:
30. The method of any one of claims 1-4, wherein the compound of Formula (2) is chosen from:

31. The method of any one of claims 1-4, wherein the compound of Formula (3) is chosen from:

32. The method of any one of claims 1-4, wherein the compound of Formula (2) is:

wherein:
- each of P³ and P⁴ are independently an alcohol protecting group.

wherein:
- each of P³ and P⁴ are independently an alcohol protecting group.

wherein:
- each of P³ and P⁴ are independently an alcohol protecting group.

wherein:
- each of P³ and P⁴ are independently an alcohol protecting group.

- P⁵ is a carboxylic acid protecting group.
33. The method of claim 32, wherein the compound of Formula (2) is:

34. The method of claim 32, wherein the compound of Formula (2) is:

35. The method of any one of claims 1-4, wherein the compound of Formula (3) is:

36. The method of claim 35, wherein the compound of Formula (3) is:

37. The method of any one of claims 1-4, wherein the compound of Formula (3) is:
It is certified that error appears in the above-identified patent and that said Letters Patent is hereby corrected as shown below:

On the Title Page, item (56):

Column 2, First Page, Line 2 (Other Publications), please delete “flourobenzene” and insert -- fluorobenzene --, therefor.

Column 1, Page 2, Line 43 (Other Publications), please delete “(heptafluoroproyl)” and insert -- (heptafluoropropyl) --, therefor.

Column 2, Page 2, Line 66 (Other Publications), please delete “reaction f cyclic” and insert -- reaction of cyclic --, therefor.

Column 2, Page 3, Lines 26-27 (Other Publications), please delete “alph-Phyenyl” and insert -- alpha-Phenyl --, therefor.

Column 2, Page 3, Line 39 (Other Publications), please delete “diphenyloidonium” and insert -- diphenyliodonium --, therefor.

Column 2, Page 3, Line 43 (Other Publications), please delete “UUSR.” and insert -- USSR. --, therefor.

Column 2, Page 3, Lines 48-49 (Other Publications), please delete “Reactions o fDiaryliodonium” and insert -- Reactions of Diaryliodonium --, therefor.

Column 1, Page 4, Line 11 (Other Publications), please delete “substitution” and insert -- substitution --, therefor.

Column 2, Page 4, Line 1 (Other Publications), please delete “Iodene” and insert -- Iodine --, therefor.

Signed and Sealed this
Twenty-fourth Day of June, 2014

[Signature]
Michelle K. Lee
Deputy Director of the United States Patent and Trademark Office
Column 2, Page 4, Line 27 (Other Publications), please delete “Phenyltributystanne” and insert -- Phenyltributylstannane --, therefor.

In the Specification:

Column 1, Line 15, After “herein” insert -- . --.

In the Claims:

Column 55, Line 66 (Claim 12), please delete “typtophan” and insert -- tryptophan --, therefor.

Column 59, Line 17 (Claim 13), please delete “” and insert

Column 62, Line 52 (Claim 26), please delete the “.” after the structure.